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Abstract. We present a new framework for computing fine-scale solutions of multiscale par-
tial differential equations (PDEs) using operator learning tools. Obtaining fine-scale solutions of
multiscale PDEs can be challenging, but there are many inexpensive computational methods for ob-
taining coarse-scale solutions. Additionally, in many real-world applications, fine-scale solutions can
only be observed at a limited number of locations. In order to obtain approximations or predictions
of fine-scale solutions over general regions of interest, we propose to learn the operator mapping from
coarse-scale solutions to fine-scale solutions using observations of a limited number of (possible noisy)
fine-scale solutions. The approach is to train multi-fidelity homogenization maps using mathemati-
cally motivated neural operators. The operator learning framework can efficiently obtain the solution
of multiscale PDEs at any arbitrary point, making our proposed framework a mesh-free solver. We
verify our results on multiple numerical examples showing that our approach is an efficient mesh-free
solver for multiscale PDEs.

Key words. neural operator, neural homogenization, multiscale finite element method, dis-
cretization invariant, multi-fidelity
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1. Introduction. Obtaining fine-scale solutions for a multiscale partial differ-
ential equation (PDE) problem can be costly, often requiring extensive large-scale
computations to fully resolve. In addition, while coarse-scale solutions are easier to
observe, we typically only have access to a limited number of fine-scale solutions in
real-world multiscale applications. This limitation becomes particularly significant
when fine-scale information is obtained by only a few samples or from specific subre-
gions within the domain. Therefore, there is a need for methods that effectively utilize
coarse-scale solutions (via simulations) alongside scarce fine-scale measurements. By
addressing this one could compute accurate fine-scale solutions throughout the domain
of interest.

Solving multiscale problems presents significant challenges due to the need for
computationally expensive fine-scale solvers to accurately capture multiscale features.
To address this issue, various multiscale methods have been proposed with the aim of
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BAYESIAN OPERATOR LEARNING FOR MULTISCALE PDES 957

resolving these complex phenomena. Among these methods, multiscale finite element
methods (MsFEMs) have emerged as particularly successful techniques [11, 6, 9, 8, 7].
An MsFEM operates by first solving for the multiscale basis, which effectively captures
the local multiscale features on a coarse mesh. Subsequently, the problem is solved
using this constructed basis, enabling a computationally effective approach for tackling
multiscale problems. Although using an MsFEM provides an effective framework
for accurately representing and resolving the multiscale behavior inherent in these
challenging problems, it can still be costly [5, 8, 18, 14, 13].

One technique for handling multiscale problems is through homogenization [12, 1,
18]. A standard approach is to employ the asymptotic expansion to represent the
solution. One can construct a homogenized solution without fully resolving the various
scales, which still leads to a valid approximation of the exact solution. In particular,
one can compute the solution to a homogenized PDE which only contains information
at the coarse scale. An alternative formulation is to establish a connection, in the
form of an operator, between a solution at a finer scale and the homogenized solution.
The mathematical formulation and numerical computation of the operator for this
task remain an open problem. However, we propose addressing this problem through
operator learning by creating an efficient deep neural network-based approximation
of the operator that represents the fine-scale solver of the corresponding multiscale
PDE.

In operator learning [28, 21, 42, 43] one trains deep neural networks to approx-
imate nonlinear operators, which are mappings between infinite-dimensional spaces.
These operator-learning frameworks have been successful in scientific computing due
to their versatility and efficiency for various problems arising from physical systems,
including modeling dependencies on initial conditions or parameters. The first oper-
ator learning framework for PDEs, the deep operator network (DON), was developed
in [28]. DON is built on the universal approximation theorem for operators from [4]
and can effectively learn operators with relatively small datasets. Compared to more
traditional neural networks that learn mappings between vector spaces, DON exhibits
improved generalization behavior on more complex tasks, as demonstrated in various
applications. These include acting as surrogate solvers of PDEs (such as bubble dy-
namics [22]), and approximating operators arising in tasks for control systems [24],
power grids [30], and multiphysics problems [2]. In [42], a discretization-invariant ex-
tension and analysis of DON was proposed, which allows the network to handle input
functions with different discretizations. Some other extensions of DON have enabled
incorporating physical information, leading to physics-informed DONs [40], handling
noisy data [30, 25], quantifying uncertainty [36, 30, 25], or performing inverse design
for complex applications [29, 38].

