Nutrient enrichment and rainfall affect plant phenology and floral resource availability for pollinators

- 3 Jessie A. Thuma*1, Christopher Duff¹, Madeline Pitera¹, Nicholas Januario¹, Colin M.
- 4 Orians¹, Philip T. Starks¹
- ¹Department of Biology, Tufts University, Medford, MA, 02155, USA
- 6 * Correspondence
- 7 Jessie Thuma
- 8 jessie.thuma@tufts.edu
- 9 Keywords: Pollination, Drought, Rainfall, Nutrient Enrichment, Agriculture, Bumble bees,
- 10 Phenology, Global Change Biology

Abstract

11

12 13

14

15

16

17

18 19

20

21

22 23

24 25

26

27

28

29

30

31

32

33

34

35

36 37

38

39

40

41

Wild pollinators are critical to maintaining ecosystem services and facilitating crop production, but habitat degradation and resource loss are leading to worldwide pollinator declines. Nutrient enrichment and changes in rainfall due to global warming are drivers of global environmental change, and likely to impact pollinator foraging behavior and reproductive success through changes to the growth and phenology of flowering plants. Here, we provide a short review of pollinator conservation in the context of nutritional ecology and plant-pollinator interactions. Then, we present novel research into the effects of nutrient and rainfall variation on plant phenology. In this study, we experimentally manipulated the amount of water and supplemental nutrients available to wild sunflower (Helianthus annuus) and goldenrod (Solidago sp.) throughout their growing season. We evaluated how changes in growth and bloom time could impact resource availability for bumble bee (Bombus impatiens) queens preparing to overwinter. We found that fertilizer and rainfall alter plant bloom time by 2-18 days, though flowering response was species-specific. Fertilizer did not significantly affect plant growth or number of flowers produced when plants were grown under drought conditions. When water was not limiting, fertilized sunflowers bloomed in floral pulses. These findings carry important implications for growers and land managers, providing insight into potential drivers of wild pollinator decline and possible conservation strategies.

Introduction

Wild pollinators are essential to ecosystem function in natural systems and provide critical ecosystem services in agricultural systems (Goulson et al., 2015; Vanbergen et al., 2013). However, insect pollinators are in decline around the world, and their loss could have profound environmental, economic, and social consequences (Goulson et al., 2015; Vanbergen et al., 2013). Though managed honey bees (*Apis mellifera* Linnaeus) may provide adequate pollination to most crops, a diverse and abundant wild, native insect community can double fruit set even when honey bees account for half of all crop visitation (Garibaldi et al., 2018). Wild pollinators are particularly important to agricultural production as the majority of food crops require pollination to set fruit (Garibaldi et al., 2018). Though native bee communities could provide full pollination services to crops with heavy pollination requirements, the wild bee community on most farms is currently too small to provide sufficient pollination on their own due to lack of semi-natural habitat (Kremen et al., 2002).

Habitat loss and degradation due to climate change and land use intensification are in part responsible for insect pollinator decline (Vanbergen et al., 2013). Habitat alteration can directly impact pollinators or indirectly affect their performance through changes in floral abundance. For example, eutrophication may shift the abundance and timing of flowering in ways that may cause a phenological mismatch between flowering time and pollinator activity (David et al., 2019). Phenological mismatch as a potential driver of pollinator decline is generating increased attention (Ogilvie and Forrest, 2017; Stemkovski et al., 2020). Generalist pollinators rely on an abundant and diverse floral community for food resources from spring through fall in temperate regions (Woodard and Jha, 2017; Leach and Drummond, 2018). Since environmental change may alter plant nutritional chemistry, floral production, and flowering phenology, this may reduce both the quality and quantity of floral resources available to pollinators at critical periods in the foraging season (Ogilvie and Forrest, 2017). Resource loss and nutritional deficiencies leave wild insects more vulnerable to disease and can prohibit reproduction, reducing the pollinator community and pollination services to crops and other flowering plants (Roger et al., 2017). Climate change and agricultural intensification are two major drivers of habitat change that are rapidly altering growing conditions on regional and local scales (Brown et al., 2016; David et al., 2019; Descamps et al., 2021; Ogilvie and Forrest, 2017). Research in the field of nutritional ecology, the study of how an organism interacts with its environment to meet its nutritional needs, could provide a critical link in understanding how landscape-level changes directly impact pollinator health and behavior (Woodard and Jha, 2017; Lihoreau et al., 2015).

Inorganic chemical fertilizer, composed mainly of nitrogen, phosphorus, and potassium, is used widely in agriculture and land management to supplement nutrient-poor soil (Vitousek et al., 1997; Li et al., 2019). Nutrient enrichment from agrochemical runoff and industrial waste, a major driver of habitat change worldwide (David et al., 2019), may affect pollinators in diverse ways. While fertilizer application can result in plants that grow larger, faster, and yield more fruit (Burkle and Irwin, 2009; Muñoz et al., 2005; Li et al., 2019), fertilizer can also alter flower production and bloom time, and nectar and pollen quality (Russo et al., 2020; David et al., 2019; Hoover et al., 2012).

When fertilizer is applied in excess or at the wrong time in the growing season, nutrients can affect non-target plants and habitats through runoff (Russo et al., 2020; Shepherd et al., 2018). The result could be a change in the chemical landscape that reduces floral abundance by promoting nitrogen-limited fast-growth plants and shifting the phenology of those non-target plants (Hunter, 2016; David et al., 2019; Thuma et al., unpublished). Most agricultural fields produce flowers in synchronous pulses that do not offer a continuous supply of flowering plants throughout the growing season and may not offer a full range of essential nutrients (Winfree et al., 2008; Goulson et al., 2008). Wild pollinators must therefore rely on seminatural areas surrounding farms to fill these gaps in plant bloom (Winfree et al., 2008; Goulson et al., 2008).

When fertilizer runs into these adjacent seminatural fields, the timing of bloom may change to potentially widen gaps in resource availability. A change in flowering alters the availability of nectar and pollen to bees and nutrient enrichment can affect the quality of those resources. For example, fertilized *Succisa pratensis* (Devil's-Bit) plants, compared against unfertilized plants, produced pollen with a higher total amino acid concentration and altered amino acid profile that was associated with increased larval mortality in bumble bees (Ceulemans et al., 2017).

The effects of chemical fertilizer must be considered in the context of climate change, as environmental conditions alter how plants take up and use soil nutrients (Bassirirad, 2000; Walter, 2018). Though many plants can survive periods of low or high rainfall, extended dry or wet periods can be detrimental to plant growth and to pollinators relying on those plants (Descamps et al., 2021; Lawson et al., 2019). Climate change is predicted to bring increasingly long droughts and more frequent extreme precipitation events to many parts of the globe (Trenberth, 2008). Drought-stressed plants tend to bloom earlier, produce fewer flowers, restrict nutrient uptake from soil, and reduce nectar and pollen production (Shavrukov et al., 2017; Walter, 2018; Descamps et al., 2021). While adequate water will increase plant biomass and flower production (Zhang et al., 2020), excessive water that leaves soil saturated for extended periods can inhibit plant growth through reduced soil oxygen, root loss, nitrogen leaching, and limited nutrient uptake by plants (Bedard-Haughn, 2009). As such, fertilizer is likely to affect plants and their pollinators differently when applied under low versus high rainfall conditions.

Studies in pollinator nutritional ecology examine the distribution and diversity of plants across the landscape and the quality of their floral rewards, which drives foraging behavior, delivery of pollination services, and population stability of both pollinators and plants (Woodard and Jha, 2017). Though insects need food throughout their lives, nutritional deficiencies during certain life cycle stages may have a disproportionate effect on reproductive success and population size. Using wild bees as an example: larvae cannot develop into functional adults without adequate food (Leach and Drummond et al., 2018); egg-laying females need the protein and fat in pollen to develop and maintain their ovaries (Leach and Drummond, 2018); diapausing insects have short time frames to build fat body stores ahead of months-long diapause (Woodard and Jha, 2017; Hahn and Denlinger, 2011). Improper nutrition during any of these periods can result in population declines and a breakdown of plant-pollinator networks. In eusocial species like bumble bees (*Bombus* spp.), which rely on a single queen to survive diapause, initiate nests, and reproduce, the effect of inadequate nutrition on population size and pollination may be magnified.

Bumble bees are among the most important native pollinators to agricultural fields in the US, serving as the primary pollinators of crops like tomatoes, blueberries, and melons, and in some regions providing the majority of crop visitation (Winfree et al., 2008). Several species of bumble bees are in decline in North America and local population distributions are changing, due in large part to habitat loss and disease (Cameron et al., 2011; Carvell et al., 2011). In Europe, bumble bee species declines are closely linked to habitat loss and a narrowing of floral resource diversity and abundance from agricultural intensification (Goulson et al., 2008). As generalist pollinators with months-long flight seasons, bumble bees depend on phenological variation in plant communities to provide diverse floral resources from spring to early fall (Malfi et al., 2019; Mallinger et al., 2016; Rundlof et al., 2014). The bumble bee colony cycle lasts for approximately one year (Alford, 1975; Goulson, 2003). Solitary queens establish nests underground or in thatched grass in the spring and lay eggs that develop into workers. Once workers emerge, queens remain in the nest and no longer forage. During the summer, queens produce workers that forage for food or care for brood before switching from worker production to male and new queen production in the fall. A new queen mates and then diapauses underground through the winter before initiating her own nest in the spring (Alford, 1975; Goulson, 2003).

