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Abstract—360-degree video has become increasingly popular
in content consumption. However, finding the viewing direction
for important content within each frame poses a significant
challenge. Existing approaches rely on either viewer input or
algorithmic determination to select the viewing direction, but
neither mode consistently outperforms the other in terms of
content-importance. In this paper, we propose 360TripleView,
the first view management system for 360-degree video that
automatically infers and utilizes the better view mode for
each frame, ultimately providing viewers with higher content-
importance views. Through extensive experiments and a user
study, we demonstrate that 360TripleView achieves over 90%
accuracy in inferring the better mode and significantly enhances
content-importance compared to existing methods.

I. INTRODUCTION

Omnidirectional video (360° video) distinguishes itself from
conventional 2D video by capturing a panoramic field of view.
During playback, each 360° frame is projected onto a 2D
view based on the viewer’s viewing direction, resulting in an
immersive and flexible viewing experience. 360° video aligns
naturally with the growing demand for virtual and mixed
reality applications, which industry giants such as Apple,
Google, Microsoft, Meta, and others are heavily investing in,
making it an integral part of our content consumption.

However, a crucial challenge lies in finding a 2D view
from each 360° frame that provides important content to the
viewer. Note that: 1) each 360° frame offers multiple potential
viewing directions, and thus multiple potential views; 2) the
same view can hold varying degrees of content-importance to
different viewers, owing to their diverse viewing preferences.
As a result, unless all possible views are examined, and the
viewer’s preference is taken into account, the selected view
displayed to them may lack the desired importance.

Various approaches have been developed to identify impor-
tant 2D views, with most falling into two categories. Firstly,
many works [1], [2], [3], [4], [5] rely on manual viewer
control to select views. In this approach, the viewer manually
adjusts their viewing direction during playback, receiving the
corresponding 2D view. By actively controlling the viewing
direction, they can prioritize views that are highly important to
them based on their individual viewing preference. However,

due to the limited field of view of a human, the viewer can only
observe one of the many possible views for each 360° frame.
Consequently, while they can still discover important content
within their field of view, they may overlook other views out
of their sight that possess even higher content-importance.

Secondly, other works [6], [7], [8], [9], [10], [11] rely on al-
gorithmic approaches, often built upon saliency detection [12].
In this scenario, a video server performs saliency detection on
each 360° frame to identify the most salient 2D view. By
systematically examining all possible views for each frame, it
may discover views with higher content-importance compared
to manually selected views. However, saliency detection al-
gorithms do not consider the diverse viewing preferences of
different viewers. As a result, the same view is recommended
to all viewers, which can be of excellent importance to those
who prefer to focus on salient objects but of low importance
to viewers whose preferences do not align with saliency.

As a result, viewers face a dilemma: should they rely on
their own instintcs to find views, which consistently offer
high but not excellent content-importance, or watch algorithm-
found views that fluctuate between excellent and low content-
importance? Since neither view mode consistently outperforms
the other in terms of content-importance, relying on a single
mode throughout the video would result in limited content-
importance. In this paper, we propose 360TripleView, the first
intelligent 360° video view management system that addresses
this dilemma by dynamically inferring the better view mode
for each 360° frame. 360TripleView offers three view modes,
each serving a specific purpose:

e MANUAL. Each viewer manually selects their views.

o AUTOCPTONAL | Algorithm-found views are provided, but
viewers in AUTO°PT'ONAL have the option to switch be-
tween MANUAL and AUTQOPTIONAL,

o AUTOFNFORCED | Aloorithm-found views are provided, and
no manual intervention is permitted in AUTQFNFORCED,

The key to enhancing the overall content-importance for
viewers in 360TripleView is its View Mode Decision-
Maker, which automatically determines whether to uti-
lize AUTOENFORCED  or  AUTOOFTONAL/MANUAL for each
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360° frame. It assesses whether the frame’s algorithm-
found views have higher content-importance than viewer-
found views. If so, it employs AUTO®NFORCED to ensure that
everyone observes the algorithm-found views. Otherwise, it
utilizes AUTO®"™N*L/MANUAL, where the viewer can freely
switch between algorithm-found views (AUTOC?™ONAL) and
their manually found views (MANUAL).

