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Summary

CRISPR genome engineering and single-cell RNA sequencing have accelerated biological dis-

covery. Single-cell CRISPR screens unite these two technologies, linking genetic perturbations

in individual cells to changes in gene expression and illuminating regulatory networks underly-

ing diseases. Despite their promise, single-cell CRISPR screens present considerable statistical

challenges. We demonstrate through theoretical and real data analyses that a standard method

for estimation and inference in single-cell CRISPR screens –“thresholded regression” – exhibits

attenuation bias and a bias-variance tradeoff as a function of an intrinsic, challenging-to-select

tuning parameter. To overcome these difficulties, we introduce GLM-EIV (“GLM-based errors-in-

variables”), a new method for single-cell CRISPR screen analysis. GLM-EIV extends the classical

errors-in-variables model to responses and noisy predictors that are exponential family-distributed

and potentially impacted by the same set of confounding variables. We develop a computational
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infrastructure to deploy GLM-EIV across hundreds of processors on clouds (e.g., Microsoft Azure)

and high-performance clusters. Leveraging this infrastructure, we apply GLM-EIV to analyze two

recent, large-scale, single-cell CRISPR screen datasets, yielding several new insights.
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1. Introduction

CRISPR is a genome engineering tool that has enabled scientists to precisely edit human and

nonhuman genomes, opening the door to new medical therapies (Musunuru and others, 2021) and

accelerating biological discovery (Przybyla and Gilbert, 2022). Recently, scientists have paired

CRISPR genome engineering with single-cell RNA sequencing (Datlinger and others, 2017). The

resulting assays, known as “single-cell CRISPR screens,” link genetic perturbations in individ-

ual cells to changes in gene expression. Single-cell CRISPR screens have enabled breakthrough

progress on longstanding challenges in genetics, such as causally mapping genome wide associa-

tion study (GWAS) variants to target genes at genome-wide scale (Morris and others, 2023).

Despite their promise, single-cell CRISPR screens present considerable statistical challenges.

One difficulty is that the “treatment” — i.e., the presence or absence of a CRISPR perturbation

— is assigned randomly to cells and is not directly observable. As a consequence, one cannot know

with certainty which cells were perturbed. Instead, one must leverage an indirect, quantitative

proxy of perturbation presence or absence to “guess” which cells received a perturbation. This

indirect proxy takes the form of a so-called guide RNA count, with higher counts indicating that

a cell is more likely to have been perturbed. A standard approach to single-cell CRISPR screen

analysis is to impute perturbation assignments onto the cells by simply thresholding the guide

RNA counts; using these imputations, one can attempt to estimate the effect of the perturbation

on gene expression. We call this standard approach “thresholded regression” or the “thresholding
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method.”

We study estimation and inference in single-cell CRISPR screens from a statistical perspective,

formulating the data generating mechanism using a new class of measurement error models. We

assume that the response variable y is a GLM of an underlying predictor variable x∗ and vector

of confounders z. We do not observe x∗ directly; rather, we observe a noisy version x of x∗ that

itself is a GLM of x∗ and the same set of confounders z. The goal of the analysis is to estimate the

effect of x∗ on y using the observed data (x, y, z) only. In the context of the biological application,

x∗, x, y, and z are CRISPR perturbations, guide RNA counts, gene expressions, and technical

confounders, respectively.

Our work makes two main contributions. First, we conduct a detailed study of the thresholding

method. Notably, we demonstrate on real data that the thresholding method exhibits attenuation

bias and a bias-variance tradeoff as a function of the selected threshold, and we recover these

phenomena in precise mathematical terms in a simplified Gaussian setting. Second, we intro-

duce a new method, GLM-EIV (“GLM-based errors-in-variables”), for single-cell CRISPR screen

analysis. GLM-EIV extends the classical errors-in-variables model (Carroll and others, 2006) to

responses and noisy predictors that are exponential family-distributed and potentially impacted

by the same set of confounding variables. GLM-EIV thereby implicitly estimates the probability

that each cell was perturbed, obviating the need to explicitly impute perturbation assignments

via thresholding. We implement several statistical accelerations to bring the cost of GLM-EIV

down to within about an order of magnitude of the thresholding method. We additionally de-

velop a Docker-containerized application to deploy GLM-EIV at-scale across tens or hundreds of

processors on clouds (e.g., Microsoft Azure) and high-performance clusters.

Our analyses indicate that single-cell CRISPR screens fall into two main problem settings:

the more challenging “high background contamination” setting and the easier “low background

contamination” setting. GLM-EIV outperforms thresholded regression by a considerable margin
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in the high background contamination setting; in the low background contamination setting, by

contrast, GLM-EIV and thresholded regression perform similarly, provided that accurate guide

RNA-to-cell assignments are used within the thresholded regression model. We show that a

simplified version of GLM-EIV can be used to obtain these guide RNA-to-cell assignments in the

low background contamination setting, thereby neutralizing a tuning parameter that until this

point has been challenging to select.

2. Assay background

There are several classes of single-cell CRISPR screen assays, each suited to answer a different

set of biological questions. In this work we mostly focus on high-multiplicity of infection (MOI)

single-cell CRISPR screens, which we motivate and describe here. The human genome consists

of genes, enhancers (segments of DNA that regulate the expression of one or more genes), and

other genomic elements. GWAS have revealed that the majority (> 90%) of variants associated

with diseases lie outside genes and inside enhancers (Gallagher and Chen-Plotkin, 2018). These

noncoding variants are thought to contribute to disease by modulating the expression of one

or more disease-relevant genes. Scientists do not know the gene (or genes) through which most

noncoding variants exert their effect, limiting the interpretability of GWAS results. A central

open challenge in genetics, therefore, is to link enhancers that harbor GWAS variants to the

genes that they target at genome-wide scale (Morris and others, 2023).

High-MOI single-cell CRISPR screens are a promising emerging technology for resolving this

challenge (Morris and others, 2023; Mostafavi and others, 2023). High-MOI single-cell CRISPR

screens combine CRISPR interference (CRISPRi) — a version of CRISPR that represses a tar-

geted region of the genome — with single-cell sequencing. The experimental protocol is as follows.

First, the scientist develops a library of several hundred to several thousand CRISPRi pertur-

bations, each designed to target a candidate enhancer for repression. The scientist then cultures
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tens or hundreds of thousands of cells and delivers the CRISPRi perturbations to these cells. The

perturbations assort into the cells randomly, with each cell receiving on average 10-40 distinct

perturbations. Conversely, a given perturbation enters about 0.1-2% of cells (this work).

After waiting several days for CRISPRi to take effect, the scientist profiles each cell’s transcrip-

tome (i.e., its gene expressions) and the set of perturbations that it received. Finally, the scientist

conducts perturbation-to-gene association analyses. Figure 1a depicts this process schematically,

with colored bars (blue, red, and purple) representing distinct perturbations. For a given per-

turbation (e.g., the perturbation represented in blue), the scientist partitions the cells into two

groups: those that received the perturbation (top) and those that did not (bottom). Next, for

a given gene, the scientist runs a differential expression analysis across the two groups of cells,

producing an estimate for the magnitude of the gene expression change in response to the pertur-

bation. If the estimated change in expression is large, the scientist can conclude that the enhancer

targeted by the perturbation exerts a strong regulatory effect on the gene. This procedure is re-

peated for a large set of preselected perturbation-gene pairs. The enhancer-by-enhancer approach

is valid because the perturbations assort into cells approximately independently of one another.

The genomics literature has produced several methods for high-MOI single-cell CRISPR screen

analysis (Gasperini and others, 2019; Xie and others, 2019; Barry and others, 2021; Wang, 2021).

For example, Gasperini et al. applied negative binomial GLMs (as implemented in the Monocle

software; Trapnell and others (2014)) to carry out the differential expression analysis described

above. Moreover, Xie et al. applied chi-squared-like tests of independence for this purpose. Un-

fortunately, both of these approaches have limitations: the former can break down when the gene

expression model is misspecified, and the latter does not adjust for the presence of technical con-

founders. In a prior work we introduced introduced SCEPTRE, a custom implementation of the

conditional randomization test (Candès and others , 2018; Liu and others , 2022) tailored to single-

cell CRISPR screen data. SCEPTRE simultaneously adjusts for confounder presence and ensures
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robustness to expression model misspecification, thereby overcoming limitations of previous ap-

proaches and demonstrating improved sensitivity and specificity on single-cell CRISPR screen

data. In this work we tackle a set of analysis challenges complimentary to those addressed by

SCEPTRE. Most importantly, we seek to account for the fact that the perturbation is measured

with noise. Additionally, we seek to estimate (with confidence) the effect size of a perturbation on

gene expression change, an objective that we did not consider in the original SCEPTRE study.

3. Analysis challenges and proposed statistical model

High-MOI single-cell CRISPR screens present several statistical challenges, four of which we

highlight here. Throughout, we consider a single perturbation-gene pair. First, the “treatment”

variable — i.e., the presence or absence of a perturbation — cannot be directly observed. Instead,

perturbed cells transcribe molecules called guide RNAs (or gRNAs) that serve as indirect proxies

of perturbation presence. We must leverage these gRNAs to impute (explicitly or implicitly)

perturbation assignments onto the cells (Figure 1b). Second, “technical factors” — sources of

variation that are experimental rather than biological in origin — impact the measurement of

both gene and gRNA expressions and therefore act as confounders (Figure 1b). Third, the gene

and gRNA data are sparse, discrete counts. Consequently, classical statistical approaches that

assume Gaussianity or homoscedasticity are not directly applicable. Finally, sequenced gRNAs

sometimes map to cells that have not received a perturbation. This phenomenon, which we call

“background contamination,” results from errors in the sequencing and alignment processes. The

marginal distribution of the gRNA counts is best conceptualized as a mixture model (Figure 1c;

Gaussian distributions used for illustration purposes only). Unperturbed and perturbed cells both

exhibit nonzero gRNA count distributions, but this distribution is shifted upward for perturbed

cells. Figure 1d shows example data on four (of possibly tens or hundreds of thousands of) cells.

The analysis objective is to leverage the gene expressions and gRNA counts to estimate the effect
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of the (latent) perturbation on gene expression, accounting for the technical factors.

We propose to model the single-cell CRISPR screen data-generating process using a pair of

GLMs. Let n ∈ N be the number of cells assayed in the experiment. Consider a single perturbation

and a single gene. For cell i ∈ {1, . . . , n}, let pi ∈ {0, 1} indicate perturbation presence or

absence; let mi ∈ N be the number of gene transcripts sequenced; let gi ∈ N be the number of

gRNA transcripts sequenced; let dmi ∈ N be the number of gene transcripts sequenced across all

genes (i.e., the library size or sequencing depth); let dgi be the gRNA library size; and finally,

let zi ∈ R
d−2 be the cell-specific covariates, including sequencing batch, percent mitochondrial

reads, etc. (We note that most single-cell CRISPR screens have been carried out on cell lines

consisting of a uniform cell type; however, if multiple cell types are present in the data, then cell

type could be included as a covariate in the model.) The letters “m,” “g”, and “d” stand for

“mRNA,” “gRNA,” and “depth,” respectively.

Building on the work of several previous authors (Robinson and Smyth, 2008; Townes and oth-

ers, 2019; Hafemeister and Satija, 2019), Sarkar and Stephens (2021) proposed a simple strategy

for modeling single-cell gene expression data, which, in the framework of negative binomial GLMs,

is equivalent to using the log-transformed library size as an offset term. Sarkar and Stephens’

framework enjoys strong theoretical and empirical support; therefore, we generalize their ap-

proach to model both gene and gRNA modalities in single-cell CRISPR screen experiments. To

this end we assume that the gene expression counts are given by

mi|(pi, zi, dmi ) ∼ NBsm(µm
i ); log(µm

i ) = βm
0 + βm

1 pi + γTmzi + log(dmi ), (3.1)

where (i) NBsm(µm
i ) is a negative binomial distribution with mean µm

i and known size parameter

sm; (ii) βm
0 ∈ R, βm

1 ∈ R, and γm ∈ R
d−2 are unknown parameters; and (iii) log(dmi ) is an offset

term. (We note that the “size parameter” is simply the inverse of the negative binomial dispersion

parameter; “size parameter” does not refer to library size in this context.) Similarly, we model
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the gRNA counts by

gi|(pi, zi, dgi ) ∼ NBsg (µ
g
i ) ; log(µg

i ) = βg
0 + βg

1pi + γTg zi + log(dgi ), (3.2)

where µg
i , s

g, βg
0 , β

g
1 , γg, and d

g
i are analogous. We use a negative binomial GLM to model the

gRNA counts as well as the gene expressions because the gRNA transcripts are generated via the

same biological mechanism as the gene transcripts (Datlinger and others, 2017; Hill and others,

2018). We model the marginal perturbation as pi ∼ Bern(π), where pi is an unobserved binary

variable indicating presence (pi = 1) or absence (pi = 0) of the perturbation. We restrict π, the

probability of perturbation, to the interval (0, 1/2] to ensure that the model is identifiable; this

restriction is reasonable given that each perturbation infects only a small fraction of cells. The

gRNA intercept term βg
0 controls the ambient level of gRNA expression, i.e. the rate at which

gRNA reads are generated in the absence of the perturbation. The perturbation coefficient βg
1

controls the extent to which perturbed and unperturbed cells differentially express the gRNA;

the target of inference βm
1 is challenging to estimate when βg

1 is close to zero, as the gRNA

distributions of the perturbed and unperturbed cells are hard to differentiate in this region of

the problem space. Together, (3.1), (3.2), and the marginal distribution of pi define the negative

binomial GLM-EIV model.

The log-transformed sequencing depth log(dmi ) is included as an offset term in (3.1) so that

βm
0 + βm

1 pi + γTmzi can be interpreted as a relative expression. Exponentiating both sides of (3.1)

reveals that the mean gene expression µm
i of the ith cell is exp

(
βm
0 + βm

1 pi + γTmzi
)
dmi . Because

dmi is the sequencing depth, exp
(
βm
0 + βm

1 pi + γTmzi
)
is the fraction of all transcripts sequenced

in the cell produced by the gene under consideration. The target of inference βm
1 is the log fold

change in expression in response to the perturbation, controlling for the technical factors. Fold

change in this context is the ratio of the mean gene expression in perturbed cells to the mean

gene expression in unperturbed cells. Hence, exp(βm
1 ) = 1 (i.e., βm

1 = 0) indicates no change in

expression, whereas exp(βm
1 ) > 1 (i.e., βm

1 > 0) and exp(βm
1 ) < 1 (i.e., βm

1 < 0) indicate an
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increase and decrease in expression, respectively.

In this work we analyzed two large-scale, high-MOI, single-cell CRISPR screen datasets pub-

lished by Gasperini and others (2019) and Xie and others (2019). Gasperini (resp., Xie) targeted

approximately 6,000 (resp., 500) candidate enhancers in a population of approximately 200,000

(resp., 100,000) cells. Gasperini additionally designed several hundred positive control, gene-

targeting perturbations and 50 non-targeting, negative control perturbations to assess method

sensitivity and specificity.

4. Analysis of the thresholding method

We studied thresholding from empirical and theoretical perspectives, highlighting several po-

tential limitations of the approach. In the context of the negative bionomial GLM-EIV model

introduced above (3.1-3.2), the thresholding method leverages the gRNA counts (3.2) to im-

pute the latent perturbation indicator (3.2), thereby reducing the full data generating process

to a single, gene expression model (3.1). We studied Gasperini et al.’s variant of the threshold-

ing method (i.e., thresholded negative binomial regression), as this version of the thresholding

method is standard and relates most closely to GLM-EIV. The method is defined as follows:

1. For a given threshold c ∈ N, let the imputed perturbation assignment p̂i ∈ {0, 1} be given

by p̂i = 0 if gi < c and p̂i = 1 otherwise.

2. Assume that mi is related to p̂i, d
m
i , and zi through the following GLM:

mi|(p̂i, zi, dmi ) ∼ NBsm(µm
i ); log(µm

i ) = βm
0 + βm

1 p̂i + γTmzi + log (dmi ) . (4.3)

The model (4.3) is equivalent to the model (3.2), but the latent perturbation indicator pi

has been replaced by the imputed perturbation indicator p̂i.

3. Fit a GLM to (4.3) to obtain an estimate and CI for the target of inference βm
1 .
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To shed light on empirical challenges of the thresholding method, we applied thresholded

negative binomial regression to analyze the set of positive control perturbation-gene pairs in

the Gasperini dataset. The positive control pairs consisted of perturbations that targeted gene

transcription start sites (TSSs) for inhibition. Repressing the TSS of a given gene decreases its

expression; therefore, the positive control pairs a priori are expected to exhibit a strong decrease

in expression.

To investigate the sensitivity of the thresholding method to threshold choice, we deployed the

method using three different choices for the threshold: 1, 5, and 20. We found that the chosen

threshold substantially impacted the results (Figure 2a-b): estimates for fold change produced by

threshold = 1 were smaller in magnitude (i.e., closer to the baseline of 1) than those produced by

threshold = 5 (Figure 2a). On the other hand, estimates produced by threshold = 5 and threshold

= 20 were more concordant (Figure 2b).

We reasoned that thresholded regression systematically underestimated true effect sizes on the

positive control pairs, especially for threshold = 1. For a given perturbation, the majority (> 98%)

of cells are unperturbed. This imbalance leads to an asymmetry: misclassifying unperturbed cells

as perturbed is intuitively “worse” than misclassifying perturbed cells as unperturbed. Misclassified

unperturbed cells contaminate the set of truly perturbed cells, leading to attenuation bias; by

contrast, misclassified perturbed cells are swamped in number and “neutralized” by the truly

unperturbed cells. Setting the threshold to a large number reduces the unperturbed-to-perturbed

misclassification rate, decreasing bias.

We hypothesized, however, that the reduction in bias obtained by selecting a large thresh-

old causes the variance of the estimator to increase. To investigate, we compared p-values and

confidence intervals produced by threshold = 5 and threshold = 20 for the target of inference

βm
1 . We found that threshold = 5 yielded smaller (i.e., more significant) p-values and narrower

confidence intervals than did threshold = 20 (Figures 2c-d). We concluded that the threshold
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controls a bias-variance tradeoff: as the threshold increases, the bias of the estimator decreases

and the variance increases.

Finally, to determine whether there is an “obvious” location at which to draw the threshold,

we examined the empirical gRNA count distribution of a gRNA from the Gasperini (Figure 2e)

and Xie (Figure 2f) dataset (counts of 0 omitted). The distributions peaked at 1 and then tapered

off gradually; there did not exist a sharp boundary that cleanly separated the perturbed from the

unperturbed cells. Overall, we concluded that the thresholding method faces several challenges:

(i) the threshold is a tuning parameter that significantly impacts the results; (ii) the threshold

mediates an intrinsic bias-variance tradeoff; and (iii) the gRNA count distributions may not imply

a clear threshold selection strategy.

Next, we studied the thresholding method from a theoretical perspective, recovering in a

simplified Gaussian setting phenomena revealed in the empirical analysis. Due to space constraints

we relegate this analysis to Appendix A, but we briefly summarize the main results here. First,

we derived an exact expression for the asymptotic relative bias of the thresholding estimator

β̂m
1 . Leveraging this exact expression, we showed that (i) the thresholding estimator strictly

underestimates (in absolute value) the true value of βm
1 over all choices of the threshold and over

all values of the regression coefficients (an example of attenuation bias; Stefanski (2000)); and (ii)

the magnitude of the bias decreases monotonically in βg
1 , comporting with the intuition that the

problem becomes easier as the gRNA mixture distribution becomes increasingly well-separated.

Second, we derived an asymptotically exact bias-variance decomposition for β̂m, demonstrating

that as the threshold tends to infinity, the bias decreases and the variance increases.

5. GLM-based errors-in-variables (GLM-EIV)

We introduce the general GLM-EIV model, which generalizes the negative binomial GLM-EIV

model (3.1-3.2) to arbitrary exponential family response distributions and link functions, thereby
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providing much greater modeling flexibility. We derive efficient methods for estimation and in-

ference in this model and develop a pipeline to deploy the model at-scale.

