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ABSTRACT

This article presents a method of computing bound state potential curves and autoionizing curves using fixed-nuclei R-matrix data extracted
from the Quantemol-N software suite. It is a method based on two related multichannel quantum-defect theory approaches. One is applying
bound-state boundary conditions to closed-channel asymptotic solution matrices, and the other is searching for resonance positions via
eigenphase shift analysis. We apply the method to the CH molecule to produce dense potential-curve datasets presented as graphs and supplied

as tables in the publication supplement.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0177822

I. INTRODUCTION

The CH molecule and its positive ion CH* play an important
role in certain molecular plasma environments, such as in the inter-
stellar medium or electric discharges and flames of hydrocarbon
gases. The dominant process in the destruction of the CH" ions in
such environments is typically dissociative recombination (DR) with
electrons: The ion recombines with an incident electron, forming a
neutral molecule, typically in a highly excited electronic state of CH,
and then the molecule dissociates. Our recent work' was devoted
to the process. It was found that the three lowest electronic states
(X12+, a’Tl, and A’ IT) of the CH™ ion contribute to the process: they
produce low-energy resonances in the DR spectrum, increasing sig-
nificantly the DR cross section. The presence of multiple low-energy
excited states means that the resulting CH potential and autoioniz-
ing curves contain multiple crossing series of Rydberg states, which
result in many complex avoided crossings. This study is devoted
to the determination of highly excited electronic bound states of
CH and autoionizing resonances.

Motivated, in particular, by the DR process, the lowest elec-
tronic states of the CH molecule have been studied in many the-
oretical and experimental studies. Here, we give a short overview
of theoretical studies. As early as 1970, Liu and Verhaegen’ used

the LCAO-MO-SCF method and computed potential energy curves
(PEC) as functions of the internuclear distance for nine low elec-
tronic states. Later, Bardsley and Junker,” as well as Krauss and
Julienne,” studied in more detail the energies of the CH electronic
states near the equilibrium position and the energy of the ground
state of the ion (X'T*) in order to assess how fast the DR pro-
cess is in CH*. They have used a method’ of mixed orbital sets
composed of Slater-type orbitals and elliptic orbitals. In 1977, Giusti-
Suzor and Lefebvre-Brion® also performed calculations of several
PECs at energies and geometries near the equilibrium of the ion,
using the ion virtual orbital method of Lefebvre-Brion.” For a pho-
todissociation study, van Dishoeck® determined PECs for more than
a dozen electronic states of CH using a method of multireference
configuration interaction (MRCI). Interestingly, knowing now quite
well the CH and CH" structure at low energies, we can notice that
the region of energies near the CH" equilibrium in the study by
van Dishoeck” was not computed as accurately as in earlier stud-
ies, such as by Giusti-Suzor and Lefebvre-Brion.” Soon later, Takagi
et al.,” for a study on DR in CH", computed several PECs using the
ALCHEMY code based on the Slater-type orbitals, obtaining very
accurate results, at least near the CH* equilibrium. In 1999, Kale-
mos et al.'’ published PECs for more than a dozen CH electronic
states obtained using the MRCI method and the Molpro suite of
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codes. More recently, Védzquez et al.'' have published very accu-
rate PECs of the lowest states obtained with MRCI. The focus of
that study was the 3d Rydberg states of CH, assigned previously to
be responsible for two observed but unidentified interstellar bands.
We mention here also spectroscopy-accurate coupled-cluster calcu-
lations by Shi et al.'? of the PECs of the ground electronic state of
CH. In a more recent calculation, Chakrabarti et al.'’ employed the
UK R-matrix code'’ to produce a few PEC of the Rydberg states,
as well as energies and widths of the lowest autoionizing states of
CH. The approach employed in that study is very different from
the quantum-chemistry approaches used in other studies mentioned
earlier.

