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Abstract—Deep reinforcement learning (DRL) demonstrates
its promising potential in the realm of adaptive video stream-
ing. However, existing DRL-based methods for adaptive video
streaming use only application (APP) layer information and
adopt heuristic training methods. This paper aims to boost the
quality of experience (QoE) of adaptive wireless video streaming
by using lower-layer information and deriving a rigorous training
method. First, we formulate a more comprehensive and accurate
adaptive wireless video streaming problem as an infinite stage
discounted Markov decision process (MDP) problem by addition-
ally incorporating past and lower-layer information, allowing a
flexible tradeoff between QoE and computational and memory
costs for solving the problem. Then, we propose an enhanced
asynchronous advantage actor-critic (eA3C) method by jointly
optimizing the parameters of parameterized policy and value
function. Specifically, we build an eA3C network consisting of
a policy network and a value network that can utilize cross-
layer, past, and current information and jointly train the eA3C
network using pre-collected samples. Finally, experimental results
show that the proposed eA3C method can improve the QoE by
6.8% ∼ 14.4% compared to the state-of-the-arts.

I. INTRODUCTION

Video on demand (VoD) services, responsible for 29%

of Internet traffic, allow users, on demand, to select and

view videos, utilizing continuous video streaming technology.

During video streaming, network fluctuations can easily cause

rebuffering, severely degrading viewers’ viewing experiences.

To address this issue, adaptive video streaming [1]–[4] adapts

the video chunk bitrate to the dynamic network condition

and user’s buffer occupancy. This involves a Markov decision

process (MDP) problem where a (bitrate adaptation) policy

that maps the system state to the video chunk bitrate is

optimized to maximize the users’ quality of experience (QoE).

Deep reinforcement learning (DRL) has been recently ap-

plied to solve the MDP problems for adaptive video streaming

[1], [2]. There are two main DRL algorithms, i.e., deep Q-

learning (DQ) [1] and asynchronous advantage actor-critic

(A3C) [2]. A3C naturally balances exploration and exploita-

tion through its randomized policy design and is shown in
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(a) RX,C(τ) on Set-1 (b) RX,C(τ) on Set-2

Fig. 1: Relationship between APP layer throughput sequence {Cn :
n = 1, . . . , } and downlink media access control (MAC) rate
sequence {Xn : n = 1, . . . , } on two collected datasets [12] (see
Section V for details). The (sample) cross-correlation between X
and C is defined as RX,C(τ ) , 1

N−τ

∑N−τ

n=1 XnCn+τ , where

τ ∈ {0, 1, . . . , N} is time lag, and N is the number of samples.

[2] to achieve better performance than DQ in adaptive video

streaming.

Notably, adaptive video streaming becomes more challeng-

ing in the wireless scenario due to fast varying wireless

channels and potential user mobilities. Since the application

(APP) layer relies on all lower layers to complete its process

and lower-layers can respond more rapidly to the changes in

the environment (as shown in Fig. 1), information from the

lower layers may also be helpful for wireless adaptive video

streaming [5]. The existing work [3], [4] utilizes lower layer

information to approximate the APP layer throughput without

utilizing the APP layer information and adopts optimization

[3] or heuristic [4] methods to design the bitrate adaptation

policies.

Limitations: there are two major limitations in the existing

work on wireless adaptive video streaming [1]–[4]. Firstly,

most of the existing work [1]–[4] fails to jointly utilize

the APP layer and lower-layer information and thus cannot

fully capture the dynamic nature of wireless video streaming.

Secondly, the existing A3C training methods [2], [6] are rather

heuristic and do not have any theoretical convergence or

performance guarantee. Specifically, they break the original

optimization problem for the policy and value parameters

into two separate but related problems and trains the policy

and value networks alternatively by solving the optimization

problems for the value and policy parameters alternatively.

To address the above limitations, this paper boosts the
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TABLE I: KEY NOTATION.

