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Abstract—Deep reinforcement learning (DRL) demonstrates
its promising potential in the realm of adaptive video stream-
ing. However, existing DRL-based methods for adaptive video
streaming use only application (APP) layer information and
adopt heuristic training methods. This paper aims to boost the
quality of experience (QoE) of adaptive wireless video streaming
by using lower-layer information and deriving a rigorous training
method. First, we formulate a more comprehensive and accurate
adaptive wireless video streaming problem as an infinite stage
discounted Markov decision process (MDP) problem by addition-
ally incorporating past and lower-layer information, allowing a
flexible tradeoff between QoE and computational and memory
costs for solving the problem. Then, we propose an enhanced
asynchronous advantage actor-critic (eA3C) method by jointly
optimizing the parameters of parameterized policy and value
function. Specifically, we build an eA3C network consisting of
a policy network and a value network that can utilize cross-
layer, past, and current information and jointly train the eA3C
network using pre-collected samples. Finally, experimental results
show that the proposed eA3C method can improve the QoE by
6.8% ~ 14.4% compared to the state-of-the-arts.

I. INTRODUCTION

Video on demand (VoD) services, responsible for 29%
of Internet traffic, allow users, on demand, to select and
view videos, utilizing continuous video streaming technology.
During video streaming, network fluctuations can easily cause
rebuffering, severely degrading viewers’ viewing experiences.
To address this issue, adaptive video streaming [1]-[4] adapts
the video chunk bitrate to the dynamic network condition
and user’s buffer occupancy. This involves a Markov decision
process (MDP) problem where a (bitrate adaptation) policy
that maps the system state to the video chunk bitrate is
optimized to maximize the users’ quality of experience (QoE).

Deep reinforcement learning (DRL) has been recently ap-
plied to solve the MDP problems for adaptive video streaming
[1], [2]. There are two main DRL algorithms, i.e., deep Q-
learning (DQ) [1] and asynchronous advantage actor-critic
(A3C) [2]. A3C naturally balances exploration and exploita-
tion through its randomized policy design and is shown in
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Fig. 1: Relationship between APP layer throughput sequence {C, :
n = 1,...,} and downlink media access control (MAC) rate
sequence {X, : n = 1,...,} on two collected datasets [12] (see
Section V for details). The (sample) cross-correlation between X
and C is defined as Rx,c(1) & = Zg;f XnCryr, where
7€{0,1,...,N} is time lag, and N is the number of samples.

[2] to achieve better performance than DQ in adaptive video
streaming.

Notably, adaptive video streaming becomes more challeng-
ing in the wireless scenario due to fast varying wireless
channels and potential user mobilities. Since the application
(APP) layer relies on all lower layers to complete its process
and lower-layers can respond more rapidly to the changes in
the environment (as shown in Fig. 1), information from the
lower layers may also be helpful for wireless adaptive video
streaming [5]. The existing work [3], [4] utilizes lower layer
information to approximate the APP layer throughput without
utilizing the APP layer information and adopts optimization
[3] or heuristic [4] methods to design the bitrate adaptation
policies.

Limitations: there are two major limitations in the existing
work on wireless adaptive video streaming [1]-[4]. Firstly,
most of the existing work [1]-[4] fails to jointly utilize
the APP layer and lower-layer information and thus cannot
fully capture the dynamic nature of wireless video streaming.
Secondly, the existing A3C training methods [2], [6] are rather
heuristic and do not have any theoretical convergence or
performance guarantee. Specifically, they break the original
optimization problem for the policy and value parameters
into two separate but related problems and trains the policy
and value networks alternatively by solving the optimization
problems for the value and policy parameters alternatively.

To address the above limitations, this paper boosts the
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TABLE I: KEY NOTATION.

