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Nonlinear wave-spin interactions in nitrogen-vacancy centers
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Nonlinear phenomena represent one of the central topics in the study of wave-matter interactions and
constitute the key blocks for various applications in optical communication, computing, sensing, and imag-
ing. In this work, we show that by employing the interactions between microwave photons and electron
spins of nitrogen-vacancy (N-V) centers, one can realize a variety of nonlinear effects, ranging from the
resonance at the sum or difference frequency of two or more waves to electromagnetically induced trans-
parency from the interference between spin transitions. We further verify the phase coherence through
two-photon Rabi-oscillation measurements. The highly sensitive optically detected N-V–center dynamics
not only provides a platform for studying magnetically induced nonlinearities but also promises novel
functionalities in quantum control and quantum sensing.
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I. INTRODUCTION

Through the mixing of multiple electromagnetic waves
[1–4], nonlinear processes provide useful mechanisms for
frequency up- and down-conversion [5–9], parametric sig-
nal amplification or generation [10–13], as well as the
creation of entangled photons or squeezed light [14–17],
the fundamental components of quantum information sys-
tems. For nonlinear interactions between waves and mat-
ter, electric dipole transitions are generally considered over
their magnetic counterparts due to their larger strengths
[18]. However, restrained by optical selection rules, spe-
cial crystals with broken inversion symmetry are usually
required for nonlinear coefficients such as the second-
order electric susceptibility to be nonvanishing [1,2]. On
the other hand, magnetic dipole transitions can possess
nonlinearities even in centrosymmetric systems due to
the inherent breaking of time-reversal symmetry. Nonlin-
ear magnetic dipole transitions, particularly nonlinear spin
transitions, have been touched upon in nuclear magnetic
resonance (NMR) and electron paramagnetic resonance
(EPR) [19–22], where more than one electromagnetic
wave source is used for exciting the resonance. However,
due to the very weak wave-spin interactions, these non-
linear signals are generally difficult to detect. To ensure
measurable resonance, very low frequencies—in the kilo-
hertz or low-megahertz range—have to be used for at least
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one of the input sources, making these measurements effec-
tively the same as the field-modulation scheme of magnetic
resonance. Therefore, a comprehensive study on multipho-
ton spin transitions that cover a broad frequency range
and that can lead to useful quantum control and sensing
protocols is highly desirable.

The nitrogen-vacancy (N-V) center, an extensively stud-
ied quantum defect in diamond, has been pursued as a
magnetometer with fine spatial resolution and high sen-
sitivity [23–28], and as a qubit for quantum information
processing [29–35]. To achieve quantum state control,
existing studies focus on linear processes by applying giga-
hertz microwaves at or close to the intrinsic resonance
frequency. Recently, quantum frequency mixing based on
sophisticated Floquet Hamiltonian engineering has been
developed for magnetic field sensing with N-V centers
[36]. The magnetic field at 150 MHz has been detected
using the difference frequency of two waves through a
spin-locked sensing protocol, under the assistance of a
third, control, signal at the original resonance frequency.
In N-V–center resonance, the detection of photons in the
visible-light region rather than those in the radio-frequency
or microwave domains greatly enhances the sensitivity
and leads to a superior platform for studying nonlin-
ear spin transitions. In this work, we demonstrate such
opportunities by carrying out a systematic study on non-
linear wave-spin interactions in N-V centers. We show
that the nonlinear resonance condition can be reached over
a broad frequency range, at the sum or difference fre-
quency of two waves, as well as with higher-order effects
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involving three, four, or more photons. Utilizing the inter-
ference between spin transitions, we further show that the
resonance can be greatly suppressed in the presence of a
probe wave and a strong control wave, leading to elec-
tromagnetically induced transparency (EIT). Finally, on
top of continuous-wave measurements, we also observe
sum-frequency Rabi oscillations, which not only verifies
the phase coherence of these multiphoton processes but
also suggests new mechanisms for quantum control and
sensing.

II. OPTICAL DETECTION OF MULTIPHOTON
SPIN TRANSITIONS

Figure 1(a) illustrates the energy levels of an N-V cen-
ter, where both the optical ground state 3A2 and excited
state 3E are spin triplets with spin sublevels of |ms = 0〉
and |ms = ±1〉, separated by ωA/(2π) = 2.87 GHz and
ωE/(2π) = 1.42 GHz, respectively, under zero external
static field [37,38]. Green light can induce the transition
from 3A2 to 3E and the ms-conserving decay from 3E to
3A2 generates photoluminescence (PL) in the region of red
light [39]. The nonradiative transition path through spin
singlet states 1A1 and 1E pumps the N-V population into
the |ms = 0〉 sublevel, which can be suppressed with the
application of a microwave at or close to the sublevel split-
ting ωA or ωE , yielding a reduction of the PL intensity
[40–42]. In this work, we will delve into optically detected
magnetic resonance (ODMR) beyond the linear response
regime and investigate spin transitions induced by mul-
tiple photons, through concurrent application of two or
more microwaves. In Figs. 1(b) and 1(c), we illustrate two
example scenarios where the sum or difference of the two
applied frequencies ω1 and ω2 matches the ground-state
transition frequency ωA. To excite magnetic resonance
in experiments, microwaves from two independent sig-
nal generators are combined through a power combiner
[Fig. 1(d)]. We have verified that under our employed
power levels, the external microwave circuit acts purely
linearly and is not the origin of frequency mixing (see
Appendix A). The microwaves are further applied onto a
lithographically defined copper microstrip on a silicon sub-
strate. Diamond particles with a diameter of approximately
1 µm and an N-V–center concentration of approximately
3.5 ppm (parts per million) are dispersed on top of the strip.
PL excited by a 532-nm green laser is filtered and collected
with a photomultiplier tube.

In Fig. 2(a), we show the change of the PL intensity
�I under driving microwaves of ω1 and ω2. To enhance
the signal-to-noise ratio, we modulate the amplitude of the
ω2 input with a frequency of 104.42 Hz and detect �I
using a lock-in amplifier. We have compared results from
this lock-in measurement with a standard unmodulated
continuous-wave measurement (see Appendix A) and we
have confirmed that these two give the consistent results
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FIG. 1. (a) The energy-level diagram of an N-V center. (b),(c)
Nonlinear spin transitions in the ground state 3A2 when the (b)
sum or (c) difference of two applied microwave frequencies ω1
and ω2 matches the transition frequency ωA. (d) A schematic
of nonlinear ODMR measurements. Microwaves from two sig-
nal generators are combined through a linear power combiner,
and applied onto a copper microstrip, exciting N-V–center res-
onance in microdiamonds on top of the strip. The top-left inset
shows an illustration of the geometrical relationship between the
microwave magnetic fields h(t) and an N-V–center spin, where
an angle of θ is formed between h(t) and the principal spin axis
(z axis).

