
3392 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

RALoRa: Rateless-Enabled Link Adaptation
for LoRa Networking

Kang Yang , Miaomiao Liu , and Wan Du , Member, IEEE

Abstract— Both our experiments and previous studies show
that LoRa links vary dynamically, which makes data transmission
unreliable and consumes much energy of sensor nodes by
retransmissions. This paper presents RALoRa, a Rateless-enabled
link Adaptation system for LoRa networks. Rateless coding
approaches the optimal data rate of a link by continuously
transmitting encoded data with an initial data rate. However,
LoRa’s modulation, Chirp Spread Spectrum (CSS), introduces
unique challenges to rateless-enabled transmissions. With CSS,
Spreading Factor (SF) simultaneously determines the initial data
rate and the concurrent transmissions of multiple links. This
dual role of SF requires the co-design of coding and networking.
We thus formulate an optimization problem for allocating net-
work resources (SF, frequency channels, and transmission power)
and coding parameters (block size and packet size) to all sensor
nodes. A key component of this formulation is a rateless-aware
network model that estimates the data transmission results of
sensor nodes based on their link quality and transmission setting.
Given that the optimization problem for obtaining the best
transmission setting of all sensor nodes is NP-complete, a two-
stage heuristic algorithm is designed. A Kalman filter-based
link quality predictor is developed to capture the link quality
variation. We implement RALoRa on commodity LoRa hardware.
Extensive experiments on a real testbed show that RALoRa
extends the lifetime of LoRaWAN by 66.1 %.

Index Terms— Low-power wide-area networks, LoRaWAN,
rateless coding, data rate adaptation.

I. INTRODUCTION

THE Long Range (LoRa) networks, increasingly deployed
in environmental monitoring applications, offer the

advantages of long-range communication and low-power con-
sumption, making them well-suited for data collection in
remote or wild areas[1],[2],[3]. In such applications, where
battery-powered nodes are often spread across vast areas, the
reliability and energy efficiency of data collection become
paramount. Our experiments and previous studies[4],[5]have
shown that the quality of LoRa links is subject to dynamic
variations. Consequently, Adaptive Data Rate (ADR) is crucial

Manuscript received 26 September 2023; revised 21 February 2024;
accepted 5 April 2024; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor J.-W. Lee. Date of publication 24 April 2024; date
of current version 20 August 2024. This work was supported in part by the
Financial Assistance award from the Economic Development Administration,
Farms Food Future; in part by NSF under Grant 2239458 and Grant 2008837;
and in part by University of California (UC) Merced Spring 2023 Climate
Action Seed Competition Award. (Corresponding author: Wan Du.)

Kang Yang and Wan Du are with the Department of Computer Science
and Engineering, University of California, Merced, CA 95340 USA (e-mail:
kyang73@ucmerced.edu).

Miaomiao Liu was with the Department of Computer Science and Engi-
neering, University of California, Merced, CA 95340 USA. She is now with
Visa Inc., Foster City, CA 94404 USA (e-mail: mliu71@ucmerced.edu).

Digital Object Identifier 10.1109/TNET.2024.3392342

to approach the optimal data rate of links, achieving energy
efficiency and reliability in data transmission[6].

Current LoRa networks use the ADR algorithm specified
in LoRaWAN (Long Range Wide Area Network)[7]. Nodes
can select from four data rates: 5.47, 3.13, 1.76, and 0.98 kb/s,
each associated with a specific Signal-to-Noise Ratio (SNR)
limit, namely −7.5, −10.0, −12.5, and −15.0 dB, respec-
tively. When the SNR of a received packet exceeds the
corresponding SNR limit, the likelihood of successful packet
demodulation is high. Conversely, if the SNR falls below
this threshold, there is a high probability of demodulation
failure. To transmit a packet, a node first predicts the SNR
of its upcoming transmission using the SNRs of multiple
previously-transmitted packets and selects a data rate whose
SNR limit is slightly lower than the predicted SNR. However,
this ADR algorithm has three limitations. 1) The gap between
two adjacent data rates is large. For a link that can support
a rate of 5.0 kb/s, setting the data rate to 5.47 kb/s can lead
to an increase in transmission failures. Conversely, choosing
a rate of 3.13 kb/s nearly doubles the transmission time.
2) It sets the data rate for each individual link without
considering the other links in the network. LoRa employs
Chirp Spread Spectrum (CSS) modulation[6],[7], where
data rate is determined by Spreading Factor (SF). Links with
differing SFs can transmit concurrently on the same channel,
whereas links with the same SF may interfere with each
other. Hence, a node needs to consider its peers using an
SF before shifting to that SF. 3) Given the low duty cycle
of LoRa networks[8], predicting link quality using recently
received packets is challenging. For instance, if the trans-
mission cycle is 15 minutes, the third most recently received
packet would have arrived 30 minutes ago, which is insufficient
for providing meaningful link quality information for the next
cycle.

This paper leverages rateless coding to approach the opti-
mal data rate of a LoRa link. Rateless coding continuously
transmits encoded bits until the receiver successfully recover
the original data[9]. The achieved data rate can be calculated
by the ratio between the total number of transmitted encoded
bits over the total transmission time. However, these bit-level
rateless codes has high computational complexity, which are
not suitable for low-cost half-duplex LoRa nodes. To identify
an effective rateless code, we first examine LoRa links on a
testbed of ten nodes (details in SectionIII-B1). Our experimen-
tal results reveal: 1) When the initial data rate is set high (small
SF), many received packets are corrupted, but only a few error
bits are found in these packets. 2) Error bits tend to be clus-
tered, suggesting that when a packet is divided into multiple

1558-2566 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8248-4894
https://orcid.org/0000-0001-8255-5891
https://orcid.org/0000-0003-2057-2885

YANG et al.: RALoRa: RATELESS-ENABLED LINK ADAPTATION FOR LoRa NETWORKING 3393

blocks, most of these blocks are received correctly. These
observations motivate us to implement block-level rateless
coding for LoRa links.

Block-level rateless coding has been employed in wireless
sensor networks for error correction[10]. A node partitions
its sensing data into blocks and encodes them into encoded
blocks using a lightweight rateless code, Luby Transform (LT)
codes[11],[12]. Each encoded block includes a short Cyclic
Redundancy Check (CRC) that allows the receiver to verify its
correctness. Ideally, the node transmits encoded blocks until
the receiver decodes the original data, sending an acknowledg-
ment (ACK) to halt the transmission. Due to the limitations
of half-duplex radio, where nodes can’t receive ACKs during
transmission, Hybrid Automatic Repeat Request (HARQ) is
utilized. Nodes first transmit a packet composed of several
encoded blocks. If the receiver fails to recover the original
data, it sends a negative acknowledgment (NAK), prompting
the sender to transmit a second packet with additional blocks.
Correctly received blocks from both packets are then used
for rateless decoding. Waiting for NAKs and sending extra
packets prolong the overall transmission time, deviating from
the optimal data rate. To mitigate this, the first packet should
contain an appropriate number of encoded blocks with a proper
block size to achieve successful decoding. A recent work,
eLoRa[13], explores the configuration of block-level rateless
coding for LoRa links. It adopts a LoRa link model to set the
block size and SF for a link, based on the SNRs of recently
received packets. However, eLoRa does not address the three
limitations of the LoRaWAN ADR algorithm. 1) It fails to
approach the optimal data rate as it uses a fixed packet size,
leading to frequent waiting for ACKs and retransmissions of
more blocks. 2) It sets the SF of one link without considering
its impact on the other links in the network. 3) It simply
predicts the SNR of the upcoming transmission based on
recently received packets. Our experiments show an average
relative error of 82.4 % in SNR prediction.

In this paper, we introduce RALoRa, a novel networking
solution for data rate adaptation in LoRa networks. We formu-
late an optimization problem for network resource allocation,
including SF, frequency channels, transmission power, and
rateless coding parameters (block size and packet size), aiming
to maximize the overall lifetime of all nodes. To analyze the
problem, we craft a rateless-aware network model designed
to estimate the data transmission results of all nodes given
their resource setting and link quality. This model adopts
rateless-enabled links and bit-level network modeling. First,
we package a proper number of rateless-encoded blocks within
a single packet by a predicted Block Reception Ratio (BLRR).
This block-level rateless link optimization allows nodes to
transmit packets at higher data rates, and approach the optimal
data rate (addressing Limitation #1). Second, to predict BLRR
in the context of the entire network, our bit-level network
modeling module quantifies the bit error rate of a link by
considering resource settings of all nodes, in-network interfer-
ence among nodes, and the ALOHA-based LoRaWAN MAC
(Multiple Access Control) protocol (addressing Limitation
#2). Specifically, a path loss propagation model is employed
to calculate the received signal power at each node, given
the transmission power, communication distance, and Path

Loss Exponent (PLE). Then, by modeling the ALOHA-based
MAC protocol as a Poisson process, the expected interference
power is calculated, which represents the signal power from
interfering nodes using the same channel and SF.

Having proven the NP-completeness of the above optimiza-
tion problem, we devise a two-stage heuristic algorithm that
includes an offline initialization stage and an online updating
stage. The offline stage sets initial parameters for all nodes pre-
deployment, optimizing each node’s settings to maximize total
network lifetime, considering the settings of others. Iterations
continue until the lifetime improvement between successive
iterations is below a set threshold.

Upon deploying the network in field, the server will run
in-situ updating algorithm to adapt nodes’ settings to fluctuat-
ing link quality at each sensing cycle. After receipt of a packet
from a node, we execute a link quality predictor to estimate
the PLE for next cycle, leading to an updated rateless-aware
network model. With this updated network model, we traverse
the node’s settings in search of the new settings that max-
imizes the total lifetime. These revised settings are relayed
back to the node via ACK, which will then be employed for
data transmission in next sensing cycle.

Existing link quality prediction methods[10],[13]estimate
SNR or BER (Bit Error Ratio) by weighted averaging multiple
recently received packets’ SNRs or BERs. However, these
methods are unsuitable for LoRa networks due to their low
duty cycle. Furthermore, in LoRa networks, neither SNR nor
BER can reliably indicate link quality. Given CSS modulation,
SNR and BER are influenced not only by the strength of the
received signal but also by interference from other nodes using
the same channel and SF. Even with identical received signal
strength, different SFs would yield different BERs and SNRs.

We adopt Kalman Filter (KF)[14]to predict PLE for the
next cycle using only one packet received in the current cycle
(addressing Limitation #3). The PLE serves as an indicator
of link quality as it is determined solely by the received
signal strength, independent of in-network interference. Upon
receiving a packet, we calculate the PLE using the measured
SNR and BER by inversely solving our network model,
which then serves as input to the KF predictor. Our predictor
estimates PLE for the next cycle, which is subsequently
utilized to compute BER via our network model. Experimental
results demonstrate that our PLE predictor can achieve a
median BER prediction of 13.3 % when the sensing cycle is
15 minutes.