Notation Description
B buffer size (in seconds)
T length of each chunk (in seconds)
N (N) number (set) of chunks
D (D) number (set) of quality levels
M (M) number (set) of lower-layer quantities
R, (R) bitrate (action) of n-th chunk (bitrate set)
C,, B, APP layer throughput, buffer occupancy at stage n
X, lower-layer quantities at stage n
Y, bitrate of (n — 1)-th chunk
S, 2 (Bn,Cp, X, Y0) system state at stage n
7(;0Or) parameterized offline policy
V™(;0,) parameterized value function under offline policy 7(; ©,)
0. (0,) eA3C policy (value) network parameters

performance (users’ QoE) of adaptive wireless video streaming
by incorporating lower-layer information in the problem for-
mulation and obtaining an enhanced policy via improving the
training method for A3C. First, we model the impacts of lower-
layer information together with the APP layer information
on adaptive wireless video streaming. Then, by additionally
incorporating past and lower-layer information, we formulate
a more comprehensive and accurate adaptive wireless video
streaming problem as an infinite stage discounted MDP prob-
lem, offering possibilities for enhancing QoE. The proposed
formulation allows a flexible tradeoff between QoE and com-
putational and memory costs for solving the problem. Next, we
propose an enhanced A3C (eA3C) method which jointly trains
the policy and value neural networks (i.e., jointly optimizes
the policy and value parameters) using pre-collected samples.
eA3C can better capture intrinsic relationship between policy
and value parameters and thus achieve faster convergence
speed and better convergent performance than the state-of-art
A3C method [6]. Finally, the experimental results based on
real-world collected data [12] show that the proposed policy
can improve the QoE by 6.8% ~ 14.4% compared to the state-
of-the-arts, which reveals the importance of utilizing lower-
layer information and the advantage of the eA3C method. The
key notation used in this paper is listed in Table I.

II. SYSTEM MODEL
A. System Model

As illustrated in Fig. 2, we consider adaptive wireless
streaming of one video from a video server to a user. On
the server side, the video is segmented into N chunks. Let
N 2 {1,...,N} denote the set of video chunks. The length
of each chunk is 7' (in seconds). The typical value of T is
1 ~ 4. To well adapt to the network conditions, each chunk
is pre-encoded into D representations corresponding to D
quality levels using High Efficiency Video Coding (HEVC),
as in Dynamic Adaptive Streaming over HTTP (DASH). Let
D £ {1,..., D} denote the set of D quality levels. For ease
of exposition, assume that the bitrates of the chunks with the
same quality level are identical [3]. For all d € D, the bitrate
of the d-th representation of a chunk is denoted by 74 (in
bits/s). Note that r4,d € D satisfy 1 < < rp. Let
R 2 {r1,...,rp} denote the set of bitrates corresponding
to the D quality levels. The N chunks will be sequentially
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Fig. 2: System model. D = 3,D ={1,2,3}, R = {r1,r2,73}.
transmitted to the user (downloaded by the user). For each
chunk, only one of the D representations will be transmitted
to the user. Let R,, (in bits/s) denote the (APP layer) bitrate
of the n-th chunk that is transmitted to the user, where

R,e€R, neN. ey

Let C,, € C represent the average APP layer throughput
experienced during the download process for chunk n € A,
where C denotes the APP layer throughput space. We model
Cp,n € N as random variables, since the APP layer through-
put usually varies over time. Then the download time (in
seconds) for chunk n is given by BT Since the APP layer
relies on all lower-layers to complete its process, and lower-
layers are able to respond more rapidly to the changes in the
environment as shown in Fig. 1, information from the lower-
layers, such as downlink media access control (MAC) rate,
number of occupied physical resource blocks (PRBs), and
modulation and coding scheme (MCS) index, may also be
helpful for adaptive wireless video streaming. Therefore, it
is important to explicitly model lower-layer information [5].
Specifically, let M and M = {1,..., M} denote the number
and set of lower-layer quantities, respectively. For all n € N
and m € M, let X,, ,,, denote the value of the m-th lower-
layer quantity (e.g., MAC rate, PRB number or MCS index)
when downloading chunk n, referred to as the m-th lower layer
information. Similarly, we model X, ,,,n € N,m € M as
random variables to reflect the possible changes over time.
Denote X,, = (Xn,m)mem € X as the overall lower-layer
information when downloading chunk n where X £ AM
denotes the overall lower-layer information space, and X
denotes the largest state space of the M lower-layer quantities.
We assume that X’ is a finite set for simplicity. Mathematically,
Cp,mn € N and X,,,n € N are characterized by probability
distributions PI‘[Cn|Cn_1, Cn_o,....,C1, X, X0 1,... ,Xl]
and Pr[X,|X,_1,...,X;], respectively.

