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Abstract 
Increasing concern about the environmental impact of industrial activities has prompted a shift to renewable 

energy sources and the development of environmentally conscious supply chains. In this regard, electrochemistry has 

shown promise for converting biomass into specialty chemicals in distributed facilities that exploit renewable energy 

resources. To examine the impact of electrochemistry technology on optimal supply chain configuration, we formulate 

a mixed-integer linear programming model to optimize the locations and capacities of distributed facilities for 

converting biomass to chemicals. The economic objective of the supply chain design model is to minimize the 

total annual cost of producing chemicals from biomass-derived glucose and delivering them to market. To analyze the 

trade-off between environmental and economic considerations, we also consider an environmental objective of 

minimizing greenhouse gas (GHG) emissions. The results of a US case study indicate that, while cost is minimized 

by constructing one large facility, GHG emissions are lowered by a distributed configuration.  Varying the setting of 

a process design parameter expands the Pareto frontier along which decision-makers can choose a configuration 

according to their preferences between economic and environmental criteria. 

 
Keywords: Chemical supply chain, Supply chain network design, Mixed-integer programming, Electrochemistry. 

__________________________________________________________________________ 
1. Introduction 

In recent years, the environmental advantages of biomass have been rapidly transforming the prospects 

for its widespread use as a feedstock in chemical manufacturing, including for the production of commodity 

chemicals, which now relies heavily on finite fossil carbon resources. Biobased chemical production 

processes are designed to replace these non-renewable sources of carbon with sustainable carbon derived 

from diverse biomass feedstocks, such as carbohydrates, triglycerides, lignin, and proteins. To overcome 

some of the challenges associated with biomass substitution, researchers have proposed the development 

of platform intermediate compounds, aimed at simplifying the development of multiple chemical products 

(Shanks & Broadbelt, 2019). While it may remain a long-term goal to replace petrochemical processes with 

renewable electrosynthesis, the production of chemicals from biomass is already attainable through 

                                                 
∗ Corresponding author. Tel.:+1-515-294-4347 

  E-mail addresses: smryan@iastate.edu (S.M. Ryan), motinaa@iastate.edu (M. Kashanian). 



 2 

distributed electrochemical manufacturing (Harnisch & Urban, 2018). The electrochemical approach to 

biomass conversion, which has been underexplored, offers unique advantages. The technology utilizes 

electricity to access new reaction pathways. With this approach, biomass and waste carbon can be converted 

at lower temperatures with improved efficiency and with intermittent renewable electricity resources.  

Electrochemical methods enable a wide variety of chemical transformations, effluent treatment, and the 

conversion of complex organics into valuable hydrocarbons. They hold the potential for environmentally 

friendly and economically viable industrial processes via small-scale manufacturing (Akhade et al., 2020, 

Uno & Inada, 2018). Biomass in the US Midwest can be converted into a wide range of highly selective 

and on-demand products using electrochemistry. While not overstating the carbon footprint benefits 

associated with substituting biomass for petroleum feedstocks (Queneau & Han, 2022), it is important to 

investigate the potential improvement in the economic and environmental tradeoffs of distributed 

electrochemical manufacturing. 

Adipic acid (AA) is one important commodity chemical that soon could be produced from biomass 

rather than petroleum feedstock in a clean process.  This polymer, a building block central to the production 

of Nylon 6,6, is broadly used in food packaging, home goods (e.g., carpets), textiles and apparel, as well as 

in the automobile industry.  However, the current production process of oxidizing fossil-based cyclohexane 

using concentrated nitric acid has many negative environmental effects, including high levels of greenhouse 

gas (GHG) emissions (Nicholson et al., 2021).  One of the most promising alternative processes involves 

muconic acid, an emerging bio-based platform chemical.  In this scheme, glucose produced from starch or 

cellulosic biomass is biologically converted to cis,cis-muconic acid (ccMA), which can then be converted 

to AA using precious metal catalysts and hydrogen gas (Rios et al., 2021).  However, the hydrogen typically 

is derived from fossil methane through steam reforming. To overcome the use of natural gas, researchers 

also have explored electrochemical hydrogenation, a technology that can be powered using renewable 

electricity and that uses water as a source of hydrogen for the reaction. One of the recent successes is the 

electrochemical hydrogenation of ccMA to trans-3-hexenedioic acid (t3HDA), a potential substitute for 

AA as a precursor of performance-advantaged nylon (Matthiesen, Carraher, et al., 2016).  Hybrid microbial 

electrosynthesis (HMES) integrates fermentation and electrosynthesis, enabling improved efficiency and 

productivity in industrial processes, with environmentally friendly, cost-effective operation (Dell'Anna et 

al., 2021). Several experiments showcased the capability to generate bioderived compounds without the 

requirement of separating or modifying the fermentation broth using HMES (Matthiesen, Suástegui, et al., 

2016). That is, this electrochemical reaction can be performed directly in the fermentation broth, using its 

water and salts as an electrolyte, and eliminating the need for expensive separation and purification steps.   
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A similar process under development for AA would have the threefold benefit of using renewable 

biomass as a feedstock, relying on clean electricity to drive the reaction, and reducing waste by process 

intensification. In this study, we explore the potential of distributing this production among small-scale 

facilities to reduce transportation costs and related emissions while exploiting proximity to sources of clean 

energy. 

To properly assess the economic and environmental sustainability of a manufacturing process, the 

scope of consideration must include issues arising in the supply chain from raw material suppliers to 

customers of the end product.  Supply chain management integrates suppliers, manufacturers, distribution 

centers, and customers to facilitate the efficient transportation of materials from source to end-user, 

ensuring timely delivery, quality, and cost-effectiveness through coordinated product and information flow 

(Beamon, 1998). Supply chain design and optimization can benefit any industry or process, as it considers 

not only operations, but also business functionality and market dynamics (Laínez & Puigjaner, 2012). The 

strategic decisions in supply chain management refer to the high-level decisions and actions taken to design 

and manage an efficient and effective supply chain network. These decisions include supply chain structure, 

technology selection, facility capacities, and other factors that contribute to competitive advantage (Sharma 

et al., 2013). The design of the supply chain network, specifically considering the sizes and locations of 

distributed facilities, affects its profitability and environmental performance. An optimal design balances 

the scale economies of production facilities against proximity to sources of raw materials and inexpensive 

renewable energy sources. 

Techno-economic analysis (TEA) is commonly used to assess the financial aspects of engineering end-

products and process designs, to provide investors with guidance on whether the processes and products 

can be commercialized. Typically, the TEA is used to estimate a minimum selling price (MSP) to be used 

as the unit price of a product in a break-even analysis (Scown et al., 2021). The analysis tends to focus 

narrowly on the cost of building and operating a single production facility, ignoring the costs of transporting 

raw materials inbound to the facilities and finished products outbound to customers. While this analysis is 

a useful initial step towards assessing economic viability, it implicitly assumes that the MSP is obtained by 

taking advantage of the scale economies associated with traditional production processes (but not shared 

by electrochemical processes). It also ignores the potential economic and environmental benefits of locating 

facilities close to sources of renewable energy. 

To include a wider perspective, we formulate a mixed-integer linear program (MILP) to optimize the 

sizes and locations of distributed bio-based chemical production facilities that integrate fermentation with 

electrochemistry. Our bicriterion model considers two objectives to be minimized: the total annualized 

investment and operational cost, and the GHG emissions from transportation and electricity usage, 
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accounting for spatial variation in both the cost and emissions due to electricity obtained from the grid. We 

apply the model in a case study of the production of t3HDA from glucose in the US. The capital investment 

costs account for the disparities in economies of scale between the electrochemical reactor (ECR) and the 

other equipment. We examine different settings for the current density applied in the ECR, which affects 

both capital investment costs and electricity usage.  We find that, in the Pareto frontier for each level of 

current density, the minimum cost solution features a single large facility while lower emission 

configurations distribute production across several smaller facilities. The consideration of alternative 

current densities generates an extended Pareto frontier in which the lowest current density generates the 

least GHG emissions while the highest current density considered results in the lowest annual cost. 