RALoRa is implemented on commodity LoRa nodes and
gateways. In a residential area, we deploy ten nodes and a
gateway, with each node transmitting 32-byte sensing data
every 15 minutes. To simulate a 450-node network, we reduce
the transmission interval to 20 seconds per node[15], result-
ing in 45 packets sent per node in a 15-minute cycle.
Maintaining a 15-minute sensing cycle, our in-situ updat-
ing uses the first packet to predict the BER for the 46th
packet. Experimental results show that RALoRa extends the
lifetime of LoRaWAN and eLoRa by 66.1% and 30.4%,
respectively.

In summary, this paper makes the following contributions:
• We conduct a series of in-field measurements that suggest

block-level rateless coding for LoRa networking.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

3394 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

• We formulate an optimization problem that jointly con-
figures network resources and rateless parameters for
reliable and energy-efficient LoRa networking.

• A rateless-aware LoRa network model and a two-stage
heuristic algorithm are developed to solve the
optimization problem and to adapt to the varying
link quality.

• Extensive experiments on a real testbed and a large-scale
simulated network show RALoRa’s effectiveness.

II. RELATED WORK

Rateless Coding for LoRa: Recent advancements, eLoRa,
implemented block-level rateless coding to enhance transmis-
sion efficiency[13]. It utilizes a link model to determine
the block size and SF for each link. However, RALoRa
diverges from eLoRa in three key aspects. First, while eLoRa
uses a fixed packet size with a constant number of encoded
blocks, leading to increased retransmissions and overlooking
the overheads of rateless transmissions, RALoRa optimizes
packet composition. We incorporate an appropriate number of
blocks per packet to minimize retransmissions and selectively
deactivates rateless coding when the overhead outweighs the
benefits. Second, eLoRa determines the SF for a link does not
consider the network-wide impact, focusing solely on indi-
vidual link efficiency. RALoRa, in contrast, adopts a holistic
network model that accounts for the effect of SF settings
on concurrent transmissions and overall network performance.
This is particularly vital in LoRa networks, where SF settings
play a critical role in data rate and transmission concurrency.
The optimization problem and heuristic algorithm presented
in this paper are designed to address link adaptation across
the entire network. Third, eLoRa modifies node configurations
based on the average SNR of several previously received
packets, which may not provide accurate predictions due to
long sensing cycles. RALoRa, on the other hand, employs a
Kalman Filter to predict a link’s PLE using the SNR and BER
from a single, most recent packet. This approach ensures more
timely and accurate adjustments to link settings.

Network Modeling for LoRa: Several network mod-
els have been proposed to analyze data transmissions and
energy consumption in LoRa networks[16],[17],[18]. For
instance, EF-LoRa[16]uses a network model for energy
fairness, minimizing the energy consumption disparity among
nodes. However, these models mainly operate at the packet
level and do not incorporate rateless transmissions. RALoRa,
in contrast, introduces a network model that not only cap-
tures BER of links considering inter-node interference but
also accommodates the variable packet sizes characteristic of
rateless transmissions. Importantly, this model integrates the
joint optimization of rateless coding and network resource
allocation. RALoRa, however, optimizes energy efficiency for
traditional LoRa networks where nodes don’t communicate
with each other.

Forward Error Correction (FEC) for LoRa: LoRa uses
Hamming codes[19]with a code rate of 4/5[6],[20]. Every
four bits are attached with a one-bit parity check that can
detect a one-bit error in the five bits but cannot correct any
error[5]. FLoRa[21]employs packet-level rateless coding for
downlink FEC, facilitating firmware updates. These methods

cannot leverage the clean bits in the corrupted packets or
adapt to link quality variation. Yu et al.[22]use rateless polar
codes[23]that enables variable coding rates to reduce the
number of packet retransmissions. However, it is not suitable
for LoRa networks because the encoder of polar codes requires
the specific hardware circuits[24], which is not available in
the commodity LoRa devices.

AdapLoRa[18]integrates Reed-Solomon (RS) codes into a
symbol-level network model for error correction in LoRa net-
works. However, RS codes are less suited for LoRa networks
due to their inability to effectively handle the bursty error
patterns often encountered in LoRa links and the stringent
requirements for precise link quality prediction. In contrast,
RALoRa adopts lightweight rateless coding, offering efficient
handling of bursty errors, adaptability to changing link con-
ditions without stringent quality predictions. Furthermore, our
network model incorporates rateless-enabled HARQ mecha-
nism, eliminating the need for re-transmitting entire packets.
We also developed an innovative Kalman filter-based link
quality predictor, further boosting RALoRa’s effectiveness in
dynamic LoRa network environments.

There are methods[5],[6]that correct bit errors via physical
layer information. For example, LLDPC[6]implements a
Low-Density Parity Check (LDPC) code for uplink error
correction in LoRa. However, these approaches require soft-
ware defined radios (SDRs) for decoding. RALoRa is a link
adaptation solution on commodity LoRa hardware, which is
orthogonal to these approaches, i.e., we can implement our
MAC-level rateless coding on the top of them.

LoRa Throughput: A myriad of studies[25],[26],[27]
have targeted packet collisions in LoRa networks to enhance
the throughput. For instance, Choir[25]leverages the inherent
hardware offsets of the LoRa nodes to decode collided signals.
These approaches require SDRs to extract the low-level phys-
ical layer information. RALoRa is a software solution that can
be implemented on top of them.

III. BACKGROUND AND MOTIVATION

We begin with an introduction to LoRaWAN, followed by
three preliminary experiments designed to motivate this work.

A. LoRa and LoRaWAN

LoRa specifies the CSS modulation for the physical layer
and addresses bit errors through FEC. LoRaWAN[7]is a
MAC layer protocol that is built on top of the LoRa physical
layer. It implements an Adaptive Data Rate (ADR) algorithm
to determine the data rate for each node and uses ALOHA to
multiplex transmissions from multiple nodes.

LoRaWAN MAC Layer: LoRaWAN operates under
three classes. Our focus lies on Class A, which is widely
used owing to its low power consumption[7],[26].
Class A nodes empower bidirectional communication where
each node’s uplink transmission is followed by two short
downlink receiving windows. Nodes’ transmission time
slots are scheduled according to their sensing cycles, with
a small random time allocated for ALOHA-based MAC
transmissions[7]. We do not consider Class B and C. Class B
is activated only when gateways need to periodically send

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RALoRa: RATELESS-ENABLED LINK ADAPTATION FOR LoRa NETWORKING 3395

Fig. 1. Packet Reception Ratio (PRR), Bit Reception Ratio (BRR), and Block Reception Ratio (BLRR) of links in our testbed.

downlink messages, and Class C is rarely used due to its
high energy consumption[7],[26].

ADR Algorithm in LoRaWAN: According to LoRaWAN
specifications, every data rate has an SNR limit[7]. The ADR
algorithm estimates a link’s SNR by averaging the SNRs of
the recent received packets. It then chooses the highest data
rate whose SNR limit is lower than the estimated SNR.

B. Motivating Experiments
We delve into the characteristics of bit errors in LoRa links,

highlighting the potential of block-level rateless coding. Next,
we explore the dynamic link quality, emphasizing the indis-
pensable role of the ADR algorithm. Finally, by examining
the effects of in-network interference on BER, we are driven
to account for interference when designing ADR algorithms.

1) Block-Level Rateless Coding: We investigate the charac-
teristics of bit errors in LoRa communication links through a
series of in-field experiments using a LoRa testbed, detailed
in SectionV-A. Two LoRa nodes are placed at each location,
each transmitting over a different channel and utilizing adja-
cent SFs to explore the performance of two data rates over
independent links. Nodes are deployed across ten different
locations, with the average distance from these nodes to
the gateway being approximately 308.2 meters. Each node
is statically positioned on the ground, while the gateway is
stationed on the second floor of a building, near a win-
dow, and connected to the Internet via WiFi. Operating on
904.3 and 904.5 MHz channels to minimize interference, each
node transmits 32-byte packets at 20-second intervals. The
experiment, lasting three hours, focuses on measuring three
metrics every six minutes: Packet Reception Ratio (PRR),
Bit Reception Ratio (BRR), and Block Reception Ratio
(BLRR)[10].

Figure1(a-c)shows the results for one link, with other links
demonstrating similar phenomena. Figure1(a)reveals that the
PRR of SF10 is high (>90 %), while the PRR of SF9 is low
(57.4 %). As the data rate increases from 0.98 kb/s (SF10) to
1.76 kb/s (SF9), BER also increases, leading to many packet
transmission failures. However, Figure1(b)indicates that the
BRR of SF9 is high. The high BRR and low PRR of SF9
suggest that the number of error bits in corrupted packets is
small, although many packets are corrupted. In Figure1(c),
we split each received packet into multiple blocks, each of
equal size (4 bytes), and then compute the BLRR. The results
reveal that the BLRR of SF9 remains comparable with that of
SF10. This is attributed to the burst of error bits, which tend
to be concentrated in a few blocks, leaving most blocks error-
free. These clean blocks can be exploited by rateless coding.

Fig. 2. Illustration of the fluctuating LoRa link quality over time.

Figure1(d)further investigates the burst phenomenon of
error bits for all links. We calculate the distance between two
error bits in corrupted packets. If two error bits are adjacent,
their distance is 0. We plot the Cumulative Distribution Func-
tion (CDF) of the distances between two error bits in all the
received packets. For more than 96.8 % of pairs of error bits,
their distances are less than 8 bits, and 35.6 % of error bits
are adjacent to each other (the distance is 0). Consequently,
rateless coding offers the potential to transmit packets using
smaller SFs by effectively utilizing clean blocks, which in turn
reduces the packet transmission time.

2) Link Quality Variation: Upon analyzing the link quality,
with a focus on the SNR of received packets, we observe
notable fluctuations over time, as depicted in Figure2. Our
analysis is concentrated on packets from a specific location
shown in Figure1. The SNR varies significantly within a
range of −15 dB to 5 dB, posing challenges for accurate SNR
prediction. This level of variability is typical in residential
areas, where link obstructions by multiple vehicles can drasti-
cally reduce SNR. However, the removal of such obstructions,
establishing a Line-of-Sight (LoS) path between the node and
gateway, typically results in an increase in SNR. A heuristic
method is applied, involving a weighted combination of the
SNRs of the most recently received packets, to predict the
SNR. However, this approach results in an average relative
error of 82.4 % in SNR prediction. Specifically, this method
incorporates a weighted combination of SNRs from the three
latest packets, organized by their reception time and grouped
in sets of four for training and testing purposes, following a 7:3
ratio. The training dataset facilitates the optimization of weight
values through a brute-force search. This significant inaccu-
racy in SNR prediction highlights the need for developing a
more robust link quality predictor.

3) In-Network Interference: We study the impact of
in-network interference on the BER in scenarios with and
without interference from other nodes. We set up two sce-
narios over a duration of one hour: the first involves a LoRa
node transmitting packets every 20 seconds on channel CH1
with SF7, operating without interference; the second scenario

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

3396 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Fig. 3. The BER w/ and w/o interference from other nodes.

introduces an interfering node transmitting packets randomly
on the same channel and SF. The BER for the underlying node
is calculated at six-minute intervals. This node consistently
sends packets using channel CH1/SF7. Interference is gener-
ated through another node positioned near the gateway, which
randomly transmits packets on channel CH1/SF7. As depicted
in Figure3, we observe that the median BER of the underlying
node escalates from 0 % to 1.6 % due to the presence of
the interfering node. This significant impact underscores the
necessity for ADR algorithms to consider in-network interfer-
ence.