In a parallel effort, the Fourier neural operator (FNO) was presented in [21].
FNO approximates nonlinear operators by directly parametrizing integral kernels in
the Fourier domain. FNO's effectiveness has been demonstrated in numerous applica-
tions across various domains, including but not limited to global weather prediction
[33], multiphase flow [41], and solving PDEs with complex geometry [21]. In [17],
the authors generalized FNO and proposed neural operators that can effectively learn
operators. Specifically, they formulated the neural operator as a composition of linear
integral operators and nonlinear activation functions. Furthermore, the authors sup-
ported the neural operators by providing a universal approximation theorem, which
demonstrates the existence of a neural operator that can approximate a given nonlin-
ear continuous operator.
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958 ZHANG, MOYA, LEUNG, LIN, AND SCHAEFFER

Training effective operator networks for multiscale problems can be expensive
due to the requirement of large amounts of high-fidelity (fine-scale) data [39, 38, 27].
However, in practice, high-fidelity data may be limited. Fortunately, we may have
access to mathematical models that can generate abundant low-fidelity (coarse-scale)
data. In such cases, our objective is to accurately calculate the fine-scale solution by
constructing an operator learning framework that maps a function (i.e., the solution
of the partially known PDE) to a new function that represents the exact solution of
the target PDE. We then use the available data to train this framework, mixing scarce
high-accuracy observation with abundant coarse simulations [35, 34].

Therefore, it is crucial to design operator learning frameworks that can be trained
using high-fidelity data, mathematical models, and low-fidelity data. Several studies
[16, 29, 10] have developed multi-fidelity neural operators to address this need, with
applications to complex tasks such as fluid or materials science. However, they do not
consider the uncertainty caused by using various fidelities or models during training
and thus may not be effective in the presence of noisy data. To bridge this gap, this
paper proposes a novel Bayesian deep operator learning architecture for developing
surrogates of multiscale PDE solvers. The architecture can incorporate noisy high-
fidelity data and efficient solvers developed based on homogenization, which is a PDE-
based technique for handling multiscale PDEs [12, 1, 37, 15]. The main contributions
of this paper are summarized below.

\bullet We propose a data-driven neural operator approach that downscales a given
coarse model. This approach maps coarse-scale solutions to fine-scale so-
lutions directly from data, and the trained neural operator is a mesh-free
fine-scale solver of the multiscale problems.

\bullet We propose an ``oversampling"" approach to capture the input function to this
operator through patches. In our numerical experiments, we observed that
enlarging the patch leads to improvement in the prediction error.

\bullet Furthermore, we have designed the first Bayesian, multiscale operator learn-
ing framework that is trained with noisy data. This framework can provide
robust and mesh-free solutions, even from coarse-scale solutions.

\bullet Finally, we demonstrate through multiple numerical experiments that the
proposed framework represents an efficient mesh-free solver for multiscale
PDEs.

The paper is organized as follows. Section 2 formulates the problem of learning the
operator from coarse-scale solutions to fine-scale solutions. In section 3, we review
the DON framework. Section 4 provides detailed information about the proposed
operator learning frameworks, which are trained with coarse-scale solutions and a
limited number of observations of fine-scale solutions to approximate fine-scale solu-
tions. Section 5 develops a Bayesian, multiscale operator learning framework that
enables reliable prediction of fine-scale solutions, even when trained with noisy obser-
vations. We demonstrate the effectiveness of the proposed framework with a series of
numerical examples in section 6. Finally, section 7 concludes the paper.

2. Problem formulation. The main goal is to improve the accuracy of a low-
scale/low-accuracy model or physical simulation by using real observation data related
to a specific physical multiscale process. To address this, the proposed framework
involves first obtaining a coarse-scale solution with lower accuracy via a numerical
solver. Then, an operator learning approach is used to refine the coarse-scale solution
by incorporating available, possibly noisy, observed data. Obtaining the coarse-scale
solution is often a more feasible task in terms of the computational cost or algorithmic

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BAYESIAN OPERATOR LEARNING FOR MULTISCALE PDES 959

complexity. Then, using the coarse-scale solution, the designed operator learning
approach will act as a downscaled multiscale model, providing a fine-scale multiscale
solver simultaneously.

We motivate and justify the descaling operator method as follows. Consider an
example of homogenization of a multiscale elliptic problem:

 - \partial 

\partial xi

\biggl( 
aij(x/\epsilon )

\partial 

\partial xj
u\epsilon (x)

\biggr) 
= f(x), x\in \Omega ,(2.1)

with u\epsilon (x) = 0 at the boundary \partial \Omega . In the above equation, we have used the Einstein
notation, u\epsilon is the PDE solution, aij is the multiscale permeability, f(x) is the forcing,
and \Omega is the domain. We seek u\epsilon (x) with an asymptotic expansion of the form

u\epsilon (x) = u0(x,x/\epsilon ) + \epsilon u1(x,x/\epsilon ) + \epsilon 2u2(x,x/\epsilon ) +\scrO (\epsilon 3),(2.2)

where uj(x, y) for j = 0,1,2, . . . is periodic in y= x/\epsilon with period 1. Denote

A\epsilon = - \partial 

\partial xi

\biggl( 
aij(x/\epsilon )

\partial 

\partial xj

\biggr) 
.