The rest of this paper is organized as follows. The next section briefly reviews the relevant literature 

and describes the case study. The proposed mixed-integer linear programming model is elaborated in 

Section 3; it is then implemented for the case study in Section 4. Numerical results are presented and 

discussed in Section 5. Lastly, Section 6 offers some conclusions and suggestions for future research. 

 

2. Literature Review and Application Specifics 
Numerous studies, of which we highlight only a few, have been devoted to optimal design and 

operational planning of the biofuel supply chain. Ekşioğlu et al. (2009) introduced a MILP formulation to 

design and manage the supply chain for biomass-to-biorefinery, focusing on determining the ideal quantity, 

scale, and locations of facilities and biorefineries required for biomass processing. Huang et al. (2010) 

developed a mathematical model to minimize costs and meet demand, feedstock, and technology constraints 

by determining optimal locations, sizes, and capacities of biorefineries, as well as annual quantities of 

ethanol production, feedstock delivery, and ethanol delivery to demand cities. Supply chains for biomass-

to-liquids were designed and planned optimally by You and Wang (2011) from an economic and 

environmental standpoint using a multi-objective, multiperiod MILP model taking into account alternative 

conversion pathways, technologies, biomass characteristics, and spatial distribution of demand. Murillo-

Alvarado et al. (2015) showed that implementing a biorefinery system in Mexico using tequila industry 

residues offers substantial economic and environmental advantages, as demonstrated by their multi-

objective optimization approach. 
While much research is devoted to the use of biomass for fuels, Shekarian et al. (2022) found only a 

limited body of literature devoted to the design of supply chain networks for chemicals from biomass. 

Similarly, in a systematic review of the literature on sustainable supply chains using operations research 

techniques, only 7% of the works were set in the chemical industry (Barbosa-Póvoa et al., 2018). However, 

we can trace a thread of literature on the important role of environmental impacts in chemical supply chain 
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designs. Among the first researchers to integrate environmental factors into supply chain planning and 

design, Hugo and Pistikopoulos (2005) are considered pioneers. Their paper describes a mixed integer 

linear programming model for investment planning within a chemical supply chain that aims to address 

how to design and expand the capacity of facilities in an environmentally friendly manner. The mixed 

integer non-linear programming (MINLP) model proposed by Guillén-Gosálbez and Grossmann (2009) 

considers both economic and environmental objectives for chemical supply chains where emissions and 

feedstock requirements are uncertain. Gabrielli et al. (2020) studied the optimal design of low-carbon 

hydrogen supply chains considering multiple feedstocks and energy sources, including biomass, and 

developed a MILP algorithm to minimize costs and CO2 emissions while meeting end-user demand. 
The need for sustainable and environmentally friendly chemical production has prompted significant 

research and development in electrochemical synthesis technologies. According to Sulaymon and Abbar 

(2012), electrochemical technology presents a compelling solution for industrial processes, combining 

economic feasibility and environmental performance through its versatility, energy-efficiency, automation, 

and cost-effectiveness. Achieving successful implementation of electrochemical reactors relies on their 

design and scale-up. When scaling up and commercializing microbial electrochemical systems (MES) and 

related technologies, reducing capital costs is a vital economic consideration (Savla et al., 2021). A number 

of recent studies have investigated the relationship between cost and scale of electrochemical reactors. 

Sánchez and Martín (2018) noted that the commonly used six-tenths rule does not apply to small-scale, 

distributed facilities using this technology. Instead, they highlighted the linear relationship between 

electrolyzer capacity and cost, which significantly affected the overall equipment cost of renewable 

ammonia plants. The study by Perry et al. (2020) provided a comprehensive analysis of various reactor 

designs employed in electrochemical synthesis, ranging from small-scale setups to larger reactors. The 

review discussed the design, operation, and scaling of electrochemical cells as significant obstacles to the 

advancement and expansion of electrosynthesis. Guerra et al. (2020) found that the increase in the cost of 

electrolyzers becomes nearly linear as the capacity of the system increases. Based on the analysis of the 

selected papers, it can be concluded that the capacity and cost relationship of electrochemical reactors is 

approximately linear, corresponding to limited, if any, economies of scale. 
 

2.1.  Research Gap and Contribution 

Few studies were found in the literature that simultaneously address the design of chemical supply 

chains from biomass with both economic and environmental objectives, along with considering a techno-

economic analysis for a novel production process. Zhang et al. (2014) investigated the supply chain design 

for producing commodity chemicals from woody biomass to achieve optimal configurations of 

preprocessing hubs and biorefineries by determining their locations and capacities. In a case study of a 
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hypothetical scenario using forest residue as the feedstock in the US state of Minnesota, they also examined 

the trade-off between economic and environmental factors, specifically by minimizing GHG emissions. 

García-Velásquez et al. (2023) investigated the design of supply chains for biobased polyethylene 

terephthalate (PET), focusing on minimizing supply chain costs and environmental impact, developing a 

MILP and a life cycle optimization framework to analyze the trade-offs between economic and 

environmental factors. Our review of the literature identified the following gaps: 

• Limited research on chemical supply chain design from biomass, with most studies focusing on 

biomass for fuels rather than chemical production. 

• Limited consideration of techno-economic analysis for novel production processes in the design of 

chemical supply chains with multiple possible capacity levels of the facilities. 

• Little investigation into the impact of electrochemical reactors on the overall supply chain design, 

including factors such as capacity, energy usage, GHG emissions, and transportation costs. 

To address these gaps, we formulate a model to determine the locations and scale of distributed 

facilities including electrochemical reactors to produce chemicals from biomass-derived glucose, 

considering electricity usage, transportation, and market demand. We applied MILP with an exact solution 

to determine the Pareto-optimal points of our two-objective model, which exposes the tradeoff between 

minimizing the annual cost of the supply chain and reducing the GHG emissions associated with 

transportation and electricity usage.  The facility investment and operating costs are based on a detailed 

technoeconomic analysis with various settings for the current density, a key technological parameter that 

affects both environmental performance and overall cost.     
 

2.2.  Case Study on t3HDA from Glucose 

The schematic for the supply chain system to produce chemicals from biomass is shown in Figure 1. 

In this study, for simplicity, biomass is assumed to have already been converted to glucose. The plentiful 

large-scale milling facilities that form the first step of ethanol production from corn grain are a potential 

source of this raw material. Distributed integrated conversion facilities are assumed to be located adjacent 

to these ethanol plant mills, though each conversion facility may be supplied by multiple ethanol plants. 

Chemicals are then transported to demand zones.  Rather than imposing a particular topological structure 

on the network, such as those studied by Ezaki et al. (2022), we assume that transportation routes exist from 

all suppliers to all candidate facility locations and from each of those locations to any customer. 
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Ongoing investigations are being conducted into the techno-economics of scaling up and 

commercializing this process in light of the promising experimental results. A simplified analysis and 

determination of industrial feasibility had previously been performed with Early Stage Techno 

Economic Analysis (ESTEA) software (Matthiesen, Suástegui, et al., 2016). A further investigation was 

conducted by Dell'Anna et al. (2021) identifying cost breakdowns of this process for one large facility 

without considering the transportation costs, demand zones, supplier or facility location. Thus, the present 

work is necessary to outline a supply chain design for commercializing t3HDA production, taking into 

account the different possible capacities of the facilities and exploring the possibility of distributed 

manufacturing with the goal of minimizing costs and GHG emissions. 

The current study examines the electrohydrogenation of ccMA to t3HDA in an electrochemical flow 

reactor and highlights parameters crucial to the design of a supply chain. Electrochemical reactors were 

given special consideration due to the fact that they represent the majority of utility costs and capital costs 

in the production process and do not follow the conventional economic scaling factors. It is important to 

note that for processes driven by heat, productivity scales with reactor volume, but for processes driven by 

electricity, productivity scales with reactor surface area. Consequently, conventional, heat-driven processes 

are better scaled up, while electrochemical reactors are best scaled out. In contrast to conventional heat-

driven processes, where increasing a plant's capacity is more economical, electrochemistry is 

a promising technology for distributed chemical manufacturing (Pletcher & Walsh, 1993). Therefore, a 

trade-off between parameters related to technological aspects and supply chain configuration has been 

 

Figure 1. Supply chain schematic. 
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investigated. The locations for the integrated conversion facilities are assumed to be the 197 ethanol plants 

in the US. The cost and greenhouse gas emissions per unit chemical produced are also quantified. 

