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ARTICLE INFO ABSTRACT

Keywords: Neural operators have been applied in various scientific fields, such as solving parametric
Operator learning partial differential equations, dynamical systems with control, and inverse problems. However,
Distributed training challenges arise when dealing with input functions that exhibit heterogeneous properties,

Heterogeneous inputs

5 requiring multiple sensors to handle functions with minimal regularity. To address this issue,
Multiscale problems

discretization-invariant neural operators have been used, allowing the sampling of diverse
input functions with different sensor locations. However, existing frameworks still require
an equal number of sensors for all functions. We propose a novel distributed approach to
further relax the discretization requirements and solve the heterogeneous dataset challenges.
Our method involves partitioning the input function space and processing individual input
functions using independent and separate neural networks. A centralized neural network is
used to handle shared information across all output functions. This distributed methodology
reduces the number of gradient descent back-propagation steps, improving efficiency while
maintaining accuracy. We demonstrate that the corresponding neural network is a universal
approximator of continuous nonlinear operators and present three numerical examples to
validate its performance.

1. Introduction

Operator Learning, introduced by [1], involves learning operators that map one function to another. It extends classical function
learning, which focuses on the mapping between vector spaces, and functional learning [2], which deals with functions mapping
to fields. Operator Learning has become a pivotal tool in scientific machine learning [3]. Recent works on this topic include
various neural operators [4-8] and extensive studies on the approximation and convergence aspects of these neural operators [1,9—
11]. Additionally, applications of neural operators span various scientific and engineering domains. For example, researchers
have developed algorithms that use neural operators to address parametric Partial Differential Equation (PDE) problems [4,12-
16], dynamical systems with control [1,17,18], power engineering applications [19-21], design optimization problems [22,23],
and challenges related to multifidelity and multiscale downscaling [22,24,25]. Notably, researchers have recently applied neural
operators to climate predictions [26] and uncertainty quantification [27-29].
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One of the popular approaches in this direction is the Deep Operator Neural Network (DeepONet) [4,7,12,22,30-32]. DeepONet
utilizes two subnetwork architectures consisting of a branch network and a trunk network to approximate operators by constructing
a basis for the output function space. The trunk networks are responsible for learning the basis, while the branch network acquires
the basis coefficients. This results in an approximation achieved through a linear combination of the learned basis and coefficients.
Another approach for neural operators is the Fourier neural operator (FNO) [5,26,33]. FNO applies the Fourier neural transformation
to convolve the input function with a learned translation invariant kernel function. It then utilizes skip connections and other
mechanisms to nonlinearly generalize the approximation. A comprehensive comparison of DeepONet and FNO can be found in [30].
Additionally, there are several other noteworthy neural operators documented, as cited here [6,8,10,34-36].

A significant advantage of DeepONet [1,4,7] and related structures [8,10] is the ability to discretize output functions freely [8,
30,37]. The neural operator generates function values at specific domain points, which are determined by the trunk network input,
resulting in enhanced adaptability. This flexibility allows the network to predict output function values at any domain point, accom-
modating different mesh definitions for output functions. However, a major challenge is achieving discretization invariance [8,30].
Specifically, the neural operator must remain invariant to the different discretizations applied to input functions. Several algorithmic
extensions to DeepONet have been proposed, allowing different input functions to be discretized differently [30,38]. Additionally,
the Basis Enhanced Learning (BelNet) extension of DeepONet, proposed by [8,10], has mathematically demonstrated discretization
invariance. It is worth noting that these extensions still require the number of sensors used to sample input function values to
be consistent across distinct input functions. In this paper, we introduce a novel and efficient distributed network architecture and
training approach for neural operators. This approach permits individualized discretization of input functions using dedicated sensor
distribution strategies.

Discretization invariance offers several advantages, particularly when working with datasets that have diverse properties [33].
For example, a dataset may consist of input functions with different levels of regularity. When using a uniform set of sensors to
sample and discretize these input functions, it becomes necessary to accommodate the functions with the lowest regularity. This leads
to a significant increase in the number of required sensors. However, it also results in higher costs for functions that are inherently
smoother. To accommodate input functions with varying properties and regularity, we will draw inspiration from federated learning.
Introduced in [39], federated learning is a machine learning framework that enables multiple clients to collaboratively train a
consensus neural network model in a distributed manner, while keeping their training data local. This approach protects data privacy
and reduces communication costs by coordinating local model updates with a central server, resulting in a significant reduction in
data transfer volume.

A standard formulation of federated learning is a distributed optimization framework that addresses communication costs,
client robustness, and data heterogeneity across different clients [40]. Communication efficiency is central to this formulation
and motivates the most well-known efficient communication algorithm in federated learning: the federated averaging (FedAvg)
algorithm [39]. FedAvg has been studied under realistic scenarios in [41,42]. Furthermore, several works have provided convergence
proofs of the algorithm within the field of optimization [43-47].

Traditionally, neural operators have been trained using a centralized strategy that involves transferring the training data to a
central location. However, this approach hinders our ability to leverage high-performance distributed/parallel computing platforms.
To address these limitations, the authors in [48] proposed Fed-DeepONet. Fed-DeepONet enables distributed training of deep
operator networks and has been empirically shown to achieve accuracy comparable to the centralized vanilla DeepONet while
handling heterogeneous input functions. However, it should be noted that Fed-DeepONet requires the number of sensors for each
local DeepONet to be the same, as it trains a consensus global DeepONet. In this paper, we provide a theoretical demonstration of
Fed-DeepONet’s ability to approximate nonlinear operators. Additionally, we design a dedicated distributed training strategy that
does not require the same number of sensors, allowing the approach to handle heterogeneous input function spaces.