IV. DESIGN OF RALoRa
This section introduces the design of RALoRa from problem

formulation to heuristic algorithm development.

A. Overview of RALoRa
Figure4depicts the architecture of RALoRa, which is

composed of three hardware modules: node, gateway, and
server. The node partitions the sensing data into multiple
original blocks, each of a block size Sb. It subsequently
generates multiple encoded blocks based on these original
blocks and packages them into a packet of size Sp. This packet
is sent to the gateway via transmission settings, i.e., frequency
channel CH , spreading factor SF , and transmission power
Ptx. The node then awaits an ACK from the gateway within
a short time interval (e.g., one second in our implementation).

After detecting the packet, the gateway demodulates and
forwards the packet to the server. The server performs rateless
decoding to recover the sensing data and runs an optimization
algorithm to determine the node’s settings (CH , SF , Ptx, Sb,
Sp). The settings are then sent to the node via an ACK. The
node will apply the new settings in the upcoming sensing cycle
for packet transmission.

Favorable network performance in the above process neces-
sitates the joint configuration of resource settings (CH , SF ,
Ptx, Sb, Sp) for all nodes within the LoRa network. Towards
this end, we formulate an optimization problem aimed at max-
imizing the total lifetime of all nodes within the LoRa network
(SectionIV-B). A rateless-aware network model is established,
encapsulating the relationship between the lifetime of the
nodes and their resource settings (SectionIV-C). To solve
the optimization problem, a two-stage heuristic algorithm is
introduced in SectionIV-D.

B. Problem Formulation
We target on environmental monitoring applications for

RALoRa. It will accumulate sensing data from various sensors

Fig. 4. The architecture of the RALoRa.

until it reaches a specific size (e.g., 32 bytes). For example,
farmers utilize multiple sensors (e.g., temperature, humidity,
soil moisture, or soil electrical conductivity sensors) to monitor
crop health[28]. Each LoRa node is connected to four sensors,
with each sensor producing a sample size of two bytes.
Consequently, at each sampling instance, eight bytes of data
are collected. RALoRa aggregates these samples, collecting
four samples (i.e., 32 bytes) in one sensing cycle before
transmitting them to the gateway. This data is then encoded
into a sequence of rateless blocks using LT codes[11], with
block sizes varying between 2, 4, 8, or 32 bytes. Considering
the bandwidth for a LoRa frequency channel is 125 kHz
and the presence of 64 channels within the 902.3-914.9 MHz
range[29],[30], each gateway operates on a unique set of
eight channels to avoid interference with neighboring gate-
ways[31]. Therefore, a gateway and its associated nodes
constitute an independent network. Given this context, our
problem formulation considers a single gateway scenario.

Optimization Objective: In environmental monitoring
scenarios, the prioritization of energy-efficient data collection
is crucial. Additionally, the nodes in a LoRa network may
experience in-network interference, particularly when they
operate on the same channel and SF combination (CH/SF).
Consequently, the objective of this work is to maximize the
total lifetime of all nodes within a LoRa network. This goal
is mathematically formulated in Equation(1):

max
N∑

i=1

LT i(CH, SF, Ptx, Sb, Sp)
LTSF

max

s.t. CH ∈ [1, 2, 3, 4, 5, 6, 7, 8] , SF ∈ [7, 8, 9, 10]
Ptx ∈ [2, 4, 6, 8, 10, 12, 14] , Sb ∈ [2, 4, 8, Sd] (1)

where N is the number of nodes in a network, LT i is the
lifetime of node i, which is determined by the settings of
nodes. Once the first four parameters are set, packet size
Sp can be determined by our rateless-aware network model
(SectionIV-C). The Sd is the size of sensing data in each
cycle, i.e., 32 bytes. LTSF

max is the ideal lifetime that a node
can achieve using one SF. The ideal lifetime of nodes using
SF7 is 5.33 years, while the ideal lifetime of nodes using
SF10 is only 0.92 years. If maximizing the total lifetime of all
nodes, our heuristic algorithm will focus more on the nodes
using small SFs, since their lifetime has a higher influence on
the total lifetime. To balance network resources allocated to
the nodes using different SFs, we normalize the lifetime of
each node by LTSF

max and maximize the normalized lifetime
of all nodes. Although RALoRa focuses on environmental

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RALoRa: RATELESS-ENABLED LINK ADAPTATION FOR LoRa NETWORKING 3397

monitoring applications, it can be applied to other applications
as well. The optimization goal would need to be customized
to suit these new applications.

The lifetime of a node is the duration from the first startup
to the exhaustion of its battery. In this paper, the lifetime is
calculated by a linear battery model:

LT i = Tcycle ·
Ebattery

Ecycle
(2)

where Tcycle (the duration of one sensing cycle, e.g., 15 min-
utes) and Ebattery (the energy contained in a particular battery)
are both constant. Ecycle is energy consumed by nodes during
each sensing cycle. In Equation(2), we assume an battery
model that has linear behavior and does not degrade over time
or under environmental influences. Such a liner battery model
has been widely adopted in the lifetime calculation of LoRa
nodes[4],[15]. There are also some other battery models,
such as Electrochemical models, Electrical-circuit models, and
Stochastic models[32]. We can also use them to calculate
the node lifetime in Equation(2). It will not change the
design of RALoRa. We can still find settings that achieve fair
performance for our application, as long as we use the same
battery model for all nodes.

We now calculate Ecycle, encompassing the energy con-
sumed by the Radio and microcontroller (MCU) in trans-
mitting (TX), receiving (RX), and sleeping (SP) states. The
power consumption of the MCU and Radio in these states
is detailed in[15]. Hence, to determine Ecycle, we need to
calculate the TX time Ttx and RX time Trx, with the SP time
being Tsp = Tcycle − Ttx − Trx.

The TX time Ttx depends on the symbol duration Tsym =
2SF

BW (where BW is the bandwidth) and the number of symbols
in an uplink packet[33]. An uplink packet consists of Npre
preambles, two mandatory sync word symbols, 2.25 start frame
delimiter (SFD) symbols, and Ntx payload symbols:

Ttx = Tsym · (Npre + 2 + 2.25 + Ntx) (3)

where Npre is typically set to eight as per local regulations[20],
and Ntx is the number of symbols for a payload size Sp [33]:

Ntx =8+max
(⌈

8Sp−4SF +28+16−20h
4(SF − 2de)

⌉
(cr+4) , 0

)
(4)

where the “8” is the number of bits in the PHDR (Physical
Header), Sp is the payload size in bytes, “16” is the number
of bits for the CRC checksum, h denotes the header type, de
is set based on Tsym duration, and cr is the coding rate, set in
accordance with local regulations[20].

The Trx is calculated similarly to Ttx, influenced by
transmission parameters and payload size Sp, as described
in Equations(3)and(4). The RX mode settings comply
with local regulations[20], and the packet size is consistent,
typically two bytes (refer to SectionIV-Dfor details).

In the TX mode with our rateless-enabled uplink transmis-
sion, each packet’s payload includes multiple encoded blocks
of size Sb. The number of the encoded blocks depends on
the number of original blocks Sd/Sb and the transmission
settings (CH , SF , Ptx). This interrelation is encapsulated in
our rateless-aware network model.

C. Rateless-Aware Network Model
In this section, we develop a network model designed

to ascertain the payload size (Sp) for specific transmission
settings (CH , SF , Ptx) and a given coding setting (block
size Sb). This model integrates two key components: rateless-
enabled link transmission and bit-level network modeling. The
bit-level network module is responsible for calculating the
BER, taking into account in-network interference that arises
from nodes’ transmission settings under ALOHA-based MAC
protocols. Subsequently, the rateless-enabled link transmission
module utilizes the computed BER and the given block size
Sb to determine the optimal payload size.

1) Rateless-Enabled Link Transmission: We generate an
uplink packet that contains a calculated number of rateless-
encoded blocks. The determination of this number hinges on
the probability of block losses, quantified by the BLRR. The
BLRR is computed from the BER and the block size Sb:

BLRR = (1−BER)(Sb+ϵ)·8 (5)

where we assume BER is known, which is computed in the
next subsection. For each block, we add a CRC checksum of
ϵ bytes. We use CRC-4/ITU CRC (ϵ = 0.5), which can detect
errors in the block with a high probability (98%), if the block
size is smaller than 256 bytes[34].

Based on the estimated BLRR, we can calculate the needed
number of blocks Nb in a packet for the sensing data:

Nb =

⌈
Sd

Sb
+ η

BLRR

⌉
(6)

where Sd is the size of sensing data, and η denotes the rateless
decoding overhead. The numerator indicates the number of
encoded blocks required to successfully decode the data at the
server. We set η to 1, i.e., the server needs one extra encoded
block for successful decoding.

In rateless-enabled link transmissions, payload size Sp is
calculated by multiplying the number of blocks Nb by the
sum of block size Sb and the CRC overhead of each block ϵ:

Sp = ⌈(Sb + ϵ) ·Nb⌉ (7)

If Nb is an odd number, ϵ·Nb will result in half a byte. We will
use one byte for this case with four useless bits.

Disabling Rateless Coding: Upon traversing all block
size options, if the computed total lifetime is shorter without
utilizing rateless coding, the payload size is set as the sensing
data size, i.e., Sp = Sd, thereby disabling rateless coding.

Efficient Encoding Coefficient Matrix: Decoding packets
using the Gaussian Elimination (GE) algorithm[10]requires
the binary encoding coefficient matrix I , which transmitters
generate using a random number generator with a predeter-
mined seed. This matrix dictates the formation of rateless
blocks, where the original blocks, corresponding to ’1’ in
a matrix row, are XORed to create an encoded block. For
example, a row [1, 0, 1, 0] in a 4-block matrix signifies that the
first and third blocks are XORed to produce an encoded block.
To minimize transmission overhead, RALoRa avoids sending
the seed with the data packet. Instead, a fixed seed is employed
by both senders and receivers to reproduce the matrix I . This
is complemented by storing a predefined 32-row matrix I in
RAM, enhancing decoding speed and operational efficiency.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

3398 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

2) Bit-Level Network Modeling: In this subsection,
we develop the bit-level network modeling to compute the
BER for rateless-enabled LoRa link transmission in LoRa
networks, which is the only parameter presumed to be known
in the rateless-enabled link transmission module.

LoRa links are exposed to two sources of interference,
i.e., ambient noise and the in-network interference from other
LoRa nodes that are transmitting concurrently using the same
channel and SF (CH/SF). The quality of LoRa links can be
quantified by Signal-to-Interference-and-Noise Ratio (SINR).
With SINR is known, we can calculate BER[35]:

BER ≈ 0.5 ·Q


√

SINR · (M + 1)−
(
(HM)2 − π2

12

) 1
4√

HM −
√

(HM)2 − π2

12 + 0.5


(8)

where M = 2SF − 1, HM =
∑M

k=1
1
k denotes the M-th

harmonic number. Q(x) = 1√
2π

·
∫∞

x
exp

(
−y2

2

)
dy is the

Q-function. Considering that LoRa is the orthogonal signaling,
0.5 before the Q-function means that for a symbol error, only
half of the bits in the symbol could be in error[35]. The
Q-function part models the probability that the magnitude of
interference envelopes is larger than the magnitude of LoRa
signal of interest envelopes.

