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SUMMARY
CRISPR genome engineering and single-cell RNA sequencing have accelerated biological dis-
covery. Single-cell CRISPR screens unite these two technologies, linking genetic perturbations
in individual cells to changes in gene expression and illuminating regulatory networks underly-
ing diseases. Despite their promise, single-cell CRISPR screens present considerable statistical
challenges. We demonstrate through theoretical and real data analyses that a standard method
for estimation and inference in single-cell CRISPR screens —“thresholded regression” — exhibits
attenuation bias and a bias-variance tradeoff as a function of an intrinsic, challenging-to-select
tuning parameter. To overcome these difficulties, we introduce GLM-EIV (“GLM-based errors-in-
variables”), a new method for single-cell CRISPR screen analysis. GLM-EIV extends the classical
errors-in-variables model to responses and noisy predictors that are exponential family-distributed

and potentially impacted by the same set of confounding variables. We develop a computational
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infrastructure to deploy GLM-EIV across hundreds of processors on clouds (e.g., Microsoft Azure)
and high-performance clusters. Leveraging this infrastructure, we apply GLM-EIV to analyze two

recent, large-scale, single-cell CRISPR screen datasets, yielding several new insights.
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1. INTRODUCTION

CRISPR is a genome engineering tool that has enabled scientists to precisely edit human and
nonhuman genomes, opening the door to new medical therapies (Musunuru and others, 2021) and
accelerating biological discovery (Przybyla and Gilbert, 2022). Recently, scientists have paired
CRISPR genome engineering with single-cell RNA sequencing (Datlinger and others, 2017). The
resulting assays, known as “single-cell CRISPR screens,” link genetic perturbations in individ-
ual cells to changes in gene expression. Single-cell CRISPR screens have enabled breakthrough
progress on longstanding challenges in genetics, such as causally mapping genome wide associa-
tion study (GWAS) variants to target genes at genome-wide scale (Morris and others, 2023).
Despite their promise, single-cell CRISPR screens present considerable statistical challenges.
One difficulty is that the “treatment” — i.e., the presence or absence of a CRISPR perturbation
— is assigned randomly to cells and is not directly observable. As a consequence, one cannot know
with certainty which cells were perturbed. Instead, one must leverage an indirect, quantitative
proxy of perturbation presence or absence to “guess” which cells received a perturbation. This
indirect proxy takes the form of a so-called guide RNA count, with higher counts indicating that
a cell is more likely to have been perturbed. A standard approach to single-cell CRISPR screen
analysis is to impute perturbation assignments onto the cells by simply thresholding the guide
RNA counts; using these imputations, one can attempt to estimate the effect of the perturbation

on gene expression. We call this standard approach “thresholded regression” or the “thresholding



Ezponential family measurement error models for single-cell CRISPR screens 3

method.”

We study estimation and inference in single-cell CRISPR screens from a statistical perspective,
formulating the data generating mechanism using a new class of measurement error models. We
assume that the response variable y is a GLM of an underlying predictor variable z* and vector
of confounders z. We do not observe z* directly; rather, we observe a noisy version x of z* that
itself is a GLM of x* and the same set of confounders z. The goal of the analysis is to estimate the
effect of 2* on y using the observed data (z,y, z) only. In the context of the biological application,
x*, x, y, and z are CRISPR perturbations, guide RNA counts, gene expressions, and technical
confounders, respectively.

Our work makes two main contributions. First, we conduct a detailed study of the thresholding
method. Notably, we demonstrate on real data that the thresholding method exhibits attenuation
bias and a bias-variance tradeoff as a function of the selected threshold, and we recover these
phenomena in precise mathematical terms in a simplified Gaussian setting. Second, we intro-
duce a new method, GLM-EIV (“GLM-based errors-in-variables”), for single-cell CRISPR screen
analysis. GLM-EIV extends the classical errors-in-variables model (Carroll and others, 2006) to
responses and noisy predictors that are exponential family-distributed and potentially impacted
by the same set of confounding variables. GLM-EIV thereby implicitly estimates the probability
that each cell was perturbed, obviating the need to explicitly impute perturbation assignments
via thresholding. We implement several statistical accelerations to bring the cost of GLM-EIV
down to within about an order of magnitude of the thresholding method. We additionally de-
velop a Docker-containerized application to deploy GLM-EIV at-scale across tens or hundreds of
processors on clouds (e.g., Microsoft Azure) and high-performance clusters.

Our analyses indicate that single-cell CRISPR screens fall into two main problem settings:
the more challenging “high background contamination” setting and the easier “low background

contamination” setting. GLM-EIV outperforms thresholded regression by a considerable margin



4 T. BARRY, K. ROEDER, AND E. KATSEVICH

in the high background contamination setting; in the low background contamination setting, by
contrast, GLM-EIV and thresholded regression perform similarly, provided that accurate guide
RNA-to-cell assignments are used within the thresholded regression model. We show that a
simplified version of GLM-EIV can be used to obtain these guide RNA-to-cell assignments in the
low background contamination setting, thereby neutralizing a tuning parameter that until this

point has been challenging to select.

2. ASSAY BACKGROUND

There are several classes of single-cell CRISPR. screen assays, each suited to answer a different
set of biological questions. In this work we mostly focus on high-multiplicity of infection (MOI)
single-cell CRISPR screens, which we motivate and describe here. The human genome consists
of genes, enhancers (segments of DNA that regulate the expression of one or more genes), and
other genomic elements. GWAS have revealed that the majority (> 90%) of variants associated
with diseases lie outside genes and inside enhancers (Gallagher and Chen-Plotkin, 2018). These
noncoding variants are thought to contribute to disease by modulating the expression of one
or more disease-relevant genes. Scientists do not know the gene (or genes) through which most
noncoding variants exert their effect, limiting the interpretability of GWAS results. A central
open challenge in genetics, therefore, is to link enhancers that harbor GWAS variants to the
genes that they target at genome-wide scale (Morris and others, 2023).

High-MOTI single-cell CRISPR screens are a promising emerging technology for resolving this
challenge (Morris and others, 2023; Mostafavi and others, 2023). High-MOI single-cell CRISPR
screens combine CRISPR interference (CRISPRi) — a version of CRISPR that represses a tar-
geted region of the genome — with single-cell sequencing. The experimental protocol is as follows.
First, the scientist develops a library of several hundred to several thousand CRISPRi pertur-

bations, each designed to target a candidate enhancer for repression. The scientist then cultures
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tens or hundreds of thousands of cells and delivers the CRISPRi perturbations to these cells. The
perturbations assort into the cells randomly, with each cell receiving on average 10-40 distinct
perturbations. Conversely, a given perturbation enters about 0.1-2% of cells (this work).

After waiting several days for CRISPRI to take effect, the scientist profiles each cell’s transcrip-
tome (i.e., its gene expressions) and the set of perturbations that it received. Finally, the scientist
conducts perturbation-to-gene association analyses. Figure la depicts this process schematically,
with colored bars (blue, red, and purple) representing distinct perturbations. For a given per-
turbation (e.g., the perturbation represented in blue), the scientist partitions the cells into two
groups: those that received the perturbation (top) and those that did not (bottom). Next, for
a given gene, the scientist runs a differential expression analysis across the two groups of cells,
producing an estimate for the magnitude of the gene expression change in response to the pertur-
bation. If the estimated change in expression is large, the scientist can conclude that the enhancer
targeted by the perturbation exerts a strong regulatory effect on the gene. This procedure is re-
peated for a large set of preselected perturbation-gene pairs. The enhancer-by-enhancer approach
is valid because the perturbations assort into cells approximately independently of one another.

The genomics literature has produced several methods for high-MOI single-cell CRISPR screen
analysis (Gasperini and others, 2019; Xie and others, 2019; Barry and others, 2021; Wang, 2021).
For example, Gasperini et al. applied negative binomial GLMs (as implemented in the Monocle
software; Trapnell and others (2014)) to carry out the differential expression analysis described
above. Moreover, Xie et al. applied chi-squared-like tests of independence for this purpose. Un-
fortunately, both of these approaches have limitations: the former can break down when the gene
expression model is misspecified, and the latter does not adjust for the presence of technical con-
founders. In a prior work we introduced introduced SCEPTRE, a custom implementation of the
conditional randomization test (Candes and others, 2018; Liu and others, 2022) tailored to single-

cell CRISPR screen data. SCEPTRE simultaneously adjusts for confounder presence and ensures
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robustness to expression model misspecification, thereby overcoming limitations of previous ap-
proaches and demonstrating improved sensitivity and specificity on single-cell CRISPR, screen
data. In this work we tackle a set of analysis challenges complimentary to those addressed by
SCEPTRE. Most importantly, we seek to account for the fact that the perturbation is measured
with noise. Additionally, we seek to estimate (with confidence) the effect size of a perturbation on

gene expression change, an objective that we did not consider in the original SCEPTRE study.

3. ANALYSIS CHALLENGES AND PROPOSED STATISTICAL MODEL

High-MOI single-cell CRISPR screens present several statistical challenges, four of which we
highlight here. Throughout, we consider a single perturbation-gene pair. First, the “treatment”
variable — i.e., the presence or absence of a perturbation — cannot be directly observed. Instead,
perturbed cells transcribe molecules called guide RNAs (or gRNAs) that serve as indirect proxies
of perturbation presence. We must leverage these gRNAs to impute (explicitly or implicitly)
perturbation assignments onto the cells (Figure 1b). Second, “technical factors” — sources of
variation that are experimental rather than biological in origin — impact the measurement of
both gene and gRNA expressions and therefore act as confounders (Figure 1b). Third, the gene
and gRNA data are sparse, discrete counts. Consequently, classical statistical approaches that
assume Gaussianity or homoscedasticity are not directly applicable. Finally, sequenced gRNAs
sometimes map to cells that have not received a perturbation. This phenomenon, which we call
“background contamination,” results from errors in the sequencing and alignment processes. The
marginal distribution of the gRNA counts is best conceptualized as a mixture model (Figure 1c;
Gaussian distributions used for illustration purposes only). Unperturbed and perturbed cells both
exhibit nonzero gRNA count distributions, but this distribution is shifted upward for perturbed
cells. Figure 1d shows example data on four (of possibly tens or hundreds of thousands of) cells.

The analysis objective is to leverage the gene expressions and gRNA counts to estimate the effect
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of the (latent) perturbation on gene expression, accounting for the technical factors.

We propose to model the single-cell CRISPR, screen data-generating process using a pair of
GLMs. Let n € N be the number of cells assayed in the experiment. Consider a single perturbation
and a single gene. For cell i« € {1,...,n}, let p; € {0,1} indicate perturbation presence or
absence; let m; € N be the number of gene transcripts sequenced; let g; € N be the number of
gRNA transcripts sequenced; let d* € N be the number of gene transcripts sequenced across all
genes (i.e., the library size or sequencing depth); let d be the gRNA library size; and finally,
let z; € R%2 be the cell-specific covariates, including sequencing batch, percent mitochondrial
reads, etc. (We note that most single-cell CRISPR screens have been carried out on cell lines
consisting of a uniform cell type; however, if multiple cell types are present in the data, then cell
type could be included as a covariate in the model.) The letters “m,” “g”, and “d” stand for
“mRNA” “cRNA” and “depth,” respectively.

Building on the work of several previous authors (Robinson and Smyth, 2008; Townes and oth-
ers, 2019; Hafemeister and Satija, 2019), Sarkar and Stephens (2021) proposed a simple strategy
for modeling single-cell gene expression data, which, in the framework of negative binomial GLMs,
is equivalent to using the log-transformed library size as an offset term. Sarkar and Stephens’
framework enjoys strong theoretical and empirical support; therefore, we generalize their ap-
proach to model both gene and gRNA modalities in single-cell CRISPR screen experiments. To

this end we assume that the gene expression counts are given by

mi|(pi, zi, d*) ~ NBgm (uf); - log(pf") = B5* + BY'pi + Vpzi + log(d]"), (3.1)

where (i) NBgm (1]") is a negative binomial distribution with mean p* and known size parameter
s™; (i) B € R, A" € R, and 7,, € R9~2 are unknown parameters; and (iii) log(d?) is an offset
term. (We note that the “size parameter” is simply the inverse of the negative binomial dispersion

parameter; “size parameter” does not refer to library size in this context.) Similarly, we model
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the gRNA counts by
9il(pis 21, d) ~ NBuo () ; log(nf) = B3 + BIpi + g 2 + log(d!), (3.2)

where pf, s9, B8, Y, 74, and df are analogous. We use a negative binomial GLM to model the
gRNA counts as well as the gene expressions because the gRNA transcripts are generated via the
same biological mechanism as the gene transcripts (Datlinger and others, 2017; Hill and others,
2018). We model the marginal perturbation as p; ~ Bern(r), where p; is an unobserved binary
variable indicating presence (p; = 1) or absence (p; = 0) of the perturbation. We restrict 7, the
probability of perturbation, to the interval (0,1/2] to ensure that the model is identifiable; this
restriction is reasonable given that each perturbation infects only a small fraction of cells. The
gRNA intercept term 3§ controls the ambient level of gRNA expression, i.e. the rate at which
gRNA reads are generated in the absence of the perturbation. The perturbation coefficient 57
controls the extent to which perturbed and unperturbed cells differentially express the gRNA;
the target of inference S]" is challenging to estimate when (7 is close to zero, as the gRNA
distributions of the perturbed and unperturbed cells are hard to differentiate in this region of
the problem space. Together, (3.1), (3.2), and the marginal distribution of p; define the negative
binomial GLM-EIV model.

The log-transformed sequencing depth log(d?*) is included as an offset term in (3.1) so that
B + Bp; + L z; can be interpreted as a relative expression. Exponentiating both sides of (3.1)
reveals that the mean gene expression 1" of the ith cell is exp (85" + B"p; + Vi, 2i) di". Because
d™ is the sequencing depth, exp (66” + 67'pi + %7;21) is the fraction of all transcripts sequenced
in the cell produced by the gene under consideration. The target of inference 57" is the log fold
change in expression in response to the perturbation, controlling for the technical factors. Fold
change in this context is the ratio of the mean gene expression in perturbed cells to the mean
gene expression in unperturbed cells. Hence, exp(87*) = 1 (i.e., 57" = 0) indicates no change in

expression, whereas exp(57") > 1 (i.e., 5" > 0) and exp(f7") < 1 (i.e., 87 < 0) indicate an
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increase and decrease in expression, respectively.

In this work we analyzed two large-scale, high-MOI, single-cell CRISPR screen datasets pub-
lished by Gasperini and others (2019) and Xie and others (2019). Gasperini (resp., Xie) targeted
approximately 6,000 (resp., 500) candidate enhancers in a population of approximately 200,000
(resp., 100,000) cells. Gasperini additionally designed several hundred positive control, gene-
targeting perturbations and 50 non-targeting, negative control perturbations to assess method

sensitivity and specificity.

4. ANALYSIS OF THE THRESHOLDING METHOD

We studied thresholding from empirical and theoretical perspectives, highlighting several po-
tential limitations of the approach. In the context of the negative bionomial GLM-EIV model
introduced above (3.1-3.2), the thresholding method leverages the gRNA counts (3.2) to im-
pute the latent perturbation indicator (3.2), thereby reducing the full data generating process
to a single, gene expression model (3.1). We studied Gasperini et al.’s variant of the threshold-
ing method (i.e., thresholded negative binomial regression), as this version of the thresholding

method is standard and relates most closely to GLM-EIV. The method is defined as follows:

1. For a given threshold ¢ € N, let the imputed perturbation assignment p; € {0,1} be given

by p; =0 if g; < ¢ and p; = 1 otherwise.

2. Assume that m; is related to p;,d}*, and z; through the following GLM:

mi| (Bi, zi, ") ~ NBgm (1"); - log(uf") = By* + BY"Pi + Vomzi + log (d*) . (4.3)

The model (4.3) is equivalent to the model (3.2), but the latent perturbation indicator p;

has been replaced by the imputed perturbation indicator p;.

3. Fit a GLM to (4.3) to obtain an estimate and CI for the target of inference 87".
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To shed light on empirical challenges of the thresholding method, we applied thresholded
negative binomial regression to analyze the set of positive control perturbation-gene pairs in
the Gasperini dataset. The positive control pairs consisted of perturbations that targeted gene
transcription start sites (T'SSs) for inhibition. Repressing the TSS of a given gene decreases its
expression; therefore, the positive control pairs a priori are expected to exhibit a strong decrease
in expression.

To investigate the sensitivity of the thresholding method to threshold choice, we deployed the
method using three different choices for the threshold: 1, 5, and 20. We found that the chosen
threshold substantially impacted the results (Figure 2a-b): estimates for fold change produced by
threshold = 1 were smaller in magnitude (i.e., closer to the baseline of 1) than those produced by
threshold = 5 (Figure 2a). On the other hand, estimates produced by threshold = 5 and threshold
= 20 were more concordant (Figure 2b).