Notation Description

B buffer size (in seconds)

T length of each chunk (in seconds)

N (N ) number (set) of chunks

D (D) number (set) of quality levels

M (M) number (set) of lower-layer quantities

Rn (R) bitrate (action) of n-th chunk (bitrate set)

Cn, Bn APP layer throughput, buffer occupancy at stage n

Xn lower-layer quantities at stage n

Yn bitrate of (n− 1)-th chunk

Sn , (Bn,Cn,Xn, Yn) system state at stage n

π(·;Θπ) parameterized offline policy

V π(·;Θv) parameterized value function under offline policy π(·;Θπ)
Θπ (Θv) eA3C policy (value) network parameters

performance (users’ QoE) of adaptive wireless video streaming

by incorporating lower-layer information in the problem for-

mulation and obtaining an enhanced policy via improving the

training method for A3C. First, we model the impacts of lower-

layer information together with the APP layer information

on adaptive wireless video streaming. Then, by additionally

incorporating past and lower-layer information, we formulate

a more comprehensive and accurate adaptive wireless video

streaming problem as an infinite stage discounted MDP prob-

lem, offering possibilities for enhancing QoE. The proposed

formulation allows a flexible tradeoff between QoE and com-

putational and memory costs for solving the problem. Next, we

propose an enhanced A3C (eA3C) method which jointly trains

the policy and value neural networks (i.e., jointly optimizes

the policy and value parameters) using pre-collected samples.

eA3C can better capture intrinsic relationship between policy

and value parameters and thus achieve faster convergence

speed and better convergent performance than the state-of-art

A3C method [6]. Finally, the experimental results based on

real-world collected data [12] show that the proposed policy

can improve the QoE by 6.8% ∼ 14.4% compared to the state-

of-the-arts, which reveals the importance of utilizing lower-

layer information and the advantage of the eA3C method. The

key notation used in this paper is listed in Table I.

II. SYSTEM MODEL

A. System Model

As illustrated in Fig. 2, we consider adaptive wireless

streaming of one video from a video server to a user. On

the server side, the video is segmented into N chunks. Let

N , {1, . . . , N} denote the set of video chunks. The length

of each chunk is T (in seconds). The typical value of T is

1 ∼ 4. To well adapt to the network conditions, each chunk

is pre-encoded into D representations corresponding to D

quality levels using High Efficiency Video Coding (HEVC),

as in Dynamic Adaptive Streaming over HTTP (DASH). Let

D , {1, . . . , D} denote the set of D quality levels. For ease

of exposition, assume that the bitrates of the chunks with the

same quality level are identical [3]. For all d ∈ D, the bitrate

of the d-th representation of a chunk is denoted by rd (in

bits/s). Note that rd, d ∈ D satisfy r1 < · · · < rD. Let

R , {r1, . . . , rD} denote the set of bitrates corresponding

to the D quality levels. The N chunks will be sequentially

Fig. 2: System model. D = 3,D = {1, 2, 3},R = {r1, r2, r3}.

transmitted to the user (downloaded by the user). For each

chunk, only one of the D representations will be transmitted

to the user. Let Rn (in bits/s) denote the (APP layer) bitrate

of the n-th chunk that is transmitted to the user, where

Rn ∈ R, n ∈ N . (1)

Let Cn ∈ C represent the average APP layer throughput

experienced during the download process for chunk n ∈ N ,

where C denotes the APP layer throughput space. We model

Cn, n ∈ N as random variables, since the APP layer through-

put usually varies over time. Then, the download time (in

seconds) for chunk n is given by RnT
Cn

. Since the APP layer

relies on all lower-layers to complete its process, and lower-

layers are able to respond more rapidly to the changes in the

environment as shown in Fig. 1, information from the lower-

layers, such as downlink media access control (MAC) rate,

number of occupied physical resource blocks (PRBs), and

modulation and coding scheme (MCS) index, may also be

helpful for adaptive wireless video streaming. Therefore, it

is important to explicitly model lower-layer information [5].

Specifically, let M and M , {1, . . . ,M} denote the number

and set of lower-layer quantities, respectively. For all n ∈ N
and m ∈ M, let Xn,m denote the value of the m-th lower-

layer quantity (e.g., MAC rate, PRB number or MCS index)

when downloading chunk n, referred to as the m-th lower layer

information. Similarly, we model Xn,m, n ∈ N ,m ∈ M as

random variables to reflect the possible changes over time.

Denote Xn , (Xn,m)m∈M ∈ X as the overall lower-layer

information when downloading chunk n where X , XM

denotes the overall lower-layer information space, and X
denotes the largest state space of the M lower-layer quantities.