To determine the BER, it is essential to compute the SINR.
However, the[35]does not specify the methodology for
computing SINR. Therefore, in this work, we will calculate
the SINR by considering both ambient noise and in-network
interference. Additionally, our model uniquely incorporates the
variable packet size feature of rateless-enabled transmission.

The SINR is defined as the ratio of the signal power received
by the gateway from the underlying node i to the in-network
interference power and noise power:

SINR =
P i

rx

P i
intra + P i

noise

(9)

where P i
noise represents the power of additive white Gaussian

noise with zero-mean[36]. The received signal power P i
rx

and the in-network interference power P i
intra are calculated

by Equations(10)and(11):

P i
rx = P i

tx + Gtx + Grx − PL
(
di
)

PL
(
di
)

= PL (d0) + 10 · β · log
(

di

d0

)
+ Xσ (10)

where P i
tx denotes the transmission power of the node i in

dBm. The Gtx and Grx represent the transmitting and receiv-
ing antenna gains, respectively. The PL

(
di
)
, given in dB,

signifies the path loss for the distance di between a LoRa node
and a gateway. This path loss, characterized by a Gaussian
distribution with a mean value of PL(d0) + 10 · β · log

(
di

d0

)
and a standard deviation of Xσ , follows the Log-Normal
Shadowing model[1],[37],[38]. We adopt the mean as the
quantified path loss. The parameter β is the path loss exponent
(PLE). The reference path loss, PL(d0), is pre-measured
at a reference distance of d0 = 1 m, recording a value of
79.8 dB in our testbed. This value aligns with measurements

from existing empirical studies[38],[39],[40]. For example,
Bor et al. reported a path loss of 127.41 dB at a distance of
40 m[39]and β = 2.08. Utilizing Equation(10), we can
derive a reference path loss of 94.1 dB at d0 = 1 m. The
necessity for the pre-measurement stems from the complexity
of signal propagation within the antenna’s near-field region,
defined as ≤ 2L2

λ = 2×(0.2)2

(3×108)/(903.9×106) = 0.24 m, where L is
the antenna dimension and λ is the wavelength. Measuring
a known path loss value at d0 in the antenna’s far-field
region establish a basis for modeling how path loss varies
with distance beyond the near-field. During field deployment,
distances are recorded using a GPS logger in the server,
enabling the update of β based on the measured SNR and
BER (details in SectionIV-D3). The Log-Normal Shadowing
model is selected for its effectiveness in fitting β, using the
least square algorithm on the collected data[1],[38].

In-Network Interference Power P i
intra: We focus on

the scenario where a single interfering node transmits a
packet concurrently with node i, using the same CH/SF. This
consideration is based on the low probability of two or more
interfering nodes transmitting simultaneously with node i,
as detailed in SectionIV-C3. Assuming there are Nc,s nodes
using the same CH/SF, one of these is the underlying node i,
and among the remaining Nc,s−1 nodes, one is designated as
the interfering node j. The expected in-network interference
power, P i

intra, is then computed by considering the collision
probability and the average interference power contributed by
these Nc,s − 1 nodes.

P i
intra =pk ·

Nc,s−1∑
j=1

(
P j

rx · T
i,j
intra

T i
tx

· 1
Nc,s − 1

)
, k=1 (11)

where pk is the probability that a packet sent by the underlying
node i collides with k packets transmitted by interfering
nodes. To calculate the average interference power, we sum
the power contributions from all potential Nc,s−1 interfering
nodes and then divide this total by Nc,s − 1. For any single
interfering node j, its interference power is determined by
dividing its interference energy by the transmission time T i

tx.
The interference energy is calculated as P j

rx · T i,j
intra, where

P j
rx is the received signal power from node j, and T i,j

intra is
the overlap duration between the packet transmissions from
node i and node j.

The Duration of the In-network Interference T i,j
intra:

Given that the transmission from an interfering node over-
laps with the transmission of the underlying node randomly,
we calculate the duration of the intra-interference T i,j

intra as
the expected number of overlapped symbols multiplied by the
symbol duration T i

sym:

T i,j
intra = T i

sym ·
min(Ni

p,Nj
p)∑

s=1

s · 1

min
(
N i

p, N
j
p

)
 (12)

where N i
p and N j

p represent the number of symbols in the
packets from nodes i and j, respectively. The number of
overlapped symbols, denoted as s, can vary from 1 to the
minimum of N i

p and N j
p , expressed as n = min(N i

p, N
j
p).

To estimate the expected number of overlapped symbols,

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RALoRa: RATELESS-ENABLED LINK ADAPTATION FOR LoRa NETWORKING 3399

we calculate the sum of the products of each possible overlap
value and its corresponding probability 1/n. The duration of
intra-packet interference, T i,j

intra, is then obtained by multiply-
ing this expected number of overlapped symbols by the symbol
duration T i

sym. It is important to note that the symbol duration
for both nodes i and j is identical since they are operating with
the same SF and bandwidth.

Packet Collision Probability for ALOHA Protocol pk:
As the analysis of the unslotted ALOHA protocol[7],
we assume the packet arrives as a Poisson process[41]with
a cumulative arrival rate λ = Nc,s/Tcycle. In each sensing
cycle, the probability that the underlying packet collides with
k interfering packets can be calculated:

pk =

[
(λ · TV UL)k

k!

]
· e−(λ·TV UL)

TV UL = T i
tx +

Nc,s−1∑
j=1

(
T j

tx ·
1

Nc,s − 1

)
(13)

where TV UL is the vulnerable period. The vulnerable trans-
mission time can be the sum of the transmission times from
the underlying node i and the interfering node j. Hence,
TV UL is computed as the sum of the transmission time of
the underlying packet, T i

tx, and the expected transmission time
of an interfering packet. In the scenario with one interfering
node among Ncs−1 potential interferers, the transmission time
of the interfering packet is averaged across all Ncs−1 nodes.
Consequently, during TV UL, the probability of an interfer-
ing node transmitting a packet obeys a Poisson distribution,
parameterized by (λ · TV UL).

3) Discussion: In this section, we discuss some design
details of our rateless-aware network model.

Multiple Interfering Nodes: In Equation(11), we do
not account for multiple interfering nodes due to their low
probability of occurrence. For instance, in a LoRa network
with 1000 nodes, each node has the option to select from
eight channels and four SFs. We examine two scenarios: one
where channels and SFs are evenly distributed among the
nodes, and another where nodes are evenly distributed across
eight channels but use only one SF. The collision probability
in both cases, calculated using Equation(13), assumes a
15-minute sensing cycle and a 32-byte packet size. In the
first scenario, the likelihood of having one or fewer interfering
nodes transmitting simultaneously with a given node is as high
as 98.4 %. In the second scenario, this probability remains
significant at 94.1 %. Based on these probabilities, our model
primarily considers scenarios with only a single interfering
node transmitting concurrently with the underlying node.

Goodput: While our primary goal focuses on maximiz-
ing network lifetime, crucial for monitoring applications,
we acknowledge that some applications may prioritize good-
put. It is an essential metric for applications prioritizing
efficient data transmission. Goodput for a node is calculated
as follows:

GDi =
Sd

Ttx + Trx
(14)

where Sd represents the size of the sensing data, and Trx

denotes the time spent in the RX state. The denominator

represents the total duration from the start of transmitting the
sensing data to the end of receiving an ACK.

A comparison between the calculations of network lifetime
and goodput reveals a shared characteristic: both are inversely
proportional to the transmission time (Ttx). This implies that a
shorter Ttx can concurrently lead to an extended network life-
time and elevated goodput. Consequently, RALoRa optimizes
both these metrics by minimizing Ttx. Detailed experimental
results demonstrating this optimization in SectionV-C.

Packet Reception Capabilities of Gateways: The hard-
ware of current LoRa gateways is limited to receiving up to
eight packets across different CHs/SFs simultaneously[15],
[26]. This limitation implies that a gateway cannot process a
ninth packet if it is already handling eight simultaneous trans-
missions. To assess the impact of this constraint, we calculate
the probability of more than eight nodes transmitting at the
same time in a LoRa network consisting of 1000 nodes and
a single gateway. The probability is only 0.062 %. Given this
low probability, the hardware limitations of the gateway are
not considered in our rateless-aware network model.

Impact of Header Reception under Interference on
RALoRa: RALoRa utilizes commercial LoRa gateways do
not integrate the advanced packet detection algorithms. This
limitation can lead to the gateways failing to detect packets in
the event of preamble collisions, consequently preventing them
from issuing an ACK or NAK. In situations where a node does
not receive an ACK or NAK, the node follows the ALOHA
protocol’s retransmission rules as specified in LoRaWAN[7],
[20]. Specifically, if there is no ACK or NAK response within
the ACK_TIMEOUT period, defined as two seconds plus a
random delay of one to three seconds, the node is programmed
to retransmit the packet after a certain back-off period.

BER Equation Selection: Our choice to use Equation(8)
for BER estimation over the method in[42]stems from bal-
ancing accuracy with computational feasibility. The alternative
approach involves intense computations, especially for higher
SF. For example, at SF10, it requires over 1 million Q function
calculations per node. In a 1000-node network, this escalates
to more than a billion calculations per iteration, becoming
impractical for frequent iterations. Conversely, the chosen
method from[35]needs only one Q function calculation per
node, greatly reducing computational burden and aligning with
the practical necessity of adhering to the one-second ACK
timing constraint in real-world scenarios.

D. Two-Stage Heuristic Algorithm
In this section, we first prove that the optimization prob-

lem presented in Equation(1)is NP-complete. A two-stage
heuristic algorithm is then proposed to solve the problem.

1) Complexity Analysis: For a LoRa network with N nodes,
there are (8 × 4 × 7 × 4)N possible settings for all nodes,
where the four numbers represent the number of optional
values for CH , SF , Ptx, and Sb, respectively. One gateway
can support eight channels. Based on local regulations[20],
we can use four SFs, i.e., from SF7 to SF10. When CH ,
SF , and Sb are constants, our optimization solution aims
to determine the transmission power (Ptx) for each node in
the network. This simplified optimization problem can be
analogized to the Partition problem. The Partition problem

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

3400 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

involves dividing a set of numbers into two groups such
that the sums of the numbers in each group are as close
to equal as possible. In our context, each number in this
analogy represents the transmission power (Ptx) of a LoRa
node. The objective is to adjust these power levels in a way that
balances the total power usage across the network while also
fulfilling the SNR requirements for efficient data transmission.
Therefore, our optimization task of setting Ptx for each node,
while maintaining SNR constraints, can be regarded as a
variant of the Partition problem. This analogy underscores the
inherent complexity of our optimization task, as it inherits the
NP-completeness characteristic of the Partition problem.