Inferring the better mode (with higher content-importance)
between AUTO®NFORCED and AUTOCPTONAL/MANUAL is a prob-
lem that has never been studied. We tackle this challenge based
on these insights: 1) Viewers’ viewing preferences exhibit
convergence in some 360° frames while divergence in others.
We quantify such convergence using a novel metric referred to
as the Convergence Value of Viewing Preferences (CVVP).
2) We find that CVVP is instrumental in inferring the better
mode between AUTOPNFORCED and AUTOCPT'ONAL/MANUAL.
We develop a machine learning-based approach to automat-
ically infer the CVVP of each 360° frame, based on which
the view mode to use is determined.

Our contributions are as follows:

o In Section III, we introduce 360TripleView, the first view
management system for 360° video that enhances overall
content-importance for viewers by automatically inferring
and utilizing the better mode between AUTOFNORCED and
AUTOOPTIONAL/MANUAL for each 360° frame.

o In Section IV, we define the CVVP metric and propose
a deep learning-based solution to estimate the CVVP for
each frame automatically. During the offline stage, a few
viewers’ labeled viewing preferences on some videos are
required to generate the ground truth CVVP for model
training. When utilized, the model takes frames from new
videos as input and returns the estimated CVVP, and no
viewer needs to provide their viewing preference.

o Our experiments (Section V) and user study (Section VI)
show that 360TripleView achieves an accuracy above
90% in inferring the better mode and delivers views of
higher content-importance than existing approaches.

II. BACKGROUND AND RELATED WORK

360° Video Viewing. The nature of 360° video is depicted
in Fig. 1, where it is an omnidirectional recording with a
much wider field of view (FoV) than that of human eyes
(horizontally < 120°). To make 360° video viewing intu-
itive, a sequence of viewing directions {(¢;, 6;)} is provided,
where the yaw angle v; € [—180°,180°], the pitch angle
0; € [-90°,90°], and 7 represents the frame ID. These viewing
directions allow each 360° frame to be projected onto a 2D
view for viewing. In this paper, the terms “find a 2D view” and
“find the viewing direction (1), 6)” are used interchangeably
since determining the viewing direction of a 360° frame
enables the identification of the corresponding 2D view.

Content-Importance. The importance of content within a
2D view varies according to the diverse viewing preferences
of viewers. In this paper, we focus on developing a view
management system that automatically infers the better view
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Fig. 1: Projection of 360° frames onto 2D views based on a
sequence of viewing directions.

mode to utilize, making viewers obtain views with higher
content-importance overall.
Existing view modes can be categorized as follows:

A. MANUAL Mode

In MANUAL mode, the viewer has complete control over
their viewing direction (¢, 6). Using a client-device (e.g., a
mouse or headset), the viewer manually adjusts their viewing
direction throughout the video. The client-device continuously
sends the updated (¢),60) to the video server, which keeps
returning the corresponding 2D view to the viewer.

Pros & Cons. Many existing works [1], [2], [3], [4], [5]
consider MANUAL to be satisfactory for viewers. This is
because manual control allows viewers to obtain views that
align with their own preferences and are therefore important to
them. However, due to the viewer’s limited FoV, they can only
see a small portion of the entire 360° frame at a given time.
Consequently, they may perceive the view they are watching
as the most important, while a more significant view exists
outside of their sight, which they would have turned to if
they had been aware of it. As a result, MANUAL consistently
delivers views of high content-importance to the viewer but
not of excellent importance.

To address the drawback of the limited FoV, some
works [13], [14] introduce graphical indicators within the
viewer’s FoV to indicate targets outside their sight. However,
these solutions require the viewer to manually track multiple
view candidates, which can be distracting or overwhelming.

B. AUTOENFORCED Aode

On the other hand, AUTO®NFORCED mode offers no control
to the viewer. In this mode, a server performs saliency detec-
tion [15], [12] to determine the viewing direction (¢, 6) that
results in the most salient 2D view, which is then delivered to
the viewer. In AUTOFNFORCED " the viewer can only watch the
auto-generated 2D video and cannot switch to another mode.

Pano2Vid [6] converts a 360° video into a 2D video
that resembles those captured by human videographers.
Deep360Pilot [7] utilizes supervised learning, where the au-
thors manually label the most salient object frame by frame
and train an RNN to recommend the corresponding (¢, ).
Wang et al. [8] employ reinforcement learning using ground
truth data from the Pano2Vid and Deep360Pilot datasets,
combined with saliency detection. Lai et al. [9] incorporate
saliency detection and semantic segmentation. They also pro-
pose saliency-aware temporal summarization, which increases
the playback speed of frames with lower saliency scores.
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Pros & Cons. Since the algorithm considers the entire
360° frame and explores all possible 2D views, it may discover
a view of higher content-importance compared to what a
viewer might find in MANUAL mode. However, due to the
diverse viewing preferences among viewers, an algorithm-
found view may be of excellent importance to some view-
ers but have little or no importance to others. Personaliza-
tion through machine learning, which recommends different
views to different viewers based on their preferences, is
not feasible at this stage since obtaining every individual’s
360° video viewing preference is impractical. Therefore, in
this paper, we assume that AUTOFNFORCED recommends the
same 2D view to all viewers who watch the same 360° frame,
without personalization.

