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The usefulness of a research-based assessment to an instructor can vary widely depending on how student
performance on the assessment is presented. Currently, the Thermal and Statistical Physics Assessment (TaSPA)
is being developed with a novel reporting method to offer targeted course-improvement strategies based on
student performance rather than numerical student scores. This novel reporting method, however, brings with
it unique challenges with respect to characterizing course-level performance. To address these challenges, we
explore voting theory as a framework to assist us in understanding the implicit value judgements in how we
decide on the feedback we generate for instructors. We have also surveyed faculty perception of course-level
categorical performance distributions to learn about trends and areas of consensus in how faculty interpret
performance distributions, which will inform what feedback TaSPA gives instructors based on their course
performance.
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I. INTRODUCTION

To improve students’ learning we must first be able to mea-
sure it. Within Physics Education Research (PER) this is
primarily accomplished by research-based diagnostic tests.
Considerable work is done to ensure these research-based as-
sessments (RBAs) are reliable and valid with the goal that
they can be used to improve courses by providing data on stu-
dent learning directly to instructors. In practice, the onus of
interpreting RBA data and deciding what to do with it is on
instructors. However, making sense of the results of RBAs
to inform concrete changes to classroom instruction can be
challenging, even for the most practiced instructors [1]. This
presents a barrier to the widespread use of these valuable tools
as faculty have limited time and resources.

This work is situated within the development of a
new RBA: the Thermal and Statistical Physics Assessment
(TaSPA). TaSPA is currently being developed with specific
attention to addressing the previously mentioned barrier by
reporting results in a way that provides actionable feedback
and includes suggestions for improving a faculty member’s
course. Fundamentally, this feedback is based on a summary
of the course-level performance (i.e. a single course perfor-
mance metric). However, in order to be actionable, TaSPA
does not just report a course mean and standard deviation,
which can be difficult to interpret. Instead, TaSPA reports a
course-level, categorical distribution of how many students
achieved, partially achieved, or did not achieve the learning
goal (see Sec. II). Ideally, this allows faculty to more clearly
interpret their students’ performance [2]. This solution, while
potentially allowing us to report results of RBAs in a more
useful way, has its own unique challenges; when rating indi-
vidual students into categorical bins (instead of a continuous
score category), how do we generate feedback that meaning-
fully represents the course as a whole based on a distribution
of categorical variables (i.e., how many students achieved,
partially achieved, or did not achieve the learning goal)?

When interpreting these categorical distributions at a
course level, a decision must be made about how to aggregate
students’ individual performance categories into course-level
metrics that describe the class performance as a whole. This
decision significantly influences the degree to which these
metrics are interpretable for instructors. Assessment research
within PER has historically avoided this concern by report-
ing only students “scores” (i.e., a single continuous number
meant to represent their performance on the assessment as a
whole). For near-continuously distributed scores with a suffi-
ciently large sample size, we can often describe the aggregate
of these individual scores by a Gaussian distribution with a
mean and standard deviation, then use that model to extrapo-
late characteristics of the full population of interest (not all of
which is in our data set). However, in practice, single-course
data sets are often not large enough to justify these assump-
tions, and, even when they are, these aggregate metrics can
be hard to interpret (e.g., what do I change when my students
got a 62% on average and what does that score mean?). Ad-

ditionally, this approach assumes that score is a continuous
variable. In the case of TaSPA the “score” a student receives
is categorical; individual students’ “scores” are no longer on
near-continuous scales.

This issue is not unique to TaSPA; it also arises for other
fundamentally categorical schemes like Likert-style assess-
ments as well as mastery grading [3, 4] more broadly (which
also bases performance on a categorical scale of mastery or
not). A problematic implication of this is that the aggregation
of individual scores no longer has this clear parallel to Gaus-
sian distributions in how to aggregate and interpret individual
scores. This work seeks to address this challenge by drawing
on another area – voting, which also deals with the challenge
of taking individual categorical “scores” or votes and deter-
mining an appropriate overall choice meant to represent the
will of the population (or, in our case, the performance of the
course as a whole). In the following sections, we will lay
out the specifics of TaSPA’s rating system, the background
and specifics of voting theory, and operationalize voting the-
ory for TaSPA with discussion of the specific challenges and
questions that must be addressed in that process.