Algorithm 1 Offline Optimization
Input : All nodes and the gateway deployment
Output: The configuration of all nodes CF

1 CF = Random();
2 LT = Lifetime(CF);
3 LTold = LT, δ = 0.01;
4 while True do
5 for each node i ∈ N do
6 for each cf = (CH, SF, Ptx, Sb) do
7 cf temp = CFi, CFi = cf ;
8 LTtemp = Lifetime(CF), CFi = cf temp;
9 if LTtemp > LT then

10 LT = LTtemp, CFi = cf ;
11 end
12 end
13 end
14 di = abs(LT - LTold), LTold = LT;
15 if di ≤ δ then
16 break
17 end
18 end

2) Offline Optimization for Network Initialization: We pro-
pose Algorithm1to initialize the settings of all nodes when
the network is first deployed. During each iteration, each node
traverses all of its possible settings (lines 5-12). If an alterna-
tive settings for a node results in a longer total lifetime than its
current setting, we proceed to update the node’s settings (lines
7-11). After one iteration, we assess the improvement in total
lifetime by comparing the current iteration’s total lifetime with
the previous iteration’s (line 14). If the improvement exceeds a
threshold δ, we infer that there is potential to further enhance
the total lifetime in the subsequent iteration; otherwise, we halt
the iteration (lines 15-17).

3) In-Situ Updating Algorithm: We also develop
Algorithm2, an in-situ updating algorithm, for updating
the configuration of nodes to adapt to dynamic link quality.
When the server receives a packet from node i during the
current sensing cycle, it employs a KF-based PLE predictor
to estimate the PLE β for the next sensing cycle (details
in the following paragraph). The estimated β influences the
SINR and subsequently the BER values in our rateless-aware
network model, ultimately affecting the total lifetime.
To accommodate the changed PLE (the measure of the LoRa

link quality), we traverse all settings of node i, seeking new
settings that maximizes the total lifetime.

KF-based PLE Predictor: Our predictor first measures
PLE β̂k using the SNR and BER of the received packet in
the current sensing cycle k, which will then be utilized to
predict PLE β̂−k+1 for the next cycle k + 1.

Algorithm 2 In-Situ Updating
Input : The current configuration of all nodes - CF
Output: The updated configuration of node i - CFi

1 if The server receives a packet from node i then
2 LTcur = NodeLife(CF) via Equation(2);
3 Update the PLE of the link (SectionIV-D3);
4 Update the expected SINR (SectionIV-C2);
5 for each configuration cf = (CH, SF, Ptx, Sb) do
6 cf temp = CFi, CFi = cf ;
7 LTtemp = NodeLife(CF);
8 if LTtemp > LTcur then
9 CFi = cf ;

10 break
11 end
12 end
13 end

First, we compute the Kalman Filter’s input, i.e., β̂k, based
on the measured SNR and BER. After retrieving the sensing
data through rateless decoding, we can obtain the ground truth
for all received bits by performing the same rateless encoding
as the sender. Consequently, the actual BER can be deter-
mined by comparing the received bits with their ground truth.
We then compute β̂k by inversely solving Equations(9)(10)
based on the measured SNR. Knowing the BER of the received
packet allows us to derive another value of β̂k by inversely
solving Equations(8)-(10). Finally, the measured value of β̂k

is determined by averaging these two calculated β̂k.
The Kalman Filter iteratively executes correction and pre-

diction stages to estimate PLE β̂−k+1 for the next cycle k + 1.
At cycle k, we have predicted PLE β̂−k obtained from previous
cycle’s prediction stage, and the measured β̂k acquired from
the SNR or BER at cycle k. In the correction state of cycle
k, the corrected PLE is then computed by weighted combining
the predicted β̂−k and measured β̂k. The corrected PLE serves
as the estimated PLE for the next cycle (β̂−k+1). In the
configuration of the Kalman Filter, specific values are assigned
to the process noise (Q) and the measurement noise (R). The
Q is set at 1e−4, reflecting the anticipated fluctuation level
of the PLE over time. The R, determined as 0.12, indicates
the level of trust in the accuracy of the PLE measurements
received in each cycle. We omit the mathematical equations
and refer readers to[14]for more details on the Kalman Filter.

To estimate the initial PLE for a specific location, we utilize
the Received Signal Strength Indicator (RSSI) values, denoted
as P i

rx in Equation(10). These values are obtained from sev-
eral packets received by the gateway from the node. We then
apply the least squares algorithm to the collected RSSI values
for fitting the PLE.

Figure5illustrates the relative error in BER estimation
using four predictive methods. The relative error is defined as

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RALoRa: RATELESS-ENABLED LINK ADAPTATION FOR LoRa NETWORKING 3401

|Predicted BER − Groundtruth BER| /(Ground Truth BER +
offset), where the offset is set to 1e−4. This offset addresses
cases when the ground truth BER is zero, which corresponds
to a packet delivery rate of 99.68 %[6]. The baseline meth-
ods evaluated include Heuristic BER (HB), Heuristic SNR
(HS), and Heuristic Path Loss Exponent (HP). These methods
estimate BER, SNR, and PLE using a weighted combination
of their three most recent values, similar to the methodology
described in Figure2. Packets are chronologically sorted based
on their reception time at the gateway, and a sliding window of
size one is used to group every four packets for training and
testing. The datasets are then split into training and testing
sets in a 7:3 ratio. The training set is utilized to optimize
the weight values for these methods through a brute-force
search. These optimized values are subsequently employed to
predict BER, SNR, and PLE for the testing set. Additionally,
Figure5demonstrates the application of our KF-based PLE
predictor. This method uses the measured SNR and BER of
the current packet to predict the PLE of the subsequent packet.
The estimated PLE is then utilized to calculate the predicted
BER. The relative error for each received packet is calculated
based on these heuristic methods. Our KF-based PLE predictor
outperforms HB, HS, and HP by 47.6 %, 33.4 %, and 27.9 %
respectively. This performance is attributed to the KF method’s
ability to account for current data and its effectiveness in
handling interference from other LoRa nodes.

Meeting the ACK Timing Constraint: While ideally we
would need to update the settings of all nodes upon receiving
packets from any node i, this process is time-consuming and
impractical. Thus, our updating algorithm only traverses the
available settings of node i, rather than all nodes. We con-
duct experiments with varying numbers of nodes, Even with
800 nodes, the average execution time is only 796 ms, which
is less than the ACK constraint, i.e., a node needs to reply to
an ACK within one second (details in SectionV-F).

Minimizing Downlink Traffic: RALoRa efficiently con-
serves downlink channel resources by incorporating update
information within ACK packets sent to sensor nodes. This
strategy is supported by several key factors: 1) LoRaWAN
supports both confirmed-data messages, which require ACKs,
and unconfirmed-data messages[7],[43],[44]. Confirmed-data
messages are vital in scenarios demanding high communi-
cation reliability, as they ensure data integrity with CRC
checks[5],[44]. For Class A nodes, receiving an ACK
within the first or second receiving window is mandatory
before sending the next packet, making ACK transmissions
a standard procedure rather than an additional requirement
unique to our system. 2) In the U.S., LoRaWAN does not
impose restrictions on downlink traffic[7],[20]. There are
eight available channels for downlinks, ranging from SF7 to
SF12, each using a 500 kHz bandwidth[31], which facilitates
efficient downlink communication. 3) LoRa nodes are capable
of reliably receiving ACK packets[20]. If a node misses an
ACK in the first receiving window, it has a second window,
utilizing SF12 at the lowest data rate, to ensure reception.

We also minimize the data size needed for updating settings
to conserve downlink resources. First, the update information
is encoded within two bytes, significantly smaller than the
uplink packet size. This compact encoding involves allocating

Fig. 5. The CDF of the BER prediction error for four predictive methods.

three bits for CH , two bits for SF , three bits for Ptx, two bits
for Sb, and six bits for Nb. The parameter Sp can be inferred
from Sb and Nb. Second, when a node’s settings do not require
modification, RALoRa leaves ACK packets unchanged. Field
experiments show that, on average, only 43.6 % of sensing
cycles require an update to the nodes’ settings.

4) Retransmission Mechanism: RALoRa optimizes packet
size to achieve successful rateless decoding with a single
transmission from LoRa nodes. Accurate BER estimation
is essential for determining the optimal packet size. Our
link quality predictor enhances BER prediction accuracy by
47.6 %, but a potential error margin of up to 30.9 % remains,
which could result in suboptimal packet sizing. In cases
where the server cannot recover sensing data from the first
transmission, RALoRa employs a HARQ mechanism. This
mechanism facilitates the transmission of additional encoded
blocks, which are combined with correctly received blocks
from the first transmission for rateless decoding.

Upon receiving a NAK specifying the number of additional
blocks required, the sender retransmits after a randomized
delay, following LoRaWAN guidelines[7],[43]. This delay
mitigates collision risks by diversifying retransmission times
among nodes. Each node’s retransmission schedule is deter-
mined by a pseudo-random generator, seeded with the node’s
unique address. This strategy of retransmitting only the
necessary additional blocks, rather than the entire packet,
substantially improves transmission efficiency. It also offers
more effective management of duty cycle constraints compared
to conventional LoRaWAN protocols, reducing the volume of
data transmitted during retransmissions.

V. EVALUATION

A. Experimental Testbed
The LoRa nodes are custom-built using the SX1276

Radio[45]on the Arduino Uno board[46]. Each node is
powered by a 3,000 mAh power bank and operates within the
903.9-905.3 MHz frequency band, utilizing a bandwidth of
125 kHz. Both nodes and gateways employ omni-directional
antennas, with gains of 5 dBi for nodes and 3 dBi for gate-
ways, respectively. The transmission power of the LoRa nodes
can vary from 2 to 14 dBm in 2 dBm increments. We inte-
grate LT encoding into the LMIC library[47]. The gateway
runs a LoRa Packet Forwarder thread[48]that demodulates
packets for server transmission or relays ACK/NAK mes-
sages to nodes. In the gateway’s configuration file, we set
the forward_crc_error field to true for forwarding
corrupted packets to the server.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

3402 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

We implement the RALoRa server utilizing an open-source
library tailored for LoRaWAN[49]. The server is operational
on a Lenovo ThinkPad X1 Carbon laptop, equipped with an
Intel (R) Core (TM) i7-4600 CPU at 2.69 GHz. Our algorithms
are implemented using Python scripts, which interface with
the server via WebSocket for seamless communication. Both
uplink and downlink packets are logged in a MongoDB
database. This database enables our algorithms to efficiently
access and modify the settings of all nodes in the network,
facilitating dynamic network management and optimization.

In our in-field experiments, a LoRa network comprising
ten nodes and one gateway is deployed in a residential area
in the U.S., depicted in Figure6. During the experiments,
we observed negligible external interference from other users
in the 900 MHz band affecting our testbed. To emulate a larger
network of 450 nodes, we employed a strategy of reducing
the sensing cycle duration from the standard 15 minutes to
20 seconds[15]. As a result, each node in our setup trans-
mits 45 packets every 15 minutes, replicating the transmission
frequency of a 450-node network. For the implementation of
the 15-minute sensing cycle, the first received packet from
each node is utilized to predict the BER of the 46th packet,
as part of our in-situ updating algorithm. This process is
repeated sequentially. Thus, our experimental setup effectively
simulates a LoRa network comprising 450 nodes operating on
a 15-minute sensing cycle.