We summarize the contributions of this paper as follows:

1. We propose the distributed deep neural operator (D2NO) method that allows for sampling different input functions using
distinct sets of sensors. This training method can reduce the total number of back-propagation steps and the number of
trainable parameters by utilizing dedicated neural networks to handle the diverse input function spaces.

2. D2NO is motivated by the mathematical theory that underlies the algorithm. Since all functions share the same output
basis, we construct dedicated networks to handle the diverse input functions. We then proceed to demonstrate the universal
approximation of the network and algorithms we propose.

3. The proposed methodology can be implemented using different neural operators. In this study, we apply it to the novel
Deep Operator Neural Network (DeepONet). By utilizing the Distributed-DeepONet (D-DeepONet), we tackle complex
heterogeneous datasets that contain input functions with different regularities and geometries. D2NO enhances efficiency
while preserving predictive accuracy.

The rest of the paper is organized as follows. In Section 2, we will review the DeepONet and the universal approximation theory.
Next, we present the methodology in Section 3. Then, we prove the universal approximation theorem for Distributed-DeepONet in
Section 4. Finally, we present several numerical experiments containing heterogeneous input function spaces in Section 5.

2. Overview
2.1. Deep Operator Neural Network (DeepONet)

We start by defining an operator G : V — U, where V and U are two function spaces. Next, we examine the Deep Operator
Neural Network (DeepONet) [4,7,12,22,30], as demonstrated in Figure 1. The DeepONet structure contains a branch and trunk



Z. Zhang et al. Computer Methods in Applied Mechanics and Engineering 428 (2024) 117084

branch net 1 |——
o= [u(yr), ..., u(yn)]” < branch net j ‘—»

branch net K |——

® = G(u)(2)

b
Outputs
e
tx

Inputs

Fig. 1. Stacked version DeepONet. @ denotes the inner product in R¥. Specifically, 7, € R is the trunk net output, b; € R is the brunch net output, and u is a
function in the input function space .

network. The branch net processes a discretized input function, while the trunk network processes an arbitrary location within a
given output function space. The DeepONet structure avoids needing to discretize the output function. This allows more flexibility
in both the training and prediction processes, distinguishing it from neural operators that rely on output function discretization on
fixed grid mesh (see Fig. 1).

The DeepONet is theoretically based on the universal approximation theorem of nonlinear operators, which was established
in [1,2,4], and extended in [4,10]. The main results are stated below.

Theorem 2.1 (Theorem 5, [1]). Suppose G : V — U is continuous. Specifically, let V be compact in the continuous function space C(K,),
where K, is compact in a Banach space. Additionally, suppose G(V') C C(K,), where K, C R? is also compact. Then, for any «, there exist
sensors {y,} L C Ky, networks p, : RN - R, and b, : K, — R such that,

mwm—memm<a

k=1

forall x € K, and u € V. Here i = [u(y)), ... ,u(yy)1".
2.2. Discretization-invariant extension of DeepONet

Theorem 2.1 presents an existence argument stating that the sensors are the same across all input functions. This implies that all
distinct input functions must be discretized on the same mesh. However, this limitation hinders the use of DeepONet, especially in
cases where the dataset exhibits heterogeneous properties (for a demonstration, refer to the numerical experiments Section 5).
A neural operator is considered discretization-invariant if it remains unaffected by variations in input function discretizations.
In [8,10], an extension of DeepONet was shown to be discretization-invariant, and specifically, the authors proved the following
theorem:

Theorem 2.2 (Discretization-Invariance [8,10]). Suppose that a € TW, Y is a Banach space, K, C Y, and K, C R are all compact. Let
V c C(K,) be a compact set and G : V — C(K,) be a continuous and nonlinear operator. For any e > 0, there exist integers N,C,K, I,
weights and biases W¥ € R?, b% € R, Wk e R™*C, b* e Rl, c* € R, subset of sensors K, C KIN and a trainable network N : K, —» RN
with K, C K,. Then the following inequality holds

K
G (x) =Y aWl - x+ b a(WN @+ bb)| <e,
k=1
fordll x € Ky, = [u(y)),u(yp), ..., ulyp)I', {y;} CK,, andueV.

The basis enhanced learning (BelNet) extension partially relaxes the restriction on the input function discretization. However, the
number of sensors (input function mesh size) should still be the same for all input functions. Additionally, K, C K which supports
the discretization-invariant property must be carefully crafted (see Remarks 3 and 4 in [10]). This limits the sensor placement and
input function discretizations.

When dealing with datasets that have input functions with different properties, it is important to place sensors that can adapt
to functions with the lowest regularity within the dataset.

Fig. 2 illustrates various functions with different regularities. To effectively capture functions with features like black curves
with sharp peaks, a large number of sensors must be used. Similarly, for the magenta curves with smooth oscillations, sensors need
to be strategically placed across the entire domain. Using a uniform sensor configuration for all input functions would require a
significant increase in the number of sensors. This would result in higher computational costs and additional expenses, especially
for smoother functions. We propose the D2NO which can effectively address this problem.