II. BACKGROUND & MOTIVATION

TaSPA was developed with specific attention to how fac-
ulty use assessment results to inform changes to their in-
struction based on theories of self-regulated learning and
evidence-centered design (ECD) [2, 5–7]. TaSPA evalu-
ates students with respect to their achievement of a learning
goal categorically as: “Met”(M), “Partially Met”(P), or “Not
Met”(N); referred to together as MPN categories. These cat-
egories are informed not only by ECD [8] but also by crite-
ria developed for the Next Generation Science Standards [9],
i.e. 3-dimensional learning [10]. To ensure this new format
is useful to faculty, we previously solicited faculty feedback
via interviews. This work suggested that faculty appreciate
the format in which they can see the percentage of students
in each performance category and the section of suggested
course changes based on the overall course performance [11].

To implement this novel feedback system for TaSPA, we
must decide how to turn individual categorical performance
measures into a single course-level evaluation. To do so, it is
worth explicitly stating our goals as they will steer us to some
solutions over others (see Sec. III). TaSPA’s primary goal is
to inform faculty and enable them to improve their teaching;
thus, we posit that it is better to err on providing more feed-
back than less in cases where there is ambiguity. However, we
also acknowledge that RBAs are sometimes used in an evalu-
ative capacity (e.g., for tenure and promotion), and, thus, do
not want to downplay strong performance.

As discussed in the previous section, the problem seen in
interpreting TaSPA’s performance categories is also seen in
Likert scales that are commonly used in research-based as-
sessment instruments [12]. Historically, these instruments
dealt with this challenge by aggregating individual scores in
one of three ways: averaging responses on a linear scale (e.x.
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1 to 5) [13–24]; binning responses into a binary categoriza-
tion (e.x. agree or disagree) [25–34]; or binning into a simple
point scale and then averaging (e.x. binned point values of
-1,0,1 and then averaging) [35–38]. Some notable exceptions
have used more complex scoring schemes which do not fit
into one of the above common categories [39–42]. The meth-
ods above, however, treat fundamentally categorical data as if
it were interval when the difference between these categories
is not inherently uniform between individuals or even for a
single person’s response [43, 44].

The sheer number of unique methods to aggregate Likert
data is also an indicator that there are value judgements be-
ing made in the choice of aggregation method. An example
of such a judgement for a Likert scale is that a linear scale
scoring scheme values responses near the ends of the scale as
discernible and uniformly removed from responses nearer to
the center of the scale. This scheme places value on the ex-
tremity of a response whereas a scheme that bins the Likert
scale in a binary fashion disregards the extremity and focuses
only on the direction relative to the center of the scale.

III. VOTING THEORY

In many cases the value judgements being made, and how
they will affect aggregation and interpretation, are implicit,
which is problematic when the effects of the judgements are
not consistent over the aggregation population. To make these
judgements more explicit, and to provide a set of analysis
tools for these decisions, we can use a special case of Social
Choice Theory (a set of frameworks for the aggregation of
individual metrics into collective metrics) [45] as applied to
voting. This reframes our problem from one about a class-
room of students to one of a population of voters. In this
reframing, students become voters, and the metrics describ-
ing a class’s performance become the outcomes of this vote.
This is a particularly useful perspective to take because a vot-
ing system can be used to produce class performance metrics
that, by construction, embody the properties (the value judge-
ments and effects of them) inherent to that system.