5.1 Model and model properties

The general GLM-EIV model uses an arbirary GLM to model the gene and gRNA modalities:

mi|(pi, zi, omi ) ∼ fm(µm
i ); rm(µm

i ) = βm
0 + βm

1 pi + γTmzi + omi , (5.4)

gi|(pi, zi, ogi ) ∼ fg(µ
g
i ); rg(µ

g
i ) = βg

0 + βg
1pi + γTg zi + ogi . (5.5)

Here, fm (resp., fg) is an exponential family distribution with mean µm
i (resp., µg

i ); rm and rg

are the link function for the gene and gRNA models, respectively; and omi and ogi are the (possibly

zero) offset terms for the gene and gRNA models. In practice we typically set omi and ogi to the

log-transformed library sizes (i.e., log(dmi ) and log(dgi )). Again, we assume that the unobserved

perturbation indicator pi is drawn from a Bern(π) distribution. More model details are available

in Appendix B.

The GLM-EIV model can be seen as a generalization of the simple errors-in-variables model

(when the predictor is binary); the latter is defined as follows:

yi = β0 + β1x
∗
i + ϵi; xi = x∗i + τi, (5.6)

where, x∗i ∼ Bern(π), ϵi, τi ∼ N(0, 1), and ϵi,τi, and x
∗
i are independent. GLM-EIV extends (5.6)

in at least three directions: first, GLM-EIV allows yi and xi to follow exponential family (i.e,

not just Gaussian) distributions; second, GLM-EIV allows yi and xi to be related to x∗i through

arbitrary (i.e., not just linear) link functions; and finally, GLM-EIV allows confounders zi to

impact both xi and yi. Therefore, xi and yi can be conditionally dependent given x∗i , enabling

GLM-EIV to capture more complex dependence relationships between xi and yi than is possible

in (5.6) or other standard measurement error models.
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5.2 Estimation and inference, and computational infrastructure

We derived an EM algorithm (Algorithm 1) to estimate the parameters of the GLM-EIV model.

We briefly introduce some notation. Let βm = [βm
0 , β

m
1 , γm]T be the vector of unknown gene

model parameters and βg = [βg
0 , β

g
1 , γg]

T the vector of unknown gRNA model parameters. Let

m, g, om, and og be the vector of gene expressions, gRNA expressions, gene library sizes, and

gRNA library sizes. Finally, let X be the observed design matrix; let X̃ be the augmented design

matrix that results from concatenating the column of (unobserved) pis to X; and let X̃(0) (resp,

X̃(1)) be the matrix that results from setting all of the pis in X̃ to 0 (resp., 1).

The E step entails computing the membership probability (i.e., the probability of pertur-

bation) in each cell. The membership probability Ti(1) of cell i ∈ {1, . . . , n} given the current

parameter estimates (β
(t)
m , β

(t)
g , π(t)) and observed data (mi, gi) is Ti(1) = P(pi = 1|Mi = mi, Gi =

gi, β
(t)
m , β

(t)
g , π(t)). We can calculate this quantity by applying (i) Bayes rule, (ii) the conditional

independence property of Mi and Gi, (iii) the density of Mi and Gi, and (iv) a log-sum-exp-type

trick to ensure numerical stability. Next, we produce updated estimates π(t+1), β
(t+1)
g , and β

(t+1)
m

of the parameters by maximizing the M step objective function. It turns out that maximizing

this objective function is equivalent to setting π(t+1) to the mean of the current membership

probabilities and setting β
(t+1)
g and β

(t+1)
m to the fitted coefficients of a GLM weighted by the

current membership probabilities (Algorithm 1). We iterate through the E and M steps until the

log likelihood (B.1) converges (Appendix B). Our EM algorithm is reminiscent of (but distinct

from) that of Ibrahim (1990), who also applied weighted GLM solvers to carry out an M step of

an EM algorithm.

After fitting the model, we perform inference on the estimated parameters. The easiest ap-

proach, given the complexity of the log likelihood, would be to run a bootstrap. This strategy,

however, is prohibitively slow, as the data are large and the EM algorithm is iterative. Therefore,

we derived an analytic formula for the asymptotic observed information matrix using Louis’s The-
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Algorithm 1 EM algorithm for GLM-EIV model.

Input: Pilot estimates βcurr
m , βcurr

g , and πcurr; data m, g, om, og, and X; gene expression distri-
bution fm and link function rm; gRNA expression distribution fg and link function rg.
while Not converged do

for i ∈ {1, . . . , n} do ▷ E step
Ti(1)← P

(
pi = 1|Mi = mi, Gi = gi, β

curr
m , βcurr

g , πcurr
)

Ti(0)← 1− Ti(1)
end for
πcurr ← (1/n)

∑n
i=1 Ti(1) ▷ M step

w ← [T1(0), T2(0), . . . , Tn(0), T1(1), T2(1), . . . , Tn(1)]
T

for k ∈ {g,m} do
Fit a GLM GLMk with responses [k, k]T , offsets [ok, ok]T , weights w, design matrix

[X̃(0)T , X̃(1)T ]T , distribution fk, and link function rk.
Set βcurr

k to the estimated coefficients of GLMk.
end for
Compute log likelihood using βcurr

m , βcurr
g , and πcurr.

end while
β̂m ← βcurr

m ; β̂g ← βcurr
g ; π̂ ← πcurr.

return (β̂m, β̂g, π̂)

orem (Louis (1982); Appendix B). Leveraging this analytic formula, we can calculate standard

errors quickly, enabling us to perform inference in practice on real, large-scale data.

A downside of the EM algorithm (Algorithm 1) is that it requires fitting many GLMs. As-

suming that we run the algorithm 15 times using randomly-generated pilot estimates (to improve

chances of convergence to the global maximum), and assuming that the algorithm iterates through

E and M steps about 10 times per run, we must fit approximately 300 GLMs. (These numbers are

based on exploratory applications of the method to real and simulated data.) We instead devised

a strategy to produce a highly accurate pilot estimate of the true parameters, enabling us to run

the algorithm once and converge upon the MLE within a few iterations. The strategy involves

layering several statistical “tricks” on top of one another. Briefly, we first obtain pilot estimates

for the nuisance parameters βm
0 , γm, β

g
0 , and γg by regressing the gene and gRNA expression

vectors onto the observed design matrix X; the resulting estimates are close to the full GLM-EIV

model maximum likelihood estimates because the probability of perturbation is small. Next, we

obtain pilot estimates for π and the perturbation effect parameters βm
1 and βg

1 by estimating a

simplified, “reduced” GLM-EIV model; this second step does not require fitting any GLMs. (See
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Appendix C for additional details.) Overall, the statistical accelerations reduce the number of

GLMs that must be fit to < 10 in most cases.

Next, we developed a computational infrastructure to apply GLM-EIV to large-scale, single-

cell CRISPR screen data. The infrastructure leverages Nextflow, a programming language that

facilitates building data-intensive pipelines, and ondisc, an R/C++ package that we developed (in

a separate project; preprint forthcoming) to facilitate large-scale computing on single-cell data.

Nextflow and ondisc together enable the construction of highly portable single-cell pipelines:

one can analyze data out-of-memory on a laptop or in a distributed fashion across hundreds of

processors on a cloud (e.g., Microsoft Azure, Google Cloud) or high-performance cluster. Leverag-

ing these technologies, we built a Docker-containerized pipeline for deploying GLM-EIV at-scale.

The pipeline recycles computation when possible, saving a considerable amount of compute; see

Appendix C.3 for details. Overall, the statistical accelerations and computational infrastructure

make the deployment of GLM-EIV to large-scale single-cell CRISPR screen quite feasible.

5.3 The gRNA mixture assignment method

Thus far we have described two methods for estimating the effect of a perturbation on gene

expression: the simple thresholding method and the more complex GLM-EIV method. A third

approach of intermediate complexity — which we call the “gRNA mixture assignment” approach

— is to (i) fit a mixture model to the gRNA count distribution, (ii) use this fitted mixture model

to impute perturbation identities onto cells, and then (iii) regress the gene expressions onto

the imputed perturbation indicators (as well as the remaining covariates). The gRNA mixture

assignment approach enjoys at least two strengths relative to the simpler thresholding approach:

the former negates the threshold tuning parameter and can account for variation across cells due

to covariates.
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Replogle and others (2020) proposed a simple gRNAmixture assignment strategy that involves

fitting a Poisson-Gaussian mixture model to the log-transformed gRNA counts and then assigning

gRNAs to cells using the posterior perturbation probabilities of the fitted model. (We call this

method the Nat. Biotech. 2020 method, representing the journal and year in which the method

appeared.) Unfortunately, this method poses several conceptual and practical difficulties. First,

it is unclear how the method fits the Poisson component of the mixture distribution to the log-

transformed gRNA expressions, as the transformed expressions are not integer-valued. Second,

due to recent changes in the Python ecosystem, we and others have had difficulty with installing

the Python package upon which the Nat. Biotech. 2020 method relies. (See Appendix D for

further discussion of the Nat. Biotech. 2020 method.)

Following Replogle and others (2020), we devised an alternate gRNA mixture assignment

strategy that is tethered more closely to the data-generating mechanism. For a given gRNA, we

regress the gRNA counts onto the (latent) perturbation indicator and covariates (while ignoring

the gene expressions; model 5.5). We assign perturbation identities to cells by thresholding the

posterior perturbation probabilities of the fitted model at 1/2. The latent variable gRNA model is

a subset of the full GLM-EIV model (5.4-5.5). Thus, we used the GLM-EIV EM algorithm to fit

the latent variable gRNA model, enabling us to exploit the various techniques that we developed

in the context of GLM-EIV for obtaining fast and numerically stable estimates.

6. Simulation study

We conducted a comprehensive suite of six simulation studies to compare the empirical per-

formance of GLM-EIV, the thresholding method, and the gRNA mixture assignment method.

(We coupled the latter method to standard regression on the imputed perturbation assignments

to estimate the perturbation effect size.) We describe one simulation study here and defer the

remaining simulation studies to the Appendix G. We generated data on n = 50, 000 cells from
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the GLM-EIV model, setting the target of inference βm
1 to log(0.25) and the probability of per-

turbation π to 0.02. βm
1 = log(0.25) represents a decrease in gene expression by a factor of 4,

which is a fairly large effect size on the order of what we might observe for a positive control

pair. We included “sequencing batch” (modeled as a Bernoulli-distributed variable) as a covari-

ate and sequencing depth (modeled as a Poisson-distributed variable) as an offset. We varied the

log-fold change in gRNA expression, βg
1 , over a grid on the interval [log(1), log(4)]; βg

1 controls

problem difficulty, with higher values corresponding to easier problem settings. We generated the

gene expression count data from two response distributions: Poisson and negative binomial (size

parameter fixed at s = 20 for the latter; see simulation study 3 for an exploration of different

values of s). We generated the gRNA count data from a Poisson distribution. For each parameter

setting (defined by a βg
1 -distribution pair), we synthesized nsim = 500 i.i.d. datasets. Appendix G

compares the parameter values used in the simulation study to those estimated from real data.

We applied four methods to the simulated data: “vanilla” GLM-EIV, accelerated GLM-EIV,

thresholded regression, and the gRNA mixture assignment method. We used the Bayes-optimal

decision boundary for classification as the threshold for the thresholding method (as derived in

Section A.12). We ran all methods on the negative binomial data twice: once treating the size

parameter s as a known constant and once treating s as unknown. In the latter case we used

the glm.nb function from the MASS package to estimate s before applying the methods (Ripley

and others , 2013). We note that none of the methods accounts for the error in estimating s

when computing coefficient standard errors. We display the results of the simulation study in

Figure 3. Columns correspond to distributions (i.e., Poisson, NB with known s, and NB with

unknown s), and rows correspond to performance metrics (i.e., bias, mean squared error, CI

coverage rate (nominal rate 95%), CI width, and method run time). The βg
1 parameter is plotted

on the horizontal axis, and the methods are depicted in different colors. (GLM-EIV is masked by

accelerated GLM-EIV in several panels).
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We found that GLM-EIV outperformed the gRNA mixture method and that the gRNA mix-

ture method outperformed thresholded regression across the metrics of bias, mean squaured error,

and confidence interval coverage. We reasoned that GLM-EIV outperformed the gRNA mixture

method because (i) GLM-EIV leveraged information from both modalities (rather than the gRNA

modality alone) to assign perturbation identities to cells, and (ii) GLM-EIV produced soft rather

than hard assignments, capturing the inherent uncertainty in whether a perturbation occurred.

We additionally reasoned that the gRNA mixture method outperformed thresholded regression

because the gRNA mixture method better accounted for heterogeneity across cells due to the

covariates. Notably, accelerated GLM-EIV performed as well as vanilla GLM-EIV on all sta-

tistical metrics (rows 1-4) despite having substantially lower computational cost (bottom row).

In fact, the running time of accelerated GLM-EIV was almost within an order of magnitude of

that of the thresholding method. As expected, the confidence interval coverage of the methods

degraded somewhat in the negative binomial case under estimated s as opposed to known s, but

this difference was not substantial. Appendix G presents additional simulation studies in which

we generate data from a Gaussian model, vary βm
1 and s, and assess the performance of the

methods on data containing unmeasured covariates and outliers.

7. Real data application I: estimating perturbation effects on high-MOI data

Leveraging our computational infrastructure, we applied GLM-EIV and the thresholding method

to analyze the entire Gasperini and Xie datasets. GLM-EIV ran in under two days on both

datasets, using no more than 250 processors and two gigabytes of memory per process. We report

only the most important aspects of the analysis and results in the main text; full details are

available in Appendix E. We set the threshold in the thresholding method to the approximate

Bayes-optimal decision boundary, as our theoretical analyses and simulation studies indicated

that the Bayes-optimal decision boundary is a good choice for the threshold when the gRNA
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count distribution is well-separated. Operating under the assumption that the effect of the per-

turbation on gRNA expression is similar across pairs, we leveraged the fitted GLM-EIV models

to approximate the Bayes boundary in the following way: we (i) sampled several hundred gene-

perturbation pairs, (ii) extracted the fitted values β̂g and π̂ from the GLM-EIV models fitted

to these pairs, (iii) computed the median β̂g and π̂ across the β̂gs and π̂s, and (iv) used β̂g and

π̂ to estimate a dataset-wide Bayes-optimal decision boundary (Section A.12). We repeated this

procedure on both datasets, yielding a threshold of 3 for Gasperini and 7 for Xie.

We compared GLM-EIV to thresholded regression on the real data, focusing specifically on

the negative control pairs (i.e., gene-perturbation pairs for which the ground truth fold change is

known to be 1; Appendix E). We found that GLM-EIV and the thresholding method produced

similar results (Figure 4a-b): estimates, CI coverage rates, and CI widths were concordant. CI

coverage rates, which ranged from 87.7%-91.2%, were slightly below the nominal rate of 95%,

likely due to mild model misspecification. The estimated effect of the perturbation on gRNA

expression exp(β̂g
1 ) was unexpectedly large: the 95% CI for this parameter (averaged across pairs)

was [4306, 5186] and [300, 316] on the Gasperini and Xie data, respectively. We reasoned that

the datasets lay in a region of the parameter space in which thresholding is a tenable strategy

(provided the threshold is selected well). However, this was not obvious a priori and may not

be the case for other datasets. We note that GLM-EIV produced outlier estimates (defined as

estimated fold change < 0.75 or > 1.25) on a small (< 2.5% on Gasperini, < 0.05% on Xie)

number of pairs consisting of a handful of genes, likely due to non-global EM convergence. These

outliers are not plotted in Figures 4a-b but were used to compute the CI coverage reported in

the inset tables.

To evaluate performance of GLM-EIV versus thresholding in more challenging settings, we

increased the difficulty of the perturbation assignment problem by generating partially-synthetic

datasets. First, for a given pair, we sampled gRNA counts directly from the fitted GLM-EIV
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model. Next, to simulate elevated background contamination, we sampled gRNA counts from a

slightly modified version of the fitted model in which we increased the mean gRNA expression

of unperturbed cells while holding constant the mean gRNA expression of perturbed cells. We

defined a parameter called “excess background contamination” (normed to take values in [0, 1]) to

quantify the relative distance between the unperturbed and perturbed gRNA count distributions.

We held fixed the real-data gene expressions, library sizes, covariates, and fitted perturbation

probabilities in all settings.

We generated partially-synthetic data in the above manner for each of the 322 positive control

pairs in the Gasperini dataset, varying excess background contamination over the interval [0, 0.4].

We then applied GLM-EIV and the thresholding method to analyze the data. We present results

on two example pairs (the pair containing gene LRIF1 and the pair containing gene NDUFA2 ) in

Figures 4c-d. We observed that the estimate produced by the methods on the raw data (depicted

as a horizontal black line) coincided almost exactly with the estimate produced by the methods

on the partially-synthetic data generated by setting excess background contamination to zero

(This result replicated across nearly all pairs; average relative difference 0.003.) We additionally

observed that as excess background contamination increased, the performance of thresholded

regression degraded considerably while that of GLM-EIV remained stable.

We generalized the above analysis to the entire set of positive control pairs. First, for each

pair we computed the “relative estimate change” (REC) as a function of excess background

contamination, defined as the relative difference between the estimate at a given level of ex-

cess contamination and zero excess contamination (Figure 4d). Next, we computed the median

REC across all positive control pairs (Figure 4e; upper and lower bands indicate the pointwise

interquartile range of the REC). As excess background contamination increased, thresholded re-

gression exhibited severe attenuation bias (as reflected by large median REC values); GLM-EIV,

by contrast, remained mostly stable. Finally, letting β̂m
1 denote the estimate obtained on the
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raw data, we computed the CI coverage of β̂m
1 as a function of excess contamination. Under the

assumption that β̂m
1 is close to the true parameter βm

1 , the CI coverage of the former is similar

to that of the latter. We computed the CI coverage of β̂m
1 by calculating each individual pair’s

coverage of β̂m
1 (across the Monte Carlo replicates) and then averaging this quantity across all

pairs. GLM-EIV exhibited significantly higher CI coverage than thresholded regression as the

data became increasingly contaminated (Figure 4f; bands indicate 95% pointwise CIs). Coverage

rates were slightly above the nominal level of 95% in some settings because we covered an esti-

mate of βm
1 rather than βm

1 itself, leading to mild “overfitting.” Nonetheless, this experiment was

meaningful to assess the stability of both methods to elevated background contamination.

8. Real data application II: assigning perturbations to cells on low-MOI data

We sought to explore whether the gRNA mixture assignment method that we proposed in Section

5.3 — which is in effect a special case of GLM-EIV — might be an independently useful tool for

assigning gRNAs to cells on real single-cell CRISPR screen data. We applied the gRNA mixture

assignment method to assign gRNAs to cells on a low multiplicity-of-infection (or MOI) single-cell

CRISPR screen of immune cells (Papalexi and others, 2021). (A low-MOI dataset, in contrast to a

high-MOI dataset, is one in which the experimenter has aimed to insert exactly one perturbation

into each cell.) We elected to assess the performance of the gRNA mixture assignment method on

low-MOI data because the “ground truth” gRNA-to-cell mapping is easier to ascertain in low MOI

than in high MOI. The majority of cells in a low-MOI screen contains a single perturbation, while

a fraction of cells contains zero or two or more perturbations. Thus, if a given gRNA constitutes

a large fraction (say, > 25%) of the gRNA reads in a given cell, we can confidently map that

gRNA to that cell. Athough not foolproof, this strategy yields a reasonable approximation to

the ground truth in low MOI. (There is no analogous strategy for obtaining ground truth gRNA

assignments in high MOI, as each cell in high MOI contains many gRNAs, and the number of
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gRNAs per cell is indeterminate and variable.)

We used our proposed gRNA mixture assignment method to obtain gRNA-to-cell assignments

for each gRNA in the low-MOI dataset (after restricting our attention to the 95% most highly

expressed gRNAs). We included the standard technical factors as covariates, including biolog-

ical replicate. We compared the mixture-model-based gRNA assignments to the ground truth

assignments; the latter were obtained in the manner described above. Encouragingly, we found

that these two methods produced near-identical results. For example, the mixture model deter-

mined that gRNA “CUL3g2” was present in 141 cells (and absent in the rest), while the ground

truth method indicated that “CUL3g2” was present in 137 cells (Figure 5a). Treating the ground

truth assignments as a reference, we constructed a confusion matrix to assess the classification

accuracy of the mixture method assignments on CUL3g2 (Figure 5b). The sensitivity, specificity,

and balanced accuracy of the mixture method assignments were high (1.000, 0.9998, and 0.9998,

respectively).