Z. Zhang et al. Computer Methods in Applied Mechanics and Engineering 428 (2024) 117084

—— One input function with hump ® Uniform Sampling
— One input function with small variance
121 e uUniform Sampling
—— One input function with large variance
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Fig. 2. Left: illustrations of functions exhibiting varied degrees of smoothness. The black curves represent two prototypes from a category of input functions
characterized by sharp peaks, while the magenta curves display two instances of smooth functions. Right: presentation of different sensor counts for discretizing
functions depicted in the left visual. The functions with humps are finely discretized with 75 sensors, whereas the smooth magenta function is captured using
only 6 sensors (indicated by the green dots). Middle: uniform sampling. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

2.3. Distributed/federated training of DeepONets

In [48], the authors proposed Fed-DeepONet, a distributed/federated strategy that trains a consensus/universal DeepONet model
for C clients and a centralized server. This federated training strategy involves looping over the following three steps:

1. Broadcast to clients: The centralized server broadcasts the most up-to-date DeepONet consensus model to all clients.

2. Client local updates: For any ¢ € {1,2,...,C}, the cth client receives the most up-to-date DeepONet consensus model and
performs K > 1 local stochastic gradient (or variants, e.g., Adam) DeepONet updates using the client’s dedicated dataset.

3. Global synchronization: The centralized server aggregates the local DeepONet parameters into a unique consensus/universal
DeepONet every K local update.

Since Fed-DeepONet learns a consensus model, each client must use the same number of sensors. In the next section, we will expand
on the previously mentioned federated training strategy and develop a dedicated distributed training strategy for DeepONets with C
clients. This strategy will efficiently handle heterogeneous input function spaces by allowing different numbers of sensors for each
client c € {1,2,...,C}.

3. Methodology

Consider a nonlinear operator G that maps an input function 4 € V to an output function G(u)(x) evaluated at an arbitrary
location x € K,. According to Theorem 2.1, we can approximate G(u)(x) as ZkK=] Wb, (x), where b, (x) and p,(u) are learnable
functions and functionals. In the DeepONet literature, p,(-) is commonly referred to as the branch net, while 5,(-) is known as the
trunk network. To simplify our notation, we will omit the parameters of the learnable functions whenever possible. It is important
to note that b, (x) can be seen as the basis of the output function space, which is a shared element among all » and is independent of
u € V. On the other hand, p, (1) represents the coefficients in the linear combination, which depend on the specified input function
u. Consequently, the approach taken is to develop a dedicated distributed approach that shares b,(x) across all samples to create
a universal/consensus trunk network model. In this dedicated approach, individual clients independently manage their respective
input function datasets using their branch nets (or projection in BelNet). They send their individual basis b,(x) to a centralized
server to learn a universal/consensus model applicable to all samples. Please refer to Fig. 3 for an illustration and a comparison
with classical training (Fig. 4).

This means that each client independently manages input functions in its dataset through its unique branch (or projection)
nets. Additionally, they transmit their local trunk networks to the central server responsible for acquiring and sending the
universal/consensus basis b, (x) across all samples. Since each dataset is managed by its individual branch (or projection), it becomes
possible to use designated sensors tailored to the input function within each dataset.

Distributed Deep Neural Operator (D2NO). Let D denote the entire heterogeneous dataset, and D', ...., D€ to be sub-datasets.
Moreover, each D' exclusively comprises functions belonging to a single class, sharing similar regularity assumptions. Let us denote
a® as the trainable parameters of cth client’s dedicated neural network. Let # denote the trainable parameter of the shared network.
Thus in this task, a¢ are the branch net parameters, and g are the trunk net parameters. We then denote a = UCC:1 a‘and 6 =a | p.
The local loss function for cth client based on its corresponding dataset D¢ will be:

NC
L@ B) = D I1GWS) = Goe @I, i
i=1

where N, denotes the number of input functions in dataset D¢, u{ and 4 are the ith function in cth sub-dataset and its discretization at
all sensors. We use the local loss to update the local parameters a¢ associated with its own dedicated dataset D¢, the shared parameter
p remains unchanged during this process but plays a role in formulating the loss functions and optimizing the system. Please note
that we normalize the loss function with the number of samples during the implementation, and present the unnormalized version
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Fig. 3. D2NO process demonstration. Here y¢ is ith sensor for c-th dataset functions, d, denotes the number of functions in c-th dataset. We process the
sub-dataset D¢ by its dedicated branch nets (green box), together with the shared basis b, (pink box), we can construct the local loss L¢, and use the local loss
to optimize the specialized branch net parameters. The global loss construction relies on the entire dataset as it is used to update the trunk net parameters (pink
box) which are shared across different clients. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 4. Classical DeepONet training process demonstration.

for a better illustration of the concept. We can then define the global loss function used to update the shared parameter « given all

the local parameters § and using all data,

C
L) = Y L°(@*; ),

c=1

where C denotes the total number of clients and datasets. We now summarize the pseudo-algorithm in Algorithm 1 with an

illustration in Fig. 3.

Algorithm 1: Distributed Deep Neural Network (D2NO) Algorithm

1 Initialization: weights w,, all networks trainable parameters 6, learning rate 7. and #, the total number of iterations N. for

k=1to N do

2 Update the unshared parameters o] for cth client using its dedicated sub-dataset, k denotes the kth optimization step.

forc=1to C do

c

ak=

4 Update the shared construction net parameter # using all data

B =B —

- rlcva" Lc(ac; ﬂ)

nV g L(B: ).