The N video chunks are downloaded into a playback
buffer at the user side, which contains downloaded but as yet
unviewed video chunks. Let B > 0 denote the buffer size (in
seconds) which depends on the policy of the service provider
and storage limitation on the user. A typical buffer may hold a
few tens of seconds of video chunks. Let B,, € [0, B] denote
the (APP layer) buffer occupancy (in seconds), i.e., the play
time of the video chunks left in the buffer, when the user
starts to download chunk n € N. Thus, the buffer occupancy
evolves according to

R, T
Bj4+1 = max ((Bn -

n

Jr
) +T,B>, neN, (2
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where (2)T £ max{z,0}. Let B denote the buffer occupancy
space. Note that B,,,n € N are also random due to the
randomness of C,,,n € AN. The buffer update equation in (2)
indicates that the buffer occupancy increases by 7' seconds
after each chunk is downloaded and decreases as the user
watches the video. While downloading chunk n, the buffer
occupancy keeps on decreasing if B, > Z2L as the user is

Ch
continuously watching the video. The buffer is empty, leading

+
to rebuffering of time (RC?T — Bn) ,if By, < RC"nT.

n

B. Performance Metrics

We refer to the stage where chunk n is being downloaded
as stage n, for all n € N. The system evolves over N stages.
We consider three metrics for QoE of video streaming, i.e.,
video quality, video quality variation, and rebuffering time.
Specifically, let U(R) denote the utility for a chunk with the
bitrate R. Here, U(-) can be any nonnegative, nondecreasing,
concave function, and U(0) = 0. Its monotonicity can capture
the notion that perceptual quality increases with bitrate. Its
concavity can capture the notion that the increased rate of
perceptual quality decreases with bitrate. We define the user’s
QoE at stage n as:

g(On; an Rn; Rnfl) é U(Rn) - Oé|U(Rn) - U(Rn71)|
R,T *

Ch

where o« > 0 and 8 > 0 are the associated weights for the

video quality variation (i.e., quality smoothness) |U(R,) —

U(Rn-1)| [2], [10] and rebuffering time (i.e., stall time)
+

(4 - )

Co [2], [10], respectively.

III. QOE MAXIMIZATION PROBLEM FORMULATION

Note that a video usually consists of a large number of
chunks (e.g., a 40-minute video contains 600-2400 chunks).
Thus, in the rest of the paper, we consider the extreme scenario
where N — oo, and N turns to the set of natural numbers,
denoted by N, for tractability. In this section, we formulate the
adaptive wireless streaming problem as an infinite stage dis-
counted MDP under certain conditions. Specifically, to ensure
a stationary MDP, we first adopt the following assumption.

Assumption 1 (Stationary Markov Chains of Order k):
For all n € N and for some k¥ € N7, the probability

distributions Pr[C,,|C),—1,Cp—2,...,C1, X0, Xp—1, ..., Xq]
and Pr[X,|X,_1,...,X1] satisfy:

PI‘[Cn|On,1, Cn,Q, ey Cl, Xn, anl, e ,Xl]

= PI‘[Cn|Cn_1, Cn—27 ceey Cn—ka X77,7Xn—11 o 7Xn—k]7

Pr[Xn|Xn—la e ,Xl] = Pr[Xn|Xn—17 Xn—21 e aXn—k]a
and are independent of stage n.