 

3. Mathematical Model Formulation 
To design the supply chain for the production process illustrated in Figure 2, the objectives are to 

minimize the annual costs and GHG emissions associated with production and transportation based on the 

proposed production pathway of an integrated conversion facility. The deterministic bi-objective mixed 

integer linear programming model is defined using the notation summarized in Table 1.  
 

Table 1. Notation for supply chain design mixed-integer programming model. 

Sets                           
𝐽𝐽 Candidate facility locations, indexed by subscript j  
𝐾𝐾 Consumer centers, indexed by subscript k 
 𝐶𝐶 Possible capacity levels of a facility, indexed by subscript c 
𝑀𝑀 Glucose suppliers, indexed by subscript m 
𝐵𝐵 Chemical production steps, indexed by superscript b = F (fermentation), L 

(electrochemical reaction), S (separation) or P (purification) 
Technical parameters 

Dk Demand of consumer center k for product (tonne/year) 
 𝑟𝑟 Annual interest rate 
𝑁𝑁 Life of the facility in years 
α Tonnes of glucose needed/tonne of chemical produced 
Uc Capacity of integrated facility with capacity level c (tonne/year) 
Sm Capacity of supplier m (tonne/year) 
𝑊𝑊𝑏𝑏 Electricity requirement of production stage b, 𝑏𝑏 ∈ 𝐵𝐵, per unit of production (kWh/tonne) 

duv 
Distance between supplier u=m and facility location v=j or between facility location u=j 
and customer v=k (miles)  

Cost parameters 
𝑉𝑉𝑔𝑔 Cost of glucose ($/tonne) 
𝐾𝐾𝑗𝑗𝑗𝑗𝑏𝑏  Fixed capital investment cost of stage b, 𝑏𝑏 ∈ 𝐵𝐵, at location j, at capacity level c ($) 
𝑉𝑉𝑗𝑗𝑊𝑊 Variable wastewater treatment cost at location j ($/tonne)  
 𝑉𝑉𝑗𝑗𝐿𝐿 Variable labor cost to produce chemical at location j ($/tonne) 
𝑂𝑂𝑗𝑗𝑗𝑗𝐿𝐿  Annual labor cost assuming a facility at location j, with capacity level c, is fully utilized 

($/year); equal to 𝑉𝑉𝑗𝑗𝐿𝐿𝑈𝑈𝑙𝑙 
𝑉𝑉𝑗𝑗𝑈𝑈𝑈𝑈.𝑏𝑏 Variable non-electricity utility cost of stage b, 𝑏𝑏 ∈ 𝐵𝐵, at location j ($/tonne) 
𝑅𝑅𝑗𝑗 Variable cost of electricity at location j ($/kWh) 
𝑇𝑇𝑢𝑢𝑢𝑢 Transportation cost of glucose from supplier u=m to location v=j or chemical from location 

u=j to consumer center v=k ($/tonne-mile) 
𝜙𝜙1 Multiplier of capital investment cost to account for annual maintenance and repairs, 

operating supplies, taxes and insurance, and a portion of plant overhead 
𝜙𝜙2 Multiplier of annual labor cost to account for annual administration costs and a portion of 

plant overhead 
𝜙𝜙3 Multiplier of variable labor cost to account for supervisory and clerical labor as well as 

laboratory charges 
Environmental parameters 

𝐸𝐸𝑗𝑗𝐺𝐺 GHG emissions from generation of electricity used at location j (kg CO2 equivalent per 
kWh) 

𝐸𝐸𝑇𝑇 GHG emissions of transportation (kg CO2 equivalent per tonne-mile) 
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Binary decision variables 
𝑡𝑡𝑗𝑗𝑗𝑗 1 if location j is selected for opening an integrated facility at capacity level c; 0 otherwise 

Continuous decision variables 
𝑥𝑥𝑢𝑢𝑢𝑢 Amount of glucose transported from supplier u=m to facility location v=j or chemicals 

transported from location u=j to consumer center v=k (tonne/year) 
𝑦𝑦𝑗𝑗 Amount of chemical produced at location j (tonne/year) 
𝑓𝑓𝑗𝑗 Amount of electricity used at location j (kWh/year) 

 
In terms of the above notation, the problem can be formulated as follows.  

 
3.1. Objective functions 

Two important and conflicting objective functions are considered: (1) minimization of the total cost 

and (2) minimization of the total GHG emissions.  

 

3.1.1. First objective: minimizing the total cost. 

The total cost of the chemical supply chain network design includes the capital investment costs of 

establishing integrated facilities with four different processing stages of fermentation, electrochemical 

reaction, separation, and purification, along with the fixed and variable operational costs. The operational 

costs include variable cost of labor, raw materials, wastewater, transportation costs, and electricity costs 

that are dependent on the quantity of production. According to Turton et al. (2008), manufacturing costs 

include direct manufacturing costs, which vary according to the level of production; fixed manufacturing 

costs, such as property taxes and insurance, that are independent of production levels; and general expenses 

covering overhead expenses for critical business functions. Considering the capital investment costs of 

establishing integrated facilities, along with these operational costs, the annual cost objective function 

($/year) can be formulated as follows. 

 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍1 = ��
𝑟𝑟(1 + 𝑟𝑟)𝑁𝑁

(1 + 𝑟𝑟)𝑁𝑁 − 1
����𝐾𝐾𝑗𝑗𝑗𝑗𝑏𝑏

𝑏𝑏∈𝐵𝐵𝑗𝑗∈𝐽𝐽𝑐𝑐∈𝐶𝐶

+ ����𝜙𝜙1𝐾𝐾𝑗𝑗𝑗𝑗𝑏𝑏

𝑏𝑏∈𝐵𝐵

+ 𝜙𝜙2𝑂𝑂𝑗𝑗𝑗𝑗𝐿𝐿  �
𝑗𝑗∈𝐽𝐽𝑐𝑐∈𝐶𝐶

� 𝑡𝑡𝑗𝑗𝑗𝑗

+ ���𝑉𝑉𝑔𝑔 + 𝑉𝑉𝑗𝑗𝑊𝑊 + 𝑉𝑉𝑗𝑗𝑈𝑈𝑈𝑈.𝑏𝑏 + (1 + 𝜙𝜙3) 𝑉𝑉𝑗𝑗𝐿𝐿

𝑏𝑏∈𝐵𝐵

�𝑦𝑦𝑗𝑗
𝑗𝑗∈𝐽𝐽

 + � �𝑇𝑇𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽𝑚𝑚∈𝑀𝑀

+ ��𝑇𝑇𝑗𝑗𝑗𝑗𝑑𝑑𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗
𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝐽𝐽

+ �  𝑅𝑅𝑗𝑗𝑓𝑓𝑗𝑗
𝑗𝑗∈𝐽𝐽

 

 
(1) 

 

 

The first term in the cost objective function consists of annualized capital investment cost for establishing 

facilities, as well as the annual fixed manufacturing costs and general expenses.  The second term comprises 

the direct manufacturing costs associated with the annual production of chemicals.  The third and fourth 

terms account for the costs of transporting raw materials and final products, respectively. The costs of 
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transportation from glucose suppliers to the facilities and from production facilities to the demand zones 

are calculated by multiplying shipping distance by transportation cost per unit of distance (i.e., one mile) 

via truck in the US. The final term is the cost of electricity usage, which is distinguished from the other 

utility costs to facilitate the study of the impact of various current densities in the electrochemical reactors. 

Considering electricity usage separately also allows us to account for spatial variations in GHG emissions 

from electricity generation. 