As a result, viewers using AUTO™FORCEP mode risk receiv-
ing a view that may be more or less important compared to
what they would obtain in MANUAL mode. In other words,
neither AUTOPNORCED 01 MANUAL is consistently superior
to the other in terms of content-importance.

C. AUTOCPTIONAL/MANUAL Mode

In AUTOOPTIONAL/MANUAL mode [16], [17], the viewer
can manually switch between algorithm-found views
(AUTOQPTONALY and viewer-found views (MANUAL) whenever
desired. The algorithm-found views in AUTO®"T'°NAL are the
same as those in AUTOPNFORCEP  The key distinction is that the
viewer can interrupt AUTO®PT'ONAL and switch to MANUAL,
but such interruptions are not possible in AUTQFNFORCED,

These works aim to enhance content-importance by provid-
ing viewers with two mode options, allowing them to choose
the better one. However, they overlook the fact that humans are
incapable of accurately and instantly determining the better
mode for each frame without being distracted from enjoying
the video content.

III. OVERVIEW OF 360TRIPLEVIEW

Our 360TripleView has the following three view modes, and
utilizes one mode at a time.

o MANUAL. Each viewer manually selects their views.

o AUTOQOPTONAL - Aloorithm-found views are provided, but
viewers in AUTO°PT'°NAL have the option to switch be-
tween MANUAL and AUTQOPTIONAL,

o AUTOQ™NFORCEP Algorithm-found views are provided, and
no manual intervention is permitted in AUTOQ®NFORCED,

As illustrated in Fig. 2, 360TripleView involves the server

processing and transmitting video content, while viewers ac-
cess the content through their client-devices (e.g., headsets).
The View Mode Decision-Maker on the server receives two
inputs: @ a 360° frame from the Video Database, and @ the
viewer’s request to change their view mode. The decision-
maker determines ® the view mode to use for each frame
and sends the decision (denoted as mode,se € {MANUAL,
AUTOQOPTIONAL = AUTQFNFORCED L) 1o the viewer, the saliency
detection unit, and the 360-to-2D projection unit. If mode,s. is
MANUAL, the viewer continues to provide @ their manually
controlled viewing direction (¢,6) to the projection unit;
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if modeyse is AUTOOPTIONAL or AUTOENFORCED - the saliency
detection unit processes the video frame and @ automatically
recommends a (¢,6) to the projection unit. It is important
to note that 360TripleView can utilize any existing saliency
detection approach (e.g., we use ATSal [12], but other solu-
tions also work). Finally, the projection unit receives the video
frame and the (¢, 0) (either @ or ®, depending on mode,s.),
and delivers @ the corresponding 2D view to the viewer.

Video
Database

®|360° frame
v
auto Saliency
\ 4 (¥, 0)© Detection v
360-to-2D | View Mode
Projection | ©mode,,, | Decision-Maker
@ manual (P, ) 7'y
. viewer
2D
©| 20 view o request
.............................
v

Fig. 2: 360TripleView system architecture.

A. View Mode Decision-Maker

The cornerstone of 360TripleView (Fig. 2) is its View Mode
Decision-Maker (Fig. 3). This component determines, for
each 360° frame, which of the three view modes (MANUAL,
AUTQOFTIONAL & AyTQENFORCED) 16 ytilize (i.e., be modeyse).

@360° frame [
1

1
AUTOOPTIONAL/MANUAL!
i 1
cvvp 1| autooemonaL | |
1
Estimator : :
AUTOENFORCED ! e“viewer !
1
_high  CWP  low | yequest
< >
1
1
! MANUAL |
1 1
L _Y— 1

Fig. 3: 360TripleView View Mode Decision-Maker..