The average distance between the nodes and the gateway
is 308.2 meters, with the maximum and minimum distances
being 516.6 meters and 185.9 meters, respectively. The reasons
for the limited communication range are fourfold. First, the
testbed’s deployment in a residential area, characterized by
diverse landcover types such as trees, buildings, roads, and
parked cars, poses significant obstacles. These obstructions
lead to considerable signal attenuation, adversely impacting
the SNR of LoRa packets. Similar observations about LoRa’s
reduced communication range in complex environments have
been reported[4],[25],[38]. Second, the height of the
antennas plays a crucial role in signal reception[50]. In our
setup, the LoRa nodes are positioned on the ground, while the
gateway is situated adjacent to a second-floor window, about
3 meters above ground level. These two factors collectively
result in a high propagation path loss. Third, compliance
with local regulations restricts us to using only SF between
SF7 and SF10[20]. Although employing SF12 could extend
the communication range, its usage is not permissible in our
testbed area. Fourth, the SNR range of received packets in our
testbed spans extensively from -20 dB to 5 dB, as illustrated in
Figure7(a). This broad range results from varying distances of
the nodes from the gateway, coupled with physical obstructions
like trees, buildings, or vehicles. Encompassing the lowest
SNR limit for SF10, this SNR spectrum provides a thorough
basis for evaluating RALoRa under diverse SNR conditions.

B. Experimental Setup
We uses NS-3 simulations and in-field experiments to

validate RALoRa. The in-field experiments offer real-world
system validation, while NS-3 simulations focus on individ-
ual component assessment within controlled settings. In-field
experiments track link quality variations over time, testing

Fig. 6. The experimental testbed layout in a residential area.

the entire system performance. Conversely, NS-3 simula-
tions involve a smaller 10-node network for examining the
Rateless-Enabled Link Transmission in low-interference con-
ditions, and a larger 800-node network to assess the Bit-Level
Network Modeling under high-collision scenarios. The exper-
iments progress in three phases: first, assessing overall system
performance in the field (SectionV-C); second, evaluating
component efficacy and performance in varied large-scale net-
work settings (SectionsV-DandV-E); and finally, analyzing
system overhead (SectionV-F). The sensing data size remains
constant at 32 bytes across all experiments.

1) Benchmarks: We compare the performance of RALoRa
with the following two protocols.

LoRaWAN [7]is the standard protocol used in LoRa net-
works. The default ADR mechanism is enabled. It chooses the
smallest available SF based on the predicted SNR.

eLoRa [13]also incorporates block-level LT codes into
LoRa networks. It employs a LoRa link model to determine
the block size and SF of a LoRa node, relying on SNR
measurements of recently received packets.

2) Performance Metrics: This paper focuses on the envi-
ronmental monitoring applications that need nodes to provide
high energy efficiency (lifetime) and reliability (data yield).
A long lifetime reduces battery replacement, and a high data
yield avoids the loss of sensing data. Meanwhile, we check
whether a long lifetime can provide high goodput in in-field
experiments. In summary, we use the following three metrics:
• Lifetime. It is the time that the node exhausts its battery,

which is calculated by Equation(2). We ignore the energy
consumption of rateless encoding as it consumes a little
energy, which is measured in SectionV-F.

• Data Yield[10]. The data yield of a node is the ratio
between the amount of the sensing data successfully
received by the server and the total amount of the sensing
data sent by that node.

• Goodput. The goodput of a node is the number of sensing
data in bits that the LoRa link transmits to the server per
second. It is calculated by Equation(14).

We also study these performance metrics at the network level,
which is the average of all nodes, e.g., the data yield of a
network is the average data yield of all nodes in the network.

C. Overall Performance

We run each of the benchmark approaches sequentially on
the deployed LoRa network. Every experiment lasts for a
duration of three hours. The results are presented both at the
network and node levels.

1) Network Level Performance: Figure7demonstrates the
network performance with a standard deviation of LoRaWAN,
eLoRa, and RALoRa. On average, RALoRa achieves the

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RALoRa: RATELESS-ENABLED LINK ADAPTATION FOR LoRa NETWORKING 3403

Fig. 7. The overall network performance comparison on lifetime, data yield and goodput in the in-field experiments. Due to space constraints on the x-axis
ticks, abbreviations are used in this and some subsequent figures: Lora for LoRaWAN, eLora for eLoRa, and RALora for RALoRa.

Fig. 8. The performance comparison on the lifetime, data yield, and goodput for each LoRa node in the in-field experiments.

performance improvement over other two protocols on the life-
time, data yield, and goodput. In particular, RALoRa increases
lifetime of LoRaWAN and eLoRa by 66.1 % and 30.4 %,
respectively. It improves the data yield of LoRaWAN and
eLoRa by 7.6 % and 5.3 %. It also increases the goodput of
LoRaWAN and eLoRa by 53.8 % and 4.5 %. Such performance
gain is mainly derived from the rateless-aware network model
and KF-based PLE predictor.

Lifetime: Figure7(b)depicts the network lifetime. Com-
pared with LoRaWAN, eLoRa provides a higher lifetime. This
is because eLoRa tends to use a smaller SF than LoRaWAN
by adopting rateless coding. Smaller SF provides shorter
packet transmission time. In addition, eLoRa does not need to
retransmit the entire packet as LoRaWAN does. It just needs
to retransmit some extra encoded blocks.

RALoRa provides the highest lifetime. First, the packets for
RALoRa contain the appropriate number of encoded blocks to
compensate for the block transmission errors. The server has
a higher probability of successfully recovering sensing data
based on the first packet transmission. However, eLoRa uses
invariant block numbers in packets, which need to retransmit
extra encoded blocks. Second, RALoRa considers in-network
interference to more reasonably allocate SFs, which can avoid
high packet collision. Third, we consider the overhead of
rateless coding in rateless-enabled transmissions. RALoRa only
enables rateless coding if the performance gain provided
by rateless-enabled transmission is larger than its overhead.
However, eLoRa always enables rateless coding. Finally, our
in-situ updating algorithm adapts to changing link quality more
accurately than eLoRa via a KF-based PLE predictor.

Data Yield: If the retransmission number is greater than
four, nodes will stop transmitting the current sensing data,
which causes sensing data losses[7]. Figure7(c)shows
the network data yield. Compared with LoRaWAN, eLoRa
exhibits a higher data yield. For eLoRa, each transmission can
bring new data information to help to recover sensing data by
rateless decoding. Hence, eLoRa can utilize the blocks without
error bits from previous transmissions, and next time only

transmit extra needed blocks, not the entire packet. However,
LoRaWAN abandons the whole packet, then retransmits the
packet again. RALoRa achieves the highest data yield. This is
because the first packet in RALoRa already contains enough
encoded blocks to compensate for the block losses, which
further reduces the number of packet retransmission.

Goodput: Figure7(d)depicts the network goodput of
three protocols. It verifies that goodput exhibits similar trends
with lifetime. RALoRa still achieves the highest goodput
than LoRaWAN and eLoRa. But the performance gain of
RALoRa is marginal since the ACK time is included when
calculating the goodput. The transmission time saved by the
RALoRa is relatively small compared with the ACK time in
the denominator of Equation(14).

2) Node Level Performance: Figure8depicts the perfor-
mance of each node in the LoRa network. We can find that
RALoRa can improve the energy efficiency and reliability of
all the nodes regardless of their location in the network.

Lifetime: As depicted in Figure8(a), the lifetime of some
nodes in LoRaWAN, such as nodes #2 and #3, is notably short.
This is because they must employ higher SFs to ensure reliable
communication. In contrast, eLoRa tends to use smaller SFs
because of the rateless coding. RALoRa further enhances the
lifetime by proactively adapting to link quality.

Data Yield: Figure8(b)presents the data yield for all
nodes. For certain nodes in LoRaWAN, such as node #5,
the data yield is low due to poor link quality. RALoRa
improves the data yield by reducing retransmissions, achieved
by encapsulating the encoded rateless blocks in packets. Addi-
tionally, RALoRa introduces a network model to allocate SF,
subsequently minimizing the probability of packet collisions.

Goodput: Figure8(c)illustrates the goodput of each node
under different protocols. The LoRa nodes that are distant from
the LoRa gateway, such as nodes #2, #3, and #5, exhibit the
reduced goodput due to their adoptions of larger SFs. Notably,
there is a discernible correlation between the goodput and
the lifetime: a longer lifetime generally correlates with higher
goodput for each node.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

3404 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Fig. 9. The adopted SFs for four LoRa nodes over time.

3) SF Updating: Given the dynamic link quality, LoRa
nodes need to update their transmission parameters to adapt
to the variations. Figure9depicts the SFs used by four
nodes during in-field experiments. While nodes #0, #1, and
#2 frequently adjust their SFs in response to the changing
link quality, node #3 consistently employs SF7. This is due to
its proximity to the gateway and the fact that SF7 carries the
lowest collision risk with other nodes. As a result, LoRa node
#3 does not need to change its SF.

D. The Effectiveness of RALoRa Components

We build two LoRa networks in the NS-3 to verify the effec-
tiveness of our proposed components in RALoRa. We utilize an
open-source GitHub library[51]to simulate the LoRaWAN on
the NS-3[52]. The modeling of LoRaWAN in NS-3 comprises
several components, e.g., the physical layer, and the MAC
layer. The details of the implementation can be found in[36].
Based on the library, we implement RALoRa and eLoRa in
NS-3. All nodes and gateways are located in an area with a
radius of 3.3 kilometer. Each node sends 32-byte data at each
sensing cycle (15 minutes). Nodes are uniformly distributed
in the area. All nodes and gateway are configured to use the
same 125 kHz LoRaWAN channel (915 MHz). The PLE of
LoRa links is fixed at 3.0. We do not present the data yield
and goodput result since similar trends between them have
been demonstrated in SectionV-C.

1) Rateless-Enabled Link Transmission: To investigate the
effectiveness of rateless-enabled link transmission, a LoRa
network consisting of 10 nodes and a gateway is built. In this
network, the packet collision probability is low, i.e., 0.04 %
(Equations(13)). We can assume that there is no in-network
interference. Therefore, the performance gain comes solely
from the rateless-enabled link transmission.

In Figure10(a), eLoRa provides a longer lifetime than
LoRaWAN for most nodes, e.g., eLoRa increases the lifetime
of node #2 by 7.3 %. Because eLoRa selects a smaller SF by
using rateless coding to compensate for error bits. However,
the performance of eLoRa is worse than LoRaWAN for nodes
#1, #5, and #9. This is because there are only ten nodes, and
the packet collision probability is low. The nodes #1, #5, and
#9 use SF7 for their good link quality. The rateless coding
in eLoRa does not provide performance gain but adds extra
overhead from rateless coding.

RALoRa performs better than eLoRa for all nodes, e.g.,
3.44 years v.s. 4.35 years for node #6. Although they both
use rateless coding, eLoRa has a constant packet size and
will retransmit extra blocks to compensate for error blocks.
RALoRa has fewer retransmissions, for it includes more

Fig. 10. The effectiveness of the proposed two components.