We replicated this analysis across the entire set of gRNAs, finding that the mixture method

assignments exhibited consistently high concordance with the ground truth assignments as mea-

sured by sensitivity, specificity, and balanced accuracy (although there were a few outliers; Figure

5c). We concluded that the mixture assignment method was a statistically principled, fast, and

numerically stable strategy for the recapitulating the ground truth assignments with high fi-

delity. We sought to compare our gRNA mixture assignment method against the Nat. Biotech.

2020 Poisson-Gaussian mixture method. Unfortunately, as discussed elsewhere (Section 5.3 and

Appendix D), we were unable to get the Nat. Biotech. 2020 method (or approximations thereof

written in R) working. We note that, in contrast to the Nat. Biotech. 2020 method, the proposed

method allows for the inclusion of covariates (e.g., library size and batch) and models the gRNA

counts directly.
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9. Discussion

In this work we studied the problem of estimating the effect sizes of perturbations on changes

in gene expression in high-MOI single-cell CRISPR screens, focusing specifically on the chal-

lenge that the perturbation is unobserved. We showed through empirical, theoretical, and sim-

ulation analyses that the commonly-used thresholding method poses several difficulties: there

exist settings (i.e., high background contamination settings) in which thresholding is not a ten-

able strategy, and in settings in which thresholding is a tenable strategy (i.e., low background

contamination settings), selecting a good threshold is challenging and consequential. Next, we

developed GLM-EIV, a method that jointly models the gene and gRNA modalities to implicitly

assign perturbation identities to cells and estimate perturbation effect sizes, thereby overcoming

limitations of the thresholding method. GLM-EIV demonstrated significantly improved perfor-

mance relative to the thresholding method in high background contamination settings on both

synthetic and realistic semi-synthetic data.

However, GLM-EIV and the thresholding method demonstrated roughly similar performance

on the two real high-MOI datasets that we examined, as the real data exhibited lower background

contamination than anticipated. We believe that this is an interesting finding in itself; moreover,

future datasets may demonstrate higher levels of background contamination, in which case GLM-

EIV could serve as an immediately applicable analytic tool. Finally, the gRNAmixture assignment

method, which under the hood exploits the estimation machinery of GLM-EIV, is a statistically

principled, numerically stable, fast, and accurate strategy for obtaining gRNA-to-cell assignments

on real data; these assignments can used as input to downstream methods (e.g., negative binomial

regression or SCEPTRE; Figure 5d).

We anticipate that GLM-EIV could be applied to other types of multi-modal single-cell data,

such as single-cell chromatin accessibility assays. A question of interest in such experiments is

whether chromatin state (i.e., closed or open) is associated with the expression of a gene or
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abundance of a protein (Mimitou and others, 2021). We do not directly observe the chromatin

state of a cell; instead, we observe tagged DNA fragments that serve as count-based proxies

for whether a given region of chromatin is open or closed. GLM-EIV might be applied in such

experiments to aid in the selection of thresholds or to analyze whole datasets. The full GLM-EIV

model potentially could be applied to analyze low-MOI single-cell CRISPR screen data, but we

anticipate that the relative ease of assigning gRNAs to cells in low MOI (as described in section

8) may obviate the need for GLM-EIV in that setting.

The closest parallels to GLM-EIV in the statistical methodology literature are Grün and Leisch

(2008) and Ibrahim (1990). Grün and Leisch derived a method for estimation and inference in

a k-component mixture of GLMs. While we prefer to view GLM-EIV as a generalized errors-in-

variables method, the GLM-EIV model is equivalent to a two-component mixture of products

of GLM densities. Ibrahim proposed a procedure for fitting GLMs in the presence of missing-at-

random covariates. Our method, by contrast, involves fitting two conditionally independent GLMs

in the presence of a totally latent covariate. Thus, while Ibrahim and Grün & Leisch are helpful

references, our estimation and inference tasks are more complex than theirs. Next, Aigner (1973)

and Savoca (2000) proposed measurement error models that consist of unobserved binary rather

than continuous predictors; the latter are more commonly used in measurement error models.

GLM-EIV likewise consists of a latent binary predictor, but unlike Aigner and Savoca, GLM-EIV

handles a much broader class of exponential family-generated data. Finally, GLM-EIV accounts

for a common source of measurement error between the predictor and response, a property not

shared by classical measurement error models (Carroll and others, 2006). Additional related work

is relayed in Appendix F.

GLM-EIV might be applied to areas beyond genomics, such as psychology. Some psychological

constructs (e.g., presence or absence of a social media addiction) are latent and can be assessed

only through an imperfect proxy (e.g., the number of times one has checked social media). Re-
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searchers might use GLM-EIV to regress an outcome variable (e.g., self-reported well-being) onto

the latent construct via the imperfect proxy, potentially resolving challenges related to attenua-

tion bias and threshold selection. Applications to psychology and other areas are a topic of future

investigation.

Software, code, and results

The gRNA-only mixture assignment functionality of GLM-EIV is implemented in our sceptre

toolkit for single-cell CRISPR screen analysis (github.com/Katsevich-Lab/sceptre). The sceptre

user manual (timothy-barry.github.io/sceptre-book/sceptre.html) presents a detailed guide

on analyzing data using the sceptre software, including several sections on assigning gRNAs to

cells using the mixture assignment method introduced in this work.

Results are deposited at upenn.box.com/v/glmeiv-files-v1. Github repositories containing

manuscript replication code, the glmeiv R package, and the cloud/HPC-scale GLM-EIV pipeline

are available at github.com/timothy-barry/glmeiv-manuscript, github.com/timothy-barry/

glmeiv, and github.com/timothy-barry/glmeiv-pipeline, respectively. Detailed replication

instructions are available in the first repository.
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Fig. 1. Experimental design and analysis challenges: a, Experimental design. For a given pertur-
bation (e.g., the perturbation indicated in blue), we partition the cells into two groups: perturbed and
unperturbed. Next, for a given gene, we conduct a differential expression analysis across the two groups,
yielding an estimate of the impact of the given perturbation on the given gene. b, DAG representing all
variables in the system. The perturbation (latent) impacts both gene expression and gRNA expression;
technical factors act as confounders, also impacting gene and gRNA expression. The target of estimation
is the effect of the perturbation on gene expression. c, Schematic illustrating the “background read” phe-
nomenon. Due to errors in the sequencing and alignment processes, unperturbed cells exhibit a nonzero
gRNA count distribution (bottom). The target of estimation is the change in mean gene expression in
response to the perturbation (top). d, Example data on four cells for a given perturbation-gene pair.
Note that (i) the perturbation is unobserved, and (ii) the gene and gRNA data are discrete counts.
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Fig. 2. Empirical challenges of thresholded regression. a-b, Estimates for fold change (i.e., exp(βm

1 )
in model (4.3)) produced by threshold = 5 versus threshold = 1 (a) and threshold = 5 versus threshold
= 20 (b). The selected threshold substantially impacts the results. c-d, p-values (c) and CI widths (d)
produced by threshold = 5 versus threshold = 20. The p-values correspond to a test of the null hypothesis
H0 : βm

1 = 0, i.e., a log fold change in gene expression of zero. A threshold of 5 yields more significant
p-values and more confident estimates. e-f, Empirical distribution of a gRNA from Gasperini (e) and
Xie (f) data (0 counts not shown). These gRNA count distributions do not appear to imply an obvious
threshold.
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Fig. 3. Simulation study. Columns correspond to distributions (Poisson, NB with known s, NB with
estimated s), and rows correspond to metrics (bias, MSE, coverage, CI width, and time). Methods
are shown in different colors; GLM-EIV (green) is masked by accelerated GLM-EIV (red) in several
panels. Generally, GLM-EIV (both accelerated and non-accelerated versions) outperformed the gRNA-
mixture/NB-regression method, which in turn outperformed the thresholding/NB-regression method.
The rejection probability (i.e., the probability of rejecting the null hypothesis H0 : βm

1 = 0 at level
α = 0.05) was strictly 1 across methods and parameter settings, likely because the effect size was fairly
large.
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Relative


estimate


change


(REC)

Fig. 4. Applying GLM-EIV to analyze large-scale, high-MOI data. a-b, Estimates for fold change
produced by GLM-EIV and thresholded regression on Gasperini (a) and Xie (b) negative control pairs.
c-d, Estimates produced by GLM-EIV and thresholded regression on two positive control pairs – LRIF1

(a) and NDUFA2 (b) – plotted as a function of excess background contamination. Grey bands, 95%
CIs for the target of inference outputted by the methods. e-f, Median relative estimate change (REC;
e) and confidence interval coverage rate (f) across all 322 positive control pairs, plotted as a function of
excess background contamination. Panels (c-f) together illustrate that GLM-EIV demonstrated greater
stability than thresholded regression as background contamination increased.
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Perturbed Unperturbed

Perturbed 137 4

Unperturbed 0 20,588

Balanced accuracy: 0.9998


Sensitivity: 1.0000


Specificity: 0.9998
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Ground truth assignment

Impute gRNA 

assignments via 
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regression


(standard setting)
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GLM-EIV for 

whole data 

analysis

Classification metrics for gRNA 

CUL3g2

Real data analysis workflow

Fig. 5. The gRNA-only mixture assignment functionality of GLM-EIV accurately assigns

gRNAs to cells on real low-MOI data. a, Each point represents a cell. The position of each cell
along the vertical axis indicates the number of gRNA reads (from gRNA “CUL3g2”) observed in that
cell. Cells in the left column were classified by the gRNA mixture model as perturbed, while those in
the right column were classified as unperturbed. Purple (resp., red) cells were classified by the ground
truth method as perturbed (resp., unperturbed). b, A confusion matrix comparing the gRNA-to-cell
mixture model classifications against the ground truth classifications for gRNA “CUL3g2.” The two sets
of classifications were highly concordant, as quantified by balanced accuracy, sensitivity, and specificity
metrics. c, The balanced accuracy (left), sensitivity (middle), and specificity (right) of the gRNA mixture
assignment method across all gRNAs. d, The proposed data analysis workflow. If the level of background
contamination is low, then the gRNA mixture method can be used to impute perturbation identities onto
cells, which can then be plugged into downstream analytic tools, such as negative binomial regression or
SCEPTRE. On the other hand, if the level of background contamination is high, then the entire GLM-
EIV model can be used to analyze the data.



REFERENCES 35

APPENDIX

A. Theoretical details for thresholding estimator

We study the thresholding method from a theoretical perspective, recovering in a simplified Gaus-

sian setting phenomena revealed in the empirical analysis. Suppose we observe gRNA expression

and gene expression data (g1,m1), . . . , (gn,mn) on n cells from the following linear model:

mi = βm
0 + βm

1 pi + ϵi; gi = βg
0 + βg

1pi + τi; pi ∼ Bern(π); ϵi, τi ∼ N(0, 1), (A.1)

where pi, τi, and ϵi are independent. For a given threshold c ∈ R, the imputed perturbation

assignment p̂i is p̂i = I(gi ⩾ c). The thresholding estimator β̂m
1 is the OLS solution, i.e. β̂m

1 =

[∑n
i=1(p̂i − p̂)2

]−1 [∑n
i=1(p̂i − p̂)(mi −m)

]
. We derive the almost sure limit of β̂m

1 :

Proposition 1 The almost sure limit (as n→∞) of β̂m
1 is

β̂m
1

a.s.−−→ βm
1

(
π(ω − E[p̂i])

E[p̂i](1− E[p̂i])

)

≡ βm
1 γ(β

g
1 , π, c, β

g
0 ), (A.2)

where E[p̂i] = ζ(1− π) + ωπ, ω ≡ Φ (βg
1 + βg

0 − c), and ζ ≡ Φ (βg
0 − c) .

The function γ : R4 → R does not depend on the gene expression parameters βm
1 or βm

0 . The

asymptotic relative bias b : R4 → R of β̂m
1 is given by

b(βg
1 , π, c, β

g
0 ) ≡

1

βm
1

(

βm
1 − lim

a.s.
β̂m
1

)

= 1− γ(βg
1 , π, c, β

g
0 ).

Having derived an exact expression for the asymptotic relative bias of β̂m
1 , we can prove several

results about this quantity. We fix π to 1/2 for simplicity. (In reality, π is smaller, but the relevant

statistical phenomena emerge for π = 1/2.) We start with informal proposition statements; we

follow up with formal proposition statements below. First, the thresholding estimator strictly

underestimates (in absolute value) the true value of βm
1 over all choices of the threshold c and

over all values of the regression coefficients (βm
0 , β

m
1 ) and (βg

0 , β
g
1 ). This phenomenon, called
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attenuation bias, is a common attribute of estimators that ignore measurement error in errors-

in-variables models (Stefanski, 2000). Second, the magnitude of the bias decreases monotonically

in βg
1 , comporting with the intuition that the problem becomes easier as the gRNA mixture

distribution becomes increasingly well-separated. Third, the Bayes-optimal decision boundary

cbayes ∈ R (i.e., the most accurate decision boundary for classifying cells) is a critical value of

the bias function. Finally, and most subtly, there is no universally applicable rule for selecting a

threshold that yields minimal bias: when βg
1 is small, setting the threshold to an arbitrarily large

number yields smaller bias than setting the threshold to the Bayes decision boundary; when βg
1

is large, the reverse is true.

We state five propositions labeled 2 – 6 corresponding to the informal claims above; these

propositions are depicted visually in Figure 6.

Proposition 2 Fix π = 1/2. For all (βg
1 , c, β

g
0 ) ∈ R

3, the asymptotic relative bias is positive, i.e.

b(βg
1 , 1/2, c, β

g
0 ) > 0.

Proposition 3 Fix π = 1/2. The asymptotic relative bias b decreases monotonically in βg
1 , i.e.

∂b

∂(βg
1 )

(βg
1 , 1/2, c, β

g
0 ) ⩽ 0.

Let cbayes denote the Bayes-optimal decision boundary for classifying cells as perturbed or

unperturbed, i.e. cbayes = (1/2)(βg
0 + βg

1 ) for π = 1/2. We have that cbayes is a critical value of

the bias function:

Proposition 4 For π = 1/2 and given (βg
1 , β

g
0 ) ∈ R

2, the Bayes-optimal decision boundary cbayes

is a critical value of the bias function b, i.e.

∂b

∂c
(βg

1 , 1/2, cbayes, β
g
0 ) = 0.

Furthermore, as the threshold tends to infinity, the asymptotic relative bias b tends to π:
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Proposition 5 Assume without loss of generality that βg
1 > 0. As the threshold c tends to infinity,

the asymptotic relative bias b tends to π, i.e.

lim
c→∞

b(βg
1 , π, c, β

g
0 ) = π.

As a corollary, when π = 1/2, asymptotic relative bias tends to 1/2 as c tends to infinity.

Finally, we compare two threshold selection strategies head-to-head: setting the threshold to an

arbitrarily large number, and setting the threshold to the Bayes-optimal decision boundary:

Proposition 6 Assume without loss of generality that βg
1 > 0. For βg

1 ∈ [0, 2Φ−1(3/4)), we have

that

b(βg
1 , 1/2, cbayes, β

g
0 ) > b(βg

1 , 1/2,∞, βg
0 ).

For βg
1 = 2Φ−1(3/4), we have that

b(βg
1 , 1/2, cbayes, β

g
0 ) = b(βg

1 , 1/2,∞, βg
0 ).

Finally, for βg
1 ∈ (2Φ−1(3/4),∞), we have that

b(βg
1 , 1/2, cbayes, β

g
0 ) < b(βg

1 , 1/2,∞, βg
0 ).

In other words, setting the threshold to a large number yields a smaller bias when βg
1 is small

(i.e., βg
1 < 2Φ−1(3/4) ≈ 1.35; Figure 7a, left); setting the threshold to the Bayes-optimal decision

boundary yields a smaller bias when βg
1 is large (i.e., βg

1 > 2Φ−1(3/4); Figure 7a, right); and the

two approaches coincide when βg
1 is intermediate (i.e., βg

1 = 2Φ−1(3/4); Figure 7a, middle).

Next, we study the variance of the thresholding estimator, considering a slightly simpler

model for this purpose. Suppose the intercepts in (A.1) are fixed at 0 (i.e., βm
0 = βg

0 = 0). For

notational simplicity we write βm = βm
1 and βg = βg

1 . The thresholding estimator β̂m is the

no-intercept OLS solution β̂m =
[∑n

i=1 p̂
2
i

]−1
[
∑n

i=1 p̂imi] . The following proposition derives the

scaled, asymptotic distribution of β̂m :
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Fig. 6. Bias as a function of threshold. This figure visually depicts Propositions 2-6, which were
stated informally above. Asymptotic relative bias is plotted on the vertical axis, and the threshold is
plotted on the horizontal axis. Panels correspond to different values of βg

1 . Vertical blue lines indicate
the Bayes-optimal decision boundary. Observe that (a) bias is strictly nonzero (proposition 2); (b) bias
decreases monotonically in βg

1 (Proposition 3); (c) the Bayes-optimal decision boundary is a critical value
of the bias function (Proposition 4), in some cases a maximum and in other cases a minimum; (d) as
the threshold tends to infinity, the bias converges to 1/2 (Proposition 5); and (e) when βg

1 < 1.35, an
arbitrarily large number yields a smaller bias; by contrast, when βg

1 > 1.35, the Bayes-optimal decision
boundary yields a smaller bias (Proposition 6). Together, these results illustrate that selecting a good
threshold is deceptively challenging.

Proposition 7 The limiting distribution of β̂m is

√
n(β̂m − l) d−→ N

(

0,
βmωπ(βm − 2l) + E[p̂i](1 + l2)

(E[p̂i])
2

)

,

where

l ≡ βmωπ/[ζ(1− π) + ωπ]; E[p̂i] = πω + (1− π)ζ; ω ≡ Φ(βg − c); ζ ≡ Φ(−c).

This proposition yields an asymptotically exact bias-variance decomposition for β̂m: as the

threshold tends to infinity, the bias decreases and the variance increases. Figure 7 plots the

bias-variance decomposition as a function of the threshold.

A.1 Organization

The following subsections prove all propositions. Section A.2 introduces some notation. Section

A.3 establishes almost sure convergence of the thresholding estimator in the model (A.1), proving

Proposition 1. Section A.4 simplifies the expression for the attenuation function γ, and section
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Fig. 7. Thresholding method bias-variance decomposition. Bias decreases and variance increases
as the threshold tends to infinity. βg

1 = 1, βm

1 = 1, and π = 0.1 in this plot.

A.5 computes derivatives of γ to be used throughout the proofs. Section A.6 establishes the

limit in c of γ, proving Proposition 5. Section A.7 establishes that the Bayes-optimal decision

boundary is a critical value of γ, proving Proposition 4, and section A.8 compares the competing

threshold selection strategies head-to-head, proving Proposition 6. Section A.9 demonstrates that

γ is monotone in βg
1 , proving Proposition 3, and Section A.10 establishes attenuation bias of the

thresholding estimator, proving Proposition 2. Finally, Section A.11 derives the bias-variance de-

composition of the thresholding estimator in the no-intercept version of A.1, proving Proposition

7.

A.2 Notation

All notation introduced in this subsection (i.e., A.2) pertains to the Gaussian model with inter-

cepts (A.1). Recall that the attenuation function γ : R4 → R is defined by

γ(βg
1 , c, π, β

g
0 ) =

π(ω − E[p̂i])

E[p̂i](1− E[p̂i])
,

where

E[p̂i] = ζ(1− π) + ωπ; ω = Φ(βg
1 + βg

0 − c) ; ζ = Φ(βg
0 − c) .
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Additionally, recall that the asymptotic relative bias function b : R4 → R is b(βg
1 , c, π, β

g
0 ) =

1− γ(βg
1 , c, π, β

g
0 ). Next, we define the functions g and h : R4 → R by

g(βg
1 , c, π, β

g
0 ) = (1− π) (Φ(βg

0 + βg
1 − c))− (1− π) (Φ(βg

0 − c)) (A.3)

and

h(βg
1 , c, π, β

g
0 ) = [(1− π) (Φ(βg

0 − c)) + π (Φ(βg
0 + βg

1 − c))]×

[(1− π) (Φ(c− βg
0 )) + π (Φ(c− βg

0 − βg
1 ))] . (A.4)

We use f : R → R to denote the N(0, 1) density, and we denote the right-tail probability

probability of f by Φ̄, i.e.,

Φ̄(x) =

∫ ∞

x

f = Φ(−x).