and that the low-frequency amplitude modulation is not the
source of the observed nonlinear effects. Since the ampli-
tude modulation only acts on the ω2 input, it gives rise
to the asymmetry on the dependence of �I with respect
to ω1,2 in Fig. 2(a): resonance signals only show up at
ω2 = ωA,E but not at ω1 = ωA,E , in contrast to the unmod-
ulated measurement results. The large line widths associ-
ated with the ω2 = ωA,E resonance dips reflect the applied
high microwave power and low laser pump power (about
0.6 mW) [39,44]. Besides the standard linear resonance
dips, in Fig. 2(a) additional resonance signals emerge when
ω1,2 satisfy the relationship of ω2 + ω1 = ωA (labeled as 1)
or ±(ω2 − ω1) = ωA (labeled as 2 and 3). As an example,
we show the spectrum when ω1/2π is fixed at 0.6 GHz and
ω2 is swept [Fig. 2(b)] and compare it with the baseline
when the power of the ω1 input is set to zero [Fig. 2(c)].
In Fig. 2(b), the depths of the ω2 + ω1 = ωA and ω2 − ω1
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FIG. 2. (a) The change of the PL intensity �I under driving
microwaves of ω1 and ω2 with input powers P1 = P2 = 13 mW.
Nonlinear resonance signals emerge at (1) ω2 + ω1 = ωA, (2)
ω2 − ω1 = ωA, (3) ω1 − ω2 = ωA, (4) 3ω2 = ωA, (5) 4ω2 = ωA,
(6) 2ω2 − ω1 = ωA, and (7) 2ω1 − ω2 = ωA. (b) ω2 scan in (a)
when ω1/(2π) = 0.6 GHz. (c) The ω2 scan when P1 = 0, serv-
ing as the baseline of the measurement. The splitting of the linear
resonance dip at ω2 = ωA (red arrow) is a result of amplitude
modulation at high applied microwave powers, which disappears
in unmodulated results (see Appendix A). The side dips denoted
by green arrows originate from the interactions between N-V
centers and P1 centers [43].

= ωA dips reach around 50% and 20% of that of the ω2 =
ωA dip. The two nonlinear resonance dips can be easily
detected even when ω1,2 are individually far away from ωA.

III. THEORETICAL MODEL FOR
MULTIPHOTON SPIN TRANSITIONS

To understand the origin of magnetic resonance occur-
ring at the sum or difference frequency, we next model the
N-V spin transitions driven by multiple microwave pho-
tons. Here, we consider, e.g., the spin transition between

|ms = 0〉 and |ms = +1〉 in 3A2. Other transitions, such
as that between |ms = 0〉 and |ms = −1〉 and those in 3E,
can be treated similarly. We write the Hamiltonian of the
spin-photon system as

H(t) = �ωA

2
σz + γμ0

�

2
σ · h(t), (1)

where � is the reduced Planck constant, σ = (σx, σy , σz)

are Pauli matrices, γ is the gyromagnetic ratio of
the electron, μ0 is the vacuum permeability, and
h(t) = ∑

j =1,2 hj (t) are microwave fields with the j th
frequency component hj (t). In experiments, the two
microwave fields are launched by the same microstrip; thus
h1(t) and h2(t) are collinear and form an angle θ with
the principal axis of a given N-V spin [see the top-left
inset of Fig. 1(d)], hj (t) = hj (sin θ x̂ + cos θ ẑ) cos(ωj t +
ϕj ), where hj , ωj , and ϕj are the amplitude, frequency, and
phase of the j th field (j = 1, 2).

Solving the quantum master equations iteratively (see
the derivation details in Appendixes B and C), we obtain
the change of the PL intensity for an ensemble of spins
when the sum or difference of ω1,2 is close to the resonance
condition of ω2 ± ω1 = ωA:

�I = −η|χ(2)
xxz (ω2 ± ω1, ω1, ω2)|2h2

1h2
2. (2)

Here, η = |�I |max�2,A/(16γ 2�2�p) is a factor depending
on the maximum PL intensity |�I |max, the effective trans-
verse relaxation rate �2,A in 3A2, as well as the laser pump
rate �p . χ(2)

xxz , defined through Mx = χ(2)
xxz hxhz, is an element

in the second-order magnetic susceptibility tensor for a sin-
gle spin, where Mx is the x-axis component of the magnetic
moment and hx(z) is the x(z)-axis component of h(t). Close
to the resonance, we have

χ(2)
xxz (ω2 ± ω1, ω1, ω2) = ∓ �pγ

3μ2
0�ωA

4�1,A(�±,A − i�2,A)ω1ω2
,

(3)

where the + (−) sign is chosen when the resonance con-
dition is satisfied by the sum (difference) frequency, �1,A
is the effective longitudinal relaxation rate in 3A2, and
�±,A = ω2 ± ω1 − ωA denotes the frequency detuning. We
can infer important information on the two-photon spin
transition from χ(2)

xxz . First, χ(2)
xxz remains finite irrespec-

tive of the inversion symmetry of the atom, in contrast
to the second-order electric susceptibility, which vanishes
for atoms with inversion symmetry [1,2]. Second, the fact
that the magnetic moment resonates at the sum or differ-
ence frequency of the input sources reflects the energy
conservation. Third, angular-momentum conservation is
also respected in the two-photon spin transition described
by χ(2)

xxz : the perpendicular microwave field hx comprises
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FIG. 3. (a) The sum-frequency resonance under different input microwave powers (P1 = P2 is maintained), when ω1/2π = 0.6 GHz.
The neighboring curves and data are shifted by −0.5 for clear visualization. (b) The contrast C of the sum-frequency resonance as a
function of P1 when P2 is fixed. (c) The C value of the sum-frequency resonance as a function of P2 when P1 is fixed. (d) The C value
of the sum-frequency resonance as a function of P1P2. (e) The C value of the sum- or difference-frequency resonance as a function of
ω2 (P1 = P2 = 9 mW). The dashed lines in (b)–(e) represent fitting with Eq. (4) using the same parameter η. (f) The C value of the
three-photon resonance at 2ω2 − ω1 = ωA as a function of P2 when P1 is fixed. (g) The C value of the 2ω2 − ω1 = ωA resonance as
a function of P1P2

2. (h) The C value of the 2ω2 − ω1 = ωA resonance as a function of ω2 (P1 = P2 = 11 mW). The dashed lines in
(f)–(h) represent fitting with χ(3), the expression for which is derived in Appendix D.

circularly polarized photons σ±, each carrying an angu-
lar momentum of ±�, while the parallel component hz
comprises π photons that carry zero angular momentum
[22]. Therefore, the transition from |ms = 0〉 to |ms = ±1〉
via σ± + π leaves the total angular momentum of the
spin-photon system unchanged.