We reasoned that thresholded regression systematically underestimated true effect sizes on the
positive control pairs, especially for threshold = 1. For a given perturbation, the majority (> 98%)
of cells are unperturbed. This imbalance leads to an asymmetry: misclassifying unperturbed cells
as perturbed is intuitively “worse” than misclassifying perturbed cells as unperturbed. Misclassified
unperturbed cells contaminate the set of truly perturbed cells, leading to attenuation bias; by
contrast, misclassified perturbed cells are swamped in number and “neutralized” by the truly
unperturbed cells. Setting the threshold to a large number reduces the unperturbed-to-perturbed
misclassification rate, decreasing bias.

We hypothesized, however, that the reduction in bias obtained by selecting a large thresh-
old causes the variance of the estimator to increase. To investigate, we compared p-values and
confidence intervals produced by threshold = 5 and threshold = 20 for the target of inference
B7. We found that threshold = 5 yielded smaller (i.e., more significant) p-values and narrower

confidence intervals than did threshold = 20 (Figures 2c-d). We concluded that the threshold
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controls a bias-variance tradeoff: as the threshold increases, the bias of the estimator decreases
and the variance increases.

Finally, to determine whether there is an “obvious” location at which to draw the threshold,
we examined the empirical gRNA count distribution of a gRNA from the Gasperini (Figure 2e)
and Xie (Figure 2f) dataset (counts of 0 omitted). The distributions peaked at 1 and then tapered
off gradually; there did not exist a sharp boundary that cleanly separated the perturbed from the
unperturbed cells. Overall, we concluded that the thresholding method faces several challenges:
(i) the threshold is a tuning parameter that significantly impacts the results; (ii) the threshold
mediates an intrinsic bias-variance tradeoff; and (iii) the gRNA count distributions may not imply
a clear threshold selection strategy.

Next, we studied the thresholding method from a theoretical perspective, recovering in a
simplified Gaussian setting phenomena revealed in the empirical analysis. Due to space constraints
we relegate this analysis to Appendix A, but we briefly summarize the main results here. First,
we derived an exact expression for the asymptotic relative bias of the thresholding estimator
B{" Leveraging this exact expression, we showed that (i) the thresholding estimator strictly
underestimates (in absolute value) the true value of 57* over all choices of the threshold and over
all values of the regression coefficients (an example of attenuation bias; Stefanski (2000)); and (ii)
the magnitude of the bias decreases monotonically in 7, comporting with the intuition that the
problem becomes easier as the gRNA mixture distribution becomes increasingly well-separated.
Second, we derived an asymptotically exact bias-variance decomposition for Bm, demonstrating

that as the threshold tends to infinity, the bias decreases and the variance increases.

5. GLM-BASED ERRORS-IN-VARIABLES (GLM-EIV)

We introduce the general GLM-EIV model, which generalizes the negative binomial GLM-EIV

model (3.1-3.2) to arbitrary exponential family response distributions and link functions, thereby
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providing much greater modeling flexibility. We derive efficient methods for estimation and in-

ference in this model and develop a pipeline to deploy the model at-scale.

5.1 Model and model properties

The general GLM-EIV model uses an arbirary GLM to model the gene and gRNA modalities:

mi|(pis 26, 0f") ~ fn("); T (W) = BE + BY'i + Yhzi + 0], (5.4)
9il(pir 2i,00) ~ fo(ud);  ro(p) = B + BIpi + 7, zi + of. (5.5)

Here, f,, (resp., fy) is an exponential family distribution with mean u!™ (resp., pf); ry, and ry
are the link function for the gene and gRNA models, respectively; and o™ and of are the (possibly
zero) offset terms for the gene and gRNA models. In practice we typically set o and of to the
log-transformed library sizes (i.e., log(d}") and log(dy)). Again, we assume that the unobserved
perturbation indicator p; is drawn from a Bern(r) distribution. More model details are available
in Appendix B.

The GLM-EIV model can be seen as a generalization of the simple errors-in-variables model

(when the predictor is binary); the latter is defined as follows:
yi = Bo+ Pir; + e wi=ai + 7, (5.6)

where, ©¥ ~ Bern(n), ¢;,7; ~ N(0,1), and ¢;,7;, and z are independent. GLM-EIV extends (5.6)
in at least three directions: first, GLM-EIV allows y; and z; to follow exponential family (i.e,
not just Gaussian) distributions; second, GLM-EIV allows y; and z; to be related to z} through

arbitrary (i.e., not just linear) link functions; and finally, GLM-EIV allows confounders z; to

*
79

impact both x; and y;. Therefore, x; and y; can be conditionally dependent given x}, enabling
GLM-EIV to capture more complex dependence relationships between z; and y; than is possible

in (5.6) or other standard measurement error models.
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5.2 Estimation and inference, and computational infrastructure

We derived an EM algorithm (Algorithm 1) to estimate the parameters of the GLM-EIV model.
We briefly introduce some notation. Let 3, = [B5%, 81", 7m]T be the vector of unknown gene
model parameters and B, = [39, 8],~,]7 the vector of unknown gRNA model parameters. Let
m, g, o™, and 09 be the vector of gene expressions, gRNA expressions, gene library sizes, and
gRNA library sizes. Finally, let X be the observed design matrix; let X be the augmented design
matrix that results from concatenating the column of (unobserved) p;s to X; and let X (0) (resp,
X (1)) be the matrix that results from setting all of the p;s in X to 0 (resp., 1).

The E step entails computing the membership probability (i.e., the probability of pertur-
bation) in each cell. The membership probability T;(1) of cell i € {1,...,n} given the current
parameter estimates ( 7(,3), _((,t), 7(t)) and observed data (my, g;) is Ti(1) = P(p; = 1|M; = m;, G; =
Ji, ﬁy(,tl), g(,t), 7(t)). We can calculate this quantity by applying (i) Bayes rule, (i) the conditional
independence property of M; and G, (iii) the density of M; and G;, and (iv) a log-sum-exp-type
trick to ensure numerical stability. Next, we produce updated estimates 7(t+1), ﬁ,(]t+1), and ﬁ,(ﬁﬂ)
of the parameters by maximizing the M step objective function. It turns out that maximizing
this objective function is equivalent to setting 7(**1) to the mean of the current membership
probabilities and setting /Bg(,Hl) and ,BﬁrtLH) to the fitted coefficients of a GLM weighted by the
current membership probabilities (Algorithm 1). We iterate through the E and M steps until the
log likelihood (B.1) converges (Appendix B). Our EM algorithm is reminiscent of (but distinct
from) that of Ibrahim (1990), who also applied weighted GLM solvers to carry out an M step of
an EM algorithm.

After fitting the model, we perform inference on the estimated parameters. The easiest ap-
proach, given the complexity of the log likelihood, would be to run a bootstrap. This strategy,
however, is prohibitively slow, as the data are large and the EM algorithm is iterative. Therefore,

we derived an analytic formula for the asymptotic observed information matrix using Louis’s The-
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Algorithm 1 EM algorithm for GLM-EIV model.

Input: Pilot estimates S, 8", and 7"""; data m, g, 0, 09, and X; gene expression distri-
bution fy, and link function r,; gRNA expression distribution f, and link function r.
while Not converged do

forie{l,...,n} do > E step
Ti(1) 4 P (pi = 1M: = my, Gi = g, B30, 85, 7)
T;(0) < 1 = T3(1)

end for

T (1/n) >0 T;(1) > M step
W < [Tl O)7T2(O)a s 7Tn(0)aT1(1)7T2(1)’ s 7Tn(1)]T

for k € {g,m} do

Fit a GLM GLM;, with responses [k, k]T, offsets [o¥,0F]T, weights w, design matrix
[X(0)T, X(1)T]7, distribution fy, and link function 7.
Set Bi"™ to the estimated coeflicients of GLMj,.

end for
Compute log likelihood using S7"™, S7™, and 7.
end while

IB"L (_ /BCHYT; Bg <_ /B(HIUI‘I‘; ﬁ. — ﬂ.curr.

m
return (Bm, Bg, )

orem (Louis (1982); Appendix B). Leveraging this analytic formula, we can calculate standard
errors quickly, enabling us to perform inference in practice on real, large-scale data.

A downside of the EM algorithm (Algorithm 1) is that it requires fitting many GLMs. As-
suming that we run the algorithm 15 times using randomly-generated pilot estimates (to improve
chances of convergence to the global maximum), and assuming that the algorithm iterates through
E and M steps about 10 times per run, we must fit approximately 300 GLMs. (These numbers are
based on exploratory applications of the method to real and simulated data.) We instead devised
a strategy to produce a highly accurate pilot estimate of the true parameters, enabling us to run
the algorithm once and converge upon the MLE within a few iterations. The strategy involves
layering several statistical “tricks” on top of one another. Briefly, we first obtain pilot estimates
for the nuisance parameters B{*, v, 35, and 7, by regressing the gene and gRNA expression
vectors onto the observed design matrix X; the resulting estimates are close to the full GLM-EIV
model maximum likelihood estimates because the probability of perturbation is small. Next, we
obtain pilot estimates for m and the perturbation effect parameters 8" and 37 by estimating a

simplified, “reduced” GLM-EIV model; this second step does not require fitting any GLMs. (See
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Appendix C for additional details.) Overall, the statistical accelerations reduce the number of
GLMs that must be fit to < 10 in most cases.

Next, we developed a computational infrastructure to apply GLM-EIV to large-scale, single-
cell CRISPR screen data. The infrastructure leverages Nextflow, a programming language that
facilitates building data-intensive pipelines, and ondisc, an R/C++ package that we developed (in
a separate project; preprint forthcoming) to facilitate large-scale computing on single-cell data.
Nextflow and ondisc together enable the construction of highly portable single-cell pipelines:
one can analyze data out-of-memory on a laptop or in a distributed fashion across hundreds of
processors on a cloud (e.g., Microsoft Azure, Google Cloud) or high-performance cluster. Leverag-
ing these technologies, we built a Docker-containerized pipeline for deploying GLM-EIV at-scale.
The pipeline recycles computation when possible, saving a considerable amount of compute; see
Appendix C.3 for details. Overall, the statistical accelerations and computational infrastructure

make the deployment of GLM-EIV to large-scale single-cell CRISPR screen quite feasible.

5.3 The gRNA mizture assignment method

Thus far we have described two methods for estimating the effect of a perturbation on gene
expression: the simple thresholding method and the more complex GLM-EIV method. A third
approach of intermediate complexity — which we call the “gRNA mixture assignment” approach
— is to (i) fit a mixture model to the gRNA count distribution, (ii) use this fitted mixture model
to impute perturbation identities onto cells, and then (iii) regress the gene expressions onto
the imputed perturbation indicators (as well as the remaining covariates). The gRNA mixture
assignment approach enjoys at least two strengths relative to the simpler thresholding approach:
the former negates the threshold tuning parameter and can account for variation across cells due

to covariates.
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Replogle and others (2020) proposed a simple gRNA mixture assignment strategy that involves
fitting a Poisson-Gaussian mixture model to the log-transformed gRNA counts and then assigning
gRNAs to cells using the posterior perturbation probabilities of the fitted model. (We call this
method the Nat. Biotech. 2020 method, representing the journal and year in which the method
appeared.) Unfortunately, this method poses several conceptual and practical difficulties. First,
it is unclear how the method fits the Poisson component of the mixture distribution to the log-
transformed gRNA expressions, as the transformed expressions are not integer-valued. Second,
due to recent changes in the Python ecosystem, we and others have had difficulty with installing
the Python package upon which the Nat. Biotech. 2020 method relies. (See Appendix D for
further discussion of the Nat. Biotech. 2020 method.)

Following Replogle and others (2020), we devised an alternate gRNA mixture assignment
strategy that is tethered more closely to the data-generating mechanism. For a given gRNA, we
regress the gRNA counts onto the (latent) perturbation indicator and covariates (while ignoring
the gene expressions; model 5.5). We assign perturbation identities to cells by thresholding the
posterior perturbation probabilities of the fitted model at 1/2. The latent variable gRNA model is
a subset of the full GLM-EIV model (5.4-5.5). Thus, we used the GLM-EIV EM algorithm to fit
the latent variable gRNA model, enabling us to exploit the various techniques that we developed

in the context of GLM-EIV for obtaining fast and numerically stable estimates.

6. SIMULATION STUDY

We conducted a comprehensive suite of six simulation studies to compare the empirical per-
formance of GLM-EIV, the thresholding method, and the gRNA mixture assignment method.
(We coupled the latter method to standard regression on the imputed perturbation assignments
to estimate the perturbation effect size.) We describe one simulation study here and defer the

remaining simulation studies to the Appendix G. We generated data on n = 50,000 cells from
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the GLM-EIV model, setting the target of inference 57" to log(0.25) and the probability of per-
turbation 7 to 0.02. 87" = log(0.25) represents a decrease in gene expression by a factor of 4,
which is a fairly large effect size on the order of what we might observe for a positive control
pair. We included “sequencing batch” (modeled as a Bernoulli-distributed variable) as a covari-
ate and sequencing depth (modeled as a Poisson-distributed variable) as an offset. We varied the
log-fold change in gRNA expression, 37, over a grid on the interval [log(1),log(4)]; 37 controls
problem difficulty, with higher values corresponding to easier problem settings. We generated the
gene expression count data from two response distributions: Poisson and negative binomial (size
parameter fixed at s = 20 for the latter; see simulation study 3 for an exploration of different
values of s). We generated the gRNA count data from a Poisson distribution. For each parameter
setting (defined by a 37-distribution pair), we synthesized ng, = 500 i.i.d. datasets. Appendix G
compares the parameter values used in the simulation study to those estimated from real data.
We applied four methods to the simulated data: “vanilla” GLM-EIV, accelerated GLM-EIV,
thresholded regression, and the gRNA mixture assignment method. We used the Bayes-optimal
decision boundary for classification as the threshold for the thresholding method (as derived in
Section A.12). We ran all methods on the negative binomial data twice: once treating the size
parameter s as a known constant and once treating s as unknown. In the latter case we used
the glm.nb function from the MASS package to estimate s before applying the methods (Ripley
and others, 2013). We note that none of the methods accounts for the error in estimating s
when computing coefficient standard errors. We display the results of the simulation study in
Figure 3. Columns correspond to distributions (i.e., Poisson, NB with known s, and NB with
unknown s), and rows correspond to performance metrics (i.e., bias, mean squared error, CI
coverage rate (nominal rate 95%), CI width, and method run time). The 37 parameter is plotted
on the horizontal axis, and the methods are depicted in different colors. (GLM-EIV is masked by

accelerated GLM-EIV in several panels).
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We found that GLM-EIV outperformed the gRNA mixture method and that the gRNA mix-
ture method outperformed thresholded regression across the metrics of bias, mean squaured error,
and confidence interval coverage. We reasoned that GLM-EIV outperformed the gRNA mixture
method because (i) GLM-EIV leveraged information from both modalities (rather than the gRNA
modality alone) to assign perturbation identities to cells, and (ii) GLM-EIV produced soft rather
than hard assignments, capturing the inherent uncertainty in whether a perturbation occurred.
We additionally reasoned that the gRNA mixture method outperformed thresholded regression
because the gRNA mixture method better accounted for heterogeneity across cells due to the
covariates. Notably, accelerated GLM-EIV performed as well as vanilla GLM-EIV on all sta-
tistical metrics (rows 1-4) despite having substantially lower computational cost (bottom row).
In fact, the running time of accelerated GLM-EIV was almost within an order of magnitude of
that of the thresholding method. As expected, the confidence interval coverage of the methods
degraded somewhat in the negative binomial case under estimated s as opposed to known s, but
this difference was not substantial. Appendix G presents additional simulation studies in which

m

we generate data from a Gaussian model, vary 7" and s, and assess the performance of the

methods on data containing unmeasured covariates and outliers.

7. REAL DATA APPLICATION I: ESTIMATING PERTURBATION EFFECTS ON HIGH-MOI DATA

Leveraging our computational infrastructure, we applied GLM-EIV and the thresholding method
to analyze the entire Gasperini and Xie datasets. GLM-EIV ran in under two days on both
datasets, using no more than 250 processors and two gigabytes of memory per process. We report
only the most important aspects of the analysis and results in the main text; full details are
available in Appendix E. We set the threshold in the thresholding method to the approximate
Bayes-optimal decision boundary, as our theoretical analyses and simulation studies indicated

that the Bayes-optimal decision boundary is a good choice for the threshold when the gRNA



Ezponential family measurement error models for single-cell CRISPR screens 19

count distribution is well-separated. Operating under the assumption that the effect of the per-
turbation on gRNA expression is similar across pairs, we leveraged the fitted GLM-EIV models
to approximate the Bayes boundary in the following way: we (i) sampled several hundred gene-
perturbation pairs, (i) extracted the fitted values Bg and 7 from the GLM-EIV models fitted
to these pairs, (iii) computed the median ﬂTg and 7 across the Bgs and 7s, and (iv) used ﬁTg and
7 to estimate a dataset-wide Bayes-optimal decision boundary (Section A.12). We repeated this
procedure on both datasets, yielding a threshold of 3 for Gasperini and 7 for Xie.