The theoretical approach presented here is very different from
all the methods mentioned earlier, though it has some similarities
to the one used by Chakrabarti et al.'* It also employs the R-matrix
formalism. It is more similar in spirit to the method used by Little
and Tennyson'” in their calculations of PECs of N, which employs
quantum defect theory'®'” and certain elements of the scattering
theory even for bound state calculations. There are advantages to
working with the scattering information in the smoothest energy-
and internuclear-R-dependences possible, especially if a rovibra-
tional frame transformation will ultimately be carried out, e.g., to
determine inelastic scattering or rearrangement cross sections such
as dissociative recombination.! For this reason, we change from
the R-matrix parameterization of the scattering data to a multi-
channel quantum defect theory (MQDT) representation (i.e., the
K-matrix or its equivalent representation in terms of eigen quan-
tum defects and eigenvectors) with comparatively smooth energy
dependences. There is a slight cost in accuracy by doing this, namely
the fact that by matching to Coulomb functions at the R-matrix
boundary ro, we neglect the long range couplings at r > ro. Our
tests show that those couplings are rather small in practice and
can be approximately treated perturbatively when higher accuracy is
desirable.

Unless otherwise stated, we use atomic units throughout this
article.

Il. THEORETICAL OUTLINE

The main part of this method is applying asymptotic MQDT
procedures to fixed-nuclei electron-scattering R matrix data. We
obtain our CH* + e electron-scattering R matrix by employing
the Quantemol-N software suite,'* which uses the UKRMol *'**"
R-matrix method. The main output of this software is the energy-
dependent reactance matrix K at a large electronic distance, with
its elements representing physically open channels. The relevant
quantum numbers of these channels are the electronic state of the
target ion n, the orbital angular momentum [ of the scattering
electron, and its projection A onto the molecular axis (though A
will not explicitly appear in our later derivations). For simplicity,
let us combine these into a joint index i = {n;, i, Ai}. Let us also
denote the channel threshold E; and the channel energies ¢; = E — E;,
where E is some given total energy in Hartree energy units. It will
also be useful to define the effective quantum number for closed
channels

Vi = (728,‘)71/2. (1)
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These Quantemol calculations employ the configuration-
interaction method (CI). The correlation consistent polarized
valence quadruple-zeta (cc-pVQZ) basis set was used to represent
the electronic state of the target ion. In the CI expansion, the lowest
orbital 10* was frozen, while the remaining four electrons were
distributed over the 2 —70,1—-3m,and 18 orbitals of the active
space. Three ¢ and two 7 virtual orbitals were used to augment
the continuum orbital set in the inner region scattering wave
function. The three lowest target states, X', a’II, and A'TI, were
retained in the closed-coupling expansion in the outer region. The
orbital angular momentum of the scattered electron goes up to 4,
and the R-matrix box radius ry was 13 bohr radii. The coordinate
system places the CH" center of mass at its origin.

A. Extracting the R and K matrices

An important intermediate output of Quantemol is the fixed-
nuclei R-matrix data. The program solves the Schrédinger equation
inside a restricted electronic box with an arbitrary boundary con-
dition. The solutions |1//p) are then projected onto physical outer-
region channels |i) to get the surface amplitudes wi, = ((i|y,)). The
double angle bracket indicates that the integration is only carried
out on the surface of a sphere of radius ry centered about the cen-
ter of mass of the CH™ ion, as opposed to integration over all space.
Note that these quantities are energy-independent, and at this point,
it cannot be said whether an outer-region channel i is physically
open or closed. The saved surface amplitudes w;, along with the
inner-solution R-matrix pole energies E, can be plugged into the
Wigner-Eisenbud’’ formula to give the R matrix at an arbitrary
energy,

1 Wip Wy

Ry ==y —2£ )
g 2% E,-E

The short-range R matrix obtained via Eq. (2) has indices of
both open and closed channels. If we wish, we can transform it using
a preliminary elimination procedure (closely related to the MQDT
closed-channel elimination procedure), which neglects long-range
multipole couplings at 7 > r,

