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Self-propelling organisms locomote via generation of patterns of self-deformation.
Despite the diversity of body plans, internal actuation schemes and environments in
limbless vertebrates and invertebrates, such organisms often use similar traveling waves
of axial body bending for movement. Delineating how self-deformation parameters
lead to locomotor performance (e.g. speed, energy, turning capabilities) remains
challenging. We show that a geometric framework, replacing laborious calculation
with a diagrammatic scheme, is well-suited to discovery and comparison of effective
patterns of wave dynamics in diverse living systems. We focus on a regime of undulatory
locomotion, that of highly damped environments, which is applicable not only to
small organisms in viscous fluids, but also larger animals in frictional fluids (sand)
and on frictional ground. We find that the traveling wave dynamics used by mm-scale
nematode worms and cm-scale desert dwelling snakes and lizards can be described
by time series of weights associated with two principal modes. The approximately
circular closed path trajectories of mode weights in a self-deformation space enclose
near-maximal surface integral (geometric phase) for organisms spanning two decades in
body length. We hypothesize that such trajectories are targets of control (which we refer
to as “serpenoid templates”). Further, the geometric approach reveals how seemingly
complex behaviors such as turning in worms and sidewinding snakes can be described as
modulations of templates. Thus, the use of differential geometry in the locomotion of
living systems generates a common description of locomotion across taxa and provides
hypotheses for neuromechanical control schemes at lower levels of organization.

locomotion | geometric phase | physics of living systems

Locomotion (or self-propulsion) is an essential behavior in most living systems (1, 2) and
important for engineered devices like robots (3–5). In organisms as diverse as jumping
kangaroos, swimming eels, crawling nematodes, and spiraling bacteria, self-propulsion
results from cyclic changes in body and/or appendage configuration. These configuration
sequences are ultimately generated by numerous interacting and coordinated components
coupled to environments of varying composition. A major challenge in locomotor biology
is to discover general principles that govern how organisms generate and control fast,
stable, or energetically efficient locomotion. At the organismal scale, these principles
have long been discussed in the physiology and motor control literature (6, 7) with the
term “neuromechanics” used to indicate the importance of concomitant consideration
of nervous, musculoskeletal, and biomechanical systems in explaining performance.

Several approaches are used to develop neuromechanical control principles. One
approach (“bottom–up”) to addressing this question is to directly incorporate the
nonlinearly coupled nervous/musculoskeletal systems and environments in full detail.
While success has been achieved using this approach in ferreting out mechanisms of
legged (8, 9) and undulatory locomotion (10–12), the complexity of such models leads
to challenges in discovering broad principles. Another approach (“top–down”) ignores
the complexity of organisms and seeks to discover broad (cross-taxa) and relatively simple
patterns of dynamics. These models are often referred to as templates (8, 13), defined as
a behavior that “contains the smallest number of variables and parameters that exhibit
a behavior of interest.” This approach has the benefit of producing models which are
analyzable, can be used to test lower-level mechanisms, and yield insight into features
across organisms. The template approach has been useful in rationalizing locomotor
performance and control across taxa in legged and undulatory systems (8, 14–18). In
addition to descriptive power, templates can also serve a prescriptive role, generating
dynamics which are targets of control for the neuromechanical system that can yield
beneficial locomotor properties (e.g., speed, energetics, stability), enabling robots with
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performance approaching those of living systems (8, 19–21).
Finally, a top–down approach can offer insights into how
locomotors adapt their templates to changes in locomotor mor-
phology [e.g., lizard limblessness (22)] and/or environments [e.g.,
from swimming to walking in amphibious salamanders (23)].

Despite the apparent simplicity in the template-based
approach, a question arises: given all the ways an organism could
organize its neuromechanical system to self-deform (24)—e.g.,
bounce across the ground like a pogo stick (17) or send waves
down its body from head to tail—how can one determine “good”
ones? That is, does a general framework for locomotion exist that
could provide a priori useful template dynamics which could then
be used to evaluate performance and test optimality (7) in terms
of speed, energy use, or stability? Surprisingly, an answer to this
question arose starting in the 1980s through the work of physicists
and control theorists (25–36). These researchers developed a
scheme which now goes by the name “geometric mechanics” (and
which we will refer to as the geometric phase approach) which
first uses environmental models to link small self-deformations
around each body configuration to small translations and
rotations in world space. Line integrals over closed paths in a
space of body configurations, which represent cyclic sequences
of body/limb changes, can then lead to translation/rotation
in the world. These translations or rotations can be expressed
as “geometric phases”—net changes in global quantities like
position that depend on the shape of a cyclical path whose local
parameters return to their initial values (25, 26, 28, 29, 37).
These geometric phases are independent of the specific temporal
details, such as the speed at which the paths are executed. In
other words, the geometric phase depends solely on the path’s
shape and is unaffected by the specific timing or speed of the
movements. Geometric phases appear in diverse situations
including the Ahranov–Bohm effect, parallel transport of vectors
on curved manifolds, a swinging Foucault pendulum and
polarization changes of light in coiled optical fibers.*

A major advance in the possibility of using geometric phase in
realistic locomotor situations occurred with the introduction of
the minimal perturbation coordinate (38, 39). Such coordinates
mitigate issues associated with the noncommutivity of transla-
tions and rotations in the plane and allow line integrals in the con-
figuration space to be approximated by surface integrals over cer-
tain functions. These functions are referred to as “constraint cur-
vature functions” or “height functions.” Critically, height func-
tions replace potentially laborious calculations used in the
line integral approach. For example, even in simple artificial
systems (40–42) to identify parameters that result in optimal per-
formance requires considerable computational effort, comparing
movements arising from an infinite combination of shape change
sequences. Height functions instead enable a comparatively sim-
ple, diagrammatic approach. Their key utility is that they simplify
the inverse problem: providing ready identification of gaits that
maximize performance in diverse systems. Height functions also
give a geometric rationalization of the marginal benefits that result
from changing/adapting self-deformation patterns, without the
need for significant calculation. Because of its utility, over the
last decades, researchers have developed the theory so that it
is applicable to a broad range of situations and applied the
scheme to optimal control of artificial devices including satellite
reorientation (43), robot swimming (39), sidewinding (44) and
walking (22, 45) in granular and frictional environments.

*We note that the use of the term geometric “phase” initiated in analysis of wavefunction
dynamics in quantum mechanics (27) but was later applied to translations and rotations
by Marsden and collaborators (29).