We compared GLM-EIV to thresholded regression on the real data, focusing specifically on
the negative control pairs (i.e., gene-perturbation pairs for which the ground truth fold change is
known to be 1; Appendix E). We found that GLM-EIV and the thresholding method produced
similar results (Figure 4a-b): estimates, CI coverage rates, and CI widths were concordant. CI
coverage rates, which ranged from 87.7%-91.2%, were slightly below the nominal rate of 95%,
likely due to mild model misspecification. The estimated effect of the perturbation on gRNA
expression exp(Bf ) was unexpectedly large: the 95% CI for this parameter (averaged across pairs)
was [4306,5186] and [300,316] on the Gasperini and Xie data, respectively. We reasoned that
the datasets lay in a region of the parameter space in which thresholding is a tenable strategy
(provided the threshold is selected well). However, this was not obvious a priori and may not
be the case for other datasets. We note that GLM-EIV produced outlier estimates (defined as
estimated fold change < 0.75 or > 1.25) on a small (< 2.5% on Gasperini, < 0.05% on Xie)
number of pairs consisting of a handful of genes, likely due to non-global EM convergence. These
outliers are not plotted in Figures 4a-b but were used to compute the CI coverage reported in
the inset tables.

To evaluate performance of GLM-EIV versus thresholding in more challenging settings, we
increased the difficulty of the perturbation assignment problem by generating partially-synthetic

datasets. First, for a given pair, we sampled gRNA counts directly from the fitted GLM-EIV
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model. Next, to simulate elevated background contamination, we sampled gRNA counts from a
slightly modified version of the fitted model in which we increased the mean gRNA expression
of unperturbed cells while holding constant the mean gRNA expression of perturbed cells. We
defined a parameter called “excess background contamination” (normed to take values in [0, 1]) to
quantify the relative distance between the unperturbed and perturbed gRNA count distributions.
We held fixed the real-data gene expressions, library sizes, covariates, and fitted perturbation
probabilities in all settings.

We generated partially-synthetic data in the above manner for each of the 322 positive control
pairs in the Gasperini dataset, varying excess background contamination over the interval [0, 0.4].
We then applied GLM-EIV and the thresholding method to analyze the data. We present results
on two example pairs (the pair containing gene LRIF1 and the pair containing gene NDUFA2) in
Figures 4c-d. We observed that the estimate produced by the methods on the raw data (depicted
as a horizontal black line) coincided almost exactly with the estimate produced by the methods
on the partially-synthetic data generated by setting excess background contamination to zero
(This result replicated across nearly all pairs; average relative difference 0.003.) We additionally
observed that as excess background contamination increased, the performance of thresholded
regression degraded considerably while that of GLM-EIV remained stable.

We generalized the above analysis to the entire set of positive control pairs. First, for each
pair we computed the “relative estimate change” (REC) as a function of excess background
contamination, defined as the relative difference between the estimate at a given level of ex-
cess contamination and zero excess contamination (Figure 4d). Next, we computed the median
REC across all positive control pairs (Figure 4e; upper and lower bands indicate the pointwise
interquartile range of the REC). As excess background contamination increased, thresholded re-
gression exhibited severe attenuation bias (as reflected by large median REC values); GLM-EIV,

by contrast, remained mostly stable. Finally, letting B{” denote the estimate obtained on the
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raw data, we computed the CI coverage of B{" as a function of excess contamination. Under the
assumption that B{” is close to the true parameter 37, the CI coverage of the former is similar
to that of the latter. We computed the CI coverage of B{” by calculating each individual pair’s
coverage of B{" (across the Monte Carlo replicates) and then averaging this quantity across all
pairs. GLM-EIV exhibited significantly higher CI coverage than thresholded regression as the
data became increasingly contaminated (Figure 4f; bands indicate 95% pointwise Cls). Coverage
rates were slightly above the nominal level of 95% in some settings because we covered an esti-
mate of B7* rather than 7" itself, leading to mild “overfitting.” Nonetheless, this experiment was

meaningful to assess the stability of both methods to elevated background contamination.

8. REAL DATA APPLICATION II: ASSIGNING PERTURBATIONS TO CELLS ON LOW-MOI DATA

We sought to explore whether the gRNA mixture assignment method that we proposed in Section
5.3 — which is in effect a special case of GLM-EIV — might be an independently useful tool for
assigning gRNAs to cells on real single-cell CRISPR screen data. We applied the gRNA mixture
assignment method to assign gRNAs to cells on a low multiplicity-of-infection (or MOI) single-cell
CRISPR screen of immune cells (Papalexi and others, 2021). (A low-MOI dataset, in contrast to a
high-MOI dataset, is one in which the experimenter has aimed to insert exactly one perturbation
into each cell.) We elected to assess the performance of the gRNA mixture assignment method on
low-MOI data because the “ground truth” gRNA-to-cell mapping is easier to ascertain in low MOI
than in high MOI. The majority of cells in a low-MOI screen contains a single perturbation, while
a fraction of cells contains zero or two or more perturbations. Thus, if a given gRNA constitutes
a large fraction (say, > 25%) of the gRNA reads in a given cell, we can confidently map that
gRNA to that cell. Athough not foolproof, this strategy yields a reasonable approximation to
the ground truth in low MOI. (There is no analogous strategy for obtaining ground truth gRNA

assignments in high MOI, as each cell in high MOI contains many gRNAs, and the number of
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gRNAs per cell is indeterminate and variable.)

We used our proposed gRNA mixture assignment method to obtain gRNA-to-cell assignments
for each gRNA in the low-MOI dataset (after restricting our attention to the 95% most highly
expressed gRNAs). We included the standard technical factors as covariates, including biolog-
ical replicate. We compared the mixture-model-based gRNA assignments to the ground truth
assignments; the latter were obtained in the manner described above. Encouragingly, we found
that these two methods produced near-identical results. For example, the mixture model deter-
mined that gRNA “CUL3g2” was present in 141 cells (and absent in the rest), while the ground
truth method indicated that “CUL3g2” was present in 137 cells (Figure 5a). Treating the ground
truth assignments as a reference, we constructed a confusion matrix to assess the classification
accuracy of the mixture method assignments on CUL3g2 (Figure 5b). The sensitivity, specificity,
and balanced accuracy of the mixture method assignments were high (1.000, 0.9998, and 0.9998,
respectively).

We replicated this analysis across the entire set of gRNAs, finding that the mixture method
assignments exhibited consistently high concordance with the ground truth assignments as mea-
sured by sensitivity, specificity, and balanced accuracy (although there were a few outliers; Figure
5¢). We concluded that the mixture assignment method was a statistically principled, fast, and
numerically stable strategy for the recapitulating the ground truth assignments with high fi-
delity. We sought to compare our gRNA mixture assignment method against the Nat. Biotech.
2020 Poisson-Gaussian mixture method. Unfortunately, as discussed elsewhere (Section 5.3 and
Appendix D), we were unable to get the Nat. Biotech. 2020 method (or approximations thereof
written in R) working. We note that, in contrast to the Nat. Biotech. 2020 method, the proposed
method allows for the inclusion of covariates (e.g., library size and batch) and models the gRNA

counts directly.
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9. DISCUSSION

In this work we studied the problem of estimating the effect sizes of perturbations on changes
in gene expression in high-MOI single-cell CRISPR. screens, focusing specifically on the chal-
lenge that the perturbation is unobserved. We showed through empirical, theoretical, and sim-
ulation analyses that the commonly-used thresholding method poses several difficulties: there
exist settings (i.e., high background contamination settings) in which thresholding is not a ten-
able strategy, and in settings in which thresholding is a tenable strategy (i.e., low background
contamination settings), selecting a good threshold is challenging and consequential. Next, we
developed GLM-EIV, a method that jointly models the gene and gRNA modalities to implicitly
assign perturbation identities to cells and estimate perturbation effect sizes, thereby overcoming
limitations of the thresholding method. GLM-EIV demonstrated significantly improved perfor-
mance relative to the thresholding method in high background contamination settings on both
synthetic and realistic semi-synthetic data.

However, GLM-EIV and the thresholding method demonstrated roughly similar performance
on the two real high-MOI datasets that we examined, as the real data exhibited lower background
contamination than anticipated. We believe that this is an interesting finding in itself; moreover,
future datasets may demonstrate higher levels of background contamination, in which case GLM-
EIV could serve as an immediately applicable analytic tool. Finally, the gRNA mixture assignment
method, which under the hood exploits the estimation machinery of GLM-EIV, is a statistically
principled, numerically stable, fast, and accurate strategy for obtaining gRNA-to-cell assignments
on real data; these assignments can used as input to downstream methods (e.g., negative binomial
regression or SCEPTRE; Figure 5d).

We anticipate that GLM-EIV could be applied to other types of multi-modal single-cell data,
such as single-cell chromatin accessibility assays. A question of interest in such experiments is

whether chromatin state (i.e., closed or open) is associated with the expression of a gene or
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abundance of a protein (Mimitou and others, 2021). We do not directly observe the chromatin
state of a cell; instead, we observe tagged DNA fragments that serve as count-based proxies
for whether a given region of chromatin is open or closed. GLM-EIV might be applied in such
experiments to aid in the selection of thresholds or to analyze whole datasets. The full GLM-EIV
model potentially could be applied to analyze low-MOI single-cell CRISPR screen data, but we
anticipate that the relative ease of assigning gRNAs to cells in low MOI (as described in section
8) may obviate the need for GLM-EIV in that setting.

The closest parallels to GLM-EIV in the statistical methodology literature are Griin and Leisch
(2008) and Ibrahim (1990). Griin and Leisch derived a method for estimation and inference in
a k-component mixture of GLMs. While we prefer to view GLM-EIV as a generalized errors-in-
variables method, the GLM-EIV model is equivalent to a two-component mixture of products
of GLM densities. Ibrahim proposed a procedure for fitting GLMs in the presence of missing-at-
random covariates. Our method, by contrast, involves fitting two conditionally independent GLMs
in the presence of a totally latent covariate. Thus, while Ibrahim and Griin & Leisch are helpful
references, our estimation and inference tasks are more complex than theirs. Next, Aigner (1973)
and Savoca (2000) proposed measurement error models that consist of unobserved binary rather
than continuous predictors; the latter are more commonly used in measurement error models.
GLM-EIV likewise consists of a latent binary predictor, but unlike Aigner and Savoca, GLM-EIV
handles a much broader class of exponential family-generated data. Finally, GLM-EIV accounts
for a common source of measurement error between the predictor and response, a property not
shared by classical measurement error models (Carroll and others, 2006). Additional related work
is relayed in Appendix F.

GLM-EIV might be applied to areas beyond genomics, such as psychology. Some psychological
constructs (e.g., presence or absence of a social media addiction) are latent and can be assessed

only through an imperfect proxy (e.g., the number of times one has checked social media). Re-



Ezponential family measurement error models for single-cell CRISPR screens 25

searchers might use GLM-EIV to regress an outcome variable (e.g., self-reported well-being) onto
the latent construct via the imperfect proxy, potentially resolving challenges related to attenua-
tion bias and threshold selection. Applications to psychology and other areas are a topic of future

investigation.

SOFTWARE, CODE, AND RESULTS

The gRNA-only mixture assignment functionality of GLM-EIV is implemented in our sceptre
toolkit for single-cell CRISPR screen analysis (github.com/Katsevich-Lab/sceptre). The sceptre
user manual (timothy-barry.github.io/sceptre-book/sceptre.html) presents a detailed guide
on analyzing data using the sceptre software, including several sections on assigning gRNAs to
cells using the mixture assignment method introduced in this work.

Results are deposited at upenn.box.com/v/glmeiv-files-v1. Github repositories containing
manuscript replication code, the glmeiv R package, and the cloud/HPC-scale GLM-EIV pipeline
are available at github. com/timothy-barry/glmeiv-manuscript, github.com/timothy-barry/
glmeiv, and github.com/timothy-barry/glmeiv-pipeline, respectively. Detailed replication

instructions are available in the first repository.
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Fig. 1. Experimental design and analysis challenges: a, Experimental design. For a given pertur-
bation (e.g., the perturbation indicated in blue), we partition the cells into two groups: perturbed and
unperturbed. Next, for a given gene, we conduct a differential expression analysis across the two groups,
yielding an estimate of the impact of the given perturbation on the given gene. b, DAG representing all
variables in the system. The perturbation (latent) impacts both gene expression and gRNA expression;
technical factors act as confounders, also impacting gene and gRNA expression. The target of estimation
is the effect of the perturbation on gene expression. ¢, Schematic illustrating the “background read” phe-
nomenon. Due to errors in the sequencing and alignment processes, unperturbed cells exhibit a nonzero
gRNA count distribution (bottom). The target of estimation is the change in mean gene expression in
response to the perturbation (top). d, Example data on four cells for a given perturbation-gene pair.
Note that (i) the perturbation is unobserved, and (ii) the gene and gRNA data are discrete counts.
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Fig. 2. Empirical challenges of thresholded regression. a-b, Estimates for fold change (i.e., exp(81")
in model (4.3)) produced by threshold = 5 versus threshold = 1 (a) and threshold = 5 versus threshold
= 20 (b). The selected threshold substantially impacts the results. c-d, p-values (¢) and CI widths (d)
produced by threshold = 5 versus threshold = 20. The p-values correspond to a test of the null hypothesis
Hy : 7" = 0, i.e., a log fold change in gene expression of zero. A threshold of 5 yields more significant
p-values and more confident estimates. e-f, Empirical distribution of a gRNA from Gasperini (e) and
Xie (f) data (0 counts not shown). These gRNA count distributions do not appear to imply an obvious
threshold.
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Fig. 3. Simulation study. Columns correspond to distributions (Poisson, NB with known s, NB with
estimated s), and rows correspond to metrics (bias, MSE, coverage, CI width, and time). Methods
are shown in different colors; GLM-EIV (green) is masked by accelerated GLM-EIV (red) in several
panels. Generally, GLM-EIV (both accelerated and non-accelerated versions) outperformed the gRNA-
mixture/NB-regression method, which in turn outperformed the thresholding/NB-regression method.
The rejection probability (i.e., the probability of rejecting the null hypothesis Ho : 87* = 0 at level
a = 0.05) was strictly 1 across methods and parameter settings, likely because the effect size was fairly
large.
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Fig. 4. Applying GLM-EIV to analyze large-scale, high-MOI data. a-b, Estimates for fold change
produced by GLM-EIV and thresholded regression on Gasperini (a) and Xie (b) negative control pairs.
c-d, Estimates produced by GLM-EIV and thresholded regression on two positive control pairs — LRIF1
(a) and NDUFA2 (b) — plotted as a function of excess background contamination. Grey bands, 95%
ClIs for the target of inference outputted by the methods. e-f, Median relative estimate change (REC;
e) and confidence interval coverage rate (f) across all 322 positive control pairs, plotted as a function of
excess background contamination. Panels (c-f) together illustrate that GLM-EIV demonstrated greater
stability than thresholded regression as background contamination increased.
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Fig. 5. The gRNA-only mixture assignment functionality of GLM-EIV accurately assigns
gRNAs to cells on real low-MOI data. a, Each point represents a cell. The position of each cell
along the vertical axis indicates the number of gRNA reads (from gRNA “CUL3g2”) observed in that
cell. Cells in the left column were classified by the gRNA mixture model as perturbed, while those in
the right column were classified as unperturbed. Purple (resp., red) cells were classified by the ground
truth method as perturbed (resp., unperturbed). b, A confusion matrix comparing the gRNA-to-cell
mixture model classifications against the ground truth classifications for gRNA “CUL3g2.” The two sets
of classifications were highly concordant, as quantified by balanced accuracy, sensitivity, and specificity
metrics. ¢, The balanced accuracy (left), sensitivity (middle), and specificity (right) of the gRNA mixture
assignment method across all gRNAs. d, The proposed data analysis workflow. If the level of background
contamination is low, then the gRNA mixture method can be used to impute perturbation identities onto
cells, which can then be plugged into downstream analytic tools, such as negative binomial regression or
SCEPTRE. On the other hand, if the level of background contamination is high, then the entire GLM-
EIV model can be used to analyze the data.
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APPENDIX
A. THEORETICAL DETAILS FOR THRESHOLDING ESTIMATOR

We study the thresholding method from a theoretical perspective, recovering in a simplified Gaus-
sian setting phenomena revealed in the empirical analysis. Suppose we observe gRNA expression

and gene expression data (g1,m1), ..., (gn,My) on n cells from the following linear model:
m; = By + B'pi +eis gi = B3 + Bipi+ 75 pi ~Bern(w); e, ~ N(0,1), (A1)

where p;, 7;, and ¢; are independent. For a given threshold ¢ € R, the imputed perturbation

assignment p; is p; = I(g; > ¢). The thresholding estimator B’ln is the OLS solution, i.e. B{" =

-

> (B — p)?]

[S20 (i — ) (m; — )] . We derive the almost sure limit of 57"

Proposition 1 The almost sure limit (as n — co) of 3" is

A 6.5 5{”( m(w — E[pi])

; s Ew)) = BB, m, . B9), (A2)

where E[p;] =((1—7)+wm,w=®(B{ + 8] —¢), and (=P (B8] — ¢).

The function v : R* — R does not depend on the gene expression parameters 37" or 8. The

asymptotic relative bias b : R* — R of B{” is given by

b5ty 68) = o (8" —Tim BT) = 1= (8, m,c. ).

