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Abstract—360-degree video has become increasingly popular
in content consumption. However, finding the viewing direction
for important content within each frame poses a significant
challenge. Existing approaches rely on either viewer input or
algorithmic determination to select the viewing direction, but
neither mode consistently outperforms the other in terms of
content-importance. In this paper, we propose 360TripleView,
the first view management system for 360-degree video that
automatically infers and utilizes the better view mode for
each frame, ultimately providing viewers with higher content-
importance views. Through extensive experiments and a user
study, we demonstrate that 360TripleView achieves over 90%
accuracy in inferring the better mode and significantly enhances
content-importance compared to existing methods.

I. INTRODUCTION

Omnidirectional video (360◦ video) distinguishes itself from

conventional 2D video by capturing a panoramic field of view.

During playback, each 360◦ frame is projected onto a 2D

view based on the viewer’s viewing direction, resulting in an

immersive and flexible viewing experience. 360◦ video aligns

naturally with the growing demand for virtual and mixed

reality applications, which industry giants such as Apple,

Google, Microsoft, Meta, and others are heavily investing in,

making it an integral part of our content consumption.

However, a crucial challenge lies in finding a 2D view

from each 360◦ frame that provides important content to the

viewer. Note that: 1) each 360◦ frame offers multiple potential

viewing directions, and thus multiple potential views; 2) the

same view can hold varying degrees of content-importance to

different viewers, owing to their diverse viewing preferences.

As a result, unless all possible views are examined, and the

viewer’s preference is taken into account, the selected view

displayed to them may lack the desired importance.

Various approaches have been developed to identify impor-

tant 2D views, with most falling into two categories. Firstly,

many works [1], [2], [3], [4], [5] rely on manual viewer

control to select views. In this approach, the viewer manually

adjusts their viewing direction during playback, receiving the

corresponding 2D view. By actively controlling the viewing

direction, they can prioritize views that are highly important to

them based on their individual viewing preference. However,

due to the limited field of view of a human, the viewer can only

observe one of the many possible views for each 360◦ frame.

Consequently, while they can still discover important content

within their field of view, they may overlook other views out

of their sight that possess even higher content-importance.

Secondly, other works [6], [7], [8], [9], [10], [11] rely on al-

gorithmic approaches, often built upon saliency detection [12].

In this scenario, a video server performs saliency detection on

each 360◦ frame to identify the most salient 2D view. By

systematically examining all possible views for each frame, it

may discover views with higher content-importance compared

to manually selected views. However, saliency detection al-

gorithms do not consider the diverse viewing preferences of

different viewers. As a result, the same view is recommended

to all viewers, which can be of excellent importance to those

who prefer to focus on salient objects but of low importance

to viewers whose preferences do not align with saliency.

As a result, viewers face a dilemma: should they rely on

their own instintcs to find views, which consistently offer

high but not excellent content-importance, or watch algorithm-

found views that fluctuate between excellent and low content-

importance? Since neither view mode consistently outperforms

the other in terms of content-importance, relying on a single

mode throughout the video would result in limited content-

importance. In this paper, we propose 360TripleView, the first

intelligent 360◦ video view management system that addresses

this dilemma by dynamically inferring the better view mode

for each 360◦ frame. 360TripleView offers three view modes,

each serving a specific purpose:

• MANUAL. Each viewer manually selects their views.

• AUTOOPTIONAL. Algorithm-found views are provided, but

viewers in AUTOOPTIONAL have the option to switch be-

tween MANUAL and AUTOOPTIONAL.

• AUTOENFORCED. Algorithm-found views are provided, and

no manual intervention is permitted in AUTOENFORCED.

The key to enhancing the overall content-importance for

viewers in 360TripleView is its View Mode Decision-
Maker, which automatically determines whether to uti-

lize AUTOENFORCED or AUTOOPTIONAL/MANUAL for each
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360◦ frame. It assesses whether the frame’s algorithm-

found views have higher content-importance than viewer-

found views. If so, it employs AUTOENFORCED to ensure that

everyone observes the algorithm-found views. Otherwise, it

utilizes AUTOOPTIONAL/MANUAL, where the viewer can freely

switch between algorithm-found views (AUTOOPTIONAL) and

their manually found views (MANUAL).

Inferring the better mode (with higher content-importance)

between AUTOENFORCED and AUTOOPTIONAL/MANUAL is a prob-

lem that has never been studied. We tackle this challenge based

on these insights: 1) Viewers’ viewing preferences exhibit

convergence in some 360◦ frames while divergence in others.

We quantify such convergence using a novel metric referred to

as the Convergence Value of Viewing Preferences (CVVP).
2) We find that CVVP is instrumental in inferring the better

mode between AUTOENFORCED and AUTOOPTIONAL/MANUAL.

We develop a machine learning-based approach to automat-

ically infer the CVVP of each 360◦ frame, based on which

the view mode to use is determined.