Fig. 11. The performance gain of bit-level network modeling.

encoded blocks in the first packet. In addition, for nodes
#1, #5, and #9 where eLoRa under-performs LoRaWAN,
RALoRa achieves comparable performance to LoRaWAN. This
is because if rateless coding has no gain, RALoRa avoids the
overhead of rateless encoding by disabling rateless encoding.

2) KF-Based Link Quality Predictor: Figure10(b)presents
the lifetime of all links using various prediction methods. The
KF-based PLE predictor outperforms Heuristic BER (HB),
Heuristic SNR (HS), and Heuristic path loss exponent (HP) by
66.8%, 47.3%, and 39.2%, respectively. This enhanced perfor-
mance is attributed to more accurate link quality prediction,
as evidenced in Figure5. Thus, while the incremental design of
our rateless coding significantly boosts efficiency, the crucial
role of precise link estimation in optimizing the initial packet
transmission is also evident.

3) Bit-Level Network Modeling: In this section, we set
up a LoRa network composed of 800 nodes and a single
gateway. This network experiences a packet collision probabil-
ity of 10.6 %, pointing to significant in-network interference.
In Figure11(a), we can observe that 54.7 % of the packets in
the network contain bit errors.

The comparative performance of three protocols is illus-
trated in Figure11(b). Notably, eLoRa outperforms LoRaWAN
in terms of network lifetime. Figure12presents the distri-
bution of SFs utilized across the network. It is evident that
eLoRa often selects smaller SFs compared to LoRaWAN.
For instance, the ratios of SF7 in eLoRa and LoRaWAN
are 34.2 % and 29.1 % respectively. The inclination towards
smaller SFs consequently reduce packet collision probabili-
ties. This assertion is supported by Figure13, where eLoRa
diminishes collision probability by 33.7 % for nodes operating
on SF10, compared with LoRaWAN. Another difference lies in
the retransmission strategy: LoRaWAN retransmits the entire
packet, whereas eLoRa only retransmits blocks. This selective
retransmission by eLoRa requires less transmission time.

The RALoRa further boosts the lifetime of eLoRa by 32.8 %
by strategically setting SFs to minimize node interference. In
RALoRa, we noted that the usage ratios for SF7 to SF10 are

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RALoRa: RATELESS-ENABLED LINK ADAPTATION FOR LoRa NETWORKING 3405

Fig. 12. The used SF distribution for three protocols in a LoRa network.

Fig. 13. The packet collision probability at different SFs.

Fig. 14. The adopted packet size in the RALoRa protocol.

Fig. 15. The number of retransmissions for three protocols.

Fig. 16. The impact of the number of gateways on lifetime.

39.3 %, 23.0 %, 16.0 %, and 21.7 %, respectively, as illustrated
in Figure12. The packet sizes within RALoRa vary between
32 and 77 bytes, a trend detailed in Figure14. This flexible
packet sizing allows for the inclusion of additional encoded
blocks, compensating for potential block losses. Furthermore,
as confirmed by Figure15, RALoRa achieves the fewest
number of retransmissions in the network.

E. Performance Under Different Settings
We further investigate the performance of RALoRa under

different experimental settings.
Multiple Gateways: We conduct experiments with mul-

tiple gateways to investigate the impact of the number of
gateways on the normalized lifetime. Each gateway covers

Fig. 17. The impact of the duration of the sensing cycle.

Fig. 18. The residual of the normalized node lifetime.

Fig. 19. The execution time for different numbers of nodes.

800 nodes and uses a unique set of eight channels. All of them
are placed in an area with a radius of 6.0 kilometer. Figure16
confirms that the number of gateways almost does not affect
the performance of RALoRa. Because each gateway and its
covered nodes form an independent LoRa network, it would
not interfere with other LoRa gateways[31].

Sensing Intervals: In in-field experiments, each node sends
45 packets every 15 minutes with an interval of 20 seconds.
To calculate the BER under the 15-minute sensing interval,
we use the first packet to predict the BER of the 46th packet,
and so on. In this way, we can calculate the BERs at different
sensing intervals. Based on the computed BER, the expected
lifetime is calculated. Figure17displays how the lifetime
change as the sensing interval increases. We can find that as the
sensing interval increases, the lifetime increases significantly.

F. The Efficiency of RALoRa
We evaluate the optimality of the proposed heuristic

algorithms and quantify the energy overhead of RALoRa.
1) The Efficiency of Heuristic Algorithms: We present a

comparison of the outcomes from our heuristic algorithms
against the optimal solution, followed by an assessment of
the execution time of algorithms.

The Optimality of Algorithms: To evaluate the optimality
of our heuristic algorithm, extensive NS-3 simulations are
conducted in a LoRa network setup comprising 20 nodes
and a gateway. The nodes are randomly positioned using
a different random seed, facilitating a comparison between
the heuristic algorithm’s solutions and those obtained through
brute-force searching. For each simulation, the heuristic
algorithm (Algorithm1) is executed to determine each node’s
transmission configurations, and the outcomes are compared

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

3406 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

with the brute-force optimal solutions. This process is repeated
10,000 times with varying seeds to amass a comprehensive
dataset of residual normalized lifetime values. The residual
normalized lifetime, defined as the difference in normalized
lifetime between the brute-force optimal solution and the
heuristic solution, is calculated using Equation(1). Here, life-
time values are normalized against the maximum achievable
lifetime for a node using a single SF, with higher values
indicating longer network lifetimes. Figure18presents the
distribution of these values, with a recorded Kurtosis of only
0.13. The Kurtosis is a statistical measure indicating the shape
of a distribution[53],[54],[55]. A kurtosis value close to 0,
as observed in our results, denotes a distribution shape akin to
a normal distribution, suggesting that the performance of our
algorithm closely approximates the optimal solutions across
diverse network configurations. The mean value of 0.21 further
attests to the efficacy of our heuristic algorithm.

Execution Time: In our setup, as the gateway and server
are grid-powered, their energy consumption is not a concern.
We focused on measuring the execution time of the in-situ
updating algorithm across varying node counts. As depicted
in Figure19, execution time increases with the number of
nodes. For 800 nodes, the average time is 796 ms, while the
receiver’s rateless decoding takes an additional 11 ms, totaling
807 ms for both decoding and updating. This duration leaves
only 200 ms for ACK transmission, risking insufficiency under
heavy internet traffic (ACK threshold is one second). Reducing
node number to around 500 cuts the server processing time
to about 400 ms, allowing approximately 600 ms for ACK
transmission within the first window. For networks still fac-
ing timing challenges due to internet delays, two strategies
are proposed: 1) Adding more gateways can distribute the
load, reducing server processing time and ensuring timely
first-window ACK transmission. 2) If the first window proves
unfeasible, configuring nodes to use the second ACK window
(with a 2-second limit) could be a solution. Although this
may affect node lifetime, it ensures reliable ACK reception
in networks with notable internet delays.

2) Energy Overhead on Nodes: The energy consumption of
a node originates from the following two components:

Generating Encoded Rateless Blocks: We measure the
energy consumed in LoRa nodes during the rateless encoding
process, which involves encoding sensing data into 32 encoded
blocks, each with a size of 8 bytes. During the process, the
MCU is in an active state with a power of 23.48 mW[15].
This process takes an average time of 31.2 ms, resulting in an
energy consumption of 0.73 mJ. This energy consumption is
only 4.1e−7 % of the total energy of nodes.

Receiving Updated Settings: The LoRa nodes need to
receive two bytes of data for updating settings. In a worst case,
these two bytes are received in the second window, leading
to a two seconds waiting time for the MCU and the data is
transmitted using SF12. The reception time is 16.4 ms. The
energy consumed is 1.21 mJ, which represents a 6.7e−7 % of
the total battery capacity.

VI. CONCLUSION

This paper presents a rateless-enabled data rate adaptation
scheme for LoRa networks. We formulate an optimization

problem to maximize the total lifetime of all nodes via
allocation of network resources. A rateless-aware network
model is then proposed to compute lifetime by considering
rateless-enabled link transmission and in-network interference.
Finally, we design a heuristic algorithm to solve the problem.
Extensive experiments show the effectiveness of RALoRa.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions expressed in this
material are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES

[1]K. Yang, Y. Chen, X. Chen, and W. Du, “Link quality modeling for LoRa
networks in orchards,” in Proc. 22nd ACM/IEEE Conf. Inf. Process.
Sensor Netw. (IPSN), May 2023, pp. 27–39.

[2]O. Iova et al., “LoRa from the city to the mountains: Exploration of
hardware and environmental factors,” in Proc. ACM Int. Conf. Embedded
Wireless Syst. Netw. (EWSN), 2017, pp. 317–322.

[3]S. Demetri, G. P. Picco, and L. Bruzzone, “LaPS: LiDAR-assisted
placement of wireless sensor networks in forests,” ACM Trans. Sensor
Netw., vol. 15, no. 2, pp. 1–40, 2019.

[4]A. Gadre, R. Narayanan, A. Luong, A. Rowe, B. Iannucci, and S. Kumar,
“Frequency configuration for low-power wide-area networks in a heart-
beat,” in Proc. 17th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2020, pp. 339–352.

[5]A. Balanuta, N. Pereira, S. Kumar, and A. Rowe, “A cloud-optimized
link layer for low-power wide-area networks,” in Proc. 18th Int. Conf.
Mobile Syst., Appl., Services (MobiSys), 2020, pp. 247–259.

[6]K. Yang and W. Du, “LLDPC: A low-density parity-check coding
scheme for LoRa networks,” in Proc. 20th ACM Conf. Embedded Netw.
Sensor Syst. (SenSys), 2022, pp. 193–206.

[7]L. Alliance. (2017). LoRaWAN 1.1 Specification. [Online]. Available:
https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm_
specification_-v1.1.pdf

[8]J. Álamos, P. Kietzmann, T. C. Schmidt, and M. Wählisch, “Poster:
DSME-LoRa—A flexible MAC for LoRa,” in Proc. IEEE 29th Int. Conf.
Netw. Protocols (ICNP), Nov. 2021, pp. 1–2.

[9]A. Gudipati and S. Katti, “Strider: Automatic rate adaptation and
collision handling,” in Proc. ACM Special Interest Group Data Commun.
(SIGCOMM), 2011, pp. 158–169.

[10]W. Du, Z. Li, J. C. Liando, and M. Li, “From rateless to distanceless:
Enabling sparse sensor network deployment in large areas,” IEEE/ACM
Trans. Netw., vol. 24, no. 4, pp. 2498–2511, Aug. 2016.

[11]M. Luby, “LT codes,” in Proc. 43rd IEEE Annu. Symp. Found. Comput.
Sci. (FOCS), Nov. 2002, p. 271.

[12]W. Du, J. C. Liando, H. Zhang, and M. Li, “Pando: Fountain-enabled fast
data dissemination with constructive interference,” IEEE/ACM Trans.
Netw., vol. 25, no. 2, pp. 820–833, Apr. 2017.