Having derived an exact expression for the asymptotic relative bias of B’lﬂ, we can prove several
results about this quantity. We fix 7 to 1/2 for simplicity. (In reality, 7 is smaller, but the relevant
statistical phenomena emerge for 7 = 1/2.) We start with informal proposition statements; we
follow up with formal proposition statements below. First, the thresholding estimator strictly
underestimates (in absolute value) the true value of 57" over all choices of the threshold ¢ and

over all values of the regression coefficients (33", 87") and (8§, 37). This phenomenon, called
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attenuation bias, is a common attribute of estimators that ignore measurement error in errors-
in-variables models (Stefanski, 2000). Second, the magnitude of the bias decreases monotonically
in BY, comporting with the intuition that the problem becomes easier as the gRNA mixture
distribution becomes increasingly well-separated. Third, the Bayes-optimal decision boundary
Chayes € R (i.e., the most accurate decision boundary for classifying cells) is a critical value of
the bias function. Finally, and most subtly, there is no universally applicable rule for selecting a
threshold that yields minimal bias: when 7 is small, setting the threshold to an arbitrarily large
number yields smaller bias than setting the threshold to the Bayes decision boundary; when (7
is large, the reverse is true.

We state five propositions labeled 2 — 6 corresponding to the informal claims above; these

propositions are depicted visually in Figure 6.

Proposition 2 Fix 7 = 1/2. For all (37,¢,3]) € R?, the asymptotic relative bias is positive, i.e.

b(BY, 1/2,¢,89) > 0.

Proposition 3 Fix m = 1/2. The asymptotic relative bias b decreases monotonically in 7, i.e.

b
o(B7)

(8Y,1/2,¢,5) < 0.

Let cpayes denote the Bayes-optimal decision boundary for classifying cells as perturbed or
unperturbed, i.e. cpayes = (1/2)(B + 8]) for m = 1/2. We have that cpayes is a critical value of

the bias function:

Proposition 4 For m = 1/2 and given (37, 39) € R?, the Bayes-optimal decision boundary cpayes
is a critical value of the bias function b, i.e.

0b

% (Biqa 1/23 Chayes 68) = 0.

Furthermore, as the threshold tends to infinity, the asymptotic relative bias b tends to 7:
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Proposition 5 Assume without loss of generality that 87 > 0. As the threshold ¢ tends to infinity,

the asymptotic relative bias b tends to 7, i.e.
lim b(BY, 7, ¢, B) = .
cC— 00

As a corollary, when 7 = 1/2, asymptotic relative bias tends to 1/2 as ¢ tends to infinity.
Finally, we compare two threshold selection strategies head-to-head: setting the threshold to an

arbitrarily large number, and setting the threshold to the Bayes-optimal decision boundary:

Proposition 6 Assume without loss of generality that 3/ > 0. For 3 € [0,2071(3/4)), we have

that
b(BY,1/2, cbayes, B3) > b(BY,1/2, 00, 7).

For 3] = 2®~1(3/4), we have that

b(BY,1/2, cayes, B3) = b(B{,1/2, 00, 57).
Finally, for 4{ € (2071(3/4), 00), we have that

b(BY,1/2, cbayes, B7) < b(BY,1/2, 00, BF).

In other words, setting the threshold to a large number yields a smaller bias when 37 is small
(ie., BY < 2071(3/4) ~ 1.35; Figure Ta, left); setting the threshold to the Bayes-optimal decision
boundary yields a smaller bias when 7 is large (i.e., 37 > 2®~1(3/4); Figure 7a, right); and the
two approaches coincide when 3 is intermediate (i.e., 3{ = 2®~1(3/4); Figure 7a, middle).

Next, we study the variance of the thresholding estimator, considering a slightly simpler
model for this purpose. Suppose the intercepts in (A.1) are fixed at 0 (i.e., 85" = 35 = 0). For
notational simplicity we write 3,, = 7" and 8, = B7. The thresholding estimator ﬁAm is the
no-intercept OLS solution 3, = > p?] ! (>, pim;] . The following proposition derives the

scaled, asymptotic distribution of Bm :
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Fig. 6. Bias as a function of threshold. This figure visually depicts Propositions 2-6, which were
stated informally above. Asymptotic relative bias is plotted on the vertical axis, and the threshold is
plotted on the horizontal axis. Panels correspond to different values of 8Y. Vertical blue lines indicate
the Bayes-optimal decision boundary. Observe that (a) bias is strictly nonzero (proposition 2); (b) bias
decreases monotonically in 8f (Proposition 3); (c) the Bayes-optimal decision boundary is a critical value
of the bias function (Proposition 4), in some cases a maximum and in other cases a minimum; (d) as
the threshold tends to infinity, the bias converges to 1/2 (Proposition 5); and (e) when 8y < 1.35, an
arbitrarily large number yields a smaller bias; by contrast, when 8{ > 1.35, the Bayes-optimal decision
boundary yields a smaller bias (Proposition 6). Together, these results illustrate that selecting a good
threshold is deceptively challenging.

Proposition 7 The limiting distribution of ,@m is

Y Brw (Bm — 21) + E[p;] (1 +1?)
Vi =0 2 N (0’ (El5i) )

where
l=pfpwr/[((1—m)+wr]; Epl=rw+1-m)¢ w=2(By—c); (=(—0).
This proposition yields an asymptotically exact bias-variance decomposition for Bm: as the

threshold tends to infinity, the bias decreases and the variance increases. Figure 7 plots the

bias-variance decomposition as a function of the threshold.

A.1 Organization

The following subsections prove all propositions. Section A.2 introduces some notation. Section
A3 establishes almost sure convergence of the thresholding estimator in the model (A.1), proving

Proposition 1. Section A.4 simplifies the expression for the attenuation function v, and section
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Fig. 7. Thresholding method bias-variance decomposition. Bias decreases and variance increases
as the threshold tends to infinity. 8 = 1, 87" = 1, and 7 = 0.1 in this plot.

A.5 computes derivatives of v to be used throughout the proofs. Section A.6 establishes the
limit in ¢ of ~, proving Proposition 5. Section A.7 establishes that the Bayes-optimal decision
boundary is a critical value of ~, proving Proposition 4, and section A.8 compares the competing
threshold selection strategies head-to-head, proving Proposition 6. Section A.9 demonstrates that
7 is monotone in 3Y, proving Proposition 3, and Section A.10 establishes attenuation bias of the
thresholding estimator, proving Proposition 2. Finally, Section A.11 derives the bias-variance de-
composition of the thresholding estimator in the no-intercept version of A.1, proving Proposition

7.

A.2 Notation

All notation introduced in this subsection (i.e., A.2) pertains to the Gaussian model with inter-

cepts (A.1). Recall that the attenuation function v : R* — R is defined by

, o m(w—E[p;])
V(B e, By) = E[p:](1 - E[p;])’

where

Epil=C(l—m) +wm w=0B{+8]—c); (=0(8—c).
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Additionally, recall that the asymptotic relative bias function b : R* — R is b(8{,c, 7, 8§) =

1—~(BY,c,m, B3). Next, we define the functions g and h: R* — R by

9(B7,e,m, B5) = (1 —7) (R(BF + B — ¢)) — (1 = m) (2(F] — ¢)) (A.3)

and

h(BYse,m, B3) = [(1 = m) (B(5F — ) + 7 (D(BF + BT — ¢))] X
(1 =) (@(c = B5) + 7 (D(c—B7 =BT (A4

We use f : R — R to denote the N(0,1) density, and we denote the right-tail probability

probability of f by @, i.e.,
O(x) = / f=o(—x).

The parameter 37 is a given, fixed constant throughout the proofs. Therefore, to minimize
notation, we typically use y(87,c,m) (resp., b(8{,c,m), g(B7,c, ), h(B7,c, 7)) to refer to the
function v (resp., b, g, h) evaluated at (8Y,c,m, 39). Finally, for a given function r : R? — R,
point z € RP, and index i € {1,...,p}, we use the symbol D;r(x) to refer to the derivative of the
ith argument of r evaluated at z (sensu Fitzpatrick (2009)). For example, D1y(3,¢,1/2) is the
derivative of the first argument of v (the argument corresponding to 37) evaluated at (37,c,1/2).
Likewise, Dog (37, ¢, ) is the derivative of the second argument of g (the argument corresponding

to ¢) evaluated at (87, c, ).

A3 Almost sure limit of B}

We derive the limit in probability of 8 for the Gaussian model with intercepts (A.1). Dividing

by n in (A.2), we can express A as

g — w2 (i — 157)(77171‘ — W).
! % 2?21(152 - lﬁ)
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By weak LLN, B{” Ei Cov(pi;,m;)/V (p;) . To compute this quantity, we first compute several

simpler quantities:
1. Expectation of m;: E[m;] = 87" + B7n.
2. Expectation of p;:
E[p;] =P[p; = 1] =P[5 + Bipi +7i =] =
(By LOTP) P[B§ + 7, = c|Plpi = 0] + P[BY + B + 71 = | Plp; = 1]
=Plri>2c—Bl(A—m) +P[r >c— B — 5] (m)
= (®(c—A)) (1 —m) + (®(c = 5] = B)) (m) =
DB —c)(1—m)+ (B + 85 — o) =C¢(1 —7) + wr.
3. Expectation of pip;: E [pipi] = E [pilpi = 1|P[p; = 1] =P [ + 5] + 7 = |7 = wr.
4. Expectation of p;m;:
E [pimi] = E[pi(By" + B1"pi + €:)] = By B [pi] + BT"E [pipi] + E[pie;]
5. Variance of p;: Because p; is binary, we have that V[p;] = E[p;] (1 — E[p;]) .
6. Covariance of p;, m;:
Cov (s, ms) = E [pimi] — E[ps]E[mi] = B5"E[p:] + 87" wm — E[p:] (85" + B"m)
= Bi'wr — E[pi] A" 7 = A" m (w — E[pi]) -

Combining these expressions, we have that

o 2 BT (w — E[p])

U BRI B L A em):
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A4  Re-expressing v in a simpler form

We rewrite the attenuation fraction v in a way that makes it more amenable to theoretical

analysis. We leverage the fact that f integrates to unity and is even. We have that
E[pi] = (1 —m)®(c— ) +7®(c— B — B{) = (1 - m)@(B] —c) + 7®(B + B{ —c), (A.5)
and so
1=E[pi]=(1—7)+7—E[p:] = (1—7) (1= 2(c—57)) +7(1-2(c— 57— B))
=1 -m(c—fB) +72(c— B - B7). (A6)

Next,

w = (B + 65 —c), (A7)

and so

w—E[pi] = ®(8] + 8§ — ¢) = (1 = m)@(B7 — ) — 7@(B7 + B{ — )

(1 =m)®(B] + 67 —c) = (1 =m)®(55 —¢). (A8)

Combining (A.5, A.6, A.7, A.8), we find that

, \_ _mlw—E[p)
4T = BT R
_ m[(1—m)®(Bg + 8] —¢c) — (1 —m)P(5] — ¢)] (A.9)
[(1=m)@(B§ —c) + 7R85 + B — )] [(1 —m)@(c— ) + 7(c— B — B])]
As a corollary, when 7 = 1/2,

[@(87 — ) + (8§ + B — )] [(c — B7) + B(c — B — B)]

Recalling the definitions of g (A.3) and h (A.4), we can write 7 as

mg(By, ¢, ™)
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The special case (A.10) is identical to

(4)(1/2)g(87,¢,1/2) _ 29(B{,c,1/2) (A.11)

v(BY,e,1/2) = 4h(B{,c,1/2) 4h(B{,c,1/2)’

i.e., the numerator and denominator of (A.11) coincide with those of (A.10). We sometimes will

use the notation 2- g and 4 - h to refer to the numerator and denominator of (A.10), respectively.

A.5 Derivatives of g and h in ¢

We compute the derivatives of g and h in ¢, which we will need to prove subsequent results. First,

by the FTC (fundamental theorem of calculus) and the evenness of f, we have that
Dag(Bi,c,m) =—(L—m)f(B7 + B —c) + (L=m)f(B] — o)
=1 =mflc=B85) — A —m)flc— 55— B7). (A.12)
Second, we have that
Doh(B],c,m) = =[(1 = m) f(BF — c) + mf(B] + B — )] [(1 — m)®(c — BF) + 7P(c — BF — B7)]
+ (L =m)fle—B5) +mflc—B5 — B —m)R(BF — o) + 7®(5F + B — ¢)]

= [0 =m)fle—B7) +mf(c—B5— Bl x

(1 =m)@(B7 — ) +7@(B7 + B — ) = (1 = m)@(c — A7) — 7P(c— f7 — B{)|. (A.13)

A.6 Limit of v in c
Assume (without loss of generality) that 37 > 0. We compute lim. o ¥(3{, ¢, 7). Observe that
: g 1 g _
cll)rgo g(B,c,m) = cli)rgo h(py,c,m) =0.
Therefore, we can apply L’Hopital’s rule. We have by (A.12) and (A.13) that

. g _ . FDQQ(B??C77T)
cllzgo ’Y(ﬁlﬁcv 71') - cli{rolo DQh(ﬂf,C, 71')
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:Hm{ (A—mfle— B +mflc=B—BY)
emvoo | (1 —m) flc — B9) —n(1 —m) flc — B — BY)

1
(1—m)®(B] —c) +7P(B] + ] —¢) — (1 —7)P(c — B) — 7P(c — 5] — Bf)] } . (A14)

We evaluate the two terms in the product (A.14) separately. Dividing by f(c— 85 — 87) > 0, we

see that

(1—m)f(c—B§)
L-—m)flc—B) +nflc—B -8  TFeppy T7

w1 = fle—B) — (= mf(c— B —A)  TU-nfe Ay’

To evaluate the limit of (A.15), we first evaluate the limit of

(A.15)

fe=8D)  _ exp[-(1/2)(c— 897
fle—B— A7)~ ew[-(1/2)(c— By~ A1)
B exp[—(1/2)(¢? — 206 + (5)°)]
oxp [~ (1/2)(c? — 2e3g — 2¢B7 + (B3 + 2(555) + (F)2)]

= exp [—02/2+cﬂg —(B9)?/2

+ )2 — B — eBY + (B)%/2 + B3B8 + (B9)?/2]
= exp|—cfB{ + B3 B] + (87)?/2] = exp[BYB] + (B])?/2] exp[—cB]]. (A.16)

Taking the limit in (A.16), we obtain

o fle— D)
M e — BT - A7)

for A{ > 0. We now can evaluate the limit of (A.15):

= exp[367 + (5))/2) lim exp[—cf{] = 0

(1 —m)f(e—Bg) +mfle— 57— BY) — 1

csoom(l—m)flc—B) —n(l—m)flc—B3—B]) n(l-m) 1-7

Next, we compute the limit of the other term in the product (A.14):

Clggo (1—m)®(8] —c) + 7@ (8] + B — ¢)

— (=l 8 —nd(e— B~ B)] =~ -m) - m =L (A7

Combining (A.15) and (A.17), the limit (A.14) evaluates to

1 \?
lim ’y(ﬂf,c,ﬂ):( ) =1-m.

c—00 1—m
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It follows that the limit in ¢ of the asymptotic relative bias b is

: 9 1T g _
clggo b(Bf,c,m) =1 Chjg@’y(@,@, ) =T.

A corollary is that lim., b(8Y,¢,1/2) = 1/2.

A.7  Bayes-optimal decision boundary as a critical value of ~y

Let chayes = B3 + (1/2)37]. We show that ¢ = cpayes is a critical value of vy for 7 = 1/2 and given

B7, 1.e, Doy (B, cbayes, 1/2) = 0. Differentiating (A.11), the quotient rule implies that

D2[2g( % &) 1/2)]4h(ﬁf3 ¢, 1/2) - 29( f? ) 1/2)D2 [4h(5f7 ¢, 1/2)] )

DQ'Y(ﬁfvcv 1/2) = [4h(,8f o2 (A.18)
We have by (A.12) that
D2[29(BY, cbayes, 1/2)] = f(B7/2) — f(=B1/2) = f(B7/2) — f(B{/2) = 0. (A.19)

Similarly, we have by (A.13) that

Do[4h(BY, coayes, )] = [f(B7/2) + f(=B{/2)] [2(=57/2) + (] /2) — ®(B{/2) — ®(-pB7/2)] = 0.
(A.20)

Plugging in (A.20) and (A.19) to (A.18), we find that Do[v(3Y, chayes, 1/2)] = 0. Finally, because
b(B{,c,1/2) =1 —~(B{,¢,1/2),
it follows that

D, [b(ﬂi]7 Chayes 1/2)] = —Dy [’7(5]?7 Chayes 1/2)] =0.

A.8 Comparing Bayes-optimal decision boundary and large threshold

We compare the bias produced by setting the threshold to a large number to the bias produced

by setting the threshold to the Bayes-optimal decision boundary. Let r : R*® — R be the value
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of attenuation function evaluated at the Bayes-optimal decision boundary chayes = 53 + (1/2) 07,

i.e.

D(31/2) — B(~51/2)
(- B7/2) + 2(57/2)] [B(B1/2) + B(—F7/2)]
S, 8 p1/2 ,
- EEE AR e e ), DL

r(BY) = (81, 65 + (1/2)81,1/2) =

We set r to 1/2 and solve for S7:
r(B]) =1/2 <= 20(B{/2) —1=1/2 < ®(B{/2) =3/4 <= B =2071(3/4) ~ 1.35.

