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Abstract

While recent e�orts to catalogue Earth’s microbial diversity have focused upon surface and marine habitats, 12–20% of Earth’s 
biomass is suggested to exist in the terrestrial deep subsurface, compared to ~1.8% in the deep subseafloor. Metagenomic 
studies of the terrestrial deep subsurface have yielded a trove of divergent and functionally important microbiomes from a 
range of localities. However, a wider perspective of microbial diversity and its relationship to environmental conditions within 
the terrestrial deep subsurface is still required. Our meta-analysis reveals that terrestrial deep subsurface microbiota are dom-
inated by Betaproteobacteria, Gammaproteobacteria and Firmicutes, probably as a function of the diverse metabolic strategies of 
these taxa. Evidence was also found for a common small consortium of prevalent Betaproteobacteria and Gammaproteobacteria
operational taxonomic units across the localities. This implies a core terrestrial deep subsurface community, irrespective of 
aquifer lithology, depth and other variables, that may play an important role in colonizing and sustaining microbial habitats in 
the deep terrestrial subsurface. An in silico contamination-aware approach to analysing this dataset underscores the impor-
tance of downstream methods for assuring that robust conclusions can be reached from deep subsurface-derived sequencing 
data. Understanding the global panorama of microbial diversity and ecological dynamics in the deep terrestrial subsurface 
provides a first step towards understanding the role of microbes in global subsurface element and nutrient cycling.
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DATA SUMMARY
�e 16S rRNA gene sequencing data utilized in the present study are available on NCBI under the following project accessions: 
PRJNA262938, PRJNA268940, PRJNA248749, PRJNA251746, PRJNA375701, PRJEB1468 and PRJEB10822. �e code used for 
the processing and data analysis of the datasets is available at: https://github.com/GeoMicroSoares/mads_scripts.

INTRODUCTION
Understanding the distribution of microbial diversity is pivotal for advancing our knowledge of deep subsurface global biogeo-
chemical cycles [1, 2]. Subsurface biomass is suggested to have exceeded that of the Earth’s surface by an order of magnitude 
(~45% of Earth’s total biomass) before land plants evolved, ca. 0.5 billion years ago [3]. Integrative modelling of cell count and 
quantitative PCR (qPCR) data and geophysical factors indicated in late 2018 that the bacterial and archaeal biomass found in the 
global deep subsurface may range from 23 to 31 petagrams of carbon (PgC) [4]. �ese values halved estimates from e�orts earlier 
that year but maintained the notion that the terrestrial deep subsurface holds ca. 5-fold more bacterial and archaeal biomass than 
the deep marine subsurface [4, 5]. Further, it is expected that 20–80% of the possible 2–6×1029 prokaryotic cells present in the 
terrestrial subterranean biome exist as bio�lms and play crucial roles in global biogeochemical cycles [4, 6, 7].

Cataloguing microbial diversity and functionality in the terrestrial deep subsurface has mostly been achieved by means of 
marker gene and metagenome sequencing from aquifers associated with coals, sandstones, carbonates and clays, as well as deep 
igneous and metamorphic rocks [8–19]. Only recently has the �rst comprehensive database of 16S rRNA gene-based studies 
targeting terrestrial subsurface environments been compiled [4]. �is work focused on updating estimates for bacterial and 
archaeal biomass, and cell numbers across the terrestrial deep subsurface, but also linked the identi�ed bacterial and archaeal 
phylum-level compositions to host-rock type, and to 16S rRNA gene region primer targets [4]. While highlighting Firmicutes and 
Proteobacterial dominance in the bacterial component of the terrestrial deep subsurface, no further taxonomic insights emerged. 
Genus-level identi�cation remains an important niche necessary for understanding community composition, inferred metabolism 
and hence microbial contributions of distinct community members to biogeochemical cycling in the deep subsurface [15, 20–22]. 
Indeed, such genus-speci�c traits have been demonstrated to be critical for understanding crucial biological functions in other 
microbiomes, and genus-speci�c functions of relevance for deep subsurface biogeochemistry are clear [23–25].