The parameter βg
0 is a given, fixed constant throughout the proofs. Therefore, to minimize

notation, we typically use γ(βg
1 , c, π) (resp., b(βg

1 , c, π), g(β
g
1 , c, π), h(β

g
1 , c, π)) to refer to the

function γ (resp., b, g, h) evaluated at (βg
1 , c, π, β

g
0 ). Finally, for a given function r : Rp → R,

point x ∈ R
p, and index i ∈ {1, . . . , p}, we use the symbol Dir(x) to refer to the derivative of the

ith argument of r evaluated at x (sensu Fitzpatrick (2009)). For example, D1γ(β
g
1 , c, 1/2) is the

derivative of the first argument of γ (the argument corresponding to βg
1 ) evaluated at (βg

1 , c, 1/2).

Likewise, D2g(β
g
1 , c, π) is the derivative of the second argument of g (the argument corresponding

to c) evaluated at (βg
1 , c, π).

A.3 Almost sure limit of β̂m
1

We derive the limit in probability of β̂m
1 for the Gaussian model with intercepts (A.1). Dividing

by n in (A.2), we can express β̂m
1 as

β̂m
1 =

1
n

∑n
i=1(p̂i − p̂i)(mi −m)
1
n

∑n
i=1(p̂i − p̂)

.
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By weak LLN, β̂m
1

P−→ Cov(p̂i,mi)/V (p̂i) . To compute this quantity, we first compute several

simpler quantities:

1. Expectation of mi: E[mi] = βm
0 + βm

1 π.

2. Expectation of p̂i:

E[p̂i] = P [p̂i = 1] = P [βg
0 + βg

1pi + τi ⩾ c] =

(By LOTP) P [βg
0 + τi ⩾ c]P [pi = 0] + P [βg

0 + βg
1 + τi ⩾ c]P[pi = 1]

= P [τi ⩾ c− βg
0 ] (1− π) + P [τi ⩾ c− βg

1 − βg
0 ] (π)

=
(
Φ̄(c− βg

0 )
)
(1− π) +

(
Φ̄(c− βg

1 − βg
0 )
)
(π) =

Φ(βg
0 − c)(1− π) + Φ(βg

1 + βg
0 − c)π = ζ(1− π) + ωπ.

3. Expectation of p̂ipi: E [p̂ipi] = E [p̂i|pi = 1]P [pi = 1] = P [βg
0 + βg

1 + τi ⩾ c]π = ωπ.

4. Expectation of p̂imi:

E [p̂imi] = E[p̂i(β
m
0 + βm

1 pi + ϵi)] = βm
0 E [p̂i] + βm

1 E [p̂ipi] + E[p̂iϵi]

= βm
0 E[p̂i] + βm

1 ωπ + E[p̂i]E[ϵi] = βm
0 E[p̂i] + βm

1 ωπ.

5. Variance of p̂i: Because p̂i is binary, we have that V[p̂i] = E[p̂i] (1− E[p̂i]) .

6. Covariance of p̂i,mi:

Cov (p̂i,mi) = E [p̂imi]− E[p̂i]E[mi] = βm
0 E[p̂i] + βm

1 ωπ − E[p̂i](β
m
0 + βm

1 π)

= βm
1 ωπ − E[p̂i]β

m
1 π = βm

1 π (ω − E[p̂i]) .

Combining these expressions, we have that

β̂m
1

P−→ βm
1 π(ω − E[p̂i])

E[p̂i](1− E[p̂i])
= βm

1 γ(β
g
1 , c, π).
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A.4 Re-expressing γ in a simpler form

We rewrite the attenuation fraction γ in a way that makes it more amenable to theoretical

analysis. We leverage the fact that f integrates to unity and is even. We have that

E [p̂i] = (1− π)Φ̄(c− βg
0 ) + πΦ̄(c− βg

0 − βg
1 ) = (1− π)Φ(βg

0 − c) + πΦ(βg
0 + βg

1 − c), (A.5)

and so

1− E [p̂i] = (1− π) + π − E[p̂i] = (1− π)
(
1− Φ̄(c− βg

0 )
)
+ π

(
1− Φ̄(c− βg

0 − βg
1 )
)

= (1− π)Φ(c− βg
0 ) + πΦ(c− βg

0 − βg
1 ). (A.6)

Next,

ω = Φ(βg
1 + βg

0 − c), (A.7)

and so

ω − E[p̂i] = Φ(βg
1 + βg

0 − c)− (1− π)Φ(βg
0 − c)− πΦ(βg

0 + βg
1 − c)

(1− π)Φ(βg
1 + βg

0 − c)− (1− π)Φ(βg
0 − c). (A.8)

Combining (A.5, A.6, A.7, A.8), we find that

γ(βg
1 , c, π) =

π(ω − E[p̂i])

E[p̂i](1− E[p̂i])

=
π [(1− π)Φ(βg

0 + βg
1 − c)− (1− π)Φ(βg

0 − c)]
[(1− π)Φ(βg

0 − c) + πΦ(βg
0 + βg

1 − c)] [(1− π)Φ(c− βg
0 ) + πΦ(c− βg

0 − βg
1 )]

. (A.9)

As a corollary, when π = 1/2,

γ(βg
1 , c, 1/2) =

Φ(βg
0 + βg

1 − c)− Φ(βg
0 − c)

[Φ(βg
0 − c) + Φ(βg

0 + βg
1 − c)] [Φ(c− βg

0 ) + Φ(c− βg
0 − βg

1 )]
. (A.10)

Recalling the definitions of g (A.3) and h (A.4), we can write γ as

γ(βg
1 , c, π) =

πg(βg
1 , c, π)

h(βg
1 , c, π)

.
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The special case (A.10) is identical to

γ(βg
1 , c, 1/2) =

(4)(1/2)g(βg
1 , c, 1/2)

4h(βg
1 , c, 1/2)

=
2g(βg

1 , c, 1/2)

4h(βg
1 , c, 1/2)

, (A.11)

i.e., the numerator and denominator of (A.11) coincide with those of (A.10). We sometimes will

use the notation 2 · g and 4 ·h to refer to the numerator and denominator of (A.10), respectively.

A.5 Derivatives of g and h in c

We compute the derivatives of g and h in c, which we will need to prove subsequent results. First,

by the FTC (fundamental theorem of calculus) and the evenness of f , we have that

D2g(β
g
1 , c, π) = −(1− π)f(βg

0 + βg
1 − c) + (1− π)f(βg

0 − c)

= (1− π)f(c− βg
0 )− (1− π)f(c− βg

0 − βg
1 ). (A.12)

Second, we have that

D2h(β
g
1 , c, π) = −[(1− π)f(βg

0 − c) + πf(βg
0 + βg

1 − c)] [(1− π)Φ(c− βg
0 ) + πΦ(c− βg

0 − βg
1 )]

+ [(1− π)f(c− βg
0 ) + πf(c− βg

0 − βg
1 )] [(1− π)Φ(βg

0 − c) + πΦ(βg
0 + βg

1 − c)]

= [(1− π)f(c− βg
0 ) + πf(c− βg

0 − βg
1 )]×

[

(1− π)Φ(βg
0 − c) + πΦ(βg

0 + βg
1 − c)− (1− π)Φ(c− βg

0 )− πΦ(c− βg
0 − βg

1 )

]

. (A.13)

A.6 Limit of γ in c

Assume (without loss of generality) that βg
1 > 0. We compute limc→∞ γ(βg

1 , c, π). Observe that

lim
c→∞

g(βg
1 , c, π) = lim

c→∞
h(βg

1 , c, π) = 0.

Therefore, we can apply L’Hôpital’s rule. We have by (A.12) and (A.13) that

lim
c→∞

γ(βg
1 , c, π) = lim

c→∞
πD2g(β

g
1 , c, π)

D2h(β
g
1 , c, π)
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= lim
c→∞

{
(1− π)f(c− βg

0 ) + πf(c− βg
0 − βg

1 )

π(1− π)f(c− βg
0 )− π(1− π)f(c− βg

0 − βg
1 )
×

[

(1− π)Φ(βg
0 − c) + πΦ(βg

0 + βg
1 − c)− (1− π)Φ(c− βg

0 )− πΦ(c− βg
0 − βg

1 )

]}−1

. (A.14)

We evaluate the two terms in the product (A.14) separately. Dividing by f(c− βg
0 − βg

1 ) > 0, we

see that

(1− π)f(c− βg
0 ) + πf(c− βg

0 − βg
1 )

π(1− π)f(c− βg
0 )− π(1− π)f(c− βg

0 − βg
1 )

=

(1−π)f(c−βg

0 )

f(c−βg

0−βg

1 )
+ π

π(1−π)f(c−βg

0 )

f(c−βg

0−βg

1 )
− π(1− π)

. (A.15)

To evaluate the limit of (A.15), we first evaluate the limit of

f(c− βg
0 )

f(c− βg
0 − βg

1 )
=

exp [−(1/2)(c− βg
0 )

2]

exp [−(1/2)(c− βg
0 − βg

1 )
2]

=
exp[−(1/2)(c2 − 2cβg

0 + (βg
0 )

2)]

exp [−(1/2)(c2 − 2cβg
0 − 2cβg

1 + (βg
0 )

2 + 2(βg
0β

g
1 ) + (βg

1 )
2)]

= exp
[
− c2/2 + cβg

0 − (βg
0 )

2/2

+ c2/2− cβg
0 − cβg

1 + (βg
0 )

2/2 + βg
0β

g
1 + (βg

1 )
2/2
]

= exp[−cβg
1 + βg

0β
g
1 + (βg

1 )
2/2] = exp[βg

0β
g
1 + (βg

1 )
2/2] exp[−cβg

1 ]. (A.16)

Taking the limit in (A.16), we obtain

lim
c→∞

f(c− βg
0 )

f(c− βg
0 − βg

1 )
= exp[βg

0β
g
1 + (βg

1 )
2/2] lim

c→∞
exp[−cβg

1 ] = 0

for βg
1 > 0. We now can evaluate the limit of (A.15):

lim
c→∞

(1− π)f(c− βg
0 ) + πf(c− βg

0 − βg
1 )

π(1− π)f(c− βg
0 )− π(1− π)f(c− βg

0 − βg
1 )

=
−π

π(1− π) = − 1

1− π .

Next, we compute the limit of the other term in the product (A.14):

lim
c→∞

[

(1− π)Φ(βg
0 − c) + πΦ(βg

0 + βg
1 − c)

− (1− π)Φ(c− βg
0 )− πΦ(c− βg

0 − βg
1 )

]

= −(1− π)− π = −1. (A.17)

Combining (A.15) and (A.17), the limit (A.14) evaluates to

lim
c→∞

γ(βg
1 , c, π) =

(
1

1− π

)−1

= 1− π.
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It follows that the limit in c of the asymptotic relative bias b is

lim
c→∞

b(βg
1 , c, π) = 1− lim

c→∞
γ(βg

1 , c, π) = π.

A corollary is that limc→∞ b(βg
1 , c, 1/2) = 1/2.

A.7 Bayes-optimal decision boundary as a critical value of γ

Let cbayes = βg
0 + (1/2)βg

1 . We show that c = cbayes is a critical value of γ for π = 1/2 and given

βg
1 , i.e, D2γ(β

g
1 , cbayes, 1/2) = 0. Differentiating (A.11), the quotient rule implies that

D2γ(β
g
1 , c, 1/2) =

D2[2g(β
g
1 , c, 1/2)]4h(β

g
1 , c, 1/2)− 2g(βg

1 , c, 1/2)D2[4h(β
g
1 , c, 1/2)]

[4h(βg
1 , c, π)]

2
. (A.18)

We have by (A.12) that

D2[2g(β
g
1 , cbayes, 1/2)] = f(βg

1/2)− f(−βg
1/2) = f(βg

1/2)− f(βg
1/2) = 0. (A.19)

Similarly, we have by (A.13) that

D2[4h(β
g
1 , cbayes, π)] = [f(βg

1/2) + f(−βg
1/2)] [Φ(−βg

1/2) + Φ(βg
1/2)− Φ(βg

1/2)− Φ(−βg
1/2)] = 0.

(A.20)

Plugging in (A.20) and (A.19) to (A.18), we find that D2[γ(β
g
1 , cbayes, 1/2)] = 0. Finally, because

b(βg
1 , c, 1/2) = 1− γ(βg

1 , c, 1/2),

it follows that

D2[b(β
g
1 , cbayes, 1/2)] = −D2[γ(β

g
1 , cbayes, 1/2)] = 0.

A.8 Comparing Bayes-optimal decision boundary and large threshold

We compare the bias produced by setting the threshold to a large number to the bias produced

by setting the threshold to the Bayes-optimal decision boundary. Let r : R⩾0 → R be the value
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of attenuation function evaluated at the Bayes-optimal decision boundary cbayes = βg
0 + (1/2)βg

1 ,

i.e.

r(βg
1 ) = γ(βg

1 , β
g
0 + (1/2)βg

1 , 1/2) =
Φ(βg

1/2)− Φ(−βg
1/2)

[Φ(−βg
1/2) + Φ(βg

1/2)] [Φ(β
g
1/2) + Φ(−βg

1/2)]

=

∫ βg

1/2

−βg

1/2
f

[1− Φ(βg
1/2) + Φ(βg

1/2)] [Φ(β
g
1/2) + 1− Φ(βg

1/2)]
= 2

∫ βg

1/2

0

f = 2Φ(βg
1/2)− 1.

We set r to 1/2 and solve for βg
1 :

r(βg
1 ) = 1/2 ⇐⇒ 2Φ(βg

1/2)− 1 = 1/2 ⇐⇒ Φ(βg
1/2) = 3/4 ⇐⇒ βg

1 = 2Φ−1(3/4) ≈ 1.35.

Because r is a strictly increasing function, it follows that r(βg
1 ) < 1/2 for βg

1 < 2Φ−1(3/4) and

r(βg
1 ) > 1/2 for βg

1 > 2Φ−1(3/4). Next, because

b(βg
1 , cbayes, 1/2) = 1− γ(βg

1 , cbayes, 1/2) = 1− r(βg
1 ),

we have that b(βg
1 , cbayes, 1/2) > 1/2 for βg

1 < 2Φ−1(3/4) and b(βg
1 , cbayes, 1/2) < 1/2 for

βg
1 > 2Φ−1(3/4). Recall that the bias induced by sending the threshold to infinity (as stated

in Proposition 5 and proven in Section A.6) is 1/2, i.e.

b(βg
1 ,∞, 1/2) = 1/2.

We conclude that b(βg
1 , cbayes, 1/2) > b(βg

1 ,∞, 1/2) on βg
1 ∈ [0, 2Φ−1(3/4)); b(βg

1 , cbayes, 1/2) =

b(βg
1 ,∞, 1/2) for βg

1 = 2Φ−1(3/4); and b(βg
1 , cbayes, 1/2) < b(βg

1 ,∞, 1/2) on βg
1 ∈ (2Φ−1(3/4),∞).

A.9 Monotonicity in βg
1

We show that γ is monotonically increasing in βg
1 for π = 1/2 and given threshold c. We begin

by stating and proving two lemmas. The first lemma establishes an inequality that will serve as

the basis for the proof.

Lemma A.1 The following inequality holds:
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[Φ(βg
0 − c) + Φ(βg

0 + βg
1 − c)] · [Φ(βg

0 + βg
1 − c)− Φ(βg

0 − c) + Φ(c− βg
0 ) + Φ(c− βg

0 − βg
1 )]

⩾ [Φ(βg
0 + βg

1 − c)− Φ(βg
0 − c)] [Φ(c− βg

0 ) + Φ(c− βg
0 − βg

1 )] . (A.21)

Proof : We take cases on the sign on βg
1 .

Case 1: β1
g < 0. Then βg

1 + (βg − c) < (βg
0 − c), implying Φ(βg

0 + βg
1 − c) < Φ(βg

0 − c), or

[Φ(βg
0 + βg

1 − c)− Φ(βg
0 − c)] < 0. Moreover, [Φ(c− βg

0 ) + Φ(c− βg
0 − βg

1 )] is positive. Therefore,

the right-hand side of (A.21) is negative.

Turning our attention of the left-hand side of (A.21), we see that

Φ(βg
0 + βg

1 − c) + Φ(c− βg
0 − βg

1 ) = 1− Φ(βg
0 + βg

1 − c) + Φ(c− βg
0 − βg

1 ) = 1. (A.22)

Additionally, Φ(βg
0 − c) < 1 and Φ(c− βg

0 ) > 0. Combining these facts with (A.22), we find that

[Φ(βg
0 + βg

1 − c)− Φ(βg
0 − c) + Φ(c− βg

0 ) + Φ(c− βg
0 − βg

1 )] > 0.

Finally, because [Φ(βg
0 − c) + Φ(βg

0 + βg
1 − c)] > 0, the entire left-hand side of (A.21) is positive.

The inequality holds for βg
1 < 0.

Case 2: β1
g ⩾ 0. We will show that the first term on the LHS of (A.21) is greater than the first

term on the RHS of (A.21), and likewise that the second term on the LHS is greater than the

second term on the RHS, implying the truth of the inequality. Focusing on the first term, the

positivity of Φ(βg
0 − c) implies that Φ(βg

0 − c) ⩾ −Φ(βg
0 − c), and so

Φ(βg
0 − c) + Φ(βg

0 + βg
1 − c) ⩾ Φ(βg

0 − βg
1 − c)− Φ(βg

0 − c).

Next, focusing on the second term, βg
1 ⩾ 0 implies that

βg
1 + βg

0 − c ⩾ βg
0 − c =⇒ Φ(βg

1 + βg
0 − c)− Φ(βg

0 − c) ⩾ 0. (A.23)

Adding Φ(c− βg
0 ) + Φ(c− βg

0 − βg
1 ) to both sides of (A.23) yields

Φ(βg
1 + βg

0 − c)− Φ(βg
0 − c) + Φ(c− βg

0 ) + Φ(c− βg
0 − βg

1 ) ⩾ Φ(c− βg
0 ) + Φ(c− βg

0 − βg
1 ).
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The inequality holds for βg
1 ⩾ 0. Combining the cases, the inequality holds for all βg

1 ∈ R. □

The second lemma establishes the derivatives of the functions 2 · g and 4 · h in βg
1 .