3.1. Efficiency of Distributed Deep Neural Operator (D2NO)

This section provides a brief analysis of the efficiency of the proposed D2NO in terms of data and computational cost. To train
scientific machine learning models, a significant amount of data is needed, much of which could be privacy-sensitive. Surrogates
trained using this data have the potential to greatly enhance scientific and engineering discovery and simulation. However,
transferring this data to a centralized location is costly, and the quantity and security of the data may make training in such a
location impractical using the traditional DeepONet approach. The proposed D2NO addresses this issue by allowing the training
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data to remain distributed locally. Instead of sharing large datasets, the client only shares Deep Neural Operator parameters (or a
partial model, e.g., the trunk network), which are aggregated using locally computed updates that reduce training costs.

To compare the computational training costs of the traditional DeepONet and D2NO, we proceed as follows. First, consider a
centralized model with a vector of trainable parameters 8 € R?. Without loss of generality, let us assume we select one point x in
each output function’s domain, we then minimize the following loss function,

N N
. " R . SO 12
Lo = % -—21 L= % -2—1 |Go@™)x) - Gu)?)

over the dataset of N triplets Dgepe = {(@7, x), GUD)(x)} ¥, here 4 is the function value sampled at sensors.

A standard deep learning package can compute the gradient of the loss function £ with respect to each trainable parameter in f.
In this analysis, we will focus on the number of gradients computed for each data loss function £/, where i = 1, ..., N, with respect
to the trainable parameters. This results in a total of N - p - nepochs gradient computations OVer nepochs Of training. This analysis does
not take into account batching, but extending it to the stochastic setting is direct.

For the D2NO case, we assume that the data is distributed among C clients, so that N = ch=1 n;, where n; represents the number
of data points available to the jth client for training a local model with a vector of p’ < p trainable parameters. Therefore, for the
jth client, the number of gradients computed for each data loss function over nepochs 15 7; - ' - fepochs- As a result, we can establish
the following inequality:

c
Cost of D2NO = Z n; -0’ Nepochs
j=1
=N-p- Mepochs
<N-p-n

epochs

= Cost of Traditional DeepONet.

The inequality above indicates that D2NO has a training cost similar to or even less than that of the traditional DeepONet.
Furthermore, this inequality is strict for certain examples presented later in this paper. For instance, when comparing the proposed
D2NO (with two clients having a number of sensors m; = 10 and m, = 100) to the traditional DeepONet, which uses m = 100 sensors,
they both perform an equal number of stochastic gradient updates and use the same amount of training data samples. However,
our proposed framework is more efficient because over half of these stochastic gradient updates reduce the input function size by
10x, resulting in a decrease in the computational cost of training.

We conclude this section with the following remark. Although Algorithm 1 uses multiple client networks, which increases the
total number of trainable parameters, it is important to note that, as demonstrated in this section, the total number of gradient
updates does not increase.

4. Theoretical analysis

In this section, we demonstrate that the proposed D2NO satisfies a universal approximation theorem. We begin by stating the
following lemma [1], which establishes a universal approximation theorem for functions in a compact subspace with compact
support.

Lemma 4.1 ([1], Theorem 3). Suppose H is compact in R, U c C(H) is also compact. Let f € U and for any ¢ > 0, there exists an
integer K > 0 independent of f, continuous linear functionals c, on U, networks b, : R? — R such that

K

0= Y el b <e,

k=1
forall y e H and f € U. Specifically, the networks have the following structure,

b)) =gy -y+p).y€H (2)
wy, €RY, p, €R and g is a Tauber-Wiener function [1].

The next lemma extends the above approximation to functionals defined on a compact subspace of continuous functions.

Lemma 4.2 ([1], Theorem 4). Suppose that Y is a Banach space, K C Y is compact, and U c C(K) is also compact. Let f be a continuous
functional on U. For any € > 0, there exist weights c;, {y;} ,.’:1 C K and networks b, : R! — R such that,

K

@)=Y e @| <e,

k=1
forall u € V, here it = [u(y,), ..., u(y;)]". Specifically, b, has a structure:
by (d) = g(wy - it + py), 3

where w;, € R!, p, € R and g is a Tauber-Wiener function.
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Without loss of generality, we consider two clients (C = 2) in the remainder of this paper. Let G : V — U be a continuous
operator. We assume that G, : V|, - U and G, : V, — U are the restrictions of G on V; and V, respectively. Specifically, G(u) = G, (u)
for any u € ¥} and G(u) = G,(u) for any u € V,. We will construct the universal approximation for both G| and G, using a shared
output function basis. Let us make the following assumptions.

Assumption 4.1. We make the following assumptions on the input/output function spaces and the operator.

1. V| c C(K)), V, C C(K,) are compact and are defined on compact domains K; C K; and K, C Ké, where K; and Ké are
Banach spaces. Additionally, V =V, U V,.

2. Let G, G, and G, are continuous, and G(u) = G, () for any u € V; and G(u) = G,(u) for any u € V5.

3. U = G,(V}) U G,(V,) has a compact domain K, c RY.

The following theorem establishes the universal approximation of continuous nonlinear operators.