There are several important nutritional windows for bumble bees, with most research focusing on nest initiation in the spring and gyne production in the fall. Early season resources can dictate a colony's rate of growth, maximum size, and whether the colony will reach the reproductive switch point (Malfi et al., 2019; Crone and Williams, 2016). Late season resource availability affects new queen production, and the success of these new queens in preparing for diapause (Timberlake et al., 2020; Woodard et al., 2019; Rundlof et al., 2014). Larvae require approximately 8 more days of feeding to develop into queens rather than workers (Cnaani et al., 2002). The feeding period for queen larvae is typically 14-20 days followed by approximately 10 days pupation, while worker feeding period lasts approximately 7-11 days followed by a 10-day pupation (Cnaani et al., 2002). Body size is strongly associated with nutrition during larval development, and small queens are unlikely to survive diapause (Couvillon and Dornhaus, 2009; Owen, 1988). For queens that eclose at appropriate body size and weight, nutrition after eclosion is a critical period as mass gain in the week post-eclosion is a strong predictor of overwintering survival (Treanore and Amsalem, 2020; Woodard et al., 2019). New queens have only 6-7 days within their natal nests after emergence to build the necessary fat and energy stores for 6-9 months of overwintering (Woodard et al., 2019).

If a new queen does not consume enough food during larval development or post-eclosion to build energy stores, she may not survive overwintering or will emerge from diapause too weak to initiate a nest (Woodard et al., 2019; Treanore and Amsalem, 2020; Timberlake et al., 2020). Insufficient food during larval development would result in small queens unable to build fat body stores post-eclosion (Couvillon and Dornhaus, 2009; Owen, 1988). Poor nutrition also leaves her more vulnerable to disease or parasitoids, like the gut parasite *Crithidia bombi*, that can diminish diapause survival and spring nest initiation (Brown et al., 2003, Schluns et al., 2010). If fertilizer or rainfall extremes alter the timing or quality of blooms in the late summer or early fall, then colonies may not have the food resources needed to produce queens or for queens to survive diapause. In this study, we examine how agricultural practices and climate change are altering the timing of plant growth and flowering in ways that could reduce resource availability to bumble bees during colony reproduction.

Using the common eastern bumble bee (*Bombus impatiens* Cresson) as a model pollinator, we measured growth in wild sunflower (*Helianthus annuus*) and goldenrod (*Solidago* sp.) under different fertilizer and precipitation treatments, and tracked bumble bee forager activity and timing of gyne emergence, to identify phenological mismatch between bloom time and colony reproduction. Wild sunflower and goldenrod are both commonly found on farmland in New England and can bloom into early October (Dr. R. Malfi, Dr. L. Russo, personal communication). These species were selected to represent flowering plants on farms or along field margins that provide important late-season food resources to pollinators and could be target or non-target recipients of chemical fertilizer (Kremen and M'Gonigle, 2015; Russo et al., 2020). This study takes place over two years and captures the effects of fertilizer as it interacts with rain along a continuum from months-long drought in 2020 to extremely high rainfall in 2021.

Several studies have found that fertilizer and changes in rainfall impact plant phenology. Fertilizer can accelerate flowering or extend a plant's bloom period (Burkle and Irwin, 2009; Russo et al. 2020), while drought can induce early flowering as a mechanism of drought escape (Shavrukov et al., 2017; Phillips et al., 2018; Nord and Lynch, 2009). Plants grown with sufficient water can increase flower production or bloom early, but excessive water can hinder growth (Huang et al., 2018; Bedard-Haughn, 2009). Plant responses to resource variation are

species specific, as one study found that nitrogen addition together with water addition accelerated flowering onset in some species of desert annuals, while delaying onset in others (Huang et al., 2018). However, no studies have examined the combined effects of fertilizer and rainfall on plant phenology through the lens of pollinator nutritional ecology.

Given previous research, we predict that fertilizer and drought will create resource gaps in the late growing season that leave bumble bees at risk for nutritional stress as colonies switch to reproduction (Fig. 1). Fertilized plants will bloom earlier than unfertilized plants regardless of water availability, with increased bloom duration and flower production in normal to high rainfall. We predict that bloom duration, flower production and plant growth will decline when plants are grown under both low and very high rainfall conditions. However, fertilizer may replace nutrients leached from soil under high rain, mitigating some of the negative effects of excessive water on growth.

Fertilizer and drought are two stressors affecting pollinators across biological scales, from changes in individual plant physiology and single colony nutrition that trickle up to affect pollinator foraging selection, delivery of pollination services, and population dynamics (David et al., 2019; Walter, 2018; Brown et al., 2016). Studying these drivers of global change biology as they affect pollinator health and reproduction, may provide important insight into disruptions in critical plant-pollination networks.

Materials and Methods

Site Description

Experiments to study the effects of nutrient enrichment and precipitation variation on plant growth took place in 2020 and 2021 at the Boston Area Climate Experiment (BACE) in Waltham, MA (42° 23′ 3″ N, 71° 12′ 52″ W). BACE was established in 2007 as a long-term study site to learn how ecosystems would respond to changes in rainfall due to climate change (Hoeppner and Dukes, 2012). The field site is located on a four-acre organic farm with an active community garden. BACE is a previously managed old field system with three experimental blocks each consisting of three precipitation treatments: 100% ambient rainfall, 75% ambient rainfall, and 50% ambient rainfall. The latter two rain treatments represent drought conditions under average rainfall. Precipitation in each treatment was controlled by clear corrugated polycarbonate slats spaced at regular intervals above experimental plots to allow 75% or 50% rainfall to reach the plots below. The ambient treatment plots were covered with deer fencing to reduce photosynthetically active radiation by about 5% to approximate light interception by the polycarbonate slats in the drought treatments (Scott et al., 2019; Hoeppner and Dukes, 2012).

The study site receives approximately 8-11cm of precipitation per month, based on the last 30 years of rainfall data in eastern Massachusetts (NOAA, accessed September 27, 2021). In the northeastern US, climate change is predicted to bring more frequent, prolonged droughts punctuated by heavy rainfall events (Runkle et al., 2017). In 2020, a prolonged drought affected BACE from July to October (Lombard et al., 2020), with 6.8cm rain in June, 5cm in July, and 5.8cm in August (NOAA, accessed September 27, 2021). In 2021, eastern MA experienced the wettest July on record with 25.4cm of rain. June 2021 received 6.5cm of rain, and 17.8cm of rain in August (NOAA, accessed September 27, 2021). The result is a precipitation continuum that ranges from extremely dry in the 2020 50% ambient (8.8cm total rain June-August) rainfall treatment to extremely wet in the 2021 100% ambient rainfall treatment (49.7cm total rain June-

August), allowing us to examine the effects of both precipitation extremes predicted with climate change.

220 Study System

Pollinators. The common eastern bumble bee (B. impatiens) is a frequent forager in New England farm fields and a bumble bee species with one of the longest summer foraging periods (Novotny et al., 2021; Pugesek and Crone, 2021). B. impatiens fly until the end of October in Eastern Massachusetts, producing queens and males from August to October (Pugesek and Crone, 2021). As one of the few bees still active in September and October, growers may rely disproportionately on B. impatiens for fall crop and plant pollination. Though this species is not in decline in Massachusetts, a decline in local populations could create a problem for fall crop pollination.

Plants. Sunflower and goldenrod are native to North America, common to farm fields in New England, and flower in the late summer or early fall. Wild sunflowers are annuals and at times planted as crops for seeds, oil, or cut flowers (Britannica, accessed September 10, 2021). Plants typically bloom from July to October in New England. Goldenrod are perennials and often grow along field margins in undisturbed ground, or are planted in pollinator habitat (Werner et al., 1980). Goldenrod occur in clonal stands, in which stems form at a rhizome node and grow outward from a central area (Werner et al., 1980). Goldenrod bloom from August to October. Both species are considered drought tolerant.

Goldenrod and sunflower provide important nutritional resources for late-season foragers and reproductives in bumble bee colonies. Sunflower pollen is typically low in protein but carries important medicinal properties that can reduce instances of the gut pathogen *Crithidia bombi*—a pathogen that can reduce queen overwintering survival and nest initiation in the spring. (Garibaldi et al., 2018; Adler et al., 2020). Goldenrod supplies an important source of pollen and nectar for bumble bees as new queens are produced in the fall at a time when overall floral abundance is declining (Ziska et al., 2016; Oertel, 1967).

Experimental Approach

Plant propagation. For goldenrod (*Solidago* spp.), severed rhizomes were obtained from an existing clonal stand at BACE in both 2020 and 2021. To limit transplant shock the apical meristem was removed so that each stem was approximately 50cm in height.

For wild sunflowers (*Helianthus annuus*), different seed sources were used for 2020 and 2021. In 2020, sunflowers were planted from seed (Silver State seeds, Great Basin Supply) directly into pots in the field on June 12-13th, 2020. Seed germination was low in 2021, requiring us to source plants of three different sunflower varieties. These three varieties included: wild-type *H. annuus* seeds (American Meadows) planted in basic potting mix (Lambert Professional Growing Media, Germination and Seedlings) in a greenhouse on Tufts University campus; seedlings of the Soraya variety purchased from Russell's Garden Center in Wayland, MA, and multi-headed wild sunflowers seedlings of unknown heritage sourced from a local grower in Burlington, MA, and grown in basic potting mix. Hereafter, these varieties will be referred to as Wild-Type, Soraya, and S3.

Each sunflower treatment (2x1m plot) contained 1 Wild-Type, 2-3 S3, and 4 Soraya sunflowers. Sunflower were transplanted on June 24th and goldenrod on June 9th (goldenrod

control transplanted June 19th). All plots were watered for the first two weeks after transplant as needed, and then watered only by rainwater. In watering control plots, plants were watered when soil moisture was low based on soil moisture measurements and visual inspection. Watering was needed only in June of 2021 as July-September saw record weekly rainfall.