So far, the potential biogeochemical impacts of microbial activity in the deep subsurface have been inferred through shotgun 
metagenomics, as well as from incubation experiments of primary geological samples amended with molecules or minerals 
of interest [16, 17, 19, 26–29]. Recent studies of deep terrestrial subsurface microbial communities further suggest that these 
are metabolically active, o�en associated with novel uncultured phyla, and potentially directly involved in carbon and sulphur 
cycling [30–36]. Concomitant advancements in subsurface drilling, molecular methods and computational techniques have aided 
exploration of the subsurface biosphere, but serious challenges remain, mostly related to deciphering sample contamination by 
drilling methods, community interactions with reactive casing materials and sample transportation to laboratories for processing 
[37, 38]. �e logistical challenges inherent in accessing and recovering in situ samples from hundreds to thousands of metres 
below the surface complicate our view of terrestrial subsurface microbial ecology [39].

In this study, we capitalize on the increased availability of 16S rRNA gene amplicon data from multiple studies of the terrestrial 
deep subsurface conducted over the last decade. We apply bespoke bioinformatics scripts to generate insights into the microbial 
community structure and controls upon bacterial microbiomes of the terrestrial deep subsurface across a large distribution of 
habitat types on multiple continents. �e deep biosphere is as-yet unde�ned as a biome – elevated temperature, anoxic condi-
tions, varying levels of organic carbon, and measures of isolation from the surface photosphere are some of the criteria used, 
albeit without a consensus. For this work a more general approach has been taken to de�ne the terrestrial deep subsurface for 
the purposes of this initial examination as the zone at least 100 m from the surface [7, 40, 41].

METHODS
Data acquisition
�e Sequence Read Archive database of the National Center for Biotechnology Information (SRA-NCBI) was queried for 16S 
rRNA-based deep subsurface datasets (excluding marine and ice samples, as well as any human-impacted samples); available 
studies were downloaded using the SRA Run Selector. Studies were selected considering their metadata and information on 
sequencing platform used – i.e. only samples derived from 454 pyrosequencing and Illumina sequencing were considered. Due 
to a lack of public availability for Illumina datasets targeting environments of interest, only 454 pyrosequencing datasets were 
retained. Analysis of related literature resulted in the detection of other deposited studies that previous search e�orts in NCBI-
SRA failed to detect. Further private contacts allowed access to unpublished data included in this study. �e �nal list of NCBI 
accession numbers, totalling 222 samples, was downloaded using fastq-dump from the SRA toolkit (https://hpc.nih.gov/apps/
sratoolkit.html)

https://github.com/GeoMicroSoares/mads_scripts
https://hpc.nih.gov/apps/sratoolkit
https://hpc.nih.gov/apps/sratoolkit
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As seen in Table 1, required metadata included host-rock lithology, general and speci�c geographical locations, depth of sampling, 
DNA extraction method, sequenced 16S rRNA gene region and sequencing method. Any samples for which the above-mentioned 
metadata could not be found were discarded and not considered for downstream analyses.

Pre-processing of 16S rRNA gene datasets
A customized pipeline was created in bash language making use of python scripts developed for QIIME v1.9.1, to facilitate 
bioinformatic analyses in this study (see https://github.com/GeoMicroSoares/mads_scripts for scripts) [42]. Brie�y, demultiplexed 
FASTQ �les were processed to create an operational taxonomic unit (OTU) table. Quality control steps involved trimming, 
quality-�ltering and chimera checking by means of USEARCH 6.1 [43]. Sequence data that passed quality control were then 
subjected to closed-reference (CR) OTU-picking on a per-study basis using UCLUST and reverse strand matching against the 
silva v123 taxonomic references (https://www.arb-silva.de/documentation/release-123/) [43]. CR OTU picking excludes OTUs 
whose taxonomy has not been found in the 16S rRNA gene database used. Although this limits the recovery of prokaryotic 
diversity to that recorded in the database, cross-study comparisons of bacterial communities generated by di�erent 16S rRNA 
gene primers are made possible. �is conservative approach classi�ed OTUs in each study individually to the common 16S 
rRNA gene reference database from the merging of all classi�cation outputs. A single BIOM (Biological Observation Matrix) 
�le was generated using QIIME’s merge_otu_tables.py script. �e BIOM �le was then �ltered to exclude samples represented by 
fewer than two OTUs using �lter_samples_from_otu_table.py, as well as OTUs represented by one sequence (singleton OTUs) 
by using �lter_otus_from_otu_table.py. In an attempt to reduce the impacts of potential contaminant OTUs from the dataset, the 
post-singleton �ltered dataset was further �ltered to include only OTUs represented by at least 500 sequences and present in at 
least 10 samples overall using �lter_otus_from_otu_table.py.