Theorem 4.3. LetG : V - U, G, : V; » U and G, : V, — U satisfy Assumption 4.1. For any € > 0, there exist weights ci{k,cfk eR,
15> ¥n 1T C Ky, 21500, 25,17 C Ky, networks bl{k RN SR, bﬁk : RN2 - R, specified in Eq. (3), and shared b, : K, — R specified
in (2) such that,

K I

1G ) = D0 Y el bl (@)b(x)] < &,
k=1 i=1

K I

1G22 (x) = D0 N e b7 ()b ()] < &,
k=1 i=1
for any u; € V; and u, € V;, here ity = [u(yy), ..., u(yy )IT and i, = [u(zy), ... ,u(zy,)]".

Proof. Without loss of generality, we will prove the approximation for the first client. For any g > 0, by Lemma 4.1, there exist K
networks b, (x), functional a,(-) on U such that,

K
[G@)(x) - Z a, (Gw)) b (x)| < % 4)

k=1
for any u € V and x € K,. We prove the case for the first client, hence assume u € V;, and G,(w) = G(u) for u € V), it follows that
|G (w)(x) — Z,f=l a; (G () b(x)| < % Denote L = Z,’;l Supyek, |bx(x), it follows by Lemma 4.2 that, for £ and any k= 1,...,K,

2L
there exist weights ¢!, [y;,..., yn,] C K; and networks b}, : RN — R such that,
I
la, (G) = Y el bl @)l < = ©)
k ik7i k1 2L’

i=1
where 4, = [u(y,), ..., u(y N, )]T. Let I, be large enough and set c,.' = 0 if necessary, substitute Eq. (5) into Eq. (4), it follows that,

K I

1G1@(x) = Y Y el bl @bl <,
k=1 i=1
for any u € V| and x € K,. The approximation for G, is similar given u € V,. [
5. Numerical experiments

In this section, we use four numerical experiments to demonstrate the effectiveness of D2NO in approximating nonlinear operators
with heterogeneous input function spaces.

Notably, in real engineering and industrial scenarios, each client possesses its distinct dataset, facilitating automatic dataset
division. In our simulation experiments, we partition the dataset according to the input function generators. For instance, as depicted
in Fig. 2 of the numerical experiments detailed in Section 5.1.2, we employ Gaussian distributions to generate these functions.
Subsequently, the input functions are automatically segregated based on the different variances of the distribution.

5.1. Viscous Burgers’ equation

We begin by studying the viscous Burgers’ equation. Our main objective is to understand and approximate the operator that
maps the initial condition of the PDE to the solution at the terminal time. Specifically, the viscous Burgers’ equation is defined as
follows:

ou, 1003 u,
— - — =g—=, x€[0,272], t €[0,T], 6
ot T2 ox aaxzx[ ] [0,T] (6)
with the initial condition u (x,0) = u(s)(x) and the boundary conditions u(0,7) = u,(2x,1). Here, u(s)(x) is the initial condition that
depends on the parameter s, and « is the viscosity of the equation. Our goal is to learn the mapping from “(s) to u,(r) [8,10,49,501].
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12 | — One input function in region 1 4 i — Input function — Input function

— Another input function in region 1 i ® Uniform sampling ® Hump-specified sampling
10 { === One input function in region 2 i
--- Another input function in region 2 H

Fig. 5. Left: the input functions exhibit peaks, with these peaks being concentrated in two distinct regions (black and magenta). Such a dataset poses significant
challenges to the conventional operator learning framework, which mandates uniform sensor placement for all input functions. This is due to the necessity for
dense sampling to effectively capture the sparsely distributed peaks. However, this approach results in a substantial increase in problem dimensionality, leading
to the presence of numerous redundant entries in the discretized vectors, please check the green dots in the middle image. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

The average L,-relative error computed from 50 independent training runs for both the DeepONet
and D2NO described in Algorithm 1. As a reference, we predict by the average of the training
labels, the relative error is 97.59%.

DeepONet D2NO

L,-relative error 18.64% 8.10%

5.1.1. Heterogeneous input functions with double sharp peaks

Firstly, we focus our attention on the challenging scenario described in Fig. 5, where input functions display heterogeneous
properties. Specifically, these input functions exhibit distinct sharp peaks, which are concentrated in two separate regions (depicted
by the black and magenta curves in Fig. 5).

In the traditional operator learning or DeepONet framework, uniform sensor placement is required for all input functions. Thus,
only a limited number of sensors are used to sample the peak of one input function, and most of these sensors provide the same
function values. This uniformity of data significantly affects the quality of training.

By using Algorithm 1, we can use two clients (C = 2) and two dedicated branch networks to capture the input functions
individually in the clustered regions. As a result, we can deploy separate sensor sets for these two datasets. Fig. 5 illustrates how a
function from the left region is sampled using dedicated sensors tailored to that specific region. In contrast, Fig. 5 shows the same
function sampled using uniform sensors for comparison.

To evaluate the performance of D2NO (see Algorithm 1), we trained a total of 50 independent D2NO models and calculated
the average L,-relative error. We compared D2NO with the traditional DeepONet model. Specifically, we trained 50 traditional
DeepONet models using the same network structure and hyperparameters as D2NO. It is important to note that for the traditional
DeepONet, we used uniform sensors for all input functions. Table 1 presents a summary of the results, which demonstrate that the
proposed D2NO algorithm significantly reduces relative errors while maintaining a comparable computational cost.

5.1.2. Heterogeneous input functions with different properties

In this experiment, we explore the scenario depicted in Fig. 2. This illustration reflects many other situations where using different
numbers of sensors for different input functions can result in improved solutions. Previous attempts have focused on expanding the
capabilities of neural operators to discretize different input functions in different ways. However, these efforts have been limited by
the need for an equal number of sensors. Our new algorithm overcomes this limitation by allowing the use of varying quantities of
sensors for function discretization.