Treatments. Sunflowers and goldenrod were grown under two fertilization treatments (fertilized and unfertilized) and three precipitation treatments (50%, 75%, and 100% ambient rainfall) (AppendixS1, Fig.1). In each of the three precipitation treatments, sunflower and goldenrod were planted in separate 2x2m (meter) plots, separated by at least 2m to avoid water pooling between plots, and each plot divided into two 2x1m sections. Twelve plastic 2-gallon pots were nested below the soil in each 2x1m section of the plot, with one section randomly assigned to the fertilized treatment (AppendixS1, Fig.2). Plants were arranged in two rows within a treatment, and the orientation of those rows (North-South or East-West) alternated between treatment blocks to control for variation in sunlight. Fertilized plants received 15 mL of controlled-release fertilizer pellets (Osmocote, 14-14-14 NPK) mixed in the top 5cm of soil on the day of planting. Plants were watered manually in the first two weeks after planting, and then watered only by rainfall for the remainder of the growing season.

In 2021, the same planting design was used in the 100%, 75%, and 50% rainfall plots as in 2020, with 12 plants per goldenrod plot and 8 plants per sunflower plot. An additional manually-watered control treatment was added to BACE to ensure at least one treatment with adequate water in the case of drought. Each water control treatment consisted of a 2x1m plot, divided into two equally sized 1x1m halves that each contained either 6 pots of goldenrod, or 4 pots of sunflowers.

Plant Measurements

In 2020, sunflower and goldenrod heights were measured twice per week throughout the month of August, and the number of flowering units within a treatment were counted throughout the bloom period. We recorded an average height of plants for each treatment replicate (2x1m plot) rather than record height for individual plants. During the month of August, pollen was manually removed from sunflower heads for a separate experiment (Thuma et al., unpublished), and data on flowering phenology was not recorded for sunflowers in 2020.

In 2021, height, flower number, and leaf size were recorded once per week for each sunflower from the time of transplanting through bloom until all flower heads were senesced. The number of leaves and nodes along the stalk were also recorded weekly until the first sunflower blooms appeared in July (AppendixS2). Height and flower number were recorded once per week for each goldenrod plant from the time of transplanting to senescence. The width of 1-3 sunflower heads from each sunflower plant and the length of 1-3 goldenrod inflorescences from each goldenrod plant was recorded once during the growing period (AppendixS2). Volumetric water content was measured weekly from each pot using a soil moisture probe (Campbell Scientific Hydrosense II) (AppendixS3). When plants were in bloom, the number of flowering units in each sunflower or goldenrod treatment replicate was counted three times each week from the time of first bloom until final bloom, to provide more detailed phenology data.

Bumble Bee Surveys

To determine the timing of bumble bee reproductive activity, specifically the duration of queen development and timing of emergence in the field, we surveyed bumble bee visitation to flowers in the neighboring community garden and farm three times per week in 2021 (methods modified from Pollard, 1977). Males are produced before queens, and male emergence is thought to cue the rearing of queen larvae (Goulson, 2003; Belsky et al., 2020). Field observations of males would likely signal the start of queen production within the nest, and the time between male emergence and queen emergence would therefore represent queen larval development plus the 6-7 day preparation to leave the nest (Goulson, 2003; Belsky et al., 2020; Woodard et al., 2019; Treanore and Amsalem, 2020).

We surveyed bumble bee activity three times per week, weather permitting, from July 26th when the first sunflowers opened until October 22nd when the last goldenrod flowers senesced. Surveys took place between 9:00-16:00 when temperatures were above 60 degrees F, and never in rainy conditions. In total, we surveyed 4 community garden plots, and 3 locations on the farm. Survey plots were added in the community garden as the growing season progressed and some plants were no longer flowering while others started to bloom. On the farm, we surveyed a strip of pollinator garden in the middle of the farm field, one pollinator garden along the edge of the farm, and a selection of row flowers grown for cut flowers (AppendixS4). For each survey, an observer walked slowly (approximately 20-25 steps/minute) once along the perimeter of or within the survey area, depending on size and accessibility, and recorded each bumble bee that was on a flower. Bumble bees were identified to species (Three species largely found in this area from August-October: Bombus impatiens, Bombus griseocollis, and Bombus vagans) and caste (i.e. worker, male, queen), but only B. impatiens data was used for this study (AppendixS4). We chose walking surveys rather than stationary timed surveys because we tested both methods before surveys began and found that walking surveys reduced the likelihood of counting the same individual more than once.

We also surveyed bumble bee visitation in experimental plots within BACE three times per week from the time of the first flower in a treatment replicate until the final flower senesced. Each survey lasted for 5 minutes, to capture a snapshot of bee visitation. Stationary, timed surveys were used for experimental plots because each plot had fewer flowering units overall than the farm or community garden, and plants were evenly spaced. We were thus unlikely to count the same bee multiple times.

Data Analysis

We used generalized linear mixed models (GLMMs) to compare changes in plant growth and flower production as they varied with fertilizer and rain treatments. All statistical analyses were performed in R version 3.6.1. We used the functions glmer() or lmer() from the package 'lme4' for all GLMMs (Bates et al., 2015). Separate analyses were performed for goldenrod and sunflower, and each sunflower variety was analyzed both in a single model and separately. Data from 2020 was analyzed separately from 2021 because rain totals varied dramatically (17.6cm rain from June-August in 2020, 49.7cm rain from June-August in 2021). Soil moisture content was not measured in 2020 so exact comparisons of rain treatments between years are not possible.

To measure maximum plant height (cm), leaf size (cm), and inflorescence length/width (cm), we used normally distributed GLMMs with fertilizer and rain as fixed effects, and either plot ID, greenhouse, and/or observer as random effects. Whether fertilizer and rain were included

as an interactive effect, and which random effect was included, was decided using Akaiki Information Criterion (AIC). Models to compare height in 2020 goldenrod included an offset for number of plants because height data was collected as an average value for the entire plot rather than for individual plants. In 2021, sunflower variety was included as a fixed effect when comparing all varieties in a single model. The number of leaves per plant was compared using GLMMS with a Poisson distribution, fertilizer and rain treatment as fixed effects, and greenhouse as a random effect.

To compare the number of flowers produced over the growing period in each treatment, we used either normally distributed or negative binomial GLMs, selecting the distribution that best fit the data using AIC. We summed all flowering unit counts over the full season for each plot and interpreted this value as the number of 'flower days', a value that reflects both how many flowers were produced and how many days these flowers remained open. In this way, a single open flower can be counted multiple times if it remained open and available to pollinators for several days. This resulted in a single flower count for each treatment replicate. For some plant varieties, this count was large enough to fit a gaussian distribution. Fertilizer and rain variety were included as fixed effects, with observer, greenhouse, or plot ID as random effects. Number of plants in each treatment replicate was included as an offset in all models of flower counts.

We used quantile regression to estimate patterns in the start and end of bloom in goldenrod and sunflowers across treatments, and to estimate timing of bumble bee foraging activity between workers, males and new queens (Cade and Noon, 2003). The onset of bloom or caste observations was estimated at the slope of the 0.2 quantile of flowering unit observations as a function of fertilizer and/or rain, or of the slope of the 0.2 quantile of bumble bee counts (Michielini et al., 2021). The end of bloom or bumble bee observations was estimated at the slope of the 0.8 quantile (Michielini et al., 2021). Predictor variables were compared using marginal hypothesis testing by hand, adding or removing variables from models and using anova.rq() to determine whether the main effects of rain and fertilizer or their interaction had a significant effect on bloom onset. If removing the variable did not result in a significantly worse model, the variable was removed from the analysis. Quantile regression was performed using the rq() function from the package 'quantreg' (Koenker, 2019).

Phenology analysis of bumble bee activity used only data from farm and community garden surveys because these captured a wide variety of flowering plants and their bee visitors. Experimental plots had low visitation with single plant varieties in small survey areas relative to field surveys and may bias slope coefficients at 0.2 and 0.8 quantiles. The switch to reproduction in bumble bee colonies at this site was identified by the switch from majority workers to majority males in bumble bee counts during surveys. Male production typically precedes queen production in bumble bee colonies as male and new queens require more time to develop from egg to eclosion than males (Goulson 2010), so it is the relative abundance of males that we used to estimate reproductive switchpoint and queen development period.

Results

Plant Growth

In 2020, when all plants grew under some level of water deficit, both goldenrod and sunflower height increased with rainfall while fertilizer did not increase plant growth (Fig. 2).

Rain had a significant effect on height in goldenrod (GLM, χ^2 = 7.0, df = 2, p-value = 0.0303) and sunflower (GLM, χ^2 = 23.01, df=2, p-value < 0.0001), but there was no significant difference in height between fertilizer treatments in either species. Goldenrod height increased with rainfall in both fertilized and unfertilized treatments. Fertilized sunflowers grew larger than unfertilized in the 100% (t = 3.319) and 75% (t = -4.601) rain treatments than in the 50% rain treatments (pairwise comparison, Tukey adjustment, p-value < 0.0226).

In 2021, one of the wettest summers on record in Massachusetts, goldenrod and sunflower height generally increased with fertilizer, but plateaued or decreased as rain increased from 50% to 100% ambient rainfall (Fig. 2). However, specific growth responses to fertilizer and rainfall varied between species and between sunflower varieties (Fig. 3). Fertilizer had a significant effect on goldenrod height (GLM, $\chi^2 = 13.06$, df=1, p=0.0003) and fertilized goldenrod grew larger than unfertilized in 100% rain (pairwise comparison, Tukey adjustment, t = 2.75, p = 0.0174) (Fig. 2). There was a significant effect of fertilizer (GLM, χ^2 = 51.21, df=1, p-value < 0.0001), plant variety (GLM, χ^2 = 157.02, df=2, p-value<0.0001), and the interaction between fertilizer and plant variety (GLM, $\chi^2 = 18.07$, df=2, p-value = 0.0024) on sunflower growth (Fig. 3). The S3 sunflower variety showed no significant difference in growth between rain and fertilizer treatments. In the Soraya variety, there was a significant effect of fertilizer but not rainfall on growth (GLM, $\chi^2 = 10.99$, df = 1, p-value = 0.0009), and fertilized plants in 100% (t = 2.76) and 75% (t = 2.42) rain grew larger than unfertilized (pairwise comparison, Tukey adjustment, p-value < 0.0328). And in the Wild-Type variety, fertilizer (GLM, $\chi^2 = 8.12$, df = 1, p-value = 0.0044) and rain (GLM, χ^2 = 7.82, df = 2, p-value = 0.0200) main effects were significant predictors of plant growth but with no interaction.

