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Abstract

Increasing concern about the environmental impact of industrial activities has prompted a shift to renewable
energy sources and the development of environmentally conscious supply chains. In this regard, electrochemistry has
shown promise for converting biomass into specialty chemicals in distributed facilities that exploit renewable energy
resources. To examine the impact of electrochemistry technology on optimal supply chain configuration, we formulate
a mixed-integer linear programming model to optimize the locations and capacities of distributed facilities for
converting biomass to chemicals. The economic objective of the supply chain design model is to minimize the
total annual cost of producing chemicals from biomass-derived glucose and delivering them to market. To analyze the
trade-off between environmental and economic considerations, we also consider an environmental objective of
minimizing greenhouse gas (GHG) emissions. The results of a US case study indicate that, while cost is minimized
by constructing one large facility, GHG emissions are lowered by a distributed configuration. Varying the setting of
a process design parameter expands the Pareto frontier along which decision-makers can choose a configuration

according to their preferences between economic and environmental criteria.
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1. Introduction

In recent years, the environmental advantages of biomass have been rapidly transforming the prospects
for its widespread use as a feedstock in chemical manufacturing, including for the production of commaodity
chemicals, which now relies heavily on finite fossil carbon resources. Biobased chemical production
processes are designed to replace these non-renewable sources of carbon with sustainable carbon derived
from diverse biomass feedstocks, such as carbohydrates, triglycerides, lignin, and proteins. To overcome
some of the challenges associated with biomass substitution, researchers have proposed the development
of platform intermediate compounds, aimed at simplifying the development of multiple chemical products
(Shanks & Broadbelt, 2019). While it may remain a long-term goal to replace petrochemical processes with

renewable electrosynthesis, the production of chemicals from biomass is already attainable through
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distributed electrochemical manufacturing (Harnisch & Urban, 2018). The electrochemical approach to
biomass conversion, which has been underexplored, offers unique advantages. The technology utilizes
electricity to access new reaction pathways. With this approach, biomass and waste carbon can be converted
at lower temperatures with improved efficiency and with intermittent renewable electricity resources.
Electrochemical methods enable a wide variety of chemical transformations, effluent treatment, and the
conversion of complex organics into valuable hydrocarbons. They hold the potential for environmentally
friendly and economically viable industrial processes via small-scale manufacturing (Akhade et al., 2020,
Uno & Inada, 2018). Biomass in the US Midwest can be converted into a wide range of highly selective
and on-demand products using electrochemistry. While not overstating the carbon footprint benefits
associated with substituting biomass for petroleum feedstocks (Queneau & Han, 2022), it is important to
investigate the potential improvement in the economic and environmental tradeoffs of distributed

electrochemical manufacturing.

Adipic acid (AA) is one important commodity chemical that soon could be produced from biomass
rather than petroleum feedstock in a clean process. This polymer, a building block central to the production
of Nylon 6,6, is broadly used in food packaging, home goods (e.g., carpets), textiles and apparel, as well as
in the automobile industry. However, the current production process of oxidizing fossil-based cyclohexane
using concentrated nitric acid has many negative environmental effects, including high levels of greenhouse
gas (GHG) emissions (Nicholson et al., 2021). One of the most promising alternative processes involves
muconic acid, an emerging bio-based platform chemical. In this scheme, glucose produced from starch or
cellulosic biomass is biologically converted to cis,cis-muconic acid (ccMA), which can then be converted
to AA using precious metal catalysts and hydrogen gas (Rios et al., 2021). However, the hydrogen typically
is derived from fossil methane through steam reforming. To overcome the use of natural gas, researchers
also have explored electrochemical hydrogenation, a technology that can be powered using renewable
electricity and that uses water as a source of hydrogen for the reaction. One of the recent successes is the
electrochemical hydrogenation of ccMA to trans-3-hexenedioic acid (t3HDA), a potential substitute for
AA as a precursor of performance-advantaged nylon (Matthiesen, Carraher, et al., 2016). Hybrid microbial
electrosynthesis (HMES) integrates fermentation and electrosynthesis, enabling improved efficiency and
productivity in industrial processes, with environmentally friendly, cost-effective operation (Dell'Anna et
al., 2021). Several experiments showcased the capability to generate bioderived compounds without the
requirement of separating or modifying the fermentation broth using HMES (Matthiesen, Suastegui, et al.,
2016). That is, this electrochemical reaction can be performed directly in the fermentation broth, using its

water and salts as an electrolyte, and eliminating the need for expensive separation and purification steps.



A similar process under development for AA would have the threefold benefit of using renewable
biomass as a feedstock, relying on clean electricity to drive the reaction, and reducing waste by process
intensification. In this study, we explore the potential of distributing this production among small-scale
facilities to reduce transportation costs and related emissions while exploiting proximity to sources of clean
energy.

To properly assess the economic and environmental sustainability of a manufacturing process, the
scope of consideration must include issues arising in the supply chain from raw material suppliers to
customers of the end product. Supply chain management integrates suppliers, manufacturers, distribution
centers, and customers to facilitate the efficient transportation of materials from source to end-user,
ensuring timely delivery, quality, and cost-effectiveness through coordinated product and information flow
(Beamon, 1998). Supply chain design and optimization can benefit any industry or process, as it considers
not only operations, but also business functionality and market dynamics (Lainez & Puigjaner, 2012). The
strategic decisions in supply chain management refer to the high-level decisions and actions taken to design
and manage an efficient and effective supply chain network. These decisions include supply chain structure,
technology selection, facility capacities, and other factors that contribute to competitive advantage (Sharma
et al., 2013). The design of the supply chain network, specifically considering the sizes and locations of
distributed facilities, affects its profitability and environmental performance. An optimal design balances
the scale economies of production facilities against proximity to sources of raw materials and inexpensive

renewable energy sources.

Techno-economic analysis (TEA) is commonly used to assess the financial aspects of engineering end-
products and process designs, to provide investors with guidance on whether the processes and products
can be commercialized. Typically, the TEA is used to estimate a minimum selling price (MSP) to be used
as the unit price of a product in a break-even analysis (Scown et al., 2021). The analysis tends to focus
narrowly on the cost of building and operating a single production facility, ignoring the costs of transporting
raw materials inbound to the facilities and finished products outbound to customers. While this analysis is
a useful initial step towards assessing economic viability, it implicitly assumes that the MSP is obtained by
taking advantage of the scale economies associated with traditional production processes (but not shared
by electrochemical processes). It also ignores the potential economic and environmental benefits of locating

facilities close to sources of renewable energy.