Data analysis
All downstream analyses were conducted using the phyloseq (https://github.com/joey711/phyloseq) package within R, which 
allowed for simple handling of metadata and taxonomy and abundance data [44–46]. Merged and �ltered BIOM �les were 
imported into R using internal phyloseq functions, which allowed further �ltering, transformation and plotting of the dataset 
(see https://github.com/GeoMicroSoares/mads_scripts for scripts). Brie�y, following a general assessment of the number of 
reads across samples and OTUs, tax_glom (phyloseq) allowed the agglomeration of the OTU table at the phylum level. For the 
metadata category-directed analyses, the function merge_samples (phyloseq) created averaged OTU tables, which permitted 
testing of hypotheses for whether geology or depth had signi�cant impacts on bacterial community structure and composition. 
Computation of a Jensen–Shannon divergence PCoA (principal coordinate analysis) was achieved with ordinate (phyloseq), 
which makes use of metaMDS (vegan) [47, 48]. All �gures were plotted via the ggplot2 R package (https://github.com/tidyverse/
ggplot2), except for the UpsetR plot in Fig. S4, which was plotted with the package UpsetR (https://github.com/hms-dbmi/UpSetR).

RESULTS
A total of 233 publicly available subsurface samples targeting multiple 16S rRNA gene hypervariable regions originating in nine 
countries were originally downloaded from the NCBI SRA database. �ese accounted for 24632035 chimera-checked sequences 
[11, 27, 49–53], which underwent silva 123-aided CR OTU-picking. �e discovery of 46 OTUs classi�ed as Chloroplast (Cyano-
bacteria) and phototrophic members of the phyla Chloro�exi and Chlorobi as well as orders Rhodospirillales and Chromatiales
(Alpha- and Gammaproteobacteria classes, respectively) justi�ed the use of additional stricter contamination-aware �ltering (see 
Methodology, Table S1 for di�erences in numbers of reads between methods).

�e �nal dataset consisted of 70 samples and 2207 OTUs (513929 sequences). Seventeen aquifers were included that were associ-
ated with either sedimentary- or crystalline-host rocks, from depths spanning 94–2300 m below the land surface, targeting mostly 
groundwater across �ve countries (Table S2). Nine DNA extraction techniques were used in these studies, ranging from standard 
and modi�ed kit protocols (e.g. MOBIO PowerSoil) to phenol–chloroform and CTAB/NaCl-based methods [50, 51, 54–57]. Six 
di�erent primer pair ampli�ed regions of the 16S rRNA gene with 454 pyrosequencing technology were used to generate the 
datasets (see Fig. S1). Metadata variables that were unavailable for all samples in the dataset were excluded from the statistical 
analyses. All studies followed aseptic sample handling protocols and included DNA extraction and PCR controls (for further 
information see Methods sections of the papers enumerated in Table 1) as per recommended guidelines for the subsurface 
microbiology community [38, 58].

Among a total of 45 detected bacterial phyla, Proteobacteria were seen to dominate most deep subsurface community pro�les 
in this dataset (Fig. 1). �e most abundant proteobacterial classes (Alpha-, Beta-, Delta-, Gammaproteobacteria) represented 
57.2% of the total number of reads. Betaproteobacteria, chie�y represented by the order Burkholderiales, accounted for 26.1% 
of all reads in the dataset. �e order Burkholderiales was the main component of some host-rocks, accounting for up to 59.5 
and 92.7% of host-rock-level relative abundance pro�les for biotite-gneiss and chlorite-sericite-schist (see Fig. S2 for standard 
deviations of Fig. 1) and co-dominated others. Gammaproteobacteria and Clostridia (Firmicutes) were key components of other 

https://github.com/GeoMicroSoares/mads_scripts
https://www.arb-silva.de/documentation/release-123/
https://github.com/joey711/phyloseq
https://github.com/GeoMicroSoares/mads_scripts
https://github.com/tidyverse/ggplot2
https://github.com/tidyverse/ggplot2
https://github.com/hms-dbmi/UpSetR
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pro�les. Clostridia and other Firmicutes accounted for large fractions of sedimentary host-rocks (dolomite, siltstone and shale) 
and a haematite iron formation. Finally, Actinobacteria was the most abundant taxonomic group in rhyolite-tu�-breccia.