We assume that X is a finite set for simplicity. Mathematically,

Cn, n ∈ N and Xn, n ∈ N are characterized by probability

distributions Pr[Cn|Cn−1, Cn−2, . . . , C1,Xn,Xn−1, . . . ,X1]
and Pr[Xn|Xn−1, . . . ,X1], respectively.

The N video chunks are downloaded into a playback

buffer at the user side, which contains downloaded but as yet

unviewed video chunks. Let B > 0 denote the buffer size (in

seconds) which depends on the policy of the service provider

and storage limitation on the user. A typical buffer may hold a

few tens of seconds of video chunks. Let Bn ∈ [0, B] denote

the (APP layer) buffer occupancy (in seconds), i.e., the play

time of the video chunks left in the buffer, when the user

starts to download chunk n ∈ N . Thus, the buffer occupancy

evolves according to

Bn+1 = max

(

(

Bn −
RnT

Cn

)+

+ T,B

)

, n ∈ N , (2)
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where (x)+ , max{x, 0}. Let B denote the buffer occupancy

space. Note that Bn, n ∈ N are also random due to the

randomness of Cn, n ∈ N . The buffer update equation in (2)

indicates that the buffer occupancy increases by T seconds

after each chunk is downloaded and decreases as the user

watches the video. While downloading chunk n, the buffer

occupancy keeps on decreasing if Bn ≥ RnT
Cn

, as the user is

continuously watching the video. The buffer is empty, leading

to rebuffering of time
(

RnT
Cn

−Bn

)+

, if Bn < RnT
Cn

.

B. Performance Metrics

We refer to the stage where chunk n is being downloaded

as stage n, for all n ∈ N . The system evolves over N stages.

We consider three metrics for QoE of video streaming, i.e.,

video quality, video quality variation, and rebuffering time.

Specifically, let U(R) denote the utility for a chunk with the

bitrate R. Here, U(·) can be any nonnegative, nondecreasing,

concave function, and U(0) = 0. Its monotonicity can capture

the notion that perceptual quality increases with bitrate. Its

concavity can capture the notion that the increased rate of

perceptual quality decreases with bitrate. We define the user’s

QoE at stage n as:

g(Cn, Bn, Rn, Rn−1) , U(Rn)− α|U(Rn)− U(Rn−1)|

− β

(

RnT

Cn

−Bn

)+

, (3)

where α > 0 and β > 0 are the associated weights for the

video quality variation (i.e., quality smoothness) |U(Rn) −
U(Rn−1)| [2], [10] and rebuffering time (i.e., stall time)
(

RnT
Cn

−Bn

)+

[2], [10], respectively.

III. QOE MAXIMIZATION PROBLEM FORMULATION

Note that a video usually consists of a large number of

chunks (e.g., a 40-minute video contains 600-2400 chunks).

Thus, in the rest of the paper, we consider the extreme scenario

where N → ∞, and N turns to the set of natural numbers,

denoted by N, for tractability. In this section, we formulate the

adaptive wireless streaming problem as an infinite stage dis-

counted MDP under certain conditions. Specifically, to ensure

a stationary MDP, we first adopt the following assumption.

Assumption 1 (Stationary Markov Chains of Order k):

For all n ∈ N and for some k ∈ N
+, the probability

distributions Pr[Cn|Cn−1, Cn−2, . . . , C1,Xn,Xn−1, . . . ,X1]
and Pr[Xn|Xn−1, . . . ,X1] satisfy:

Pr[Cn|Cn−1, Cn−2, . . . , C1,Xn,Xn−1, . . . ,X1]

= Pr[Cn|Cn−1, Cn−2, . . . , Cn−k,Xn,Xn−1, . . . ,Xn−k],

Pr[Xn|Xn−1, . . . ,X1] = Pr[Xn|Xn−1,Xn−2, . . . ,Xn−k],

and are independent of stage n.