A particular regime of self-propulsion which could be
amenable to geometric analysis is that in which dissipative
forces dominate inertia. Here, cyclic patterns of undulatory self-
deformations solely dictate performance (provided the environ-
ment is uniform like in open fluid)—unlike in inertia-dominated
systems where gliding (movement without shape changes) and
stored/returned elastic energy can be utilized. This is typically
thought of as the world of very small scales [nicely narrated
in ref. 40 and the subject of much effort devoted to locomo-
tion (46)]. Surprisingly, in the last decade, our experimental
and granular resistive force theory [RFT, first introduced for
microscopic organisms (47)] modeling studies of sand-swimming
organisms have revealed that the dynamics of such terrestrial
macroscopic undulatory locomotors (48–51) operate in a me-
chanically analogous regime, where rate-independent friction,
as opposed to viscosity, dominates inertia. Even within these
dissipative locomotor regimes, comparing undulatory locomotor
performance for different dynamics is challenging due again to in-
finite combinations of self-deformation sequences, necessitating
the use of the height function formulation of locomotor geomet-
ric phase to establish cross-system principles of locomotion.

In this paper, we demonstrate that the geometric phase
approach of locomotion provides a useful way to compare living
organisms with seemingly very different and differently com-
posed (e.g., exo- vs. endoskeletal) locomotor systems across scales.
We first show that diverse undulatory organisms (including
microscopic nematodes and macroscopic snakes/lizards, Fig. 1A)
moving forward can be described using a planar wave template—
a time series of two spatial basis functions. We notice that
these time series exhibit similar patterns in locomotor systems
across scales, suggesting the existence of a fundamental template
for undulatory systems. Moreover, the time series emerge as
circular paths in the two-dimensional spatial-basis space, which
we refer to as serpenoid templates. Interestingly, we note that the
parameters governing the animals’ chosen serpenoid templates
nearly maximize geometric phase, indicating that the animals
are controlling their self-deformation patterns to achieve “good”

Fig. 1. Undulatory locomotion as a geometric phase. (A) Left to right: The
nematode worm, Caenorhabditis elegans; the sandfish lizard, Scincus scincus;
the shovelnose snake, Chionactis occipitalis; and the sidewinder rattlesnake,
Crotalus cerastes. The black scale bars denote 0.1 mm (Left image) and 1 cm
(all other images). (B) Depiction of a geometric framework that relates world-
frame movements (in position space) to animal body deformations in shape
space (adapted from ref. 29). The circular path through shape space shows
an example of a sequence of animal body configurations that produce a
traveling wave of body curvature propagated along the body from the head
(shown as the white circle) to the tail. (C) Environmental reaction forces on an
infinitesimal body segment. (D) Body shape changes coupled with the physics
of the surrounding environment can give rise to net displacements.
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A

B

C

D

Fig. 2. Low dimensional representation of
animal movement. (i) Photos of animals and
(ii) snapshots of animal body configurations
colored by time (over two or three cycles)
for (A) the nematode worm (C. elegans) in S-
basal buffer (Tcycle ≈ 1 s) (B) the sandfish
lizard (S. scincus) 7.6 cm below the surface of
and fully immersed in 300-μm glass particles
(Tcycle ≈ 0.4 s), (C) the shovel-nosed snake
(Ch. occipitalis) 7.6 cm below the surface of
and fully immersed in 300-μm glass particles,
and (D) Ch. occipitalis moving on the surface
of 300-μm glass particles (Tcycle = 0.3 s). (iii)
Solid lines show the two dominant relative
curvature (��s) PCA modes account for (A)
96.7%, (B) 94.7%, (C) 57.6%, (D) 90.7% of
the variation in observed body configurations.
Dashed lines show best fits to sin and cos
functions. (iv) 2D probability density map of
projections of curvatures (directions specified
by arrows) onto the two PCA modes with the
largest eigenvalues. Axes are identical in (iii)
and (iv).

locomotor performance (a notion we will discuss in more detail).
Beyond forward crawling, serpenoid templates can be modulated
(e.g., adding an offset to the center of the circle) to explain
turning behaviors, such as the omega turn in nematodes and the
differential turn in sidewinders.

Using a Two-Mode Description for Planar
Undulation in Dissipative Environments

Previous studies of highly damped locomotors using planar
undulation revealed relative simplicity in wave shapes (52–54).
To describe the planar† shapes used duringC. elegans locomotion,
(52) used principal components analysis (PCA) to diagonalize
the covariance matrix of local body curvatures (determined from
digitized midlines of animals during movement) to identify
a set of orthonormal basis functions, referred to as principal
components (PCs), whose weighted superposition can be used
to capture observed animal body configurations. Eigenvalues
associated with each PC or “eigenworm” indicate the variance
explained by each mode (and therefore the fraction of the variance
explained by each mode is given by the eigenvalue divided by the
sum of all eigenvalues). For steady forward crawling, ref. 52
found that two PCs were sufficient to capture most of the shape
variance, and the dynamics of movement could be represented
within this two-dimensional space by projecting time traces of
local body curvatures onto these PCs. A depiction of a “shape
space” spanned by two undulatory PCs for forward movement is
shown in Fig. 1B, with an example of the dynamics of movement
represented by the directed closed path within this space. Each
point along this path corresponds to a body posture, and the
direction indicates how postures change. Environmental reaction
forces induced by these posture changes (Fig. 1C ) can result

†Body undulation in these animals is planar but occurs dorsoventrally.

in world-frame displacements. The body shapes associated with
five points identified along the path, as well as the resulting
displacements, are shown in Fig. 1D.

Here, inspired by the similarity of the wave kinematics used
by the sandfish lizard, S. scincus (Fig. 2B and ref. 50), and the
shovel-nosed snake, Ch. occipitalis (Fig. 2 C and D and refs. 50
and 55) in sand to those used by low Reynolds number mm-
scale locomotor C. elegans (Fig. 2A), we investigated whether a
low-dimensional representation could capture the body postures
and dynamics observed in these undulatory locomotors across
scales. We collected data on C. elegans (Materials and Methods)
and reanalyzed previously published data on lizards and snakes
(50, 55). We started with the digitized animal midlines from
high-speed kinematic data (Fig. 2—ii and SI Appendix, section 3),
and characterized instantaneous body configuration using the
relative curvature, �(s, t)�s, where �(s, t) is the local curvature
at position s and time t (Fig. 2C—ii), s is the position along the
body, and �s is the arc length of one wave (SI Appendix, section 3).
�(s, t)�s is a nondimensional and coordinate-invariant quantity
that is measured as a function of position along the body for each
moment in time.

PCA was applied to the entire dataset of each species
combining curvature measurements from all trials throughout
all times (52, 56). We find that, for the forward movement of
lizards and snakes in granular media, and nematodes in fluid,
two PCs capture most of the variation in the body configurations
of each species (SI Appendix, section 3). This observation allows
us to use the space spanned by the first two PCs as our low
dimensional representation for each animal:

�(s, t)�s = w1(t)v1(s) + w2(t)v2(s), [1]

where v1(s) and v2(s) are principal components identified from
PCA; w1(t) and w2(t) are the time series of weights associated
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with the corresponding principal components. We thus define
the shape variable �(t) = [w1(t), w2(t)].