R = Roo ~ R Ree = We(WE) | R )

where o and ¢ denote blocks of open and closed channels, respec-
tively, and W, is a diagonal matrix of the asymptotically decaying
(for negative energies) Whittaker functions evaluated at the closed-
channel energies using the R-matrix box radius and the respective
electronic angular momenta. W, is its derivative with respect to
the electronic coordinate. In our derivation, we use the “energy-
normalized” Whittaker functions,'” but the division W,/W, makes
re-scaling by any r-independent constant irrelevant in implemen-
tation. We can select which closed channels we eliminate this way
(e.g., we can keep weakly closed channels while eliminating the
strongly closed ones). For the derivation of this formula, see
Appendix A. A note for readers less familiar with MQDT: this elim-
ination of channels does not mean erasing physical information
but merely decreasing the dimension of the R matrix by applying
asymptotic boundary conditions.
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Upon obtaining the R matrix, we transform it into the K matrix
using the well-known relation'”

K= ([ - ['B)(g —5'8)71, )

where f and g are diagonal matrices of the regular and irreg-
ular Coulomb functions f (e, L, 7o), g(&ili, o). Primed quantities
here and throughout denote an element-wise derivative with respect
to the electronic coordinate, r. The pair {f, g} is equal to the
pair {s,—c} in Seaton’s work.'® These functions are well defined
for all open channels and for weakly closed channels as long as
& > —1/(27). For lower energies, the functions become complex.
Therefore, for closed channels with high [ values (I > 2) that we do
not eliminate, we replaced the pair { f, g} with the rescaled {f", g"},

(e lr) = f(eLr)\/A(s 1), (5)

g(eLr) = g(e, L, r)\/A(s D), (6)

where A(e,l) = HG:O (1 +2j%). This alternate pair has also been

used in previous works, "’ though often rescaled by a factor of V2.
This choice removes the complex behavior at negative energies but
also alters some of the equations in the following sections.

The final step before branching into either the potential curve
or autoionizing curve calculation is diagonalizing the K matrix,

Kii' = Z Ujp tan (TP)U;P’ (7)
p

to obtain the eigenphase shifts 7, and the unitary (real and orthog-
onal in this case) matrix Uj. The two energy dependent objects
contain all the main information necessary for finding the potential
curves and autoionizing states.

The ability to evaluate Eq. (2) without the need to solve the
Schrodinger equation again for each input energy is a key advan-
tage of this approach. Eliminating the strongly closed channels while
retaining the weakly closed ones in Eq. (3) is another key choice that
gets rid of the more problematic channels that would otherwise ham-
per the evaluation of Eq. (4) while keeping the energy dependence of
the resulting K matrix smoother than with a full elimination. Keep-
ing some channels artificially open is also necessary for computing
the potential curves below the lowest CH" target energy, where all
channels are closed.

B. Bound-state curve calculation

This part of the approach is analogous to the multichannel
spectroscopy treatment of bound-state energies by Aymar et al.'”
(Subsection II D 2 in the reference).

In this case, we are looking at energies below the lowest tar-
get threshold where all channels are closed and, therefore, we can
only eliminate a strict subset of them. As noted earlier, we elim-
inate only the strongly closed channels because eliminating fewer
channels introduces less energy dependence into the K matrix
and its related quantities. Using the eigenphase shifts and their
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corresponding eigenvectors from Eq. (7), we can construct two new
matrices,

Sy = Up sin (TP)U;P, (8)
P

@y =, Ui cos (TP)U;P, ©)
p

which can be seen as the coefficients of a unitary transformation of
the standard real-valued asymptotic solution matrix v,

Vir = filiy — &iKiys
4 (10)
Vig = fi%y — 8T

They are to K what sine and cosine are to the tangent function.
Let us now write the Coulomb functions in terms of the energy
normalized Whittaker functions

fi = —=Wi cos i + W; sin B, (11)

gi= _Wi sin ﬁi — Wi CoS [))i, (12)

where B, = n(v; — ;). Finding bound states means finding linear
combinations of ;s such that the exponentially rising part is
removed (when there are open channels, this exists for any energy).
Using Egs. (10)-(12), it can be seen that the bound-state energies can
be found wherever the matrix

D =7 cos(B) + € sin (), (13)

is singular. Remembering that we sometimes replace { f, g} with the
rescaled { f, g"}, we need to adjust this to

D=7 cos (/;3) + € sin ([é)gil, (14)

where the matrix q is diagonal. Its elements are equal to 1 for chan-
nels that use {f,g} and equal to A(e;,l;) for channels that use
{f",¢"}. Altogether, finding the potential curves is equivalent to
finding the roots of the determinant

ID| =0, (15)

with respect to energy for each fixed-nuclei calculation. The advan-
tage of going from the K matrix to . and € is that . and ¥ do not
have divergences and are, therefore, easier to work with numerically.