Under Assumption 1, {(X,,X,-1,...,Xp—k41) : 1 €

N} and {(Cna Cn—la ceey Cn—k+laxna Xn—17 s 7Xn—k+1) :

n € N} are stationary Markov chains of order k. Fur-
thermore, we define the system state at stage n, de-
noted by S,,, as follows. Given Assumption 1, we in-
clude C, =2 (Cn,Cn1,...,Cpnpy1) and X, =

(X, Xpn—1,-+-, Xp—g+1) in S,, by using state augmen-
tation [7, pp. 38]. Besides, noting that for all n €
N, ¢(Cn,Bpn, Ry, Rp—1) in (3) depends not only on
(Cn, By, Ry,) but also on R,,_1, we include R,_; in S,
by using action augmentation [7, pp. 38]. Specifically, we
introduce auxiliary variable Y,, at stage n, and let

Y, =Rp-1, n€N. 4)

Eventually, we have S,, £ (Bp, Cy, X, Y,) € S, where § =
B x C* x X% x R denotes the system state space. Define
sy 2 (b, Cn, Xn, Yn), n € N. Therefore, by Assumption 1 and
the definition of the system state, we can show the following
result on the transition probabilities of the system.

Lemma 1 (Transition Probabilities): For all n € N,

..R1 :T’1]

= Pr[CnJrl = Cn+1|Xn+1 = in+17 Cn = Cn, Xy = in]

Pr[Snt1 = Sn+1|Sn = sn,...,S1 =81, Rn = 7, .

X Pr[in+1 = §n+1|in = in]

+
x T [bnﬂ — max <<b - TZ—T> T, B)

which is independent of n. Here, I[-] denotes the indicator function.

Proof 1: Based on Assumption 1, the equations in (2) and
(4), the conditionally independence of B,,4; and Y, given
Ch, By, R, and the conditionally independence of Y,,;1 and
B, 11 given R,, we can show Lemma 1. We omit the details
due to page limitations. Please refer to [12] for the details. B

Define s’ = (V/,c¢',X,¢’') and s = (b,c,X,y). Based on
Lemma 1, forall n € N, s,s' € 8 and r € R, we denote
Pr[Sp+1 ='|S,, = s, R, = 1] by ps e (r), referred to as the
transition probability from the system state s to a successor
system state s’ for a given bitrate 7.

We refer to the bitrate at stage n, R,, as the action at
stage n and term R as the action space. Consider a stationary
randomized (bitrate adaptation) policy, denoted by 7, which
is a function that maps the system state s into a probability
distribution 7 (s,r),r € R. Note that for all s € S, =(s,")
satisfies 7(s,r) > 0,7 € R and ) _p 7(s,7) = 1. Under
Assumption 1 and the stationary randomized policy 7, we have
a homogeneous Markov chain {S,, : n € N} with transition
probabilities ) 7(s,7)ps s (r),s',s € S. Given the notion
of the system state S,,, we rewrite g(C,,, By, Ry, Rn—1) jars
9(Sn, Ru) = U(Ry) —alU(Ra) ~U(Y2)| =B (%L - B,)
referred to as the reward at stage n. Thus, given an initial state

s, the value function i.e., expected discounted QoE, under the
stationary randomized policy 7 is given by

N
277#1 Z W(Sn,r)g(Sn,r)] , (5
n=1

reR

x 1 [yn+1 = T”l] 3

V7(s) =limsupE
N—o0

where S; = s, the system states S,,n = 1,2,3,...,N
evolve according to ) . 7(s,7)pss (r),8',s € S, and the
expectation is taken over S,,,n =2,3,..., N.

We aim to optimize the stationary randomized policy 7
to maximize the expected discounted QoE given in (5). The
problem is readily formulated as follows.
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Fig. 3: Structure of the eA3C network
Problem 1 (QoE Maximization):

max limsupE lZ'y" IZ (Sn,7)| s

N —o00 reR

Vis) =

where S; = s, and V (s) represents the optimal value function.