 

3.1.2. Second objective: minimizing the GHG emissions. The second objective function can be formulated 

as follows: 

 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍2 =  𝐸𝐸𝑇𝑇� � 𝑑𝑑𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚
𝑚𝑚∈𝑀𝑀𝑗𝑗∈𝐽𝐽

+ �𝐸𝐸𝑗𝑗𝐺𝐺  𝑓𝑓𝑗𝑗
𝑗𝑗∈𝐽𝐽

+ 𝐸𝐸𝑇𝑇 ��𝑑𝑑𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗∈𝐽𝐽𝑘𝑘∈𝐾𝐾

 (5) 

 

Here we account for GHG emissions associated with transportation of glucose to the facilities, generation 

of the electricity used, and transportation of the final product to customer centers. Note that we measure 

GHG emissions in a manner similar to the demand-based carbon intensity indicator proposed for 

international shipping (Wang et al., 2021).  

 

3.2. Constraints 

3.2.1. Demand satisfaction constraints. Constraints (6) and (7) ensure that the demands of all consumer 

centers are satisfied, and all production is delivered. 

�𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗∈𝐽𝐽

=  𝐷𝐷𝑘𝑘,    ∀𝑘𝑘 (6) 

�𝑥𝑥𝑗𝑗𝑗𝑗
𝑘𝑘∈𝐾𝐾

=  𝑦𝑦𝑗𝑗  ,∀𝑗𝑗 (7) 

 
3.2.2. Flow balance constraints. In Constraint (8), the amount of chemicals produced is balanced with 

the amount of glucose based on the yield of the process. Constraint (9) computes the total amount of 

electricity required for the operations of each unit. 

 

� 𝑥𝑥𝑚𝑚𝑚𝑚
𝑚𝑚∈𝑀𝑀

= 𝛼𝛼𝑦𝑦𝑗𝑗  ,∀𝑗𝑗 (8) 

�𝑓𝑓𝑗𝑗
𝑗𝑗∈𝐽𝐽

= �𝑊𝑊𝑗𝑗
𝑏𝑏𝑦𝑦𝑗𝑗

𝑏𝑏∈𝐵𝐵

 ,∀𝑗𝑗 (9) 
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3.2.3. Capacity constraints. The following are all relevant production capacity constraints. Constraint 

(10) prevents each facility from producing more chemicals than its capacity allows. As a result of constraint 

(11) at most one capacity level can be selected for a facility established at location j. Each supplier's capacity 

limit is enforced by constraint (12). 

𝑦𝑦𝑗𝑗 ≤�𝑈𝑈𝑐𝑐𝑡𝑡𝑗𝑗𝑗𝑗
𝑐𝑐∈𝐶𝐶

 ,    ∀𝑗𝑗 (10) 

�𝑡𝑡𝑗𝑗𝑗𝑗
𝑐𝑐∈𝐶𝐶

 ≤ 1,    ∀𝑗𝑗 (11) 

�𝑥𝑥𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽

 ≤  𝑆𝑆𝑚𝑚,    ∀𝑚𝑚 (12) 

 3.2.4. Variable restrictions. The following constraints specify the binary and non-negativity 

restrictions on the corresponding decision variables.  

𝑡𝑡𝑗𝑗𝑗𝑗 ∈ {0,1}, ∀𝑗𝑗, 𝑐𝑐 (13) 

𝑥𝑥𝑚𝑚𝑚𝑚 ,𝑥𝑥𝑗𝑗𝑗𝑗,𝑦𝑦𝑗𝑗 ,𝑓𝑓𝑗𝑗 ≥ 0, ∀𝑚𝑚, 𝑗𝑗,𝑘𝑘 (14) 

 
3.3. The proposed solution method for two-objective model 

Several approaches have been developed in the literature to solve multi-objective programming 

models. The ε-constraint method provides a picture of the whole Pareto-optimal solution set for the decision 

maker, allowing them to select their most preferred solution. Due to comprehensive information available, 

the decision maker can determine the final decision more confidently based on all possible solutions. 

Readers interested in learning more about this method may refer to (Ehrgott, 2005). 

By expressing one objective as a constraint, the ε-constraint technique reduces a multi-objective 

problem to a single-objective problem. In this research, GHG emission is the ε-based constraint, and the 

higher priority function, total cost, is retained as the objective function. The reformulated problem is: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 =  𝑍𝑍1 
𝑠𝑠. 𝑡𝑡. 

(15) 

𝑍𝑍2 ≤ 𝜀𝜀, Constraints (6)-(14) (16) 

Following is a general description of the process to identify the Pareto frontier of nondominated solutions. 

First, the ε-constraint on Z2 in (16) is relaxed to find a minimum cost solution. The value of Z2 in this 

solution is an upper bound on GHG emissions. Second, by reversing the roles of Z1 and Z2 in (15)-(16) and 

relaxing the resulting ε-constraint on Z1, a lower bound on GHG emissions is identified. Finally, the single 

objective problem originally written as (15)-(16) is solved by setting 𝜀𝜀 to discrete values evenly spaced 
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between the lower and upper bounds. The Pareto curve is thus approximated, showing the trade-off between 

economic and environmental objectives. 
 

4. Case Study 

4.1. TEA and cost analysis of chemical process 

In the proposed chemical production process, ccMA is produced through fermentation of glucose, and 

then electrochemically converted into t3HDA. The novel unsaturated monomer t3HDA has enjoyed 

increased interest due to its ability to replace AA in Nylon 6,6 and produce polyamides with 

performance advantages. Low productivity has prevented t3HDA from being applied to the production of 

advanced polymers. A new synergy between microbial and electrochemical conversions was presented by 

Dell'Anna et al. (2021) for increasing t3HDA productivity by over 50 times.  A process schematic is shown 

in Figure 2. 

 
 
 
 
 
 
 
 
 
 

 

 

In spite of the fact that no commercial, scaled up example has been found of a hybridized process that 

combines fermentation with electrochemistry, an analysis using ESTEA software demonstrated the 

scalability of  t3HDA from bioderived ccMA  (Matthiesen, Suástegui, et al., 2016). The ESTEA calculates 

the MSP by dividing total annual costs ($/yr) by total annual production (kg/yr). Through the experimental 

design conducted by Dell'Anna et al. (2021), using Aspen software, an industrial design for converting 

glucose to MA by biological fermentation subsequent to electrochemical hydrogenation to t3HDA was 

modeled in detail, allowing for a more thorough TEA. The study focused solely on one large facility and 

overlooked the potential for multiple distributed facilities, did not consider the limited cost advantages of 

electrochemical reactors at smaller scales, and performed only a partial optimization of current density in 

the electrochemical reactor based on a single facility. In our study, we extracted valuable information from 

(Dell'Anna et al., 2021). We obtained the following key details: 

 

Figure 2. Chemical conversion process schematic. 
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1. The capacity of the base size (c=1) plant is 75,296 tonnes/year of t3HDA, based on the AA market 

as a reference. 

2. It was assumed that the chemical plant operated for 8,000 hours per year. 

3. The values of technical parameters such as 𝛼𝛼 and 𝑊𝑊𝑛𝑛 were derived from the Aspen flowsheet. 

4. Equipment sizes for the base size plant were determined based on the output of the Aspen software, 

while its capital investment and manufacturing costs were calculated using CAPCOST. 

 

To estimate additional parameter values for our supply chain design model, it was necessary to extract 

intermediate findings from this research and scale costs for various plant sizes. As part of our assessment, 

we analyzed both the operational manufacturing costs and the capital investment costs. Capital investment 

costs, also known as grass-roots costs, comprise the expenses incurred in constructing a new plant. These 

costs are made up of three main components: the total bare module capital cost, contingency and fee 

expenses, and auxiliary facilities costs. The total bare module capital cost encompasses the costs linked to 

each piece of equipment required for the plant. Contingency and fee costs are included to account for 

unexpected circumstances and contractor fees and are usually calculated as a percentage of the total module 

capital cost. Meanwhile, auxiliary facilities costs cover expenses such as land acquisition and electrical 

systems, and generally amount to about 30% of the total basic module cost, which includes the total bare 

module capital cost and contingency and fee expenses (Turton et al., 2008). The third column of Table 2 

presents the fixed capital investment for each unit operation based on CAPCOST equipment costs for 

capacity level c=1 extracted from (Dell'Anna et al., 2021). 

 

Table 2. Fixed capital investment (FCI, in $M) by unit operation. 