For full summary of plant growth data, refer to AppendixS5.

Total Flower Production

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402 403

404

405

406

407

408

409

410

411

412

413

414 415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

In 2020 we counted a total of 2545 flowers on fertilized goldenrod and 2709 flowers on unfertilized goldenrod. In 2021, we counted 2453 flowers on fertilized goldenrod and 1134 flowers on unfertilized goldenrod. Goldenrod produced more flowers with more water in both fertilized and unfertilized treatments, but only when water was limiting in 2020. When water was not limiting (2021), fertilized goldenrod produced more flowers than unfertilized and flower production increased with rainfall (Fig. 4). In 2020, we found that rain has a significant effect on goldenrod flower production (negative binomial GLM, $\chi^2 = 8.04$, df=2, p-value =0.018) while fertilizer did not influence number of flowers. 100% rain treatments produced significantly more flowers (348+/- 65 95% CI) than 50% rain treatment (245+/-41) (pairwise comparison, Tukey adjustment, t = 2.71, p-value = 0.0182). In 2021, fertilizer (negative binomial GLM, $\chi^2 = 41.89$, df = 1, p-value < 0.0001) and the interaction between fertilizer and rain (negative binomial GLM, χ^2 = 7.28, df=2, p-value = 0.0263) had significant effects on goldenrod flower production. Rain alone did not have a significant effect on flower production (negative binomial GLM, $\chi^2 = 0.422$, df=2, p-value = 0.8096). Fertilized goldenrod produced more flowers in 100% (241 +/- 50 fertilized, 130 ± -25 unfertilized) (t = 4.30) and 75% (267 ± -46 fertilized, 126 ± -24 unfertilized) (t = 5.31) rain treatments (pairwise comparison, Tukey adjustment, p-value < 0.0001).

In 2021, we counted a total of 2616 flowers in fertilized sunflowers and 2765 flowers in unfertilized sunflowers. Sunflowers grown in 50% rain had significantly more 'flower days' than

those under 75% and 100% rainfall. However, specific responses to fertilizer and rainfall varied between sunflower varieties (Fig. 5). Flower production of sunflowers in 2020 was not analyzed due to manipulation of flowering heads for a separate experiment that affected number of flowers per plant. In a model that includes all plant varieties, rainfall and plant variety had significant effects on the number of flowers produced (negative binomial GLM, χ^2 = 7.93, 203.55; df = 2, 2; p-value < 0.0190). Each of the three varieties produced more flowers over the growing period in the 50% rain treatment than in the 75% and 100% rain treatments.

In analyzing each 2021 variety separately, fertilizer (GLM, χ^2 = 9.60, df=1, p-value=0.0020) and rain (GLM, χ^2 =16.72, df=2, p-value=0.0002) had significant effects on number of flowers produced in S3 sunflowers. S3 sunflowers in 50% rain produced significantly more flowers than those growing in 75% (t = 2.55) and 100% (t = -4.04) rain and unfertilized S3 sunflowers produced significantly more flowers across all rain treatments (pairwise comparison, Tukey adjustment, p-value < 0.0289).

In Soraya variety, fertilizer (negative binomial GLM, χ^2 = 5.02, df=1, p-value = 0.0250) and the interaction between fertilizer and rain (negative binomial GLM, χ^2 = 7.40, df=2, p-value = 0.0248) had significant effects on number of flowers produced. Unfertilized Soraya produced more flowers than unfertilized in 75% rain (pairwise comparison, Tukey adjustment, t = -3.14, p = 0.0017), and fertilized plants in 75% rain produced fewer flowers than fertilized in 100% (t = 3.20) and 50% (t = 2.60) rain (pairwise comparison, Tukey adjustment, p-value <0.0259). There was no significant difference in number of flowers produced between rain treatments in unfertilized plants, but overall unfertilized Soraya produced more flowers than fertilized.

In Wild-Type sunflowers, fertilizer but not rainfall had a significant effect on open flowers (negative binomial GLM, χ^2 = 7.33, df = 1, p-value = 0.0068). Unfertilized Wild-Type plants produced fewer flowers than fertilized (pairwise comparison, Tukey adjustment, t = 2.20, p-value = 0.0281).

For full summary of plant growth and flower data, refer to AppendixS5.

Phenology – Goldenrod

In both 2020 and 2021, fertilized goldenrod bloomed and senesced earlier than unfertilized goldenrod across all rain treatments (Fig. 6). In both years, fertilizer alone had a significant effect on bloom onset and end (quantile regression, marginal hypothesis test, p-value < 0.0306) with no significant interaction between rain and fertilizer. In 2020, goldenrod bloom onset and end occurred 4 days earlier in fertilized plants than unfertilized. Bloom duration was 2 days longer in unfertilized plants. In 2021, bloom began 4 days earlier in fertilized plants, and ended 2 days earlier. Thus, bloom duration was 2 days shorter in unfertilized plants. Fertilized goldenrod bloomed earlier under all rain treatments, and bloomed for a longer period than unfertilized goldenrod in 2021 when water was not limited.

Phenology—Sunflower

Sunflower bloom phenology data was collected only in 2021 due to a different experiment in 2020 that altered flowering. Therefore, sunflower bloom phenology was collected during the year of record rainfall but not in the drought year. In 2021, the timing bloom onset and end in sunflowers was highly variable between plant variety (Fig. 6). In Wild-Type plants, there was no significant difference in date of bloom between different fertilizer and rain

treatments, but both the interaction between rain and fertilizer (quantile regression, marginal hypothesis test, p-value = 0.0497) and the main effect of rain (p-value < 0.0001) had significant effects on the end of bloom. In fertilized Wild-Type sunflowers, plants in 75% rain ended bloom approximately 17 days before those in 50% and 100% rain. Among unfertilized Wild-Type sunflowers, plants grown under 50% rain reached the end of bloom approximately 18 days before those grown in 100% rain. Bloom duration in Wild-Type sunflowers ranged from 14 days in fertilized 75% rain to 37 days in unfertilized 50% rain. All Wild-Type plants, regardless of treatment, began to bloom at approximately the same time. However, end of bloom varied by up to 18 days between rain and fertilizer treatments.

In Soraya plants, the interaction of rain and fertilizer had a significant effect on the start and end of bloom (quantile regression, marginal hypothesis test, p-value < 0.0407), but the main effects of fertilizer and rain were not significant predictors of bloom time. Among fertilized Soraya, the date of bloom and senescence was latest in 100% rain and earliest in 75% rain, by a difference of approximately 7 days. In unfertilized Soraya, the date of bloom and senescence was earliest in 100% rain and latest in 50% rain, by a difference of approximately 5 days. Bloom duration in Soraya was approximately 2 days longer in fertilized plants. The interaction between fertilizer and rainfall resulted in a non-additive effect on bloom onset and end in Soraya sunflowers, without any pattern that tracks with rain or fertilizer treatment alone.

In the S3 variety, fertilizer had a significant effect on bloom onset (quantile regression, marginal hypothesis test, p-value = 0.0022), while both rain (p-value = 0.0014) and fertilizer (p-value = 0.0006) had significant effects on bloom end, though there was no significant interaction between the two predictors. Fertilized S3 plants bloomed 8 days later than unfertilized S3 plants. Unfertilized S3 senesced 8 days earlier than fertilized, and bloom end occurred approximately 8 days later in 100% rain than in 75% and 50% rain in both fertilized and unfertilized plants. Bloom duration in S3 plants was longest in 100% rain, with bloom lasting approximately 8 days longer in 100% rain in both fertilized and unfertilized treatments than 75% and 50% of ambient rain. On average, bloom onset and bloom end was later in fertilized S3 sunflowers than in unfertilized S3 sunflowers.

Bumble bee reproductive switch point

In 2021 we spent approximately 68 hours surveying bumble bees and observed a total of 2950 *B. impatiens* workers, 1902 males *B. impatiens*, and 55 *B. impatiens* queens. The observed activity periods for males and queens in the field suggest that there is a period of approximately 16 days, measured by the number of days between the 0.2 quantile slope of male activity and that of queen activity, in which most colonies have reached the point of queen larval development and feeding (Fig. 2). If measured by the 0.1 quantile slope of male and queen emergence, queen development occurs over approximately 23 days, which provides an estimate of queen development in this field site that likely encompasses colonies that switched to reproduction early or late. We used the slopes from 0.2 to 0.8 quantiles to estimate the reproductive period with which the majority of colonies coincide.

Observations prior to July 30th were removed from the dataset, along with observations by a single observer on August 20th and 21st due to mistakes in species and/or cast identification. The first 20% of male observations occurred on day 258, just 2 days before 80% of worker observations were recorded, and at which point we estimate most colonies reached the reproductive switch point. The first 20% of gueen observations occurred on day 274 and were

observed through the end of the survey period. These queens were likely developing from larvae to eclosion and then feeding prior to foraging within the nest (Woodard et al., 2019; Cnaani et al., 2002) during the 16-day period in which most males were observed from September 15th (day 258) to October 3rd (day 276). (AppendixS6)

Discussion

We experimentally manipulated the amount of water and supplemental nutrients available to plants throughout their growing season to first understand the effects of these treatments on flowering phenology, and to then evaluate how these changes could impact resource availability for *B. impatiens* queens preparing to overwinter. We found that fertilizer and rain interact to affect the growth and phenology of sunflower and goldenrod, altering bloom time between 2-18 days, but that this effect varies between species and varieties. Our original hypothesis was that fertilized plants would grow more and bloom earlier than unfertilized plants because fertilizer would accelerate growth (Burkle and Irwin, 2009; Russo et al. 2020). We expected that under average conditions, plants grown in 50% rainfall would grow smaller and bloom earlier than those grown in 100% rainfall, since water limitation can reduce growth and result in drought escape (Shavrukov et al., 2017; Nord and Lynch, 2009).