To include a wider perspective, we formulate a mixed-integer linear program (MILP) to optimize the
sizes and locations of distributed bio-based chemical production facilities that integrate fermentation with
electrochemistry. Our bicriterion model considers two objectives to be minimized: the total annualized

investment and operational cost, and the GHG emissions from transportation and electricity usage,



accounting for spatial variation in both the cost and emissions due to electricity obtained from the grid. We
apply the model in a case study of the production of t3HDA from glucose in the US. The capital investment
costs account for the disparities in economies of scale between the electrochemical reactor (ECR) and the
other equipment. We examine different settings for the current density applied in the ECR, which affects
both capital investment costs and electricity usage. We find that, in the Pareto frontier for each level of
current density, the minimum cost solution features a single large facility while lower emission
configurations distribute production across several smaller facilities. The consideration of alternative
current densities generates an extended Pareto frontier in which the lowest current density generates the

least GHG emissions while the highest current density considered results in the lowest annual cost.

The rest of this paper is organized as follows. The next section briefly reviews the relevant literature
and describes the case study. The proposed mixed-integer linear programming model is elaborated in
Section 3; it is then implemented for the case study in Section 4. Numerical results are presented and

discussed in Section 5. Lastly, Section 6 offers some conclusions and suggestions for future research.

2. Literature Review and Application Specifics

Numerous studies, of which we highlight only a few, have been devoted to optimal design and
operational planning of the biofuel supply chain. Eksioglu et al. (2009) introduced a MILP formulation to
design and manage the supply chain for biomass-to-biorefinery, focusing on determining the ideal quantity,
scale, and locations of facilities and biorefineries required for biomass processing. Huang et al. (2010)
developed a mathematical model to minimize costs and meet demand, feedstock, and technology constraints
by determining optimal locations, sizes, and capacities of biorefineries, as well as annual quantities of
ethanol production, feedstock delivery, and ethanol delivery to demand cities. Supply chains for biomass-
to-liquids were designed and planned optimally by You and Wang (2011) from an economic and
environmental standpoint using a multi-objective, multiperiod MILP model taking into account alternative
conversion pathways, technologies, biomass characteristics, and spatial distribution of demand. Murillo-
Alvarado et al. (2015) showed that implementing a biorefinery system in Mexico using tequila industry
residues offers substantial economic and environmental advantages, as demonstrated by their multi-
objective optimization approach.

While much research is devoted to the use of biomass for fuels, Shekarian et al. (2022) found only a
limited body of literature devoted to the design of supply chain networks for chemicals from biomass.
Similarly, in a systematic review of the literature on sustainable supply chains using operations research
techniques, only 7% of the works were set in the chemical industry (Barbosa-Povoa et al., 2018). However,

we can trace a thread of literature on the important role of environmental impacts in chemical supply chain



designs. Among the first researchers to integrate environmental factors into supply chain planning and
design, Hugo and Pistikopoulos (2005) are considered pioneers. Their paper describes a mixed integer
linear programming model for investment planning within a chemical supply chain that aims to address
how to design and expand the capacity of facilities in an environmentally friendly manner. The mixed
integer non-linear programming (MINLP) model proposed by Guillén-Gosalbez and Grossmann (2009)
considers both economic and environmental objectives for chemical supply chains where emissions and
feedstock requirements are uncertain. Gabrielli et al. (2020) studied the optimal design of low-carbon
hydrogen supply chains considering multiple feedstocks and energy sources, including biomass, and
developed a MILP algorithm to minimize costs and CO, emissions while meeting end-user demand.

The need for sustainable and environmentally friendly chemical production has prompted significant
research and development in electrochemical synthesis technologies. According to Sulaymon and Abbar
(2012), electrochemical technology presents a compelling solution for industrial processes, combining
economic feasibility and environmental performance through its versatility, energy-efficiency, automation,
and cost-effectiveness. Achieving successful implementation of electrochemical reactors relies on their
design and scale-up. When scaling up and commercializing microbial electrochemical systems (MES) and
related technologies, reducing capital costs is a vital economic consideration (Savla et al., 2021). A number
of recent studies have investigated the relationship between cost and scale of electrochemical reactors.
Sanchez and Martin (2018) noted that the commonly used six-tenths rule does not apply to small-scale,
distributed facilities using this technology. Instead, they highlighted the linear relationship between
electrolyzer capacity and cost, which significantly affected the overall equipment cost of renewable
ammonia plants. The study by Perry et al. (2020) provided a comprehensive analysis of various reactor
designs employed in electrochemical synthesis, ranging from small-scale setups to larger reactors. The
review discussed the design, operation, and scaling of electrochemical cells as significant obstacles to the
advancement and expansion of electrosynthesis. Guerra et al. (2020) found that the increase in the cost of
electrolyzers becomes nearly linear as the capacity of the system increases. Based on the analysis of the
selected papers, it can be concluded that the capacity and cost relationship of electrochemical reactors is

approximately linear, corresponding to limited, if any, economies of scale.

2.1. Research Gap and Contribution

Few studies were found in the literature that simultaneously address the design of chemical supply
chains from biomass with both economic and environmental objectives, along with considering a techno-
economic analysis for a novel production process. Zhang et al. (2014) investigated the supply chain design
for producing commodity chemicals from woody biomass to achieve optimal configurations of

preprocessing hubs and biorefineries by determining their locations and capacities. In a case study of a



hypothetical scenario using forest residue as the feedstock in the US state of Minnesota, they also examined
the trade-off between economic and environmental factors, specifically by minimizing GHG emissions.
Garcia-Velasquez et al. (2023) investigated the design of supply chains for biobased polyethylene
terephthalate (PET), focusing on minimizing supply chain costs and environmental impact, developing a
MILP and a life cycle optimization framework to analyze the trade-offs between economic and
environmental factors. Our review of the literature identified the following gaps:
e Limited research on chemical supply chain design from biomass, with most studies focusing on
biomass for fuels rather than chemical production.
e Limited consideration of techno-economic analysis for novel production processes in the design of
chemical supply chains with multiple possible capacity levels of the facilities.
e Little investigation into the impact of electrochemical reactors on the overall supply chain design,

including factors such as capacity, energy usage, GHG emissions, and transportation costs.

To address these gaps, we formulate a model to determine the locations and scale of distributed
facilities including electrochemical reactors to produce chemicals from biomass-derived glucose,
considering electricity usage, transportation, and market demand. We applied MILP with an exact solution
to determine the Pareto-optimal points of our two-objective model, which exposes the tradeoff between
minimizing the annual cost of the supply chain and reducing the GHG emissions associated with
transportation and electricity usage. The facility investment and operating costs are based on a detailed
technoeconomic analysis with various settings for the current density, a key technological parameter that

affects both environmental performance and overall cost.