Model Notation Stage of Production Base Size (𝑐𝑐 = 1) Half Size (𝑐𝑐 = 2) Quarter Size (𝑐𝑐 = 3) 

𝑈𝑈𝑐𝑐 Capacity (tonne/year) 75,296 37,648 18,824 

𝐾𝐾𝑗𝑗𝑗𝑗𝐹𝐹  Fermentation 10.86 7.17 4.73 

𝐾𝐾𝑗𝑗𝑗𝑗𝐿𝐿  Electrochemical reactor 33.50 16.75 4.17 

𝐾𝐾𝑗𝑗𝑗𝑗𝑆𝑆  Separation 1.71 1.13 0.74 

𝐾𝐾𝑗𝑗𝑗𝑗𝑃𝑃  Purification 9.07 5.99 3.95 

 Total FCI 55.15 31.03 17.80 

 
 

To calculate the capital cost for smaller capacities in the table, we use the following equation: 
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𝐾𝐾𝑗𝑗𝑗𝑗𝑛𝑛/𝐾𝐾𝑗𝑗1𝑛𝑛  =  (𝑈𝑈𝑐𝑐/𝑈𝑈1)𝑝𝑝    (17) 

where p represents the exponent or proration factor, the slope of a logarithmic curve that illustrates the cost 

change of a plant as it is scaled up or down. These curves are typically derived from known cost data of 

completed plants. In chemical plants, the exponent varies by type of equipment from 0.5 to 0.85 (Turton et 

al., 2008) but, as a default, is assumed to be 0.6 (the so-called “six-tenths rule”). As a result, we applied this 

value of p to all unit operations except the electrochemical reactor, for which we assume the size and capital 

cost scale linearly with capacity (i.e., p=1). 

According to Turton et al. (2008), the total manufacturing cost consists of three categories: direct 

(variable) manufacturing costs, indirect manufacturing costs, and general expenses, where the latter two 

categories are fixed costs. Raw material expenses, catalyst and solvent costs, operating labor fees, 

supervisory and administrative labor fees, utilities (including waste disposal), maintenance and repairs, 

operating supplies, laboratory fees, patent and royalty payments, among others, are included in direct 

production costs. This category includes all fees for materials and labor. From the Aspen simulation results 

in (Dell'Anna et al., 2021), raw material and wastewater costs are calculated according to their flowrate. 

Accordingly, in the case of a continuously operating plant, it was assumed that 18 operators worked on 

average 8000 hours each year and that there were three shifts each day. The salary of the operator was 

estimated to be $52,000 per year. In order to use it in our model, we calculate the cost of labor in terms of 

dollar per tonnes, and dollar per year for different plant capacities. According to CAPCOST sheet modeled 

by Dell'Anna et al. (2021), wastewater would cost around $278.80 per tonne. According to Aspen’s output 

modeled by Dell'Anna et al. (2021), the flowrate of glucose is 22019.5 kg/hr, which would result in annual 

raw material cost of $53,151,360. A summary of the parameters is shown in Table 3.  

 
Table 3. Variable costs of production. 

Model Notation Cost ($/tonne) 

𝑉𝑉𝑗𝑗𝐿𝐿 37.29 

𝑉𝑉𝑗𝑗𝑊𝑊 278.80 

𝑉𝑉𝑔𝑔 705.90 

�𝑉𝑉𝑗𝑗𝑈𝑈𝑈𝑈.𝑏𝑏

𝑏𝑏∈𝐵𝐵

 92.82 

 

 

As shown in Table 4, other expenses, such as supervisory and clerical labor fees, maintenance and 

repair costs, and operating supplies charges, are calculated separately and multiplied by associated factors. 

Overhead, insurance, and local taxes are included in fixed manufacturing costs as these items are not 
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affected by the production rate of a plant. Finally, we have included administrative costs as part of the 

general expenses category. Distribution and selling costs, as well as research and development charges, are 

omitted because they do not vary with supply chain configuration. Table 4 summarizes the items related to 

manufacturing expenses commonly used in economic assessments (Turton et al., 2008). 
 

Table 4. Manufacturing costs ($M/yr) by facility size for current density 200 mA/cm2. 

Model Notation  Base Size (𝑐𝑐 = 1) Half Size (𝑐𝑐 = 2) Quarter Size (𝑐𝑐 = 3) 

Direct Manufacturing Costs 
𝑉𝑉𝑔𝑔𝑈𝑈𝑐𝑐 Raw Material 53.15 26.57 13.29 

𝑉𝑉𝑗𝑗𝑊𝑊𝑈𝑈𝑐𝑐 Waste Treatment 20.99 10.50 5.25 

𝑉𝑉𝑗𝑗𝐿𝐿𝑈𝑈𝑐𝑐 Operating labor 2.81 1.40 0.70 

�𝑉𝑉𝑗𝑗𝑈𝑈𝑈𝑈.𝑏𝑏

𝑏𝑏∈𝐵𝐵

𝑈𝑈𝑐𝑐 Utilities (other than electricity) 6.99 3.49 1.75 

 
0.18𝑂𝑂𝑗𝑗𝑗𝑗𝐿𝐿  

Supervisory and clerical labor, 
18% of operating labor 0.50 0.25 0.13 

0.06�𝐾𝐾𝑗𝑗𝑗𝑗𝑏𝑏

𝑏𝑏∈𝐵𝐵

 Maintenance and repairs, 6% 
of Fixed Investment Cost 3.31 1.86 1.07 

0.009�𝐾𝐾𝑗𝑗𝑗𝑗𝑏𝑏

𝑏𝑏∈𝐵𝐵

 Operating supplies, 0.9% 
of Fixed Investment Cost 0.50 0.28 0.16 

0.15𝑂𝑂𝑗𝑗𝑗𝑗𝐿𝐿  Laboratory charges, 15% of 
annual operating labor 0.42 0.21 0.10 

Fixed Manufacturing Costs 

0.708𝑂𝑂𝑗𝑗𝑗𝑗𝐿𝐿

+ 0.036�𝐾𝐾𝑗𝑗𝑗𝑗𝑏𝑏

𝑏𝑏∈𝐵𝐵

 
Plant overhead, 70.8% of 
operating labor + 3.6% of Fixed 
Investment Cost 

3.97 2.11 1.14 

0.032�𝐾𝐾𝑗𝑗𝑗𝑗𝑏𝑏

𝑏𝑏∈𝐵𝐵

 Local taxes and Insurance, 3.2% 
of Fixed Investment Cost 1.76 0.99 0.57 

General Manufacturing Expenses 
0.177𝑂𝑂𝑗𝑗𝑗𝑗𝐿𝐿

+ 0.009�𝐾𝐾𝑗𝑗𝑗𝑗𝑏𝑏

𝑏𝑏∈𝐵𝐵

 

Administrative costs, 17.7% of 
operating labor + 0.9% Fixed 
Investment Cost 

 

0.99 0.53 0.28 

Total production cost 95.40 48.21 24.44 

 

By combining terms in Table 4, we find the value of the capital investment cost multiplier, 𝜙𝜙1 =

0.06 + 0.009 + 0.036 + 0.032 + 0.009 = 0.146.  The multiplier for annual labor cost to estimate fixed 

manufacturing costs and general expenses is 𝜙𝜙2 = 0.708 + 0.177 = 0.885, while the multiplier for 

variable labor cost to include in direct manufacturing costs is 𝜙𝜙3 = 0.18 + 0.15 = 0.33. 
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We obtained the electricity usage from (Dell'Anna et al., 2021), which was calculated based on the 

CAPCOST equipment sheet, and we calculated the consumption per tonne for each unit operation to use it 

in our model. Table 5 summarizes these parameter values. 

 
Table 5. Electricity usage by production stage for current density 200 mA/cm2 (Dell'Anna et al., 2021). 

 
Model 
Notation 

Stage of Production Usage (kWh) per tonne 

𝑊𝑊𝐹𝐹 Fermentation 442.95 
𝑊𝑊𝐿𝐿 Electrochemical Reactor 2101.90 
𝑊𝑊𝑆𝑆 Separation 1.84 
𝑊𝑊𝑃𝑃 Purification 3.14 
Total  2549.86 

 

The transportation cost was calculated based on the assumption that trucks will transport both the glucose 

and the final product. The cost of a truck per mile is $1.86, and each truck can transport 36.2874 tonnes. 