However, both 2020 and 2021 were not average rainfall years: the summer and fall of 2020 brought a prolonged drought, and summer 2021 was one of the wettest summers on record in the Boston area. We found that fertilizer can increase both sunflower and goldenrod growth when water is sufficient, but fertilizer does not affect maximum height or flowers produced when water is limiting. In sunflower, fertilized plants produce most flowers within a narrow window, resulting in a floral resource pulse. In goldenrod, fertilizer results in earlier bloom and senescence regardless of rainfall. Finally, field observations of bumble bees suggest the majority of colonies are simultaneously producing and feeding new queens over an approximately 16-day window. This indicates a short, critical nutritional window in which the most colonies would benefit from available floral resources.

Finding no effect of fertilizer on plant growth under drought conditions somewhat contradicts some studies that find fertilizer to increase plant growth under moderate drought, mitigating the negative effects of drought on plant growth (Barbosa et al., 2014; Garg et al., 2004; Kelso et al., 2020). We may have seen this difference because the total rainfall in 2020 surpassed moderate drought intensity: rainfall totals in July and August of 2020 were 50% and 68% of average rainfall, respectively, leaving the 50% ambient rainfall treatments at just 25% and 34% average rainfall (NOAA, accessed September 27, 2021). Plants tend to reduce uptake of nutrients during drought (Bista et al., 2018) and as soil dries it becomes primed to leach nutrients during the first significant rewetting (Shepherd et al., 2018). It is possible that in 2020, additional nutrients provided by fertilizer did not affect growth because plants were restricting nutrient uptake to conserve water, and that nutrients were lost from soil during the first significant rainfall. In 2021, growth may have declined in 100% rainfall among unfertilized plants because heavy rainfall leached nutrients from the soil (Bedard-Haughn, 2009) which were supplemented in fertilized treatments, resulting in no growth decline in fertilized plants as water increased. This finding carries important implications for growers and land managers, suggesting that fertilizer should not be applied as insurance against damage from dry conditions (Shepherd et al., 2018).

Flowering phenology was also altered in the experiments. Fertilizer resulted in floral pulses—narrow windows of resource availability (Hemberger and Gratton, 2018)—in sunflower

in 2021 but not in goldenrod. Specifically, sunflower blooms were produced all at once rather than produced at an even rate over the bloom period. Comparing the sum of open flowers over time revealed that S3 and Soraya varieties produced significantly more flowers in unfertilized treatments regardless of rainfall. We concluded that fertilizer may have induced accelerated bloom in which plants produce more flowers over a short period, so that most flowers are open and available to pollinators over a shorter window of time than in unfertilized plants. Goldenrod, on the other hand, produced flowers at a similar rate between fertilizer treatments rather than in floral pulses. The number of goldenrod flowers and flower days did not differ significantly between fertilizer treatments in 2020, but was significantly higher in fertilized treatments in 2021. Flowering and flower days increased with rainfall in both study years.

Plants may respond to stress or external stimuli in two ways: flower to produce seed for the next generation, or delay flowering through slowed metabolism (Cho et al., 2017). Sunflowers are considered drought tolerant largely due to drought escape, which results in earlier and more rapid flowering (Hussain et al., 2018). It is possible that these sunflower varieties respond to other stimuli with rapid flowering as well, which could increase the number of flowers produced all at once and decrease the number of flowers produced later in the season. Goldenrod responds to drought and herbivory stress by reallocating resources to asexual reproduction via rhizome maintenance rather than increased or rapid flowering (Rosenblatt, 2021; Shibel and Heard, 2016). This stress response would explain why we observed a similar flowering rate across treatments but higher overall flowers and flower days with more rainfall and, in 2021, fertilizer addition.

Floral pulses that produce abundant food resources can support bumble bee colony growth, but may not increase colony reproduction (Hemberger et al., 2020; Riedinger et al., 2015). Hemberger et al. (2020) found that bumble bee microcolony reproduction was maximized when food rations were high and constantly available, but may be resilient to pulsed food sources if those pulses produce abundant food. Microcolony growth suffered under low abundance regardless of temporal availability. However, this study does not examine queen production which is more costly than male production (Rundloff et al., 2014), and colonies can store food for only a few days in the nest (Goulson 2003) which could result in reduced resiliency to food pulses during queen reproduction. In field studies, bumble bee colony reproduction did not benefit from mass-flowering crops when colony flight periods extended beyond the floral pulse (Reidlinger et al., 2015), but queen and male abundance increased when this floral pulse coincided with colony reproduction (Rundlof et al., 2014).

Bloom time in each plant species and variety grown in this study varied with fertilizer and rain treatments by as much as 18 days. This species-specific response is a common finding among resource manipulation studies that make broad predictions difficult (Burkle and Runyon, 2016; Burkle and Irwin, 2009; Tilman and Wedin, 1991, Cho et al., 2017). Burkle and Irwin (2009) tested the effects of nutrient addition on floral characteristics in two subalpine plant species and found that life-history traits likely played a role in determining the growth response of each plant to soil nutrients. Even within a single species, individual response to resource availability can differ (Burkle et al., 2013; Alvarez-Maldini et al., 2020).

Though there was no single pattern in plant response across species, both fertilizer and rainfall significantly alter the timing and duration of bloom, creating potential phenological mismatch between late-season flowering plants and reproductive bumble bee colonies. Food

availability and nectar quality in the fall is one of the strongest predictors of bumble bee populations in the spring (Timberlake et al., 2020). Because the effects of fertilizer and rainfall vary dramatically with plant species, it is essential that habitat surrounding farmland include a diverse community of fall-blooming plants. In this way, low levels of nutrient runoff will increase heterogeneity in bloom time rather than uniformly shift the bloom time of a few species in any direction.

Field observations of bumble bee activity suggest a period of just 16 days between male and queen emergence in which most colonies have reached the reproductive switch point. Though each colony varies in the exact timing of reproduction, these finding suggest that available resources during this short period would support reproduction for the most number of colonies. Colony reproductive success hinges on a short window with two sensitive nutritional periods: queen larval development, and post-eclosion mass-gain (Couvillon and Dornhaus, 2009; Owen, 1988; Woodard et al., 2019). Food reserves within the nest last only 24-48 hours (Goulson, 2003, Rotheray et al., 2017), so food resources outside the nest must be continuously available during reproduction. If food is insufficient during the development period, the colony fails to reproduce or queens do not prepare effectively for winter, leading to lower winter survival and fewer nests in the spring (Goulson, 2003; Woodard et al. 2019; Fliszkiewicz & Wilkaniec, 2007). The changes we observed in plant bloom—most notably the 8-day delay in fertilized S3 sunflower bloom and 4-day acceleration in fertilized goldenrod bloom—may be biologically significant to reproductive bumble bee colonies and warrants further investigation.

Changes in the timing of food availability locally can be overcome if workers fly farther to forage for their queens, or if queens delay diapause to forage after leaving the nest. Queens cannot fly for the first 3-5 days post-eclosion but can delay mating and overwintering by several days to forage for themselves farther from the nest if they have not gained needed energy stores (Watrous et al., 2021). Overwintering survival is optimized when queens enter diapause between 6-17 days post-eclosion (Treanore and Amsalem, 2020). However, the sublethal effects of delayed weight gain and the energy expenditure for queens to fly further from the nest to find food are unknown (Watrous et al., 2021). Further, a shift in colony foraging range to overcome local misalignment in bloom time and reproduction could result in changes to local pollination networks. Bumble bees show strong floral constancy (Ogilvie et al., 2016), and this shift in range could persist through the end of the season resulting in new pollination patterns and potentially fewer visitors to some late-blooming plants.

Nutrient pollution from fertilizer is a major problem and its interactive effect with rain on plant growth may be exacerbated as rainfall frequency and intensity becomes more variable each year (Vitousek et al., 1997; Lawson and Rands 2019). Chemical fertilizer has increased farm yield, but at the cost of eutrophication in soils and waterways, and at high economic expense to growers. Methods to make fertilizer use more efficient and reduce its use altogether are therefore important to the sustainability of food production (Watrous et al., 2021). More research is needed into how plant communities, rather than single plant species, respond to fertilizer and rainfall variation. This study does not capture the potential effects of belowground interactions between plants and competition for resources that would also drive changes in bloom in plant communities. Research is also needed to study changes not only in resource availability, but in resource quality measured by pollen and nectar nutritional value (Thuma et al., unpublished).

There is no pinpointing a single cause of pollinator decline, largely because it is the combined effects of stressors that have the largest impact on pollinator foraging, health and population size (Goulson et al., 2015). It is therefore essential that more studies examine how global drivers of change interact to affect potentially sensitive life cycle stages of pollinators through changes to plant growth and physiology. Overall, our study suggests that nutrient enrichment and changes in rainfall affect plant bloom time, and in some plant species this shift falls uniformly along nutrient treatments. Variation in the floral landscape determines pollinator foraging behavior, delivery of pollination services, and gyne production (Timberlake et al., 2020; Mallinger et al., 2015; Adler et al., 2020; Ceulemans et al., 2017; Cardoza et al., 2012). Anthropogenic nutrient deposition and increasingly varied rainfall alter this landscape, threatening the plant-pollinator interactions that support biodiversity and plant productivity (David et al., 2019, Brown et al., 2016). Wild pollinators are critical to successful and reliable crop pollination, especially under an increasingly unpredictable climate (Winfree et al., 2007). Our findings suggest that nutrient addition on managed landscapes without consideration for environmental factors like climate change could further reduce suitable habitat for already threatened pollinators. The results of our study have important implications for agricultural management in a time of increasingly variable climate that can prioritize both crop yield and native pollinator conservation.