C. Autoionizing curve calculation

In the energy region between the target ground state and
excited states lie the autoionizing curves. Their positions and widths
are determined by the energy dependence of the eigenphase sum
Y, 7p(E) obtained from Eq. (7) (see Subsection II D 3 of Aymar
et al.'”). The resonance positions are at the peaks of the eigenphase
sum energy derivative, and the full widths at half maximum are
defined by

2

- » dr, '
P dE Epeak

r (16)
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FIG. 1. The energy derivative of the eigenphase sum at two inter-nuclear distances
(for the 22+ symmetry, zoomed-in to a particular energy window). The widest peak
visible at R = 2.46 bohr passes underneath the three narrow peaks at R = 2.47
bohr.

For this method to correctly determine the physical autoionization
widths, it is necessary to eliminate all the closed channels before
computing the eigenphase shifts. This leads to a sharper energy
behavior of the K matrix compared to the method from Sec. IT B,
so in practice we must sample a denser energy grid. A possible issue
with this method is that peaks connected to wide resonances can
sometimes be obfuscated in regions where they strongly overlap
other narrower resonances. An example of this can be seen in Fig. 1.

A simpler, but less exact, alternative to this approach is to
again keep some of the closed channels open when computing the K
matrix, then cross out all the open channels and treat the remaining
closed part with the procedure from Subsection II B. This simplified
method neglects some of the channel couplings and does not allow
determination of the resonance widths, but is useful as an approxi-
mation of the autoionizing curves because the resulting energies are
usually very close to the ones obtained via the full approach (typically
within one autoionization width I').

D. Separating symmetries of the molecule

The Quantemol software separates the problem into irreducible
representations of the C,, point group, namely A;, A, By, and Bs.
Hence, the R matrix is block diagonal with respect to these. After
a simple unitary transformation of the R matrix, these blocks sep-
arate further into the actual physical symmetries of the problem.
The transformation in question is connected to going from real-
valued spherical harmonics to complex-valued ones and is described
briefly in our previous publication." A gives us *Z* and %A, A, gives
2y~ and 2A (identical to A1), Bi gives ’IT and 2@, and B, holds the
same information as Bj.

Il. RESULTS AND DISCUSSION

Because a Rydberg series gets infinitely dense in energy as it
approaches the threshold, we cut off our calculations at 0.15 eV
below each threshold. The ¥ symmetry curves are in Figs. 2-5.
Figure 2 shows the overall structure over the full breadth of com-
puted energies. Figure 3 zooms in to energies closer to the ionic
potential minimum. The structure is mostly dominated by a dense
series of curves parallel to the closest target state energetically above
(the ground state for the potential curves and the first excited state
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FIG. 2. The full breadth of the 23+ symmetry curves of CH. The thick dashed
curves are the CH* target states. The autoionizing curves are the continuous
red curves between the ground target state and the first excited target state. The
bound-state curves are the continuous blue curves below the ground target state.

for the autoionizing curves), which are “cut through” by a sparser
series of plunging resonances. This creates many series of avoided
crossings and is most apparent from Figs. 4 and 5, which show the
curves relative to the ground state energy. Figure 5 exchanges energy
for the effective quantum number v (with respect to the ground
state), which demonstrates how the majority of the potential curves
are placed at integer v positions (as expected of a Rydberg series).
The remaining symmetries mostly feature similar behavior to
that of 22*. The *X~ symmetry potential curves are in Fig. 6. All the
S~ symmetry channels are connected to excited electronic states of
the target and, therefore, accumulate under a higher threshold and
don’t feature any autoionizing curves in the studied energy regions.