We next compare our measurement results quantita-
tively with the proposed theory. Equation (2) represents a
Lorentzian with a line width of �2,A and a contrast of

C = |�I |max�pω
2
Aγ 4μ4

0h2
1h2

2

256�2
1,A�2,Aω2

1ω
2
2

. (4)

In Fig. 3(a), we show a series of resonance curves under
varying input microwave powers P1,2 when ω1/(2π) is
fixed at 0.6 GHz and ω2 is swept around ωA − ω1. The
line shape in Eq. (2) (dashed lines) agrees well with the
experimental results (solid circles). The resonance contrast
C obtained under different combinations of P1,2 is sum-
marized in Figs. 3(b)–3(d), in which the theoretical curves
from Eq. (4) (dashed lines) confirm the linear relationship
between C and P1P2. The same value of η, the only fitting
parameter, is used across all the curves. The influence from
frequencies of the two applied microwaves is presented in
Fig. 3(e), where ω1,2 are varied simultaneously and their
sum or difference is maintained at ω2 ± ω1 = ωA. C has a
frequency dependence of ω−2

2 (ωA − ω2)
−2, consistent with

Eq. (4). The fitting curves (dashed lines) use the same value
of η as in Figs. 3(b)–3(d).

Besides the two-photon resonance investigated above,
in Fig. 2(a) we observe additional bright lines (labeled
from 4 to 7), which can be traced to magnetic resonance
excited by even higher-order processes. Our examination
shows that signals of 4, 6, and 7 satisfy the frequency
relationship of (4) 3ω2 = ωA, (6) 2ω2 − ω1 = ωA, and
(7) 2ω1 − ω2 = ωA, corresponding to three-photon pro-
cesses. The horizontal line with a resonance frequency
of 0.72 GHz (labeled as 5) corresponds to four-photon
resonance with 4ω2 = ωA. These higher-order processes
can be well described with the theoretical framework that
we have developed, by calculating higher-order magnetic
susceptibilities. For example, in Figs. 3(f) and 3(g) we
summarize the dependence on the input powers for the
three-photon resonance at 2ω2 − ω1 = ωA. As indicated
by χ(3) (see Appendix D), the contrast of this resonance
has a quadratic dependence on P2 and a linear depen-
dence on P1. The influence from frequencies of the two
applied microwaves is presented in Fig. 3(h), which also
fits well with the theory. Finally, we note that the 2ω2 = ωA
line, as a special case of the sum-frequency resonance,
falls onto the broad ω2 = ωE resonance dip and is difficult
to distinguish due to the small difference between ωA/2
and ωE .

While the results in Figs. 2 and 3 correspond to the
scenario with zero external static field, we have verified
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that the nonlinear processes remain in the presence of a
finite static field that lifts the degeneracy in |ms = ±1〉 (see
Appendix A).

IV. ELECTROMAGNETICALLY INDUCED
TRANSPARENCY IN N-V CENTERS

In Fig. 2(a), on top of the series of the bright reso-
nance lines, we observe a dark line satisfying ω1 = ω2
within the broad resonance dip at ω2 = ωE . This feature
of magnetic resonance suppression under zero detuning
of two waves is very similar to the electromagnetically
induced transparency (EIT) phenomenon studied in non-
linear optics [45], where in the presence of a strong pump
wave, the interaction between the probe wave and the
matter is minimized due to interference effects. This signal-
suppression phenomenon has also been reported before
under the concept of coherent population oscillation or
trapping, for nuclear and electron spin systems [46,47].
Treating the ω1 signal as the pump and the modulated ω2
signal as the probe, we examine the resonance results with
a weaker probe power P2 while maintaining a high pump
power P1 and find that the transparency window still exists
[Fig. 4(a)]. Examples of ω2 scans are presented in Figs.
4(c) and 4(d). On the other hand, the transparency win-
dow disappears when a low pump power P1 is used (see
Appendix E). The magnetic resonance suppression under
ω1 = ω2 can be explained by considering the destruc-
tive interference between the |ms = 0〉 ω2−→ |ms = ±1〉 spin
transition associated with a first-order susceptibility and
the |ms = 0〉 ω2−→ |ms = ±1〉 −ω1−−→|ms = 0〉 ω1−→ |ms = ±1〉
spin transition associated with a third-order susceptibility
[Fig. 4(b)]. Mathematically, when ω1 ≈ ω2 and both of
them are close to ωE , we have (see the derivation details
in Appendix E)

�I = iA
ω2 − ωE − i�2,E − B

ω2−ω1−i�1,E

+ H.c., (5)

where A = |�I |max�pγ
2μ2

0h2
2/(32�2

1,E), B = γ 2μ2
0h2

1/4,
and �1(2),E is the effective longitudinal(transverse)

relaxation rate in 3E. In Eq. (5), we see that the peak
value of |�I | is suppressed at zero detuning ω2 − ω1 = 0
and that the EIT effect is most significant when �2,E >

γμ0h1/2 > �1,E , which is satisfied in the spin transitions
in 3E. Comparatively, the relatively smaller �2,A makes the
EIT feature in 3A2 less noticeable.

V. COHERENT CONTROL OF N-V SPIN STATE
THROUGH MULTIPLE MICROWAVE PHOTONS

Up to now, the continuous-wave measurements as
described above have allowed us to capture magnetic res-
onance signals at different orders for a broad frequency
range. In the following, we carry out Rabi-oscillation
experiments to evaluate the phase coherence of the non-
linear multiphoton spin transitions, which is of paramount
significance in developing effective quantum control and
sensing protocols. The experimental schematic is shown
in Fig. 5(a). A single-crystal diamond with a diameter of
15 µm is placed at the center of a copper microstrip ring.
The inner and outer diameters of the ring are 60 µm and
100 µm, respectively, such that the generated microwave
fields are nearly constant within the focal spot of the objec-
tive lens, the diameter of which is <1 µm. The switch
to an individual diamond and a ring-shaped microstrip is
to minimize the inhomogeneity in the detected N-V cen-
ters. An arbitrary waveform generator (AWG) is used to
program the pulse sequences for the measurements. CH2
and CH3 (where CH means channel) modulate the laser
and two microwave sources, respectively, where CH1 pro-
vides a low-frequency (200 Hz) reference signal for a
lock-in amplifier. Figure 5(b) shows the pulse sequences
for the lock-in amplifier (blue), the laser (green), and two
microwave sources (violet). In our experiments, τlaser is
set at 5 µs, τmw is varied between 0.1 µs and 2 µs, and
τgap is fixed at 1 µs. The lock-in reference signal (CH1)
is fixed at 200 Hz with τref = 2.5 ms. Within each ON half
period of CH1, the laser and microwave pulses are repeated
N = 250 times. Within each OFF half period of CH1, only
the laser pulse is repeated with the microwave pulse always
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FIG. 4. A demonstration of the EIT effect. (a) �I under ω1 and ω2 inputs when ω1,2 are close to ωE . The microwave powers are
P1 = 13 mW, P2 = 5 mW. (b) Destructive interference between the spin transition with ω2 absorption (associated with χ(1); see
Appendix E) and that with ω2 absorption, ω1 emission, ω1 absorption (associated with χ(3)). (c),(d) �I as a function of ω2 when
ω1/(2π) is fixed at (c) 1.4 GHz and (d) 1.46 GHz. The dashed lines represent fitting with Eq. (5).
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FIG. 5. (a) The experimental schematic for the two-photon Rabi-oscillation measurements. A single-crystal diamond with a diam-
eter of 15 µm is placed at the center of a copper microstrip ring. The inner and outer diameters of the ring are 60 µm and 100 µm,
respectively. CH2 and CH3 of the AWG modulate the laser and two microwave sources, respectively, where CH1 provides a low-
frequency (200-Hz) reference signal for the lock-in amplifier. (b) The pulse sequences for lock-in amplifier (blue), the laser (green),
and the two microwave sources (violet). (c) The ODMR spectrum in the presence of an external static field of 300 Oe under a ω2
microwave source only, with P2 = 13 mW. The leftmost resonance at ωA1/(2π) = 2.08 GHz is selected for Rabi-oscillation measure-
ments. (d) Standard Rabi-oscillation results under a single source ω2 = ωA1 with P2 = 200 mW. The single-photon Rabi frequency
is 14.5 MHz. (e) The Rabi-oscillation results when simultaneously applying ω1/(2π) = 60 MHz, P1 = 13 mW and ω2 = ωA1 − ω1,
P2 = 200 mW. The two-photon Rabi frequency is 2.03 MHz. In (d) and (e), the experimental data (solid circles) are fitted with Eq. (6)
(dashed lines).