Acknowledgements

We gratefully acknowledge the assistance of Dr. Elizabeth Crone for help and guidance with statistical analysis, and to additional field and data collection support from Heidy Acevedo, Avalon Owens, Isaac Weinberg, and Nicholas Dorian. Dr. Lynn Adler of UMass Amherst, Dr. Laura Russo of the University of Tennessee, and Dr. Rosemary Malfi of UMass Amherst consulted on plant selection and study design. The Waltham Fields Community Farm, the University of Massachusetts Boston Area Climate Experiment, and the City of Waltham provided access to study sites. This material is based in part upon work supported by the National Science Foundation Research Experience for Undergraduates program (NSF DBI 1852438).

687 References

Adler, L. S., Fowler, A. E., Malfi, R. L., Anderson, P. R., Coppinger, L. M., Deneen, P. M.,
 Lopez, S., Irwin, R. E., Farrell, I. W., & Stevenson, P. C. (2020). Assessing Chemical
 Mechanisms Underlying the Effects of Sunflower Pollen on a Gut Pathogen in Bumble
 Bees. Journal of Chemical Ecology, 46(8), 649–658. https://doi.org/10.1007/s10886-020-

692 01168-4

Alford, D. V. (1975). Bumblebees. Davis-Poynter.

694 695

693

Alvarez-Maldini, C., Acevedo, M., Dumroese, R. K., González, M., & Cartes, E. (2020).
 Intraspecific Variation in Drought Response of Three Populations of Cryptocarya alba and
 Persea lingue, Two Native Species From Mediterranean Central Chile. Frontiers in Plant
 Science, 11. https://www.frontiersin.org/article/10.3389/fpls.2020.01042

700

Barbosa, E. R. M., Tomlinson, K. W., Carvalheiro, L. G., Kirkman, K., de Bie, S., Prins, H. H.
 T., & van Langevelde, F. (2014). Short-Term Effect of Nutrient Availability and Rainfall
 Distribution on Biomass Production and Leaf Nutrient Content of Savanna Tree Species.
 PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0092619

705

Bassirirad, H. (2000). Kinetics of nutrient uptake by roots: Responses to global change. *New Phytologist*, *147*(1), 155–169. https://doi.org/10.1046/j.1469-8137.2000.00682.x

708 709

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. *Journal of Statistical Software*, 67, 1–48. https://doi.org/10.18637/jss.v067.i01

710 711

Bedard-Haughn, A. (2009). Managing excess water in Canadian prairie soils: A review.
 Canadian Journal of Soil Science, 89(2), 157–168. https://doi.org/10.4141/CJSS07071

714

Belsky, J. E., Camp, A. A., & Lehmann, D. M. (2020). The Importance of Males to Bumble Bee (Bombus Species) Nest Development and Colony Viability. Insects, 11(8), 506. https://doi.org/10.3390/insects11080506

717 718

Bista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S., & Boldt, J. K. (2018). Effects of Drought on Nutrient Uptake and the Levels of Nutrient-Uptake Proteins in Roots of Drought-Sensitive and -Tolerant Grasses. *Plants*, 7(2), 28. https://doi.org/10.3390/plants7020028

723

Britannica, T. Editors of Encyclopaedia (2021, September 10). sunflower. Encyclopedia
 Britannica. https://www.britannica.com/plant/sunflower-plant

726

Brown, M. J. F., Dicks, L. V., Paxton, R. J., Baldock, K. C. R., Barron, A. B., Chauzat, M.-P.,
Freitas, B. M., Goulson, D., Jepsen, S., Kremen, C., Li, J., Neumann, P., Pattemore, D. E.,
Potts, S. G., Schweiger, O., Seymour, C. L., & Stout, J. C. (2016). A horizon scan of future
threats and opportunities for pollinators and pollination. *PeerJ*, 4, e2249.
https://doi.org/10.7717/peerj.2249

Brown, M. J. F., Schmid-Hempel, R., & Schmid-Hempel, P. (2003). Strong context-dependent virulence in a host–parasite system: Reconciling genetic evidence with theory. *Journal of Animal Ecology*, 72(6), 994–1002. https://doi.org/10.1046/j.1365-2656.2003.00770.x

736

740

744

748

757

761

766

771

- Burkle, L. A., & Irwin, R. E. (2009). The effects of nutrient addition on floral characters and pollination in two subalpine plants, Ipomopsis aggregata and Linum lewisii. *Plant Ecology*, 203(1), 83–98. https://doi.org/10.1007/s11258-008-9512-0
- Burkle, L. A., & Runyon, J. B. (2016). Drought and leaf herbivory influence floral volatiles and
 pollinator attraction. Global Change Biology, 22(4), 1644–1654.
 https://doi.org/10.1111/gcb.13149
- Burkle, L. A., Souza, L., Genung, M. A., & Crutsinger, G. M. (2013). Plant genotype, nutrients,
 and G × E interactions structure floral visitor communities. *Ecosphere*, 4(9), art113.
 https://doi.org/10.1890/ES13-00039.1
- Cade, B.S. and Noon, B.R. (2003), A gentle introduction to quantile regression for ecologists.
 Frontiers in Ecology and the Environment, 1: 412-420. https://doiorg.ezproxy.library.tufts.edu/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2
 752
- Cameron, S. A., Lozier, J. D., Strange, J. P., Koch, J. B., Cordes, N., Solter, L. F., & Griswold,
 T. L. (2011). Patterns of widespread decline in North American bumble bees. *Proceedings* of the National Academy of Sciences of the United States of America, 108(2), 662–667.
 https://doi.org/10.1073/pnas.1014743108
- Cardoza, Y. J., Harris, G. K., & Grozinger, C. M. (2012). Effects of Soil Quality Enhancement on
 Pollinator-Plant Interactions [Research article]. Psyche: A Journal of Entomology.
 https://doi.org/10.1155/2012/581458
- Carvell, C., Osborne, J. L., Bourke, A. F. G., Freeman, S. N., Pywell, R. F., & Heard, M. S.
 (2011). Bumble bee species' responses to a targeted conservation measure depend on landscape context and habitat quality. *Ecological Applications*, 21(5), 1760–1771. https://doi.org/10.1890/10-0677.1
- Ceulemans, T., Hulsmans, E., Ende, W. V., & Honnay, O. (2017). Nutrient enrichment is
 associated with altered nectar and pollen chemical composition in Succisa pratensis Moench
 and increased larval mortality of its pollinator Bombus terrestris L. *PLOS ONE*, *12*(4),
 e0175160. https://doi.org/10.1371/journal.pone.0175160
- Cho, L.-H., Yoon, J., & An, G. (2017). The control of flowering time by environmental factors.
 The Plant Journal, 90(4), 708–719. https://doi.org/10.1111/tpj.13461
- Cnaani, J., Schmid-Hempel, R., & Schmidt, J. O. (2002). Colony development, larval development and worker reproduction in Bombus impatiens Cresson. *Insectes Sociaux*, 49(2), 164–170. https://doi.org/10.1007/s00040-002-8297-8

Couvillon, M. J., & Dornhaus, A. (2009). Location, location; Larvae position inside the
 nest is correlated with adult body size in worker bumble-bees (Bombus impatiens).
 Proceedings of the Royal Society B: Biological Sciences, 276(1666), 2411–2418.
 https://doi.org/10.1098/rspb.2009.0172

783

Crone, E. E., & Williams, N. M. (2016). Bumble bee colony dynamics: Quantifying the
 importance of land use and floral resources for colony growth and queen production.
 Ecology Letters, 19(4), 460–468. https://doi.org/10.1111/ele.12581

787

David, T. I., Storkey, J., & Stevens, C. J. (2019). Understanding how changing soil nitrogen affects plant–pollinator interactions. *Arthropod-Plant Interactions*, *13*(5), 671–684. https://doi.org/10.1007/s11829-019-09714-y

791

Davis, J. K., Aguirre, L. A., Barber, N. A., Stevenson, P. C., & Adler, L. S. (2019). From plant fungi to bee parasites: Mycorrhizae and soil nutrients shape floral chemistry and bee pathogens. *Ecology*, 100(10). https://doi.org/10.1002/ecy.2801

795

Descamps, C., Quinet, M., & Jacquemart, A.-L. (2021). The effects of drought on plant—pollinator interactions: What to expect? Environmental and Experimental Botany, 182, 104297. https://doi.org/10.1016/j.envexpbot.2020.104297

799

Fliszkiewicz, M., & Wilkaniec, Z. (2007). Fatty acids and amino acids in the fat body of bumblebee Bombus terrestris (L.) in diapausing and non-diapausing queens. *Journal of* Apicultural Science, 51(1), 55–63.

803

Garg, B., Burman, U., & Kathju, S. (2004). The influence of phosphorus nutrition on the physiological response of moth bean genotypes to drought. https://doi.org/10.1002/JPLN.200320368

807

Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham,
S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik, O., Bartomeus, I., Benjamin, F.,
Boreux, V., Cariveau, D., Chacoff, N. P., Dudenhöffer, J. H., Freitas, B. M., Ghazoul, J.,
Greenleaf, S., ... Klein, A. M. (2013). Wild Pollinators Enhance Fruit Set of Crops
Regardless of Honey Bee Abundance. *Science*, 339(6127), 1608–1611.
https://doi.org/10.1126/science.1230200

814

Goulson, D. (2003). *Bumblebees: Their behaviour and ecology*. Oxford University Press.