Analysis of prevalence across the dataset revealed that seven OTUs, all a�liated with the genus Pseudomonas, were present in 
more than 25 and up to 41 samples, accounting for 18149 reads (3.5% of the total reads, see Fig. 2, Table S3). Other bacterial 
orders, namely Burkholderiales, Alteromonadales and Clostridiales (Betaproteobacteria, Gammaproteobacteria, Clostridia) were 
also highly prevalent throughout. Network analysis (Table 2) highlighted a Pseudomonas OTU highly connected to other OTUs 
in the dataset. Furtherore, blast results indicated that recovered sequences for OTUs a�liated with this genus were generally 

Fig. 2. Prevalence (number of samples in which an OTU is present, x-axis) of OTUs across the dataset and associated reads (y-axis). Colours depict 
classification of OTUs at the order level. The vertical line is at 20 samples on the x-axis to highlight OTUs present in 20 or more samples.

Fig. 1. Averaged relative abundances (coloured by increasing percentage abundance) of the most abundant taxonomic groups (y-axis) across the 
dataset across all analysed aquifer lithologies (x-axis).
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associated with marine and terrestrial soil and sediments (see Fig. S3, Table S4) [59]. Four OTUs a�liated to Burkholderiales
(Betaproteobacteria), the second most prevalent order in the dataset, were also found to be connected to up to 34 other OTUs. 
�e genus �auera (Betaproteobacteria, Rhodocyclales), represented by a single OTU, was the second most central to the dataset.

While relative abundance patterns across the dataset (Fig. 1) indicate that lithology could in�uence microbial community compo-
sition and structure, sample sizes for each host-rock in the �nal dataset were insu�cient to provide robust statistical support 
of that hypothesis. Despite this, host-rocks (10 out of 15) presented, on average, more unique OTUs than they shared with 
other host-rocks (Fig. S4). In particular, in sulphide-rich schists, 73% of the OTUs were, on average, unique to the host-rock. 
Sub-bituminous and volatile bituminous coals shared a total of 143 OTUs; this was the strongest interaction between host-rocks 
in the dataset. No signi�cant correlations were found for the presence of the most abundant clades in the dataset and depth, 
Actinobacteria being the only major taxonomic group to have a positive, albeit weak, correlation with depth (Pearson’s r=0.42, 
P<0.01, Fig. S5). Proportions of Beta- and Gammaproteobacteria generally decreased with depth (Pearson’s r=−0.29 and −0.093, 
respectively), but no other major clades were shown to correlate.

Ordination of the �nal dataset further suggests 50.6% of Jensen–Shannon distances were signi�cantly explained by aquifer 
lithology (ADONIS/PERMANOVA, F-statistic=4.65, P<0.001, adjusted Bonferroni correction P<0.001). Other environmental 
features such as absolute depth and medium-scale location (i.e. state, region of the sampling site) explained only 3.08 and 
2.78% of the signi�cant metadata-driven variance in bacterial community structure, respectively (ADONIS/PERMANOVA, 
F-statistic=3.95, 3.57, P<0.001, adjusted Bonferroni correction P<0.001). Finally, no evidence was found for DNA extraction or 
16S rRNA gene region signi�cantly a�ecting bacterial community structure in this meta-analysis (ADONIS/PERMANOVA, 
F-statistic=3.85, 3.23, P<0.01, adjusted Bonferroni correction P<0.001).

DISCUSSION
�e deep biosphere is an active, diverse biome still largely under-investigated in terms of the Earth’s biogeochemistry [12, 60–62]. 
In this study, publicly available 16S rRNA gene data revealed a prevalence of Betaproteobacteria and Gammaproteobacteria in the 
deep biosphere that may be explained by the diverse metabolic capabilities of taxa within these clades. �e families Gallionel-
laceae, Pseudomonadaceae, Rhodocyclaceae and Hydrogeniphillaceae within Betaproteobacteria and Gammaproteobacteria are 
suggested to play critical roles in deep subsurface iron, nitrogen, sulphur and carbon cycling across the world [50, 61, 63]. �e 
relative abundance of the order Burkholderiales (Betaproteobacteria) in sur�cial soils has previously been correlated (R2=0.92, 
ANOVA P<0.005) with mineral dissolution rates, while the genus Pseudomonas (Gammaproteobacteria) is widely known to play 
a key role in hydrocarbon degradation, denitri�cation and coal solubilization in di�erent locations [64–66]. �e dominance 
of Betaproteobacteria and Gammaproteobacteria in coals builds on culture-based evidence of widespread degradation of coal-
associated complex organic compounds by these classes [67–70].