Much of voting theory is beyond the scope of this paper;
however, the important aspect of it for this work specifically
is the way that it deals with voting systems. In voting the-
ory, a voting system (also called an “electoral system”) is a
set of rules that describes how to take individual preferences
and produce a group preference. These individual preferences
may be a single choice or a ranked list. The group preference
may be a single preference or multiple. This framework of-
fers a lot of flexibility in how the preferences are aggregated
and, as such, voting theory has some generalizable and pow-
erful tools used for the analysis of these systems. One tool
is the fairness criteria (an example of one is: if a preference
has more than 50% support it should be selected as the group
preference), which cannot all be satisfied for every possible
vote by any electoral system (Arrow’s Impossibility Theo-
rem) [46]. This allows us to draw a parallel to implicit value
judgements in how we aggregate individual student scores.

FIG. 1. The first question on the survey. Each question is on its own
page with a short reminder of the instructions and has a different
category distribution seen in the percentages below the question’s
label. The first three response options will be referred to as “No
Change”, “Moderate Change”, and “Significant Change”.

By casting our aggregation methods in the framework of vot-
ing theory these fairness criteria become the value judgments
that allow us to weigh the possible violations of behaviours
we might desire from our aggregation method.

IV. METHODS

This work’s research questions are: how do faculty in-
terpret TaSPA’s category distributions, and what value judg-
ments do faculty make while doing so. To answer these ques-
tions, we created and administered a survey to faculty that
had taught or were teaching undergraduate courses, to ana-
lyze their responses with voting theory. The survey was de-
signed to take 5 to 10 minutes to complete to minimize survey
fatigue. The survey consisted of a preface, 19 short questions,
and a demographics section. Each of the 19 questions ask the
respondent to select how significantly they might change how
they teach a topic in a hypothetical course based on a provided
course-level category distribution. An example of this format
can be seen in Fig. 1. The first 4 of the 19 questions were
given to all respondents as controls, while the remaining 15
were pulled randomly from a larger set of 105 (see Sec. IV A).
Faculty were asked to choose from options spanning ‘making
no changes’ to ‘making substantial changes’ to their instruc-
tion, and a fourth option if they felt that their reaction to a
distribution would not fit into the existing options.

The preface to the survey had the goal of putting the re-
spondent into the mindset of someone who has just finished
teaching a class where they administered a research-based di-
agnostic test that reported class performance broken down by
the course topics. In this hypothetical situation, they have just
received the results (in the format and language that TaSPA
uses) for their class and must decide how significantly they
might change how they teach these topics. The preface also
explained the MPN categorization and explicitly addressed
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concerns or issues faculty might have with the survey (iden-
tified in a pilot administration of the survey). To do this we:
explicitly stated the goal of the survey as “to investigate fac-
ulty interpretation of our novel reporting format”; acknowl-
edged that teaching is complex, but noted we are asking them
to imagine the distributions are the only information available
to base their changes on; and acknowledged that some distri-
butions would seem similar but were designed to probe for
edge cases and nuances in interpretation.

A. Question Design

The first 4 questions of the total 19 given were the same for
all respondents. This had two main purposes: to see how re-
spondents argeed or disagreed on the same distributions, and
to see how respondents interpreted different extreme distribu-
tions (e.g., distributions that are close to being entirely in one
of the MPN categories). Three of these control questions (C-
N, C-P, C-M in Fig. 2) were randomly generated to be in the
extreme cases of high M or P or N. The last control (C-Cent.)
was picked to be roughly evenly distributed in the categories
as we were interested in how faculty would interpret this par-
ticular point in the distribution space.

The remaining 15 questions were pulled from 15 groups of
7 questions. Each of the 7 points (questions) in each group
was centered on a randomly generated MPN distribution with
a spread of 6 more points around it (see Fig. 2). This was done
by taking the MPN percentages and pushing the distribution
“towards” (adding 4% to one category and subtracting 2 from
the others) or “away” (subtracting 4 from one category and
adding 2 to the others respectively) from the extremes. The
size of the spread around the central distribution was chosen
to keep the percentage difference low but still meaningful.
This clustering around a central distribution allowed us to get
an idea of how respondents would have responded differently
to small local changes in our choice of distributions as well as
a sense of agreement in a region around a central distribution.