Because r is a strictly increasing function, it follows that 7(8{) < 1/2 for 5] < 2®~1(3/4) and

r(B7) > 1/2 for B¢ > 2071(3/4). Next, because

b(ﬂf? Cbayes> 1/2) =1- ’Y(Bfa Cbayes 1/2) =1- T(ﬁf)a

we have that b(87, cvayes, 1/2) > 1/2 for ] < 2071(3/4) and b(BY, chayes, 1/2) < 1/2 for
By > 2071(3/4). Recall that the bias induced by sending the threshold to infinity (as stated

in Proposition 5 and proven in Section A.6) is 1/2, i.e.
b(ﬂf& 00, 1/2) = 1/2

We conclude that b(3{, chayes, 1/2) > b(B7,00,1/2) on ] € [0,201(3/4)); b(BY, cvayes, 1/2) =

b(B],00,1/2) for ] = 2@1(3/4); and b(B{, chayess 1/2) < b(B7,00,1/2) on B € (2071(3/4), 00).

A9 Monotonicity in 57

We show that + is monotonically increasing in 8] for 7 = 1/2 and given threshold c¢. We begin
by stating and proving two lemmas. The first lemma establishes an inequality that will serve as

the basis for the proof.

LEMMA A.1 The following inequality holds:
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[D(55 — ) + @55 + B — )] - [2(55 + B — ) = B(BF — ¢) + ®(c = ) + (¢ — 55 — 47)]

> [(B5 + B] — ) = BB — )] [2(c — B7) + P(c— 57 — B (A.21)

Proof: We take cases on the sign on /7.

Case 1: B; < 0. Then B + (89 — ¢) < (8§ — ¢), implying ®( + A7 — ¢) < ®(F] — ¢), or
[@(88 + 8] — ¢) — ®(B] — ¢)] < 0. Moreover, [®(c — ) + ®(c — 85 — 47)] is positive. Therefore,
the right-hand side of (A.21) is negative.

Turning our attention of the left-hand side of (A.21), we see that
(B] + 7 — o)+ Blc— B —B1) =1-2(B] + 5] —¢) + B(c— 7 — f{) = L. (A.22)
Additionally, ®(8] — ¢) < 1 and ®(c — ) > 0. Combining these facts with (A.22), we find that
[D(BG + B = ¢) = (B — ) + ®(c = ) + B(c = B — )] > 0.

Finally, because [®(8§ — ¢) + ®(83 + B{ — ¢)] > 0, the entire left-hand side of (A.21) is positive.
The inequality holds for 3/ < 0.

Case 2: B; > 0. We will show that the first term on the LHS of (A.21) is greater than the first
term on the RHS of (A.21), and likewise that the second term on the LHS is greater than the
second term on the RHS, implying the truth of the inequality. Focusing on the first term, the

positivity of ®(8] — ¢) implies that (8§ — ¢) > —®(5] — ¢), and so

B — ) + D5+ 5 — ) > (5] — 5 — ) — B(GE — o).
Next, focusing on the second term, 37 > 0 implies that

Bl+ B8] —c2 Bl —c = (B + 5§ —c) = (8] —¢) 2 0. (A.23)
Adding ®(c — ) + ®(c — 8§ — 57) to both sides of (A.23) yields

(B + 65 — ) — (B — ) + P(c— ) + P(c— B7 — B]) = P(c— B7) + P(c— 65 — 7).
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The inequality holds for 57 > 0. Combining the cases, the inequality holds for all 8{ € R. [J

The second lemma establishes the derivatives of the functions 2 - g and 4 - h in /7.

LEMMA A.2 The derivatives in 8 of 2- g and 4 - h are

D, [29(6?707 1/2)] = f(ﬂ(g)] + Bg - C)u

Dy[4h(BY,¢,1/2)] = f(B7 + BT — c) [2(c = B7) + ®(c — 57 — B])]

—f(B3 + B8] — ) [®(B] — ¢) + 2(B] + B — o).

Proof: Apply FTC and product rule. [J

We are ready to prove the monotonicity of v in 7. Subtracting

(@85 — ) + (85 + B — )] [2(BF + B — ) — B(5] — ¢)]

from both sides of (A.21) and multiplying by f(8] + 8{ — ¢) > 0 yields

f(B3 + 87 = )[@(8] — ) + (8] + B — )] [2(c = 57) + (e — B — B7)]

> f(B) + B —c) [®(c = B7) + ®(c — B7 — BYIR(BF + B — ¢) — (5] — ¢)]

— (B0 + B — ) [2(BF — o) + 2(BF + B — )][(B + B — ) — 2(BF — o).

Next, recall that

QQ(ﬁfaC’ 1/2) = (I)(Bg + Bf - C) - Cb(ﬂg - C)'

and

4h(BY, ¢, 1/2) = [®(8] — ¢) + (8] + B — )] [®(c — B7) + (e — 57 — BY)].

Substituting (A.24, A.25, A.27, A.28) into (A.26) produces

D1[29(B7,¢,1/2)]4h(BY, ¢, 1/2) > 29(B{,c,1/2)D1[4h(BY, ¢, 1/2)],

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)



REFERENCES 49

or

D1[2g9(BY,¢,1/2)]4R(BY,¢,1/2) — 29(BY, ¢, 1/2)D1[4h(B],c,1/2)] > 0. (A.29)

The quotient rule implies that

D1[29(BY,¢,1/2)]4R(BY,¢,1/2) — 2g(BY, ¢, 1/2)D1[4h(B], ¢, 1/2)] .

Diy(BY,¢,1/2) = [4h(BY, e, 1/2)P?

(A.30)

We conclude by (A.29) and (A.30) that 7 is monotonically increasing in 7. Finally, b(57, ¢, 7) =

1 —7(BY,¢,m) is monotonically decreasing in (7.

A.10 Strict attenuation bias

We begin by computing the limit of v in 8Y given 7 = 1/2. First,

1-2(5] — o)
[1+ (55 — o) [@(c — 57)]

lim y(67,¢,1/2) =
B —oc0

B(c - BY) 1
1+ 83— Ol [@(c— B 1+ (5 — )

<1

Similarly,

~3(3 — ) I B
[@(85 — )] [®(c—B5) +1] 1+ (e —57)

lim ~(8Y,¢,1/2) =
By ——o0

The function (8, ¢,1/2, 35) is monotonically increasing in 37 (as stated in Proposition 3 and
proven in section A.9). It follows that

1 1

) <(B,¢,1/2,88) < -0 — 0o <l

-1<
for all 8{ € R. But 8§ and ¢ were chosen arbitrarily, and so
—1<A(B,¢1/2,67) <1
for all (37, ¢, 3§) € R3. Finally, because b(3{,c,1/2,55) =1 —~v(B7,¢,1/2,8]), it follows that
0<b(p],c,1/2,85) <2

for all (8Y,c,35) € R3
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A.11 Bias-variance decomposition in no-intercept model

We prove the bias-variance decomposition for the no-intercept version of (A.1). Define [ (for
“limit”) by

wT
=i ()

where
w=®(c— Bg) =P(By —c); ¢ =D(c) =D(—c).
‘We have that

Bm = Z?:l Pim; = Z?:l Pim 12?:1 ﬁzz _ Z?:l pi(m; — lﬁi>.

YL XL XL ima P}

Therefore,

A _ /) 3o pi(mi — Upy)
V(B —1) = (S 2 : (A.31)

Next, we compute the expectation and variance of p;(m; —Ip;). To do so, we first compute several

simpler quantities:

1. Expectation of p;: E[p;| = P(p;By + 7 = ¢) =P(By+7 = c)r +P(r; > ¢)(1 —7) =

7w+ (1 —7)C¢.

2. Expectation of p;p;: E [p;p;] = E [pi|lp; = 1] P[p; = 1] = wr.
3. Expectation of p;m;:

E[pimi] = E [pi(Bmpi + €)] = E [Bmpipi + picil

= BmE [pipi] + E[p|Ele;] = Brmwm + 0 = BrwT.

4. Expectation of p;m?:

E [pim7] = E [pi(Bmpi + €:)%] = E [pi (82,07 + 2Bmpiei + €})]

= E [pipiBy, + 2Bmpidic; + bie; | = B, Elpipi] + 26,mEpipi|Elei] + E[pi]E[€]]

= B2E[pip:] + E[p;] = BLwr + E[p;].
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Now, we can compute the expectation and variance of p;(m; — Ip;). First,

E [pi(m; — 1)) = Elpimi] — IE[p;] = B — (%) (=) +wr] = 0. (A32)

Additionally,
V [pi(mi — 1p:)] = E [ (mi — 1p:)?] — (B [pi(ms — 1p:)])*
=E [pim?] — 2E[mp;] + PE[p;] = B2,wr + E[p;] — 20Bmwr + I’E[p;]
= Bnwm(Bm — 21) + E[p:i](1 +1%). (A.33)
Therefore, by CLT, (A.32), and (A.33),
(1/v/n) > pilmi = 1p:) 5 N (0, B (B — 20) + Elpi] (1 + 12)) . (A.34)
=1
Next, by weak LLN,
(1/n) Zﬁ? = (1/n) Zﬁi = Elpi). (A.35)

Finally, by (A.31), (A.34), (A.35), and Slutsky’s Theorem,

~ d BmWﬂ-(Bm - 21) + E[ﬁl](l + ZZ)
n(Bm—1) SN0, 5 :
vl =1 = (0 (E[p:]) )

Thus, for large n € N, we have that

EBm] = V[Bm] = [Bmwn(Bm — 21) + E[p:](1 + 1%)] /[nE?[p;],

completing the bias-variance decomposition.

A.12  Bayes-optimal decision boundary for non-Gaussian mizture distributions and GLMs

We report the Bayes-optimal decision boundary for gRNA count distributions that are non-
Gaussian. First, consider a simple two-component Poisson mixture model with means o and gy

and mixing probability :
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p(k; pro, 1, ) = (L —7) f(k; po) + 7 f (ks 1),

where f(k;u) = (uFe=")/u! is a Poisson density. Suppose we draw an observation from this
distribution. The Bayes-optimal threshold for classifying the observation as having been drawn

from the first or second component is

fo — p1 + log(m) —log(1 — )

log(p0) — log(p1) (A.36)

Next, consider the slightly more complex Poisson mixture GLM:
9il(pi, 21, 05) ~ Pois(p;); (1) = Bo + Bipi + 7" 2 + oi,

where p; ~ Bern(r) is unobserved. Conditional on the covariates and offset, the mean of the
unperturbed component is u;(1) = 771(8y + 7% 2; + 0;), and that of the perturbed component
is (1) = 77 1(Bo + B1 + y''2 + 0;.) The Bayes-optimal threshold is obtained by plugging in
wi(1) for py and p;(0) for po in (A.36). To obtain a fixed gRNA assignment threshold across
cells, we compute the Bayes-optimal decision boundary for each cell and then take the average
across cells. The situation is similar for the negative binomial (with known size s) distribution;

the Bayes-optimal decision boundary in this case is

s [log(po + s) — log(p1 + s)] + log(m) — log(1 — )
log(po(p1 + 8)) — log(p1(po + 8))

B. ESTIMATION AND INFERENCE IN THE GLM-EIV MODEL
B.1 Detailed specification of the model

We provide a more precise and technical specification of the GLM-EIV model than provided
in the main text. Let #; = [1,p;, z:]7 € R? be the vector of covariates (including an intercept
term) for the ith cell. (We use the tilde as a reminder that the vector is partially unobserved.)

Let By = [B5 87, ym]T € RY and B, = [8], 57,747 € R? be the unknown coefficient vectors
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corresponding to the gene and gRNA expression models, respectively. Finally, let o™ and o be
the (possibly zero) offset terms for the gene and gRNA models; in practice, we typically set o
and of to the log-transformed library sizes (i.e., log(d") and log(d?), respectively).

We use a pair of GLMs to model the gene and gRNA expressions. Considering first the gene
expression model, let the ith linear component {7 of the model be I7* = (Z;, By) + 0l"". Next, let
the mean p* of the ith observation be 7, (") = I, where r,,, : R — R is a strictly increasing,
differentiable link function. Let ¢,, : R — R be the differentiable, cumulant-generating function of
the selected exponential family distribution. We can express the canonical parameter ;" in terms
of Y, and 1y, by ™ = ([¥,] 7 o rt) (") = hy (7). Finally, let ¢, : R — R be the carrying
density of the selected exponential family distribution. The density f,, of m; conditional on the
the canonical parameter 7; is fo, (m;n) = exp {mn™ — Y (M) + cm(m;) } . We implicitly set
the “scale” term (i.e., the a(¢) term in McCullagh and Nelder (1990), Eqn. 2.4, p. 28) to unity;
this slightly simplified model encompasses the most important distributions for our purposes,
including the Poisson, negative binomial, and Gaussian (with unit variance) distributions.

Let the terms 1Y,07, u?, n?, g, 74, hy and ¢, be defined in an analogous way for the gRNA

model, i.e. Y = (2, By) + 0f, ro(nd) =19,

and ) = ([, " or ) (1Y) = hy(lf). The density
fg of g; given the canonical parameter is f,(m;;n?) = exp {gin? — ¥y(n?) + ¢4(g:)} . Finally, the
unobserved variable p; is assumed to follow a Bernoulli distribution with mean 7 € (0,1/2]. Its

marginal density f, is given by f,(p;) = mP#(1 — 7)1 7Pi. The unknown parameters in the model

are 0 = [Bp, By, w7 € R2FL

B.2 Notation
We briefly introduce notation that we will use throughout. For j € {0,1}, let %;(j) = [1, 7, z]T
denote the value of Z; that results from setting p; to j. Next, let I7*(j), n(5), and p"(j)

be the values of I, n™, and ul", respectively, that result from setting p; to j, i.e., I/"(j) =
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(#(5), Bm) + 0™, 0 (j) = hm(I(5)), and p(j) = r,}(17(4)). Let the corresponding gRNA
quantities 17(4), nf(j), and p?(j) be defined analogously. Next, let X € R"*(4=1) he the observed

design matrix, and let X € R"*? be the augmented design matrix that results from concatenating

the column of (unobserved) p;s to X, i.e.

1 z1 1 P1 Z1 i‘,{
X = - X = =|:
1 =z, 1 pn 2zn fz

Furthermore, for j € {0,1}, let X(j) € R"*? be the matrix that results from setting p; to j
for all i € {1,...,n} in X, and let [X(0)7, X(1)7]” denote the R>"*? matrix that results from
vertically concatenating X (0) and X (1). Furthermore, define m := [my,...,m,], and let g, p,

m

o™, and 09 be defined analogously. Finally, let [m, m]T € R?" be the vector that results from

T

concatenating m to itself, i.e. [m,m|T = [my,...,mu, m1,...,m,], and let [g,9]7, [07, 09T, and

[0™,0™]T be defined similarly.

B.3  Log likelihood and estimation

We conduct estimation and inference conditional on the library sizes and technical factors 1™, 17,
and z;; therefore, we treat these quantities as fixed constants. We assume that the gene expression

m; and gRNA expression g; are conditionally independent given the perturbation p;. The model

log-likelihood is

L(B;m, g) =D log[(1 =) fon(mi; ni"(0)) fy (933 0¥ (0)) + 7 fon (s i (1)) fy(gismf (1))] . (B.1)
i=1

We see from (B.1) that the GLM-EIV model is equivalent to a two-component mixture of products

of GLM densities. We estimate the parameters of the GLM-EIV model using an EM algorithm.

E step The E step entails computing the membership probability of each cell. Let () =
( 7(,?, ét),w(t)) be the parameter estimate at the ¢-th iteration of the algorithm. For k € {0,1},

let [ (k)] be the ith canonical parameter at the ¢-th iteration of the algorithm of the gene ex-
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pression distribution that results from setting p; to k, i.e. [n7*(k)]®) = Ay, ((il(k), 7(72)> + olm) .
Similarly, let [nig(k)](t) be defined by [nf(k)](t) = hy ((fz(k‘), ét)> —1—0?) . Next, for k € {0,1},

define a? (k) by

agt)(k) =P (Mz =m;,G; = gi|P; = k’e(t))
=P (Mi =m;|P; =k, e(t)) P (Gi = 9| P =k, H(t)> (because Gy LLM;|P;)
= o (mss " 9] ©) o (00t Inf 1))

Finally, let 7 (1) = 7 = P (P, =1/0®) and 7 (0) = 1 — 7 = P (P, = 0/®). The ith

membership probability Ti(t) (1) is

(1)l (1
TV (1) = P(P = 1|M; = my, G; = g;,00) = (e (1) (by Bayes rule)
! L (b ()
Zk:o 7 (k)e;” (k)
1 1 1
= = = B.2)
= (0)a:(0) ROTOIG . »
71'(’”)(1)(17:(1) + 1 exp (lOg <7ﬂ(t)glgaiglg)) + 1 exp (qz( )> —+ 1
where we set
700 aw 0
¢ = log ) zt)( ) (B.3)
7 (1)e;” (1)

Next, we have that

ol =10g [7©(0)] +10g [ (i3 10" (0)] V) | +10g [ £, (953 107 (0)] )]

—tog [7O(1)] = 1og [ fun (mas " (1])] = 10g [ £, (95 (1)]“)].