Similar to the results from ref. 52, we find that the two
dominant PCs in the lizards, snakes, and nematodes were well fit
by vi(s) = sin (2�ns/L + �s

i), i ∈ {1, 2} where n, �s
i and L are,

respectively, the number of waves, spatial phase, and the body
length (Fig. 2—iii for modes and fits‡). Note that to enforce the
orthogonality of fitted basis functions, we assume |�s

1 − �s
2| =

�/2. We use the fitted sinusoidal basis functions to construct a
two-dimensional shape space. Because the first two PCs explain
comparable amounts of the variance, we assign them to the
dimensions of the space in order of phase (i.e., �s

1 > �s
2), rather

than the amount of variance explained. This allows the chirality
of the shape space to be the same across organisms (i.e., counter-
clockwise/clockwise directed trajectory in the shape space leading
to forward/backward displacement respectively; see Fig. 2).

The visualization of shape variables reveals that animals inves-
tigated in our manuscript used nearly circular templates (of radius

w =
√
w2

1 + w2
2) to transition through body configurations in

[w1, w2]-space as they deform (Fig. 2—iv). Notably, the circle in
shape space and thus the sinusoidal variation in curvature was first
studied in the context of snake locomotion and limbless robot
control by Hirose in his seminal work (57). Following Hirose’s
terminology for such a wave, we will refer to the circular pattern
in shape space as a “serpenoid” template.§

Resistive Force Theory to Model Environmental
Interactions

To develop the geometric phase framework to rationalize such
templates as well as to discover novel behaviors, we first require a
model of body-environment interactions that connects a particu-
lar change in shape to center-of-mass translation and/or rotation
in the environment. Resistive force theory (RFT) modeling has
had successes describing movement in fluids, for example in
predicting forward swimming speeds of C. elegans (59, 60);
however, in other situations (e.g., waves with higher curvatures),
more elaborate schemes are often required to accurately capture
the dynamics (61). One of the key assumptions in RFT modeling
is that environmental disturbances induced by the movement of a
swimmer are sufficiently localized that forces and flow fields from
neighboring body segments are completely decoupled. In the last
decade, studies of animal locomotion in dry granular media have
revealed that the simplest form of RFT is remarkably successful
in describing movement in such environments (49–51).

Further, from the assumption of decoupled forces along a
deforming body, a swimmer can be divided into many infinites-
imal segments that can be treated independently. In dissipation-
dominated environments, the net force on a body is zero at every
moment in time, giving

F =
∫

body
(dF⊥ + dF ‖) = 0. [2]

dF⊥ and dF ‖ are the environmental reaction forces acting
perpendicular and parallel to the surface of an infinitesimal
segment of the body as it moves within the surrounding medium.

‡For the subsurface movement of Ch. occipitalis, we attribute the points near the origin to
turning behavior that is not captured by the first two modes; however, we will show that
despite the more complex body postures and locomotion, we are still able to quantitatively
describe forward locomotion.
§The serpenoid dynamics differ from characterization of animal body shapes as sinusoidal
amplitude displacements of away from the midline of a straight animal during a posteriorly
traveling wave, previously utilized in refs. 49 and 58.

Environmental reaction forces experienced by the undulatory
locomotors in this study are shown in Fig. 3.

In the fluid-swimming nematodes analyzed here, locomotion
occurs at sufficiently low Reynolds number (the ratio of inertial
to viscous forces is approximately 0.1) such that the assumption
of zero net force (inertialess locomotion) is well justified. This
has an important locomotor consequence: If a nematode stops
self-deforming, its locomotory speed will decay to one-half of
its steady-state speed within approximately ≈5 ms via viscous
Stokes drag (see SI Appendix, section 4 and ref. 62 for details
on the calculation). We will refer to this as the coasting time,
�coast , and can form a nondimensional parameter, the “coasting
number” C = 2�coast/�cycle, the ratio of this time to a typical
undulatory timescale, �cycle; for a nematode this is �cycle ≈ 1 s.¶

We can extend this idea (and thus the inertialess locomotion
assumption) to granular undulating systems. We justify our
extension by estimating the ratio of inertial to frictional forces in
Coulomb friction–dominated systems (which are approximately
rate independent): mv0/�cycle

�mg , where the numerator is the charac-
teristic dynamic inertial forces andm, v0, and �cycle are body mass,
average speed, and temporal period respectively; the denominator
is the characteristic frictional force where � and g are the friction
coefficient and gravitational acceleration constants respectively.
We can rewrite the above as v0/(�g)

�cycle
, where the numerator can

be interpreted as the time required to go from steady-state
locomotion to a complete stop. Because force in a frictional
fluid environment is approximately rate-independent, we have
�coast = 1

2v0/(�g). In doing so, this ratio is then (in friction-
dominated systems) exactly C. Thus, like in the viscous swimmer,
in the macroscopic granular swimmers we have analyzed, C is
sufficiently small (order 0.1) such that we can neglect inertial
effects in granular locomotion (SI Appendix, Tables S1 and S2).

For forces acting on the body of a viscous drag–dominated
nematode, we use Stokes drag from measurements from refs.
(60, 63). In the present study, these values likely represent an
approximation of the drag forces, due to the presence of surface-
induced hydrodynamic effects arising when swimming near a
glass substrate. Regarding forces on the granular swimmers in the
locomotion systems we studied, elemental forces were determined
from previously developed empirical force relations (50, 58),
with modifications made (SI Appendix, section 4) to account for
contact dynamics at granular surfaces (Fig. 3A). Knowing the ele-
mental forces at each point along the body (depicted in Fig. 3B),
the instantaneous swimming speed, ġb(t), satisfying the force
balance in Eq. 2, can be numerically determined (SI Appendix,
sections 4 and 5). Notably, ġb = [�x , �y, ��], where each element
denotes an instantaneous velocity component in the forward,
lateral, and rotational directions expressed in the time-varying
local frame of the locomotor (which does not always align with the
laboratory frame of reference). It is worth noting that the evalua-
tion of instantaneous velocity is independent of the position of the
locomotor with respect to the laboratory frame of reference (g =
[x, y, �]). The net displacement over a cycle can be numerically
obtained by solving the ordinary differential equation:

ġ =

ẋ(t)ẏ(t)
�̇(t)

 =

cos
(
�(t)

)
− sin

(
�(t)

)
0

sin
(
�(t)

)
cos
(
�(t)

)
0

0 0 1

 ġb(t) [3]

¶Note that the coasting number can also be defined as the coasting distance (from
stop self-deforming to complete stop) normalized by the characteristic length scale. The
relationship between time-scale coasting number and length-scale coasting number is
discussed in SI Appendix, section 4.
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A B

Fig. 3. Resistive forces in frictional and viscous fluid environments.
(A) Curves (ii) and (iii) are fitted to environmental stresses (force divided by
submerged area) on a thin plate moving through a granular substrate of
300-μm glass particles (SI Appendix, section 4). Stresses parallel to (dashed
lines) and perpendicular to (solid lines) are compared for (ii) subsurface
granular movement and (iii) surface granular movement. We also illustrate
the relationship between stresses and attack angle in (i) a viscous fluid (e.g.,
buffer) assuming drag as in refs. 60 and 63. (B) Local velocity vectors (green)
and segment velocities [colors correspond to (A)] for undulatory locomotors.