As depicted in Fig. 3, the View Mode Decision-Maker
operates as a state machine with three states: MANUAL,
AUTQOPTIONAL = AUTQFENFORCED  The CVVP Estimator is re-
sponsible for determining whether to employ AUTOFNFORCED o
AUTOOPTIONAL/MANUAL. It takes @ a 360° frame as input
and estimates the Convergence Value of Viewer Preferences
(CVVP). The CVVP is a metric that indicates the better
mode, either AUTOENFORCED or AUTOCPTONAL/MANUAL, in
terms of higher content-importance. We will provide further
details on this metric in Section IV. If the CVVP exceeds a
threshold, it suggests that algorithm-found views may offer
higher overall content-importance compared to viewer-found
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views. Therefore, in such cases, mode,s. Wwill be set to
AUTOFNFORCED to ensure that algorithm-found views are not
missed by any viewer. Conversely, a low CVVP implies
that viewer-found views possess higher content-importance.
Consequently, mode,s. will be set to AUTOPTONAL/MANUAL,
allowing each viewer to manually send @ a viewer request
(e.g., through mouse clicks) and switch the mode,s. between
MANUAL and AUTO°PTONAL (without affecting other viewers’
modeyse). It suggests viewers select MANUAL to watch their
personally found views, but allows them the option to watch
algorithm-found views (AUTOCP™ONAL) if desired, especially
when they feel fatigued after prolonged use of MANUAL.

IV. VIEw MODE DECISION-MAKING DRIVEN BY CVVP

360TripleView’s View Mode Decision-Maker automatically
infers whether AUTOFNFORCED or AUTOOPTONAL/MANUAL will
yield higher content-importance, based on a novel metric
called the Convergence Value of Viewer Preferences (CVVP).
In this section, we elaborate on CVVP and its use in inferring
the better mode, and present a deep learning solution to
automatically estimate the CVVP for each 360° frame.

A. Definition of CVVP

Through experiments, we have made a key observation:
when multiple viewers are presented with a complete view
of a 360° frame, and each viewer is asked to identify the
viewing direction that holds their highest content-importance.
Their preferences—indicated by their labeled directions—
diverge in some frames while converge in others. Fig-
ure 4 illustrates the variation of v (yaw) labeled by dif-
ferent viewers over time in a video from the Pano2Vid [6]
dataset (www.youtube.com/watch?v=19S1iIyCyRMO):
their preferences diverge from second 57 to 80 and converge
well at other times. Divergence often occurs when a frame
contains zero or multiple significant regions, leading to dif-
ferent choices based on individual preferences. Conversely,
convergence occurs when a frame contains one dominant
important region which is favored by most viewers. Con-
sequently, viewers’ viewing preferences exhibit a dynamic
degree of convergence that varies across video frames.

y (deg)

J
100

playback time (sec)

Fig. 4: Variation of viewers’ labeled v (yaw), showing con-
vergence and divergence. Variation also exists for 6 (pitch).

To quantify the degree of convergence for each 360° frame,
we introduce a novel metric—Convergence Value of Viewer
Preferences (CVVP). Computing the ground truth CVVP
requires the most important labeled viewing directions from
N viewers, denoted as (1;,0;), where the viewer ID is
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represented by j = 1,2,..., N. The content-importance of
a viewing direction (1), 0) to viewer j is defined as follows:

importance; (¢, 0) = {1 i ng(.(i/); 0), (¥5,0;)) < THaist
0 otherwise
)]
where ged() is the great-circle distance between two viewing
directions (each direction corresponds to a point on the unit
sphere), and T H ;s is the distance threshold. Specifically,
(1, 0) is considered important to viewer j if it is close enough
to the viewer’s labeled direction. Given that the human field
of view is < 120°, we consider two directions to be close if
they are less than 30° apart. Thus, we set T'H g to 30°.
The overall content-importance of (¢, ) is defined as the
average of the content-importance values across all N viewers:

N
. 1 ,
importance(, 0) = N ;zmportancej(w7 ) 2
Finally, the CVVP of the 360° frame is defined as the
maximum importance(t), ) among all ¢ € [—180°,180°],
0 € [-90°,90°]:

CVVP = r{lpa@x importance(1, 6) 3)

Figure 5 presents two examples of frames, their labels, and
ground truth CVVP values.

=1

(bycvvp =S

(a) CVVP = 2 ~ 0.33

Fig. 5: Examples of ground truth CVVP. Each circle represents
a viewer-labeled most important viewing direction. Directions
close to each other are color-coded identically.

B. Using CVVP to Infer the Better Mode

The View Mode Decision-Maker utilizes CVVP to infer the
better mode (with higher overall content-importance), between
AUTOPNFORCED and AUTOOPTONAL/MANUAL. The inferred bet-
ter mode is then selected as the mode to use (mode,se):

if CVVP < THeyyp

AUTOCPTIONAL/MANUAL
modeyse = )
otherwise

AUTOENFORCED

(C))

where T'Hoyy p represents a configurable CVVP threshold.