Based on this assumption, the transportation cost per mile was computed to be $0.05.  

In the US, commercial fuel ethanol is produced mainly by breaking down corn starch into simple sugars 

(glucose). Glucose is then fed to yeast for fermentation, resulting in the main product, ethanol, along with 

byproducts. Two major industrial methods used for ethanol production are wet milling and dry milling, 

where corn is processed through a hammer mill to produce corn flour from which the glucose is derived 

(DOE, July, 2023). The production of ethanol relies on fermentation, where yeast consumes glucose and 

generates carbon dioxide and ethanol as byproducts. It is estimated that for every pound of glucose, 

fermentation can produce about 1/2 pound (equivalent to 0.15 gallons) of ethanol (Mosier & Ileleji, 2020). 

We made the assumption that each US ethanol plant could divert up to 5% of its glucose capacity from the 

milling process as a feedstock for the production of t3HDA. To calculate the tonnage of glucose, we 

converted the capacity of each plant (measured in Mmgal/yr) into tonnes by multiplying them by 3081.84 

tonne/Mmgal. This conversion was based on the density of ethanol, which is approximately 6.79434 lbs/gal 

(TheEngineeringToolBox). 

For each US state containing an ethanol plant (thus, a potential location for distributed t3HDA 

production) we extracted greenhouse gas emissions per kilowatt hour of grid electricity from (U.S. 

Environmental Protection Agency, 2021) and the electricity rate from (EIA, February 2023 and 2022) as 

shown in Table 6 along with details regarding the 197 US ethanol plants and their corresponding assumed 

glucose capacities in 23 states. 
Table 6. Glucose supply and electricity grid characteristics by US state. 

State 
No. of 

Ethanol 
Plants 

5% of glucose capacity (Mtonne/year) CO2 emission 
rate (kg/kWh) 

Industrial 
Electricity rate 

($/kWh) 
Arizona 1 0.34 0.33 0.07 
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California 5 1.40 0.22 0.16 
Colorado 3 0.86 0.55 0.08 
Idaho 1 0.37 0.12 0.06 
Illinois 12 10.72 0.30 0.08 
Indiana 14 7.97 0.74 0.09 
Iowa 42 28.77 0.35 0.06 
Kansas 13 3.71 0.38 0.09 
Kentucky 2 0.33 0.78 0.07 
Michigan 6 2.70 0.45 0.08 
Minnesota 19 8.66 0.37 0.09 
Missouri 6 1.94 0.74 0.08 
Nebraska 25 14.10 0.51 0.07 
New York 2 1.00 0.21 0.07 
North Carolina 1 0.35 0.30 0.07 
North Dakota 5 3.25 0.61 0.07 
Ohio 7 4.58 0.55 0.08 
Oregon 1 0.25 0.15 0.07 
Pennsylvania 1 0.79 0.33 0.08 
South Dakota 16 8.79 0.14 0.08 
Tennessee 3 1.45 0.32 0.07 
Texas 4 2.50 0.39 0.07 
Wisconsin 9 3.62 0.58 0.08 

 

4.2. Effect of current density 

We examined the relation between electrochemical reactor parameters and costs in detail. A cost 

calculation of electrochemical hydrogenation of a fermentation broth containing ccMA at pH 7 has been 

done by taking into account the tradeoff between the cost of the electrochemical reactor and the Faradaic 

efficiency, yield, and productivity as a function of the current density based on (Dell'Anna et al., 2021). 

During a reaction time, Faradaic efficiency indicates how many electrons are transmitted to the target 

molecules (Liu et al., 2020). The yield, which represents the ratio of moles of product to reactant, is used 

to measure the efficiency of a reaction (Levenspiel, 1998). The productivity of the process is the amount of 

product formed per hour. 

To examine the impact of current density on parameters associated with our proposed supply chain 

design, we must first understand some basic electrochemical concepts. During an electrochemical reaction, 

the voltage, or the energy available to transfer charge, causes the reaction. Two half-reactions, an oxidation, 

and a reduction, must develop a net-zero charge balance in an electrochemical reaction.  An electrolyte 

transfers charge in electrochemical reactions at the anode and cathode. On the anode, oxidations take place, 

and on the cathode, reductions. In the process under study, hydrogenation of MA at the cathode produces 

t3HDA. The parameter values presented previously were based on the assumption of the current density of 

200 mA/cm2 identified by Dell'Anna et al. (2021) as optimal for a single large plant. A low voltage operation 

results in a high energy efficiency, while a high current density results in a high production rate.  
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Our first step in calculating electrochemical reactor costs is to determine how much MA is converted 

to t3HDA, which we call the reaction rate. The reaction rate is then converted to 

current (Amps). Electrochemical reactor fixed cost is determined by the electrode area, which in turn is 

determined by the current density. Further, the voltage times the current must be calculated to arrive at the 

amount of power needed for an electrochemical reactor. A summary of electrochemical cost calculation 

and related parameters is shown in Figure 3. 

 

Considering different parameters related to electrochemical reactors, we examine the cost of 

electrochemical reactors in different facility capacities shown in Table 7 to better understand how to design 

the supply chain for this process. 

Table 7. Effect of current density on electricity usage and fixed capital investment for the large capacity 
electrochemical reactor. 

Model 
Notation 

Current density (mA/cm2) 50 200 400 
Voltage (volts) 4 5.7 7.6 

𝑊𝑊𝐿𝐿 Electricity required per tonne, kWh 1475.02 2101.90 2802.53 
𝐾𝐾𝑗𝑗𝑗𝑗𝐿𝐿  Total Capital Cost $M 134.00 33.50 16.70 

 

4.3. Supply chain design parameters 

Since raw material costs make up a significant portion of the overall cost, we assume that facility 

candidate locations will be adjacent to a subset of the 197 US ethanol plants, in an effort to minimize the 

cost of transporting the raw materials. Glucose suppliers are also assumed to be ethanol plants. Demand is 

divided equally among the largest textile companies in the U.S (Mohawk Industries, Inc., Aladdin Div., 

Dalton, GA; Hanesbrands, Inc., Winston-Salem, NC; and Saint Gobain Tape Solutions, Hoosick Falls, NY 

(IndustrySelect)). Three different capacities are assumed for the integrated facilities based on the capacity 

estimate factor (Turton et al., 2008). The largest plant capacity is assumed to be 75296 tonne/year, or 3% 

of the approximate annual market size of adipic acid (the closest commercially available substance for 

t3HDA). Due to the economic benefits of distributed electrochemistry, the proposed supply chain design 

Figure 3. Electrochemical reactor cost and electricity usage. 
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also considers half and quarter of this size. For a period of 10 years, the total capital charge was amortized 

at 10% interest. This analysis ignored taxes, depreciation, and salvage values. Parameters with their values 

are summarized in Table 8. 

Table 8. Summary of parameter values.  