T
Tonic 2°T state -~ - - -
Tonic X'=* state —— -
Y29+ P
+ “X" autoionizing curves
N\ >* bound-state curves

=379

-37.92

-37.94

Total energy (a.u.)

-37.96

—-37.98

Internuclear distance (a.u.)

FIG. 3. The 2=* symmetry curves zoomed in. The dashed curves are CH* target
states. The continuous curves above X'=* are autoionizing curves, and the ones
below are bound-state curves.
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FIG. 4. The 2=* symmetry curves relative to the ground target state energy FIG. 6. The 23~ symmetry potential curves. The dashed curves are CH* target
(zoomed in to energies close to the threshold). The autoionizing curves above states. All the continuous curves in this image are bound-state curves.

the threshold now also have a shaded area denoting curve widths.

2 . R ‘ Tonic 2°TT stale‘ ””” ‘, ‘

The “II symmetry curves are in Fig. 7 and feature some of the 7o 1) lonic X'T* state — - ’
densest crossing structures. Figure 8 shows a closeup of one of the ’ g‘:}‘;’s;‘(;‘f;‘;i ourves
avoided crossings, including the computed widths I'. It demonstrates \
how the largest width diabatically crosses through the curves. Often, -37.92
though, these crossings are where we lose data points because the
widest curve is often completely hidden behind the band of narrow
curves. Figure 9 shows a comparison with two previous calcula- T
tions by Takagi et al.” and Chakrabarti et al.'* It shows the so-called ~
2°T1 curve, which is the lowest curve that cuts through the Ryd- S yesl
berg series, accumulating below X' =*. This curve is the continuation &
of the resonance, which crosses X'=* closest to its minimum. 2
As such, it is the most relevant resonance to direct dissociative E s
recombination computations such as those of Amitay et al”* In -
our computations, the autoionizing curve cuts through X'=* at wl
1.7 bohr. Do note that the compared curves have been digitized and
interpolated from the aforementioned articles, and in the case of

-38.02 -

10 - ‘ it bound—slat‘e curves — —3804 B

9 N I I I
5 15 2 2.5 3 35
—g 8 Internuclear distance (a.u.)
=
=
= ! FIG. 7. The 2IT symmetry curves. The dashed curves are CH™ target states. The
§ 6 continuous curves above X'=* are autoionizing curves, and the ones below are
S s bound-state curves.
% .
5

? ‘ ‘ ‘ ‘ Chakrabarti et al., the said curve only has four data points in the

Ls 2 25 3 35 region from 2 to 2.5 bohr.
Internuclear distance (a.u.) The *A symmetry potential curves are in Fig. 10. The *® sym-

metry potential curves, on the other hand, are almost exclusively at
integer v energies (relative to either the ground or first excited target
state); they are in Fig. 11.

FIG. 5. The 2=* symmetry bound-state curve effective quantum number
(compared to the ground target state).
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FIG. 8. A closeup of a 2I1 symmetry autoionizing curve avoided crossing featuring
the curve widths with shaded areas.

A. Numerical limitations

In general, the widths of autoionizing curves are proportional
to the Rydberg spacing”

b
vi(e)’

where ¢ is computed relative to the threshold that makes up the
dominant channels of a given curve. The actual curve widths can
vary significantly around the avoided crossings but within sim-
pler regions (e.g., at internuclear distances less than 2 bohr for
3*) this scaling rule is mostly followed. If we compute the ratios
TcurveV” (£curve ) for all the curves, they form tight bands with a vari-
ance of ~5%-15%. In practice, this scaling means that one should
sample the energy grid with equidistant v (relative to the closest
higher threshold). For our specific computational setup, this means
that the widths that are narrower than

(o) o $5(6) = a7)

—4
8.639 x 10
I‘hmn(e) = —— ———au, (18)
v'(¢)
£
] <
° -0.05 = =
| <
Z
S
5 -0.1 |- T - - -
= AR
5 X
& 015 - BN
o —0.13 3
2 NN
o AEEEN
2 NN
3 02 RN
8 °I1 bound-state curves ——— oo N
?0 Takag?eta[(l99l) - TN
[;:’ _025 Chakrabarti et al. (2019) — — S
I I I I I I I I IS
1.6 1.8 2 22 2.4 2.6 2.8 3 32 34

Internuclear distance (a.u.)