816

 Goulson, D., Lye, G. C., & Darvill, B. (2008). Decline and Conservation of Bumble Bees.
 Annual Review of Entomology, 53, 191–208. https://doiorg.ezproxy.library.tufts.edu/10.1146/annurev.ento.53.103106.093454

820

Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined
 stress from parasites, pesticides, and lack of flowers. *Science*, *347*(6229).
 https://doi.org/10.1126/science.1255957

Hahn, D. A., & Denlinger, D. L. (2011). Energetics of insect diapause. *Annual Review of Entomology*, 56, 103–121. https://doi.org/10.1146/annurev-ento-112408-085436

827

831

836

845

849

857

861

- Hemberger, J., & Gratton, C. (2018). Floral resource pulse decreases bumble bee foraging trip
 duration in central Wisconsin agroecosystem. Ecological Entomology, 43(4), 447–457.
 https://doi.org/10.1111/een.12516
- Hemberger, J., Frappa, A., Witynski, G., & Gratton, C. (2020). Saved by the pulse? Separating the effects of total and temporal food abundance on the growth and reproduction of bumble bee microcolonies. Basic and Applied Ecology, 45, 1–11. https://doi.org/10.1016/j.baae.2020.04.004
- Hoeppner, S. S., & Dukes, J. S. (2012). Interactive responses of old-field plant growth and
 composition to warming and precipitation. *Global Change Biology*, 18(5), 1754–1768.
 https://doi.org/10.1111/j.1365-2486.2011.02626.x
- Hoover, S. E. R., Ladley, J. J., Shchepetkina, A. A., Tisch, M., Gieseg, S. P., & Tylianakis, J. M.
 (2012). Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator
 mutualism. *Ecology Letters*, *15*(3), 227–234. https://doi.org/10.1111/j.14610248.2011.01729.x
- Huang, G., Li, C., & Li, Y. (2018). Phenological responses to nitrogen and water addition are
 linked to plant growth patterns in a desert herbaceous community. *Ecology and Evolution*,
 8(10), 5139–5152. https://doi.org/10.1002/ece3.4001
- Hunter, M. (2016). The Phytochemical Landscape: Linking trophic interactions and nutrient
 dynamics. Princeton University Press.
- Hussain, M., Farooq, S., Hasan, W., Ul-Allah, S., Tanveer, M., Farooq, M., & Nawaz, A. (2018).

 Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agricultural Water Management, 201, 152–166.

 https://doi.org/10.1016/j.agwat.2018.01.028
- Kelso, M. A., Wigginton, R. D., & Grosholz, E. D. (2020). Nutrients mitigate the impacts of
 extreme drought on plant invasions. Ecology, 101(4), e02980.
 https://doi.org/10.1002/ecy.2980
- Kremen, C., & M'Gonigle, L. K. (2015). EDITOR'S CHOICE: Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. *Journal of Applied Ecology*, *52*(3), 602–610. https://doi.org/10.1111/1365-2664.12418
- Kremen, C., Williams, N. M., & Thorp, R. W. (2002). Crop pollination from native bees at risk
 from agricultural intensification. *Proceedings of the National Academy of Sciences*, 99(26),
 16812–16816. https://doi.org/10.1073/pnas.262413599

Koenker, R., Portnoy, S., Ng, P.T., Zeileis, A., Grosjean, P. & Ripley, B.D. (2019). Package 'quantreg'

873

Lawson, D. A., & Rands, S. A. (2019). The effects of rainfall on plant–pollinator interactions.

Arthropod-Plant Interactions, 13(4), 561–569. https://doi.org/10.1007/s11829-019-09686-z

876

Leach, M. E., & Drummond, F. (2018). *A Review of Natvie Wild Bee Nutritional Health*[Research article]. International Journal of Ecology. https://doi.org/10.1155/2018/9607246

879

Li, Z., Zhang, R., Xia, S., Wang, L., Liu, C., Zhang, R., Fan, Z., Chen, F., & Liu, Y. (2019).

Interactions between N, P and K fertilizers affect the environment and the yield and quality of satsumas. *Global Ecology and Conservation*, 19, e00663.

https://doi.org/10.1016/j.gecco.2019.e00663

884

Lihoreau, M., Buhl, J., Charleston, M. A., Sword, G. A., Raubenheimer, D., & Simpson, S. J. (2015). Nutritional ecology beyond the individual: A conceptual framework for integrating nutrition and social interactions. *Ecology Letters*, *18*(3), 273–286. https://doi.org/10.1111/ele.12406

889

Lombard, P. J., Barclay, J. R., & McCarthy, D.-A. E. (2020). 2020 drought in New England. In 2020 drought in New England (USGS Numbered Series No. 2020–1148; Open-File Report, Vols. 2020–1148, p. 12). U.S. Geological Survey. https://doi.org/10.3133/ofr20201148

893

Malfi, R. L., Crone, E., & Williams, N. (2019). Demographic benefits of early season resources
 for bumble bee (B. vosnesenskii) colonies. *Oecologia*, 191(2), 377–388.
 https://doi.org/10.1007/s00442-019-04472-3

897 898

899

900

Mallinger, R. E., Gibbs, J., & Gratton, C. (2016). Diverse landscapes have a higher abundance and species richness of spring wild bees by providing complementary floral resources over bees' foraging periods. *Landscape Ecology*, *31*(7), 1523–1535. https://doi.org/10.1007/s10980-015-0332-z

901 902

Michielini, J. P., Dopman, E. B., & Crone, E. E. (2021). Changes in flight period predict trends
 in abundance of Massachusetts butterflies. *Ecology Letters*, 24(2), 249–257.
 https://doi.org/10.1111/ele.13637

906

907 Munoz, A., Celedon-Neghme, C., Cavieres, L. A., & Arroyo, M. T. K. (2005). Bottom-up effects 908 of nutrient availability on flower production, pollinator visitation, and seed output in a high-909 Andean shrub. Oecologia, 143(1), 126–135. https://doi.org/10.1007/s00442-004-1780-3

910

Nord, E. A., & Lynch, J. P. (2009). Plant phenology: A critical controller of soil resource acquisition. *Journal of Experimental Botany*, 60(7), 1927–1937. https://doi.org/10.1093/jxb/erp018

914

Novotny, J. L., Reeher, P., Varvaro, M., Lybbert, A., Smith, J., Mitchell, R. J., & Goodell, K. (2021). Bumble bee species distributions and habitat associations in the Midwestern USA, a

region of declining diversity. *Biodiversity and Conservation*, *30*(3), 865–887. https://doi.org/10.1007/s10531-021-02121-x

919

Oertle, E. (1967). Nectar and Pollen Plants. In *Beekeeping in the United States* (335th ed., pp. 16–23). US Department of Agriculture.

922

Ogilvie, J. E., & Forrest, J. R. (2017). Interactions between bee foraging and floral resource phenology shape bee populations and communities. *Current Opinion in Insect Science*, *21*, 75–82. https://doi.org/10.1016/j.cois.2017.05.015

926

Ogilvie, J. E., Griffin, S. R., Gezon, Z. J., Inouye, B. D., Underwood, N., Inouye, D. W., & Irwin, R. E. (2017). Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. *Ecology Letters*, 20(12), 1507–1515. https://doi.org/10.1111/ele.12854

931

Orians, C. M., Schweiger, R., Dukes, J. S., Scott, E. R., & Müller, C. (2019). Combined impacts of prolonged drought and warming on plant size and foliar chemistry. *Annals of Botany*, 124(1), 41–52. https://doi.org/10.1093/aob/mcz004

935

Owen, R. E. (1988). BODY SIZE VARIATION AND OPTIMAL BODY SIZE OF BUMBLE
BEE QUEENS (HYMENOPTERA: APIDAE). The Canadian Entomologist, 120(1), 19–27.
https://doi.org/10.4039/Ent12019-1

939 940

941

Phillips, B. B., Shaw, R. F., Holland, M. J., Fry, E. L., Bardgett, R. D., Bullock, J. M., & Osborne, J. L. (2018). Drought reduces floral resources for pollinators. *Global Change Biology*, *24*(7), 3226–3235. https://doi.org/10.1111/gcb.14130

942 943 944

Plowright, R. C., Simonds, & Butler. (2006). How bumblebees first find flowers: Habituation of visual pattern preferences, spontaneous recovery, and dishabituation. *Learning and Motivation*, *37*(1), 66–78. https://doi.org/10.1016/j.lmot.2005.03.002

946 947

948

945

Pollard, E. (1977) A method for assessing changes in the abundance of butterflies. Biological Conservation, 12(2), 115–134. https://doi-org/10.1016/0006-3207(77)90065-9

949 950 951

952

Pugesek, G., & Crone, E. E. (2021). Contrasting effects of land cover on nesting habitat use and reproductive output for bumble bees. *Ecosphere*, *12*(7), e03642. https://doi.org/10.1002/ecs2.3642

953 954

Riedinger, V., Mitesser, O., Hovestadt, T., Steffan-Dewenter, I., & Holzschuh, A. (2015).
 Annual dynamics of wild bee densities: Attractiveness and productivity effects of oilseed rape. *Ecology*, 96(5), 1351–1360. https://doi.org/10.1890/14-1124.1

958

Rering, C. C., Franco, J. G., Yeater, K. M., & Mallinger, R. E. (2020). Drought stress alters
 floral volatiles and reduces floral rewards, pollinator activity, and seed set in a global plant.
 Ecosphere, 11(9), e03254. https://doi.org/10.1002/ecs2.3254

- Roger, N., Michez, D., Wattiez, R., Sheridan, C., & Vanderplanck, M. (2017). Diet effects on 963 bumblebee health. Journal of Insect Physiology, 96, 128–133. 964
- https://doi.org/10.1016/j.jinsphys.2016.11.002 965

966

Rosenblatt, A. E. (2021). Drought rewires an old field food web through shifts in plant nutrient 967 content and herbivore feeding behaviors. Climate Change Ecology, 2, 100019. 968 https://doi.org/10.1016/j.ecochg.2021.100019 969

970

971 Roulston, T. H., & Goodell, K. (2010). The Role of Resources and Risks in Regulating Wild Bee Populations. Annual Review of Entomology, 56(1), 293–312. 972 https://doi.org/10.1146/annurev-ento-120709-144802 973

974

Rundlöf, M., Persson, A. S., Smith, H. G., & Bommarco, R. (2014). Late-season mass-flowering 975 red clover increases bumble bee queen and male densities. Biological Conservation, 172, 976 138–145. https://doi.org/10.1016/j.biocon.2014.02.027 977