Under Assumption 1, {(Xn,Xn−1, . . . ,Xn−k+1) : n ∈
N} and {(Cn, Cn−1, . . . , Cn−k+1,Xn,Xn−1, . . . ,Xn−k+1) :
n ∈ N} are stationary Markov chains of order k. Fur-

thermore, we define the system state at stage n, de-

noted by Sn, as follows. Given Assumption 1, we in-

clude Cn , (Cn, Cn−1, . . . , Cn−k+1) and Xn ,

(Xn,Xn−1, . . . ,Xn−k+1) in Sn by using state augmen-

tation [7, pp. 38]. Besides, noting that for all n ∈
N, g(Cn, Bn, Rn, Rn−1) in (3) depends not only on

(Cn, Bn, Rn) but also on Rn−1, we include Rn−1 in Sn

by using action augmentation [7, pp. 38]. Specifically, we

introduce auxiliary variable Yn at stage n, and let

Yn = Rn−1, n ∈ N. (4)

Eventually, we have Sn , (Bn,Cn,Xn, Yn) ∈ S, where S =
B × Ck × X

k × R denotes the system state space. Define

sn , (bn, cn,xn, yn), n ∈ N. Therefore, by Assumption 1 and

the definition of the system state, we can show the following

result on the transition probabilities of the system.
Lemma 1 (Transition Probabilities): For all n ∈ N,

Pr[Sn+1 = sn+1|Sn = sn, . . . ,S1 = s1, Rn = rn, . . . R1 = r1]

= Pr[Cn+1 = cn+1|Xn+1 = xn+1,Cn = cn,Xn = xn]

× Pr[Xn+1 = xn+1|Xn = xn]

× I

[

bn+1 = max

(

(

bn −
rnT

cn

)+

+ T, B

)]

× I [yn+1 = rn] ,

which is independent of n. Here, I[·] denotes the indicator function.

Proof 1: Based on Assumption 1, the equations in (2) and

(4), the conditionally independence of Bn+1 and Yn+1 given

Cn, Bn, Rn, and the conditionally independence of Yn+1 and

Bn+1 given Rn, we can show Lemma 1. We omit the details

due to page limitations. Please refer to [12] for the details. �

Define s
′ = (b′, c′,x′, y′) and s = (b, c,x, y). Based on

Lemma 1, for all n ∈ N, s, s′ ∈ S and r ∈ R, we denote

Pr[Sn+1 = s
′|Sn = s, Rn = r] by ps,s′(r), referred to as the

transition probability from the system state s to a successor

system state s
′ for a given bitrate r.

We refer to the bitrate at stage n, Rn, as the action at

stage n and term R as the action space. Consider a stationary

randomized (bitrate adaptation) policy, denoted by π, which

is a function that maps the system state s into a probability

distribution π(s, r), r ∈ R. Note that for all s ∈ S, π(s, ·)
satisfies π(s, r) ≥ 0, r ∈ R and

∑

r∈R
π(s, r) = 1. Under

Assumption 1 and the stationary randomized policy π, we have

a homogeneous Markov chain {Sn : n ∈ N} with transition

probabilities
∑

r∈R
π(s, r)ps,s′(r), s

′, s ∈ S. Given the notion

of the system state Sn, we rewrite g(Cn, Bn, Rn, Rn−1) as

g(Sn, Rn) = U(Rn)−α|U(Rn)−U(Yn)|−β
(

RnT
Cn

−Bn

)+

,

referred to as the reward at stage n. Thus, given an initial state

s, the value function i.e., expected discounted QoE, under the

stationary randomized policy π is given by

V π(s) = lim sup
N→∞

E

[

N
∑

n=1

γn−1
∑

r∈R

π(Sn, r)g(Sn, r)

]

, (5)

where S1 = s, the system states Sn, n = 1, 2, 3, . . . , N
evolve according to

∑

r∈R
π(s, r)ps,s′(r), s

′, s ∈ S, and the

expectation is taken over Sn, n = 2, 3, . . . , N .

We aim to optimize the stationary randomized policy π

to maximize the expected discounted QoE given in (5). The

problem is readily formulated as follows.
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Fig. 3: Structure of the eA3C network

Problem 1 (QoE Maximization):

V (s) = max
π

lim sup
N→∞

E

[

N
∑

n=1

γn−1
∑

r∈R

π(Sn, r)g(Sn, r)

]

,

where S1 = s, and V (s) represents the optimal value function.