Lemma A.2 The derivatives in βg
1 of 2 · g and 4 · h are

D1[2g(β
g
1 , c, 1/2)] = f(βg

0 + βg
1 − c), (A.24)

D1[4h(β
g
1 , c, 1/2)] = f(βg

0 + βg
1 − c) [Φ(c− βg

0 ) + Φ(c− βg
0 − βg

1 )]

−f(βg
0 + βg

1 − c) [Φ(βg
0 − c) + Φ(βg

0 + βg
1 − c)]. (A.25)

Proof : Apply FTC and product rule. □

We are ready to prove the monotonicity of γ in βg
1 . Subtracting

[Φ(βg
0 − c) + Φ(βg

0 + βg
1 − c)] [Φ(βg

0 + βg
1 − c)− Φ(βg

0 − c)]

from both sides of (A.21) and multiplying by f(βg
0 + βg

1 − c) > 0 yields

f(βg
0 + βg

1 − c)[Φ(βg
0 − c) + Φ (βg

0 + βg
1 − c)] [Φ(c− βg

0 ) + Φ(c− βg
0 − βg

1 )]

⩾ f(βg
0 + βg

1 − c) [Φ(c− βg
0 ) + Φ(c− βg

0 − βg
1 )][Φ(β

g
0 + βg

1 − c)− Φ(βg
0 − c)]

− f(βg
0 + βg

1 − c) [Φ(βg
0 − c) + Φ(βg

0 + βg
1 − c)][Φ(βg

0 + βg
1 − c)− Φ(βg

0 − c)]. (A.26)

Next, recall that

2g(βg
1 , c, 1/2) = Φ(βg

0 + βg
1 − c)− Φ(βg

0 − c). (A.27)

and

4h(βg
1 , c, 1/2) = [Φ(βg

0 − c) + Φ(βg
0 + βg

1 − c)] [Φ(c− βg
0 ) + Φ(c− βg

0 − βg
1 )]. (A.28)

Substituting (A.24, A.25, A.27, A.28) into (A.26) produces

D1[2g(β
g
1 , c, 1/2)]4h(β

g
1 , c, 1/2) ⩾ 2g(βg

1 , c, 1/2)D1[4h(β
g
1 , c, 1/2)],
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or

D1[2g(β
g
1 , c, 1/2)]4h(β

g
1 , c, 1/2)− 2g(βg

1 , c, 1/2)D1[4h(β
g
1 , c, 1/2)] ⩾ 0. (A.29)

The quotient rule implies that

D1γ(β
g
1 , c, 1/2) =

D1[2g(β
g
1 , c, 1/2)]4h(β

g
1 , c, 1/2)− 2g(βg

1 , c, 1/2)D1[4h(β
g
1 , c, 1/2)]

[4h(βg
1 , c, 1/2)]

2
. (A.30)

We conclude by (A.29) and (A.30) that γ is monotonically increasing in βg
1 . Finally, b(β

g
1 , c, π) =

1− γ(βg
1 , c, π) is monotonically decreasing in βg

1 .

A.10 Strict attenuation bias

We begin by computing the limit of γ in βg
1 given π = 1/2. First,

lim
βg

1→∞
γ(βg

1 , c, 1/2) =
1− Φ(βg

0 − c)
[1 + Φ(βg

0 − c)] [Φ(c− βg
0 )]

=
Φ(c− βg

0 )

[1 + Φ(βg
0 − c)] [Φ(c− βg

0 )]
=

1

1 + Φ(βg
0 − c)

< 1.

Similarly,

lim
βg

1→−∞
γ(βg

1 , c, 1/2) =
−Φ(βg

0 − c)
[Φ(βg

0 − c)] [Φ(c− βg
0 ) + 1]

=
−1

1 + Φ(c− βg
0 )

> −1.

The function γ(βg
1 , c, 1/2, β

g
0 ) is monotonically increasing in βg

1 (as stated in Proposition 3 and

proven in section A.9). It follows that

−1 < − 1

1 + Φ(c− βg
0 )

⩽ γ(βg
1 , c, 1/2, β

g
0 ) ⩽

1

1− Φ(βg
0 − c)

< 1

for all βg
1 ∈ R. But βg

0 and c were chosen arbitrarily, and so

−1 < γ(βg
1 , c, 1/2, β

g
0 ) < 1

for all (βg
1 , c, β

g
0 ) ∈ R

3. Finally, because b(βg
1 , c, 1/2, β

g
0 ) = 1− γ(βg

1 , c, 1/2, β
g
0 ), it follows that

0 < b(βg
1 , c, 1/2, β

g
0 ) < 2

for all (βg
1 , c, β

g
0 ) ∈ R

3
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A.11 Bias-variance decomposition in no-intercept model

We prove the bias-variance decomposition for the no-intercept version of (A.1). Define l (for

“limit”) by

l = βm

(
ωπ

ζ(1− π) + ωπ

)

,

where

ω = Φ̄(c− βg) = Φ(βg − c); ζ = Φ̄(c) = Φ(−c).

We have that

β̂m − l =
∑n

i=1 p̂imi
∑n

i=1 p̂
2
i

− l =
∑n

i=1 p̂imi
∑n

i=1 p̂
2
i

− l
∑n

i=1 p̂
2
i

∑n
i=1 p̂

2
i

=

∑n
i=1 p̂i(mi − lp̂i)
∑n

i=1 p̂
2
i

.

Therefore,

√
n(β̂m − l) =

(1/
√
n)
∑n

i=1 p̂i(mi − lp̂i)
(1/n)

∑n
i=1 p̂

2
i

. (A.31)

Next, we compute the expectation and variance of p̂i(mi− lp̂i). To do so, we first compute several

simpler quantities:

1. Expectation of p̂i: E[p̂i] = P(piβg + τi ⩾ c) = P(βg + τi ⩾ c)π + P(τi ⩾ c)(1 − π) =

πω + (1− π)ζ.

2. Expectation of p̂ipi: E [p̂ipi] = E [p̂i|pi = 1]P [pi = 1] = ωπ.

3. Expectation of p̂imi:

E[p̂imi] = E [p̂i(βmpi + ϵi)] = E [βmp̂ipi + p̂iϵi]

= βmE [p̂ipi] + E[p̂i]E[ϵi] = βmωπ + 0 = βmωπ.

4. Expectation of p̂im
2
i :

E
[
p̂im

2
i

]
= E

[
p̂i(βmpi + ϵi)

2
]
= E

[
p̂i
(
β2
mp

2
i + 2βmpiϵi + ϵ2i

)]

= E
[
p̂ipiβ

2
m + 2βmpip̂iϵi + p̂iϵ

2
i

]
= β2

mE[p̂ipi] + 2βmE[pip̂i]E[ϵi] + E[p̂i]E[ϵ
2
i ]

= β2
mE[p̂ipi] + E[p̂i] = β2

mωπ + E[p̂i].
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Now, we can compute the expectation and variance of p̂i(mi − lp̂i). First,

E [p̂i(mi − lp̂i)] = E[p̂imi]− lE[p̂i] = βmωπ −
(

βmωπ

ζ(1− π) + ωπ

)

[ζ(1− π) + ωπ] = 0. (A.32)

Additionally,

V [p̂i(mi − lp̂i)] = E
[
p̂2i (mi − lp̂i)2

]
− (E [p̂i(mi − lp̂i)])2

= E
[
p̂im

2
i

]
− 2lE[mip̂i] + l2E[p̂i] = β2

mωπ + E[p̂i]− 2lβmωπ + l2E[p̂i]

= βmωπ(βm − 2l) + E[p̂i](1 + l2). (A.33)

Therefore, by CLT, (A.32), and (A.33),

(1/
√
n)

n∑

i=1

p̂i(mi − lp̂i) d−→ N
(
0, βmωπ(βm − 2l) + E[p̂i](1 + l2)

)
. (A.34)

Next, by weak LLN,

(1/n)

n∑

i=1

p̂2i = (1/n)

n∑

i=1

p̂i
P−→ E[p̂i]. (A.35)

Finally, by (A.31), (A.34), (A.35), and Slutsky’s Theorem,

√
n(β̂m − l) d−→ N

(

0,
βmωπ(βm − 2l) + E[p̂i](1 + l2)

(E[p̂i])
2

)

.

Thus, for large n ∈ N, we have that

E[β̂m] ≈ l; V[β̂m] ≈
[
βmωπ(βm − 2l) + E[p̂i](1 + l2)

]
/[nE2[p̂i]],

completing the bias-variance decomposition.

A.12 Bayes-optimal decision boundary for non-Gaussian mixture distributions and GLMs

We report the Bayes-optimal decision boundary for gRNA count distributions that are non-

Gaussian. First, consider a simple two-component Poisson mixture model with means µ0 and µ1

and mixing probability π:
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p(k;µ0, µ1, π) = (1− π)f(k;µ0) + πf(k;µ1),

where f(k;µ) = (µke−k)/µ! is a Poisson density. Suppose we draw an observation from this

distribution. The Bayes-optimal threshold for classifying the observation as having been drawn

from the first or second component is

µ0 − µ1 + log(π)− log(1− π)
log(µ0)− log(µ1)

. (A.36)

Next, consider the slightly more complex Poisson mixture GLM:

gi|(pi, zi, oi) ∼ Pois(µi); r(µi) = β0 + β1pi + γT zi + oi,

where pi ∼ Bern(π) is unobserved. Conditional on the covariates and offset, the mean of the

unperturbed component is µi(1) = r−1(β0 + γT zi + oi), and that of the perturbed component

is µi(1) = r−1(β0 + β1 + γT zi + oi.) The Bayes-optimal threshold is obtained by plugging in

µi(1) for µ1 and µi(0) for µ0 in (A.36). To obtain a fixed gRNA assignment threshold across

cells, we compute the Bayes-optimal decision boundary for each cell and then take the average

across cells. The situation is similar for the negative binomial (with known size s) distribution;

the Bayes-optimal decision boundary in this case is

s [log(µ0 + s)− log(µ1 + s)] + log(π)− log(1− π)
log(µ0(µ1 + s))− log(µ1(µ0 + s))

.

B. Estimation and inference in the GLM-EIV model

B.1 Detailed specification of the model

We provide a more precise and technical specification of the GLM-EIV model than provided

in the main text. Let x̃i = [1, pi, zi]
T ∈ R

d be the vector of covariates (including an intercept

term) for the ith cell. (We use the tilde as a reminder that the vector is partially unobserved.)

Let βm = [βm
0 , β

m
1 , γm]T ∈ R

d and βg = [βg
0 , β

g
1 , γg]

T ∈ R
d be the unknown coefficient vectors
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corresponding to the gene and gRNA expression models, respectively. Finally, let omi and ogi be

the (possibly zero) offset terms for the gene and gRNA models; in practice, we typically set omi

and ogi to the log-transformed library sizes (i.e., log(dmi ) and log(dgi ), respectively).

We use a pair of GLMs to model the gene and gRNA expressions. Considering first the gene

expression model, let the ith linear component lmi of the model be lmi ≡ ⟨x̃i, βm⟩+ omi . Next, let

the mean µm
i of the ith observation be rm(µm

i ) ≡ lmi , where rm : R→ R is a strictly increasing,

differentiable link function. Let ψm : R→ R be the differentiable, cumulant-generating function of

the selected exponential family distribution. We can express the canonical parameter ηmi in terms

of ψm and rm by ηmi =
(
[ψ′

m]−1 ◦ r−1
m

)
(lmi ) ≡ hm(lmi ). Finally, let cm : R → R be the carrying

density of the selected exponential family distribution. The density fm of mi conditional on the

the canonical parameter ηi is fm(mi; η
m
i ) = exp {miη

m
i − ψm(ηmi ) + cm(mi)} . We implicitly set

the “scale” term (i.e., the a(ϕ) term in McCullagh and Nelder (1990), Eqn. 2.4, p. 28) to unity;

this slightly simplified model encompasses the most important distributions for our purposes,

including the Poisson, negative binomial, and Gaussian (with unit variance) distributions.

Let the terms lgi , o
g
i , µ

g
i , η

g
i , ψg, rg, hg and cg be defined in an analogous way for the gRNA

model, i.e. lgi ≡ ⟨x̃i, βg⟩ + ogi , rg(µ
g
i ) ≡ lgi , and ηgi =

(
[ψ′

g]
−1 ◦ r−1

g

)
(lgi ) ≡ hg(l

g
i ). The density

fg of gi given the canonical parameter is fg(mi; η
g
i ) = exp {giηgi − ψg(η

g
i ) + cg(gi)} . Finally, the

unobserved variable pi is assumed to follow a Bernoulli distribution with mean π ∈ (0, 1/2]. Its

marginal density fp is given by fp(pi) = πpi(1− π)1−pi . The unknown parameters in the model

are θ = [βm, βg, π]
T ∈ R

2d+1.

B.2 Notation

We briefly introduce notation that we will use throughout. For j ∈ {0, 1}, let x̃i(j) ≡ [1, j, zi]
T

denote the value of x̃i that results from setting pi to j. Next, let lmi (j), ηmi (j), and µm
i (j)

be the values of lmi , ηmi , and µm
i , respectively, that result from setting pi to j, i.e., lmi (j) ≡
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⟨x̃i(j), βm⟩ + omi , ηmi (j) ≡ hm(lmi (j)), and µm
i (j) ≡ r−1

m (lmi (j)). Let the corresponding gRNA

quantities lgi (j), η
g
i (j), and µ

g
i (j) be defined analogously. Next, let X ∈ R

n×(d−1) be the observed

design matrix, and let X̃ ∈ R
n×d be the augmented design matrix that results from concatenating

the column of (unobserved) pis to X, i.e.

X ≡






1 z1
...

...
1 zn




 ; X̃ ≡






1 p1 z1
...

...
...

1 pn zn




 =






x̃T1
...
x̃Tn




 .

Furthermore, for j ∈ {0, 1}, let X̃(j) ∈ R
n×d be the matrix that results from setting pi to j

for all i ∈ {1, . . . , n} in X̃, and let [X̃(0)T , X̃(1)T ]T denote the R
2n×d matrix that results from

vertically concatenating X̃(0) and X̃(1). Furthermore, define m := [m1, . . . ,mn], and let g, p,

om, and og be defined analogously. Finally, let [m,m]T ∈ R
2n be the vector that results from

concatenating m to itself, i.e. [m,m]T ≡ [m1, . . . ,mn,m1, . . . ,mn], and let [g, g]T , [og, og]T , and

[om, om]T be defined similarly.

B.3 Log likelihood and estimation

We conduct estimation and inference conditional on the library sizes and technical factors lmi , l
g
i ,

and zi; therefore, we treat these quantities as fixed constants. We assume that the gene expression

mi and gRNA expression gi are conditionally independent given the perturbation pi. The model

log-likelihood is

L(θ;m, g) =
n∑

i=1

log [(1− π)fm(mi; η
m
i (0))fg(gi; η

g
i (0)) + πfm(mi; η

m
i (1))fg(gi; η

g
i (1))] . (B.1)

We see from (B.1) that the GLM-EIV model is equivalent to a two-component mixture of products

of GLM densities. We estimate the parameters of the GLM-EIV model using an EM algorithm.

E step The E step entails computing the membership probability of each cell. Let θ(t) =

(β
(t)
m , β

(t)
g , π(t)) be the parameter estimate at the t-th iteration of the algorithm. For k ∈ {0, 1},

let [ηmi (k)](t) be the ith canonical parameter at the t-th iteration of the algorithm of the gene ex-
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pression distribution that results from setting pi to k, i.e. [η
m
i (k)](t) ≡ hm

(

⟨x̃i(k), β(t)
m ⟩+ omi

)

.

Similarly, let [ηgi (k)]
(t)

be defined by [ηgi (k)]
(t) ≡ hg

(

⟨x̃i(k), β(t)
g ⟩+ ogi

)

. Next, for k ∈ {0, 1},

define α
(t)
i (k) by

α
(t)
i (k) ≡ P

(

Mi = mi, Gi = gi|Pi = k, θ(t)
)

= P

(

Mi = mi|Pi = k, θ(t)
)

P

(

Gi = gi|Pi = k, θ(t)
)

(because Gi |=Mi|Pi)

= fm

(

mi; [η
m
i (k)]

(t)
)

fg

(

gi; [η
g
i (k)]

(t)
)

.

Finally, let π(t)(1) ≡ π(t) = P
(
Pi = 1|θ(t)

)
and π(t)(0) ≡ 1 − π(t) = P

(
Pi = 0|θ(t)

)
. The ith

membership probability T
(t)
i (1) is

T
(t)
i (1) = P(Pi = 1|Mi = mi, Gi = gi, θ

(t)) =
π(t)(1)α

(t)
i (1)

∑1
k=0 π

(t)(k)α
(t)
i (k)

(by Bayes rule)

=
1

π(t)(0)αi(0)
π(t)(1)αi(1)

+ 1
=

1

exp
(

log
(

π(t)(0)αi(0)
π(t)(1)αi(1)

))

+ 1
=

1

exp
(

q
(t)
i

)

+ 1
, (B.2)

where we set

q
(t)
i := log

(

π(t)(0)α
(t)
i (0)

π(t)(1)α
(t)
i (1)

)

. (B.3)

Next, we have that

q
(t)
i = log

[

π(t)(0)
]

+ log
[

fm

(

mi; [η
m
i (0)]

(t)
)]

+ log
[

fg

(

gi; [η
g
i (0)]

(t)
)]

− log
[

π(t)(1)
]

− log
[

fm

(

mi; [η
m
i (1)]

(t)
)]

− log
[

fg

(

gi; [η
g
i (1)]

(t)
)]

,

We therefore conclude that T
(t)
i = 1/

(

exp
(

q
(t)
i

)

+ 1
)

, which is easily computable.

M step

The complete-data log-likelihood of the GLM-EIV model is

L(θ;m, g, p) =
n∑

i=1

[pi log(π) + (1− pi) log(1− π)] +
n∑

i=1

log (fm(mi; η
m
i )) +

n∑

i=1

log (fg(gi; η
g
i )) .

(B.4)
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Define Q(θ|θ(t)) = E(P |M=m,G=g,θ(t)) [L(θ;m, g, p)] . We have that

Q(θ|θ(t)) =
n∑

i=1

[

T
(t)
i (1) log(π) + T

(t)
i (0) log(1− π)

]

+

1∑

k=0

n∑

i=1

T
(t)
i (k) log [fm(mi; η

m
i (k))] +

1∑

k=0

n∑

i=1

T
(t)
i (k) log

[

fg(gi; η
g,b
i (k))

]

. (B.5)

The three terms of (B.5) are functions of different parameters: the first is a function of π, the

second is a function of βm, and the third is a function of βg. Therefore, to find the maximizer

θ(t+1) of (B.5), we maximize the three terms separately. Differentiating the first term with respect

to π, we find that

∂

∂π

n∑

i=1

[

T
(t)
i (1) log(π) + T

(t)
i (0) log(1− π)

]

=

∑n
i=1 T

(t)
i (1)

π
−
∑n

i=1 T
(t)
i (0)

1− π .

Setting the derivative equal to 0 and solving for π,

∑n
i=1 T

(t)
i (1)

π
−
∑n

i=1 T
(t)
i (0)

1− π = 0 ⇐⇒
n∑

i=1

T
(t)
i (1)− π

n∑

i=1

T
(t)
i (1) = π

n∑

i=1

Ti(0)

⇐⇒
n∑

i=1

T
(t)
i (1)− π

n∑

i=1

T
(t)
i (1) = πn− π

n∑

i=1

Ti(1) ⇐⇒ π =

∑n
i=1 T

(t)
i (1)

n
.

Thus, the maximizer π(t+1) of (B.5) in π is π(t+1) = (1/n)
∑n

i=1 T
(t)
i (1). Next, define w(t) =

[T
(t)
1 (0), . . . , T

(t)
n (0), T

(t)
1 (1), . . . , T

(t)
n (1)]T ∈ R

2n. We can view the second term of (B.5) as the log-

likelihood of a GLM – call it GLM(t)
m – that has exponential family density fm, link function rm,

responses [m,m]T , offsets [om, om]T , weights w(t), and design matrix [X̃(0)T , X̃(1)T ]T . Therefore,

the maximizer β
(t+1)
m of the second term of (B.5) is the maximizer of GLM(t)

m , which we can

compute using the iteratively reweighted least squares (IRLS) procedure, as implemented in R’s

GLM function. Similarly, the maximizer β
(t+1)
g of the third term of (B.5) is the maximizer of

the GLM with exponential family density fg, link function rg, responses [g, g]
T , offsets [og, og]T ,

weights w(t), and design matrix [X̃(0)T , X̃(1)T ]T .
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B.4 Inference

We derive the asymptotic observed information matrix of the GLM-EIV log likelihood, enabling

us to perform inference on the parameters. First, we define some notation. For i ∈ {1, . . . , n},

j ∈ {0, 1}, and θ = (π, βm, βg), let T
θ
i (j) be defined by

T θ
i (j) = Pθ (Pi = j|Mi = mi, Gi = gi) .

Let the n×nmatrix T θ(j) be given by T θ(j) = diag
{
T θ
1 (j), . . . , T

θ
n(j)

}
. Next, define the diagonal

n× n matrices ∆m, [∆′]m, V m, and Hm by







∆m = diag{h′m(lm1 ), . . . , h′m(lmn )}
[∆′]m = diag{h′′m(lm1 ), . . . , h′′m(lmn )}
V m = diag{ψ′′

m(ηm1 ), . . . , ψ′′
m(ηmn )}

Hm = diag{m1 − µm
1 , . . . ,mn − µm

n }.