Notation Definition Value    

Dk Demand of consumer center k for chemicals (tonne/year) k=1, 25099 k=2, 25099 k=3, 25098  

α Tonnes of glucose needed/tonne of chemical produced 2.34    

 

 Stage of Production 

Base 

Capacity 

(𝑐𝑐 = 1) 

Half 

Capacity 

(𝑐𝑐 = 2) 

Quarter 

Capacity 

(𝑐𝑐 = 3) 

Uc  Capacity of single facility (tonnes/year) All 75296 37648 18824 

𝑊𝑊𝐹𝐹 Variable electricity requirement (kWh/tonne) Fermentation 442.97 442.97 442.97 

𝑊𝑊𝐿𝐿 Variable electricity requirement (kWh/tonne) 
Electrochemical 

Reactor 
2101.90 2101.90 2101.90 

𝑊𝑊𝑆𝑆 Variable electricity requirement (kWh/tonne) Separation 1.84 1.84 1.84 

𝑊𝑊𝑃𝑃 Variable electricity requirement (kWh/tonne) Purification 3.15 3.15 3.15 

𝑉𝑉𝑔𝑔 Cost of glucose ($/tonne) Fermentation 705.90 705.90 705.90 

𝐾𝐾𝑗𝑗𝑗𝑗𝐹𝐹  Total capital investment cost ($M) Fermentation  10.86   7.17   4.73  

𝐾𝐾𝑗𝑗𝑗𝑗𝐿𝐿  Total capital investment cost ($M) 
Electrochemical 

Reactor 
 16.70   8.35   4.17  

𝐾𝐾𝑗𝑗𝑗𝑗𝑆𝑆  Total capital investment cost ($M) Separation  1.71   1.13  0.74  

𝐾𝐾𝑗𝑗𝑗𝑗𝑃𝑃 Total capital investment cost ($M) Purification  9.07   5.99   3.95  

𝑉𝑉𝑗𝑗𝑊𝑊 Variable wastewater treatment cost ($/tonne) All 278.80 278.80 278.80 

𝑉𝑉𝑗𝑗𝐿𝐿 Variable labor cost ($/tonne) All 37.29 37.29 37.29 

𝑂𝑂𝑗𝑗𝑗𝑗𝐿𝐿  Fixed labor cost ($M/year) All 2.81 1.4 0.70 

𝑉𝑉𝑗𝑗𝑈𝑈𝑈𝑈.𝐹𝐹 Variable utility cost ($/tonne) Fermentation 83.37 83.37 83.37 

𝑉𝑉𝑗𝑗𝑈𝑈𝑈𝑈.𝐿𝐿 Variable utility cost ($/tonne) 
Electrochemical 

Reactor 
0 0 0 

𝑉𝑉𝑗𝑗𝑈𝑈𝑈𝑈.𝑆𝑆 Variable utility cost ($/tonne) Separation 4.39 4.39 4.39 

𝑉𝑉𝑗𝑗𝑈𝑈𝑈𝑈.𝑃𝑃 Variable utility cost ($/tonne) Purification 5.07 5.07 5.07 

𝑇𝑇𝑢𝑢𝑢𝑢 Transportation cost of glucoses ($/tonne-mile) All 0.05 0.05 0.05 

𝜙𝜙1 Multiplier of capital investment cost  All 0.146 0.146 0.146 

𝜙𝜙2 Multiplier of annual labor cost  All 0.885 0.885 0.885 

𝜙𝜙3 Multiplier of variable labor cost  All 0.33 0.33 0.33 
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𝐸𝐸𝑇𝑇 
GHG emissions of transportation (kg 

CO2/tonne-mile) 
All 0.19 0.19 0.19 

 
 
5. Results and discussion 

In this study we explore the electrohydrogenation of ccMA to t3HDA in an electrochemical flow 

reactor, as well as parameters crucial to the design of supply chains. We focused on electrochemical reactors 

because they account for the majority of utility costs and operational costs in the production process. In 

addition, they do not follow conventional economic scaling factors, and are best used in distributed 

production processes. As a result, a trade-off between technological aspects and supply chain configuration 

has been investigated. In this section, the validity of the developed model is investigated via the data 

withdrawn from the considered case study. To verify consistent results with the TEA previously performed, 

we first solve our model assuming only one facility without considering transportation costs. In the case of 

one facility, we solve the MILP with one base capacity (𝑐𝑐 = 1), one facility location (𝑗𝑗 = 1) and one 

demand zone (k1=75296 tonne/year), and we relax the supplier capacity constraint (12), as well as 

considering only an economic objective function without the transportation cost terms 

(∑ ∑ 𝑇𝑇𝑚𝑚𝑚𝑚
𝐽𝐽
𝑗𝑗=1

𝑀𝑀
𝑚𝑚=1 𝑑𝑑𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚 + ∑ ∑ 𝑇𝑇𝑗𝑗𝑗𝑗𝐾𝐾

𝑘𝑘=1
𝐽𝐽
𝑗𝑗=1 𝑑𝑑𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗). Figure 4 summarizes the results. 

 
Figure 4. Cost breakdown for single facility. 
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All tests are conducted on the proposed model coded and solved by GAMS optimization software. A 

Pareto-optimal solution is generated by using the ε-constraint method described in Section 3.3. As we 

proceed, we discuss how supply chain design can be influenced by current density, whether it is better to 

distribute chemical facilities, or whether economies of scale can be beneficial. 

 
5.1. Supply chain configuration based on current density 200 mA/cm2 

 

To reduce the environmental impact of a supply chain design, it may be necessary to sacrifice some of 

its economic benefits in order to reduce transportation emissions and use renewable electricity more 

efficiently in a distributed manner instead of in a single large facility. Several supply chain structures and 

planning decisions are reflected in the set of Pareto points. With a tighter constraint on emissions, facilities 

become smaller and distributed in proximity to suppliers and demand zones, to reduce transportation 

emissions while satisfying all constraints related to the supply chain. Facility locations for each Pareto point 

are summarized in Table 9. 
Table 9. Summary of Pareto points for current density 200 mA/cm2. 

Pareto 
Point Facility Location State Facility 

Capacity 
Cost Objective 
($M) 

Emission Objective 
(M kg CO2-eq) 

1 Tate & Lyle Tennessee 1 120.62 72.33 

2 Tate & Lyle Tennessee 2 122.04 58.33 Western New York Energy LLC New York 2 

3 
Western New York Energy LLC New York 2 

124.98 53.71 Tate & Lyle Tennessee 3 
Sioux River Ethanol South Dakota 3 

4 

Western New York Energy LLC New York 2 

137.81 47.64 
Sioux River Ethanol South Dakota 3 
Attis Ethanol Fulton LLC New York 3 
Northern Lights Ethanol LLC South Dakota 3 
Valero Renewable Fuels South Dakota 3 

 
Figure 5 summarizes the supply chain components for each pareto point. Because ethanol plants are 

assumed to be the candidate locations for our facilities, some locations include both a glucose supplier and 

a facility. Facility locations tend to be in states with lower grid GHG emission rates as the supply chain 

configuration becomes more environmentally friendly. 
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5.2. Supply chain configuration based on current density 50 mA/cm2 

Each Pareto point in the optimization process involves various supply chain structures and planning 

decisions. As with the baseline current density, by aiming to reduce emissions, facilities are designed to be 

smaller and strategically located near suppliers and demand zones. Table 10 summarizes the facility 

locations corresponding to each Pareto point.  
Table 10. Summary of Pareto points for current density 50 mA/cm2. 

Pareto 
Point Facility Location State Facility 

Capacity 
Cost Objective 
(M$) 

Emission Objective 
(M kg CO2-eq) 

1 Tate & Lyle Tennessee 1 148.39 57.38 

2 Tate & Lyle Tennessee 2 149.78 45.98 Western New York Energy LLC New York 2 

3 
Western New York Energy LLC New York 2 

151.51 42.96 Tate & Lyle Tennessee 3 
Sioux River Ethanol South Dakota 3 

4 

Western New York Energy LLC New York 2 

180.87 39.18 
Sioux River Ethanol South Dakota 3 
Attis Ethanol Fulton LLC New York 3 
Northern Lights Ethanol LLC South Dakota 3 
Valero Renewable Fuels South Dakota 3 

 
Figure 6. summarizes the supply chain components for each Pareto point. Compared to the supply chain 

configuration based on current density 200 mA/cm2, this one differs in the distribution of suppliers. For 

Pareto point 3 in this case, Michigan is also a supplier. 

Figure 5. Supply chain configuration at Pareto points for current density 200 mA/cm2. 
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5.3. Supply chain configuration based on current density 400 mA/cm2. 

 
Table 11 presents a summary of the Pareto points for a current density of 400 mA/cm2, showcasing the 

facility locations, states, facility capacities, cost objectives (in million dollars), and emission objectives (in 

million kilograms of CO2-equivalent). These Pareto points highlight the trade-offs between cost and 

emissions for different facility configurations. It is worth noting that this particular configuration, 

characterized by high electricity consumption, results in distinct Pareto points compared to two other 

configurations. Despite the possibility of constructing multiple smaller facilities, the Pareto points 

demonstrate the importance of balancing objectives when striving for optimal outcomes. 