Based on the above illustration, we can conclude that Prob-

lem 1 is a stochastic discounted MDP over an infinite number

of stages. Standard DP and Q-learning can be used to obtain an

optimal stationary policy by solving the Bellman equation [8,

Proposition 1.2.3]. However, they have prohibitively high com-

putational complexities due to the extremely large state spaces

and may not provide satisfactory QoE when Assumption 1 is

not satisfied. DRL, leveraging deep learning and approximate

DP, is put forward as a solution to address the issue. A3C [6], a

widely used DRL algorithm, demonstrates promising potential

in the realm of adaptive video streaming. The optimal value

of Problem 1 and the computational and memory costs for

solving Problem 1 generally grow with k and M due to the

increases of the state information utilization and state space,

respectively. Therefore, by properly selecting k and M , we can

achieve flexible a tradeoff between QoE and computational and

memory costs.

IV. ENHANCED A3C METHOD

A. Joint Optimization Formulation

We approximate an arbitrary stationary randomized policy π

by a parametric form π(·;Θπ), with policy parameters Θπ ∈
R

nπ , and optimize Θπ instead of π for tractability as in [2],

[6]. Specifically, we optimize Θπ to maximize the expected

value function (the expected discounted QoE):

max
Θπ

∑

s∈S

ηπ(s)V π(s), (6)

where ηπ(·) is the stationary probability distribution of the

system state under policy π, and V π(·) is the solution of the

Bellman equation under policy π [8, Proposition 1.2.3]:

V π(s) =
∑

r∈R

π(s, r;Θπ)

(

g(s, r) + γ
∑

s′∈S

ps′,s(r)V
π(s′)

)

,

s ∈ S. (7)

Note that V (s) = maxπ V π(s) [8, Proposition 1.2.3]. Solving

the problem in (6) is challenging, since V π(·) is a solution

to an extremely large number of equations given by (7) and

cannot be obtained analytically. To address the challenge, we

equivalently transform the problem in (6) into the problem in

(8), as shown at the top of the next page, with (V π(s))s∈S

as additional optimization variables, where ξ > 0. The

equivalence is shown by the following lemma.

Lemma 2 (Relationship between the Problems in (6) and

(8)): Consider a sequence {ξk} with 0 < ξk < ξk+1 for all

k = 0, 1, 2, . . ., and ξk → ∞. Then every limit point of the

sequence {Θk
π} is a globally optimal point of the problem

in (6), where Θ
k
π represents a globally optimal point of the

problem in (8) with ξ = ξk.

Proof 2: First, we equivalently convert the problem in (6)

to a constrained problem by including V π(s), s ∈ S and

equations in (7) as optimization variables and constraints:

max
Θπ ,(V π(s))s∈S

∑

s∈S

ηπ(s)V π(s), (9)

s.t. (7).

Next, we transform the constrained problem in (9) into the

unconstrained problem in (8) whose objective function is the

weighted sum of the objective of the problem in (7) and

the penalty for violating the constraints of the problem in

(7) by the penalty method [11, pp. 388]. According to [11,

Proposition 5.2.1], we can show Lemma 2. �

Based on Lemma 2, we can solve the problem in (8) with

a sufficiently large ξ for tractability. Note that the problem

in (8) is still challenging since the number of optimization

variables, |S|+nπ, is prohibitively large. As in [2], [6], we

approximate the value function under policy π, V π(·), by a

parametric form V π(·;Θv), with value parameters Θv ∈ R
nv .

Then, we consider the joint optimization of the policy and

value parameters given by the problem in (10), as shown at

the top of the next page. It is a simplified version of the

problem in (8), and the number of the optimization variables

reduces from |S|+nπ to nv + nπ. The problem in (10)

is generally a non-convex stochastic problem with unknown

stationary probability distribution ηπ(·) and transition proba-

bilities ps,s′(r), s, s
′ ∈ S, r ∈ R. We can obtain a stationary

point of it using standard stochastic gradient methods [11].