FIG. 9. A comparison of the 22IT curve from previous publications by Takagi
et al.” and Chakrabarti et al.'> The continuous curves are our computed bound-
state curves, and the dashed curves are interpolated from the figures in the
aforementioned publications.
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FIG. 10. The 2A symmetry curves. The dashed curves are CH* target states. The
continuous curves above X'+ are autoionizing curves, and the ones below are
bound-state curves.
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FIG. 11. The 2®d symmetry curves. The dashed curves are CH* target states. The
continuous curves above X'=* are autoionizing curves, and the ones below are
bound-state curves.

start becoming unreliable, and curves with significantly lower widths
are likely to be lost (e is again relative to the closest higher thresh-
old). In particular, the *® symmetry is almost completely made up
of curves that skirt this boundary.

IV. CONCLUSIONS

We have processed fixed-nuclei R matrix data from Quantemol
using two methods to obtain bound-state curves and autoionizing
curves in the energy region around the X'2* state of CH*. The
computations were performed for five symmetries of the molecule:
29+ 23~ 211, 2A, and 2®. The autoionizing curve data also features
computed autoionizing widths.
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SUPPLEMENTARY MATERIAL

The supplement to this article contains data files for all the
curves shown in Figs. 2-11 (apart from the two curves extracted
from previous studies in Fig. 9). The files are separated by symmetry
and further separated into autoionizing curve files and bound-state
curve files. All values are in atomic units.

In all of the files, the first column contains the internuclear dis-
tance, and the second, third, and fourth columns contain the X'=*,
a’TI, and A'IT energies, respectively. For the autoionizing curves, the
following columns come in pairs containing a curve’s energy rela-
tive to X' = followed by its width I'. The 2® symmetry autoionizing
curve file does not contain widths due to insufficient resolution. The
bound-state curve files also don’t contain any widths. In cases where
the data for a curve does not exist at a specific geometry (either
because it isn’t in the studied energy range or because it was tem-
porarily lost in an avoided crossing as described in Fig. 1), the data
entry at that position is a “?” symbol. The set of geometries used is
the same for all files.
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APPENDIX A: R-MATRIX PRELIMINARY
CHANNEL ELIMINATION

Because R-matrix channel elimination is not very common, we
find it useful to write up our derivation for the formula (3). The
ideas used here are similar to Gregory Breit’s reduced R-matrix treat-
ment”® (Sec. 31 in the reference). We call this a preliminary elimi-
nation because in our frame transformation treatments,’ we use it
to eliminate only the strongly closed channels in order to obtain a
smooth fixed-nuclei K matrix, and it is the rovibrationally frame
transformed K matrix that undergoes the full MQDT closed-channel
elimination.

As a first step, recall that Eq. (4) can be derived from the
definition of the R matrix as an inverse logarithmic derivative of
a wave function. Let y, be the ith channel of the yth indepen-
dent solution of the Schrédinger equation. In matrix formalism, one
can write

, (A1)

To

R=y(y)"

where rg is the R-matrix box radius. This equation is valid for any
choice of independent solutions. This means that for r > o, we can
substitute the standard Coulomb functions {f, ¢} and the matrix
K with an arbitrary pair of solutions to the radial Schrodinger
equation {f, g} and their corresponding combination matrix K, i.e.,

Y(r) =]f —gK, for r > ry. (A2)

If we choose a pair that satisfies the conditions on the R-matrix box
boundary,

f'(elr) =1,
g'(eln) =0,

f(e, Lrg) =0,

(A3)

g(elr) =1,

then Eq. (4) becomes K = —R (atr = rp). This means that we can also

view the R matrix as a K matrix. Let us specifically choose the set of
Coulomb functions

f(r) = =W W(ro) - W W(r0)],
F1(0) = =2 [W ()W (r0) - W' () W(ro)],

2o _ (A4
&) = T [W W () = W W' ()],

g0 =W W () - W W (r)],

where W and W are a pair of “energy normalized” Whittaker func-
tions,'” with W exponentially decaying for closed channels and W
exponentially increasing. The & and I arguments are omitted for
brevity.