Our previous work (49, 50, 55) demonstrated that RFT agrees
with experimentally measured forward speeds (displayed here as
body lengths per undulation cycle) of the sandfish lizard and the
shovel-nosed snake. RFT calculations predict that intermediate
body curvatures result in the largest displacements, and previous
studies demonstrated that animals move using body curvatures
that nearly coincide with the RFT-predicted speed-maximizing
shapes. Given the success of RFT, we will model environmental
forces with this approach.

Introducing the Geometric Framework

RFT does not immediately facilitate ready understanding of how
variation in paths in the configuration space results in different
amounts of displacement (e.g., what happens to displacement
when we go from circle paths to ellipse paths or vary parameters
like radius of circle), nor does it permit rapid understanding of
why certain paths could be better than others (39, 45). That is, be-
yond merely rationalizing observed gaits, what are the principles
by which we can predict paths for other living (and ultimately
nonliving systems like robots) to achieve optimal performance
without having to do laborious calculations? While we will not
fully address these questions in this paper, we now illustrate how
progress can be made using the geometric phase approach.

The first step in applying the geometric framework to our
systems is to movement as a series of small displacements
(translations or rotations), each introduced by small body
configuration changes (“self-deformations”). We seek a mapping
that relates changes in body configuration space to changes in real-
world space. To construct such a map (which will prove valuable
in subsequent sections as we build up the machinery of the geo-
metric approach), we next introduce a fundamental assumption
in the geometric theory. That is, we assume that the small changes
in displacement (small body velocities) are linearly related to small
shape changes (small “shape” velocities) via the following:

ġb = A(�)�̇, [4]

where � = [w1, w2]T is the shape of the system (Fig. 4—i); �̇
is the shape velocity, the speed with which the body curvatures
are changing; and A(�) is the local connection, which encodes
environmental constraint forces that relate changes in body

shape to the changes in position that they induce (30–34, 36).
Each row of the local connection A(�) can the be visualized as
a vector field in the shape space (Fig. 4—ii).

In our previous work on geometric methods in locomotion, we
showed the validity of the linearity in Eq. 4 of a granular Purcell’s
three-link swimmer (39), which only has two joints (internal
shape Dof = 2). Here, we consider a two-dimensional shape
space identified by PCA as discussed earlier. We numerically
obtained the local connection matrix A using the same approach
as discussed in ref. 39. The validity of the linearity assumption
for the two-dimensional reduced shape space representation is
shown in SI Appendix, Figs. S1–S4 (64, 65).

Given the local connection, we aim to identify relationships
between the geometries of gaits and the displacements (net body
translations or rotations) they produce (the accumulated geo-
metric phase). Notably, Eq. 3 is nonlinear and time-dependent,
causing additional challenge to directly calculate the geometric
phase. To simplify our analysis, we can approximate Eq. 3 as

Δ ≈
∫ T

0
A(�)�̇dt, . [5]

where Δ = [Δx , Δy, Δ�] is the net displacement per cycle.
Notably, without the time-varying rotation matrix in Eq. 3, Eq. 5

A

B

C

D

Fig. 4. Geometric phase approach in undulatory locomotors. Calculations
for (A) the nematode, (B) the sandfish, (C) the shovelnose snake within sand,
and (D) the shovelnose snake on the surface of sand. (i) Space of shapes
spanned by the two modes. The circle in each plot represents a particular gait.
The inset shows the dominant two modes of body curvatures determined
from PCA (with the open circles representing the head of the locomotor).
(ii) Connection vector fields determined using corresponding resistive forces
shown in Fig. 3A. Each arrow represents an infinitesimal displacement, and
the circle again represents a gait. (iii) Displacements throughout a gait cycle,
determined via a contour integral (CI) along the gait specified in (ii), are in
agreement with RFT predictions.
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is now time-invariant. Thus, the net displacement Δ is uniquely
determined by the trajectory of shape change. The establishment
of such approximation us to evaluate the geometric phase as the
linear, time-independent line integral over the local connection
vector field Fig. 4—iii. To further visualize and analyze the
geometric phase, it can be convenient to turn the line integral
into a surface integral via Stokes’ theorem (38, 66). Thus, the net
displacement can be approximated by taking the integral of the
curvature of A over the region of the shape space enclosed by a
gait,

Δ ≈
∫∫

�

(
∇ × A

)
d�. [6]

Taking the individual components of∇×A as height functions
yields gait-independent signed scalar maps that provide an
intuitive visual depiction of how shape changes relate to net
motions (38, 39, 67). Surface integrals over the height functions
predict displacements caused by the cyclic sequences of self-
deformation described by the boundary of the enclosed area. As a
result, the height function provides a way to identify gaits which
produce no displacements (i.e., enclose no net curvature) as well
as gaits that yield large displacements (i.e., enclose significant net
signed curvature).

The primary source of error in our approximation Eq. 5 is
the fact that matrix multiplication is not commutative (38). This
effect can be seen in the context of “parallel parking”: a car
cannot move sideways, but the interplay of forward and rotational
velocities can generate an emergent lateral displacement if the
forward and rotational velocities are properly sequenced. Hatton
et al. (67) introduced the notion of systematically selecting the
system gauge (the choice of body frame) such that the parallel-
parking effect is suppressed. The chosen gauge is generally close
to, but not exactly, the center of mass and mean orientation of
the body elements.

Locomotion with Continuous Environmental
Contact

We used Eq. 6 to obtain the height functions shown in the
contour plots of Fig. 5—i with average animal gaits overlaid
in blue. Integrating the height function circles of different radii
provides predictions of how displacements per gait cycle, Δ,
depend on the maximum local curvature along the body of the
animal, �m�s (Fig. 5—ii).