Based on the above illustration, we can conclude that Prob-
lem 1 is a stochastic discounted MDP over an infinite number
of stages. Standard DP and Q-learning can be used to obtain an
optimal stationary policy by solving the Bellman equation [8,
Proposition 1.2.3]. However, they have prohibitively high com-
putational complexities due to the extremely large state spaces
and may not provide satisfactory QoE when Assumption 1 is
not satisfied. DRL, leveraging deep learning and approximate
DP, is put forward as a solution to address the issue. A3C [6], a
widely used DRL algorithm, demonstrates promising potential
in the realm of adaptive video streaming. The optimal value
of Problem 1 and the computational and memory costs for
solving Problem 1 generally grow with k£ and M due to the
increases of the state information utilization and state space,
respectively. Therefore, by properly selecting k and M, we can
achieve flexible a tradeoff between QoE and computational and
memory costs.

IV. ENHANCED A3C METHOD
A. Joint Optimization Formulation

We approximate an arbitrary stationary randomized policy 7
by a parametric form 7 (-; ®), with policy parameters ©, €
R™, and optimize @, instead of 7 for tractability as in [2],
[6]. Specifically, we optimize ®, to maximize the expected
value function (the expected discounted QoE):

x > (6)
scS
where 1™ (-) is the stationary probability distribution of the
system state under policy 7, and V7(+) is the solution of the
Bellman equation under policy 7 [8, Proposition 1.2.3]:

VT(s) = 7(s,7;05) <g(s, RS ps/,s(T)V”(S')> ;
reR s'eS
se 8. (7)

Note that V' (s) = max, V™(s) [8, Proposition 1.2.3]. Solving
the problem in (6) is challenging, since V7 (-) is a solution
to an extremely large number of equations given by (7) and

cannot be obtained analytically. To address the challenge, we
equivalently transform the problem in (6) into the problem in
(8), as shown at the top of the next page, with (V™ (s))ses
as additional optimization variables, where & > 0. The
equivalence is shown by the following lemma.

Lemma 2 (Relationship between the Problems in (6) and
(8)): Consider a sequence {&¥} with 0 < ¢F < ¢FF1 for all
k=0,1,2,..., and €& — oco. Then every limit point of the
sequence {®%} is a globally optimal point of the problem
in (6), where ©F represents a globally optimal point of the
problem in (8) with & = &,

Proof 2: First, we equivalently convert the problem in (6)
to a constrained problem by including V™ (s),s € & and
equations in (7) as optimization variables and constraints:

Z U ©)

s.t. (7).

max
(V7 (s))ses

Next, we transform the constrained problem in (9) into the
unconstrained problem in (8) whose objective function is the
weighted sum of the objective of the problem in (7) and
the penalty for violating the constraints of the problem in
(7) by the penalty method [11, pp. 388]. According to [11,
Proposition 5.2.1], we can show Lemma 2. [ ]
Based on Lemma 2, we can solve the problem in (8) with
a sufficiently large ¢ for tractability. Note that the problem
in (8) is still challenging since the number of optimization
variables, |S|+n,, is prohibitively large. As in [2], [6], we
approximate the value function under policy 7, V™(-), by a
parametric form V™ (-; ®,), with value parameters @,, € R"v.
Then, we consider the joint optimization of the policy and
value parameters given by the problem in (10), as shown at
the top of the next page. It is a simplified version of the
problem in (8), and the number of the optimization variables
reduces from |S|+n, to n, + n,;. The problem in (10)
is generally a non-convex stochastic problem with unknown
stationary probability distribution ™ (-) and transition proba-
bilities ps s/(7),s,8’ € S,r € R. We can obtain a stationary
point of it using standard stochastic gradient methods [11].