In our example, we present two different types of input functions: (a) functions with humps, represented by the black curve
in Fig. 2, and (b) functions with relatively smooth profiles, represented by the magenta curve in the same figure. Typically, the
conventional approach involves using the same number of sensors for all functions. However, due to the presence of humps in the
first function category, a larger number of sensors is required for both types of functions. The numerical examples demonstrate that
DeepONet-style networks can effectively handle challenges presented by smooth input functions, even with a limited number of
sensors. However, for functions with peaks, a higher number of sensors is required, which increases the computational cost when
dealing with smoother functions.

Since the dedicated branch networks are not shared among clients, our algorithm enables the creation of separate branch
networks for these two function classes. As a result, the sensor count and sensor placements can vary depending on the specific
function being considered. An illustration of this is in Fig. 2.

We use two clients, each with its own dedicated branch network. For functions that have peak characteristics, we use a larger
two-layer branch network with dimensions 75 x 100 — 100 x 1. On the other hand, for smoother functions, we employ a smaller
two-layer branch network with dimensions 6 x 50 — 50 x 1. Thus, the proposed D2NO requires the use of 75 sensors and 6 sensors,
respectively.

Note that our proposed distributed algorithm (D2NO) adjusts the sensor count for different input function spaces, unlike the
traditional DeepONet approach which uses a uniform configuration of 75 sensors for all input functions. Table 2 presents the
aggregated results after training 50 independent models using both the traditional DeepONet and the proposed strategy.
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Table 2

The average L2-relative error of 50 independent trainings for DeepONet and D2NO (see Algorithm
1). Two dedicated branch networks with distinct structures are used to capture hump input
functions and smooth input functions, respectively. Note that this approach helps to reduce the
number of trainable parameters. As a reference, if we were to predict the solution by the average
of the training samples, the relative error would be 810.61%.

DeepONet D2NO
L,-relative error 7.53% 5.34%
# unshared parameters 77K 415K
# shared parameters 51.8K 51.8K
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Fig. 6. (Left): Input functions discretized with uniform sampling and m = 100 sensors. (Right): Input functions discretized with uniform sampling and m = 10
sensors. The input functions exhibit different frequencies. Such a dataset poses significant challenges to the conventional operator learning framework, which
mandates uniform sensor placement for all input functions. This is due to the necessity for dense sampling to effectively capture the oscillatory behavior. However,
this approach results in a substantial increase in problem dimensionality, leading to the presence of numerous redundant entries in the discretized vectors.

5.2. The nonlinear pendulum system

In this experiment, we use the proposed distributed strategy D2NO to approximate the solution operator of the nonlinear
pendulum system with dynamics:

ds
s1(1) = 5,0),
dt

ds,(1) ’
dzt = —ksin(s; (¥)) + u(?).

Here, s(t) = (s,(t), s,(1))7 is the state defined over the time domain ¢ € [0, 1] and u(r) is the external force. We aim to approximate
the solution operator G : u(r) — s(t) for a fixed initial condition (s,(0), s,(0)) = (0.0,0.0), k = 1.0, and an external force u(r) sampled
from the mean-zero Gaussian Random Field (GRF):

u~ G0, kp(xy,x3)), ®

where the covariance kernel x,(x;, x,) = exp (—[|x; — x,|?/2¢?) is the radial-basis function (RBF) with length-scale parameter £ > 0,
which we will use to generate heterogeneous input function spaces, as described next.

Heterogeneous Input Functions with Different Frequencies. We first consider two input function spaces with different frequencies. To
this end, we let the first input space ¥, be a GRF with length scale # = 0.1 and the second input space V, be a GRF with length scale
¢ = 1.0. Fig. 6 illustrates sample functions from these two input spaces. The centralized DeepONet framework requires uniformly
placing a collection of m sensors to discretize the input function u. In general, as depicted in Fig. 6, a large number of sensors
(e.g., m = 100) is required to capture effectively the input function u, which, in turn, increases the training cost.

We note that for the input function sampled from the space V,, using m = 100 sensors is excessive. One may require only m = 10
sensors (see Fig. 6) to effectively capture input functions sampled from V,. However, as illustrated in Fig. 6, using less number
of sensors will deteriorate our ability to describe the oscillations from the input function sampled from the input space V,. The
proposed distributed framework D2NO can effectively tackle the above problem by using two clients (C = 2), each with dedicated
branch networks, as depicted in Fig. 7. More specifically, the first client uses a branch network with m = 100 sensors to capture and
discretize input functions sampled from the input space V;. The second client uses a branch network with m = 10 sensors to capture
and discretize input functions sampled from V,. We let the two clients share and synchronize the trunk network.

Training and Testing. To ensure a fair comparison between the centralized DeepONet and D2NO, we used the same neural network
architectures, with the exception of the input layer of the dedicated branch networks for D2NO. Specifically, we used a feed-forward
neural network architecture with one hidden layer and leaky-ReLU activation functions for both branch and trunk networks. The
hidden and output layers of these networks consist of 50 neurons. Table 3 summarizes the number of parameters for the resulting
DeepONets and D2NO.
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Fig. 7. Input functions discretized with federated sampling. A client with dedicated branch networks uses m = 100 sensors to discretize the input function
sampled from a GRF with length-scale # = 0.1. Another client with a dedicated branch network uses m = 10 sensors to discretize the input function sampled
from a GRF with length-scale # = 1.0.