2.2. Case Study on t3HDA from Glucose

The schematic for the supply chain system to produce chemicals from biomass is shown in Figure 1.
In this study, for simplicity, biomass is assumed to have already been converted to glucose. The plentiful
large-scale milling facilities that form the first step of ethanol production from corn grain are a potential
source of this raw material. Distributed integrated conversion facilities are assumed to be located adjacent
to these ethanol plant mills, though each conversion facility may be supplied by multiple ethanol plants.
Chemicals are then transported to demand zones. Rather than imposing a particular topological structure
on the network, such as those studied by Ezaki et al. (2022), we assume that transportation routes exist from

all suppliers to all candidate facility locations and from each of those locations to any customer.
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Figure 1. Supply chain schematic.

Ongoing investigations are being conducted into the techno-economics of scaling up and
commercializing this process in light of the promising experimental results. A simplified analysis and
determination of industrial feasibility had previously been performed with Early Stage Techno
Economic Analysis (ESTEA) software (Matthiesen, Suastegui, et al., 2016). A further investigation was
conducted by Dell'Anna et al. (2021) identifying cost breakdowns of this process for one large facility
without considering the transportation costs, demand zones, supplier or facility location. Thus, the present
work is necessary to outline a supply chain design for commercializing t3HDA production, taking into
account the different possible capacities of the facilities and exploring the possibility of distributed
manufacturing with the goal of minimizing costs and GHG emissions.

The current study examines the electrohydrogenation of ccMA to t3HDA in an electrochemical flow
reactor and highlights parameters crucial to the design of a supply chain. Electrochemical reactors were
given special consideration due to the fact that they represent the majority of utility costs and capital costs
in the production process and do not follow the conventional economic scaling factors. It is important to
note that for processes driven by heat, productivity scales with reactor volume, but for processes driven by
electricity, productivity scales with reactor surface area. Consequently, conventional, heat-driven processes
are better scaled up, while electrochemical reactors are best scaled out. In contrast to conventional heat-
driven processes, where increasing a plant's capacity is more economical, electrochemistry is
a promising technology for distributed chemical manufacturing (Pletcher & Walsh, 1993). Therefore, a

trade-off between parameters related to technological aspects and supply chain configuration has been



investigated. The locations for the integrated conversion facilities are assumed to be the 197 ethanol plants

in the US. The cost and greenhouse gas emissions per unit chemical produced are also quantified.

3. Mathematical Model Formulation

To design the supply chain for the production process illustrated in Figure 2, the objectives are to
minimize the annual costs and GHG emissions associated with production and transportation based on the
proposed production pathway of an integrated conversion facility. The deterministic bi-objective mixed

integer linear programming model is defined using the notation summarized in Table 1.

Table 1. Notation for supply chain design mixed-integer programming model.

Sets
] Candidate facility locations, indexed by subscript j
K Consumer centers, indexed by subscript &
C Possible capacity levels of a facility, indexed by subscript ¢
M Glucose suppliers, indexed by subscript m
B Chemical production steps, indexed by superscript b = F' (fermentation), L

(electrochemical reaction), S (separation) or P (purification)
Technical parameters

Dy Demand of consumer center & for product (tonne/year)
r Annual interest rate
N Life of the facility in years
a Tonnes of glucose needed/tonne of chemical produced
U. Capacity of integrated facility with capacity level c (tonne/year)
S Capacity of supplier m (tonne/year)
wP Electricity requirement of production stage b, b € B, per unit of production (kWh/tonne)

d Distance between supplier u=m and facility location v=j or between facility location u=j
" and customer v=Fk (miles)
Cost parameters

v Cost of glucose ($/tonne)

Kj’; Fixed capital investment cost of stage b, b € B, at location j, at capacity level ¢ ($)

V].W Variable wastewater treatment cost at location j ($/tonne)

V}.L Variable labor cost to produce chemical at location j ($/tonne)

O}“C Annual labor cost assuming a facility at location j, with capacity level c, is fully utilized

($/year); equal to VU,

VjU”’ Variable non-electricity utility cost of stage b, b € B, at location j ($/tonne)

R; Variable cost of electricity at location j ($/kWh)

T Transportation cost of glucose from supplier u=m to location v=j or chemical from location
u=j to consumer center v=k ($/tonne-mile)

b1 Multiplier of capital investment cost to account for annual maintenance and repairs,
operating supplies, taxes and insurance, and a portion of plant overhead

b, Multiplier of annual labor cost to account for annual administration costs and a portion of
plant overhead

b5 Multiplier of variable labor cost to account for supervisory and clerical labor as well as

laboratory charges
Environmental parameters

EjG GHG emissions from generation of electricity used at location j (kg CO; equivalent per
kWh)
ET GHG emissions of transportation (kg CO, equivalent per tonne-mile)




Binary decision variables

tic 1 if location j is selected for opening an integrated facility at capacity level ¢; 0 otherwise

Continuous decision variables

Xy Amount of glucose transported from supplier u=m to facility location v=j or chemicals
transported from location u=j to consumer center v=k (tonne/year)

i Amount of chemical produced at location j (tonne/year)

fj Amount of electricity used at location j (kWh/year)

In terms of the above notation, the problem can be formulated as follows.

3.1. Objective functions
Two important and conflicting objective functions are considered: (1) minimization of the total cost

and (2) minimization of the total GHG emissions.

3.1.1. First objective: minimizing the total cost.

The total cost of the chemical supply chain network design includes the capital investment costs of
establishing integrated facilities with four different processing stages of fermentation, electrochemical
reaction, separation, and purification, along with the fixed and variable operational costs. The operational
costs include variable cost of labor, raw materials, wastewater, transportation costs, and electricity costs
that are dependent on the quantity of production. According to Turton et al. (2008), manufacturing costs
include direct manufacturing costs, which vary according to the level of production; fixed manufacturing
costs, such as property taxes and insurance, that are independent of production levels; and general expenses
covering overhead expenses for critical business functions. Considering the capital investment costs of
establishing integrated facilities, along with these operational costs, the annual cost objective function

($/year) can be formulated as follows.

iz = () S S+ 3 (S ) o

ceC jeJ beB ceC jeJ] \beB
+ Z (Z Vg + VW + VTP + (1 + ¢3) VjL)yj + Z Zijdmjxmj (1
j€J] \bEB meM jej
+ Z Z Tjied jre X + Z Rifj
J€J kEK I3

The first term in the cost objective function consists of annualized capital investment cost for establishing
facilities, as well as the annual fixed manufacturing costs and general expenses. The second term comprises
the direct manufacturing costs associated with the annual production of chemicals. The third and fourth

terms account for the costs of transporting raw materials and final products, respectively. The costs of



transportation from glucose suppliers to the facilities and from production facilities to the demand zones
are calculated by multiplying shipping distance by transportation cost per unit of distance (i.e., one mile)
via truck in the US. The final term is the cost of electricity usage, which is distinguished from the other
utility costs to facilitate the study of the impact of various current densities in the electrochemical reactors.
Considering electricity usage separately also allows us to account for spatial variations in GHG emissions

from electricity generation.