B. Neural Network Architecture

We present an actor-critic neural network corresponding to
the eA3C method, namely eA3C network. The eA3C network
consists of two neural networks, namely actor network (policy
network) and critic network (value network), as shown in
Figure 3. The inputs of two neural networks are the states over
the most recent k£ chunks, S,,. For the eA3C actor network, the
input layer consists of one-dimensional convolutional neural
networks which are used to extract the temporal features of
the system states; the hidden layer is a fully connected layer
that utilizes the Rectified Linear Unit activation function; the
output layer is a fully connected layer that utilizes the softmax
activation function. The eA3C actor network has weights
®, € R" and outputs 7 (s, r; ). The eA3C critic network
has the same neural network structure as the eA3C actor
network except that its output layer is a linear neural network
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(V"(S))

Zn (s) Z (s, 7;Ox) <g(s,7“) + Z Pss (T)V

reR s'eS
2
_gzn s <Z (s,7;0x) [ g(s,r +72pss (s’ >—V"(s)> . 8)
sES reR s’'es
Jnax. Zn (5)2271'(577“;97r < (s,7) —&-’yZpSS/ WT(s'; @U)>
seS reER s’'es
2
_gzn s <Z s, 7,0, ( (s,r —|—72pss (s;© )) V”(S;G)U)> . (10)
seS rER s’'eS

without any activation function. The eA3C critic network has
weights ®, € R™ and outputs V7 (s;®,). Please refer to
[12] for the detailed architecture.

Let {(C,,X,):n=1,2,..., N} denote the pre-collected
data from a large number of users. Given the sample S,, at
stage n, we generate the action R,, according to the policy
distribution 7(S,, ;0. ,),r € R, ie, Pr[R, = 7] =
7(Sn,r;Or ) for all » € R, and obtain sample S, at stage
n+1 as follows: obtain C,, 1 and X,, 11 from the pre-collected
sequence {(C,,X,):n=1,2,..., N}, based on C,, obtain
B, 41 and Y, 41 according to (2) and (4), respectively. Thus,
we have the sample S, 11 = (Cpy1, Xpt1, Bnt1, Yoni1)- At
each stage n, we use a batch of latest ¢ samples and choose:

n—1

2

=n—

1
—(log (S, Ri; ©,)(9(Si, R;) + vV™(Si41;9.))

—&(9(Si, Ri) + YV (Si41;©,) — V7 (Si;0,))*

+8> m(Si,7;05)logm(Si,T; Or)) (1)
reR

as the loss function for jointly training the eA3C actor and
critic networks. Here, V™ (-;®,) is the output of the critic
network, > o (S, ;O ) logw(S;, ;@) is the entropy
regularization term and [ is the associated weight for the
entropy. The entropy regularization term is used to ensure
adequate exploration of the action space for discovering good
policies. Large 3 encourages policy exploration, whereas small
B encourages policy exploitation. We train eA3C network
using the root mean squared propagation algorithm.

C. Comparisons with the A3C Method

First, we compare the optimization formulations and so-
lution methods for the policy and value parameters. The
presented joint optimization of policy and value parameters
in (10) comes from an equivalent transformation of the prob-
lem in (6) which captures more interactions between policy
parameters ©, and value parameters ®, and can be solved
by standard stochastic gradient method with guarantee to
converge to stationary points. By contrast, in [2], [6], the
problem in (6) is separated into the two optimization problems
for @, and ©®, which are solved alternatively without any
theoretical guarantee to converge to stationary points. Next, we
compare the neural network structures and training methods.

Firstly, compared to the A3C network in [2], [6], the eA3C
network has additional input that is lower-layer information
X, m = 1,..., M. Secondly, unlike [2], [6] that train the
actor and critic networks of the A3C network alternatively,
we jointly train these two networks of the eA3C network (i.e.,
jointly optimize the policy and value parameters) which may
reduce the training time and improve the QoE. Therefore, it
is expected that our proposed eA3C method has higher QoE
and shorter training time than the state-of-art A3C method [2],
[6].
V. PERFORMANCE EVALUATION