Then, it follows that

A\epsilon = \epsilon  - 2A1 + \epsilon  - 1A2 + \epsilon 0A3,

where

A1 = - \partial 

\partial yi

\biggl( 
aij(y)

\partial 

\partial yj

\biggr) 
,

A2 = - \partial 

\partial xi

\biggl( 
aij(y)

\partial 

\partial yj

\biggr) 
 - \partial 

\partial yi

\biggl( 
aij(y)

\partial 

\partial xj

\biggr) 
,

A3 = - \partial 

\partial xi

\biggl( 
aij(y)

\partial 

\partial xj

\biggr) 
.

Thus, we have the decomposition \epsilon  - 2A1u\epsilon + \epsilon  - 1A2u\epsilon + \epsilon A3u\epsilon = f . By equating the
terms with the same power of \epsilon , we obtain

A1u0 = 0,(2.3)

A1u1 +A2u0 = 0,(2.4)

A1u2 +A2u1 +A3u0 = f.(2.5)

Substituting A1 into (2.3) leads to

 - \partial 

\partial yi

\biggl( 
aij(y)

\partial 

\partial yj

\biggr) 
u0 = 0.

According to the theory of second-order ordinary differential equations, u0 is inde-
pendent of y. This simplifies (2.4), and we have

 - \partial 

\partial yi

\biggl( 
aij(y)

\partial 

\partial yj

\biggr) 
u1 =

\biggl( 
\partial 

\partial yi
aij(y)

\biggr) 
\partial 

\partial xj
u0.

Thus, u1(x, y) can be solved by introducing \chi j(y), which is the solution to the follow-
ing problem:

 - \partial 

\partial yi

\biggl( 
aij(y)

\partial 

\partial yj

\biggr) 
\chi j =

\partial 

\partial yi
aij(y),(2.6)

\chi j is periodic in y with mean 0.
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960 ZHANG, MOYA, LEUNG, LIN, AND SCHAEFFER

Equation (2.6) is referred to as a cell problem that needs to be solved within one
period of y, or, in the unit cell Y = [0,1]d, where d is the dimension of the problem.
Then, u1 can be expressed as follows:

u1(x, y) = \chi j
\partial u0

\partial xj
(x).

Substituting the above into (2.2), we have

u\epsilon ,1(x) = u0 + \epsilon \chi j
\partial u0

\partial xj
(x),(2.7)

which is a higher-order approximation of u compared to u0.
Finally, we can express (2.7) in operator form as follows:

u\epsilon ,1(x) =G(u0)(x).(2.8)

Here the operator G maps the homogenized solution (i.e., the coarse-scale solution)
u0 to a finer-scale solution u\epsilon ,1. Our goal is to approximate the operator G using a
deep operator network (DON).

3. A brief review of deep operator networks. This section provides a review
of the DON proposed in [28]. DON is a neural network architecture that approximates
mappings between infinite-dimensional spaces. It is built on the universal approxi-
mation theorem of continuous operators, which was introduced in the seminal works
[4, 3]. In particular, DON satisfies the following approximation theorem. Suppose
X is a Banach space and K1 \subset X and K2 \subset \BbbR are compact sets. If V \subset C(K1) is
compact, then the continuous operator G : V \rightarrow C(K2) can be effectively approxi-
mated by a parameterized function. Specifically, for any \epsilon > 0, there exist positive
integers M , N , and K, constants cki , \zeta k, \theta 

k
i , and \varepsilon kij \in \BbbR , and points \omega k \in \BbbR d, yj \in K1,

i= 1, . . . ,M , k= 1, . . . ,K, and j = 1, . . . .,N , such that\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| G(u)(x) - 
K\sum 

k=1

M\sum 
i=1

cki g

\left(  N\sum 
j=1

\varepsilon kiju(yj) + \theta ki

\right)  g(\omega k \cdot x+ \zeta k)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| < \epsilon (3.1)

holds for all u\in V and x\in K2. Here g is the activation function in the Tauber--Wiener
class; specifically, if g :\BbbR \rightarrow \BbbR satisfies that all the linear combinations

\sum N
i=1 cig(\lambda ix+

\theta i), \lambda i \in \BbbR , \theta i \in \BbbR , ci \in \BbbR , i = 1, . . . ,N , and are dense in C[a, b], then g is called a
Tauber--Wiener function.

The above approximation theorem suggests a neural network architecture for
DON illustrated in Figure 1. The architecture comprises two subnetworks: a branch
net and a trunk net. The branch net is composed of a stacked collection ofK networks,
which take the function u discretized using N sensors as input, and output the vector
(b1, . . . , bK)\top . On the other hand, the trunk net takes the location x within the output
function domain as input and outputs the vector (t1, . . . , tK)\top . The final output of
the DON is obtained through the inner product between the output vectors of the
branch and trunk nets.