Keeping with the standard MQDT closed-channel elimination
procedure,'” we first partition the solution matrix into open and
closed blocks,

v={= =) (A5)
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and then look for a linear combination matrix B that kills off the
exponentially rising behavior in the closed channels,

phys h [.f" _gt)&]@ + [_gD&]%
nd .

yv=y _ - _
- “\Be [-8Keo]Boo + [f¢ — §eKec 1Beo

(A6)

Combining Egs. (A4) and (A6) while requiring that coefficients in
front of W be zero in all closed channels and evaluating at r = 7
yields

B = (We(ro) + W (r)Kee) ™ (-We(r0)Keo)Bao: (A7)

Setting the arbitrary Bo, equal to the identity matrix and substituting
it into the open part of Eq. (A6), K = —R, then gives us

R™ = Roo = Roe(Re = W[ W] ) R (A8)

Note here that an r-independent normalization of W does not
change this equation.

APPENDIX B: ADDITIONAL CURVE PROPERTIES

If we artificially open all the channels in our K matrix connected
to the first excited threshold and still implement the autoionizing
curve procedure, we will get an approximate diabatization of the
plunging resonances connected to the higher threshold, as shown
in Fig. 12.

Another property of fixed-nuclei R-matrix data is that the
lowest-lying bound-state curves coincide with the lowest-lying
R matrix poles. This is shown in Fig. 13. The one set of poles that
does not coincide with any curve shown instead coincides with the
lowest curve in the >A symmetry.

0045 —————p=sceoE oI K I : !
\ Tonic a1 state - - - -
! A autoionizing curves —— ||
Autoionizing widths I'
= N — | Diabatized second threshold curves — -
0035 ———— — IR g
0.03 f‘\\ — N

0.025
0.02
0.015

0.01

Energy relative to ground target state (a.u.)

0.005

0 I |
1.6 1.8 2 22 2.4 2.6 2.8 3 32 3.4
Internuclear distance (a.u.)

FIG. 12. The 2A symmetry autoionizing curves (continuous red curves with shaded
width) compared to diabatized curves (dot-dashed green curves).
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FIG. 13. The 22+ symmetry bound-state curves relative to the ground target state
energy showing that the lowest curves coincide with the low R-matrix poles.

REFERENCES

']. Forer, D. Hvizdo§, X. Jiang, M. Ayouz, C. H. Greene, and V. Kokoouline,
“Unified treatment of resonant and nonresonant mechanisms in dissociative
recombination: Benchmark study of CH*,” Phys. Rev. A 107, 042801 (2023).

2H. Liu and G. Verhaegen, “Electronic states of CH and NH,” ]. Chem. Phys. 53,
735-745 (1970).

37. Bardsley and B. Junker, “Dissociative recombination of CH* ions,”
Astrophys. J. 183, L135 (1973).

“M. Krauss and P. S. Julienne, “Dissociative recombination of e+ CH* ('£*),”
Astrophys. ]. 183, L139 (1973).

5]. C. Browne and F. A. Matsen, “Quantum-mechanical calculations for the elec-
tric field gradients and other electronic properties of lithium hydride: The use of
mixed orbital sets,” Phys. Rev. 135, A1227-A1232 (1964).

A. Giusti-Suzor and H. Lefebvre-Brion, “The dissociative recombination of
CH" ions,” Astrophys. . 214, L101-L103 (1977).

7H. Lefebvre-Brion, “On the calculation of rydberg states of some diatomic
molecules,” J. Mol. Struct. 19, 103-107 (1973).

8E. F. van Dishoeck, “Photodissociation processes in the CH molecule,” ]. Chem.
Phys. 86, 196-214 (1987).

9H. Takagi, N. Kosugi, and M. L. Dourneuf, “Dissociative recombination of CH*,”
J. Phys. B: At., Mol. Opt. Phys. 24, 711 (1991).

10A. Kalemos, A. Mavridis, and A. Metropoulos, “An accurate description of the
ground and excited states of CH,” J. Chem. Phys. 111, 9536-9548 (1999).