B. Neural Network Architecture

We present an actor-critic neural network corresponding to

the eA3C method, namely eA3C network. The eA3C network

consists of two neural networks, namely actor network (policy

network) and critic network (value network), as shown in

Figure 3. The inputs of two neural networks are the states over

the most recent k chunks, Sn. For the eA3C actor network, the

input layer consists of one-dimensional convolutional neural

networks which are used to extract the temporal features of

the system states; the hidden layer is a fully connected layer

that utilizes the Rectified Linear Unit activation function; the

output layer is a fully connected layer that utilizes the softmax

activation function. The eA3C actor network has weights

Θπ ∈ R
nπ and outputs π(s, r;Θπ). The eA3C critic network

has the same neural network structure as the eA3C actor

network except that its output layer is a linear neural network
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max
Θπ ,(V π(s))

s∈S

∑

s∈S

η
π(s)

∑

r∈R

π(s, r;Θπ)

(

g(s, r) + γ
∑

s′∈S

ps,s′(r)V
π(s′)

)

− ξ
∑

s∈S

η
π(s)

(

∑

r∈R

π(s, r;Θπ)

(

g(s, r) + γ
∑

s′∈S

ps,s′(r)V
π(s′)

)

− V
π(s)

)2

. (8)

max
Θπ,Θv

∑

s∈S

η
π(s)

∑

r∈R

π(s, r;Θπ)

(

g(s, r) + γ
∑

s′∈S

ps,s′(r)V
π(s′;Θv)

)

− ξ
∑

s∈S

η
π(s)

(

∑

r∈R

π(s, r;Θπ)

(

g(s, r) + γ
∑

s′∈S

ps,s′(r)V
π(s′;Θv)

)

− V
π(s;Θv)

)2

. (10)

without any activation function. The eA3C critic network has

weights Θv ∈ R
nv and outputs V π(s;Θv). Please refer to

[12] for the detailed architecture.

Let {(Cn,Xn) : n = 1, 2, . . . , N} denote the pre-collected

data from a large number of users. Given the sample Sn at

stage n, we generate the action Rn according to the policy

distribution π(Sn, r;Θπ,n), r ∈ R, i.e., Pr[Rn = r] =
π(Sn, r;Θπ,n) for all r ∈ R, and obtain sample Sn+1 at stage

n+1 as follows: obtain Cn+1 and Xn+1 from the pre-collected

sequence {(Cn,Xn) : n = 1, 2, . . . , N}; based on Cn, obtain

Bn+1 and Yn+1 according to (2) and (4), respectively. Thus,

we have the sample Sn+1 = (Cn+1,Xn+1,Bn+1,Yn+1). At

each stage n, we use a batch of latest q samples and choose:

n−1
∑

i=n−q

1

q
(log π(Si, Ri;Θπ)(g(Si, Ri) + γV π(Si+1;Θv))

− ξ(g(Si, Ri) + γV π(Si+1;Θv)− V π(Si;Θv))
2

+ β
∑

r∈R

π(Si, r;Θπ) log π(Si, r;Θπ)) (11)

as the loss function for jointly training the eA3C actor and

critic networks. Here, V π(·;Θv) is the output of the critic

network,
∑

r∈R
π(Si, r;Θπ) log π(Si, r;Θπ) is the entropy

regularization term and β is the associated weight for the

entropy. The entropy regularization term is used to ensure

adequate exploration of the action space for discovering good

policies. Large β encourages policy exploration, whereas small

β encourages policy exploitation. We train eA3C network

using the root mean squared propagation algorithm.

C. Comparisons with the A3C Method

First, we compare the optimization formulations and so-

lution methods for the policy and value parameters. The

presented joint optimization of policy and value parameters

in (10) comes from an equivalent transformation of the prob-

lem in (6) which captures more interactions between policy

parameters Θπ and value parameters Θv and can be solved

by standard stochastic gradient method with guarantee to

converge to stationary points. By contrast, in [2], [6], the

problem in (6) is separated into the two optimization problems

for Θπ and Θv which are solved alternatively without any

theoretical guarantee to converge to stationary points. Next, we

compare the neural network structures and training methods.

Firstly, compared to the A3C network in [2], [6], the eA3C

network has additional input that is lower-layer information

Xm,m = 1, . . . ,M . Secondly, unlike [2], [6] that train the

actor and critic networks of the A3C network alternatively,

we jointly train these two networks of the eA3C network (i.e.,

jointly optimize the policy and value parameters) which may

reduce the training time and improve the QoE. Therefore, it

is expected that our proposed eA3C method has higher QoE

and shorter training time than the state-of-art A3C method [2],

[6].

V. PERFORMANCE EVALUATION

A. Experimental Setup

We consider adaptive streaming of one video, i.e., Enviv-

ioDash3 provided by [9]. The video lasts 192 seconds and is

encoded into 48 chunks, each of 4 seconds. That is to say,

we set N = 48 and T = 4 seconds. We set D = 6 and set

rd, d ∈ D according to [12, Table IV]. We set B = 60 seconds

and adopt the utility function in [2], i.e., U(R) = log( R
r1
).