 

 

 
Table 11. Summary of Pareto points for current density 400 mA/cm2. 

Pareto 
Point Facility Location State Facility 

Capacity 
Cost Objective 
(M$) 

Emission Objective 
(M kg CO2-eq) 

1 Adm Clinton Ia Iowa 1 118.71 104.22 
2 Tate & Lyle Tennessee 1 119.07 89.04 

3 Adm Clinton Ia Iowa 2 120.33 79.60 Western New York Energy LLC New York 2 
4 Western New York Energy LLC New York 1 121.08 67.99 

5 

Western New York Energy LLC New York 2 

134.55 57.01 
Sioux River Ethanol South Dakota 3 
Attis Ethanol Fulton LLC New York 3 
Northern Lights Ethanol LLC South Dakota 3 
Valero Renewable Fuels South Dakota 3 
 

Figure 6. Supply chain configuration at Pareto points for current density 50 mA/cm2. 
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As shown in Figure 7, this supply chain differs from two other supply chains in terms of the distribution 

of suppliers and the location of facilities. Due to the fact that, in this scenario, the most electricity is 

expected to be used, the model has attempted to locate the facilities in states with the lowest electricity rates 

in comparison with other states. To minimize environmental objective function, more distributed facilities 

tend to be located in states with lower grid emission rates, with suppliers and facilities located as near as 

possible to reduce transportation emissions as well. 

 

 
5.4. Economic Perspective 

 
The economic comparison among configurations is summarized in Table 12. Overall supply chain 

costs are dominated by the variable costs, especially raw materials. As a result, for this HMES process, 

optimal supply chain design is influenced more strongly by technology and process parameters than by 

economies of scale. 

 
Table 12. Cost breakdown ($M/y) of most economical supply chain configuration by current density. 

 

Current 

Density 

(mA/cm2) 

Annualized 

FCI 

Fixed 

Production 

Costs 

Variable 

Production 

Costs 

Transportation 

Costs 

Electricity 

cost 

($M/y) 

Total costs of 

the supply 

chain 

configuration 

($M/y) 

50 25.33 14.47 95.61 3.00 9.98 148.39 

200 8.97 6.73 88.67 3.00 13.23 120.62 

400 6.24 5.44 87.51 4.92 14.59 118.71 

Figure 7. Supply chain configuration at Pareto points for current density 400 mA/cm2. 
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The cost breakdown analysis of the three cost-minimizing supply chain configurations based on 

different current densities reveals notable variations in the cost distribution. The annualized capital cost 

shows significant differences between the configurations. The configuration with a current density of 50 

mA/cm2 has the highest annualized capital cost of $25.33M, while the configuration with a current density 

of 400 mA/cm2 has the lowest annualized capital cost of $ 6.24M. The configuration with a current density 

of 200 mA/cm2 falls in between, with an annualized capital cost of $8.97M. Variable production cost is 

relatively similar across the configurations, with the configuration based on a current density of 50 mA/cm2 

having the highest cost of $ 95.61M. The configuration with a current density of 400 mA/cm2 has the lowest 

cost at $87.51, while the 200 mA/cm2 configuration falls in between with a cost of $88.67M.  Because 

labor, raw material, utility, and wastewater costs remain constant across the configurations, the difference 

in variable costs is due to the components estimated as proportions of capital investment costs. 

The electricity cost varies among the configurations. The highest electricity cost of $14.59M occurs 

with the configuration based on the highest current density, while the lowest electricity cost of $9.98M is 

achieved with the lowest current density. The costs associated with final transportation and glucose 

transportation are nearly the same for the lower current densities, but higher if the higher current density is 

used.  

To summarize the cost breakdown analysis, the configuration with a current density of 400 mA/cm2 

has the lowest capital costs and fixed costs compared to the other configurations. However, it incurs the 

highest electricity cost. The configuration based on a current density of 50 mA/cm2 has the highest fixed 

cost and lowest electricity costs. The 200 mA/cm2 configuration falls between the other two configurations 

in terms of cost components. 

 

5.5. Environmental Perspective 
 

The analysis of facility locations on different Pareto-optimal points for the various current densities 

studied provides insights into the optimal configurations based on cost and emission objectives. The facility 

locations vary across the Pareto optimal points for each current density. Multiple facilities from different 

states are identified as part of the optimal solution at each Pareto point. The cost and emission objectives 

differ for each Pareto-optimal point, reflecting the trade-off between minimizing costs and reducing 

emissions. Some facility locations appear consistently across multiple current densities, indicating their 

effectiveness in achieving Pareto optimality. For example, Western New York Energy LLC in New York 

and Tate & Lyle in Tennessee are found in the optimal solutions for all three current densities. The facility 

capacity remains the same within each Pareto optimal point, but the cost and emission objective values 

vary. This suggests that different configurations can achieve the same capacity while prioritizing either cost 
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reduction or emission reduction. Figure 8 illustrates a comparison between different CO2-equiv. emissions 

(M kg/yr) by source for Pareto points with each value of the current density. The shifting distribution of 

emissions from various sources suggests that, to improve overall environmental performance, lowered 

emissions from electricity use are partially offset by increased emissions from transporting either the raw 

material or the finished product.  However, there is no straightforward way to determine, without solving 

the optimization model, whether production facilities should be located closer to raw material sources or to 

customers. 

The optimal facility locations are spread across different states, indicating the potential for regional 

distribution of the proposed chemical facility to optimize the supply chain. The Pareto curves obtained by 

following the proposed model in different cases can be seen in Figure 9.  
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Figure 9.  Pareto-optimal curves for various current densities. 
 

Figure 8. GHG emissions by source for the Pareto points with current density (a) 50 mA/cm2, (b) 200 mA/cm2, (c) 400 mA/cm2. 
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Note that the lower envelope of the three Pareto curves forms a composite frontier of nondominated 

configurations, where the decision maker can select a current density according to the relative importance 

they attach to economic and environmental criteria. A lower current density would result in lower energy 

consumption, which would result in less CO2 emissions, and a higher current density would result in lower 

costs, but more pollution.  

 
 

6. Conclusions 
 
Recent years have seen an increase in environmental concerns. Biological-electrochemical conversion 

of glucose to t3HDA has shown promising preliminary results, prompting further exploration of its 

technoeconomic feasibility and optimum supply chain configuration. Supply chain design is a complicated 

and important decision that should take environmental as well as economic concerns into account. 

This paper presents a supply chain design considering feedstock availability, transportation, and 

market demand.  

The case study on converting glucose into ccMA through biological fermentation to minimize 

operating costs for t3HDA production through electrochemical hydrogenation is based on data collected 

from real-life experiments. The technology of electrochemical reactors has been investigated at various 

capacity levels and configurations. 

The results indicate that the absence of economies of scale in the electrochemical reactors increases 

the potential for small-scale production facilities to be located close to the sources of raw materials and 

where clean energy is more abundant. It was our objective to learn more about the cost parameters related 

to this novel part of the process and determine how they might affect supply chain design. The current 

density, which is one of the key parameters in electrochemical cost and productivity, has a significant 

impact on the supply chain's costs and emissions. Increased current density can reduce the energy efficiency 

of electrochemical reactors. However, the energy that is not utilized in an electrochemical reactor is 

diverted into hydrogen evolution, which we did not address in this study. Therefore, accounting for 

hydrogen production and exploring its potential applications, including its storage and subsequent use in 

fuel cells to help power the electrochemical reactor, represent promising avenues for future research. 

Ongoing experiments aim to enhance productivity and other aspects of this process. Additionally, we 

currently approximate the reaction rate as constant over time, but further investigations can explore its time-

dependent behavior for more accurate modeling. It would be worthwhile to revisit our assumption about 

the amount of glucose available to divert from ethanol production. Future research should take into account 

the upstream portion of this supply chain in greater depth. Moreover, the deterministic approach used in 

this study does not account for uncertainties in many parameters, including demand, which greatly influence 
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supply chain design geographically, economically, and environmentally. Future research should be 

conducted in an uncertain environment based on the findings of this study.  
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