"a. Vazquez, J. Amero, H. Liebermann, R. Buenker, and H. Lefebvre-Brion,
“Insight into the Rydberg states of CH,” J. Chem. Phys. 126, 164302 (2007).

2D _H. Shi, J.-P. Zhang, J.-F. Sun, Y.-F. Liu, Z.-L. Zhu, and B.-H. Yu, “Accurate
analytic potential energy function and spectroscopic study for CH (X°IT) radi-
cal using coupled-cluster theory in combination with the correlation-consistent
quintuple basis set,” ]. Mol. Struct.: THEOCHEM 860, 101-105 (2008).

'®K. Chakrabarti, R. Ghosh, and B. Choudhury, “R-matrix calculation of bound
and continuum states of CH,” J. Phys. B: At., Mol. Opt. Phys. 52, 105205 (2019).
%], Tennyson, “Electron-molecule collision calculations using the R-matrix
method,” Phys. Rep. 491, 29-76 (2010).

5D, A. Little and J. Tennyson, “An ab initio study of singlet and triplet Rydberg
states of N,” J. Phys. B: At., Mol. Opt. Phys. 46, 145102 (2013).

6 M. J. Seaton, “Coulomb functions for attractive and repulsive potentials and for
positive and negative energies,” Comput. Phys. Commun. 146, 225-249 (2002).
7M. Aymar, C. H. Greene, and E. Luc-Koenig, “Multichannel Rydberg spec-
troscopy of complex atoms,” Rev. Mod. Phys. 68, 1015-1123 (1996).

18y, Tennyson, D. B. Brown, J. J. Munro, I. Rozum, H. N. Varambhia, and
N. Vinci, “Quantemol-N: An expert system for performing electron molecule col-
lision calculations using the R-matrix method,” J. Phys.: Conf. Ser. 86, 012001
(2007).

J. Chem. Phys. 159, 224111 (2023); doi: 10.1063/5.0177822
Published under an exclusive license by AIP Publishing

159, 224111-8

1¥:51:0Z ¥20Z AInF 92



The Journal

of Chemical Physics

9], M. Carr, P. G. Galiatsatos, J. D. Gorfinkiel, A. G. Harvey, M. A. Lysaght,
D. Madden, Z. Masin, M. Plummer, J. Tennyson, and H. N. Varambhia, “UKRmol:
A low-energy electron- and positron-molecule scattering suite,” Eur. Phys. ]. D 66,
58 (2012).

207, Tennyson and C. J. Noble, “RESON—A program for the detection and
fitting of Breit-Wigner resonances,” Comput. Phys. Commun. 33, 421-424
(1984).

2E. P. Wigner and L. Eisenbud, “Higher angular momenta and long range
interaction in resonance reactions,” Phys. Rev. 72, 29-41 (1947).

22C. Greene, U. Fano, and G. Strinati, “General form of the quantum-defect
theory,” Phys. Rev. A 19, 1485-1509 (1979).

ARTICLE pubs.aip.org/aip/jcp

233, Bezzaouia, M. Telmini, and C. Jungen, “Variational R-matrix calculations for
singly and doubly excited singlet gerade channels in H,” Phys. Rev. A 70, 012713
(2004).

247, Amitay, D. Zajfman, P. Forck, U. Hechtfischer, B. Seidel, M. Grieser, D. Habs,
R. Repnow, D. Schwalm, and A. Wolf, “Dissociative recombination of CH": Cross
section and final states,” Phys. Rev. A 54, 4032-4050 (1996).

23U. Fano and A. R. P. Rau, Atomic Collisions and Spectra (Academic Press,
Orlando, FL, 1986).

28G. Breit, “Theory of resonance reactions and allied topics,” in Nuclear Reac-
tions II: Theory/Kernreaktionen II: Theorie (Springer, Berlin, Heidelberg, 1959),
pp. 1-407.

J. Chem. Phys. 159, 224111 (2023); doi: 10.1063/5.0177822
Published under an exclusive license by AIP Publishing

159, 224111-9

1¥:51:0Z ¥20Z AInF 92