3.1.2. Second objective: minimizing the GHG emissions. The second objective function can be formulated

as follows:

MinZ, = ETZ Z dmjxmj'l'zEijj +ETZZdﬂ<xjk (%)

Jj€J] meM JjEJ keK jeJ

Here we account for GHG emissions associated with transportation of glucose to the facilities, generation
of the electricity used, and transportation of the final product to customer centers. Note that we measure
GHG emissions in a manner similar to the demand-based carbon intensity indicator proposed for

international shipping (Wang et al., 2021).

3.2. Constraints
3.2.1. Demand satisfaction constraints. Constraints (6) and (7) ensure that the demands of all consumer

centers are satisfied, and all production is delivered.

ijk = Dk' vk (6)
JEJ
Z Xjk = ¥j, VJj (7)
keK

3.2.2. Flow balance constraints. In Constraint (8), the amount of chemicals produced is balanced with
the amount of glucose based on the yield of the process. Constraint (9) computes the total amount of

electricity required for the operations of each unit.

Z Xmj = ay; ,Vj ®)
mem

D Si= ) Wiy i ©)
Ter beB
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3.2.3. Capacity constraints. The following are all relevant production capacity constraints. Constraint
(10) prevents each facility from producing more chemicals than its capacity allows. As a result of constraint
(11) at most one capacity level can be selected for a facility established at location j. Each supplier's capacity

limit is enforced by constraint (12).

Vi < ZUctjc ’ Vj (10)
cec

thc <1, Vvj (11)

cec

mej < va vm (12)

jeJ

3.2.4. Variable restrictions. The following constraints specify the binary and non-negativity

restrictions on the corresponding decision variables.

te € {01}, Vjc (13)

xmjlxjkiyjlf} 2 0; Vm!jik (14)

3.3. The proposed solution method for two-objective model

Several approaches have been developed in the literature to solve multi-objective programming
models. The e-constraint method provides a picture of the whole Pareto-optimal solution set for the decision
maker, allowing them to select their most preferred solution. Due to comprehensive information available,
the decision maker can determine the final decision more confidently based on all possible solutions.
Readers interested in learning more about this method may refer to (Ehrgott, 2005).

By expressing one objective as a constraint, the e-constraint technique reduces a multi-objective
problem to a single-objective problem. In this research, GHG emission is the g-based constraint, and the
higher priority function, total cost, is retained as the objective function. The reformulated problem is:

MinZ = 7, (15)
S.t.

Z, < &, Constraints (6)-(14) (16)

Following is a general description of the process to identify the Pareto frontier of nondominated solutions.
First, the e-constraint on Z; in (16) is relaxed to find a minimum cost solution. The value of Z; in this
solution is an upper bound on GHG emissions. Second, by reversing the roles of Z; and Z; in (15)-(16) and
relaxing the resulting e-constraint on Z), a lower bound on GHG emissions is identified. Finally, the single

objective problem originally written as (15)-(16) is solved by setting € to discrete values evenly spaced
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between the lower and upper bounds. The Pareto curve is thus approximated, showing the trade-off between

economic and environmental objectives.

4. Case Study

4.1. TEA and cost analysis of chemical process

In the proposed chemical production process, ccMA is produced through fermentation of glucose, and
then electrochemically converted into t3HDA. The novel unsaturated monomer t3HDA has enjoyed
increased interest due to its ability to replace AA in Nylon 6,6 and produce polyamides with
performance advantages. Low productivity has prevented t3HDA from being applied to the production of
advanced polymers. A new synergy between microbial and electrochemical conversions was presented by
Dell'Anna et al. (2021) for increasing t3HDA productivity by over 50 times. A process schematic is shown

in Figure 2.
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Figure 2. Chemical conversion process schematic.

In spite of the fact that no commercial, scaled up example has been found of a hybridized process that
combines fermentation with electrochemistry, an analysis using ESTEA software demonstrated the
scalability of t3HDA from bioderived ccMA (Matthiesen, Suastegui, et al., 2016). The ESTEA calculates
the MSP by dividing total annual costs ($/yr) by total annual production (kg/yr). Through the experimental
design conducted by Dell'Anna et al. (2021), using Aspen software, an industrial design for converting
glucose to MA by biological fermentation subsequent to electrochemical hydrogenation to t3HDA was
modeled in detail, allowing for a more thorough TEA. The study focused solely on one large facility and
overlooked the potential for multiple distributed facilities, did not consider the limited cost advantages of
electrochemical reactors at smaller scales, and performed only a partial optimization of current density in
the electrochemical reactor based on a single facility. In our study, we extracted valuable information from

(Dell'Anna et al., 2021). We obtained the following key details:
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1. The capacity of the base size (c=1) plant is 75,296 tonnes/year of t3HDA, based on the AA market
as a reference.

2. It was assumed that the chemical plant operated for 8,000 hours per year.

3. The values of technical parameters such as a and W™ were derived from the Aspen flowsheet.

4. Equipment sizes for the base size plant were determined based on the output of the Aspen software,

while its capital investment and manufacturing costs were calculated using CAPCOST.

To estimate additional parameter values for our supply chain design model, it was necessary to extract
intermediate findings from this research and scale costs for various plant sizes. As part of our assessment,
we analyzed both the operational manufacturing costs and the capital investment costs. Capital investment
costs, also known as grass-roots costs, comprise the expenses incurred in constructing a new plant. These
costs are made up of three main components: the total bare module capital cost, contingency and fee
expenses, and auxiliary facilities costs. The total bare module capital cost encompasses the costs linked to
each piece of equipment required for the plant. Contingency and fee costs are included to account for
unexpected circumstances and contractor fees and are usually calculated as a percentage of the total module
capital cost. Meanwhile, auxiliary facilities costs cover expenses such as land acquisition and electrical
systems, and generally amount to about 30% of the total basic module cost, which includes the total bare
module capital cost and contingency and fee expenses (Turton et al., 2008). The third column of Table 2
presents the fixed capital investment for each unit operation based on CAPCOST equipment costs for

capacity level c=1 extracted from (Dell'Anna et al., 2021).

Table 2. Fixed capital investment (FCI, in $M) by unit operation.

Model Notation Stage of Production Base Size (c = 1) Half Size (c = 2) Quarter Size (¢ = 3)
U, Capacity (tonne/year) 75,296 37,648 18,824
K} Fermentation 10.86 7.17 4.73
K]Lc Electrochemical reactor 33.50 16.75 4.17
I(ﬁ Separation 1.71 1.13 0.74
K Purification 9.07 5.99 3.95
Total FCI 55.15 31.03 17.80

To calculate the capital cost for smaller capacities in the table, we use the following equation:
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Kie/Kit = (Uc/Up)P (17)

where p represents the exponent or proration factor, the slope of a logarithmic curve that illustrates the cost
change of a plant as it is scaled up or down. These curves are typically derived from known cost data of
completed plants. In chemical plants, the exponent varies by type of equipment from 0.5 to 0.85 (Turton et
al., 2008) but, as a default, is assumed to be 0.6 (the so-called “six-tenths rule”). As a result, we applied this
value of p to all unit operations except the electrochemical reactor, for which we assume the size and capital
cost scale linearly with capacity (i.e., p=1).