Define the n× n matrices ∆g, [∆′]g, V g, and Hg analogously. These matrices are unobserved, as

they depend on {p1, . . . , pn}. Next, for j ∈ {0, 1}, let the diagonal n×nmatrices ∆m(j), [∆′]m(j), V m(j),

and Hm(j) be given by







∆m(j) = diag{h′m(lm1 (j)), . . . , h′m(lmn (j))}
[∆′]m(j) = diag{h′′m(lm1 (j)), . . . , h′′m(lmn (j))}
V m(j) = diag{ψ′′

m(ηm1 (j)), . . . , ψ′′
m(ηmn (j))}

Hm(j) = diag{m1 − µm
1 (j), . . . ,mn − µm

n (j)}.

Define the matrices ∆g(j), [∆′]g(j), V g(j), and Hg(j) analogously. Finally, define the vectors

sm(j), wm(j) ∈ R
n by

{

sm(j) = [m1 − µm
1 (j), . . . ,mn − µm

n (j)]T

wm(j) = [T1(0)T1(1)∆
m
1 (j)Hm

1 (j), . . . , Tn(0)Tn(1)∆
m
n (j)Hm

n (j)]T ,

and let the vectors sg(j) and wg(j) be defined analogously. The quantities ∆m(j), [∆′]m(j), V m(j),

Hm(j), sm(j), wm(j), ∆g(j), [∆′]g(j), V g(j), Hg(j), sg(j), and wg(j) are all observed.

The observed information matrix J(θ;m, g) evaluated at θ = (π, βm, βg) is the negative Hes-

sian of the log likelihood (B.1) evaluated at θ, i.e. J(θ;m, g) = −∇2L(θ;m, g). This quantity,

unfortunately, is hard to compute, as the log likelihood (B.1) is a complicated mixture. Louis



58 REFERENCES

(1982) showed that J(θ;m, g) is equivalent to the following quantity:

J(θ;m, g) = −E
[
∇2L(θ;m, g, p)|G = g,M = m

]

+ E [∇L(θ;m, g, p)|G = g,M = m]E [∇L(θ;m, g, p)|G = g,M = m]
T

− E
[
∇L(θ;m, g, p)∇L(θ;m, g, p)T |G = g,M = m

]
. (B.6)

The observed information matrix J(θ;m, g) has dimension (2d + 1) × (2d + 1). Recall that the

complete-data log-likelihood (B.4) is the sum of three terms. The first term depends only on

π, the second on βm, and the third on βg. Therefore, the observed information matrix can be

viewed as block matrix consisting of nine submatrices (Figure 8; only six submatrices labelled).

Submatrix I depends on π, submatrix II on βm, submatrix III on βg, submatrix IV on βm and

βg, submatrix V on π and βm, and submatrix VI on π and βg. We only need to compute these

six submatrices to compute the entire matrix, as the matrix is symmetric. The following sections

derive formulas for submatrices I-VI. All expectations are understood to be conditional on m and

g. The notation ∇v and ∇2
v represent the gradient and Hessian, respectively, with respect to the

vector v.

Submatrix I Denote submatrix I by Jπ(θ;m, g). The formula for Jπ(θ;m, g) is

Jπ(θ;m, g) = −E
[
∇2

πL(θ;m, g, p)
]
+ (E [∇πL(θ;m, g, p)])2 − E

[
(∇πL(θ;m, g, p))2

]
. (B.7)

We begin by calculating the first and second derivatives of the log-likelihood L with respect

to π. The first derivative is

∇πL(θ;m, g, p) =
∂

∂π

(
n∑

i=1

pi log(π) +

n∑

i=1

(1− pi) log(1− π)
)

=

∑n
i=1 pi
π

−
∑n

i=1(1− pi)
1− π =

∑n
i=1 pi
π

− n−∑n
i=1 pi

1− π =

(
1

π
+

1

1− π

) n∑

i=1

pi −
n

1− π . (B.8)

The second derivative is
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Fig. 8. Block structure of the observed information matrix J(θ;m, g) = −∇
2
L(θ;m, g). The matrix is

symmetric, and so we only need to compute submatrices I-VI to compute the entire matrix.

∇2
πL(θ;m, g, p) =

∂2

∂2π

(∑n
i=1 pi
π

− n−
∑n

i=1 pi
1− π

)

=
(
∑n

i=1 pi)− n
(1− π)2 −

∑n
i=1 pi
π2

.

We compute the expectation of the first term of (B.7):

E
[
−∇2

πL(θ;m, g, p)
]
= −E

[
(
∑n

i=1 pi)− n
(1− π)2 −

∑n
i=1 pi
π2

]

= −E
{[

1

(1− π)2 −
1

π2

] n∑

i=1

pi −
n

(1− π)2

}

= −
{[

1

(1− π)2 −
1

π2

] n∑

i=1

T θ
i (1)−

n

(1− π)2

}

=

[
1

π2
− 1

(1− π)2
] n∑

i=1

T θ
i (1) +

n

(1− π)2 . (B.9)

Next, we compute the difference of the second two pieces of (B.7). To this end, define a ≡

1/(1− π) + 1/π and b ≡ n/(1− π). We have that

E
[
∇πL(θ;m, g, p)2

]
= E





(

a

n∑

i=1

pi − b
)2


 = E



a2

(
n∑

i=1

pi

)2

− 2ab

n∑

i=1

pi + b2





= a2
n∑

i=1

n∑

j=1

E[pipj ]− 2ab

n∑

i=1

E[pi] + b2.

Next,

(E [∇πL(θ;m, g, x)])2 =

(

a
n∑

i=1

E[pi]− b
)2

= a2
n∑

i=1

n∑

j=1

E[pi]E[pj ]− 2ab
n∑

i=1

E[pi] + b2.
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Therefore,

(E[∇πL(θ;m, g, p)])2 − E
[
∇πL(θ;m, g, p)2

]

= a2
n∑

i=1

n∑

j=1

E[pi]E[pj ]− a2
n∑

i=1

n∑

j=1

E[pipj ] = a2

(
n∑

i=1

E[pi]
2 − E[p2i ]

)

= a2

(
n∑

i=1

[T θ
i (1)]

2 − T θ
i (1)

)

=

(
1

(1− π) +
1

π

)2
(

n∑

i=1

[T θ
i (1)]

2 − T θ
i (1)

)

. (B.10)

Stringing (B.7), (B.9) and (B.10) together, we obtain

Jπ(θ;m, g) =

[
1

π2
− 1

(1− π)2
] n∑

i=1

T θ
i (1) +

n

(1− π)2

+

(
1

(1− π) +
1

π

)2
(

n∑

i=1

[T θ
i (1)]

2 − T θ
i (1)

)

. (B.11)

Submatrix II Denote submatrix II by Jβm(θ;m, g). The formula for Jβm(θ;m, g) is

Jβm(θ;m, g) = −E
[
∇2

βmL(θ;m, g, p)
]

+ E [∇βmL(θ;m, g, p)]E [∇βmL(θ;m, g, p)]T − E
[
∇βmL(θ;m, g, p)∇βmL(θ;m, g, p)T

]
. (B.12)

Standard GLM results imply that−∇2
βmL(θ;m, g, p) = X̃T (∆mV m∆m−[∆′]mHm)X̃ and∇βmL(θ;m, g, p) =

X̃T∆msm. We compute the first term of (B.12). The (k, l)th entry of this matrix is

(
E
[
−∇2

βmL(θ;m, g, p)
])

[k, l] = E

{

X̃[, k]T (∆mV m∆m − [∆′]mHm)X̃[, l]
}

=

n∑

i=1

E {x̃i,k(∆m
i V

m
i ∆m

i − [∆′]mi H
m
i )x̃i,l}

=
n∑

i=1

x̃i,k(0)T
θ
i (0)[∆

m
i (0)V m

i (0)∆m
i (0)− [∆′]mi (0)Hm

i (0)]x̃i,l(0)

+
n∑

i=1

x̃i,k(1)T
θ
i (1)[∆

m
i (1)V m

i (1)∆m
i (1)− [∆′]mi (1)Hm

i (1)]x̃i,l(1)

=
1∑

s=0

X̃(s)[, k]TT θ(s) [∆m(s)V m(s)∆m(s)− [∆′]m(s)Hm(s)] X̃(s)[, l].

We therefore have that
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E
[
−∇2

βmL(θ;m, g, p)
]
=

1∑

s=0

X̃(s)TT θ(s) [∆m(s)V m(s)∆m(s)− [∆′]m(s)Hm(s)] X̃(s). (B.13)

Next, we compute the difference of the last two terms of (B.12). The (k, l)th entry is

[

E [∇βmL(θ;m, g, p)]E [∇βmL(θ;m, g, p)]T

− E
[
∇βmL(θ;m, g, p)∇βmL(θ;m, g, p)T

]
]

[k, l]

=

[

E

[

X̃T∆msm
]

E

[

X̃T∆msm
]T
]

[k, l]− E

[

X̃T∆msm(sm)T∆mX̃
]

[k, l]

= E

[

X̃[, k]T∆msm
]

E

[

X̃[, l]T∆msm
]

− E

[

X̃[, k]T∆msm(sm)T∆mX̃[, l]
]

= E

(
n∑

i=1

x̃ik∆
m
i s

m
i

)

E





n∑

j=1

x̃jl∆
m
j s

m
j



− E





n∑

i=1

n∑

j=1

x̃ik∆
m
i s

m
i s

m
j ∆m

j x̃jl





=

n∑

i=1

n∑

j=1

E[x̃ik∆
m
i s

m
i ]E[x̃jl∆

m
j s

m
j ]−

n∑

i=1

n∑

j=1

E[x̃ik∆
m
i s

m
i s

m
j ∆m

j x̃jl]

=

n∑

i=1

n∑

j=1

E[x̃ik∆
m
i s

m
i ]E

[
x̃jl∆

m
j s

m
j

]
−
∑

i ̸=j

E[x̃ik∆
m
i s

m
i ]E[smj ∆m

j x̃jl]

−
n∑

i=1

E[x̃ik∆
m
i s

m
i s

m
i ∆m

i x̃il]

=

n∑

i=1

E[x̃ik∆
m
i s

m
i ]E[x̃il∆

m
i s

m
i ]−

n∑

i=1

E[x̃ik(∆
m
i )2(Hm

i )2x̃il]

=

n∑

i=1

[
x̃ik(0)∆

m
i (0)T θ

i (0)H
m
i (0) + x̃ik(1)∆

m
i (1)T θ

i (1)H
m
i (1)

]

·
[
x̃il(0)∆

m
i (0)T θ

i (0)H
m
i (0) + x̃il(1)∆

m
i (1)T θ

i (1)H
m
i (1)

]

−
n∑

i=1

[
x̃ik(0)T

θ
i (0)(∆

m
i (0))2(Hm

i (0))2x̃il(0) + x̃ik(1)T
θ
i (1)(∆

m
i (1))2(Hm

i (1))mx̃il(1)
]

=
1∑

s=0

1∑

t=0

[
n∑

i=1

x̃ik(s)T
θ
i (s)∆

m
i (s)Hm

i (t)T θ
i (t)∆

m
i (t)Hm

i (t)x̃il(t)

]

−
1∑

s=0

[
n∑

i=1

x̃ik(s)T
θ
i (s)(∆

m
i (s))2(Hm

i (s))2x̃il(s)

]

=

1∑

s=0

1∑

t=0

X̃(s)[, k]TT θ(s)∆m(s)Hm(s)T θ(t)∆m(t)Hm(t)X̃(k)[, l]

−
1∑

s=0

X(s)[, k]TT θ(s)(∆m(s))2(Hm(s))2X̃(s)[, l].
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The sum of the last two terms on the right-hand side of (B.12) is therefore

E [∇βmL(θ;m, g, p)]E [∇βmL(θ;m, g, p)]T − E
[
∇βmL(θ;m, g, p)∇βmL(θ;m, g, p)T

]

=

1∑

s=0

1∑

t=0

X̃(s)TT θ(s)∆m(s)Hm(s)T θ(t)∆m(t)Hm(t)X̃(t)

−
1∑

s=0

X̃(s)TT θ(s)(∆m(s))2(Hm(s))2X̃(s). (B.14)

Combining (B.12), (B.13), (B.14), we find that

Jβm(θ;m, g) =
1∑

s=0

X̃(s)TT θ(s) [∆m(s)V m(s)∆m(s)− [∆′]m(s)Hm(s)] X̃(s)

+

1∑

s=0

1∑

t=0

X̃(s)TT θ(s)∆m(s)Hm(s)T θ(t)∆m(t)Hm(t)X̃(t)

−
1∑

s=0

X̃(s)TT θ(s)(∆m(s))2(Hm(s))2X̃(s). (B.15)

Submatrix III Denote submatrix III by Jβg (θ;m, g). The formula for sub-matrix III is similar to

that of sub-matrix II (B.15). Substituting g for m in this equation yields

Jβg (θ;m, g) =

1∑

s=0

X̃(s)TT θ(s) [∆g(s)V g(s)∆g(s)− [∆′]g(s)Hg(s)] X̃(s)

+

1∑

s=0

1∑

t=0

X̃(s)TT θ(s)∆g(s)Hg(s)T θ(t)∆g(t)Hg(t)X̃(t)

−
1∑

s=0

X̃(s)TT θ(s)(∆g(s))2(Hg(s))2X̃(s). (B.16)

Submatrix IV Denote sub-matrix IV by J(βg,βm)(θ;m, g). The formula for J(βg,βm)(θ;m, g) is

J(βg,βm)(θ;m, g) = E [−∇βg∇βmL(θ;m, g, p)]

+ E [∇βgL(θ;m, g, p)]E [∇βmL(θ;m, g, p)]T − E
[
∇βgL(θ;m, g, p)∇βmL(θ;m, g, p)T

]
. (B.17)

First, we have that

E [−∇βg∇βmL(θ;m, g, p)] = 0, (B.18)
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as differentiating L with respect to βg yields a vector that is a function of βg, and differentiating

this vector with respect to βm yields 0. Next, recall from GLM theory that ∇βgL(θ;m, g, p) =

X̃T∆gsg and ∇βmL(θ;m, g, p) = X̃T∆msm. The (k, l)th entry of the last two terms of (B.17) is

[

E [∇βgL(θ;m, g, p)]E [∇βmL(θ;m, g, p)]T

− E
[
∇βgL(θ;m, g, p)∇βmL(θ;m, g, p)T

]
]

[k, l]

=

[

E

[

X̃T∆gsg
]

E

[

X̃T∆msm
]T
]

[k, l]− E

[

X̃T∆gsg(sm)T∆mX̃
]

[k, l]

= E

[

X̃[, k]T∆gsg
]

E

[

X̃[, l]T∆msm
]

− E

[

X̃[, k]T∆gsg(sm)T∆mX̃[, l]
]

= E

(
n∑

i=1

x̃ik∆
g
i s

g
i

)

E





n∑

j=1

x̃jl∆
m
j s

m
j



− E





n∑

i=1

n∑

j=1

x̃ik∆
g
i s

g
i s

m
j ∆m

j x̃jl





=
n∑

i=1

n∑

j=1

E[x̃ik∆
g
i s

g
i ]E[x̃jl∆

m
j s

m
j ]−

n∑

i=1

n∑

j=1

E[x̃ik∆
g
i s

g
i s

m
j ∆m

j x̃jl]

=

n∑

i=1

n∑

j=1

E[x̃ik∆
g
i s

g
i ]E
[
x̃jl∆

m
j s

m
j

]
−
∑

i ̸=j

E[x̃ik∆
g
i s

g
i ]E[x̃jl∆

m
j s

m
j ]

−
n∑

i=1

E[x̃ik∆
g
i s

g
i s

m
i ∆m

i x̃il]

=

n∑

i=1

E[x̃ik∆
g
iH

g
i ]E[x̃il∆

m
i H

m
i ]−

n∑

i=1

E[x̃ikH
g
i ∆

g
i∆

m
i H

m
i x̃il]

=
n∑

i=1

[
x̃ik(0)∆

g
i (0)T

θ
i (0)H

g
i (0) + x̃ik(1)∆

g
i (1)T

θ
i (1)H

g
i (1)

]

·
[
x̃il(0)∆

m
i (0)T θ

i (0)H
m
i (0) + x̃il(1)∆

m
i (1)T θ

i (1)H
m
i (1)

]

−
n∑

i=1

[x̃ik(0)T
θ
i (0)∆

g
i (0)H

g
i (0)∆

m
i (0)Hm

i (0)x̃il(0)

+ x̃ik(1)T
θ
i (1)∆

g
i (1)H

g
i (1)∆

m
i (1)Hm

i (1)x̃il(1)]

=

1∑

s=0

1∑

t=0

[
n∑

i=1

x̃ik(s)T
θ
i (s)∆

g
i (s)H

g
i (s)T

θ
i (t)∆

m
i (t)Hm

i (t)x̃il(t)

]

−
1∑

s=0

[
n∑

i=1

x̃ik(s)T
θ
i (s)∆

g
i (s)H

g
i (s)∆

m
i (s)Hm

i (s)x̃il(s)

]

=
1∑

s=0

1∑

t=0

[

X̃(s)[, k]TT θ(s)∆g(s)Hg(s)T θ(t)∆m(t)Hm(t)X̃(t)[, l]
]
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−
1∑

s=0

[

X̃[, k]TT θ(s)∆g(s)Hg(s)∆m(s)Hm(s)X̃[, l](s)
]

. (B.19)

Combining (B.17), (B.18), and (B.19) produces

J(βg,βm)(θ;m, g) =

1∑

s=0

1∑

t=0

X̃(s)TT θ(s)∆g(s)Hg(s)T θ(t)∆m(t)Hm(t)X̃(t)

−
1∑

s=0

X̃(s)TT θ(s)∆g(s)Hg(s)∆m(s)Hm(s)X̃(s). (B.20)

Submatrix V Denote submatrix V by J(βm,π)(θ;m, g). The formula for J(βm,π)(θ;m, g) is

J(βm,π)(θ;m, g) = E [−∇βm∇πL(θ;m, g, p)]

+ E [∇βmL(θ;m, g, p)]E [∇πL(θ;m, g, p)]T − E
[
∇βmL(θ;m, g, p)∇πL(θ;m, g, p)T

]
. (B.21)

We have that

E [−∇βm∇πL(θ;m, g, p)] = 0, (B.22)

as βm and π separate in the log likelihood. Next, set a ≡ 1/π + 1/(1 − π) and b ≡ n/(1 − π).

Recall from GLM theory that ∇βmL(θ;m, g, p) = X̃T∆msm and from (B.8) that a
∑n

i=1 pi − b.