�e metabolic plasticity of the orders Pseudomonadales and Burkholderiales has been demonstrated and may be a catalyst for 
their apparent centrality across the terrestrial deep subsurface microbiomes analysed in this study [71–74]. �ese bacterial orders 
may represent important keystone taxa in microbial consortia responsible for providing critical substrates to other colonizers 
in deep subsurface environments [75, 76]. In particular, given the number of highly central Pseudomonas-a�liated OTUs and 

Table 2. Top 10 most central OTUs (Proteobacterial classes highlighted) in the Jaccard distances network (as defined by eigenvector centrality scores, 
or the scored value of the centrality of each connected neighbour of an OTU) and corresponding closeness centrality (scores of shortest paths to and 
from an OTU to all the remaining OTUs in a network) and degree (number of directly connected edges, or OTUs) values

OTU ID OTU classi�cation Centrality Closeness Degree

EF554871.1.1486 Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae; Pseudomonas 1.0000000 2.13e-05 38

HH792638.1.1492 Proteobacteria; Betaproteobacteria; Rhodocyclales; Rhodocyclaceae; �auera 0.9753542 2.13e-05 36

HQ681977.1.1496 Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Diaphorobacter 0.9445053 2.13e-05 34

KF465077.1.1336 Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Acidovorax 0.8887751 2.13e-05 30

JQ072853.1.1348 Proteobacteria; Betaproteobacteria; Rhodocyclales; Rhodocyclaceae; �auera 0.8808435 2.13e-05 30

KM200734.1.1449 Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobiaceae; Rhizobium 0.8716886 2.13e-05 31

KC758926.1.1392 Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Acidovorax 0.8662805 2.13e-05 29

FJ032194.1.1456 Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Rhodoferax 0.8662805 2.13e-05 29

EU771645.1.1366 Firmicutes; Bacilli; Bacillales; Planococcaceae; Planomicrobium 0.8476970 2.13e-05 30

JN245782.1.1433 Proteobacteria; Alphaproteobacteria.; Rhodobacterales; Rhodobacteraceae; De�uviimonas 0.8356655 2.13e-05 29
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the prevalence of this genus in the dataset, we suggest that this genus may play a central role in establishing conditions for 
microbial colonization in many terrestrial subsurface environments. �e genus Pseudomonas and possibly several members 
of Burkholderiales may therefore comprise an important component of the global core terrestrial deep subsurface bacterial 
community [11]. Geographically comprehensive RNA-based approaches should in the future investigate the potential roles of 
the genus Pseudomonas and order Burkholderiales in this biome.

�e class Clostridia was found to be prevalent across the dataset and to dominate in sedimentary host-rocks (dolomite, siltstone 
and shale) in this study. �is class includes anaerobic hydrogen-driven sulphate reducers also known to sporulate and metabolize 
a wide range of organic carbon compounds [77]. Previously, members of Clostridia have also been identi�ed as dominant 
components in extremely deep subsurface ecosystems beneath South Africa, Siberia and California (USA) from metabasaltic and 
metasedimentary lithologies [78]. Adaptation to extreme environments in this class has been associated with diverse metabolic 
capabilities that include sporulation ability and capacity for CO2- or sulphur-based autotrophic H2-dependent growth [21, 79]. 
In this study, network analysis and prevalence values suggested roles of putative importance for the classes Betaproteobacteria, 
Gammaproteobacteria and Clostridia in the deep terrestrial subsurface (Fig. 2, Table S3). �eir maintained presence in this biome 
across strikingly dissimilar host-rocks and depth, among others, could be indicative of higher metabolic plasticity, providing 
physiological advantages over other members of microbial communities.