According to Turton et al. (2008), the total manufacturing cost consists of three categories: direct
(variable) manufacturing costs, indirect manufacturing costs, and general expenses, where the latter two
categories are fixed costs. Raw material expenses, catalyst and solvent costs, operating labor fees,
supervisory and administrative labor fees, utilities (including waste disposal), maintenance and repairs,
operating supplies, laboratory fees, patent and royalty payments, among others, are included in direct
production costs. This category includes all fees for materials and labor. From the Aspen simulation results
in (Dell'Anna et al., 2021), raw material and wastewater costs are calculated according to their flowrate.
Accordingly, in the case of a continuously operating plant, it was assumed that 18 operators worked on
average 8000 hours each year and that there were three shifts each day. The salary of the operator was
estimated to be $52,000 per year. In order to use it in our model, we calculate the cost of labor in terms of
dollar per tonnes, and dollar per year for different plant capacities. According to CAPCOST sheet modeled
by Dell'Anna et al. (2021), wastewater would cost around $278.80 per tonne. According to Aspen’s output
modeled by Dell'Anna et al. (2021), the flowrate of glucose is 22019.5 kg/hr, which would result in annual

raw material cost of $53,151,360. A summary of the parameters is shown in Table 3.

Table 3. Variable costs of production.

Model Notation Cost ($/tonne)
/s 37.29
v 278.80
V 705.90
> owure 92.82

bEB

As shown in Table 4, other expenses, such as supervisory and clerical labor fees, maintenance and
repair costs, and operating supplies charges, are calculated separately and multiplied by associated factors.

Overhead, insurance, and local taxes are included in fixed manufacturing costs as these items are not
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affected by the production rate of a plant. Finally, we have included administrative costs as part of the

general expenses category. Distribution and selling costs, as well as research and development charges, are

omitted because they do not vary with supply chain configuration. Table 4 summarizes the items related to

manufacturing expenses commonly used in economic assessments (Turton et al., 2008).

Table 4. Manufacturing costs ($M/yr) by facility size for current density 200 mA/cm?,

Model Notation

Base Size (c = 1) Half Size (c = 2)

Quarter Size (¢ = 3)

Direct Manufacturing Costs

VaU, Raw Material 53.15 26.57 13.29
v"u, Waste Treatment 20.99 10.50 5.25
ViU, Operating labor 2.81 1.40 0.70
Z VU™ U, Utilities (other than electricity) 6.99 3.49 1.75
beB
Supervisory and clerical labor,
0.180]-LC 18% of operating labor 0.50 0.25 0.13
0.06 Z Kb Maintenance and repairs, 6%
P s of Fixed Investment Cost 331 1.86 1.07
. . 0
0.009 Z Kp, Operating supplies, 0.9% 050 0.28 016
P of Fixed Investment Cost
L 0,
0.150;, Laboratory charges, 15% of 0.42 021 0.10
annual operating labor
Fixed Manufacturing Costs
0-7080}2 Plant overhead, 70.8% of
10036 Z kb operating labor + 3.6% of Fixed 3.97 2.11 1.14
¢ Investment Cost
beB
0.032 Z Kb Local taxes and Insurance, 3.2%
P e of Fixed Investment Cost 1.76 0.99 0.57
General Manufacturing Expenses
0,1770]-LC Administrative costs, 17.7% of
p  operating labor + 0.9% Fixed
£0009 ) Kh e ot 0.99 053 0.28
beB
Total production cost 95.40 48.21 24.44

By combining terms in Table 4, we find the value of the capital investment cost multiplier, ¢; =

0.06 + 0.009 + 0.036 + 0.032 + 0.009 = 0.146. The multiplier for annual labor cost to estimate fixed

manufacturing costs and general expenses is ¢, = 0.708 + 0.177 = 0.885, while the multiplier for

variable labor cost to include in direct manufacturing costs is ¢p; = 0.18 + 0.15 = 0.33.
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We obtained the electricity usage from (Dell'Anna et al., 2021), which was calculated based on the
CAPCOST equipment sheet, and we calculated the consumption per tonne for each unit operation to use it

in our model. Table 5 summarizes these parameter values.

Table 5. Electricity usage by production stage for current density 200 mA/cm? (Dell'Anna et al., 2021).

Model Stage of Production Usage (kWh) per tonne
Notation
wF Fermentation 44295
wt Electrochemical Reactor 2101.90
ws Separation 1.84
wP Purification 3.14
Total 2549.86

The transportation cost was calculated based on the assumption that trucks will transport both the glucose
and the final product. The cost of a truck per mile is $1.86, and each truck can transport 36.2874 tonnes.
Based on this assumption, the transportation cost per mile was computed to be $0.05.

In the US, commercial fuel ethanol is produced mainly by breaking down corn starch into simple sugars
(glucose). Glucose is then fed to yeast for fermentation, resulting in the main product, ethanol, along with
byproducts. Two major industrial methods used for ethanol production are wet milling and dry milling,
where corn is processed through a hammer mill to produce corn flour from which the glucose is derived
(DOE, July, 2023). The production of ethanol relies on fermentation, where yeast consumes glucose and
generates carbon dioxide and ethanol as byproducts. It is estimated that for every pound of glucose,
fermentation can produce about 1/2 pound (equivalent to 0.15 gallons) of ethanol (Mosier & Ileleji, 2020).
We made the assumption that each US ethanol plant could divert up to 5% of its glucose capacity from the
milling process as a feedstock for the production of t3HDA. To calculate the tonnage of glucose, we
converted the capacity of each plant (measured in Mmgal/yr) into tonnes by multiplying them by 3081.84
tonne/Mmgal. This conversion was based on the density of ethanol, which is approximately 6.79434 1bs/gal
(TheEngineeringToolBox).

For each US state containing an ethanol plant (thus, a potential location for distributed t3HDA
production) we extracted greenhouse gas emissions per kilowatt hour of grid electricity from (U.S.
Environmental Protection Agency, 2021) and the electricity rate from (EIA, February 2023 and 2022) as
shown in Table 6 along with details regarding the 197 US ethanol plants and their corresponding assumed
glucose capacities in 23 states.