Why is CVVP an effective indicator for inferring the

better mode? Note that CVVP € (0,1] increases with the
convergence degree of viewing preferences:

1) In the case of the lowest convergence, where (v;, 6,) are
scattered, any (v, 6) is close to at most one (v, 6;), i.e.,

V(1,0), importance(y,0) < 1,thus CVVP = 1.
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2) In the case of the highest convergence, where all
N viewers’ (1;,60;) are closely clustered, there ex-
ists a (¢,0) that is close to all of them, i.e.,
(¢, 0), importance(y,0) = N, thus CVVP = 1.

In general, if a 360° frame has a CVVP of 1%, it
implies that at most n% of the viewers will have
their preferred view when one (¢,6) is viewed by all
viewers. Notably, AUTO*N"REP recommends one (v, 6)
to all viewers without personalization (Section II). Thus,
CVVP serves as an upper bound for the actual overall
content-importance achieved by AUTOQFNFORCED,

3)

Based on these observations, we make the inferences below:

o If CVVP < THeoyyp (e.g., 60%), the actual overall
content-importance achieved by AUTO®NORCED mugt be
< THecyyp. Thus, AUTOCPTIONAL/MANUAL is inferred
as the better mode and becomes mode,s., allowing
viewers to use MANUAL.

e If CVVP > THeyyp, the actual overall content-
importance achieved by AUTOFNFORCED can be >
THcyyp. Thus, AUTOENFORCED g inferred as the better
mode and becomes mode, ., ensuring that algorithm-
found views are watched.

C. Automatic CVVP Estimator

To compute the ground truth CVVP (Section IV-A) of a
360° frame, we need to know the important viewing directions
labeled by multiple viewers for that frame. However, obtaining
this information from viewers during the use of 360Triple-
View is impractical. Therefore, we introduce a deep learning
solution: in the offline stage, we request a few viewers to
label some frames of some videos, enabling us to compute
the ground truth CVVP for model training; when utilized,
the model processes frames from new videos (not used in
training) and provides the estimated CVVP without requiring
any viewers to provide their viewing preferences.

1) Deep Learning-Based Regression: We have developed a
deep learning-based regression model that takes a 360° frame
(represented as I) as input and predicts its CVVP € R
and € (0,1]. The model leverages ResNetlOl for image
feature extraction. Since ResNet is pretrained on 2D images
and does not handle equirectangular 360° frames, which are
significantly distorted in the polar regions, we first convert
I to a cubemap comprising six 2D views denoted as {I*},
where x = front, back, left, right, up, down. Each view is
passed through the feature extractor to obtain its visual features
Vi € R?2048 These features are concatenated to V; € R2288,

V7 is fed through two fully connected layers with output
sizes of 2048 and 1 (representing the predicted CVVP),
respectively. ReLU activation is applied to each layer. Mean
Absolute Error (L1) is used as the loss function instead of
Mean Squared Error (L2) because MAE is more robust against
outliers. Fig. 6 displays the predicted CVVP and the ground
truth for the video in Fig. 4. It is seen that the predicted and
ground truth values are relatively low from second 57 to 80,
consistent with the divergence depicted in Fig. 4.
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Fig. 6: CVVP predicted by the neural network.

2) Binarization and Stabilization: The regression model
outputs a sequence of CVVP values {CV'V P,;}, where i repre-
sents the frame ID. Note that if mode,s. changes with CVVP
frame by frame, viewers will be disturbed. To stabilize it, we
compute the average CVVP per second, getting {CVV P}
where ¢t = 1,2,...,T second, CVVP, € R and € (0,1].
However, we notice that CVV P; still fluctuates often. If
we simply binarize the {CVV P;} in Fig. 6 using threshold
THeyyp (e.g., 0.6, Section IV-B), making a CVVP above
THeyyvp be 1 (indicating the use of AUTOFNFORCED) and
otherwise be 0 (indicating the use of AUTO®"T°NAL/MANUAL),
we will get the sequence shown in Fig. 7, with overly short
view modes and frequent view mode switching.

1
4

40 60
playback time (sec)

0 20

[e]
o

100

Fig. 7: Predicted CVVP sequence without stabilization.

To address this issue, we devise an advanced stabilization
module, which takes {CVV P} as input, along with two
parameters set by the system administrator: 1) THeyy p, the
threshold above which a CVVP is considered high enough to
use AUTOQFNFORCED. 2y ¢ in, the minimum duration (e.g., 20
seconds) for which the view mode must remain unchanged
before it can change again, ensuring stability.