Table 3

The number of parameters for the resulting DeepONets with m = 100 and m = 10 sensors, as well
as D2NO. Note that for the DeepONets, we detail the number of parameters for both the trunk
and branch networks. On the other hand, for D2NO, we specify the number of parameters for
the shared trunk network and the dedicated branch networks for clients 1 and 2.

DeepONet (m = 100) DeepONet (m = 10) D2NO
Trunk/shared trunk 2650 2650 2650
Branch/branch-1 7600 3100 7600
Branch-2 - - 3100

Table 4

The average L,-relative error for 100 test trajectories sampled from the input space V; (GRF
with length-scale # = 0.1) and for 100 test trajectories sampled from the input space V, (GRF
with length-scale ¢ = 1.0), using the centralized DeepONet (m = 100 and m = 10 sensors) and the
distributed framework D2NO detailed in Algorithm 1.

DeepONet (m = 100) DeepONet (m = 10) D2NO
L,—-rel. error on V, 2.90% 12.35% 4.26%
L,—rel. error on V, 0.62% 1.25% 1.57%
To train both DeepONets and D2NO, we sampled Ny, = Ny, = 1,000 input trajectories from each input space. The

traditional/centralized DeepONet was trained using stochastic gradient-based optimization for 1000 epochs. Subsequently, each
model within the proposed D2NO approach was trained using 1000 synchronization rounds after one local stochastic gradient
update. It should be noted that the accuracy of D2NO could be improved by increasing the number of local gradient updates, as
per federated learning approaches. However, we avoided this strategy to ensure a fair comparison of computational costs. Finally,
to test the proposed framework, we sampled 100 test trajectories from both ¥, and V,.

Performance of D2NO. Table 4 shows the performance (i.e., in terms of the L,— relative error) of the proposed D2NO and the
centralized DeepONet (with m = 100 and m = 10 sensors) for the test trajectories sampled from the input spaces V; and V,. The
results clearly illustrate that the proposed D2NO framework is competitive with the centralized DeepONet with m = 100 sensors
and vastly outperforms the more efficient DeepONet with m = 10 sensors. Specifically, D2NO delivers a predictive accuracy for both
input spaces V; and V,, comparable to a DeepONet with m = 100 sensors, matches the accuracy of a DeepONet with m = 10 sensors
on the input space V,, and significantly outperforms a DeepONet with m = 10 sensors on V.

Computational Cost Analysis. Table 5 compares the number gradient computations for D2NO and DeepONet using m = 10 and
m = 100 sensors after nepocns = 1000 epochs of training. The results highlight the advantages of adapting the number of sensors
with D2NO. Specifically, D2NO delivers a predictive accuracy for both input spaces V; and V,, comparable to a DeepONet with
m = 100 sensors (as seen in Table 4) but with fewer gradient computations. D2NO also matches the accuracy of a DeepONet with
m = 10 sensors on the input space V,. Moreover, D2NO significantly outperforms a DeepONet with m = 10 sensors on test trajectories
generated from inputs sampled from V. Therefore, D2NO strikes a balance between efficiency and accuracy for DeepONets trained
using heterogeneous input spaces. Finally, from these results, we anticipate that as the number of distributed clients increases (for
example, due to more heterogeneous input functions), the savings from D2NO will also increase.

Using Distinct Number of Training Samples. Here, we test the proposed D2NO framework on an imbalanced scenario where the
number of training trajectories sampled from V; is Ny, = 400 and the number of training trajectories sampled from V; is Ny, = 1, 600.

10
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Table 5

Comparison of the number of gradient computations for D2NO, which balances efficiency and
accuracy, a DeepONet that uses m = 10 sensors for efficiency but lacks accuracy, and a costly
but accurate DeepONet that uses m = 100 sensors, after ngy,ns = 1000 epochs of training for the
pendulum example.

DeepONet (m = 100) DeepONet (m = 10) D2NO

grad. computations 3.28 x 108 1.84 x 10% 2.56 x 10%

Table 6

The average L,-relative error for 100 test trajectories sampled from the input space V; (GRF with
length-scale # = 0.1) and for 100 test trajectories sampled from the input space V, (GRF with length-
scale # = 1.0), using the centralized DeepONet (m = 100 and m = 10 sensors) and the distributed
framework D2NO detailed in Algorithm 1. The frameworks were trained using N, = 400 input
trajectories sampled from ¥, and N, = 1600 input trajectories sampled from V.

DeepONet (m = 100) DeepONet (m = 10) D2NO
L,—rel. error on V, 5.87% 16.09% 8.09%
L,-rel. error on V, 0.84% 1.01% 1.48%
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Fig. 8. (Left): The input is sampled from the input space, V;. To train the centralized DeepONet, sensor locations are defined over the domain [0.0, 1.0]x[0.0, 1.0].
In contrast, to train D2NO, sensor locations are defined over the smaller domain [0.0,0.8] % [0.0,0.8], where the non-zero input values are concentrated. (Right):
The input is sampled from the input space, V,. To train the centralized DeepONet, sensor locations are defined over the domain [0.0, 1.0] X [0.0, 1.0]. In contrast,
to train D2NO, sensor locations are defined over the smaller domain [0.2,1.0] x [0.3, 1.0], where the non-zero input values are concentrated.