Table 6. Glucose supply and electricity grid characteristics by US state.
No. of CO, emission Industrial
State Ethanol 5% of glucose capacity (Mtonne/year) rate (ke/kWh) Electricity rate
Plants ($/kWh)
Arizona 1 0.34 0.33 0.07
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California 5 1.40 0.22 0.16

Colorado 3 0.86 0.55 0.08
Idaho 1 0.37 0.12 0.06
Illinois 12 10.72 0.30 0.08
Indiana 14 7.97 0.74 0.09
Towa 42 28.77 0.35 0.06
Kansas 13 3.71 0.38 0.09
Kentucky 2 0.33 0.78 0.07
Michigan 6 2.70 0.45 0.08
Minnesota 19 8.66 0.37 0.09
Missouri 6 1.94 0.74 0.08
Nebraska 25 14.10 0.51 0.07
New York 2 1.00 0.21 0.07
North Carolina 1 0.35 0.30 0.07
North Dakota 5 3.25 0.61 0.07
Ohio 7 4.58 0.55 0.08
Oregon 1 0.25 0.15 0.07
Pennsylvania 1 0.79 0.33 0.08
South Dakota 16 8.79 0.14 0.08
Tennessee 3 1.45 0.32 0.07
Texas 4 2.50 0.39 0.07
Wisconsin 9 3.62 0.58 0.08

4.2. Effect of current density

We examined the relation between electrochemical reactor parameters and costs in detail. A cost
calculation of electrochemical hydrogenation of a fermentation broth containing ccMA at pH 7 has been
done by taking into account the tradeoff between the cost of the electrochemical reactor and the Faradaic
efficiency, yield, and productivity as a function of the current density based on (Dell'Anna et al., 2021).
During a reaction time, Faradaic efficiency indicates how many electrons are transmitted to the target
molecules (Liu et al., 2020). The yield, which represents the ratio of moles of product to reactant, is used
to measure the efficiency of a reaction (Levenspiel, 1998). The productivity of the process is the amount of
product formed per hour.

To examine the impact of current density on parameters associated with our proposed supply chain
design, we must first understand some basic electrochemical concepts. During an electrochemical reaction,
the voltage, or the energy available to transfer charge, causes the reaction. Two half-reactions, an oxidation,
and a reduction, must develop a net-zero charge balance in an electrochemical reaction. An electrolyte
transfers charge in electrochemical reactions at the anode and cathode. On the anode, oxidations take place,
and on the cathode, reductions. In the process under study, hydrogenation of MA at the cathode produces
t3HDA. The parameter values presented previously were based on the assumption of the current density of
200 mA/cm? identified by Dell'Anna et al. (2021) as optimal for a single large plant. A low voltage operation

results in a high energy efficiency, while a high current density results in a high production rate.
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Our first step in calculating electrochemical reactor costs is to determine how much MA is converted
to t3HDA, which we call the reaction rate. The reaction rate is then converted to
current (Amps). Electrochemical reactor fixed cost is determined by the electrode area, which in turn is
determined by the current density. Further, the voltage times the current must be calculated to arrive at the
amount of power needed for an electrochemical reactor. A summary of electrochemical cost calculation

and related parameters is shown in Figure 3.

[ H H %leed Cost |
Current @

Density : Requlred ‘|
: Jx[ Curre Jx{ J* Electricity

WL

Electrochemical
Reactor

Figure 3. Electrochemical reactor cost and electricity usage.

Considering different parameters related to electrochemical reactors, we examine the cost of
electrochemical reactors in different facility capacities shown in Table 7 to better understand how to design

the supply chain for this process.

Table 7. Effect of current density on electricity usage and fixed capital investment for the large capacity
electrochemical reactor.

Model Current density (mA/cm?) 50 200 400
Notation Voltage (volts) 4 5.7 7.6
wt Electricity required per tonne, kWh 1475.02 2101.90 2802.53
K]’g Total Capital Cost $M 134.00 33.50 16.70

4.3. Supply chain design parameters

Since raw material costs make up a significant portion of the overall cost, we assume that facility
candidate locations will be adjacent to a subset of the 197 US ethanol plants, in an effort to minimize the
cost of transporting the raw materials. Glucose suppliers are also assumed to be ethanol plants. Demand is
divided equally among the largest textile companies in the U.S (Mohawk Industries, Inc., Aladdin Div.,
Dalton, GA; Hanesbrands, Inc., Winston-Salem, NC; and Saint Gobain Tape Solutions, Hoosick Falls, NY
(IndustrySelect)). Three different capacities are assumed for the integrated facilities based on the capacity
estimate factor (Turton et al., 2008). The largest plant capacity is assumed to be 75296 tonne/year, or 3%
of the approximate annual market size of adipic acid (the closest commercially available substance for

t3HDA). Due to the economic benefits of distributed electrochemistry, the proposed supply chain design
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also considers half and quarter of this size. For a period of 10 years, the total capital charge was amortized

at 10% interest. This analysis ignored taxes, depreciation, and salvage values. Parameters with their values

are summarized in Table 8.

Table 8. Summary of parameter values.

Notation Definition Value
Dy Demand of consumer center & for chemicals (tonne/year) k=1,25099 k=2,25099 k=3,25098
o Tonnes of glucose needed/tonne of chemical produced 2.34
Base Half Quarter
Stage of Production Capacity Capacity Capacity
(c=1) (c=2) (c=3)

Ue Capacity of single facility (tonnes/year) All 75296 37648 18824
wr Variable electricity requirement (kWh/tonne) Fermentation 442.97 442.97 442.97
wt Variable electricity requirement (kWh/tonne) Electrochemical 2101.90 2101.90 2101.90

Reactor
wSs Variable electricity requirement (kWh/tonne) Separation 1.84 1.84 1.84
w?r Variable electricity requirement (kWh/tonne) Purification 3.15 3.15 3.15
Vy Cost of glucose ($/tonne) Fermentation 705.90 705.90 705.90
K]'Z Total capital investment cost (SM) Fermentation 10.86 7.17 4.73
K]LC Total capital investment cost (SM) Flectrochemical 16.70 8.35 4.17

Reactor
K]i Total capital investment cost (SM) Separation 1.71 1.13 0.74
Kf[ Total capital investment cost (SM) Purification 9.07 5.99 3.95
VjW Variable wastewater treatment cost ($/tonne) All 278.80 278.80 278.80
VjL Variable labor cost ($/tonne) All 37.29 37.29 37.29
0} Fixed labor cost ($M/year) All 2.81 1.4 0.70
VjUT'F Variable utility cost ($/tonne) Fermentation 83.37 83.37 83.37
VjUT'L Variable utility cost ($/tonne) Flectrochemical 0 0 0

Reactor
VjUT'S Variable utility cost ($/tonne) Separation 4.39 4.39 4.39
V/TF Variable utility cost ($/tonne) Purification 5.07 5.07 5.07
Touw Transportation cost of glucoses ($/tonne-mile)  All 0.05 0.05 0.05
b1 Multiplier of capital investment cost All 0.146 0.146 0.146
b, Multiplier of annual labor cost All 0.885 0.885 0.885
b3 Multiplier of variable labor cost All 0.33 0.33 0.33
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GHG emissions of transportation (kg
CO2/tonne-mile)