We therefore conclude that Ti(t) =1/ (exp (qi(t)> + 1) , which is easily computable.

M step

The complete-data log-likelihood of the GLM-EIV model is

L(6;m, g,p) =Y [pilog(m) + (1 = p;)log(1 = m)] + Y log (fm(misnf™)) + > log (fy(gs 1)) -
=1 =1 =1
(B.4)
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Define Q (6|0 = E(P\M:m,G:g,am) [£(0;m,g,p)]. We have that

QUI0™) =3~ [T (1) log(m) + 7" (0) log (1 — )]

+ 3 Y T R) log [fmas " (k)] + 30 DT (k) log [ £y (giin? (k)] . (B.5)

k=0 1=1 k=0 1=1

The three terms of (B.5) are functions of different parameters: the first is a function of =, the
second is a function of 3,,, and the third is a function of 8,. Therefore, to find the maximizer
O+ of (B.5), we maximize the three terms separately. Differentiating the first term with respect

to w, we find that

- n (t) n )
% > [Ti(t)(l)log(ﬂ +T17(0) log(1 — w)} - Zizl?‘ @ _ Zi:lliriﬂ- (0)

i=1

Setting the derivative equal to 0 and solving for T,

n (t) n (t) n n n
Zz‘:lTi (1) _ Zi:lTi (0) — 0 e ZTi(t)(l) _ WZTi(t)(l) _ WZTz(O)

s 1—m . , ,
=1 1=1 =1

3 3 - DRIt
<= ZTi(t)(l)—wZTi(t)(l):ﬂ-n_ﬂZTi(l) — o= Li=l7i \1)
i=1 i=1 i=1

Thus, the maximizer 7Y of (B.5) in 7 is #(*+1) = (1/n) >0, Ti(t)(l). Next, define w®) =
[Tl(t) 0), ... T (0), Tl(t) (1),... T (1)]T € R?"™. We can view the second term of (B.5) as the log-
likelihood of a GLM — call it GLMS;? — that has exponential family density f,,, link function r,,,

responses [m, m]”, offsets [0, 0™]T, weights w®, and design matrix [X (0)7, X (1)T]T. Therefore,

the maximizer B of the second term of (B.5) is the maximizer of GLMm), which we can
compute using the iteratively reweighted least squares (IRLS) procedure, as implemented in R’s
GLM function. Similarly, the maximizer ,BétJFl) of the third term of (B.5) is the maximizer of

the GLM with exponential family density f,, link function ry, responses [g, g7, offsets [09, 09]7,

weights w(®), and design matrix [X (0)7, X (1)7]7.
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B.4 Inference

We derive the asymptotic observed information matrix of the GLM-EIV log likelihood, enabling
us to perform inference on the parameters. First, we define some notation. For i € {1,...,n},

j € 40,1}, and 6 = (7, B, By), let T?(j) be defined by
T7 (j) = Py (P; = j|M; = mi, Gi = gi).

Let the nxn matrix T?(j) be given by T?(j) = diag {T{(j),...,TZ(j)} . Next, define the diagonal
n X n matrices A™, [A']™ V™ and H™ by

A™ = diag{h;n(l;n), R h;n(l:zn)}
(A = ding (B, () ..., A ()}
V™ = diag{y! (n), ..., (nm)}

= diag{mi — pi*,...,my — '}

Define the n x n matrices A9, [A’]9, V9, and HY analogously. These matrices are unobserved, as
they depend on {p1, ..., pn }. Next, for j € {0, 1}, let the diagonal nxn matrices A™(j), [A']™(5), V™ (5),

and H™(j) be given by

A™(j) = diag{hy,,(I7*(5)), - - -, hon (17 (5))}
[AT™(5) = diag{hy, (17" (7)), -~ (57 (5))}
Vm(j) = diag{vy, (07" (1)) - - -, Y (07 (5))}

H™(j) = diag{my — p"(§), .., ma — " (7)}-
Define the matrices A9(j), [A']9(5), V9(j), and HI(j) analogously. Finally, define the vectors
s™ (), w™(j) € R™ by
{mmzmrwwwwm—wmv
w™(j) = [T (0) T (AT () HT (5, - -, Tu(0) T (AT () HI ()]

and let the vectors s9(j) and w9(j) be defined analogously. The quantities A™(5), [A']™(5), V™ ()),
H™(5), s™(5), w™(4), A2(5), [A]9(), VI(4), HI(j), s7(j), and w?(j) are all observed.

The observed information matrix J(0;m, g) evaluated at 8 = (m, B,,, B4) is the negative Hes-
sian of the log likelihood (B.1) evaluated at 6, i.e. J(0;m,g) = —V2L(0;m,g). This quantity,

unfortunately, is hard to compute, as the log likelihood (B.1) is a complicated mixture. Louis
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(1982) showed that J(6;m, g) is equivalent to the following quantity:

J(O;m,g) = —E [V2£(9;m,g,p)|G =g, M = m]
+RE[VL(O:m, g,p)|G = g, M = m|E[VL(O;m,g,p)|G = g,M =m]"

—E [VL(0;m,9,p)VL(O;m,g,p)" |G =g, M =m]. (B.6)

The observed information matrix J(#;m,g) has dimension (2d + 1) x (2d 4+ 1). Recall that the
complete-data log-likelihood (B.4) is the sum of three terms. The first term depends only on
m, the second on f3,,, and the third on ;. Therefore, the observed information matrix can be
viewed as block matrix consisting of nine submatrices (Figure 8; only six submatrices labelled).
Submatrix I depends on 7, submatrix II on f3,,, submatrix III on §,4, submatrix IV on 3,, and
Bg, submatrix V on 7 and f,,, and submatrix VI on 7 and 3,. We only need to compute these
six submatrices to compute the entire matrix, as the matrix is symmetric. The following sections
derive formulas for submatrices I-VI. All expectations are understood to be conditional on m and
g- The notation V, and V2 represent the gradient and Hessian, respectively, with respect to the

vector v.

Submatriz I Denote submatrix I by J;(6;m, g). The formula for J.(0;m,g) is
Jn(03m, g) = —E [V2L(0;m, 9,p)] + (E[VAL(0;m,9,p)])* — E[(V.L(0;m, g,p))*].  (B.T)

We begin by calculating the first and second derivatives of the log-likelihood £ with respect

to m. The first derivative is

VaL(0;m,g,p) = % (Zpi log(m) + Z(l = pi)log(1 — W))
o 2imapi 2 (=pi) X p n— 3P (1 L1 )Zn:pi _ " By

T 1—m o T 1—m T l1—m -7

The second derivative is
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Fig. 8. Block structure of the observed information matrix J(6;m,g) = —V2£(#;m,g). The matrix is
symmetric, and so we only need to compute submatrices I-VI to compute the entire matrix.

V2L(0;m,g,p) = 372
T ) ) b 627'['

21 Pi _n- Dict pi> _ (XCiipi) — 7 _ 2 1Pi

v 1—m (1—m)? 2

We compute the expectation of the first term of (B.7):

E [-V2L(0;m,g,p)] = —E {(Z?_lpi) o Z?_lpl}

(1 —m)2 w2

:_E{{u-w }ZP P }:‘{{M‘Him”‘ﬂ—%}

Next, we compute the difference of the second two pieces of (B.7). To this end, define a =
1/(1=m)+1/7m and b=n/(1 — 7). We have that

n 2 n
[V E(Gmgp (asz—b> =F |a® (Zm) —2ab2pi+b2
i=1

i=1

=a>) > Elpip;] — 2ab Z E[p;] + b%.

i=1 j=1

n 2 n n n
(E[VLL(0;m,g,2)])° = (aZE[pi} - b) =a>y > E[pi]E[p;] - 2aby_Elp] + .

i=1 j=1 i=1
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Therefore,

(E[VAL(0;m,g,p)])?> — E [V.L(6;m,g,p)?]

n n

Y S BB - oSS Elpiny] — (zm w)
i=1 j=1 i=1 j=1
2 - 0 2 0 1 1 2 - 0 2 0
=a (Zm WP - <1>) = (u_ﬁ)n) (Zm ] ml)). (B.10)
i=1 =1

Stringing (B.7), (B.9) and (B.10) together, we obtain

Jﬂ(o;mvg) = |:71:'I-2 - (1_171_)2:| Z,‘Tﬁ(]‘) + (1 . 77)2

1 1N’ (& -
+<(1—7T)+7r) (Z[Ti ol Ti<1)>- (B.11)

i=1

Submatriz II Denote submatrix II by Jgm (6; m, g). The formula for Jgm (8;m, g) is

Jgm (0;m, g) = —E [V L(0;m, g,p)]
E[VgnL(0;m,9.p)|E [V L(0:m,g,p)]" —E [VanL(0:m,g,p)VenL(O;m, g.p)"]. (B.12)

Standard GLM results imply that —V%mE(G; m,g,p) = XT(A™V™A™—[A]"H™)X and VgmL(O;m, g,p) =

XTA™s™ We compute the first term of (B.12). The (k,[)th entry of this matrix is

(E [~V L(0;m, g,p)]) [k, 1] = E {X[, KT (A™V™mA™ — A H™X], z]}

=Y E{&i k(AT VAT — (AP HT )z}

= Zii,k(O)Tf(O)[AT(O)W‘(O)A?(O) — [AT(0)H}™(0)]:,1(0)
+ Y (DT (DA LV (AP (1) — [A (1) H™ (1)) (1)
i=1
=D XG)LKTT(s) [A™ (VT (5)A™ (5) — [A]™ () H™ ()] X ()], 1.

s=0

We therefore have that
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E [fvﬁm (0;m, 9,p)] Z $)TTO(s) [A™(s)V™(s)A™(s) — [A']™(s)H™(s)] X (s). (B.13)

s=0

Next, we compute the difference of the last two terms of (B.12). The (k,!)th entry is
[]E [V gm L(6;m. 9, )| E[V gm L(6;m, g,p)]"
—-E [ngﬁ(ﬁ, m, g,p)ngE(O, m, g7p)T] :| [ka l]
~ ~ T ~ ~
- [IEJ TAmsm} E [XTA’"S’"] } [k,]] —E [XTA%M(ST")TAWX} [k, ]

|
—E [X[, k]TMsm} E [X[, Z]TAmsm} ) [X[, KT A™s™ (5T A™ X, Z]}

=FE . jikA;nS;n> (Z Tj1Af"s m) (izn:jlkA:nS:nS;nAgnjﬂ)

i=1 =1 j=1
=Y ElEAls|E[FA)s ZZszkA:"s:"s;"Amxﬂ]
i=1 j=1 i=1 j=1
=3 > E[@uAlsE (23 A7) = Y ElE A E[s] ATE)]
i=1 j=1 i#j
—ZE T AT STV AT 4]
=Y EEaAl"sE[EA]S]] = Y ElEa (A7) (H") &
=1 =1
= [#r(0)AT(O)T (0)H[™(0) + & (AT ()T (1) H" (1))
=1

- [Za(0)AT(0)T7 (0)H (0) + & (AT ()TY (1) HI" (1))

—Z (2 (0)T7 (0)(AF(0)* (H}™(0))* & (0) + &ax (1) T7 (1) (AT (1)) (H™ (1) " & (1)]

Z Tar(s)T7 () AT () H™ (T (4) AT () H]™ ()T (t)]

-2 lz jik(S)Tf)(5)(Al'n(5))2(15@7”(5))25@1(8)]
=0

= X(s)[ KITTO(s)(A™ ())*(H™ (5))* X (s)L. 1]

s=0
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The sum of the last two terms on the right-hand side of (B.12) is therefore

E [V £(0;m, g, )| E [V L(0;m, g,p)]" —E [Vgm L(0;m, g,p)V gn L(0;m, g,p)7]

=" X()TT(s)A™ () H™ (s)T7 (1) A™ (£) H™ () X (1)
s=0 t=0

=Y X ()T (s)(A™(5)*(H™(5))* X (s).  (B.14)

s=0
Combining (B.12), (B.13), (B.14), we find that

1
Tam(B5m.g) = 37 X ()T (s) [A™ ()™ () A™ () — [A]™ () H™ (5)] X (s)

s=0

1 1

=Y X ()T (s)(A™(5)*(H™(5))* X (5).  (B.15)
5=0

Submatriz III Denote submatrix III by Jgs (0; m, g). The formula for sub-matrix III is similar to

that of sub-matrix II (B.15). Substituting g for m in this equation yields

1 ~ ~
Tpa(O5m, 9) =D X ()T () [AY(s)V9(s) A9 () — [A)? (s)H(5)] X (s)
s=0
11 }
+ 30N X ()T (s) A () HO (5)T (1) A9 (£) HO (1) X (£)

s=0 t=0
= X(s)TT(s)(A9(5))*(H(s))* X (5). (B.16)

s=0

Submatriz IV Denote sub-matrix IV by J(gs gm)(0;m, g). The formula for Jigs gm)(0;m, g) is

J(ga pmy(0;m, g) = E[=V sV gm L(0;m, g, p)]

E [V £(0;m, 9. p)|E [V gn L(0;m, g,p)]" — E [V L£(0;m, 9,p)Vn L(O;m, g,p)"] . (B.17)

First, we have that

E[=VgsVgm L(0;m, g,p)] = 0, (B.18)



REFERENCES 63

as differentiating £ with respect to 89 yields a vector that is a function of 59, and differentiating
this vector with respect to 8™ yields 0. Next, recall from GLM theory that VgsL(0;m,g,p) =

XTA9s9 and Vgm L(0;m, g,p) = XTA™s™. The (k,1)th entry of the last two terms of (B.17) is

[E (V50 £(6; 1, 6, D) E [V L£(6;m, ,)]”
B[V 0 £(0:m. 9. )V s L£(0: . 9,p)] ] k.1
E [XTAgsg [XTA’"S’"} T} [k,]] - E [XTAgsg(sm)TAmX} [k, ]

—E [X[ ]TAgsg} E [X[, Z]TAmsm} ) [X*[, KT A959(s™)TA™X], l]}

=E (Z EixAs ‘7> E (Z gzle;."s;") -E ZZ@@%%;?IA;”@)
i=1 j= i=1 j=1
= ZZ]ExzkA s{JE[Z AT s]'] — Z E[Zi A s s AT 2 5]
i=1 j=1 i=1j=1
:ZZ]E[:EMA?S?] leA sy Z]ExlkA sd .Z‘JlA s’ ™
i=1 j=1 i#£]
— Z [T A sT STV AT 2]
i=1
= Y ElixAVH|E[F, AT H = Y E[#H AIAT H )
i=1 i=1
=D [#(0)AY(0)T (0)HY (0) + Zir()AY ()TY (1) HY (1)]
i=1

- [2a(0)AT(0)T7 (0)H™(0) + Za (DA (D)TY (1) H" (1)]
—Z[iik(O)Tf(O) 1 (0)H] (0) A" (0)H}™(0)Z:(0)
+ ()T (DA (1) HY (1) AT (1) H (1)@a(1)]

= ZZ l Fa(s)TY ()] () HY ()T (A () HI™ (8) Ea(t )]
1 n
- lzjik(S)Tf(S)Af(s)Hf(s)AT(S)HZ"(S)%(8)1
s=0 Li=1

=33 [K@LKTT () (s) H ()T () A™ () H™ () X (1) U]
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Z[ KT (s) A9 (s)HO(s)A™ (s)H™ ()X, [](s)| . (B.19)

s=0

Combining (B.17), (B.18), and (B.19) produces

Jigo gy (O3m, g) =Y Y X(s)TT(s)AY(s)HO ()T (t) A™ () H™ () X (t)
s=0 t=0
= X(s)"T?(s)A(s)HY (5)A™(s) H™(s) X (). (B.20)

s=0

Submatriz V' Denote submatrix V by Jigm r)(6;m, g). The formula for Jigm ) (0;m,g) is
J(,Bm,ﬂ') (9, m, g) =K [_vﬂm vﬂ"a(gv m, gvp)]
We have that
E[=VgnV=L(0;m,g,p)] =0, (B.22)

as 0™ and 7 separate in the log likelihood. Next, set a = 1/ + 1/(1 — 7) and b = n/(1 — x).
Recall from GLM theory that Vgm £(0;m,g,p) = XTA™s™ and from (B.8) that a >, p; — b.