OFF. This lock-in-based pulse method avoids the neces-
sity of high-frequency electronics for data acquisition and
possesses high sensitivity [48].

In Fig. 5(c), we show the single-frequency ODMR spec-
trum under an external static field of Hext = 300 Oe. We
see eight resonance dips, corresponding to four different
N-V–axis orientations and two spin transitions |ms = 0〉 →
|ms = ±1〉 in the N-V ground state 3A2. The leftmost dip,
with a resonance frequency of ωA1/(2π) = 2.08 GHz, is
selected for oscillation measurements. By applying a sin-
gle microwave source ω2 at the exact resonance frequency
and varying its pulse width, we summarize the oscillation
results in Fig. 5(d), which are fitted with

�I = A sin (2π fRτmw + φ) exp
(

−τmw

T∗
2

)

+ Bτmw + C,

(6)

where A is the Rabi-oscillation amplitude, B is a linear
coefficient that includes the heating caused shift during
measurement, C is the readout at the steady state, fR is
the Rabi frequency, φ is the phase offset, and T∗

2 is the
transverse relaxation time. The single-photon Rabi fre-
quency f (1)

R is determined to be 14.5 MHz. We next realize
two-photon Rabi oscillations by applying both microwave
sources ω1/(2π) = 60 MHz and ω2/(2π) = 2.02 GHz,
with synchronous pulse modulation. We have verified that
the ω1 or ω2 source at these frequencies alone does not
induce detectable oscillation signals. However, as they
satisfy the sum-frequency resonance condition, their con-
current application leads to clear oscillations, as shown
in Fig. 5(e), with a Rabi frequency of f (2)

R = 2.03 MHz.
The phase coherence demonstrated by our Rabi-oscillation
measurements hopefully paves the way for the use of mul-
tiphoton spin transitions in practical quantum control and
sensing schemes.
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VI. CONCLUSIONS

In conclusion, we have conducted a systematic study on
the nonlinear interactions between electromagnetic waves
and electron spins of N-V centers. With the high sensitivity
of N-V–center resonance, we have revealed various non-
linear parametric processes over a broad frequency range,
ranging from high-order magnetic resonance to EIT. We
have developed a theoretical framework based on pertur-
bation theory to account for these nonlinear phenomena
quantitatively. In addition, we have verified the phase
coherence of the multiphoton spin transitions through
Rabi-oscillation measurements, which hopefully paves the
way toward future applications in quantum control and
sensing. Furthermore, leveraging the sum or difference fre-
quency resonance, one can make a nanoscale spectrometer
out of N-V centers to extract the spectrum information of
oscillating magnetic fields such as those from spin-wave
excitations in magnetic materials [49–51], extending their
well-established role as a magnetometer.
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APPENDIX A: EXPERIMENTAL METHOD

1. Diamond samples

The samples used for continuous-wave measurements
are high-pressure and high-temperature (HPHT) microdi-
amonds with a diameter of 1 µm and an N-V concen-
tration of 3.5 ppm (MDNV1umHi, Adámas Nanotech-
nologies). The samples used for the Rabi-oscillation mea-
surements are 15-µm diamond particles from the same
company, with the same N-V concentration and growth
method (MDNV15umHi). The continuous-wave measure-
ments have been carried out on a cluster of diamond
particles, while the Rabi oscillations have been done on
an individual diamond.

2. Device fabrication

For continuous-wave measurements, through standard
photolithography followed by ion milling, we pattern a
Cu(100 nm)/Pt(5 nm) stack on a silicon substrate into a
straight microstrip with a length and width of 100 µm
and 20 µm, respectively, which is further wire bonded
onto a home-made printed circuit board (PCB) with an
SubMiniature version A (SMA) connector [Fig. 6(a)]. Dia-
monds with a 1-µm diameter are dispersed on top of the
microstrip. By calibrating the microwave signal, we deter-
mine that when the input power is 10 mW at the input
terminal of the PCB, the microwave field is approximately

(a)

(b)

FIG. 6. (a) A photograph of the device wire bonded to a
home-made PCB. The microwaves are fed into the waveguide
via an SMA connector. (b) The spectrum of the two-frequency
microwaves after passing through the power combiner, when
ω1/(2π) = 0.6 GHz and ω2/(2π) = 2.27 GHz. Both the output
powers in the signal generators are set as 17 dBm.

9 Oe at the microstrip surface. For the pulsed measure-
ments on Rabi oscillations, a Cu(500 nm)/Pt(10 nm) stack
on a sapphire substrate is patterned into a microstrip ring
with an inner and outer diameter of 60 µm and 100 µm,
respectively, which is also wire bonded onto the same
PCB. A single-crystal 15-µm diamond particle is placed
at the center of the ring, to minimize the inhomogeneity
of oscillating fields generated by microwaves. When the
input microwave power is 200 mW, the field magnitude
at the center of the ring is calibrated to be approximately
8 Oe.