It is important to note that the DON inputs contain the independent variable,
x, which denotes the location of the output target function. This means that a
well-trained DON can predict the output function value at any arbitrary point in its
domain. We will use this property to construct an operator learning-based mesh-free
solver for multiscale PDEs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BAYESIAN OPERATOR LEARNING FOR MULTISCALE PDES 961

Inputs

Outputs

u = [u(y1), ..., u(yN )]\intercal 

branch net 1 b1

branch net K bK

branch net j bj

x \in \BbbR d trunk net

t1

tj

tK

\bigotimes 
\rightarrow G(u)(x)

Fig. 1. Stacked version of the Deep Operator Network (DON).
\bigotimes 

denotes the inner product
in \BbbR K . Specifically, branch nets are two-layer neural networks with weights \varepsilon kij , c

k
i and bias \theta ki in

(3.1); trunk net has weights \omega k and bias \zeta k.

4. Proposed methodology. We use DON to design two operator learning-
based algorithms that can approximate the operator mapping coarse-scale solutions
to fine-scale solutions.

The Vanilla Operator Learning Algorithm (without Patch). Here, we design and
train a deep neural networkG\theta , with a vector of trainable parameters \theta to approximate
the true operator G(u0(x))(x), which maps the coarse-scale solution u0(x) to the fine-
scale solution at any given location x within the domain \Omega . We summarize this vanilla
algorithm in Algorithm 4.1. We also note that we refer to this algorithm as ``without
patch"" to emphasize that we only use the coarse solution at a point x, and not any
neighboring locations within \Omega .

To train the proposed DON G\theta : u0 \mapsto \rightarrow u, we minimize the loss function,

\scrL (\theta ) = 1

Np

Np\sum 
i=1

\| G\theta (u0(xi))(xi) - u(xi)\| 2,

using the dataset of Np triplets \{ u0(xi), xi, u(xi)\} 
Np

i=1, where u0(xi) is the low-accuracy
(coarse-scale) solution, xi \in \Omega the given location within the domain \Omega , and u(xi) the
fine-scale (observation) solution.

Remark 4.1. We have two remarks regarding Algorithm 4.1.
1. The coarse-scale solution u0 can be obtained easily and with low compu-

tational cost. One approach is to use multiscale finite element methods
(MsFEMs) [11, 6, 5]. Another option is to use data-free machine learning
methods, such as neural homogenization physics-informed neural networks
(NH-PINN) [18]. PINN is a mesh-free solver, which means it can calculate
the solution at any point in the PDE's domain, allowing u0 to be evaluated
at any point in the domain.

2. The resulting trained DON, G\theta \ast (u0(x))(x), with optimal parameters \theta \ast , is a
fine-scale, mesh-free solver.

The Operator Learning Algorithm with Patch. In the vanilla algorithm, the input
function u0 (i.e., the coarse-scale solution) is evaluated at a single point xi. However,
in (2.7), \partial u0

\partial x (xi) requires the consideration of the derivative at that point. To approx-
imate this derivative, finite difference schemes use neighboring points, leading to the
idea of sampling a local neighborhood centered around xi, i.e., the patch.

To illustrate this concept, we provide an example (see Figure 2) involving a
5\times 5 patch for a two-dimensional (2D) problem. Subsequently, we propose a novel

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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962 ZHANG, MOYA, LEUNG, LIN, AND SCHAEFFER

algorithm, the operator learning with patch algorithm detailed in Algorithm 4.2 and
illustrated in Figure 3, which uses the patch sampling approach to estimate the desired
derivative.

Formally, we approximate the fine-scale solution u(xi) at any arbitrary point xi

within the domain using the DON G\theta ( \^ui)(xi). Here, \^ui refers to the collection of
coarse-scale solutions \{ u(x)\} x\in Pi evaluated at the patch Pi (i.e., the neighborhood of
locations around xi), which serves as the new input to the branch net.

To train the proposed DON G\theta : \^ui \mapsto \rightarrow u(xi), we minimize the loss function,

\scrL (\theta ) = 1

Np

Np\sum 
i=1

\| G\theta (\^ui)(xi) - u(xi)\| 2,

using the dataset of Np triplets \{ \^ui, xi, u(xi)\} 
Np

i=1.

Algorithm 4.1. Vanilla Operator Learning without Patch.

Requires: dataset: \{ u0(xi), xi, u(xi)\} 
Np

i=1, where u0(xi) is the low-accuracy (coarse-
scale) solution, xi the location within the domain \Omega , and u(xi) the fine-scale
(observation) solution.
Use a coarse solver to solve the multiscale equation and obtain u0(xi), where xi \in \Omega .
Train the DON G\theta : u0 \mapsto \rightarrow u by minimizing the loss function

\scrL (\theta ) = 1

Np

Np\sum 
i=1

\| G\theta (u0(xi))(xi) - u(xi)\| 2.(4.1)

Predict fine-scale solutions at arbitrary locations x\in \Omega using the trained DON G\theta \ast 

(u0)(x), where \theta \ast denotes the optimal network parameters.