First, we normalize {CVV P} to {CVV P/} such that
CVVP, = THoyyp is mapped to 0.5. Then, we binarize
{CVV P/} to {CVV P;}, where CVV P, € {0,1}. The ob-
jective is to minimize the difference between {CVV P;} and
{CVV P/} while ensuring that each time C'VV P, changes
(from 0 to 1 or 1 to 0), the new value persists for at least
tmin seconds. We can formulate the problem as follows:

arg min MSE({Wt}U,[tI,tg,...,tm]7 {CVV PR}
{CVV P}y b1 40 tm]
st. ve{0,1}
m T
Zti:T 1<m< \‘t Jytiztmin
I min
(5)
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where v represents the initial value of {CV'V P;} (0 or 1), and
[t1,t2, ..., ty] indicates that {C'V'V P;} consists of m disjoint
subsequences, with ¢; being the length of the ith subsequence.
Thus, {CVV Pt} [t ts,...t.,] TePresents the sequence that
starts with the value v, lasts for ¢; seconds, toggles the value
(0 to 1 or 1 to 0), lasts for t5 seconds, and so on. The second
constraint ensures that all ¢; add up to 7' (the total length
of the sequence) and that each subsequence is at least t,,;,
seconds long. The optimal solution, which minimizes the mean
squared error (MSE) to {CVV P/}, is the resulting sequence
{CVV P,}. With t,,,;,, = 20 seconds, the stabilized result of
the sequence in Fig. 7 is illustrated in Fig. 8.

=== pred

— true

T

0 20

T T
40 60
playback time (sec)

]
o

100

Fig. 8: CVVP sequence with stabilization.

V. EXPERIMENTS
A. Implementation and Experimental Settings

1) Dataset: To train and test the deep learning model, we
acquire 360° videos with ground truth CVVP. We utilize the
Pano2Vid dataset [6], which has videos of diverse content,
such as tours, sports, and parades. Each frame of each video
in Pano2Vid has most important (¢, ) labeled by different
participants (see examples in Fig. 5). We convert these labels
to ground truth CVVP per frame, following the definition
of CVVP (Section IV-A). It is worth noting that Pano2Vid
is the only dataset that meets our criterion for ground truth
CVVP generation, because each participant is given the entire
view of a 360° frame and asked to check every viewing
direction and label the highest content-importance view ac-
cording to their viewing preference, frame by frame. More
recent 360° video datasets [18], [19] are collected by having
participants watch videos with headsets in MANUAL mode
while recording their viewing directions in real time. However,
MANUAL cannot guarantee that the most important (1), 6) is
found, because of its limited field of view. Therefore, these
datasets are unsuitable for generating ground truth CVVP.

2) Deep Learning: For feature extraction in our CVVP
regression model, we use ResNet101. We have experimented
with other models, such as VGG19 and Inception-v3, but
found no significant impact on the accuracy of CVVP esti-
mation. We conduct three validation schemes:

o No Tuning (leave-one-out): Each video is tested using
the model trained on the other videos. This is a commonly
used cross-validation scheme.

o 1-sec Tuning: For each video, we randomly select 1 sec-
ond (30 frames) of its content and use the corresponding
ground truth CVVP to fine-tune the model trained on the
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other videos, and then test the video. Note that tuning
is not obligatory; it can be selected when available to
improve CVVP prediction accuracy.

o 3-sec Tuning: This scheme is similar to 1-sec Tuning,
but we use 3-second ground truth CVVP for fine-tuning.

3) Evaluation Metrics:

o Error of Estimated CVVP: This metric represents the
difference between the predicted CVVP per frame and
the ground truth CVVP.

o Accuracy of Better Mode Inference: A true positive
(TP) occurs when both predicted and ground truth CVVPs
are 1 (indicating the use of AUTOFNFORCED) A true
negative (TN) occurs when both are 0 (indicating the use
of AUTQ%FTIONAL/MANUAL). accuracy = TI?(LTN

e Overall Content-Importance: It measures the actual

overall content-importance (Equation 2 in Section IV-A).

4) Baselines: 360TripleView automatically determines
modeys. based on CVVP. We compare it with two baseline
methods that determine mode,se.

o AUTOENFORCED ONLY: mode,s. is AUTOENFORCED from
beginning to end.

o AUTOOPTIONAL/MANUAL ONLY: modeyse
switches between AUTO®PTONAL and MANUAL.