3. Continuous-wave ODMR measurements

The setup for continuous-wave ODMR measurements
depicted in Fig. 1(d) mainly consists of a home-built
confocal microscope. To excite magnetic resonance in N-
V centers, continuous-wave signals are generated from
two independent microwave signal generators (Anritsu
68369A and Anritsu 68347B) and then combined through
a microwave power combiner (CentricRF CS6072). Green
light from a 532-nm DPSS laser is focused on the sample
via a 1.25-NA objective lens and illuminates N-V cen-
ters in an ensemble of microdiamonds. The laser power
is 0.6 mW, measured on the sample surface. We inten-
tionally choose a low-power laser diode as the excitation
light source, to enhance the ratio of resonance signals from
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high-order effects to those from linear effects by forcing
the linear signals to approach saturation under limited opti-
cal pumping [39,44]. The PL in the region of 600–800 nm
from N-V centers is filtered and collected with a photo-
multiplier tube. To enhance the signal-to-noise ratio, the
amplitude of one microwave source is modulated with a
frequency of 104.42 Hz and the change of the PL inten-
sity is detected with a lock-in amplifier (EG&G 7260).
We have varied the position of the illuminated N-V center
ensemble and found no qualitative difference in the ODMR
results.

4. Linearity verification of the circuit

With a spectrum analyzer (Anritsu MS8609A), we ver-
ify that the external microwave circuit acts purely linearly
and is not the origin of frequency mixing. In Fig. 6(b),
we show the spectrum of microwaves after they pass
through the power combiner, when ω1/(2π) = 0.6 GHz
and ω2/(2π) = 2.27 GHz. Both the output powers in the
signal generators are set as 17 dBm. Peaks only appear
at ω1 and ω2, verifying the linearity of the external
microwave circuit.

5. Comparison with unmodulated ODMR
measurements

In Fig. 7, we show the PL intensity I under driving
microwaves of ω1 and ω2, when we conduct a standard
unmodulated continuous-wave measurement with an Agi-
lent 34401A multimeter. Compared to Fig. 2(a), where
the amplitude of the ω2 microwave is modulated with a
low frequency, the unmodulated measurement has a much
lower signal-to-noise ratio but we can still clearly identify
the resonance at ω2 + ω1 = ωA. The difference frequency
resonances at ±(ω2 − ω1) = ωA are buried in the noisy
background to some degree but we can still distinguish
them with extra attention. The feature of EIT, i.e., the dark
line satisfying ω1 = ω2 when ω1,2 are both close to ωE , is
also observed in the unmodulated measurement. In conclu-
sion, the unmodulated and modulated measurements show
consistency in demonstrating the resonance at the sum or
difference frequency, as well as the EIT effect. The modu-
lated one gives a much higher signal-to-noise ratio and is
therefore applied in the main experiment.

6. Field-dependent ODMR measurements

The Zeeman splitting from a finite external static field
Hext (generated by an electromagnet in our experiments)
will lift the degeneracy and result in distinct resonance fre-
quencies for transitions from |ms = 0〉 to |ms = ±1〉. In
Figs. 8(a)–8(c), we show �I as a function of Hext when
ω2 is swept and ω1/(2π) is fixed at 0.4, 0.6, and 0.8 GHz,
respectively. Due to random orientations of the N-V–center
principle axes with respect to the external field, the split-
ting in |ms = ±1〉 manifests a cone-shaped structure in

I
(arb. units)

FIG. 7. The results of standard unmodulated continuous-wave
ODMR measurements under driving microwaves of ω1 and ω2.
The input microwave powers are P1 = P2 = 13 mW.

the resonance spectrum, as observed near ω2 = ωA,E . In a
similar vein, the nonlinear resonance near ω2 ± ω1 = ωA
also exhibits this conical feature, with edges separated by
2γμ0Hext.

7. Rabi-oscillation measurements

The setup for two-photon Rabi-oscillation measure-
ments is depicted in Fig. 4(a). We use an AWG (Feel-
elec FY8300) to modulate the laser and two microwave
sources. The microwave sources and the power combiner
are the same as the ones we use for continuous-wave mea-
surements. The acousto-optic modulator that we use is
the Isomet Model 1205C-1 with a driver of Model 532C.
A permanent magnet is used to generate a static field
of approximately 300 Oe at the position of the diamond
sample, which helps us select one specific resonance fre-
quency. The Rabi-oscillation data are obtained by record-
ing the lock-in readout of the PL signals for varying pulse
widths of microwaves.

APPENDIX B: SOLUTION OF THE DENSITY
MATRIX FOR THE N-V–CENTER SPIN UNDER

TWO DRIVING MICROWAVES

When the external static field is zero, the spin sub-
levels |ms = ±1〉 in the N-V optical ground state 3A2
or the excited state 3E are degenerate. In what follows,
we derive the microwave photon-induced spin transi-
tions within 3A2 or 3E. Throughout this appendix, we
discuss the general case, in which ωs represents the tran-
sition frequency between |ms = ±1〉 and |ms = 0〉 either
in the ground state 3A2 or in the excited state 3E. Due
to the symmetry between the |ms = 0〉 ↔ |ms = +1〉,
|ms = 0〉 ↔ |ms = −1〉 transitions and their negligible
mixing, we can focus on the |ms = 0〉 ↔ |ms = +1〉 tran-
sition and consider the two-level spin system on the basis
of |0〉 = |ms = 0〉 and |1〉 = |ms = +1〉. The intrinsic spin
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(a) (b) (c)�I
(arb. units)

�I
(arb. units)

�I
(arb. units)

FIG. 8. �I as a function of Hext when ω2 is swept and ω1/(2π) is fixed at (a) 0.4 GHz, (b) 0.6 GHz, and (c) 0.8 GHz. Both the
linear resonance dips at ω2 = ωA,E and the nonlinear dips at ω2 ± ω1 = ωA manifest a cone-shaped structure with edges separated by
2γμ0Hext.

Hamiltonian is

H0 = �ωs

2
σz, (B1)

with reduced Planck constant � and Pauli matrices σ =
(σx, σy , σz). We apply microwave fields

h(t) =
∑

j =1,2

hj (t) =
∑

j =1,2

hj (sin θ x̂ + cos θ ẑ) cos(ωj t + ϕj ),

(B2)

where hj (t) is the j th frequency component, hj , ωj , and ϕj
are the amplitude, frequency, and phase of hj (t), and θ is
the angle between hj (t) and the principal spin axis (z axis)
of the N-V center (j = 1, 2). The interaction Hamiltonian
between the spin and microwave photons is given by

V(t) = γμ0
�

2
σ · h(t), (B3)

with electron gyromagnetic ratio γ and vacuum permeabil-
ity μ0. The total Hamiltonian is therefore given by

H(t) = H0 + V(t). (B4)

The density matrix ρ = ∑
m,n=0,1 ρmn |m〉 〈n| for the spin

can be determined by solving the quantum master equation
in the Lindblad form [39]:

∂ρ

∂t
= i

�
[ρ, H ] +

∑

n

(

LnρL†
n−

1
2

L†
nLnρ − 1

2
ρL†

nLn

)

,

(B5)

where Ln is the operator describing a nonunitary time evo-
lution due to dissipative interactions between the spin and
the environment. The longitudinal spin relaxation with a

rate of �0
1 and the transverse spin relaxation with a rate of

�0
2 can be described by

L1 = (�0
1/2)1/2σx,

L2 = (�0
2/2)1/2σz.