Fig. 2. A 5 \times 5 patch (red dots) centered at an observation point (black dot). All red dots
represent the sensors used to sample the local input function (coarse-scale solutions) centered at the
black dot (observation). (Color available online.)

Coarse-scale

solver

Patch

\{ uo(x)\} x \in Pi

Pi

branch net
coarse-scale

solutions

xi \in \Omega trunk net

G\theta (\^ui)(xi)

fine-scale

solution

Fig. 3. A pictorial description of the operator learning algorithm with a patch. First, a coarse
solver generates a collection of coarse-scale solutions \^ui = \{ uo(x)\} x\in Pi

on the patch Pi centered
at xi \in \Omega . The collection of coarse-scale solutions \^ui is then input to the branch net, while the
target location xi \in \Omega is input to the trunk net. The proposed operator learning algorithm with patch
outputs the fine-scale solution G\theta (\^ui)(xi) = u(xi) at the arbitrary target location xi \in \Omega .
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BAYESIAN OPERATOR LEARNING FOR MULTISCALE PDES 963

Algorithm 4.2. Operator Learning with Patch.

Require: dataset: \{ \^ui, xi, u(xi)\} 
Np

i=1. Here u(xi) is the fine-scale (observation)
solution and \^ui = \{ u(x)\} x\in Pi is the collection of coarse-scale solutions \{ u(x)\} x\in Pi

evaluated at the patch Pi (i.e., the neighborhood of locations around xi). For
example, a patch of size three around xi of the 1D case is Pi = \{ xi - 1, xi, xi+1\} . A
5\times 5 2D patch demonstration is presented in Figure 2.
Use a coarse solver to solve the multiscale equation and obtain u0(x), where x\in Pi.
Train the DON G\theta : \^ui \mapsto \rightarrow u(x) by minimizing the loss function

\scrL (\theta ) = 1

Np

Np\sum 
i=1

\| G\theta (\^ui)(xi) - u(xi)\| 2.

Predict fine-scale solutions at xi \in \Omega using the trained DON G\theta \ast (\^ui)(xi), where \theta \ast 

denotes the optimal network parameters.

Remark 4.2. We conclude this section with two remarks concerning the patch.
1. Our numerical experiments have revealed a notable trend: as the size of the

patch or neighborhood increases, the relative error decreases.
2. We use DON to learn the operator. However, since DON is not invariant

to the discretization of the input function, all patches must share the same
discretization.

5. Bayesian, multiscale operator learning. The conventional optimization
framework used to train DON does not accurately quantify uncertainty and provide
robust predictions, which are crucial for creating credible intervals for scientific and
engineering applications. This can lead to unreliable DON predictions and limit the
reliability of DON. However, quantifying the uncertainty associated with limited and
noisy training data, along with the fact that the network is over-parameterized, makes
this a challenging task. This challenge is even greater in operator learning, as it
involves mappings between infinite-dimensional spaces, such as the multiscale operator
G. In this section, we address this challenge by developing a Bayesian DON (B-DON)
[25]. B-DON can create estimators and credible intervals for the operator that maps
the homogenized solution uo to the fine-scale solution G(uo)(x) for any given x\in \Omega .

In this B-DON framework, our goal, given the training noisy dataset \scrD , is to
construct a distribution p(G| (uo, x),\scrD ) that can predict the operator value of G (the
fine-scale solution) based on the input homogenized solution uo and at any new loca-
tion x. To achieve this, we first assume the following factorized Gaussian likelihood
function for the data:

p(G| (uo, x), \theta ) =\scrN (G| G\theta (uo)(x),diag(\Sigma 
2)) =

N\prod 
j=1

\scrN (Gj | G\theta (uo,j)(xj), \sigma ),(5.1)

where the output G\theta (uo)(x) is the mean of the Gaussian distribution assumed for G,
given the homogenized input uo at location x, and diag(\Sigma 2) is a diagonal covariance
matrix with \Sigma 2 = (\sigma 2, . . . , \sigma 2) on the diagonal [36]. Note that \sigma can be assumed or
estimated from the noisy data.

The fine-scale solution G for a given homogenized solution uo at a location x,
given the noisy training data \scrD , is the random variable (G| (uo, x),\scrD ). To obtain the
density of this random variable, we need to integrate out the model parameters as
follows:

p(G| (uo, x),\scrD ) =

\int 
p(G| (uo, x), \theta )p(\theta | \scrD )d\theta .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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964 ZHANG, MOYA, LEUNG, LIN, AND SCHAEFFER

Here, p(\theta | \scrD ) represents the posterior distribution of the trainable parameters. This
distribution enables us to quantify the epistemic uncertainty, which refers to the
uncertainty related to the trainable parameters \theta [36, 25].