Note that 360TripleView innovates in mode, s, determina-
tion (i.e., deciding which mode to use), not in saliency detec-
tion. When mode,,s. becomes AUTOENFORCED or AUTQOFPTIONAL
the saliency detection unit (Fig. 2) executes an existing
saliency detection algorithm, and its performance impacts the
resulting overall content-importance. We test the following
saliency detection approaches:

o CubePad: CubePadding [15] is a seminal and well-

known saliency detection approach for 360° video.

o ATSal: ATSal [12] is one of the most recent state-of-the-

art saliency detection methods for 360° video.

o Pano2Vid: The (¢, 6) in Pano2Vid [6] are manually la-

beled, not algorithmically derived like CubePad or ATSal.
We include it here because it represents the “ceiling”
of (¢, 0) recommendation, which may be approached by
future algorithms.

manually

B. Error of Estimated CVVP

Fig. 9a shows the cumulative distribution function (CDF) of
the error of predicted CVVP for each validation scheme. All
of them have an error within 0.15 for about 70% of the time,
and an error within 0.25 for more than 90% of the time.

Unsurprisingly, the error decreases as more data are used
for fine-tuning. But even without any tuning, it still achieves
a mean error of 0.19. For 1-sec Tuning and 3-sec Tuning, the
mean errors are 0.14 and 0.12, respectively. Considering that
the range of CVVP is (0, 1], these errors may not be very
small. However, it is important to note that CVVP will be bi-
narized and stabilized before being used to control view mode
switching. For example, a CVVP of 0.7 (with its ground truth
being 0.9) will be binarized to 1—the same as the binarized
ground truth if the threshold T"Hcv v p (Section IV-B) is 0.6.
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Fig. 9: Performance of CVVP estimation and mode inference.

Thus, errors of this level do not prevent 360TripleView from
overall accurately inferring the better mode (Section V-C).

C. Accuracy of Better Mode Inference

Fig. 9b shows the accuracy in inferring the better mode
between AUTOFNFORCEP and AUTOCFPT'NAL/MANUAL. Even
without any tuning, the accuracy is still around 80%. When
1-sec Tuning is used, the accuracy is raised to above 90%
most of the time. The mean accuracy of each scheme is 74%,
91% and 96%, respectively. The threshold T"Hcyv v p varying
from 0.5 to 0.8 has no significant impact on the accuracy.

D. Overall Content-Importance

We compare the overall content-importance when using
AUTOENFORCED ONLY, AUTOCPTONAL/MANUAL ONLY, and our
360TripleView. Note that for some videos, 360TripleView
infers that AUTO™NFORCEP jg the better mode throughout the
video, resulting in the same content-importance as the first
baseline (AUTOFNFORCED ONLY). To focus on the performance
difference, we exclude those videos and present the average
content-importance of the remaining videos whose content-
importance varies with mode, . determination strategies.

Impact of mode,s. Determination Strategies: The impact
of mode,s. determination strategies when T Heoyyp = 0.6
is shown in Table II. It demonstrates that our 360Triple-
View achieves higher overall content-importance than the
other mode,, ;. determination strategies (AUTO®NFORCED ONLY,
AUTOCPTIONAL/MANUAL ONLY) in almost all cases, when the
saliency detection strategy (CubePad, ATSal, Pano2Vid) and
the tuning time are held constant. Similar results are observed
when THeyyp = 0.5 (Table 1) and 0.7 (Table III).

Impact of Saliency Detection Strategies: 360TripleView
focuses on mode,s. determination and does not propose a
new saliency detection solution. When mode,se becomes
AUTOFNFORCED o AUTQOPTIONAL "an existing saliency detection
approach is employed (Fig. 2). Comparing CubePad with
ATSal, we observe that the latter generally achieves higher
content-importance. This is because both approaches infer
content-importance based on saliency detection, but ATSal,
being a more recent work, combines global and local visual
features to predict saliency more accurately compared to
previous methods. However, when comparing ATSal with
Pano2Vid, a significant difference is still evident. This suggests
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TABLE I: Overall content-importance (I'Hcyyvp = 0.5). The
best performance value is marked in bold.

CubePad ATSal Pano2Vid

AUTOQENFORCED 0.150 0.208 0.582

No Tuning AUTO°PT/MAN 0.137 0.215 0.599
360TripleView 0.199 0.211 0.636

AUTQFNFORCED 0.123 0.145 0.507

1-sec Tuning  AUTO°PT/MAN 0.097 0.160 0.482
360TripleView 0.188 0.155 0.613

AUTQENFORCED 0.094 0.151 0.545

3-sec Tuning AUTO°*T/MAN 0.068 0.130 0.512
360TripleView 0.154 0.170 0.647

TABLE II: Overall content-importance (I'"Hcyyp = 0.6).