The kth entry of the last two terms of (B.21) is

E [∇πL(θ;m, g, p)]E [∇βmL(θ;m, g, p)[k]]− E [∇πL(θ;m, g, p)∇βmL(θ;m, g, p)[k]]

=

(

E

[

a

n∑

i=1

pi − b
])
(

E

[

X̃[, k]T∆msm
])

− E

[(

a

n∑

i=1

pi − b
)

X̃[, k]T∆msm

]

=

(

a

n∑

i=1

E[pi]− b
)



n∑

j=1

E[x̃jk∆
m
j s

m
j ]



− E





(

a

n∑

i=1

pi − b
)



n∑

j=1

x̃jk∆
m
j s

m
j









= a

n∑

i=1

n∑

j=1

E[pi]E[x̃jk∆
m
j s

m
j ]− b

n∑

j=1

E[x̃jk∆
m
j s

m
j ]

−



a

n∑

i=1

n∑

j=1

E[pix̃jk∆
m
j s

m
j ]− b

n∑

j=1

E[x̃jk∆
m
j s

m
j ]





= a

n∑

i=1

n∑

j=1

E[pi]E[x̃jk∆
m
j s

m
j ]− a

∑

i ̸=j

E[pi]E[x̃jk∆
m
j s

m
j ]− a

n∑

i=1

E[pix̃ik∆
m
i s

m
i ]
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= a

n∑

i=1

E[pi]E[x̃ik∆
m
i s

m
i ]− a

n∑

i=1

E[pix̃ik∆
m
i s

m
i ]

= a

n∑

i=1

T θ
i (1)[T

θ
i (0)∆

m
i (0)smi (0)x̃ik(0)+T

θ
i (1)∆

m
i (1)smi (1)x̃ik(1)]−a

n∑

i=1

T θ
i (1)∆

m
i (1)smi (1)x̃ik(1)

= a

n∑

i=1

T θ
i (0)T

θ
i (1)∆

m
i (0)Hm

i (0)x̃ik(0)

+ a
n∑

i=1

(
[T θ

i (1)]
2∆m

i (1)Hm
i (1)− T θ

i (1)∆
m
i (1)Hm

i (1)
)
x̃ik(1)

= a

[
n∑

i=1

T θ
i (0)T

θ
i (1)∆

m
i (0)Hm

i (0)x̃ik(0) +

n∑

i=1

T θ
i (1)∆

m
i (1)Hm

i (1)[T θ
i (1)− 1]x̃ik(1)

]

= a

[
n∑

i=1

T θ
i (0)T

θ
i (1)∆

m
i (0)Hm

i (0)x̃ik(0)−
n∑

i=1

T θ
i (0)T

θ
i (1)∆

m
i (1)Hm

i (1)x̃ik(1)

]

= a
(

X̃(0)[, k]Twm(0)− X̃(1)[, k]Twm(1)
)

. (B.23)

Combining (B.21), (B.22), and (B.23), we conclude that

J(βm,π)(θ;m, g, p) =

(
1

π
+

1

1− π

)(

X̃(0)Twm(0)− X̃(1)Twm(1)
)

. (B.24)

Submatrix VI Denote submatrix VI by J(βg,π)(θ;m, g). Calculations similar to those for subma-

trix V show that

J(βg,π)(θ;m, g, p) =

(
1

π
+

1

1− π

)(

X̃(0)Twg(0)− X̃(1)Twg(1)
)

. (B.25)

Combining submatrices To summarize, the formulas for submatrices I-VI are as follows:

I

Jπ(θ;m, g) =

[
1

π2
− 1

(1− π)2
] n∑

i=1

T θ
i (1) +

n

(1− π)2

+

(
1

(1− π) +
1

π

)2
(

n∑

i=1

[T θ
i (1)]

2 − T θ
i (1)

)

.

II

Jβm(θ;m, g) =

1∑

s=0

X̃(s)TT θ(s) [∆m(s)V m(s)∆m(s)− [∆′]m(s)Hm(s)] X̃(s)
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+
1∑

s=0

1∑

t=0

X̃(s)TT θ(s)∆m(s)Hm(s)T θ(t)∆m(t)Hm(t)X̃(t)

−
1∑

s=0

X̃(s)TT θ(s)(∆m(s))2(Hm(s))2X̃(s).

III

Jβg (θ;m, g) =

1∑

s=0

X̃(s)TT θ(s) [∆g(s)V g(s)∆g(s)− [∆′]g(s)Hg(s)] X̃(s)

+

1∑

s=0

1∑

t=0

X̃(s)TT θ(s)∆g(s)Hg(s)T θ(t)∆g(t)Hg(t)X̃(t)

−
1∑

s=0

X̃(s)TT θ(s)(∆g(s))2(Hg(s))2X̃(s).

IV

J(βg,βm)(θ;m, g) =
1∑

s=0

1∑

t=0

X̃(s)TT θ(s)∆g(s)Hg(s)T θ(t)∆m(t)Hm(t)X̃(t)

−
1∑

s=0

X̃(s)TT θ(s)∆g(s)Hg(s)∆m(s)Hm(s)X̃(s).

V

J(βm,π)(θ;m, g, p) =

(
1

π
+

1

1− π

)(

X̃(0)Twm(0)− X̃(1)Twm(1)
)

.

VI

J(βg,π)(θ;m, g, p) =

(
1

π
+

1

1− π

)(

X̃(0)Twg(0)− X̃(1)Twg(1)
)

.

We stitch these pieces together and transpose submatrices IV, V, and VI to produce the whole

information matrix J(θ;m, g). Evaluating this matrix at the EM estimate θEM and inverting

yields the asymptotic covariance matrix, which we can use to compute standard errors.

B.5 Implementation

To evaluate the observed information matrix, we need to compute the matrices ∆m(j), [∆′]m(j),

V m(j), and Hm(j) and the vectors sm(j) and wm(j) for j ∈ {0, 1}. We likewise need to compute
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the analogous gRNA quantities. The procedure that we propose for this purpose is general, but

for concreteness, we describe how to implement this procedure using the glm function in R by

extending base family objects. We implicitly condition on pi, z
m
i , and omi .

An R family object contains several functions, including linkinv, variance, and mu.eta.

linkinv is the inverse link function r−1
m . variance takes as an argument the mean µm

i of the ith

example and returns its variance [σm
i ]2. mu.eta is the derivative of the inverse link function [r−1

m ]
′

.

We extend the R family object by adding two additional functions: skewness and mu.eta.prime.

skewness returns the skewness γmi of the distribution as a function of the mean µi, i.e.

skewness (µi) = E

[(
mi − µm

i

σm
i

)3
]

:= γmi .

Finally, mu.eta.prime is the second derivative of the inverse link function [r−1
m ]′′. Algorithm 2

computes the matrices ∆m(j), [∆′]m(j), V m(j), and Hm(j) and vector sm(j) for given βm and

given family object. (The vector wm(j) can be computed in terms of ∆m(j) and Hm(j).) We use

σm
i (j) (resp. γmi (j)) to refer to the standard deviation (resp. skewness) of the gene expression

distribution the ith cell when the perturbation pi is set to j.

All steps of the algorithm are obvious except the calculation of h′m(lmi (j)) (line 6), h′′(lmi (j))

(line 9), and V m
i (j) (line 12). We omit the (j) notation for compactness. First, we prove the

correctness of the expression for h′m(lmi ). Recall the basic GLM identities

ψ′′
m(ηmi ) = [σm

i ]2 (B.26)

and, for all t ∈ R,

r−1
m (t) = ψ′

m(hm(t)). (B.27)

Differentiating (B.27) in t, we find that

(r−1
m )′(t) = ψ′′

m(hm(t))h′m(t) ⇐⇒ h′m(t) =
(r−1

m )′(t)

ψ′′
m(hm(t))

. (B.28)
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Table 1. linkinv, variance, mu.eta, skewness, mu.eta.prime for common family objects (i.e., pairs of
distributions and link functions).

Gaussian response,
identity link

Poisson response, log
link

NB response
(s > 0 fixed),

log link
linkinv x exp(x) exp(x)
variance x x x+ x2/s
mu.eta 1 x exp(x)

skewness 0 x−1/2 2x+s√
sx

√
x+s

mu.eta.prime 0 exp(x) exp(x)

Finally, plugging in lmi for t,

h′m(li) =
(r−1

m )′(lmi )

ψ′′(hm(lmi ))
=

(r−1
m )′(lmi )

ψ′′
m(ηmi )

= by (B.26)
(r−1

m )′(lmi )

[σm
i ]2

.

Next, we prove the correctness for the expression for h′′m(lmi ). Recall the exponential family

identity

ψ′′′
m(ηmi ) = γmi ([σm

i ]2)3/2. (B.29)

Differentiating (B.28) in t, we obtain

(r−1
m )′′(t) = ψ′′′

m(hm(t))[h′m(t)]2+ψ′′
m(hm(t))h′′m(t) ⇐⇒ h′′m(t) =

(r−1
m )′′(t)− ψ′′′(hm(t))[h′m(t)]2

ψ′′
m(hm(t))

.

Plugging in lmi for t, we find that

h′′m(lmi ) =
(r−1

m )′′(lmi )− ψ′′′
m(ηmi )[h′m(lmi )]2

[σm
i ]2

= (by B.29)
(r−1

m )′′(lmi )− ([σm
i ]2)3/2(γmi )[h′m(lmi )]2

[σm
i ]2

.

Finally, the expression for V m
i follows from (B.26). We can apply a similar algorithm to compute

the analogous matrices for the gRNA modality. Table 1 shows the linkinv, variance, mu.eta,

skewness, and mu.eta.prime functions for several common family objects (which are defined by

a distribution and link function).
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Algorithm 2 Computing the matrices ∆m(j), [∆′]m(j), V m(j), Hm(j), and sm(j) given

given βm.

Input: A coefficient vector βm; data [m1, . . . ,mn], [o
m
1 , . . . , o

m
n ], and [z1, . . . , zn]; and a family

object containing functions linkinv, variance, mu.eta, mu.eta.prime, and skewness.

for j ∈ {0, 1} do

for i ∈ {1, . . . , n} do

3: lmi (j)← ⟨βm, x̃i(j)⟩+ omi

µm
i (j)← linkinv(lmi (j))

[σm
i (j)]2 ← variance(µm

i (j))

6: h′m(lmi (j))← mu.eta(lmi (j))/[σm
i (j)]2

γmi (j)← skewness(µm
i (j))

[r−1
m ]′′(lmi (j))← mu.eta.prime(lmi (j))

9:

h′′m(lmi (j))← [r−1]′′(lmi (j))− [([σm
i (j)]2)3/2][γmi (j)][h′m(lmi (j))]2

[σm
i (j)]2

▷ Assign quantities to matrices

∆m
i (j)← h′m(lmi (j))

[∆′]mi (j)← h′′(lmi (j))

12: V m
i (j)← [σm

i (j)]2

Hm
i (j)← smi (j)← mi − µm

i (j)

end for

15: end for
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C. Statistical accelerations and computing

C.1 Statistical accelerations

We describe in detail the procedure for obtaining the pilot parameter estimates (πpilot, βpilot
m , βpilot

g ).

This procedure consists of two subroutines, which we label Algorithm 3 and Algorithm 4. The first

step (Algorithm 3) is to obtain good parameter estimates for [βm
0 , γm]T and [βg

0 , γg]
T via regres-

sion. Recall that the underlying gene expression parameter vector βm is βm = [βm
0 , β

m
1 , γm]T ∈ R

d,

where βm
0 is the intercept, βm

1 is the effect of the perturbation, and γTm is the effect of the technical

factors. To produce estimates [βm
0 ]pilot and [γTm]pilot, we regress the gene expressions m onto the

technical factors X. The intuition for this procedure is as follows: the probability of perturbation

π is very small. Therefore, the true log likelihood is approximately equal to the log likelihood

that results from omitting pi from the model:

n∑

i=1

fm(mi; η
m
i ) =

∑

i:pi=1

fm(mi;hm(β0 + β1 + γT zi + omi ))

︸ ︷︷ ︸

few terms

+
∑

i:pi=0

fm(mi;hm(β0 + γT zi + omi ))

︸ ︷︷ ︸

many terms

≈
n∑

i=1

fm(mi;hm(β0 + γT zi + omi )).

We similarly can obtain pilot estimates [βg
0 ]

pilot and [γTg ]
pilot by regressing the gRNA counts g

onto the technical factors X. We extract the fitted values (on the scale of the linear component)

for use in a subsequent step: f̂ki = [βk
0 ]

pilot + ⟨[γTk ]pilot, zi⟩+ oki , for k ∈ {m, g}.

Next, we obtain estimates [βm
1 ]pilot, [βg

1 ]
pilot, and πpilot for βm

1 , βg
1 , and π by fitting a “reduced”

GLM-EIV (Algorithm 4). The log likelihood of the no-intercept, univariate GLM with predictor

pi and offset f̂mi is approximately equal to the true log likelihood:

n∑

i=1

fm(mi; η
m
i ) =

n∑

i=1

fm(mi;hm(β0 + β1pi + γT zi + omi )) ≈
n∑

i=1

fm(mi;hm(β1pi + f̂mi )).

Therefore, to estimate βm
1 , βg

1 , and π, we fit a GLM-EIV model with gene expressions m,

gRNA counts g, gene offsets f̂m := [f̂m1 , . . . , f̂
m
n ]T , gRNA offsets f̂g := [f̂g1 , . . . , f̂

g
n]

T , and no
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Algorithm 3 Computing [βm
0 ]pilot, [γTm]pilot, [βg

0 ]
pilot, and [γTg ]

pilot .

Input: Data m, g, om, og, and X; gene expression distribution fm and link function rm; gRNA

expression distribution fg and link function rg; number of EM starts B.

for k ∈ {m, g} do

2: Fit a GLM GLMk with responses k, offsets ok, design matrix X, distribution fk, and link
function rk.

Set [βk
0 ]

pilot and [γTk ]
pilot to the fitted coefficients of GLMk.

4: for i ∈ {1, . . . , n} do

f̂ki ← [βk
0 ]

pilot + ⟨[γTk ]pilot, zi⟩+ oki ▷ untransformed fitted values

6: end for

end for

8: return ([βm
0 ]pilot, f̂m, [γTm]pilot, [βg

0 ]
pilot, [γTg ]

pilot, f̂g)

intercept or covariate terms. Intuitively, we “encode” all information about technical factors,

library sizes, and baseline expression levels into f̂m and f̂g. We run the algorithm B ≈ 15 times

over randomly-selected starting values for βm, βg, and π and select the solution with greatest

the log likelihood.

The M step of the reduced GLM-EIV algorithm requires fitting two no-intercept, univariate

GLMs with offsets. We derive analytic formulas for the MLEs of these GLMs in the three most

important cases: Gaussian response with identity link, Poisson response with log link, and negative

binomial response with log link (see section C.2; the latter formula is asymptotically exact).

Consequently, we do not need to run the relatively slow IRLS procedure to carry out the M step

of the reduced GLM-EIV algorithm. Overall, the proposed method for obtaining the full set of

pilot parameter estimates requires fitting only two GLMs (via IRLS).
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Algorithm 4 Computing πpilot, [βm
1 ]pilot, [βm

1 ]pilot.

Input: Data m, g; fitted offsets f̂m, f̂g.

bestLik ← −∞ ▷ Reduced GLM-EIV

2: for i ∈ {1, . . . , B} do

Randomly generate starting parameters πcurr, [βm
1 ]curr, [βg

1 ]
curr.

4: while Not converged do

for i ∈ {1, . . . , n} do ▷ E step

6: Ti(1)← P(Pi = 1|Mi = mi, Gi = gi, π
curr, [βg

1 ]
curr, [βm

1 ]curr)

Ti(0)← 1− Ti(1)

8: end for

πcurr ← (1/n)
∑n

i=1 Ti(1) ▷ M step

10: w ← [T1(0), T2(0), . . . , Tn(0), T1(1), T2(1), . . . , Tn(1)]
T

for k ∈ {g,m} do

12: Fit no-intercept, univariate GLM GLMk with predictors [0, . . . , 0
︸ ︷︷ ︸

n

, 1, . . . , 1
︸ ︷︷ ︸

n

], re-

sponses [k, k]T , offsets [f̂k, f̂k]T , and weights w.

Set [βk
1 ]

curr to fitted coefficient of GLMk.

14: end for

Compute log likelihood currLik using πcurr,[βm
1 ]curr, and [βg

1 ]
curr.

16: end while

if currLik > bestLik then

18: bestLik ← currLik

πpilot ← πcurr; [βm
1 ]pilot ← [βm

1 ]curr; [βg
1 ]

pilot ← [βg
1 ]

curr

20: end if

end for

22: return (πpilot, [βm
1 ]pilot, [βg

1 ]
pilot)
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C.2 Intercept-plus-offset models

A key step in the algorithm for computing the pilot parameter estimates (Algorithm 4) is to

fit a weighted, no-intercept, univariate GLM with nonzero offset terms and a binary predictor

variable. We derive an analytic formula for the MLE of this GLM for three important pairs

of response distributions and link functions: Gaussian response with identity link, Poisson re-

sponse with log link, and negative binomial response with log link. The GLM that we seek

to estimate has responses [m,m]T , predictors [0, . . . , 0
︸ ︷︷ ︸

n

, 1, . . . , 1
︸ ︷︷ ︸

n

], offsets [f̂m, f̂m], and weights

w = [T1(0), . . . , Tn(0), T1(1), . . . , Tn(1)]
T . Throughout, C denotes a universal constant. The log

likelihood of this GLM is

L(β1;m) =
n∑

i=1

Ti(0)fm(mi;hm(β1 + f̂mi )) +
n∑

i=1

Ti(1)fm(mi;hm(f̂mi ))

=

n∑

i=1

Ti(1)fm(mi;hm(β1 + f̂mi )) + C. (C.1)

Thus, finding the MLE β̂1 is equivalent to estimating a GLM with intercept β1, offsets f̂
m, weights

Ti(1), and no covariate terms. We term such a GLM a intercept-plus-offset model. Below, we study

intercept-plus-offset models in generality.

General formulation Let β ∈ R be an unknown constant. Let o1, . . . , on ∼ P1, where P1 is a

distribution. Let Yi|oi, . . . , Yn|oi be exponential family-distributed random variables with identity

sufficient statistic. Suppose the mean µi of Yi|oi is given by r(µi) = β + oi, where r : R→ R is a

strictly increasing, differentiable link function. We call this model the intercept-plus-offset model.

We derive the (weighted) log likelihood of this model. Let w1, . . . , wn ∼ P2 be weights, where

P2 is a distribution bounded above by 1 and below by 0. (A special case, which corresponds to

no weights, is wi = 1 for all i ∈ {1, . . . , n}.) Throughout, we assume that yiwi and exp(oi)wi

have finite first moment. Suppose the cumulant-generating function and carrying density of the

exponential family distribution are ψ : R → R and c : R → R, respectively. The canonical
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parameter ηi of the ith observation is

ηi = ([ψ′]−1 ◦ r−1)(β + oi) := h(β + oi), (C.2)

and the density f of Yi|ηi is f(yi; ηi) = exp{yiηi − ψ(ηi) + c(yi)}. The weighted log likelihood is

L(β; yi) =
n∑

i=1

wi log [f(yi; ηi)] = C +

n∑

i=1

wi(yiηi − ψ(ηi)). (C.3)

Our goal is to find the weighted MLE β̂ of β. We consider three important choices for the

exponential family distribution and link function. In the first two cases – Gaussian distribution

with identity link and Poisson distribution with log link – we find the finite-sample maximizer of

(C.3); by contrast, in the third case – negative binomial distribution with log link – we find an

asymptotically exact maximizer.

Gaussian First, consider a Gaussian response distribution and identity link function r(µ) = µ.

The cumulant-generating function ψ is ψ(η) = η2/2, and so, by (C.2),

h(t) = [ψ′]−1(r−1(t)) = [ψ′]−1(t) = t.

Plugging ηi = h(β + oi) = β + oi and ψ(ηi) = (1/2)(β + oi)
2 into (C.3), we obtain

L(β; y) =
n∑

i=1

wi(yi(β + oi)− (β + oi)
2/2).

The derivative of this expression in β is

∂L(β; y)
∂β

=

n∑

i=1

wi(yi − β − oi) =
n∑

i=1

wi(yi − oi)− β
n∑

i=1

wi.

Setting this quantity to 0 and solving for β, we find that the MLE β̂gauss is

β̂gauss =

∑n
i=1 wi(yi − oi)
∑n

i=1 wi
.

Poisson Next, consider a Poisson response distribution and log link function r(µ) = log(µ). The

cumulant-generating function ψ is ψ(η) = eη. Therefore, by (C.2),

h(t) = [ψ′]−1(r−1(t)) = [ψ′]−1 (exp(t)) = log(exp(t)) = t.
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Plugging ηi = h(β + oi) = β + oi and ψ(ηi) = exp(β + oi) into (C.3), we obtain

L(β; y) =
n∑

i=1

wi (yi(β + oi)− exp(β + oi)) .

The derivative of this function in β is

∂L(β; y)
∂β

=

n∑

i=1

wiyi − wi exp(β + oi) =
n∑

i=1

wiyi − exp(β)
n∑

i=1

wi exp(oi).

Setting to zero and solving for β, we find that the MLE β̂pois is

β̂pois = log

( ∑n
i=1 wiyi

∑n
i=1 wieoi

)

. (C.4)

Negative binomial Finally, we consider a negative binomial response distribution (with fixed size

parameter s > 0) and log link function r(µ) = log(µ). The cumulant-generating function ψ is

ψ(η) = −s log(1− eη). The derivative ψ′ of ψ is

ψ′(t) = s

(
et

1− et
)

=
s

e−t − 1
.