Table 6 describes the performance of the proposed D2NO and the centralized DeepONet. The results clearly demonstrate the
advantages of the proposed D2NO framework. Specifically, it outperforms the DeepONet with m = 10 sensors on V; and matches its
performance on V,, even in a scenario that favors this DeepONet architecture.

5.3. 2D-elliptic partial differential equation

In our last experiment, we used the proposed D2NO to approximate the solution operator of a two-dimensional PDE, specifically,
the 2D-elliptic equation:

-V - k(x)Vu=f,x €[0,1]?, ©)

and we consider the nonlinear mapping from the permeability x(x) to the solution u(x).

Heterogeneous Input Spaces. To approximate the solution operator, we considered heterogeneous functions sampled from two
input spaces, denoted as V; and V,. We constructed samples from V; using the Gaussian distribution with the mean centered in the
region [0,0.5] X [0,0.5] as shown in Fig. 8 Left. Similarly, we obtained samples from V,, but the mean of the Gaussian distribution is
from region [0.5, 1] X [0.5, 1] (shown in Fig. 8 Right). We constructed a centralized DeepONet and a D2NO with two clients. These
were used to approximate the solution operator of the 2D-elliptic equation using inputs sampled from the heterogeneous spaces V;
and V,.

Fig. 8 illustrates random samples from ¥, and V,. We generated input samples for V; and V, using a uniform grid of size 100 x 100
over the entire input domain [0.0, 1.0] x [0.0, 1.0]. The inputs to the branch network of the centralized DeepONet were discretized
using m = 1000 subsamples from the uniform grid that covers the entire input domain. In contrast, the dedicated branch networks of
D2NO used discretized input samples with m;, = 640 and my, = 560 sensors, respectively. These sensors were located by subsampling
the uniform grid over smaller regions: [0.2,0.8] x [0.2,0.8] for ¥, and [0.2,1.0] x [0.3,1.0] for V,.

Training and Testing. As with the pendulum example, we ensured a fair comparison between the centralized DeepONet and D2NO
by using identical neural network architectures, except for the input layer of the dedicated branch networks for D2NO. Specifically,
we employed a feed-forward neural network architecture with two hidden layers and leaky-ReLU activation functions for both branch

11
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Table 7

The number of parameters for the centralized DeepONet and the proposed D2NO. Note that for
the DeepONet, we detail the number of parameters for both the trunk and branch networks. On
the other hand, for D2NO, we specify the number of parameters for the shared trunk network
and the dedicated branch networks for clients 1 and 2.

DeepONet D2NO
Trunk/shared trunk 20,500 20,500
Branch/branch-1 120,300 84,300
Branch-2 - 76,300

Table 8

The average L,—relative error for 20 input functions sampled from the input space ¥, and for 20
test trajectories sampled from the input space V, for the 2D-elliptic PDE, using the centralized
DeepONet and the distributed framework D2NO detailed in Algorithm 1.

DeepONet D2NO

L,—rel. error on ¥, 1.99% 1.54%

L,—rel. error on V, 1.75% 2.12%
Table 9
Comparison of the number of gradient computations for D2NO and a centralized DeepONet for
the 2D-elliptic PDE example, after neyoqns = 1000 epochs of training.

DeepONet D2NO

grad. computations 2.53% 10° 1.81x 10°

and trunk networks. Each network’s hidden and output layers contain 100 neurons. Table 7 summarizes the parameter count for
the resulting centralized DeepONet and D2NO.

To train both DeepONets and D2NO, we sampled Ny, = N,, = 80 input functions from each input space. The tradi-
tional/centralized DeepONet was trained using stochastic gradient-based optimization for 1000 epochs. Subsequently, each model
within the proposed D2NO approach was trained using 1000 synchronization rounds after one local stochastic gradient update.
Finally, to test the proposed framework, we sampled 20 test input functions from both V; and V,.

Performance of D2NO. Table 8 displays the performance of the proposed D2NO and the centralized DeepONet, evaluated by the
L,— relative error, for the test input functions sampled from the input spaces V| and V,. The results reveal that D2NO provides
predictive accuracy that is comparable to or even surpasses, the centralized DeepONet for both input spaces, ¥, and V,.

Computational Cost Analysis. We conclude this example by illustrating the savings in gradient computations for D2NO applied to
the 2D elliptic PDE in Table 9. These savings occurred after nepons = 1000 epochs of training. It is important to note that D2NO
matches the accuracy of the centralized DeepONet, as demonstrated in Table 8, while carrying out fewer gradient computations.

6. Conclusion

In this paper, we have developed a dedicated distributed training strategy for deep neural operators (D2NO) that can efficiently
handle heterogeneous input function spaces. Our strategy involves partitioning the input function space based on the properties
and regularity of the input functions. Each subset of the input function space is then processed using a dedicated branch network,
which is trained locally. Additionally, a consensus trunk network is trained in a centralized manner. This trunk network acts as
a global basis for the local coefficients obtained from the dedicated branch networks. We have demonstrated that D2NO serves
as a universal approximator of continuous nonlinear operators. Finally, we have demonstrated that D2NO not only addresses the
challenges posed by input functions with heterogeneous properties but also offers improved flexibility and computational efficiency
using four numerical examples, each with heterogeneous input function spaces. In the future, we will consider non-uniform sensors
within each sub-dataset and apply the algorithms to discretization invariant neural operators such as BelNet. Another potential work
is to study reducing the samples used in training the shared structure and study the error growth.
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