CubePad ATSal Pano2Vid

AUTQENFORCED 0.293 0411 0.782

No Tuning AUTO°PT/MAN 0.230 0.387 0.727
360TripleView 0.115 0.498 0.798

AUTQENFORCED 0.089 0.187 0.594

1-sec Tuning  AUTO®""/MAN 0.086 0.157 0.574
360TripleView 0.119 0.230 0.723

AUTQFNFORCED 0.112 0.218 0.603

3-sec Tuning AUTO°*T/MAN 0.098 0.224 0.580
360TripleView 0.189 0.239 0.720

TABLE III: Overall content-importance (I'Hcoyyp = 0.7).

CubePad ATSal Pano2Vid

AUTQENFORCED 0.368 0.616 0.855

No Tuning AUTO"T/MAN 0.133 0.809 0.877
360TripleView 0.056 0.716 0.962

AUTOFNFORCED 0.097 0.268 0.652

1-sec Tuning  AUTO°T/MAN 0.092 0.246 0.640
360TripleView 0.144 0.299 0.773

AUTQENFORCED 0.141 0.296 0.657

3-sec Tuning  AUTO®"T/MAN 0.081 0.311 0.660
360TripleView 0.242 0.312 0.781

that the algorithm-generated (¢, ) values are currently quite
distinct from the human-labeled ones, indicating room for
improvement. While saliency detection falls outside the scope
of this paper, we consider it as a potential area for future work.

Impact of Tuning: We observe that when the mode,s. de-
termination and saliency detection strategies are held con-
stant, the performance does not always increase with tun-
ing time. This is because the no-tuning model wrongly
uses AUTOPNFORCED consistently on many videos. As pre-
viously mentioned, if 360TripleView consistently uses
AUTOFNFORCED on a video, it is essentially equivalent to
AUTOFNFORCED QNLY, so we exclude the video. Consequently,
the no-tuning model excludes more videos, which may make
the average content-importance of the remaining videos higher.

VI. USER STUDY

A. User Study Settings

We design and implement an online platform, utilizing
it to conduct a user study. A total of 25 participants (21
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males and 4 females) are recruited. The dataset used for
evaluation is the Pano2Vid dataset, and we select 6 videos
that represent diverse content, including tours (hiking/driving),
sports (outdoor/indoor), and parades (daytime/nighttime).

User Ratings: Each participant watches each video un-
der three view modes sequentially: 1) MANUAL ONLY, 2)
AUTOOPTIONAL/MANUAL ONLY, and 3) 360TripleView. Partic-
ipants are asked to rate the content-importance for each video
and each mode on a scale from 0 (worst) to 10 (best).

B. User Study Results

Favorite Mode: If a view mode receives a higher rat-
ing than the other two modes from a participant, it is re-
garded as the participant’s favorite mode. Fig. 10a shows
the statistics: MANUAL ONLY is favored 17.2% of the time,
AUTOOPTIONAL/MANUAL ONLY is favored 28.6% of the time,
while 360TripleView emerges as the clear winner, being the
favorite mode 54.2% of the time.

10
AUTO®PT/MAN

MANUAL

}_[

user rating
o

0
M, A 3607,
360TripleView azzn UToo;:r/MA v Orr/p/el//'ew

(a) Favorite mode. (b) User rating distribution (green:

mean, orange: median).

Fig. 10: User study results.

User Ratings: The distribution of user ratings for
content-importance in each view mode is presented
in Fig. 10b. The mean ratings for MANUAL ONLY,
AUTOOPTONAL/MANUAL ONLY and 360TripleView are 4.96,
5.90 and 6.38, respectively. The corresponding median ratings
are 4.71, 529 and 6.18. It is evident that 360TripleView
receives the highest ratings in both measures.

VII. CONCLUSION

In this paper, we have presented the design, implementa-
tion, and evaluation of 360TripleView, a groundbreaking view
management system for 360° video viewing. It offers three
view modes and automatically infers the better mode be-
tween AUTOPNFORCED and AUTOCPTONAL/MANUAL to enhance
viewers’ overall content-importance. Our evaluation results
demonstrate that 360TripleView achieves an accuracy above
90% in inferring the better mode and results in significantly
higher content-importance compared to existing approaches.
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