From each of the 15 groups of 7, each respondent saw one
randomly selected distribution such that the 7 were equally
given to respondents. The 15 central distributions were cho-
sen as a compromise between wanting more coverage over
possible distributions and survey length. These competing
desires led us to 15 randomly generated center distributions
by starting with approximately 20 and then removing ques-
tions that were in the most densely populated regions of the
distribution space. This left us with 15 random questions
spread over the possible distributions with 6 additional ques-
tions around each. These 105 total distributions were the final
ones we settled on in addition to the 4 controls (see Fig. 2).

The demographics questions at the end of the survey asked
for: the type of institution respondents belonged to, how
many years they had been teaching at the undergraduate level,
how many years since they last taught at the undergraduate
level, what their typical class size was, and how often they
used RBAs. These questions were chosen to provide addi-
tional insight into the background of individual respondents.

B. Survey Context

The survey was administered in the Spring of 2023 and
gathered 33 responses, 9 of which were incomplete (the fac-
ulty member did not answer all questions), and 1 that was
completed but all 19 questions had the 4th response option
selected (“None of the responses above are what I would say
about this class”). These 9 responses are not included in anal-
ysis. Of the remaining 23 faculty, only 3 ever selected the 4th
response option. The maximum number of times an individ-
ual respondent selected the 4th option was 6 times, and on no
question did these 3 faculty unanimously select the 4th op-
tion. Thus, the 4th option is excluded from our analysis as it
did not occur often enough to support clear trends. All faculty
self-identified as belonging to a “4-year Research Focused”
institution and had a minimum of 6 years teaching experience.
Of all faculty, 87% reported that they were currently teaching
undergraduate courses, all others had taught an undergraduate
course at most 2 years prior. Class size was highly variable,
with 60% of respondents teaching classes of 10 to 110 stu-
dents and the next largest population being faculty teaching
classes typically larger than 200 students. In response to be-
ing asked to select how often they have used RBAs, faculty
had the option to select “Always” (N=8), “Sometimes” (N=6),
“I’ve tried them but no longer use them” (N=6), “Never”
(N=1), and “I was not aware of such tests prior to this survey”
(N=1). One respondent selected “Other” writing “Always if
available and can be scored meaningfully.”

V. RESULTS & DISCUSSION

Responses to the survey are plotted in Fig. 2 (color mixing
described in the caption). “No Change” was selected most
for C-M (74%); Q18 had the next largest percentage of "No
Change" (30%). Without additional questions in the region
between C-M and Q18, we cannot infer whether the change
in this percentage drops off suddenly or smoothly, but it is
notable that even a question with a 80% Met did not get unan-
imous consensus from the respondents that no changes to in-
struction would be necessary. To identify consensus (or not),
we took every group of seven points and collapsed the faculty
responses for each group into a single “point” by identifying
the option selected by the largest number of respondents for
each distribution in that group. The collapsed “points” were
then evaluated based on how many faculty agreed with this
collapsed evaluation. This “agreement” is equivalent to how
much consensus there is between faculty on their interpreta-
tion of distributions within each grouping. All groupings ex-
cept 6 achieved an agreement of 67% (i.e., a supermajority) or
more indicating general consensus amongst our respondents.

Part of the goal of this work is to inform the development
of feedback for TaSPA to ensure it is consistent with faculty
interpretations of our score distributions. To establish a qual-
itative model of faculty consensus, we have grouped the re-
sponses into 5 regions denoted by the gray dashed and solid
lines seen on Fig. 2. These lines were drawn qualitatively
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FIG. 2. Scatter plot of all distributions (plotted on %M(et) and
%N(ot Met), with %P=%100−%M−%N, of the distribution the
faculty responded to). Intensity of a point’s color is proportional
to the number of responses while hue indicates the mixing of the re-
sponse categories (note, C-M is green instead of yellow due to this
color mixing). The 4 control points are labeled “C-X” where “X”
represents the majority category (C-Cent. is the center control). All
other groups of distributions are labeled by their question number.
Note that “Q8” only has 6 of the 7 points plotted due to a typograph-
ical error that resulted in no respondents seeing one of the possible
distributions. Plotted in solid lines are the boundaries of the “PN”
ambiguity region (see Sec. V). Plotted in dashed lines are the bound-
aries of the “MP” ambiguity region (see Sec. V). These 2 regions
split the entire graph into 5 regions labeled “(1)” through “(5).”