(B6)

Due to the photon bath of the laser pumping, |1〉 is opti-
cally pumped into |0〉 with a pump rate of �p , which can
be described by

L3 = �1/2
p |0〉 〈1| . (B7)

Combining Eqs. (B1)–(B7), we obtain equations of motion
for elements in the density matrix

∂ρ11

∂t
= −

(
�0

1

2
+ �p

)

ρ11 + �0
1

2
ρ00 + i

2
γμ0hx(ρ01 − ρ10),

∂ρ01

∂t
= (iωs − �2)ρ01 − iγμ0hzρ01 + i

2
γμ0hx(ρ11 − ρ00),

(B8)

where hx = ∑
j =1,2 hj sin θ cos(ωj t + ϕj ) and hz = ∑

j =1,2
hj cos θ cos(ωj t + ϕj ) are the x-axis (transverse) and z-axis
(longitudinal) components of h(t) and �2 = �0

2 + �p/2 is
the effective transverse spin relaxation rate. Other two ele-
ments in ρ are determined by the constraints of ρ10 = ρ∗

01
and ρ00 + ρ11 = 1. We treat V(t) as a perturbation to H0
and solve for ρ = ∑∞

n=0 ρ(n), where ρ(n) is in the nth order
of V(t) and is the nth-order correction to the zero-order
solution ρ(0) given by ρ

(0)

11 = �0
1/(2�1) with the effective

longitudinal spin relaxation rate �1 = �0
1 + �p and ρ

(0)

01 =
0. Specifically, we solve for ρ(n) (n ≥ 1) using iterative
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equations

∂ρ
(n)

11

∂t
= −�1ρ

(n)

11 + i
2
γμ0hx

(
ρ

(n−1)

01 − ρ
(n−1)

10

)
,

∂ρ
(n)

01

∂t
= (iωs − �2)ρ

(n)

01 − iγμ0hzρ
(n−1)

01 + i
2
γμ0hx

(
ρ

(n−1)

11 − ρ
(n−1)

00

)
. (B9)

The first-order solution of ρ is

ρ
(1)

11 = 0,

ρ
(1)

01 = −�pγμ0

2�1

∑

ωm

h̃x(ωm)eiωmt

ωm − ωs − i�2
.

(B10)

Here, h̃x(ω) and h̃z(ω) are the Fourier transforms of hx and hz, which are only finite at h̃x(±ωj ) = hj sin θe±iϕj /2
and h̃z(±ωj ) = hj cos θe±iϕj /2 where j = 1, 2. We define the first-order susceptibility χ(1)

xx (ωj , ωj ) through M̃x(ωj ) =
χ(1)

xx (ωj , ωj )h̃x(ωj ), where Mx = Tr(ρ · γ (�/2)σx) = 1
2γ�(ρ01 + ρ10) is the x-axis component of magnetic moment. It

can be expressed as

χ(1)
xx (ωj , ωj ) ≈ − �pγ

2μ0�

4�1(ωj − ωs − i�2)
(B11)

when |ωj − ωs| � |ωj + ωs| is satisfied (j = 1, 2).
The second-order solution of ρ is

ρ
(2)

11 = −�pγ
2μ2

0

4�1

∑

ωm,ωn

h̃x(ωm)h̃x(ωn)ei(ωm+ωn)t

(ωm + ωn − i�1)(ωm − ωs − i�2)
+ H.c.,

ρ
(2)

01 = �pγ
2μ2

0

2�1

∑

ωm,ωn

h̃x(ωm)h̃z(ωn)ei(ωm+ωn)t

(ωm + ωn − ωs − i�2)(ωm − ωs − i�2)
.

(B12)

We define χ(2)
xxz (ω2 ± ω1, ω1, ω2) through M̃x(ω2 ± ω1) = χ(2)

xxz (ω2 ± ω1, ω1, ω2)h̃x(ω1)h̃z(ω2) and obtain

χ(2)
xxz (ω2 ± ω1, ω1, ω2) ≈ ∓ �pγ

3μ2
0�ωs

4�1(ω2 ± ω1 − ωs − i�2)ω1ω2
, (B13)

when |ω2 ± ω1 − ωs| � |ω2 ± ω1 + ωs| and ω1,2 � �2 are satisfied. The third-order solution of ρ is

ρ
(3)

11 = �pγ
3μ3

0

4�1

∑

ωm,ωn,ωk

h̃x(ωm)h̃z(ωn)h̃x(ωk)ei(ωm+ωn+ωk)t

(ωm + ωn − ωs − i�2)(ωm − ωs − i�2)(ωm + ωn + ωk − i�1)
+ H.c.,

ρ
(3)

01 = −�pγ
3μ3

0

4�1

∑

ωm,ωn,ωk

h̃x(ωm)h̃x(ωn)h̃x(ωk)ei(ωm+ωn+ωk)t

(ωm + ωn − i�1)(ωm + ωn + ωk − ωs − i�2)

(
1

ωm − ωs − i�2
+ 1

ωm + ωs − i�2

)

− �pγ
3μ3

0

2�1

∑

ωm,ωn,ωk

h̃x(ωm)h̃z(ωn)h̃z(ωk)ei(ωm+ωn+ωk)t

(ωm + ωn − ωs − i�2)(ωm − ωs − i�2)(ωm + ωn + ωk − ωs − i�2)
. (B14)

We define χ(3)
xxxx(ω2, ω2, −ω1, ω1) through M̃x(ω2) = χ(3)

xxxx(ω2, ω2, −ω1, ω1)h̃x(ω2)h̃x(−ω1)h̃x(ω1) and obtain

χ(3)
xxxx(ω2, ω2, −ω1, ω1) ≈ iγ 4μ3

0��p�2

4�1(ω2 − ω1 − i�1)(ω2 − ωs − i�2)2(−ω1 + ωs − i�2)
, (B15)
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when |ω1,2 − ωs| � |ω1,2 + ωs| and |ω1 − ω2| � �2 are satisfied. The fourth-order solution of ρ
(4)

11 is

ρ
(4)

11 = −�pγ
4μ4

0

8�1

∑

ωm,ωn,ωk ,ωl

[
h̃x(ωm)h̃x(ωn)h̃x(ωk)h̃x(ωl)ei(ωm+ωn+ωk+ωl)t

(ωm + ωn − i�1)(ωm − ωs − i�2)(ωm + ωn + ωk − ωs − i�2)(ωm + ωn + ωk + ωl − i�1)
+ H.c.

]

− �pγ
4μ4

0

8�1

∑

ωm,ωn,ωk ,ωl

[
h̃x(ωm)h̃x(ωn)h̃x(ωk)h̃x(ωl)ei(ωm+ωn+ωk+ωl)t

(ωm + ωn − i�1)(ωm + ωs − i�2)(ωm + ωn + ωk − ωs − i�2)(ωm + ωn + ωk + ωl − i�1)
+ H.c.