A. Experimental Setup

We consider adaptive streaming of one video, i.e., Enviv-
ioDash3 provided by [9]. The video lasts 192 seconds and is
encoded into 48 chunks, each of 4 seconds. That is to say,
we set N = 48 and T' = 4 seconds. We set D = 6 and set
rq,d € D according to [12, Table IV]. We set B = 60 seconds
and adopt the utility function in [2], i.e., U(R) = 1og(%).
We conduct five experiments under different network environ-
ments and collect 5 datasets. Each dataset has multiple traces,
each containing 200 samples. Each sample consists of the APP
layer throughput and M = 3 lower-layer quantities including
MAC rate, PRB number, and MCS index. The distributions of
the APP layer throughput, MAC rate, PRB number, and MCS
index across all datasets are shown in [12, Fig. 5]. For all
1=1,2,...,5, we partition the i-th dataset into three subsets
with 60%, 20%, and 20% of samples, respectively, and merge
all samples into one training/validation/testing set. We choose
k = 8 as in [2], which can achieve a good balance among QoE,
training time, and inference time, unless otherwise specified.
We set v = 0.99, £ = 10. The entropy weight /3 decays from
3 to 0.1 during training.

We consider three instances of the proposed eA3C method
which use different lower-layer information. Specifically, the
instances with one lower-layer quantity (M = 1) being PRB
number index is referred to as eA3C-PRB; the instance with
two lower-layer quantities (M = 2) being MCS index and
PRB number is referred to as eA3C-2; and the instance with all
three lower-layer quantities (M = 3) is referred to as eA3C-3.
We consider three baseline methods, including Pensieve [2],
Pensieve-3 (an enhanced version of Pensieve [2] which utilizes
all three lower-layer quantities), and MPC [10]. Specifically,
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Fig. 4: Different performance metrics of proposed and baseline schemes under different numbers of most recent chunks k.

Pensieve (Pensieve-3) adopts the A3C method [6] and trains
the policy network and value network of the A3C network
alternatively. MPC adapts the video bitrate according to the
current APP layer throughput and buffer occupancy based on
model predictive control optimization method [8].

B. Experimental Results

Fig. 4 shows the average QoE, inference time, and training
time versus the number of most recent chunks (k). We can
make the following observations. Firstly, the average QOoE,
inference time, and training time of the proposed eA3C
method increase with M, and the average QoE, inference time,
and training time of each DRL-based method increase with
k. These phenomena imply that the tradeoff among average
QoE, inference time, and training time can be achieved by
choosing different M and k. Secondly, eA3C-3 outperforms
Pensieve-3 in the average QoE and training time and has
the same inference time as Pensieve-3. The gains of eA3C-
3 over Pensieve-3 in average QoE and training time come
from the joint optimization of the policy and value parameters.
Their identical inference time derives from the fact that their
optimized networks have the same structure. Thirdly, the
proposed eA3C method outperforms Pensieve in the average
QoE at the cost of increased training time and inference time.
The gains in QoE of the three instances of the proposed eA3C
method over Pensieve (6.8% ~ 13.8%) mainly come from
utilizing the lower-layer information (at different amounts).
The increased training time and inference time are due to
the more complex structures of the optimized eA3C networks
for effectively utilizing lower-layer information. Fourthly, the
proposed eA3C method outperforms MPC in the average
QoE and inference time. The gains of the three instances of
the proposed eA3C method over MPC in the average QoE
(9.1% ~ 14.4%) come from wise utilization of past and
lower-layer information. Their gains over MPC in the average
inference time are due to lower computation time for obtaining
the bitrate via neural network than exhaustive search. Finally,
eA3C-PRB and eA3C-2 at £ = 4 outperform Pensieve at
k = 16 in the average QoE, inference time, and training time,
implying that a small amount of lower-layer information can
compensate for the lack of a large amount of past APP layer
information. It becomes evident that judicious utilization of

lower-layer information can reduce the memory requirement
without compromising performance.

VI. CONCLUSION

This paper focused on enhancing DRL-based adaptive wire-
less video streaming by incorporating lower-layer information
and deriving a rigorous training method. We formulated a more
comprehensive and accurate infinite stage discounted MDP
problem for adaptive wireless video streaming. We presented
an enhanced A3C method, eA3C, which improves the state-
of-art DRL method, A3C, based on lower-layer information
and a rigorous training method. Experimental results showed
the superiority of the proposed eA3C method.
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