so that they did not go through any points and separated the
low-agreement groups (the 6 mentioned previously) from the
high-agreement groups. Bounded by solid lines is the region
that should contain the crossover between Moderate and Sig-
nificant Change, while the dashed lines should contain the
crossover between Moderate and No Change. This splits
space into 5 regions termed 1 through 5 in Fig. 2; in these
regions we have: agreement on Significant Change; ambigu-
ity between Moderate and Significant Change; agreement on
Moderate Change; ambiguity between No Change and Mod-
erate Change; and agreement on No Change, respectively.
Note that the large gap in points between regions 4 and 5
make the positioning of the dashed line dividing them highly
uncertain, though erring on the side of more changes (or giv-
ing more feedback, see Sec. II) means putting the boundary
closer to C-M. This point is discussed further in Sec. VI.

To evaluate the degree to which this simple region model
fits the data, each faculty response was compared to the model
and the model was scored based on number of points: cor-
rectly predicted (i.e. Significant, Moderate, and No Change
in regions 1, 3, and 5 receptively); incorrectly predicted (i.e.
No Change in regions 1, 2, or 3; Moderate Change in 1 or 5;
or Significant Change in 3, 4, or 5); and unpredicted (i.e. any
point in regions 2 or 4 that is not incorrect). The percent of
points in each of these categories was calculated per respon-
dent and then averaged. The average correct rate was 59%,

the average incorrect was 16%, and the average unpredicted
was 25%. The correct and incorrect percentages indicate how
often the model was “right”; however, the interpretation of
the unpredicted category is nuanced. It is tempting to assume
we want this number to go to 0%, but that would necessarily
increase the incorrect category due to the inherent variation
in faculty responses. Thus, the goal of this category is to ac-
count for the variance in perception between faculty of these
distributions in our model such that we can decrease the num-
ber of incorrect responses without over-fitting our data.

VI. CONCLUSIONS & FUTURE WORK

Here, we explored faculty interpretations of a novel ap-
proach to reporting student performance on research-based
assessments. Based on their responses, we created a sim-
ple region model to convert categorical distributions of stu-
dent performance to course-scale feedback that can help fac-
ulty decide whether to make changes to their instruction. As
a preliminary study with small N, this simple region model
provides a useful tool for understanding faculty interpreta-
tions to inform development of useful feedback. In particu-
lar, this work will guide us in developing the algorithm that
generates feedback reports for TaSPA based on class MPN
distribution, ensuring feedback aligns with faculty interpre-
tation. This work also allows for investigation of how fac-
ulty might interpret these categorical distributions and allows
us, as assessment developers, to gain a better understanding
of our audience and where our priorities and values might
meaningfully differ. For example, the general trends in our
data support the claim made earlier that, in general, faculty
will prefer to make changes over not making changes, even
for classes with performance levels an assessment developer
might consider quite high (e.g., >70%). This supports the
goal that TaSPA sets of erring on the side of providing more
feedback to instructors.

While this work was motivated as part of the broader
TaSPA project, because this survey was not specific to TaSPA,
this procedure could be used to investigate aggregation of
other categorical scales, such as mastery grading and Likert-
style. Future work for this project could include developing
a modified survey with more questions centered around the
regions of ambiguity identified in this round and targeting
a larger faculty population. This increased statistical power
would allow us to identify existing voting systems that pre-
dict faculty responses. Identifying an appropriate voting the-
ory would provide a way to look for inherent value judgments
faculty, as a collective, are making when interpreting categor-
ical scoring such as mastery grading or Likert-style questions.
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