]

− �pγ
4μ4

0

4�1

∑

ωm,ωn,ωk ,ωl

[
h̃x(ωm)h̃z(ωn)h̃z(ωk)h̃x(ωl)ei(ωm+ωn+ωk+ωl)t

(ωm + ωn − ωs − i�2)(ωm − ωs − i�2)(ωm + ωn + ωk −ωs − i�2)(ωm +ωn + ωk + ωl − i�1)
+ H.c.

]

.

(B16)

APPENDIX C: ORIGIN OF RESONANCE AT THE
SUM OR DIFFERENCE FREQUENCY OF TWO

DRIVING MICROWAVES

The PL intensity is given by I = I0(1 − α 〈ρ11〉), where
〈ρ11〉 is the steady-state solution of ρ11, I0 is the PL inten-
sity in the case of full spin initialization (i.e., 〈ρ11〉 = 0),
and α is a phenomenological parameter to account for
the difference in the contribution of the |ms = 0〉 popula-
tion and that of the |ms = ±1〉 population to PL intensity
[44]. We note that the fast-oscillating terms of ρ11 will not
contribute to the PL intensity I .

For standard linear magnetic resonance, the nonoscillat-
ing part in ρ

(2)

11 in Eq. (B12) is given by

〈ρ(2)

11 〉 ≈ − μ0

i��1

∑

j =1,2

|h̃x(ωj )|2χ(1)
xx (ωj , ωj ) + H.c.

= γ 2μ2
0�p�2 sin2 θ

8�2
1

∑

j =1,2

h2
j

(ωj − ωs)2 + �2
2

, (C1)

when |ω1,2 − ωs| � |ω1,2 + ωs| are satisfied. Equation
(C1) demonstrates the commonly observed resonance
under a single microwave frequency ω1 or ω2 close to ωs.

Next we consider nonlinear two-photon magnetic reso-
nance. The third term on the right-hand side of Eq. (B16)
gives rise to the observed resonance when the sum or dif-
ference frequency of ω1 and ω2 matches ωA. When ω1,2 are
individually far away from ωA but their sum or difference is

around the resonance condition of ω2 ± ω1 = ωA, we have

〈ρ(4)

11 〉 ≈ |χ(2)
xxz (ω2 ± ω1, ω1, ω2)|2h2

1h2
2 sin2(2θ)�2,A

8γ 2�2�p
,

(C2)

where χ(2)
xxz is in the expression of Eq. (B13), with ωs, �1,

�2 replaced by ωA, �1,A, �2,A, and we have utilized the
approximations of ω2 ± ω1 ≈ ωA and ω1,2 � �2,A. After
averaging θ over [0, π ] (note that the detected N-V centers
in the ensemble have randomly oriented principal axes),
the change of the PL intensity compared to that without
microwaves, defined as �I = I0 − I0(1 − α 〈ρ(0)

11 〉), can be
expressed as

�I ≈ −|�I |max 〈ρ(4)

11 〉
= −η|χ(2)

xxz (ω2 ± ω1, ω1, ω2)|2h2
1h2

2, (C3)

where |�I |max = I0α is the difference of the PL intensity
between the case of full spin initialization with 〈ρ11〉 =
0 and the case of full spin inversion with 〈ρ11〉 = 1
(|�I |max = I0αε with modulation depth ε if we consider
amplitude-modulated measurements) and

η = |�I |max�2,A

16γ 2�2�p
(C4)

is a constant factor. We see that �I in Eq. (C3) is a
Lorentzian with a line width of �2,A and a contrast of

C = |�I |max�pω
2
Aγ 4μ4

0h2
1h2

2

256�2
1,A�2,Aω2

1ω
2
2

. (C5)
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Since �2,E is much larger than �2,A, as verified by the
broad resonance dip at ω2 = ωE [see Figs. 2(a) and 7],
the resonance at the sum or difference frequency of ω1,2
is significant in 3A2 but not observed in 3E.

Up to now, the line width of the sum or difference fre-
quency resonance, i.e., the effective transverse spin relax-
ation rate, has been determined to be �2,A = �0

2,A + �p/2
for a single N-V center or an ensemble of totally identi-
cal N-V centers. In reality, however, N-V centers in the
ensemble are different, since they are situated in varying
local environments, which leads to inhomogeneous broad-
ening. We can model this by assuming that the transition
frequency ωA is distributed based on the probability dis-
tribution function p(ωA). Then, the detected change of the
PL intensity averaged on the ensemble is 〈�I〉 = ∫ ∞

0 �I ·
p(ωA)dωA, where �I is given by Eq. (C3). Typically, it
is assumed that p(ωA) is Gaussian [52] and that 〈�I〉 is
in the Voigt line shape, the line width of which can be

calculated by some complex error functions. Here, we sim-
ply assume that p(ωA) is a Lorentzian, with a line width of
�inh. In this case, 〈�I〉 is also a Lorentzian, with a total line
width of �2,A = �0

2,A + �p/2 + �inh. Since �I around the
resonance condition in our experiment is almost a perfect
Lorentzian [see Fig. 3(a)], this assumption is reasonable.

APPENDIX D: ANALYSIS ON HIGHER-ORDER
RESONANCE DIPS

In Fig. 2(a), we observe additional bright lines (labeled
from 4 to 7), which can be traced to magnetic resonance
excited by even higher-order processes. Here, to examine
whether our theory generally applies to higher-order reso-
nance dips, we select the three-photon resonance at 2ω2 −
ω1 = ωA for a power- and frequency-dependence test.
From Eq. (B14), the third-order susceptibility χ(3)

xxxx(2ω2 −
ω1, ω2, ω2, −ω1), defined through

M̃x(2ω2 − ω1) = χ(3)
xxxx(2ω2 − ω1, ω2, ω2, −ω1)h̃x(ω2)h̃x(ω2)h̃x(−ω1), (D1)

and χ(3)
xxzz(2ω2 − ω1, ω2, ω2, −ω1), defined through

M̃x(2ω2 − ω1) = χ(3)
xxzz(2ω2 − ω1, ω2, ω2, −ω1)h̃x(ω2)h̃z(ω2)h̃z(−ω1), (D2)

are given by

χ(3)
xxxx(2ω2 − ω1, ω2, ω2, −ω1) ≈ iγ 4μ3

0��p�2ωs

8�1ω2(ωs − ω2)(ωs − ω1)(2ω2 − ω1 − ωs − i�2)
,

χ(3)
xxzz(2ω2 − ω1, ω2, ω2, −ω1) ≈ iγ 4μ3

0��p�2

4�1ω1ω2(2ω2 − ω1 − ωs − i�2)
,

(D3)

respectively, when the near-resonance condition of 2ω2 −
ω1 ≈ ωs is satisfied. It is noted that χ(3)

xxxx represents the spin
transition from |ms = 0〉 to |ms = ±1〉 via σ± + σ± − σ±.
The transition rate is proportional to (h2