To obtain this posterior, we use Bayes's rule:

p(\theta | \scrD )\propto p(\scrD | \theta )p(\theta ),

where p(\theta ) is the prior distribution of the parameters and p(\scrD | \theta ) the data likelihood,
i.e., p(\scrD | \theta ) =

\prod N
j=1 p(Gj | (uo,j , xj), \theta ), which we calculate using the DON forward

pass and the independent and identically distributed (i.i.d.) noisy training dataset
\scrD . Acquiring the posterior distribution using Bayes's rule is computationally and
analytically intractable [36]. Therefore, in previous work [25], we approximated the
posterior distribution through samples obtained from it. Specifically, we obtained an
Me-ensemble of \theta samples, denoted as \{ \theta k\} Mk=1, as described below.

5.1. Sampling the \bfitM \bfite -ensemble \{ \bfittheta \bfitk \} \bfitM 
\bfitk =1. To obtain the Me-ensemble of

parameters \{ \theta k\} Mk=1, B-DON uses the stochastic gradient replica exchange Langevin
diffusion (SG-reLD), which we developed and studied in [25, 26, 23, 31, 19]. As
demonstrated in our previous work, SG-reLD enjoys theoretical guarantees beyond
convex scenarios, effectively handles large datasets, and accelerates convergence to
the posterior distribution p(\theta | \scrD ).

Specifically, SG-reLD uses two Langevin diffusions to describe the stochastic dy-
namics of \theta , along with a stochastic process that allows the diffusions to swap si-
multaneously. The high-temperature diffusion enables exploration of the parameter
space, facilitating convergence to the flattened distribution of \theta . The low-temperature
diffusion exploits the same parameter space, enabling faster convergence to local min-
ima \theta \ast . By swapping the diffusions, SG-reLD effectively escapes local minima and
allows \theta k to converge faster to the desired posterior p(\theta | \scrD ). For more details about
employing SG-reLD with B-DONs, please refer to our previous paper [25].

In practice, we can use the Me-ensemble \{ \theta k\} Mk=1 obtained using SG-reLD to fit
a parametric distribution, such as the Gaussian distribution

\scrN (\=\mu (uo)(Xtest), \=\sigma 
2
e(uo)(Xtest))

for an arbitrary mesh Xtest of locations. The parameters of this distribution are given
by

\=\mu (uo)(Xtest) =
1

M

M\sum 
k=1

G\theta k(uo)(Xtest),(5.2)

\=\sigma 2
e(uo)(Xtest) =

1

M

M\sum 
k=1

(G\theta k(uo)(Xtest) - \=\mu (uo)(Xtest))
2
.(5.3)

Sampling from the aforementioned distribution allows for estimating credible sets for
the fine solution. This also enables the sampling of more reliable predictions, which
can help reduce the average relative error of test trajectories in the presence of noise,
as demonstrated in our numerical experiments section.

6. Numerical experiments. This section presents several numerical experi-
ments to demonstrate the effectiveness of the proposed framework. For all examples,
we conducted 100 independent experiments and present the average relative error.
We will analyze the error decay with respect to the patch size, the error decay with
respect to the number of observation points, and the error decay in the presence of
noise.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BAYESIAN OPERATOR LEARNING FOR MULTISCALE PDES 965

Fig. 4. 1D elliptic. Top: Permeability \kappa (x). Bottom: Reference solution.

6.1. 1D elliptic. In our first example, we will study a 1D problem for which we
can obtain an exact homogenized solution. Specifically, we will consider the following
elliptic equation:

 - d

dx

\biggl( 
a(x/\epsilon )

du

dx

\biggr) 
= f, x\in [0,1],

u(0) = u(1) = 0,

where a(x) = 0.5 sin(2\pi x
\epsilon ) + 0.8 and f(x) = 0.5. Figure 4 illustrates the multiscale

permeability \kappa (x) and the reference solution.
We set \epsilon = 1/16. Then, the coarse-scale solution is obtained using classical ho-

mogenization theory, and the relative error of the homogenized solution is 0.07\%. To
further improve the homogenized solution, we employ data from exact solutions at 16
uniformly distributed points in the domain, i.e., Np = 16 in (4.1). We evaluate the
performance of our approach as the patch enlarges using the oversampling trick, and
we present the results in Figure 5.