For the subsurface movement of the sandfish lizard S. scincus in
a frictional fluid (Movie S1 and Fig. 2 B—ii) and for swimming
of C. elegans in a true fluid (Movie S2 and Fig. 2 A—ii),
comparisons of animal performance, direct RFT simulations,
and height function surface integrals reveal that displacements
per cycle are close to predictions (Fig. 5 A and B). In the case of
the sandfish, biological data from previous studies (49, 50, 68)
provide a range of local curvatures (SI Appendix, section 3) that
are predicted to yield near-maximal displacements per cycle.
This is in accord with previous muscle activation measurements
that identified these template parameters as targets for the
neuromechanical controller (68). In the case of the nematode,
animal performance is in agreement with RFT and height
function integral predictions. It is important to note here that
because of power limitations in living (or synthetic) systems,
displacement per cycle is not necessarily equivalent to speed.
Since power generation capabilities of a swimmer are finite
(e.g., muscles are not infinitely strong), larger shape changes
(and therefore larger amplitude cycles) require more time to
execute (69). As a result, in the case of the sandfish, the peak
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Fig. 5. Results of the geometric phase approach in planar undulation. (i)
Height functions (contours, units of BL/(��)2; color scale multiplied by 100)
and average animal (blue circles); (ii) Animal performance (average ± SD,
represented by the blue crosses), geometric phase (solid black curve), and
RFT (dashed red curve) predictions for (A) C. elegans in S-basal buffer, (B) S.
scincus in 300-μm glass particles, (C) Ch. occipitalis in 300-μm glass particles,
and (D) Ch. occipitalis on the surface of 300-μm glass particles. Crosses in A—ii
show average animal gaits from different datasets. In ref. 49, curvatures were
measured manually once per cycle (dark blue cross); in ref. 50, curvatures
were measured throughout time (68) (light blue cross). The light blue cross in
B—ii represents the postural dynamics as defined by projections onto the two
dominant PCs, and the dark blue cross shows postural dynamics measured
directly from kinematic data (as reported in ref. 50, SI Appendix, section 3).

power-limited speed occurs at a slightly smaller amplitude.
In contrast, in low viscosity regimes C. elegans is not power
limited (59). Power limits arise in higher viscosity regimes (e.g.,
agar), where the nematode uses greater muscle power to deform
both its body and the surrounding fluid (59).

The shovel-nosed snake Ch. occipitalis used different waves for
locomotion on the surface of sand and within sand (Fig. 2 C
and D). For subsurface movement of Ch. occipitalis, the first two
PCs only capture 57.6% of the variation in body configurations
(Movie S3). One possible explanation for the apparent increase
in postural complexity in subsurface movement may result from
the increase in spatial frequency relative to surface crawling. As
the number of waves along the body increases, traveling waves
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may become localized to such a degree that the coherence across
the entire body is lost. Another possible mechanism may arise
from the finite muscle torque provided by the organism in the
increased stiffness subsurface environment. Torque limits may
cause localized failures to realize a target waveform which may
act as a random perturbation causing wave decoherence.

Despite the lack of clean circularity in the configuration space,
previous work showed that RFT and experiment are in good
agreement (50) which we attribute to the locality of granular
resistive forces and the low slip locomotion. To test the efficacy
of the geometric scheme in such a situation, we constructed
the height function using the shape space spanned by the two
dominant PCs, and the fully immersed environmental stresses
(Fig. 3A) is shown in Fig. 5 C—i. Predicted displacements from
direct RFT simulations and height function surface integrals are
in agreement with animal performance (Fig. 5 C—ii and SI
Appendix, sections 4 and 5) and reveal that animals use postural
dynamics predicted to yield near-maximal displacement per cycle.

The surface waveform used by Ch. occipitalis, which has fewer
waves and lower curvatures, produces low-slip movement that
leaves behind a well-defined track of depth ≈5 mm (55) (Movie
S4). Given that RFT measurements for movement at the surface
used a flat plate intruder, we added an additional term to the
measured RFT relations to account for the kinetic Coulomb
friction drag that opposes the motion of the local segment (SI
Appendix, section 4). Predictions from direct RFT simulation and
height function surface integrals are in agreement with animal
performance (Fig. 5 D—ii). We can rationalize the difference
in the subsurface and surface waveforms by considering that
granular drag force increases with intruder depth. For a fixed
depth, increasing wave curvature and/or wavenumber decreases
the amount of torque joints must produce (55). Thus, when
moving subsurface the snake can contend with the increased
environmental forces by adjusting its waveform to reduce the
torque required.

In Place Turns in Limbless Locomotors

To navigate in complex terrain, effective turning (reorientation
combined with or without translation) is as important as
translation (21, 52, 70). However, unlike in forward motion,
both the wavelength and the amplitude of the worm body wave
become time dependent (52), leading to additional challenges
to reconstruct the turning behavior. It was hypothesized that
additional PCs (eigenworms) are needed to fully describe the
turning behaviors (52). Here, we hypothesize that turning
and forward behaviors may share some common dynamics.
Specifically, we posited that turning is a modulation of the
serpenoid template in the shape space that can be rationalized by
the geometric phase approach. Note that to fully describe worm
turning behaviors on agar, we require 4 PC modes, as discussed in
refs. 71 and 72. However, in this study, we demonstrate that 2 PC
modes are sufficient to characterize worm turning in buffer fluid.

The nematode exhibits extraordinary maneuverability in part
because of its ability to perform omega turns (73). The turning
motion is called an omega turn because during the course of
turning the anterior end of the body (head) sweeps near the
posterior end of the body (tail), inscribing an “Omega” (Ω) shape
(Fig. 6A). In Fig. 6A, we illustrate an example of an omega turn
in C. elegans. It is worth noting that the worm body in Ω shape
cannot be readily prescribed by a sinusoidal function. During an
omega turn, the worm body orientation experiences significant
(typically over 60◦) rotation with negligible translation (typically
less than 0.1 BL/cycle; see Fig. 6A). We refer to this type of

A B C

D E

Fig. 6. Geometric phase approach for turning in nematodes. (A) One cycle of
tracked midlines of a turning behavior in C. elegans colored by time. The scale
bar corresponds to 80 μm. (B) Two relative curvature modes (determined
from PCA) account for 67.2% and 17.2% of the variance observed in in-plane
body configurations of 20 animals throughout 20 trials. Dashed lines show
best fits to sin and cos functions. (C) Two examples of projections of body
curvature onto a shape space identified by two PC modes. Blue points denote
a typical CW turn and yellow points denote a typical CCW turn. xc denotes the
offset of the center from the origin. (D) � height function for movement with
n = 0.7 waves along the body (units of radians/(��)2). Blue and yellow circles
denote the standard circle with off-origin center. (E) The comparison between
GM predictions (surface integral over the height function, black curves), RFT
calculation (red curves), and animal data (blue dots). Because of uncertainty
in hydrodynamic effects relevant to the worm near a solid boundary, the
GM prediction and RFT calculations are also generated for two other drag
anisotropies da = 1.5,2.5 (solid, dashed).

nontranslating turning behavior as an in-place turn. The efficacy
of such turns has made them targets for control of turning in
robots (71, 72).

We perform PCA to explore the omega turn kinematics and
notice that the modes of C. elegans forward motion and turning
motion are surprisingly similar. Specifically, the two standard
sinusoidal modes identified in C. elegans forward motion (Fig. 2
A—iii) can explain over 80% of the total variation of curvatures
in turning motion. In Fig. 6B, we compare the PCs calculated
from isolated recordings of turning motion (solid thick curves)
and the standard sinusoidal basis derived from isolated recordings
of forward motion (dashed thin curves, same as Fig. 2 A—iii).