All 0.19 0.19 0.19

5. Results and discussion

In this study we explore the electrohydrogenation of ccMA to t3HDA in an electrochemical flow
reactor, as well as parameters crucial to the design of supply chains. We focused on electrochemical reactors
because they account for the majority of utility costs and operational costs in the production process. In
addition, they do not follow conventional economic scaling factors, and are best used in distributed
production processes. As a result, a trade-off between technological aspects and supply chain configuration
has been investigated. In this section, the validity of the developed model is investigated via the data
withdrawn from the considered case study. To verify consistent results with the TEA previously performed,
we first solve our model assuming only one facility without considering transportation costs. In the case of
one facility, we solve the MILP with one base capacity (c = 1), one facility location (j = 1) and one
demand zone (k1=75296 tonne/year), and we relax the supplier capacity constraint (12), as well as

considering only an economic objective function without the transportation cost terms

cM_, Z§=1 Tmj dimjXmj + 2§=12§=1 Tj djix;jx)- Figure 4 summarizes the results.

RawMaterial
47%

FMC

Electricity
12%

DMC
7%

Labor
3%

Annualized FCI
6%

Maintanance, Repair and Utility
Supplies 6%
2% .
WasteWater
19%

Figure 4. Cost breakdown for single facility.
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All tests are conducted on the proposed model coded and solved by GAMS optimization software. A

Pareto-optimal solution is generated by using the e-constraint method described in Section 3.3. As we

proceed, we discuss how supply chain design can be influenced by current density, whether it is better to

distribute chemical facilities, or whether economies of scale can be beneficial.

5.1. Supply chain configuration based on current density 200 mA/cm?

To reduce the environmental impact of a supply chain design, it may be necessary to sacrifice some of

its economic benefits in order to reduce transportation emissions and use renewable electricity more

efficiently in a distributed manner instead of in a single large facility. Several supply chain structures and

planning decisions are reflected in the set of Pareto points. With a tighter constraint on emissions, facilities

become smaller and distributed in proximity to suppliers and demand zones, to reduce transportation

emissions while satisfying all constraints related to the supply chain. Facility locations for each Pareto point

are summarized in Table 9.

Table 9. Summary of Pareto points for current density 200 mA/cm?.

Pareto e . Facilit Cost Objective  Emission Objective
Point Facility Location State Capaci};y (M) ) (M kg C Oz-ejq )
1 Tate & Lyle Tennessee 1 120.62 72.33
Tate & Lyle Tennessee 2
2 Western New York Energy LLC New York 2 122.04 >8.33
Western New York Energy LLC New York 2
3 Tate & Lyle Tennessee 3 124.98 53.71
Sioux River Ethanol South Dakota 3
Western New York Energy LLC New York 2
Sioux River Ethanol South Dakota 3
4 Attis Ethanol Fulton LLC New York 3 137.81 47.64
Northern Lights Ethanol LLC South Dakota 3
Valero Renewable Fuels South Dakota 3

Figure 5 summarizes the supply chain components for each pareto point. Because ethanol plants are

assumed to be the candidate locations for our facilities, some locations include both a glucose supplier and

a facility. Facility locations tend to be in states with lower grid GHG emission rates as the supply chain

configuration becomes more environmentally friendly.
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5.2. Supply chain configuration based on current density 50 mA/cm?

Figure 5. Supply chain configuration at Pareto points for current density 200 mA/cm?,

A Demand Zones
@ Supplier Location
Facility Location

Grid CO, emission rate
(I/MWh)

=i 36-515
] 515-726
= 726-838
[} 838-1208
[} 1208 - 1944

Each Pareto point in the optimization process involves various supply chain structures and planning

decisions. As with the baseline current density, by aiming to reduce emissions, facilities are designed to be

smaller and strategically located near suppliers and demand zones. Table 10 summarizes the facility

locations corresponding to each Pareto point.

Table 10. Summary of Pareto points for current density 50 mA/cm?.

Pareto .. . Facilit Cost Objective  Emission Objective
Point Facility Location State Capaci};y (MS) ) (M kg COz-eJq )
1 Tate & Lyle Tennessee 1 148.39 57.38
Tate & Lyle Tennessee 2
2 Western New York Energy LLC New York 2 149.78 45.98
Western New York Energy LLC New York 2
3 Tate & Lyle Tennessee 3 151.51 42.96
Sioux River Ethanol South Dakota 3
Western New York Energy LLC New York 2
Sioux River Ethanol South Dakota 3
4 Attis Ethanol Fulton LLC New York 3 180.87 39.18
Northern Lights Ethanol LLC South Dakota 3
Valero Renewable Fuels South Dakota 3

Figure 6. summarizes the supply chain components for each Pareto point. Compared to the supply chain

configuration based on current density 200 mA/cm?, this one differs in the distribution of suppliers. For

Pareto point 3 in this case, Michigan is also a supplier.
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5.3. Supply chain configuration based on current density 400 mA/cm?

@ supplier Location
Facility Location

Grid CO, emission rate
(Ib/MWh)

[} 36-515
= 515-726
= 726-838
B 838-1208
Bl 1208-1944

Figure 6. Supply chain configuration at Pareto points for current density 50 mA/cm?.

Table 11 presents a summary of the Pareto points for a current density of 400 mA/cm?, showcasing the

facility locations, states, facility capacities, cost objectives (in million dollars), and emission objectives (in

million kilograms of COs-equivalent). These Pareto points highlight the trade-offs between cost and

emissions for different facility configurations. It is worth noting that this particular configuration,

characterized by high electricity consumption, results in distinct Pareto points compared to two other

configurations. Despite the possibility of constructing multiple smaller facilities, the Pareto points

demonstrate the importance of balancing objectives when striving for optimal outcomes.

Table 11. Summary of Pareto points for current density 400 mA/cm?.

Pareto Facility Location State Facility =~ Cost Objective  Emission Objective
Point Capacity (M$) M kg COs-eq)
1 Adm Clinton Ia Iowa 1 118.71 104.22
2 Tate & Lyle Tennessee 1 119.07 89.04
Adm Clinton la Iowa 2
3 Western New York Energy LLC New York 2 120.33 79.60
4  Western New York Energy LLC New York 1 121.08 67.99
Western New York Energy LLC New York 2
Sioux River Ethanol South Dakota 3
5 Attis Ethanol Fulton LLC New York 3 134.55 57.01
Northern Lights Ethanol LLC South Dakota 3
Valero Renewable Fuels South Dakota 3
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As shown in Figure 7, this supply chain differs from two other supply chains in terms of the distribution
of suppliers and the location of facilities. Due to the fact that, in this scenario, the most electricity is
expected to be used, the model has attempted to locate the facilities in states with the lowest electricity rates
in comparison with other states. To minimize environmental objective function, more distributed facilities

tend to be located in states with lower grid emission rates, with suppliers and facilities located as near as

possible to reduce transportation emissions as well.