6.2. 2D elliptic equation with 1 fast variable. In this experiment, we con-
sider the following 2D elliptic equation:

 - \nabla \cdot (\kappa (x/\epsilon )\nabla u) = f,x\in \Omega = [0,1]2,(6.1)

u(x) = 0, x\in \partial \Omega ,(6.2)

where \kappa (x/\epsilon ) = 2+ sin(2\pi x/\epsilon ) cos(2\pi y/\epsilon ) and \epsilon = 1
8 . Figure 6 shows the permeability

\kappa as a function of x.
For the proposed framework, we assume prior knowledge of the exact solution

of the given equation at a limited number of points. To compute the coarse-scale

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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966 ZHANG, MOYA, LEUNG, LIN, AND SCHAEFFER

Fig. 5. Relative errors for 1D elliptic equations are shown with respect to different patch sizes.
The patch size ranges from 1 (using only the observation point) to 9 (using 9 points with the obser-
vation point in the patch center). We trained 100 independent models and presented their average
relative errors.

Fig. 6. 2D elliptic with 1 fast variable. Left: Permeability \kappa (x). Right: Reference solution.

solution, we use the methodology described in [18]. Specifically, we use a neural-
homogenized physics-informed neural network (NH-PINN) to derive the homogenized
solution, denoted as u0. The NH-PINN method employed in this study is a mesh-free
solver, which allows for the generation of coarse-scale solutions at any point within the
domain. As a result, we can always obtain a patch consisting of coarse-scale solutions
centered around the observed fine-scale solutions.

Our goal for this experiment is to use operator learning to approximate the map-
ping from the NH-PINN-based coarse-scale solution u0 to the corresponding fine-scale
solution uf . By learning this mapping, we aim to improve the accuracy of the coarse-
scale solution by leveraging the information from the fine-scale solution.

We demonstrate that the operator can be constructed (trained) more effectively
as the patch size increases. We conducted five sets of experiments with patch sizes of
1\times 1, 3\times 3, 5\times 5, 7\times 7, and 9\times 9. For each set of experiments, we trained 100 models
and computed the average relative errors of the last 100 epochs for each model. The
results are shown in Figure 7.

Remarkably, our analysis shows that as the patch size increases, there is a reduc-
tion in relative errors. This observation highlights the benefits of enlarging the patch
size in order to achieve improved accuracy in our models.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 7. We investigate the relative errors associated with different patch sizes, ranging from
1\times 1 (using only the observation point) to 9\times 9 (consisting of a total of 81 points, with the observation
point located at the center of the patch). To obtain a thorough evaluation, we train a total of 100
independent models and report the average relative errors.

Fig. 8. We use various exact solutions, uniformly distributed in the domain, as the training
labels (observations). We set the patch size to be 1, which means that only the observation point
coordinate is included as the branch input. By increasing the number of observations from 9 to 49,
we evaluate the predictions on a 100\times 100 mesh to compare the errors. For each observation set,
we train a total of 100 independent models, which capture the inherent variability in the training
process. To assess the performance, we calculate the average relative error across the ensemble of
models. This approach provides a comprehensive evaluation of the predictive accuracy for different
numbers of observations.

In the second part of this numerical experiment, we investigate the relationship
between the relative error and the number of observation (training) points, which
represent the exact solution. To achieve this, we use a fixed patch size of 1, which
means that we only include one point from the neighborhood for each observation
sample.

To investigate the influence of the number of observation points, we vary the
number of observation points and present the results in Figure 8. This analysis helps
us understand the impact of the number of observation points on the relative error,
providing valuable insights into the behavior of our model.

To conclude this experiment, we train the proposed multiscale B-DON model
using noisy observations. We again conduct experiments by gradually increasing the
number of observations from 9 to 49, while constructing an Me-ensemble of models.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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968 ZHANG, MOYA, LEUNG, LIN, AND SCHAEFFER

Fig. 9. We employ different numbers of exact solutions as the training labels (observations).
We add Gaussian noise with variance \sigma 2 = 0.0052 to the training labels. We fix the patch size to be 1,
i.e., include only the observation point coordinate as the brunch input. The number of observations
runs from 9 to 49, while we test the prediction on a 100 \times 100-resolution mesh. For each set
of observations, we use as reference the results from the previous section that trains 100 models
with the true labels (DON). We train another 100 model solutions with noisy targets (noisy DON).
We also use the proposed Bayesian framework (B-DON) to sample from the predictive distribution
constructed using an ensemble of Me = 100 sets of parameters. For all the cases, we compute the
average relative error.

Fig. 10. 2D elliptic with multiple scales. Left: Permeability \kappa . Right: Reference solution.

Then, by sampling the fitted distribution whose parameters are given in (5.2) and (5.3)
and using a 100 \times 100 Xtest mesh, we predict the values of the fine-scale solutions.
Figure 9 depicts the results of such experiments, which illustrate that the proposed
Bayesian multi-fidelity operator learning framework can provide robust predictions
even in the presence of noisy observations.