In omega turn kinematics, there is a significant difference
between the variance explained by the first PC (which we will
refer to as mode 1) and the second PC (which we will refer to
as mode 2), hence their order is not arbitrary, in contrast to the
case of forward crawling described above. The similarity of the
PC modes in forward and turning motions suggests a conserved
shape space can realize a variety of behaviors.

Unlike in forward motion, for turning behaviors we notice
that the trajectories in the shape space are centered off-origin
along the w1 axis (hence the difference in the amount of variance
explained by each PC). Notably, clockwise (CW) turns are
typically associated with positive w1 offset and counterclockwise
(CCW) with a negative offset (Fig. 6C ). For each trial (20
individuals, one trial per individual), we calculate the distance of
the center of the recorded space shape trajectory from the origin
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(xc) and measure the net rotation in the position space. Fig. 6E
shows a clear correlation between xc and the body rotation (each
trial measurement is represented as a blue dot).

In the 2D plane, there are three connection vector fields
(corresponding to forward, lateral, and turning dynamics, Eq.
3). We can use the same methods narrated above to generate
height functions for each. Performing these calculations (SI
Appendix, section 5E), the rotational height function reveals
two distinct positive and negative regions along the w1 axis
(Fig. 6D). To quantify the turning modulation, we perform the
surface integral over standard circular templates (with a radius of
�m�s = 8) subject to different offsets in w1 axis. We bound the
uncertainty in effective drag anisotropy by computing a series of �
height function with different drag anisotropy (da). We compare
the geometric phase approach predictions on displacement and
rotation with the empirically measured data in Fig. 6E and
observe good agreement. Thus, a shape space made with a
common set of modes can describe both worm forward swimming
and turning in fluids, simply by applying the appropriate height
function; near-optimal turns can be achieved with the modes
from forward crawling through amplitude modulation that serves
to offset circular templates gaits from the origin. This suggests
that to turn, organisms may capitalize on common neural means
of coordination associated with forward locomotion, as turns and
forward crawling share a similar low-dimensional representation.

Sidewinding: Locomotion with Changing
Environmental Contact

Thus far in the paper, the systems studied are assumed to maintain
continuous full-body contact with the environment during self-
propulsion. However, many animals lift limbs or body portions
as they move, changing their contact state throughout a gait
cycle (74, 75). We therefore sought to build on our previous
success in applying the geometric framework to such situations
in robophysical models (76–78). Following the other examples
of undulatory behavior in this work, we chose an organism
that modulates environmental contact within a flowable resistive
environment with vertical waves, the rattlesnake, Cr. cerastes
(Fig. 7A). This organism encounters sandy substrates in its
native North American desert habitat and moves by sidewinding.
Sidewinders locomote on homogeneous substrates (79, 80) by
propagating a wave of planar body undulation coupled to an
offset wave of body lifting (Fig. 7B), resulting in each body
segment being cyclically lifted clear of the substrate, moved
forward, placed into a nearly static contact, then lifted again,
with a slight phase offset between successive segments (75, 81–
83) (Movie S5). Thus, the snake generates multiple head-to-tail
propagating regions of lifted movement and nearly static ground
contact and moves at a nonzero angle relative to the overall head-
to-tail body axis (Fig. 7C ) (75, 77, 81–83).

Despite the apparent complexity of these movements, our
previous work indicated that the self-deformation pattern of
Cr. cerastes could be characterized as a template consisting of
a superposition of a planar and vertical traveling wave (21), with
a phase shift of ±�/2 between them (Fig. 7B). The modulation
(e.g., changes in the maximum amplitude) of these waves can
lead to diverse behaviors (21, 77, 84). However, sidewinders
tend to use relatively consistent horizontal waves during forward
motion and are typically thought to regulate forward speed using
temporal frequency changes of the wave (75, 79, 84).

Indeed, when we applied PCA to horizontal wave dynamics
of previously collected Cr. cerastes data, we found that, across
trials dynamics of the horizontal wave consists of a circular path

A

C

B

Fig. 7. Sidewinder rattlesnake locomotion on sand. (A) Photo of Cr. cerastes
on sand. The black bar denotes 1 cm. (B) Depiction of coupling between in-
plane and vertical waves (adapted from ref. 21). (C) Time-resolved kinematics
of horizontal wave are obtained from high-speed cameras (Tcycle ≈ 0.7 s).

in a two sinuous mode configuration space (Fig. 8 A and B) of
a characteristic radius (and therefore maximal body curvature).
We thus posit that this circle forms a control template enabling
these animals to move rapidly over loose granular surfaces.

Although the vertical body dynamics have not been carefully
experimentally resolved (84), they are assumed to be a traveling
wave (and thus described by two modes) that sets the periodic
contact pattern (Fig. 8 A and B). On level granular me-
dia (21, 84), parameters describing the vertical template remained
approximately constant. Therefore, to model the vertical wave
interaction, as in refs. 21, 77, and 85, we introduced a weighting
prefactor, c, that specified how much of the environmental force
each infinitesimal segment experienced.# Specifically, we modify
the resistive force balance in Eq. 2 as

F =
∫
body

(
cdF⊥(w1, w2, ġb) + cdF ‖(w1, w2, ġb)

)
= 0. [7]

Previous work (21) revealed that the three-dimensional pose
of Cr. cerastes could be represented by a horizontal wave
(characterized by w1, w2) coupled to a phase-shifted vertical wave
that sets the environmental contact condition. To properly couple
the contact function to the in-plane shape, we introduced the
vertical wave: �(s) = a sin[2�ns/L + tan−1 (w2/w1) − �/2],
where a is the amplitude of the vertical wave, w1 and w2 describe
the in-plane wave shape. To set the contact using the vertical
wave description, �, we defined the smoothly varying function
c(s) = 1/

(
1 + exp[�(s) + b]

)
, where c ∈ [0, 1] sets the local

fraction of the environmental force experienced as a function
of position along the body, and b sets contact width. To be
consistent with previous observations, a = 15 and b = 0.5 are
chosen so that approximately 34% of the animal’s body is on the
ground (84). Fig. 7B shows how environmental contact couples
to an in-plane shape, and Fig. 8C shows how this contact varies
throughout the in-plane shape space for an animal with n = 1.5
waves along its body.

#We also modified our force balance to ensure that the total weight of remains unchanged
(SI Appendix, section 4).
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A B

C D

Fig. 8. Sidewinder rattlesnake dimensionality reduction. (A) Two relative
curvature modes (determined from PCA) account for 42.4% and 37.3%
of variance observed in the horizontal plane body configurations of 4
animals throughout 18 trials. Dashed lines show best fits to sin and cos
functions. (B) 2D probability density map of animal data projected onto
two dominant curvature principal components. (C) Shape space showing
body configuration-dependent animal–environment contact model for an
animal with 1.5 waves along its body. (D) Schematic illustrating sidewinding
locomotion. If the animal does not slip, displacements, Δ = �s cos�, can be
predicted from geometry.