The kth entry of the last two terms of (B.21) is

E[VzL(0;m, g, p)|E[VanL(0;m, g, p)[k]] — E[V<L(0;m, g, p)Vm L(0;m, g, p)[k]]

R

- <QZE[p —b) (imakm m) ~E [(asz—b> (i@m%?ﬂ

zaiZEpz E[Z;, AT s —bZEa:]kA 7]

i=1 j=1 J=1

S

n

_ [(L ZELP xgkAm m _ bZE[.i‘jkA}”S}”]

i—1 j=1

Il
—
.
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- aim[pim[mﬂsm - aiE[pimA%T]
azn;Tfu)[T;’(O)Ar(O)sr(O)m(oHT% JAT(1)s7" (1) Fn (1 GZTO DAT @) (1)2(1)
= o T O (DAL O H (0)74 (0

+a) ([T PAT ) H™ (1) — T ()AT (1) H™(1)) Z(1)
=1

n

=a |y _ T(0)T)(1)A7(0)H;" (0)Z:x(0) +iT9 (WA (1) H™ (1 )[Tf(l)lmwl
—a iTﬁ YT (1) AT (0)HY" (0).4(0 ZT AP E (1 mu)]

Combining (B.21), (B.22), and (B.23), we conclude that

1
1—7m

T @i g.p) = (3 + 122 ) (RO © - XTum ). (B20)

Submatriz VI Denote submatrix VI by J(gs )(0;m, g). Calculations similar to those for subma-

trix V show that

1 1
Jigs ) (05m, g,p) = ( +

T l1—m

) (f((o)ng(o) - X(1)ng(1)) . (B.25)

Combining submatrices To summarize, the formulas for submatrices I-VI are as follows:

I

II

Tom(B:m,9) =D X (s)TT(s) [A™(s)V"™ () A" (s) — [A]" () H™ (5)] X (s)
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+ 35" X ()T (5)A™ (s) H™ ()T () A™ (8) H™ (£) X (1)

=) X ()T (s)(A™()*(H™())* X (s).

s=0
11T
1
Tga(0;m,g) =Y X(s)"T%(s) [A%(s)V(s)AY(s) — [A]7(s) HY (5)] X (s)
s=0
1 1
+ DX ()T (s) A () H (5)TO (£) A9 (1) HO () X (1)
s=0 t=0
1
=X ()T (5)(A9(5))* (HY(5))* X (s).
s=0
1\Y
Jgo gy (O5m, 9) =Y Y X (8)TT(s)A9(s)HO ()T (1) A™ () H™ () X (t)
s=0 t=0
= X(s)TT(s)AY(s)H (s)A™ () H™ (5) X (s).
s=0
\%
1 1 ~ T, m ~ T, m
T (0, 9,7) ( +1_ﬂ) (£ (0) ~ K1) w (1))
VI
1 1 T ST
anmyBsmog) = (7 + 72 ) (KO)Twr(0) = X(1)Twr(1))

We stitch these pieces together and transpose submatrices IV, V, and VI to produce the whole

9EM

information matrix J(0;m,g). Evaluating this matrix at the EM estimate and inverting

yields the asymptotic covariance matrix, which we can use to compute standard errors.

B.5 Implementation

To evaluate the observed information matrix, we need to compute the matrices A™(5), [A']™(j),

V™(j), and H™(j) and the vectors s"(j) and w™(j) for j € {0,1}. We likewise need to compute
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the analogous gRNA quantities. The procedure that we propose for this purpose is general, but

for concreteness, we describe how to implement this procedure using the glm function in R by

m
7 0

extending base family objects. We implicitly condition on p;, 2}, and o".

An R family object contains several functions, including linkinv, variance, and mu.eta.

1

linkinv is the inverse link function r,*. variance takes as an argument the mean ;" of the ith

. . . . . . . . — 4
example and returns its variance [07']%. mu. eta is the derivative of the inverse link function [r,,!] .

We extend the R family object by adding two additional functions: skewness and mu.eta.prime.
skewness returns the skewness 7] of the distribution as a function of the mean y;, i.e.

a;

my 3
skewness (i;) = E l(W) ] ="

Finally, mu.eta.prime is the second derivative of the inverse link function [r;,']”. Algorithm 2

computes the matrices A™(5), [A']™(4), V™(j), and H™(j) and vector s™(j) for given £, and
given family object. (The vector w™(j) can be computed in terms of A™(j) and H™(j).) We use

g

™(4) (resp. v™(4)) to refer to the standard deviation (resp. skewness) of the gene expression

distribution the ith cell when the perturbation p; is set to j.
All steps of the algorithm are obvious except the calculation of hl, (1*(4)) (line 6), h” (17*(j))
(line 9), and V;™(j) (line 12). We omit the (j) notation for compactness. First, we prove the

correctness of the expression for h/, (I7*). Recall the basic GLM identities

Um0 = [07")? (B.26)
and, for all ¢t € R,
Tt (8) = Up (hin (1)) (B.27)

Differentiating (B.27) in ¢, we find that

T,fl !
() (£) = W0 (D) (1) = B (1) = ~m V(D) (B.28)
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Table 1. linkinv, variance, mu.eta, skewness, mu.eta.prime for common family objects (i.e., pairs of
distributions and link functions).

Gaussian response, Poisson response, log NB response
identity link link (s > 0 fixed),
log link
linkinv x exp(z) exp(z)
variance x x x4+ 22/s
mu.eta 1 x exp(x)
skewness 0 x~1/? ;L\/;?
mu.eta.prime 0 exp(x) exp(x)

Finally, plugging in I[" for ¢,

o GEY) Ry (rY (1)
M) = G i) — gy Y B20) e

K3

Next, we prove the correctness for the expression for h} (II*). Recall the exponential family

identity
U (") = i (07", (B.29)
Differentiating (B.28) in ¢, we obtain

()" (&) = " (o () [P (D)

—1\/ g / 2 " " " _
(ryn )" (8) = Wy (han (0)) [Py (D))" +4r, (o () ) P, (8) = B, (8) = o o)

Plugging in [[* for ¢, we find that

B () = (ro)" (") = e () [, 1P (by B.29) ()" (15") = (o)) 2 () e (B )]

Finally, the expression for V;* follows from (B.26). We can apply a similar algorithm to compute
the analogous matrices for the gRNA modality. Table 1 shows the linkinv, variance, mu.eta,
skewness, and mu.eta.prime functions for several common family objects (which are defined by

a distribution and link function).
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Algorithm 2 Computing the matrices A™(5), [A']™(5), V™(j), H™(j), and s™(j) given

given f,,.
Input: A coefficient vector B,,; data [my,...,my,], [o]*,...,0™], and [z1,...,2,]; and a family

object containing functions 1inkinv, variance, mu.eta, mu.eta.prime, and skewness.
for j € {0,1} do
forie{1,...,n} do
3: 17(5) < (Bm, Ti(4)) + of"
pi* () = linkinv((7"(5))
m

[0}

(j))? ¢ variance(uf"(j))
6 H (17(5) - m.eta(l? (7)) /o7 ()2
7(j) « skewness(ul" (j)

[rnl]7(I(j))  mu. eta.prime (" (j))

m

9:
B (5)) [r" ) — [([U?[(UJ;@;/;][Vr(j)][hin(l?(j))]Q
> Assign quantities to matrices
AT () = b (17 (7))
[AT]7(5) < B (1" (5))
12: Vir(§) < Lo ()2

H"(5) < s7(3) < my — " (5)
end for

15: end for
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C. STATISTICAL ACCELERATIONS AND COMPUTING
C.1 Statistical accelerations

We describe in detail the procedure for obtaining the pilot parameter estimates (7rpﬂ°t, 6}21‘”, Bg“‘)t).
This procedure consists of two subroutines, which we label Algorithm 3 and Algorithm 4. The first
step (Algorithm 3) is to obtain good parameter estimates for [35", v,,]” and [8§, 7,7 via regres-
sion. Recall that the underlying gene expression parameter vector S, is By, = [B5%, 87, vm]|T € RY,
where 37" is the intercept, 37" is the effect of the perturbation, and +7, is the effect of the technical
factors. To produce estimates [35]P1°% and [y ]P!°t we regress the gene expressions m onto the
technical factors X. The intuition for this procedure is as follows: the probability of perturbation
7 is very small. Therefore, the true log likelihood is approximately equal to the log likelihood

that results from omitting p; from the model:

> Fnmsn™) = > fon(mis b (Bo + b1+ zi + o] Z Fon (M5 B (Bo + 7" 21 + o))
=1

:pi=1 P =

few terms many terms

Z mm 50+7 Zi + 0; ))

We similarly can obtain pilot estimates [3]]P1°* and (Vg Tpilot by regressing the gRNA counts g
onto the technical factors X. We extract the fitted values (on the scale of the linear component)
for use in a subsequent step: f¥ = [B5]P10 4 ([yF Pt 2;) 4 o, for k € {m, g}.

Next, we obtain estimates |3 ]Pllot | [37]Pilot and wPlet for B 37 and 7 by fitting a “reduced”
GLM-EIV (Algorithm 4). The log likelihood of the no-intercept, univariate GLM with predictor

p; and offset f[” is approximately equal to the true log likelihood:

Y Fn(masn) =D fn(mis hon(Bo + B1pi + 77 2+ 01") & fon(mii hn(Bipi + fi).
=1 =1 =1

Therefore, to estimate 7", 87, and m, we fit a GLM-EIV model with gene expressions m,

gRNA counts g, gene offsets f™ := [fi*,..., f™]T, gRNA offsets f9 := [f,..., f9]7, and no
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Algorithm 3 Computing [B§"]P", [y, [P, [B5]P"°, and [ ]P"o .

Input: Data m, g, 0™, 09, and X; gene expression distribution f,,, and link function r,,; gRNA

expression distribution f; and link function ry; number of EM starts B.
for k € {m,g} do

2: Fit a GLM GLMj,, with responses k, offsets 0¥, design matrix X, distribution f}, and link
function 7.
Set [BF]Piet and [y7]PIt to the fitted coefficients of GLMj.

4: forie {1,...,n} do
fik <« [BEpilet 4 ([yT]Pilot ;) + o > untransformed fitted values
6: end for

end for

8. return ([ﬂan}pilot, fm7 [,YTY;L]pilot’ [ﬂg}pilot, [,Yg“}pilot, fg)

intercept or covariate terms. Intuitively, we “encode” all information about technical factors,
library sizes, and baseline expression levels into fm and fg . We run the algorithm B =~ 15 times
over randomly-selected starting values for 8, 89, and w and select the solution with greatest
the log likelihood.

The M step of the reduced GLM-EIV algorithm requires fitting two no-intercept, univariate
GLMs with offsets. We derive analytic formulas for the MLEs of these GLMs in the three most
important cases: Gaussian response with identity link, Poisson response with log link, and negative
binomial response with log link (see section C.2; the latter formula is asymptotically exact).
Consequently, we do not need to run the relatively slow IRLS procedure to carry out the M step
of the reduced GLM-EIV algorithm. Overall, the proposed method for obtaining the full set of

pilot parameter estimates requires fitting only two GLMs (via IRLS).
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Algorithm 4 Computing 7Pilot, [gm]pilet [gm]pilot,
Input: Data m, g; fitted offsets f’”, fg.

bestLik < —o0 > Reduced GLM-EIV
2: for i € {1,...,B} do

Randomly generate starting parameters ¢, [37]°Wr, [B7]CWr.

4: while Not converged do
forie {1,...,n} do > E step
6: Ti(l) — P(R — I‘Mi =m,, Gi = gi, 7.‘.cun’ [ﬁi}}curr7 [ﬁin]curr)

8: end for
7T (1/n) > T;(1) > M step
10 w 4 [T1(0), T5(0), ..., T(0), T (1), To(1), . .., Tu(1)]"

for k € {g,m} do

12: Fit no-intercept, univariate GLM GLM}, with predictors [0,...,0,1,...,1], re-

sponses [k, k|7, offsets [f¥, f¥]T, and weights w.
Set [BF]eWT to fitted coefficient of GL M.

14: end for

Compute log likelihood currLik using 7% [37*]°**  and [8]]°".
16: end while

if currLik > bestLik then

18: bestLik <— currLik

qpilot . e, [B{n]pilot — [ﬁin]curr; [Bﬂpilot . [ﬁf]curr
20: end if

end for

22: return (WPilOt, [ﬁ’f"b]Pilot7 [5f]pilot)
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C.2 Intercept-plus-offset models

A key step in the algorithm for computing the pilot parameter estimates (Algorithm 4) is to
fit a weighted, no-intercept, univariate GLM with nonzero offset terms and a binary predictor
variable. We derive an analytic formula for the MLE of this GLM for three important pairs
of response distributions and link functions: Gaussian response with identity link, Poisson re-
sponse with log link, and negative binomial response with log link. The GLM that we seek

to estimate has responses [m,m]T, predictors [0,...,0,1,...,1], offsets [f™, f™], and weights
—— ——

n n

w = [T1(0),...,T,(0),T1(1),...,T,(1)]F. Throughout, C' denotes a universal constant. The log

likelihood of this GLM is

£(B1m) = S TO) fn (s (B + 7)) + 3 To1) o (s o (F7))

i=1 =1

- ZTz(l)fm(mw hm(ﬁl + fzm)) + C. (Cl)

Thus, finding the MLE Bl is equivalent to estimating a GLM with intercept 1, offsets fm, weights
T;(1), and no covariate terms. We term such a GLM a intercept-plus-offset model. Below, we study

intercept-plus-offset models in generality.

General formulation Let f € R be an unknown constant. Let o1,...,0, ~ P1, where P; is a
distribution. Let Y;|o,, . .., Y, |o; be exponential family-distributed random variables with identity
sufficient statistic. Suppose the mean p; of Y;|o; is given by r(u;) = 5+ 0;, where r : R - R is a
strictly increasing, differentiable link function. We call this model the intercept-plus-offset model.

We derive the (weighted) log likelihood of this model. Let wy, . .., w, ~ P> be weights, where
Ps is a distribution bounded above by 1 and below by 0. (A special case, which corresponds to
no weights, is w; = 1 for all ¢ € {1,...,n}.) Throughout, we assume that y;w; and exp(o;)w;
have finite first moment. Suppose the cumulant-generating function and carrying density of the

exponential family distribution are ¢ : R — R and ¢ : R — R, respectively. The canonical
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parameter 7; of the ith observation is

ni= (W] or™)(B+0i) = h(B +03), (C.2)

and the density f of Yi|n; is f(yi;m:) = exp{yin; — ¥ (n;) + ¢(y;)}. The weighted log likelihood is

L(Bsyi) = Zwi log [f(yismi)] = C+ > wiyimi — ¥(ns)- (C.3)

i=1

Our goal is to find the weighted MLE B of 5. We consider three important choices for the
exponential family distribution and link function. In the first two cases — Gaussian distribution
with identity link and Poisson distribution with log link — we find the finite-sample maximizer of
(C.3); by contrast, in the third case — negative binomial distribution with log link — we find an

asymptotically eract maximizer.

Gaussian First, consider a Gaussian response distribution and identity link function r(u) = p.

The cumulant-generating function 1 is 1 (n) = n?/2, and so, by (C.2),

Plugging n; = h(8+ 0;) = B+ 0; and ¥(n;) = (1/2)(B + 0;)? into (C.3), we obtain

n

L(Bsy) = wi(yi(B+0i) — (B+0i)*/2).

i=1
The derivative of this expression in § is
OL(Bsy - - -
éﬁ ) = sz(yl —B—o0i)= Zwl(yl —0;) *5210@
i=1 i=1 i=1

Setting this quantity to 0 and solving for 3, we find that the MLE Bga“s is

Bgauss _ Z?:1 (%) (yz — Oi)

Dlimy Wi
Poisson Next, consider a Poisson response distribution and log link function r(u) = log(u). The

cumulant-generating function 1 is ¢(n) = e”. Therefore, by (C.2),

h(t) =[] (1) = [¥'] 7" (exp(t)) = log(exp(t)) = ¢.
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Plugging n; = h(8 + 0;) = B+ 0; and ¥ (1;) = exp(S + 0;) into (C.3), we obtain

L(By) = Zwi (yi(B + 0;) — exp(B +0;)) -

i=1

The derivative of this function in S is

OL(Bsy) S
W;Y; — Wi €X —|—0Z wW;Y; — €X w; explo;).
35 2 yi — w; exp(B Z yi — exp( ); p(0i)

Setting to zero and solving for 5, we find that the MLE 3Pois g

A Zn 1 WilYi
pois _ | = . C4
o (S A

Negative binomial Finally, we consider a negative binomial response distribution (with fixed size
parameter s > 0) and log link function r(x) = log(p). The cumulant-generating function v is

¥(n) = —slog(l — e"). The derivative ¢’ of 4 is

fn et s
¢(t)_s<1—et)_e—t—1‘

Define the function 6 : R — R by 6(t) = —log (s/t + 1) . We see that

ve() = exp (log(s/t +1)) — 1 =h

implying § = [']~1. By (C.2), we have that

h(t) =[] 71 (t) = —log (exp( 0t 1) log (%) '

Therefore,

exp(B + 0;)
s+ exp(B+ 0;)

= h(B+0;) = log ( ) = B+o0;—log (s + e’e”) = B—log (s + €’e”)+C, (C.5)

and

B exp(B + 0;) _ I
() = —slog (1 - +Xp(ﬁ+)> s ( +exp(B + >>

= —slog(s) + slog[s + exp(B + 0;)] = slog(s + e°e’) + C. (C.6)
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Plugging (C.5) and (C.6) into (C.3), the log-likelihood (up to a constant) is

52“&% Zwlyzlog 5+65 %) fSszlog 5+e*3 %)

=1 =1

= ﬁ Z WY — Z Yi + 8)’LU¢ IOg(s + eBeOl)'

=1

The derivative of £ in 3 is

oc 57 =~ w;(y; + s)ePe
E:WZ*EZ‘;IQQrf

i=1

Setting the derivative to zero, the equation defining the MLE is

“(yit+3)
e E:: o szyl (C.7)

We cannot solve for 8 in (C.7) analytically. However, we can derive an asymptotically exact

solution. By the law of total expectation,

- [wieo" (yi + 3)} _E {E {wie‘” (yi +5)

w; e’ (e710i + 5) ..
eB+oi + s eb+toi Ts (Oz,wz):|:| =E |::| = ]E[’LU»LE ]’

eB"FOi + S

the second equality holds because E[y;|o;] = pu; = €9, Dividing by n on both sides of (C.7)

and rearranging,

= op (/M E wie (yi + )/ (e + 5)
e ( (1) S, wiss ) - (©8)

By weak LLN, the limit (in probability) of the MLE BNB g

pNB By log (I[;E[EZUleyf’z]O . (C.9)

But the Poisson MLE SFois (C.4) converges in probability to the same limit:

pror = log <<(11//:))ZZ; e ) = log (Ig[[gy]]) |

Therefore, for large n, we can approximate SNB by Frois.
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Application to GLM-EIV The GLM that we seek to estimate (C.1) is an approximate intercept-
plus-offset model: Ti(1),...,T,(1) are the weights wy,...,w,, and flm, .. .,f;" are the offsets
01y...,0m. Of course, T} (1),...,T1(n) are in general dependent random variables, as are f{”, el f,’l"
T;(1) depends on m; and g;, as well as the final parameter estimate (7, Bm,s Bg), which itself is a
function of m and g; the situation is similar for the fzms In practice, we find that the intercept-
plus-offset model is very good approximation to the GLM (C.1), especially when the number of
cells n is large. Additionally, we note that the GLM (C.1) is fitted as a subroutine of the algo-
rithm for producing pilot parameter estimates (Algorithm 4). The quality of the pilot parameter
estimates does not affect the validity of the estimation and inference procedures (Algorithm 1),

barring issues related to convergence to local optima.