[13]G. Chen, J. Lv, and W. Dong, “Exploiting rateless codes and cross-layer
optimization for low-power wide-area networks,” in Proc. IEEE/ACM
28th Int. Symp. Quality Service (IWQoS), Jun. 2020, pp. 1–9.

[14]G. Welch and G. Bishop. (1995). An Introduction to the Kalman Filter.
[Online]. Available: http://www.cs.unc.edu/~welch/media/pdf/kalman_
intro.pdf

[15]J. C. Liando, A. Gamage, A. W. Tengourtius, and M. Li, “Known and
unknown facts of LoRa: Experiences from a large-scale measurement
study,” ACM Trans. Sensor Netw., vol. 15, no. 2, pp. 1–35, May 2019.

[16]W. Gao, W. Du, Z. Zhao, G. Min, and M. Singhal, “Towards energy-
fairness in LoRa networks,” in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jul. 2019, pp. 788–798.

[17]S. Fahmida, V. P. Modekurthy, M. Rahman, A. Saifullah, and
M. Brocanelli, “Long-lived LoRa: Prolonging the lifetime of a LoRa
network,” in Proc. IEEE 28th Int. Conf. Netw. Protocols (ICNP),
Oct. 2020, pp. 1–12.

[18]W. Gao, Z. Zhao, and G. Min, “AdapLoRa: Resource adaptation for
maximizing network lifetime in LoRa networks,” in Proc. IEEE 28th
Int. Conf. Netw. Protocols (ICNP), Oct. 2020, pp. 1–11.

[19]T. Joachim. (2019). Complete reverse engineering of LoRa PHY.
[Online]. Available: https://www.epfl.ch/labs/tcl/wp-content/uploads/
2020/02/Reverse_Eng_Report.pdf

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: RALoRa: RATELESS-ENABLED LINK ADAPTATION FOR LoRa NETWORKING 3407

[20]L. Alliance. (2017). LoRaWAN 1.1 Regional Parameters. [Online].
Available: https://lora-alliance.org/wp-content/uploads/2020/11/lorawan-
regional-parameters-v1.1ra.pdf

[21]Z. Sun et al., “FLoRa: Energy-efficient, reliable, and beamforming-
assisted over-the-air firmware update in LoRa networks,” in Proc.
22nd ACM/IEEE Conf. Inf. Process. Sensor Netw. (IPSN), May 2023,
pp. 14–26.

[22]Y. Yu, L. Mroueh, G. Vivier, and M. Terré, “Packet recovery latency of
a rate-less polar code in low power wide area networks,” in Proc. Eur.
Conf. Netw. Commun. (EuCNC), Jun. 2019, pp. 10–14.

[23]B. Li, D. Tse, K. Chen, and H. Shen, “Capacity-achieving rateless polar
codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2016, pp. 46–50.

[24]W. Song, Y. Shen, L. Li, K. Niu, and C. Zhang, “A general construction
and encoder implementation of polar codes,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 28, no. 7, pp. 1690–1702, Jul. 2020.

[25]R. Eletreby, D. Zhang, S. Kumar, and O. Ya ğan, “Empowering low-
power wide area networks in urban settings,” in Proc. ACM Special
Interest Group Data Commun. (SIGCOMM), 2017, pp. 309–321.

[26]A. Gamage, J. C. Liando, C. Gu, R. Tan, and M. Li, “LMAC: Efficient
carrier-sense multiple access for LoRa,” in Proc. 26th Annu. Int. Conf.
Mobile Comput. Netw. (MobiCom), 2020, pp. 1–13.

[27]C. Li, X. Guo, L. Shangguan, Z. Cao, and K. Jamieson, “CurvingLoRa
to boost LoRa network capacity via concurrent transmission,” in Proc.
19th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2022,
pp. 879–895.

[28]G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “LoRaFarM: A
LoRaWAN-based smart farming modular IoT architecture,” Sensors,
vol. 20, no. 7, p. 2028, 2020.

[29]J. Liu, J. Gao, S. Jha, and W. Hu, “Seirios: Leveraging multiple channels
for LoRaWAN indoor and outdoor localization,” in Proc. 27th Annu. Int.
Conf. Mobile Comput. Netw. (MobiCom), 2021, pp. 656–669.

[30]K. Yang, Y. Chen, and W. Du, “OrchLoc: In-orchard localization via
a single LoRa gateway and generative diffusion model-based finger-
printing,” in Proc. 22nd ACM Int. Conf. Mobile Syst., Appl., Services
(MobiSys), 2024, pp. 1–14.

[31]J. Liu, W. Xu, S. Jha, and W. Hu, “Nephalai: Towards LPWAN C-RAN
with physical layer compression,” in Proc. 26th Annu. Int. Conf. Mobile
Comput. Netw. (MobiCom), 2020, pp. 1–12.

[32]M. R. Jongerden and B. R. Haverkort, “Which battery model to use?”
IET Softw., vol. 3, no. 6, pp. 445–457, 2009.

[33]Semtech. (2013). SX1272/3/6/7/8: LoRa Modem Design Guide.
[Online]. Available: https://www.openhacks.com/uploadsproductos/
loradesignguide_std.pdf

[34]P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC)
polynomial selection for embedded networks,” in Proc. IEEE Int. Conf.
Dependable Syst. Netw. (DSN), Jun./Jul. 2004, pp. 145–154.

[35]T. Elshabrawy and J. Robert, “Closed-form approximation of LoRa
modulation BER performance,” IEEE Commun. Lett., vol. 22, no. 9,
pp. 1778–1781, Sep. 2018.

[36]F. Van den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke,
“Scalability analysis of large-scale LoRaWAN networks in NS-3,” IEEE
Internet Things J., vol. 4, no. 6, pp. 2186–2198, Dec. 2017.

[37]T. S. Rappaport et al., Wireless Communications: Principles and Prac-
tice, vol. 2. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.

[38]S. Demetri, M. Zúñiga, G. P. Picco, F. Kuipers, L. Bruzzone, and
T. Telkamp, “Automated estimation of link quality for LoRa: A remote
sensing approach,” in Proc. 18th ACM/IEEE Int. Conf. Inf. Process.
Sensor Netw. (IPSN), Apr. 2019, pp. 145–156.

[39]M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do LoRa low-power
wide-area networks scale?” in Proc. 19th ACM Int. Conf. Modeling,
Anal. Simulation Wireless Mobile Syst. (MSWiM), 2016, pp. 59–67.

[40]A. Alsayyari, I. Kostanic, and C. E. Otero, “An empirical path loss
model for wireless sensor network deployment in a concrete surface
environment,” in Proc. IEEE 16th Annu. Wireless Microw. Technol. Conf.
(WAMICON), Apr. 2015, pp. 1–6.

[41]M. O. Shahid, M. Philipose, K. Chintalapudi, S. Banerjee, and
B. Krishnaswamy, “Concurrent interference cancellation: Decoding
multi-packet collisions in LoRa,” in Proc. ACM Special Interest Group
Data Commun. (SIGCOMM), 2021, pp. 503–515.

[42]T. Elshabrawy and J. Robert, “Analysis of BER and coverage perfor-
mance of LoRa modulation under same spreading factor interference,” in
Proc. IEEE 29th Annu. Int. Symp. Pers., Indoor Mobile Radio Commun.
(PIMRC), Sep. 2018, pp. 1–6.

[43]L. Alliance. (2022). LoRaWAN for Developer. [Online]. Available:
https://lora-alliance.org/lorawan-for-developers

[44]X. Xia, Q. Chen, N. Hou, Y. Zheng, and M. Li, “XCopy: Boosting weak
links for reliable LoRa communication,” in Proc. 29th Annual Int. Conf.
Mobile Comput. Netw. (MobiCom), 2023, pp. 1–15.

[45]Semtech. (2020). Semtech SX1276 Datasheet. [Online]. Avail-
able: https://www.semtech.com/products/wireless-RF/lora-transceivers/
sx1276

[46]Arduino. (2021). Arduino Uno Rev3. [Online]. Available: https://store-
usa.arduino.cc/products/arduino-uno-rev3/?selectedStore=us

[47]M. Kooijman and T. Telkamp. (2021). LMIC Library. [Online]. Avail-
able: https://github.com/mcci-catena/arduino-lmic

[48]Semtech. (2017). LoRa Packet Forwarder. [Online]. Available: https://
github.com/Lora-net/packet_forwarder

[49]P. Gotthard. (2019). LoRaWAN Server. [Online]. Available: https://
github.com/gotthardp/lorawan-server

[50]D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level
measurements from an 802.11b mesh network,” in Proc. Conf. Appl.,
Technol., Architectures, Protocols Comput. Commun. (SIGCOMM),
2004.

[51]imec IDLab. (2017). LoRaWAN NS-3 Platform. [Online]. Available:
https://github.com/imec-idlab/ns-3-dev-git/tree/lorawan

[52]A. Aimi, S. Rovedakis, F. Guillemin, and S. Secci, “ELoRa: End-to-end
emulation of massive IoT LoRaWAN infrastructures,” in Proc. NOMS -
IEEE/IFIP Netw. Operations Manage. Symp., May 2023, pp. 1–3.

[53]K. Yang, X. Zhao, J. Zou, and W. Du, “ATPP: A mobile app prediction
system based on deep marked temporal point processes,” in Proc. 17th
Int. Conf. Distrib. Comput. Sensor Syst. (DCOSS), Jul. 2021, pp. 83–91.

[54]L. T. DeCarlo, “On the meaning and use of kurtosis,” Psychol. Methods,
vol. 2, no. 3, p. 292, 1997.

[55]K. Yang, X. Zhao, J. Zou, and W. Du, “ATPP: A mobile app prediction
system based on deep marked temporal point processes,” ACM Trans.
Sensor Netw., vol. 19, no. 3, pp. 1–24, 2023.

Kang Yang received the B.E. degree in automa-
tion engineering from the School of Electrical and
Control Engineering, Xi’an University of Science
and Technology, Xi’an, China, in 2016, and the
M.E. degree in control engineering from the School
of Electronic and Information, Xi’an Jiaotong Uni-
versity, Xi’an, in 2019. He is currently pursuing
the Ph.D. degree with the University of California,
Merced. His research interests include the AI for
wireless networking and sensing.

Miaomiao Liu received the B.S. and M.S. degrees in
software engineering from Northeastern University,
China, in 2014 and 2018, respectively, and the Ph.D.
degree in computer science from the University
of California, Merced, USA. Her research inter-
ests include wearable-based sensing, video analytics,
mobile/edge computing, on-device deep learning,
and generative AI.

Wan Du (Member, IEEE) received the B.E.
and M.S. degrees in electrical engineering from
Beihang University, China, in 2005 and 2008,
respectively, and the Ph.D. degree in electronics
from the University of Lyon (École Centrale de
Lyon), France, in 2011. He was a Research Fellow
with Nanyang Technological University, Singapore,
from 2012 to 2017. He is currently an Assistant Pro-
fessor with the University of California, Merced. His
research interests include the Internet of Things, dis-
tributed networking systems, and mobile computing.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on August 26,2024 at 19:40:29 UTC from IEEE Xplore. Restrictions apply.