Lithotrophic microbial metabolisms and mineralogy-driven microbial colonization of relatively inert lithologies have previously 
been demonstrated with low abundance but more reactive minerals within rock matrices o�en cited as key controls on community 
structure [80–83]. Limiting factors for life in the terrestrial deep subsurface such as pressure and temperature are more closely 
correlated with depth. Growth of bacterial isolates from the deep subsurface has been documented at up to 48 MPa and 50 °C 
and has been associated with production of extracellular polymeric substances (EPS) [84, 85]. However, robust conclusions on 
the e�ects of lithology or depth on the structure and composition of microbial communities across Earth’s crust have presented 
a widespread challenge for science, as in this study due to the small and varied sample sizes resulting from the contamination-
aware �ltering process and the limited number of comparable lithology types. Large-scale evidence for the roles of eukaryotes, 
bacteria, archaea and viruses in the deep terrestrial subsurface and the environmental controls over their occurrence in this 
biome is still lacking. We recommend a �eld-level research strategy to gain insights into these aspects of life within Earth’s crust. 
Larger scale collation of data from samples collected and processed using uni�ed, reproducible work�ows will be cognizant of 
signi�cant potential for contamination and ultimately allow robust insights on wide-ranging microbial metabolic processes in 
the terrestrial subsurface.

Collecting contamination-free samples from the deep subsurface is di�cult but important for cataloguing the authentic microbial 
diversity of the terrestrial subsurface. �is study follows recent recommendations for downstream processing of contaminant-
prone samples originated in the deep subsurface (Census of Deep Life project – https://deepcarbon.net/tag/census-deep-life), 
where physical, chemical and biological, but also in silico bioinformatics strategies to prevent erroneous conclusions have been 
highlighted [38, 86, 87]. �is study also follows frequency-based OTU �ltration techniques similar to those recommended 
previously [38] and designed to remove possible contaminants introduced during sampling or during the various steps related to 
sample processing [38]. �e pre-emptive quality control steps hereby undertaken support a non-contaminant origin for the taxa 
analysed in this dataset. As such, the predominance of typically contaminant taxa a�liated, for example, to the genus Pseudomonas
is accepted as a representative trend in re�ecting the microbial ecology of the terrestrial deep subsurface.

Standardizing sampling, DNA extraction, sequencing and bioinformatics methods and strategies across the subsurface research 
community would help further reduce methodology-based variations. �is would more e�ciently permit re-analyses a�er 
collection, where methodological variations would be controlled, and robust wide-ranging overarching conclusions would more 
easily be achieved. Despite this, host-rock matrices and local geochemical conditions o�en pose unique challenges that require 
particular protocol adjustments [88]. In the near future, the advent of recently developed techniques for primer bias-free long 
read 16S rRNA and 16S rRNA-ITS gene amplicon long-read-based sequencing may initiate a convergence of molecular methods 
from which the deep subsurface microbiology community would bene�t greatly [89, 90]. �e future of large-scale, collaborative 
deep subsurface microbial diversity studies should encompass not only an e�ort towards standardization of several molecular 
biology techniques but also the long-term archival of samples [91]. Finally, the ecology of domains Eukarya and Archaea across 
the terrestrial deep subsurface remains generally under-characterized and requires future attention. �is study presents an 
important �rst step towards characterizing bacterial community structure and composition in the terrestrial deep biosphere.

A global-scale meta-analysis addressing the available 16S rRNA gene-based studies of the deep terrestrial subsurface revealed a 
dominance of Betaproteobacteria, Gammaproteobacteria and Firmicutes across this biome. Evidence for a core terrestrial deep 
subsurface microbiome population was recognized through the prevalence and centrality of the genus Pseudomonas (Gammapro-
teobacteria) and several other genera a�liated with the class Betaproteobacteria. �e adaptable metabolic capabilities associated 
with the above-mentioned taxa may be critical for colonizing the deep subsurface and sustaining communities therein. �e 
terrestrial deep subsurface is a hard-to-reach, complex ecosystem crucial to global biogeochemical cycles. E�orts by multiple 
teams of investigators to sequence subsurface ecosystems over the last decade were hereby consolidated to characterize the 12–20% 

https://deepcarbon.net/tag/census-deep-life
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of global biomass this biome represents [5]. �e strict contamination-aware �ltering process applied whittled down the publicly 
available datasets representing terrestrial subsurface bacterial diversity to just 70 samples from two continents, indicating the need 
for systematic exploration of biodiversity within this major component of the biosphere. As a �rst step, this study consolidates 
a global-scale understanding of taxonomic trends underpinning a major component of terrestrial deep subsurface microbial 
ecology and biogeochemistry.
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