978

979 Runkle, J., Kunkel, K., Frankson, R., Easterling, D., DeGaetano, A. T., Stewart, B., & Sweet, W. (2017). Massachusetts State Climate Summary (NOAA Technical Report NESDIS 149-980 MA; p. 4). http://stateclimatesummaries.globalchange.gov/ 981

982

983 Russo, L., Buckley, Y. M., Hamilton, H., Kavanagh, M., & Stout, J. C. (2020). Low concentrations of fertilizer and herbicide alter plant growth and interactions with flower-984 985 visiting insects. Agriculture, Ecosystems & Environment, 304, 107141. https://doi.org/10.1016/j.agee.2020.107141 986

987 988

989

990

Schlüns, H., Sadd, B. M., Schmid-Hempel, P., & Crozier, R. H. (2010). Infection with the trypanosome Crithidia bombi and expression of immune-related genes in the bumblebee Bombus terrestris. *Developmental & Comparative Immunology*, 34(7), 705–709. https://doi.org/10.1016/j.dci.2010.02.002

991 992

993 Scott, E. R., Li, X., Kfoury, N., Morimoto, J., Han, W.-Y., Ahmed, S., Cash, S. B., Griffin, T. S., 994 Stepp, J. R., Robbat, A., & Orians, C. M. (2019). Interactive effects of drought severity and 995 simulated herbivory on tea (Camellia sinensis) volatile and non-volatile metabolites. Environmental and Experimental Botany, 157, 283–292. 996 https://doi.org/10.1016/j.envexpbot.2018.10.025 997

998

999 Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., de Groot, S., Soole, K., & Langridge, P. (2017). Early Flowering as a Drought Escape 1000 Mechanism in Plants: How Can It Aid Wheat Production? Frontiers in Plant Science, 8. 1001 https://doi.org/10.3389/fpls.2017.01950 1002

1003

1004 Shepherd, M., Lucci, G., Vogeler, I., & Balvert, S. (2018). The effect of drought and nitrogen fertiliser addition on nitrate leaching risk from a pasture soil; an assessment from a field 1005 experiment and modelling. Journal of the Science of Food and Agriculture, 98(10), 3795— 1006 1007 3805. https://doi.org/10.1002/jsfa.8893

Shibel, Z., & Heard, S. B. (2016). Synergistic and additive effects of drought stress and
 simulated herbivory on two goldenrods, Solidago altissima and S. gigantea. Botany, 94(8),
 635–642. https://doi.org/10.1139/cjb-2016-0060

1012

1017

1024

1028

1033

1037

1042

1046

- Stemkovski, M., Pearse, W. D., Griffin, S. R., Pardee, G. L., Gibbs, J., Griswold, T., Neff, J. L.,
 Oram, R., Rightmyer, M. G., Sheffield, C. S., Wright, K., Inouye, B. D., Inouye, D. W., &
 Irwin, R. E. (2020). Bee phenology is predicted by climatic variation and functional traits.
 Ecology Letters, 23(11), 1589–1598. https://doi.org/10.1111/ele.13583
- Tilman, D., & Wedin, D. (1991). Plant Traits and Resource Reduction For Five Grasses Growing on a Nitrogen Gradient. Ecology, 72(2), 685–700. https://doi.org/10.2307/2937208 1020
- Timberlake, T. P., Vaughan, I. P., Baude, M., & Memmott, J. (2020). Bumblebee colony density on farmland is influenced by late-summer nectar supply and garden cover. *Journal of Applied Ecology*, *I*(11). https://doi.org/10.1111/1365-2664.13826
- Treanore, E., & Amsalem, E. (2020). The effect of intrinsic physiological traits on diapause survival and their underlying mechanisms in an annual bee species Bombus impatiens.

 Conservation Physiology, 8(1). https://doi.org/10.1093/conphys/coaa103
- Trenberth, K. E. (2008). The Impact of Climate Change and Variability on Heavy Precipitation,
 Floods, and Droughts. In M. G. Anderson & J. J. McDonnell (Eds.), *Encyclopedia of*Hydrological Sciences (p. hsa211). John Wiley & Sons, Ltd.
 https://doi.org/10.1002/0470848944.hsa211
- Vanbergen, A. J., & Initiative, the I. P. (2013). Threats to an ecosystem service: Pressures on pollinators. *Frontiers in Ecology and the Environment*, 11(5), 251–259. https://doi.org/10.1890/120126
- Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W.,
 Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle:
 Sources and consequences. *Ecological Applications*, 7(3), 737–750.
 https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
- Walter, J. (2018). Effects of changes in soil moisture and precipitation patterns on plant mediated biotic interactions in terrestrial ecosystems. *Plant Ecology*, 219(12), 1449–1462.
 https://doi.org/10.1007/s11258-018-0893-4
- Watrous, K. M., Costa, C. P., Diaz, Y. R., & Woodard, S. H. (2021). Flexibility in the Critical
 Period of Nutrient Sequestration in Bumble Bee Queens. *Integrative Organismal Biology*,
 3(1). https://doi.org/10.1093/iob/obab009
- Werner, P. A., Gross, R. S., & Bradbury, I. K. (1980). THE BIOLOGY OF CANADIAN
 WEEDS.: 45. Solidago canadensis L. Canadian Journal of Plant Science, 60(4), 1393–1409. https://doi.org/10.4141/cjps80-194

Winfree, R., Williams, N. M., Dushoff, J., & Kremen, C. (2007). Native bees provide insurance against ongoing honey bee losses. *Ecology Letters*, 10(11), 1105–1113. https://doi.org/10.1111/j.1461-0248.2007.01110.x Winfree, R., Williams, N. M., Gaines, H., Ascher, J. S., & Kremen, C. (2008). Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. Journal of Applied Ecology, 45(3), 793–802. https://doi.org/10.1111/j.1365-2664.2007.01418.x Woodard, S. H., Duennes, M. A., Watrous, K. M., & Jha, S. (2019). Diet and nutritional status during early adult life have immediate and persistent effects on queen bumble bees. Conservation Physiology, 7(coz048). https://doi.org/10.1093/conphys/coz048 Woodard, S. H., & Jha, S. (2017). Wild bee nutritional ecology: Predicting pollinator population dynamics, movement, and services from floral resources. Current Opinion in Insect Science, 21, 83–90. https://doi.org/10.1016/j.cois.2017.05.011 Zhang, J., Zuo, X., Zhao, X., Ma, J., & Medina-Roldán, E. (2020). Effects of rainfall manipulation and nitrogen addition on plant biomass allocation in a semiarid sandy grassland. Scientific Reports, 10(1), 9026. https://doi.org/10.1038/s41598-020-65922-0 Ziska, L. H., Pettis, J. S., Edwards, J., Hancock, J. E., Tomecek, M. B., Clark, A., Dukes, J. S., Loladze, I., & Polley, H. W. (2016). Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. *Proceedings of* the Royal Society B: Biological Sciences, 283(1828), 20160414. https://doi.org/10.1098/rspb.2016.0414

1095 Figure Captions

- Figure 1. Predicted effect of fertilizer and drought on phenology. Fertilizer and rain treatments
- may result in an increase in blooming floral resources earlier in the season and a reduction in
- resources available to reproductive colonies in the fall. Lines are colored by precipitation and
- 1099 represent time from summer to fall.
- 1100 Figure 2. Maximum goldenrod and sunflower height in 2020 and 2021 from July-August. Rain
- level along the x-axis displays precipitation treatments (A-C represent 50%-100% rainfall in
- 2020; D-F represent 50%-100% rainfall in 2021). Boxplots represent the maximum height
- reached in each of 3 treatment replicates, measured by average plant height within the plot (n=12)
- in goldenrod; n=7 in sunflower). Averages for sunflower include three sunflower varieties in
- each plot. Fertilized treatments in green, unfertilized in orange. Rainfall totals for each treatment
- from June-August of each year from low to high: 8.8cm (A), 13.2cm (B), 17.6cm (C), 24.9cm
- 1107 (D), 37.3cm (E), 49.7cm (F).
- 1108 Figure 3. Average number of flowering units in three sunflower varieties in July-October of
- 2021. Number of flowers averaged over three replicate treatments of each rainfall and fertilizer
- treatment (6). Each plot contained 4 Soraya plants, 2-3 S3 plants, and 1-2 Wild-Type plants.
- 1111 Error bars represent standard error.
- 1112 **Figure 4.** Average number of flowering units in goldenrod treatments over time in 2020 (dry
- 1113 year) and 2021 (wet year). Number of flowers averaged over three replicate treatments of each
- rainfall and fertilizer treatment. Each replicate contained approximately 12 plants. Fertilized
- treatments in green and unfertilized in orange. Error bars represent standard error.
- Figure 5. Average number of flowering units in three sunflower varieties over time in 2021 (wet
- 1117 year). Number of flowers averaged over three replicate treatments of each rainfall and fertilizer
- treatment. Each replicate contained approximately 1 Wild-Type variety, 2-3 S3 variety, and 4
- Soraya variety sunflowers. Fertilized treatments in green and unfertilized in orange. Error bars
- 1120 represent standard error.
- Figure 6. Activity period for B. impatiens and flowering period of four plant varieties influenced
- by fertilizer and rain treatments. Blue lines represent abundance of *B. impatiens* workers, males
- and queens. As lab studies predict, queen development within the nest likely occurred during the
- male activity period. Green and orange lines represent bloom start and end points at 0.2 and 0.8
- quantiles in 2021, color by fertilizer treatment and line style by rain treatment. X-axis represents
- number day of year, and y-axis represents species. We observed 2950 workers, 1902 males, and
- 55 queens. Each goldenrod treatment represents flower counts from approximately 36 plants.
- Each sunflower treatments represents counts from 12 Soraya, 6-9 S3, and 3-5 Wild-Type.