Fig. 8D shows four RFT simulation snapshots throughout
one undulation cycle. Contact patches (dark regions) originate
near the head and are propagated toward the tail. Given the
experimentally observed oblique direction of travel (relative to
the head-to-tail body axis), we expect the kinematics in our
modeling to produce significant displacements in both the x
(forward) and y (lateral) directions. We therefore numerically
computed connection vector fields (Fig. 9A) and height functions
to visually and intuitively prescribe motions along both the x and
y directions (Fig. 9B). We define the total predicted displacement
is given asΔ = (Δ2

x+Δ2
y )

1/2, whereΔx andΔy are displacements
predicted from x and y height functions, respectively.

Fig. 9C shows that, for movement on granular media, direct
RFT simulations (dashed tan curve) and geometric computations
(solid tan curve) predict similar maximal displacements. The RFT
gait amplitudes predicted to yield peak performance differ slightly
from those predicted to from the “cartoon model” presumably
because at large amplitudes slip in the primary direction of motion
occurs. Despite the differences in predicted gait amplitude, the
displacement curves predicted are not highly sensitive to gait
amplitude variation over a broad range. Note that the discrepancy
between RFT simulation and geometric phase approach for
sidewinding on sand can be a result of the noncommutativity
of body velocities. As shown in Fig. 9A, the body velocity in x-
and y-directions have comparable magnitudes, which can lead to
relatively large noncommutativity effect in body velocities (38).

Differential Turns in Sidewinding. As with the worms, the
geometric phase approach can also help rationalize the spectrum
of “differential turns” observed in Cr. cerastes (21). Such turns
are interesting because those sidewinders can modulate the net

translational displacement associated with a particular turning
angle. That is, sharp differential turns (e.g., ∼90◦ per cycle) are
often accompanied by reduced translational displacement, and
gradual differential turns (e.g., less than 20◦ per cycle) by large
translation. Therefore, unlike in straight sidewinding where the
animals use relatively consistent horizontal waves (e.g., consistent
wave amplitude and propagation speed), animals exhibit varying
horizontal wave dynamics during differential turns.

The differential turning mode, first analyzed by Astley et al.
(21), can be characterized by amplitude modulations on the

A

B

C

Fig. 9. Geometric phase approach in sidewinding. (A) Connection vector
fields and (B) x- and y height functions (shown here as contour plots with
units of BL/(��)2 and color scales multiplied by 100) for movement on sand
with n = 1.5 waves along the body. The blue circle shows average animal
performance of Cr. cerastes on sand. (C) Comparisons of RFT simulations
(dashed tan curve) and geometric phase approach calculations (solid tan
curve) for movement on sand. Biological data: Cr. cerastes on a 7.6-cm layer
of sand (blue); Nerodia fasciata on a 5-cm layer of sand (dark purple). Cr.
cerastes on an oak board roughened by a layer of adhered glass particles (dark
magenta); Cr. cerastes on a smooth oak board (light magenta); Cr. cerastes on
a 1.5-cm layer of sand (light purple) (75).
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horizontal wave (Fig. 10A). Depending on the magnitude
of amplitude modulation, animals can control the degree of
turning during translation. Notably, in prior work, the amplitude
modulation refers to the modulation of elemental velocity
distribution (from anterior to posterior) (21). It is yet not clear
how internal curvature should be adapted to facilitate such
amplitude modulation on spatial velocity distribution.

We used PCA to find the curvature modes during differential
turns. We noticed that the first two principal components can
account for over 69.1% of the variance (Fig. 10B); and the two
modes for straight sidewinding are almost identical to those
for differential turns with two subtle differences: i) the spatial
frequency changes from 1.5 in straight sidewinding to 1.2 in
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Fig. 10. Geometric phase approach for “differential turning” in sidewinding
snakes. Snapshots of Cr. cerastes horizontal plane body configurations
performing (A—1) gradual (A—2) sharp differential turns. (A—3) One cycle
(Tcycle ≈ 1.4 s) of the tracked midline of a differential turn colored by time.
Rotation and displacement are labeled. (B) Two relative curvature modes
(determined from PCA) account for 44.7% and 24.5% of variance observed
in in-plane body configurations of four animals throughout 47 trials. Dashed
lines show best fits to sin and cos functions. (C) A typical projection of body
curvature onto two dominant curvature principal components colored by
time (color scale range is identical to A—3). (D) x, y , and � height functions
(shown here as contour plots x, y , � height functions (shown here as contour
plots with x and y units of BL/(��)2, and � units of radians/(��)2), color
scales in x, y height function are multiplied by 100) for movement with n =
1.2 waves along the body. The blue circles are examples of CW (solid line)
and CCW (dashed line) differential turns in Cr. cerastes. (E) The comparison
between direct RFT, GM (surface integral in height function), and animal data
(light blue dots) with its linear fit (P < 0.001).

differential turn, and ii) the phasing relationship between two
modes changes from mode 1 ahead of mode 2 in straight
sidewinding to mode 2 ahead of mode 1 in differential turn.
We suspect that these subtle changes emerged from the variation
in the horizontal wave.

We project body curvatures during differential turns onto the
first two PC modes (Fig. 10C ). We notice that the configuration
space trajectory is approximately circular, with its center offset
from the origin. As with the worm turning, we posit that the offset
of the center from the origin can serve as an indicator of the degree
of turning and translation in the snakes. We measure the rotation
and translation for each cycle (95 cycles over 47 trials, a trial
might include multiple cycles). The translation (Fig. 10 E, Left)
and rotation (Fig. 10 E, Right) in each cycle (represented as a blue
dot) are plotted as a function of w1-offset of the trajectory center
(arithmetic average) from the origin. Linear regression between
w1-offset and rotation shows significant relationships (transla-
tion: r2 = 0.20, P < 0.01; rotation: r2 = 0.50, P < 0.01).

We use the geometric phase approach to explain the observed
correlation. We numerically compute the height functions (Fig.
10D) on granular media using the same contact function and
RFT relationships as straight sidewinding. The clusters of positive
and negative volumes are distributed along the axis of w2 = 0
in � height function, indicating that the introduction of offset in
w1 direction can indeed lead to body rotation.

We then perform surface integrals over circular gaits on the
height functions. Specifically, we used the following equations to
prescribe off-centered circles in the calculation:

w1(t) = (�m�s − |xc|) sin (t) + xc
w2(t) = (�m�s − |xc|) cos (t). [8]

We compare the surface integral with RFT calculation (in-
tegrating Eq. 8 over a cycle t ∈ [0 2�)) and the fitted linear
regression, and observed good agreement.||

Our analysis illustrates that the seemingly distinct behaviors
of straight sidewinding and differential turn (through amplitude
modulation on spatial velocity distribution) share the same shape
space (PC modes). Moreover, the simple modulation scheme
(with a single variable: w1-offset) reconstructs the complicated
spectrum of behaviors with different degrees of displacement and
rotation, which further facilitates a relatively simple understand-
ing of seemingly complex sidewinder locomotion.