6.3. 2D elliptic with multiple scales. This experiment considers the same
equation (6.2) as before but with a different permeability \kappa . Specifically, we let \kappa be

\kappa (x, y) = 1+
sin(2\pi x

\epsilon 0
) cos(2\pi y

\epsilon 1
)

2 + cos(2\pi x
\epsilon 2
) sin(2\pi y

\epsilon 3
)
+

sin(2\pi x
\epsilon 4
) cos(2\pi y

\epsilon 5
)

2 + cos(2\pi x
\epsilon 6
) sin(2\pi y

\epsilon 7
)
,

where \epsilon 0 = 1
5 , \epsilon 1 = 1

4 , \epsilon 2 = 1
25 , \epsilon 3 = 1

16 , \epsilon 4 = 1
16 , \epsilon 5 = 1

32 , \epsilon 6 = 1
3 , \epsilon 7 = 1

9 . Figure 10
illustrates the permeability and reference solution.

We obtain the coarse-scale solution using multiscale finite element methods with
one local basis [11, 6, 9, 5]. Then, we demonstrate that the approximation to the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 11. Relative errors of the 2D elliptic example with respect to different patch sizes. The
patch size ranges from 1 \times 1 (using only the observation point) to 9 \times 9 (using 81 points with the
observation point at the patch center). We trained 100 independent models and present the average
relative errors.

true solution operator can be better constructed (learned) as the patch size increases.
To illustrate this, we conduct three sets of experiments with patch sizes of 1 \times 1,
3\times 3, 5\times 5, 9\times 9, and 16\times 16. For each set of experiments, we trained 100 models
and computed the average relative errors of the last 100 epochs of all 100 models.
Figure 11 shows the obtained results.

6.4. Radiative transfer equation. In this final experiment, we consider the
radiative transfer equation (RTE) [32, 20, 7] with a high-contrast scattering coefficient
\sigma (x,\omega ) (see Figure 12). The term ``high-contrast"" refers to the strong scattering in
the channels:

s \cdot \nabla I(x, s) =
\sigma (x,\omega )

\epsilon 

\biggl( \int 
\scrS n - 1

I(x, s\prime )ds\prime  - I(x, s)

\biggr) 
\forall x\in D,s\in \scrS n - 1.

Here, s is a vector on the unit sphere, and n is the dimension of the problem. In our
experiments, we considered n= 2, and thus \scrS n - 1 = \scrS 1 is the unit circle. Additionally,
we set \epsilon = 0.001 and D= [0,1]2. We also introduced the Dirichlet boundary conditions
I(x, s) = Iin for entrant directions s\cdot n< 0, i.e., on \Gamma  - := \{ (x, s)\in \partial D\times \scrS n - 1 : s\cdot n< 0\} .
Here, n is the unit outward normal vector field at x \in \partial D. The condition can be
written as

I = Iin(x, s) for all (x, s)\in \Gamma  - .

In our examples, the top, bottom, and right boundaries have zero incoming boundary
conditions. We also assume that the left boundary has nonzero flow injected into the
domain.

We chose the multiscale RTE with high contrast channels for its numerical com-
plexity [7] and its challenge for learning-based approaches. However, as \epsilon approaches
zero, the elliptic solution converges to the RTE [32, 20]. We use the elliptic solution
as a low-accuracy solution and incorporate observed real RTE solutions to learn the
downscaling of the model. Specifically, the RTE solution is used to correct errors
in the elliptic solution. To understand how observations improve downscaling, we

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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970 ZHANG, MOYA, LEUNG, LIN, AND SCHAEFFER

Fig. 12. Left: Demonstration of multiscale scattering \sigma (x)/\epsilon , where \epsilon = 0.001. Right: The
solution of the RTE.

Fig. 13. We use varying numbers of RTE solutions, uniformly distributed in the domain, as
training labels (observations). The number of observations ranges from 9 to 49. We test the predic-
tion on a 51\times 51 mesh. For each set of observations, we train 50 independent models and calculate
the average relative error.

conducted a series of experiments with different numbers of observation points. We
present the results in Figure 13.

7. Conclusion. This paper introduces a mesh-free operator learning framework
for computing the fine-scale solution of multiscale PDEs. The proposed framework
is trained using (i) coarse-scale solutions, which are inexpensive to obtain, and (ii) a
limited number of observations of the fine-scale solution, to approximate the fine-scale
solution at any desired location within the domain. Additionally, when the observa-
tions are noisy, we designed a Bayesian, multiscale operator learning approach that
can reliably predict fine-scale solutions. Finally, we demonstrated the effectiveness
and reliability of the proposed framework using a 1D elliptic equation, 2D elliptic
equations with one fast variable and multiple scales, and the radiative transfer equa-
tion. The results confirmed that the proposed framework can work as a multiscale,
mesh-free solver. In future work, we plan to design a DON that is invariant to in-
put discretization. This will enable more effective capturing of derivatives by having
patches with different discretizations. Additionally, we will study the convergence
with respect to the parameters of the proposed frameworks.
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