Define the function δ : R→ R by δ(t) = − log (s/t+ 1) . We see that

ψ′(δ(t)) =
s

exp (log(s/t+ 1))− 1
= t,

implying δ = [ψ′]−1. By (C.2), we have that

h(t) = [ψ′]−1(r−1(t)) = − log

(
s

exp(t)
+ 1

)

= log

(
exp(t)

s+ exp(t)

)

.

Therefore,

ηi = h(β+oi) = log

(
exp(β + oi)

s+ exp(β + oi)

)

= β+oi−log
(
s+ eβeoi

)
= β−log

(
s+ eβeoi

)
+C, (C.5)

and

ψ(ηi) = −s log
(

1− exp(β + oi)

s+ exp(β + oi)

)

= −s log
(

s

s+ exp(β + oi)

)

= −s log(s) + s log[s+ exp(β + oi)] = s log(s+ eseoi) + C. (C.6)



76 REFERENCES

Plugging (C.5) and (C.6) into (C.3), the log-likelihood (up to a constant) is

L(β; y) = β

n∑

i=1

wiyi −
n∑

i=1

wiyi log(s+ eβeoi)− s
n∑

i=1

wi log(s+ eβeoi)

= β

n∑

i=1

wiyi −
n∑

i=1

(yi + s)wi log(s+ eβeoi).

The derivative of L in β is

∂L(β; y)
∂β

=

n∑

i=1

wiyi −
n∑

i=1

wi(yi + s)eβeoi

s+ eβeoi
.

Setting the derivative to zero, the equation defining the MLE is

eβ
n∑

i=1

wie
oi(yi + s)

eβeoi + s
=

n∑

i=1

wiyi. (C.7)

We cannot solve for β in (C.7) analytically. However, we can derive an asymptotically exact

solution. By the law of total expectation,

E

[
wie

oi(yi + s)

eβ+oi + s

]

= E

[

E

[
wie

oi(yi + s)

eβ+oi + s

∣
∣
∣
∣
(oi, wi)

]]

= E

[
wie

oi(eβ+oi + s)

eβ+oi + s

]

= E[wie
oi ];

the second equality holds because E[yi|oi] = µi = eβ+oi . Dividing by n on both sides of (C.7)

and rearranging,

β = log

(
(1/n)

∑n
i=1 wie

oi(yi + s)/(eβeoi + s)

(1/n)
∑n

i=1 wiyi.

)

. (C.8)

By weak LLN, the limit (in probability) of the MLE β̂NB is

β̂NB P−→ log

(
E[wiyi]

E[wieoi ]

)

. (C.9)

But the Poisson MLE β̂Pois (C.4) converges in probability to the same limit:

β̂pois = log

(
(1/n)

∑n
i=1 wiyi

(1/n)
∑n

i=1 wieoi

)

P−→ log

(
E[wiyi]

E[wieoi ]

)

.

Therefore, for large n, we can approximate β̂NB by β̂pois.
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Application to GLM-EIV The GLM that we seek to estimate (C.1) is an approximate intercept-

plus-offset model: T1(1), . . . , Tn(1) are the weights w1, . . . , wn, and f̂m1 , . . . , f̂
m
n are the offsets

o1, . . . , om. Of course, T1(1), . . . , T1(n) are in general dependent random variables, as are f̂m1 , . . . , f̂
m
n .

Ti(1) depends on mi and gi, as well as the final parameter estimate (π̂, β̂m, β̂g), which itself is a

function of m and g; the situation is similar for the f̂mi s. In practice, we find that the intercept-

plus-offset model is very good approximation to the GLM (C.1), especially when the number of

cells n is large. Additionally, we note that the GLM (C.1) is fitted as a subroutine of the algo-

rithm for producing pilot parameter estimates (Algorithm 4). The quality of the pilot parameter

estimates does not affect the validity of the estimation and inference procedures (Algorithm 1),

barring issues related to convergence to local optima.

C.3 Computing

We describe in detail the at-scale GLM-EIV pipeline. First, we run a round of “precomputations”

on all dg genes and dp perturbations. The precomputations involve regressing the gene expressions

(or gRNA counts) onto the technical factors, thereby “factoring out” Algorithm 3. Next, we

run differential expression analyses on the full set of gene-perturbation pairs; for a given pair,

this amounts to obtaining the complete set of pilot parameters (by running a reduced GLM-

EIV), fitting the GLM-EIV model (Algorithm 1), and performing inference. The three loops in

Algorithm 5 are embarrassingly parallel and therefore can be massively parallelized.

D. The Nat. Biotech. 2020 method

As described in the main text, the Nat. Biotech. 2020 method (of Replogle and others (2020))

fits a Poisson-Gaussian mixture model to the log-2 transformed gRNA counts and then assigns

gRNAs to cells based on the posterior perturbation probabilities. If a given cell has a posterior

perturbation probability greater than 1/2, then the gRNA is assigned to that cell; otherwise, the
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Algorithm 5 Applying GLM-EIV at scale.

G← {gene1, . . . , genedg
};P ← {perturbation1, . . . , perturbationdp

}

for gene ∈ G do

Run precomputation (Algorithm 3) on gene; save f̂m, [βm
0 ]pilot and [γTm]pilot.

end for

for perturbation ∈ P do

Run precomputation (Algorithm 3) on perturbation; save f̂g, [βg
0 ]

pilot and [γTg ]
pilot.

end for

for (gene, perturbation) ∈ G× P do

Load f̂m, f̂g, [βm
0 ]pilot [γTm]pilot, [βg

0 ]
pilot and [γTg ]

pilot.

Compute [βm
1 ]pilot, [βg

1 ]
pilot, πpilot by fitting a reduced GLM-EIV (Algorithm 4).

Run GLM-EIV using the pilot parameters (Algorithm 1).

end for

gRNA is not assigned to that cell. Covariates (including gRNA library size, gene library size,

batch, etc.) are not included in the model.

As mentioned in the main text, the Nat. Biotech. 2020 method poses several conceptual and

practical challenges. First, the log-2 transformed gRNA counts are not integer-valued. Thus, it is

unclear how the Poisson component of the mixture distribution is fitted to the data. Second, the

authors of the Nat. Biotech. 2020 method used the Python package Pomegranate (github.com/

jmschrei/pomegranate; version <= 0.14.8) to implement their method. Unfortunately, due to

recent updates to the Pomegranate package, we and others have been unable to install version

<= 0.14.8 (relevant Github issues: github.com/jmschrei/pomegranate/issues/1052, github.

com/jmschrei/pomegranate/issues/1057).

Thus, we attempted to implement the Nat. Biotech. 2020 method ourselves in R using the

flexmix package, a popular package for mixture modeling. We found that flexmix throws an
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error when one attempts to fit a Poisson distribution to non-integer data. We therefore con-

sidered a modification to the Nat. Biotech. 2020 method in which we fitted a two-component

Gaussian mixture to the log-transformed gRNA counts, adding a pseudocount of one to avoid

taking the log of zero. Unfortunately, our modified version of the Nat. Biotech. 2020 method

did not work well in practice, as it categorized all cells as unperturbed on both the simu-

lated gRNA data (Figure 3) and the low-MOI gRNA data (Figure 5). The default CellRanger

method for gRNA assignment — which is based on the Nat. Biotech. 2020 method — uses a two-

component Gaussian mixture model (www.10xgenomics.com/support/software/cell-ranger/

latest/algorithms-overview/cr-crispr-algorithm). The CellRanger method became open-

source shortly before the publication of this paper.
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E. Data analysis details

First, we performed quality control and basic pre-processing on both datasets. As is standard

in single-cell analysis, we removed cells with a high fraction (> 8%) of mitochondrial reads

(Choudhary and Satija, 2022). We additionally excluded genes that were expressed in fewer than

10% of cells or that had a mean expression level of less than 1. We excluded cells in the Gasperini

dataset with gene transcript UMI or gRNA counts below the 5th percentile or above the 95th

percentile to reduce the effect of outliers. We did not repeat this latter quality control step on

the Xie data because the Xie data appeared to be less noisy. The quality-controlled Gasperini

and Xie datasets contained n = 170, 645 (resp. n = 101, 508) cells, 2, 079 (resp. 1, 030) genes, and

6, 598 (resp. 516) distinct perturbations.

The Gasperini dataset came with 17, 028 candidate cis pairs, 97, 818 negative control pairs,

and 322 positive control pairs. The cis pairs consisted of genes paired to nearby enhancers with

unknown regulatory effects. The negative control pairs consisted of non-targeting gRNAs paired

to genes. The positive control pairs are described in the main text. The Xie data did not come

with either cis, negative control, or positive control pairs. Therefore, we constructed a set of 681

candidate cis pairs by pairing perturbations to nearby genes, and we constructed a set of 50, 000

in silico negative control by pairing perturbations to genes on different chromosomes. See the

Methods section of Barry and others (2021) for details on the construction of cis and in silico

negative control pairs on the Xie data. Because the negative control pairs are not expected to

exhibit a regulatory relationship, the ground truth fold change in gene expression for these pairs

is taken to be unity.

We modeled the gene expression counts using a negative binomial distribution with unknown

size parameter s; we estimated s using the glm.nb package. Choudhary and Satija (2022) report

that Poisson models accurately capture highly sparse single-cell data. Although Choudhary and

Satija did not investigate the application of Poisson models gRNA data specifically, we modeled
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the gRNA counts using Poisson distributions, as the gRNA modality exhibited greater sparsity

than the gene modality.

We applied GLM-EIV and the thresholding method to analyze the entire set of pairs in both

datasets. We did not report results on the candidate cis pairs in the text because we do not know

the ground truth for these pairs, making them less useful for method assessment. We focused our

attention instead on the negative control pairs in both datasets and the positive control pairs in

the Gasperini dataset.

We describe in more detail how we conducted the “excess background contamination” anal-

ysis. For each positive control pair, we varied excess background contamination over the grid

[0.0, 0.05, 0.1, . . . , 0.4]. For a given level of excess background contamination, we generated B = 50

synthetic gRNA datasets, holding fixed the raw gene expressions, covariates, library sizes, and

fitted perturbation probabilities. We fitted GLM-EIV and the thresholding method to the data,

yielding estimates [β̂m
1 ](1), . . . , [β̂m

1 ](B). Next, we averaged over the [β̂m
1 ](i)s to obtain the mean

estimate for a given pair and level of background contamination, and we calculated the REC

using these mean estimates.

F. Additional related work

Several authors working on statistical methods for single-cell data recently have extended mod-

els that (implicitly or explicitly) assume Gaussianity and homoscedasticity to a broader class

of exponential family distributions. For example, Lin and others (2021) and Townes and others

(2019) (separately) developed eSVD and GLM-PCA, generalizations of SVD and PCA, respec-

tively, to exponential family response distributions. Unlike their vanilla counterparts, eSVD and

GLM-PCA can model gene expression counts directly, improving performance on dimension re-

duction tasks. We see our work (in part) as a continuation of this broad effort to “port” common

statistical methods and models to single-cell count data. Our focus, however, is on regression
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rather than dimension reduction: we extend the classical errors-in-variables model in several key

directions (see above), enabling its direct and natural application to multimodal single-cell data.

G. Simulation study details and additional simulation studies

G.1 Main text simulation study parameter values

We constructed a table (Table 2) that maps each model parameter to its (i) main text simu-

lation study value and (ii) estimated value on real data. We obtained the real-data parameter

estimates by applying GLM-EIV to analyze a representative gRNA-gene pair from the Gasperini

and others (2019) data (namely, gene “ENSG00000213931” paired to positive control gRNA

“pos control Klannchr1 HS4”). The main difference between the simulation parameter values

and real-data parameter values is that the perturbation effect size on gRNA expression (i.e.,

exp(βg
1 )) is smaller in the simulation study than on the real data. This difference has the effect

of placing the simulation study into a more challenging region of the problem space.

Parameter Simulation value Estimated real data value Meaning
exp(βm

0 ) 0.01 0.02 Gene model intercept
exp(βm

1 ) 0.25 0.68 Gene perturbation effect
exp(γm1 ) 0.9 1.0 Gene batch effect
exp(βg

0 ) 5.0 · 10−3 3.4 · 10−6 gRNA model intercept
exp(βg

1 ) [1.0, 1.5, . . . , 4.0] 6, 200 gRNA perturbation effect
exp(γg1 ) 1.1 1.05 gRNA batch effect

π 0.02 0.004 Perturbation probability

Table 2. A mapping of each model parameter to its (i) main text simulation study value and (ii) estimated
value on real data.

G.2 Additional simulation studies

We report the results of five additional simulation studies. Study 2 considers Gaussian (as opposed

to negative binomial or Poisson) data; study 3 varies the negative binomial size parameter s;
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study 4 varies the effect size of the perturbation on gene expression βm
1 ; and study five (resp.,

six) considers gRNA (resp., gene) expression data that are contaminated by doublets and an

unmeasured covariate. In all simulation studies we deployed the accelerated version of GLM-

EIV.

Simulation study 2. In simulation study 2 we modeled the gene and gRNA expressions

using a Gaussian distribution with an identity link. We generated data on n = 50, 000 cells, fix-

ing the target of inference βm
1 to −4 and the probability of perturbation π to 0.05. We included

“sequencing batch” (modeled as a Bernoulli-distributed variable) and “sequencing depth” (mod-

eled as a Poisson-distributed variable) as covariates in the model. We did not include sequencing

depth as an offset because use of the identity link renders offsets meaningless. We varied βg
1 over a

grid on the interval [0, 7]. We applied GLM-EIV, thresholded regression, and the gRNA mixture

assignment method (coupled to linear regression) to analyze the simulated data. The ranking of

the methods was as follows: GLM-EIV (best), gRNA mixture assignment method (intermediate),

and thresholding method (worst) (Figure 9).

Simulation study 3. Simulation study 3 was similar to the main text simulation study.

The difference is that in simulation study 3, we held fixed βg
1 = log(2.5) while varying the

negative binomial size parameter s over the grid 1 = 100/9, 102/9, 104/9, . . . , 1016/9, 1018/9 = 100.

We applied the three methods twice: once assuming known s and once under unknown s. All

methods demonstrated roughly uniform bias over the grid of s values: the bias of GLM-EIV

was near zero, while that of the thresholding method and the gRNA mixture method was about

0.02. As s increased, the CI width of all methods decreased (as the gene expression data became

more Poisson-like, causing standard errors to shrink). The confidence interval coverage of the

thresholding method and the gRNA mixture method degraded, while that of GLM-EIV remained

at the roughly nominal level. The former two methods likely lost coverage because their biased

estimates caused the increasingly-narrow confidence intervals to be centered at the wrong location.
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The results were broadly similar across known s and unknown s (though slightly better under

known s).

Simulation study 4. Simulation study 4 also was similar to the main text simulation study.

The difference is that in simulation study 4, we held fixed the perturbation effect size on gRNA

expression (exp(βg
1 ) = 2.5) and varied the perturbation effect size on gene expression exp(βm

1 )

over the grid 0.2, 0.3, . . . , 0.9, 1.0. We applied the three methods to analyze data generated from

Poisson, negative binomial (with known s), and negative binomial (with unknown s) gene ex-

pression distributions. We observed that as the magnitude of the effect size increased (i.e., as

exp(βm
1 ) decreased from 1.0 to 0.2), GLM-EIV remained roughly unbiased, while the threshold-

ing method and the gRNA mixture assignment method exhibited increasingly severe attenuation

bias. Furthermore, GLM-EIV maintained coverage at the nominal level, while the coverage of the

thresholding method and the gRNA mixture assignment method degraded due to the aforemen-

tioned attenuation bias. Results were broadly similar (albeit slightly worse) under estimated s

than known s.

We additionally plotted the rejection probability, i.e. the probability of rejecting the null

hypothesis of H0 : exp(βm
1 ) = 1 at level 0.05. When exp(βm

1 ) = 1 (i.e., when we are under the

null hypothesis), the rejection probability (which corresponds to type-I error) should be 0.05,

the nominal level. When exp(βm
1 ) < 1 (i.e., when we are under the alternative hypothesis), the

rejection probability (which corresponds to power) should be as large as possible (with a value of

1.0 being optimal). We observed that all methods exhibited a rejection probability of roughly 0.05

under the null hypothesis of exp(βm
1 ) = 1 and a rejection probability of 1.0 under the alternative

hypotheses of exp(βm
1 ) = 0.9, 0.8, . . . , 0.2, 0.1. In other words, over the grid of values that we

examined, each method performed optimally with respect to testing the hypothesis exp(βm
1 ) = 1.

(We note that our goal in the simulation studies was to explore discrepancies in estimation

accuracy and confidence interval coverage across methods, but we present type-I error control
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and power results for completeness.)

Simulation study 5. In simulation study 5 we applied the methods to analyze data drawn

from a distribution that lay outside the GLM-EIV family of distributions. First, we simulated

gRNA count data from a poisson GLM with two covariates: batch (modeled as a Bernoulli

random variable with probability 1/2) and cell cycle (modeled as a uniform random variable on

the interval [0,1]). We treated cell cycle as an unmeasured covariate, i.e. we did not give any of the

methods access to cell cycle. Next, we randomly selected 1% of cells and doubled the gRNA count

in these cells, thereby simulating the presence of doublets (i.e., droplets that contain two cells) in

the data. We simulated the gene expression data from the same negative binomial model that we

used in the main text simulation (and so the gene expression model was correctly specified.) For

simplicity we assumed that the size parameter s = 20 was known. We varied the perturbation

effect size on gRNA expression exp(βg
1 ) over the grid 1, 2, . . . , 7 and the perturbation effect size

on gene expression exp(βm
1 ) over the grid 0.25, 0.5, 0.75, 1.0.

We applied GLM-EIV, thresholded regression, and the gRNA mixture assignment method to

analyze the data. GLM-EIV exhibited generally lower bias, lower mean squared error, and better

confidence interval coverage than the other methods. The rightmost panel (i.e, exp(βm
1 ) = 1)

corresponds to the null hypothesis of no perturbation effect on gene expression; the left panels

(i.e., exp(βm
1 ) = 0.75, 0.5, 0.25), by contrast, correspond to alternative hypotheses of varying

strength. All methods controlled type-I error at the nominal level of 0.05. GLM-EIV demonstrated

equal or greater power than the competing methods.

Simulation study 6. Simulation study 6 was similar to simulation study 5, the difference

being that simulation study 6 considered a misspecified gene expression model (while simulation

study 5 considered a misspecified gRNA count model). We generated the gene expression data

from a negative binomial GLM containing the unmeasured covariate of cell cycle, and we doubled

the gene expression count in 1% of randomly selected cells to simulate doublets. We generated
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gRNA counts from the same gRNA model that we used in the main text simulation (and so the

gRNA count model was correctly specified.) Again, we varied exp(βg
1 ) over the grid 1, 2, . . . , 7

and exp(βm
1 ) over the grid 0.25, 0.5, 0.75, 1.0. We found that GLM-EIV generally performed best:

GLM-EIV exhibited lower bias, lower mean squared error, and better confidence interval coverage

than the other methods. There was one setting for βg
1 (namely, exp(βg

1 ) = 1.5) for which GLM-

EIV did not control type-I error under the null hypothesis of exp(βm
1 ) = 1. However, this was an

extreme value for βg
1 , and GLM-EIV controlled type-I error under all other values of βg

1 .

Fig. 9. Simulation study 2. Analyzing data generated from a linear Gaussian model. Rejection proba-
bility (not plotted) was strictly 1 across methods and parameter settings.



REFERENCES 87

Fig. 10. Simulation study 3. Varying the negative binomial size parameter s. Rejection probability
(not plotted) was strictly 1 across methods and parameter settings.
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Fig. 11. Simulation study 4. Varying the perturbation effect size on gene expression, βm

1 .
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Fig. 12. Simulation study 5. Analyzing data using a misspecified gRNA count model.
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Fig. 13. Simulation study 6. Analyzing data using a misspecified gene expression model.