C.3  Computing

We describe in detail the at-scale GLM-EIV pipeline. First, we run a round of “precomputations”
on all dg4 genes and d, perturbations. The precomputations involve regressing the gene expressions
(or gRNA counts) onto the technical factors, thereby “factoring out” Algorithm 3. Next, we
run differential expression analyses on the full set of gene-perturbation pairs; for a given pair,
this amounts to obtaining the complete set of pilot parameters (by running a reduced GLM-
EIV), fitting the GLM-EIV model (Algorithm 1), and performing inference. The three loops in

Algorithm 5 are embarrassingly parallel and therefore can be massively parallelized.

D. THE NAT. BIOTECH. 2020 METHOD

As described in the main text, the Nat. Biotech. 2020 method (of Replogle and others (2020))
fits a Poisson-Gaussian mixture model to the log-2 transformed gRNA counts and then assigns
gRNAs to cells based on the posterior perturbation probabilities. If a given cell has a posterior

perturbation probability greater than 1/2, then the gRNA is assigned to that cell; otherwise, the
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Algorithm 5 Applying GLM-EIV at scale.
G « {geney, ..., gene,y }; P« {perturbation,, ..., perturbation, }

for gene € G do
Run precomputation (Algorithm 3) on gene; save f™, [37]Pilot and [ |pilet,
end for
for perturbation € P do
Run precomputation (Algorithm 3) on perturbation; save f9, [B]P1°t and [vg]p“"t.
end for
for (gene, perturbation) € G x P do
Load £, o, [P19¢ [y ]P1o%, (G101 and [y ]
Compute [g]pilet [gf]pilot zpilot by fitting a reduced GLM-EIV (Algorithm 4).
Run GLM-EIV using the pilot parameters (Algorithm 1).

end for

gRNA is not assigned to that cell. Covariates (including gRNA library size, gene library size,
batch, etc.) are not included in the model.

As mentioned in the main text, the Nat. Biotech. 2020 method poses several conceptual and
practical challenges. First, the log-2 transformed gRNA counts are not integer-valued. Thus, it is
unclear how the Poisson component of the mixture distribution is fitted to the data. Second, the
authors of the Nat. Biotech. 2020 method used the Python package Pomegranate (github.com/
jmschrei/pomegranate; version <= 0.14.8) to implement their method. Unfortunately, due to
recent updates to the Pomegranate package, we and others have been unable to install version
<= 0.14.8 (relevant Github issues: github.com/jmschrei/pomegranate/issues/1052, github.
com/jmschrei/pomegranate/issues/1057).

Thus, we attempted to implement the Nat. Biotech. 2020 method ourselves in R using the

flexmix package, a popular package for mixture modeling. We found that flexmix throws an
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error when one attempts to fit a Poisson distribution to non-integer data. We therefore con-
sidered a modification to the Nat. Biotech. 2020 method in which we fitted a two-component
Gaussian mixture to the log-transformed gRNA counts, adding a pseudocount of one to avoid
taking the log of zero. Unfortunately, our modified version of the Nat. Biotech. 2020 method
did not work well in practice, as it categorized all cells as unperturbed on both the simu-
lated gRNA data (Figure 3) and the low-MOI gRNA data (Figure 5). The default CellRanger
method for gRNA assignment — which is based on the Nat. Biotech. 2020 method — uses a two-
component Gaussian mixture model (www.10xgenomics.com/support/software/cell-ranger/
latest/algorithms-overview/cr-crispr-algorithm). The CellRanger method became open-

source shortly before the publication of this paper.
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E. DATA ANALYSIS DETAILS

First, we performed quality control and basic pre-processing on both datasets. As is standard
in single-cell analysis, we removed cells with a high fraction (> 8%) of mitochondrial reads
(Choudhary and Satija, 2022). We additionally excluded genes that were expressed in fewer than
10% of cells or that had a mean expression level of less than 1. We excluded cells in the Gasperini
dataset with gene transcript UMI or gRNA counts below the 5th percentile or above the 95th
percentile to reduce the effect of outliers. We did not repeat this latter quality control step on
the Xie data because the Xie data appeared to be less noisy. The quality-controlled Gasperini
and Xie datasets contained n = 170, 645 (resp. n = 101,508) cells, 2,079 (resp. 1,030) genes, and
6,598 (resp. 516) distinct perturbations.

The Gasperini dataset came with 17,028 candidate cis pairs, 97,818 negative control pairs,
and 322 positive control pairs. The cis pairs consisted of genes paired to nearby enhancers with
unknown regulatory effects. The negative control pairs consisted of non-targeting gRNAs paired
to genes. The positive control pairs are described in the main text. The Xie data did not come
with either cis, negative control, or positive control pairs. Therefore, we constructed a set of 681
candidate cis pairs by pairing perturbations to nearby genes, and we constructed a set of 50,000
in silico negative control by pairing perturbations to genes on different chromosomes. See the
Methods section of Barry and others (2021) for details on the construction of cis and in silico
negative control pairs on the Xie data. Because the negative control pairs are not expected to
exhibit a regulatory relationship, the ground truth fold change in gene expression for these pairs
is taken to be unity.

We modeled the gene expression counts using a negative binomial distribution with unknown
size parameter s; we estimated s using the glm.nb package. Choudhary and Satija (2022) report
that Poisson models accurately capture highly sparse single-cell data. Although Choudhary and

Satija did not investigate the application of Poisson models gRNA data specifically, we modeled
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the gRNA counts using Poisson distributions, as the gRNA modality exhibited greater sparsity
than the gene modality.

We applied GLM-EIV and the thresholding method to analyze the entire set of pairs in both
datasets. We did not report results on the candidate cis pairs in the text because we do not know
the ground truth for these pairs, making them less useful for method assessment. We focused our
attention instead on the negative control pairs in both datasets and the positive control pairs in
the Gasperini dataset.

We describe in more detail how we conducted the “excess background contamination” anal-
ysis. For each positive control pair, we varied excess background contamination over the grid
[0.0,0.05,0.1,...,0.4]. For a given level of excess background contamination, we generated B = 50
synthetic gRNA datasets, holding fixed the raw gene expressions, covariates, library sizes, and
fitted perturbation probabilities. We fitted GLM-EIV and the thresholding method to the data,
yielding estimates [57"]™M), ..., [37"](B). Next, we averaged over the [37"]s to obtain the mean
estimate for a given pair and level of background contamination, and we calculated the REC

using these mean estimates.

F. ADDITIONAL RELATED WORK

Several authors working on statistical methods for single-cell data recently have extended mod-
els that (implicitly or explicitly) assume Gaussianity and homoscedasticity to a broader class
of exponential family distributions. For example, Lin and others (2021) and Townes and others
(2019) (separately) developed eSVD and GLM-PCA, generalizations of SVD and PCA, respec-
tively, to exponential family response distributions. Unlike their vanilla counterparts, eSVD and
GLM-PCA can model gene expression counts directly, improving performance on dimension re-
duction tasks. We see our work (in part) as a continuation of this broad effort to “port” common

statistical methods and models to single-cell count data. Our focus, however, is on regression
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rather than dimension reduction: we extend the classical errors-in-variables model in several key

directions (see above), enabling its direct and natural application to multimodal single-cell data.

G. SIMULATION STUDY DETAILS AND ADDITIONAL SIMULATION STUDIES
G.1  Main text simulation study parameter values

We constructed a table (Table 2) that maps each model parameter to its (i) main text simu-
lation study value and (ii) estimated value on real data. We obtained the real-data parameter
estimates by applying GLM-EIV to analyze a representative gRNA-gene pair from the Gasperini
and others (2019) data (namely, gene “ENSG00000213931” paired to positive control gRNA
“pos_control Klannchrl HS4”). The main difference between the simulation parameter values
and real-data parameter values is that the perturbation effect size on gRNA expression (i.e.,
exp(07)) is smaller in the simulation study than on the real data. This difference has the effect

of placing the simulation study into a more challenging region of the problem space.

Parameter | Simulation value | Estimated real data value Meaning
exp(55Y) 0.01 0.02 Gene model intercept
exp(B™) 0.25 0.68 Gene perturbation effect
exp(7") 0.9 1.0 Gene batch effect
exp(f3) 5.0-1073 3.4-107° gRNA model intercept
exp(0Y) [1.0,1.5,...,4.0] 6, 200 gRNA perturbation effect
exp(77) 1.1 1.05 gRNA batch effect

s 0.02 0.004 Perturbation probability

Table 2. A mapping of each model parameter to its (i) main text simulation study value and (ii) estimated
value on real data.

G.2 Additional simulation studies

We report the results of five additional simulation studies. Study 2 considers Gaussian (as opposed

to negative binomial or Poisson) data; study 3 varies the negative binomial size parameter s;
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study 4 varies the effect size of the perturbation on gene expression 7*; and study five (resp.,
six) considers gRNA (resp., gene) expression data that are contaminated by doublets and an
unmeasured covariate. In all simulation studies we deployed the accelerated version of GLM-
EIV.

Simulation study 2. In simulation study 2 we modeled the gene and gRNA expressions
using a Gaussian distribution with an identity link. We generated data on n = 50,000 cells, fix-
ing the target of inference 57" to —4 and the probability of perturbation 7 to 0.05. We included
“sequencing batch” (modeled as a Bernoulli-distributed variable) and “sequencing depth” (mod-
eled as a Poisson-distributed variable) as covariates in the model. We did not include sequencing
depth as an offset because use of the identity link renders offsets meaningless. We varied 37 over a
grid on the interval [0, 7]. We applied GLM-EIV, thresholded regression, and the gRNA mixture
assignment method (coupled to linear regression) to analyze the simulated data. The ranking of
the methods was as follows: GLM-EIV (best), gRNA mixture assignment method (intermediate),
and thresholding method (worst) (Figure 9).

Simulation study 3. Simulation study 3 was similar to the main text simulation study.
The difference is that in simulation study 3, we held fixed 8{ = log(2.5) while varying the
negative binomial size parameter s over the grid 1 = 10%/9,10%/9,10%/9,...,10'6/9, 10'8/9 = 100.
We applied the three methods twice: once assuming known s and once under unknown s. All
methods demonstrated roughly uniform bias over the grid of s values: the bias of GLM-EIV
was near zero, while that of the thresholding method and the gRNA mixture method was about
0.02. As s increased, the CI width of all methods decreased (as the gene expression data became
more Poisson-like, causing standard errors to shrink). The confidence interval coverage of the
thresholding method and the gRNA mixture method degraded, while that of GLM-EIV remained
at the roughly nominal level. The former two methods likely lost coverage because their biased

estimates caused the increasingly-narrow confidence intervals to be centered at the wrong location.
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The results were broadly similar across known s and unknown s (though slightly better under
known s).

Simulation study 4. Simulation study 4 also was similar to the main text simulation study.
The difference is that in simulation study 4, we held fixed the perturbation effect size on gRNA
expression (exp(87) = 2.5) and varied the perturbation effect size on gene expression exp(37")
over the grid 0.2,0.3,...,0.9,1.0. We applied the three methods to analyze data generated from
Poisson, negative binomial (with known s), and negative binomial (with unknown s) gene ex-
pression distributions. We observed that as the magnitude of the effect size increased (i.e., as
exp(B7") decreased from 1.0 to 0.2), GLM-EIV remained roughly unbiased, while the threshold-
ing method and the gRNA mixture assignment method exhibited increasingly severe attenuation
bias. Furthermore, GLM-EIV maintained coverage at the nominal level, while the coverage of the
thresholding method and the gRNA mixture assignment method degraded due to the aforemen-
tioned attenuation bias. Results were broadly similar (albeit slightly worse) under estimated s
than known s.

We additionally plotted the rejection probability, i.e. the probability of rejecting the null
hypothesis of Hy : exp(87") = 1 at level 0.05. When exp(8]*) = 1 (i.e., when we are under the
null hypothesis), the rejection probability (which corresponds to type-I error) should be 0.05,
the nominal level. When exp(57") < 1 (i.e., when we are under the alternative hypothesis), the
rejection probability (which corresponds to power) should be as large as possible (with a value of
1.0 being optimal). We observed that all methods exhibited a rejection probability of roughly 0.05
under the null hypothesis of exp(8") = 1 and a rejection probability of 1.0 under the alternative
hypotheses of exp(87*) = 0.9,0.8,...,0.2,0.1. In other words, over the grid of values that we
examined, each method performed optimally with respect to testing the hypothesis exp(87*) = 1.
(We note that our goal in the simulation studies was to explore discrepancies in estimation

accuracy and confidence interval coverage across methods, but we present type-I error control
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and power results for completeness.)

Simulation study 5. In simulation study 5 we applied the methods to analyze data drawn
from a distribution that lay outside the GLM-EIV family of distributions. First, we simulated
gRNA count data from a poisson GLM with two covariates: batch (modeled as a Bernoulli
random variable with probability 1/2) and cell cycle (modeled as a uniform random variable on
the interval [0,1]). We treated cell cycle as an unmeasured covariate, i.e. we did not give any of the
methods access to cell cycle. Next, we randomly selected 1% of cells and doubled the gRNA count
in these cells, thereby simulating the presence of doublets (i.e., droplets that contain two cells) in
the data. We simulated the gene expression data from the same negative binomial model that we
used in the main text simulation (and so the gene expression model was correctly specified.) For
simplicity we assumed that the size parameter s = 20 was known. We varied the perturbation
effect size on gRNA expression exp(37) over the grid 1,2,...,7 and the perturbation effect size
on gene expression exp(B7") over the grid 0.25,0.5,0.75,1.0.

We applied GLM-EIV, thresholded regression, and the gRNA mixture assignment method to
analyze the data. GLM-EIV exhibited generally lower bias, lower mean squared error, and better
confidence interval coverage than the other methods. The rightmost panel (i.e, exp(87*) = 1)
corresponds to the null hypothesis of no perturbation effect on gene expression; the left panels
(i.e., exp(87*) = 0.75,0.5,0.25), by contrast, correspond to alternative hypotheses of varying
strength. All methods controlled type-I error at the nominal level of 0.05. GLM-EIV demonstrated
equal or greater power than the competing methods.

Simulation study 6. Simulation study 6 was similar to simulation study 5, the difference
being that simulation study 6 considered a misspecified gene expression model (while simulation
study 5 considered a misspecified gRNA count model). We generated the gene expression data
from a negative binomial GLM containing the unmeasured covariate of cell cycle, and we doubled

the gene expression count in 1% of randomly selected cells to simulate doublets. We generated
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gRNA counts from the same gRNA model that we used in the main text simulation (and so the
gRNA count model was correctly specified.) Again, we varied exp(37) over the grid 1,2,...,7
and exp(B7") over the grid 0.25,0.5,0.75,1.0. We found that GLM-EIV generally performed best:
GLM-EIV exhibited lower bias, lower mean squared error, and better confidence interval coverage
than the other methods. There was one setting for 8/ (namely, exp(87) = 1.5) for which GLM-
EIV did not control type-I error under the null hypothesis of exp(5{*) = 1. However, this was an

extreme value for 87, and GLM-EIV controlled type-I error under all other values of /7.
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Fig. 9. Simulation study 2. Analyzing data generated from a linear Gaussian model. Rejection proba-
bility (not plotted) was strictly 1 across methods and parameter settings.
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Fig. 13. Simulation study 6. Analyzing data using a misspecified gene expression model.