We conduct five experiments under different network environ-

ments and collect 5 datasets. Each dataset has multiple traces,

each containing 200 samples. Each sample consists of the APP

layer throughput and M = 3 lower-layer quantities including

MAC rate, PRB number, and MCS index. The distributions of

the APP layer throughput, MAC rate, PRB number, and MCS

index across all datasets are shown in [12, Fig. 5]. For all

i = 1, 2, . . . , 5, we partition the i-th dataset into three subsets

with 60%, 20%, and 20% of samples, respectively, and merge

all samples into one training/validation/testing set. We choose

k = 8 as in [2], which can achieve a good balance among QoE,

training time, and inference time, unless otherwise specified.

We set γ = 0.99, ξ = 10. The entropy weight β decays from

3 to 0.1 during training.

We consider three instances of the proposed eA3C method

which use different lower-layer information. Specifically, the

instances with one lower-layer quantity (M = 1) being PRB

number index is referred to as eA3C-PRB; the instance with

two lower-layer quantities (M = 2) being MCS index and

PRB number is referred to as eA3C-2; and the instance with all

three lower-layer quantities (M = 3) is referred to as eA3C-3.

We consider three baseline methods, including Pensieve [2],

Pensieve-3 (an enhanced version of Pensieve [2] which utilizes

all three lower-layer quantities), and MPC [10]. Specifically,
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(a) Average QoE (b) Average inference time (c) Average training time

Fig. 4: Different performance metrics of proposed and baseline schemes under different numbers of most recent chunks k.

Pensieve (Pensieve-3) adopts the A3C method [6] and trains

the policy network and value network of the A3C network

alternatively. MPC adapts the video bitrate according to the

current APP layer throughput and buffer occupancy based on

model predictive control optimization method [8].

B. Experimental Results

Fig. 4 shows the average QoE, inference time, and training

time versus the number of most recent chunks (k). We can

make the following observations. Firstly, the average QoE,

inference time, and training time of the proposed eA3C

method increase with M , and the average QoE, inference time,

and training time of each DRL-based method increase with

k. These phenomena imply that the tradeoff among average

QoE, inference time, and training time can be achieved by

choosing different M and k. Secondly, eA3C-3 outperforms

Pensieve-3 in the average QoE and training time and has

the same inference time as Pensieve-3. The gains of eA3C-

3 over Pensieve-3 in average QoE and training time come

from the joint optimization of the policy and value parameters.

Their identical inference time derives from the fact that their

optimized networks have the same structure. Thirdly, the

proposed eA3C method outperforms Pensieve in the average

QoE at the cost of increased training time and inference time.

The gains in QoE of the three instances of the proposed eA3C

method over Pensieve (6.8% ∼ 13.8%) mainly come from

utilizing the lower-layer information (at different amounts).

The increased training time and inference time are due to

the more complex structures of the optimized eA3C networks

for effectively utilizing lower-layer information. Fourthly, the

proposed eA3C method outperforms MPC in the average

QoE and inference time. The gains of the three instances of

the proposed eA3C method over MPC in the average QoE

(9.1% ∼ 14.4%) come from wise utilization of past and

lower-layer information. Their gains over MPC in the average

inference time are due to lower computation time for obtaining

the bitrate via neural network than exhaustive search. Finally,

eA3C-PRB and eA3C-2 at k = 4 outperform Pensieve at

k = 16 in the average QoE, inference time, and training time,

implying that a small amount of lower-layer information can

compensate for the lack of a large amount of past APP layer

information. It becomes evident that judicious utilization of

lower-layer information can reduce the memory requirement

without compromising performance.

VI. CONCLUSION

This paper focused on enhancing DRL-based adaptive wire-

less video streaming by incorporating lower-layer information

and deriving a rigorous training method. We formulated a more

comprehensive and accurate infinite stage discounted MDP

problem for adaptive wireless video streaming. We presented

an enhanced A3C method, eA3C, which improves the state-

of-art DRL method, A3C, based on lower-layer information

and a rigorous training method. Experimental results showed

the superiority of the proposed eA3C method.
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