Discussion and Conclusions

In this paper, we presented a biological experimental application
of a geometric framework of locomotion proposed in the
1980s by physicists (25) to describe movement and developed
during the last three decades for robotic applications by control
theorists (29, 31, 38). Application of this framework to organ-
isms across scales and levels of complexity revealed that self-
deformation kinematics were well described by serpenoid tem-
plates (near circular paths in low-dimensional body configuration
spaces). Further, observed animal self-deformation kinematics
and locomotor performance coincided with predictions that
nearly maximized the surface integral over this curve in a diagram
called a height function, which corresponds to nearly maximizing
a geometric phase in the space of animal body configurations. We
can thus posit that a emergent guiding principle for control of
limbless undulatory locomotion in highly damped environments

||Note that forward and lateral height functions in Fig. 10D have opposite sign to those in
Fig. 9 because of the changes in the relative phasing relationship between mode 1 and 2.
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is: maximize geometric phase relative to the time/effort needed
to complete the cycle, using a template which is approximately
a circle in a two-dimensional configuration space. This is true
both in situations with continuous and variable environmental
contact—for cm-scale lizards and snakes in flowable (granular)
and frictional environments (both of which are ubiquitous in
natural organism environments) as well as a tiny nematode
worm in a fluid environment. Finally, modulations to serpenoid
templates can explain the turning behaviors (omega turn and
differential turn), which further indicates the generality of our
proposed templates regardless of the underlying physiological,
neural, and biomechanical mechanisms responsible for the self-
deformation patterns.

Why is this seemingly abstract approach, requiring mathemat-
ical tools not traditionally represented in the fields of bio- and
neuromechanics, of value in locomotion analysis? First, recogni-
tion that the dimensionality reduction scheme proposed in ref. 52
applies to diverse and significantly more complex organisms than
nematode worms is a useful step in discovery of candidate tem-
plates (i.e., high-level control targets). Second, the diagrammatic
approach simplifies search for candidate paths in configuration
spaces; typically such a search requires brute force computation of
all allowed paths but with height functions in hand, optimal self-
deformation patterns for translation [or rotation (71)] becomes
relatively straightforward to hypothesize. Third, the scheme
can be readily adapted (69) to imposing biologically relevant
constraints like internal force, power, or energetic limitations.

Amplifying on this last point, to demonstrate our method,
in this paper, all computations were performed in the space
of shape changes, where all shape changes are equally easy to
execute and the geometric phase nearly maximized displacement
per cycle. But recent work (69) has demonstrated connection
vector fields can be computed within modified metric spaces
(such as weighting shape changes by internal force and power
requirements). Modifying the underlying metric to account for
physiologically relevant constraints could provide insights into
the goals and limitations associated with a broader range of behav-
ior and inherent biological variability. With such theoretical tools
in concert with new experimental tools, we can now address how
lower-level physiological, neural, and biomechanical mechanisms
[“anchors” in the parlance of Full and Koditschek (13)] conspire
to generate the template dynamics (18, 68). In large-scale
organisms, electromyographic and neural recording tools at the
macroscale have been used for decades to assay neuromechanical
control across taxa (86). Relevant to animals studied here, such
tools proved useful to test a hypothesis of shape control in
sandfish locomotion (68). However, such tools provide crude
assays relative to those available in model organisms (like C.
elegans). The optical transparency and genetic mutability of these
worms provide experimental opportunities to connect templates
to underlying anchors through genetic circuit manipulation, op-
togenetics, and calcium imaging. Using the geometric scheme to
develop templates for diverse environments, we can, for example,
test the hypothesis that nematodes control for force and thus
shapes emergently arise from neuromechanical feedback (10, 87).

Finally, the results in this paper used reductions of the kinemat-
ics of animal movements to simple patterns of self-deformation
and used RFT to describe environmental interactions. We posit
that this is because we focused on relatively simple tasks, such
as escape and steady transit in homogeneous media. The extent

to which more complex locomotor behaviors (e.g., refs. 88 and
89) could be amenable to such simplification remains an open
question. Complexity may arise from unusual gait paths in the
shape spaces or from additional modes. While C. elegans uses a
circular gait in agar (52), changes in the viscosity of the environ-
ment could lead to a spectrum of gaits, ranging from circular to
elliptical gaits. Such gait spectrum is observed in the continuum
of lizard body elongation and limb reduction, where elliptical
gaits emerge as limb size reduces (22). Generalizations to more
complex descriptions (e.g., more modes) are straightforward–
geometric methods can handle higher dimension although the
visualization of height functions becomes more difficult (90, 91).
It will be interesting to explore other, potentially more complex,
locomotor behaviors not described by planar traveling waves of
body bends [e.g., rectilinear motion in snakes and peristalsis in
worms, walking and crutching of mudskippers (76)].

Materials and Methods

For all experiments, high-speed videos (excluding C. elegans) were recorded as
animals moved on various substrates, and animal postures were obtained by
identifying tracking features located along the midline of the dorsal side (lateral
side for C. elegans) of the animal in each frame. For subsurface animals, lead
markers glued to the animal were visible in X-ray images and extracted as a part
of a previous study (50). For surface animals, either markers or features on the
snakes were tracked through time, and again these points were interpolated
using a cubic spline. For C. elegans, animals were placed in 10 μL of S-basal
on a glass slide. 3D movement was constrained by a glass coverslip to a 50 μm
height, with the use of tape (Kapton). Worms were imaged using a brightfield
microscope (Leica ATC 2000). For forward crawling data, midlines were obtained
using custom MATLAB code. Binary masks of the organism were created via
thresholding. The binary masks were then skeletonized and splined. For turning
data, DeepLabCut (92) was used to track the self-occluding postures where
binarization and skeletonization fails. For Ch. occipitalis on the surface of sand,
the positions of naturally occurring evenly spaced black bands were identified in
each video image frame as part of a previous study (55). ForCr. cerastes, infrared-
reflective markers were placed along the animal, and a Natural Point Optitrack
Flex 13 camera system automatically identified and recorded marker positions at
120 frames per second. Further biological information and experimental details
for S. scincus and Ch. occipitalis are given in SI Appendix, Table S1 and for Cr.
cerastes in SI Appendix, Table S2. Details on numerical analysis and geometric
phase approach are provided in SI Appendix, sections 3–5.

Data, Materials, and Software Availability. Codes and data sets have been
deposited in Zenodo (64, 65). All other data are included in the manuscript
and/or supporting information.
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