Pareto Point 1

\,

A Demand zones

@ Supplier Location

Facility Location

Grid CO; emission rate
(Ib/MWh)
36-515
515-726
726- 838
838-1208
1208 -1944

1IR00

Figure 7. Supply chain configuration at Pareto points for current density 400 mA/cm?.

5.4. Economic Perspective

The economic comparison among configurations is summarized in Table 12. Overall supply chain
costs are dominated by the variable costs, especially raw materials. As a result, for this HMES process,
optimal supply chain design is influenced more strongly by technology and process parameters than by

economies of scale.

Table 12. Cost breakdown ($M/y) of most economical supply chain configuration by current density.

Total costs of

Current Fixed Variable Electricity  the supply
Annualized Transportation
Density Production Production cost chain
FCI Costs

(mA/cm?) Costs Costs ($MYy) configuration
(SMYy)

50 25.33 14.47 95.61 3.00 9.98 148.39

200 8.97 6.73 88.67 3.00 13.23 120.62

400 6.24 5.44 87.51 4.92 14.59 118.71

24



The cost breakdown analysis of the three cost-minimizing supply chain configurations based on
different current densities reveals notable variations in the cost distribution. The annualized capital cost
shows significant differences between the configurations. The configuration with a current density of 50
mA/cm? has the highest annualized capital cost of $25.33M, while the configuration with a current density
of 400 mA/cm? has the lowest annualized capital cost of $ 6.24M. The configuration with a current density
of 200 mA/cm? falls in between, with an annualized capital cost of $8.97M. Variable production cost is
relatively similar across the configurations, with the configuration based on a current density of 50 mA/cm?
having the highest cost of $ 95.61M. The configuration with a current density of 400 mA/cm? has the lowest
cost at $87.51, while the 200 mA/cm? configuration falls in between with a cost of $88.67M. Because
labor, raw material, utility, and wastewater costs remain constant across the configurations, the difference
in variable costs is due to the components estimated as proportions of capital investment costs.

The electricity cost varies among the configurations. The highest electricity cost of $14.59M occurs
with the configuration based on the highest current density, while the lowest electricity cost of $9.98M is
achieved with the lowest current density. The costs associated with final transportation and glucose
transportation are nearly the same for the lower current densities, but higher if the higher current density is
used.

To summarize the cost breakdown analysis, the configuration with a current density of 400 mA/cm?
has the lowest capital costs and fixed costs compared to the other configurations. However, it incurs the
highest electricity cost. The configuration based on a current density of 50 mA/cm? has the highest fixed
cost and lowest electricity costs. The 200 mA/cm? configuration falls between the other two configurations

in terms of cost components.

5.5. Environmental Perspective

The analysis of facility locations on different Pareto-optimal points for the various current densities
studied provides insights into the optimal configurations based on cost and emission objectives. The facility
locations vary across the Pareto optimal points for each current density. Multiple facilities from different
states are identified as part of the optimal solution at each Pareto point. The cost and emission objectives
differ for each Pareto-optimal point, reflecting the trade-off between minimizing costs and reducing
emissions. Some facility locations appear consistently across multiple current densities, indicating their
effectiveness in achieving Pareto optimality. For example, Western New York Energy LLC in New York
and Tate & Lyle in Tennessee are found in the optimal solutions for all three current densities. The facility
capacity remains the same within each Pareto optimal point, but the cost and emission objective values

vary. This suggests that different configurations can achieve the same capacity while prioritizing either cost
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reduction or emission reduction. Figure 8 illustrates a comparison between different CO,-equiv. emissions
(M kg/yr) by source for Pareto points with each value of the current density. The shifting distribution of
emissions from various sources suggests that, to improve overall environmental performance, lowered
emissions from electricity use are partially offset by increased emissions from transporting either the raw
material or the finished product. However, there is no straightforward way to determine, without solving
the optimization model, whether production facilities should be located closer to raw material sources or to
customers.

The optimal facility locations are spread across different states, indicating the potential for regional
distribution of the proposed chemical facility to optimize the supply chain. The Pareto curves obtained by

following the proposed model in different cases can be seen in Figure 9.
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Figure 8. GHG emissions by source for the Pareto points with current density (a) 50 mA/cm?, (b) 200 mA/cm?, (¢) 400 mA/cm?.
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Figure 9. Pareto-optimal curves for various current densities.

27



Note that the lower envelope of the three Pareto curves forms a composite frontier of nondominated
configurations, where the decision maker can select a current density according to the relative importance
they attach to economic and environmental criteria. A lower current density would result in lower energy
consumption, which would result in less CO, emissions, and a higher current density would result in lower

costs, but more pollution.

6. Conclusions

Recent years have seen an increase in environmental concerns. Biological-electrochemical conversion
of glucose to t3HDA has shown promising preliminary results, prompting further exploration of its
technoeconomic feasibility and optimum supply chain configuration. Supply chain design is a complicated
and important decision that should take environmental as well as economic concerns into account.

This paper presents a supply chain design considering feedstock availability, transportation, and
market demand.

The case study on converting glucose into ccMA through biological fermentation to minimize
operating costs for t3HDA production through electrochemical hydrogenation is based on data collected
from real-life experiments. The technology of electrochemical reactors has been investigated at various
capacity levels and configurations.

The results indicate that the absence of economies of scale in the electrochemical reactors increases
the potential for small-scale production facilities to be located close to the sources of raw materials and
where clean energy is more abundant. It was our objective to learn more about the cost parameters related
to this novel part of the process and determine how they might affect supply chain design. The current
density, which is one of the key parameters in electrochemical cost and productivity, has a significant
impact on the supply chain's costs and emissions. Increased current density can reduce the energy efficiency
of electrochemical reactors. However, the energy that is not utilized in an electrochemical reactor is
diverted into hydrogen evolution, which we did not address in this study. Therefore, accounting for
hydrogen production and exploring its potential applications, including its storage and subsequent use in
fuel cells to help power the electrochemical reactor, represent promising avenues for future research.
Ongoing experiments aim to enhance productivity and other aspects of this process. Additionally, we
currently approximate the reaction rate as constant over time, but further investigations can explore its time-
dependent behavior for more accurate modeling. It would be worthwhile to revisit our assumption about
the amount of glucose available to divert from ethanol production. Future research should take into account
the upstream portion of this supply chain in greater depth. Moreover, the deterministic approach used in

this study does not account for uncertainties in many parameters, including demand, which greatly influence
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supply chain design geographically, economically, and environmentally. Future research should be

conducted in an uncertain environment based on the findings of this study.
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