2xh1xωs/[ω2(ωs −
ω2)(ωs − ω1)], where hjx = hj cos θj and hjz = hj sin θj
(j = 1, 2). On the other hand, χ(3)

xxzz represents the spin
transition via σ± + π + π . The transition rate is propor-
tional to h2xh2zh1x/(ω1ω2). For a general case with θ 
=
0, π/2, π , both of the two kinds of three-photon spin tran-
sitions will contribute to the detected resonance signals.
Note that in the visited frequency ranges in Fig. 3(h),
both of ω1,2 are close to ωA. Consequently, ωA/[ω2(ωA −
ω2)(ωA − ω1)], the frequency dependence from χ(3)

xxxx, is
more significant than 1/(ω1ω2), the frequency dependence
from χ(3)

xxzz, which is demonstrated by dashed lines in
Fig. 3(h). The semiquantitative consistency between the
experimental data on the third-order resonance and our

theoretical model suggests the generality of the model to
higher-order resonances.

APPENDIX E: ORIGIN OF
ELECTROMAGNETICALLY INDUCED

TRANSPARENCY

In Figs. 2(a) and 7, on top of the series of the bright
resonance lines, we observe a dark line satisfying ω1 = ω2
within the broad resonance dip at ω2 = ωE . This feature
of magnetic resonance suppression under zero detuning of
two waves is very similar to the EIT phenomenon studied
in nonlinear optics [45], where in the presence of a strong
pump wave, the interaction between the probe wave and
the matter is minimized due to interference effects. Mathe-
matically, the first two terms on the right-hand side of Eq.
(B16) play an important role. Combining Eqs. (B16) and
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�I
(arb. units)

�I
(arb. units)

(a) (b)

FIG. 9. �I under ω1 and ω2 inputs when ω1,2 are close to ωE : (a) microwave powers P1 = 5 mW, P2 = 13 mW; (b) microwave
powers P1 = 13 mW, P2 = 5 mW. Only (b) shows the dark line satisfying ω1 = ω2, which is a feature of EIT.

(C1), when ω1 ≈ ω2 and both of them are close to ωE ,
i.e., |ω1,2 − ωE| � |ω1,2 + ωE| and |ω1 − ω2| � �2,E are
satisfied, we have

〈ρ(2)

11 〉 + 〈ρ(4)

11 〉 ≈ −μ0|h̃x(ω2)|2
i�1,E�

[
χ(1)

xx (ω2, ω2)

+ |h̃x(ω1)|2χ(3)
xxxx(ω2, ω2, −ω1, ω1)

]

+ H.c. + (ω1 ⇐⇒ ω2), (E1)

where χ(1)
xx and χ(3)

xxxx are given by Eqs. (B11) and (B15),
with ωs, �1, and �2 replaced by ωE , �1,E , and �2,E . After
averaging θ over [0, π ] and only keeping terms related to
h2, since only the amplitude of the ω2 input is modulated,
the destructive interference between the spin transitions
associated with χ(1)

xx and χ(3)
xxxx results in

�I ≈ −|�I |max

[
〈ρ(2)

11 〉 + 〈ρ(4)

11 〉
]

= iA
ω2 − ωE − i�2,E − B

ω2−ω1−i�1,E

+ H.c., (E2)

where A = |�I |max�pγ
2μ2

0h2
2/(32�2

1,E) and B = i�2,Eγ 2μ2
0

h2
1/[4(ω1 − ωE + i�2,E)] ≈ γ 2μ2

0h2
1/4. We see that the

peak value of |�I | is suppressed at zero detuning ω2 −
ω1 = 0 and that the EIT effect is most significant when
�2,E > γμ0h1/2 > �1,E , which is satisfied in the spin tran-
sitions in 3E. Comparatively, the relatively smaller �2,A
makes the EIT feature in 3A2 less noticeable. We note
that here, we treat the ω1 signal as the probe wave and
the modulated ω2 signal as the pump wave. When using a
weak pump power and a high probe power [P1 = 5 mW,
P2 = 13 mW; Fig. 9(a)], the transparency window is not
observed. In contrast, when using a high pump power and a
weak probe power [P1 = 13 mW, P2 = 5 mW; Fig. 9(b)],
the transparency window clearly exists. This asymmetric
result is consistent with Eq. (E2), further verifying the EIT
origin of the resonance suppression feature.

The derivation from Appendixes B–E applies to the
two-level model for the transition between |ms = 0〉 and
|ms = +1〉. When we focus on the transition between
|ms = 0〉 and |ms = −1〉, the treatment is similar. The only
difference in the derivation is to replace hz by −hz due to
the negative magnetic moment, which will add an extra
negative sign in the results of density-matrix elements that
are odd functions of hz (e.g., ρ

(2)

01 and ρ
(3)

11 ). The elements
ρ

(2)

11 , ρ
(4)

11 , and hence �I will not be affected.

APPENDIX F: NUMERICAL SIMULATIONS ON
THE DENSITY-MATRIX MASTER EQUATION

Besides the theoretical derivation based on perturba-
tion theory, we can also solve Eq. (B8) numerically. In
Figs. 10(a) and 10(b), we show the numerically simulated
results for the sum and difference frequency resonance at
ω2 ± ω1 = ωA and the EIT effect when ω1,2 are close to
ωE , respectively. The parameters used in the simulations
are listed below:

Figure 10(a): ωA/(2π) = 2.87 GHz, �0
1,A/(2π) = 1 kHz,

�0
2,A/(2π) = 5 MHz, �p/(2π) = 3 MHz, h1,2 =

20 Oe.
Figure 10(b): ωE/(2π) = 1.42 GHz, �0

1,E/(2π) = 1 kHz,
�0

2,E/(2π) = 100 MHz, �p/(2π) = 3 MHz, h1,2 =
20 Oe.

Here, �0
2,A and �0

2,E include the contribution of ensemble
inhomogeneous broadening. θ is set as 45◦ to reflect the
effect of the ensemble average. |�I |max is set as 1. We take
a time step of �t = 2 × 10−13 s and average ρ11(t) in 4 ×
10−7 s ≤ t ≤ 8 × 10−7 s to obtain steady-state solutions.
The results with the same parameters except h2 = 0 are
subtracted to imitate the modulation on h2. In Figs. 10(a)
and 10(b), we see that the numerical simulations are con-
sistent with the experimental data in clearly demonstrating
features induced by nonlinear multiphoton processes.

044057-13



ZHONGQIANG HU et al. PHYS. REV. APPLIED 21, 044057 (2024)

�I
(arb. units)

�I
(arb. units)

(a) (b)

FIG. 10. Numerically simulated results demonstrating (a) the sum and difference frequency resonance at ω2 ± ω1 = ωA and (b) the
EIT effect when ω1,2 are close to ωE .
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