Our contributions are as follows:

• In Section III, we introduce 360TripleView, the first view

management system for 360◦ video that enhances overall

content-importance for viewers by automatically inferring

and utilizing the better mode between AUTOENFORCED and

AUTOOPTIONAL/MANUAL for each 360◦ frame.

• In Section IV, we define the CVVP metric and propose

a deep learning-based solution to estimate the CVVP for

each frame automatically. During the offline stage, a few

viewers’ labeled viewing preferences on some videos are

required to generate the ground truth CVVP for model

training. When utilized, the model takes frames from new

videos as input and returns the estimated CVVP, and no

viewer needs to provide their viewing preference.

• Our experiments (Section V) and user study (Section VI)

show that 360TripleView achieves an accuracy above

90% in inferring the better mode and delivers views of

higher content-importance than existing approaches.

II. BACKGROUND AND RELATED WORK

360◦ Video Viewing. The nature of 360◦ video is depicted

in Fig. 1, where it is an omnidirectional recording with a

much wider field of view (FoV) than that of human eyes

(horizontally < 120◦). To make 360◦ video viewing intu-

itive, a sequence of viewing directions {(ψi, θi)} is provided,

where the yaw angle ψi ∈ [−180◦, 180◦], the pitch angle

θi ∈ [−90◦, 90◦], and i represents the frame ID. These viewing

directions allow each 360◦ frame to be projected onto a 2D

view for viewing. In this paper, the terms “find a 2D view” and

“find the viewing direction (ψ, θ)” are used interchangeably

since determining the viewing direction of a 360◦ frame

enables the identification of the corresponding 2D view.

Content-Importance. The importance of content within a

2D view varies according to the diverse viewing preferences

of viewers. In this paper, we focus on developing a view

management system that automatically infers the better view

-180° ψ 180°

90°

θ

-90°

360-to-2D 
Projection

360° frame

{(ψi, θi)} time

2D view

Fig. 1: Projection of 360◦ frames onto 2D views based on a

sequence of viewing directions.

mode to utilize, making viewers obtain views with higher

content-importance overall.

Existing view modes can be categorized as follows:

A. MANUAL Mode

In MANUAL mode, the viewer has complete control over

their viewing direction (ψ, θ). Using a client-device (e.g., a

mouse or headset), the viewer manually adjusts their viewing

direction throughout the video. The client-device continuously

sends the updated (ψ, θ) to the video server, which keeps

returning the corresponding 2D view to the viewer.

Pros & Cons. Many existing works [1], [2], [3], [4], [5]

consider MANUAL to be satisfactory for viewers. This is

because manual control allows viewers to obtain views that

align with their own preferences and are therefore important to

them. However, due to the viewer’s limited FoV, they can only

see a small portion of the entire 360◦ frame at a given time.

Consequently, they may perceive the view they are watching

as the most important, while a more significant view exists

outside of their sight, which they would have turned to if

they had been aware of it. As a result, MANUAL consistently
delivers views of high content-importance to the viewer but
not of excellent importance.

To address the drawback of the limited FoV, some

works [13], [14] introduce graphical indicators within the

viewer’s FoV to indicate targets outside their sight. However,

these solutions require the viewer to manually track multiple

view candidates, which can be distracting or overwhelming.

B. AUTOENFORCED Mode

On the other hand, AUTOENFORCED mode offers no control

to the viewer. In this mode, a server performs saliency detec-

tion [15], [12] to determine the viewing direction (ψ, θ) that

results in the most salient 2D view, which is then delivered to

the viewer. In AUTOENFORCED, the viewer can only watch the

auto-generated 2D video and cannot switch to another mode.

Pano2Vid [6] converts a 360◦ video into a 2D video

that resembles those captured by human videographers.

Deep360Pilot [7] utilizes supervised learning, where the au-

thors manually label the most salient object frame by frame

and train an RNN to recommend the corresponding (ψ, θ).
Wang et al. [8] employ reinforcement learning using ground

truth data from the Pano2Vid and Deep360Pilot datasets,

combined with saliency detection. Lai et al. [9] incorporate

saliency detection and semantic segmentation. They also pro-

pose saliency-aware temporal summarization, which increases

the playback speed of frames with lower saliency scores.
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Pros & Cons. Since the algorithm considers the entire

360◦ frame and explores all possible 2D views, it may discover

a view of higher content-importance compared to what a

viewer might find in MANUAL mode. However, due to the

diverse viewing preferences among viewers, an algorithm-

found view may be of excellent importance to some view-

ers but have little or no importance to others. Personaliza-

tion through machine learning, which recommends different

views to different viewers based on their preferences, is

not feasible at this stage since obtaining every individual’s

360◦ video viewing preference is impractical. Therefore, in

this paper, we assume that AUTOENFORCED recommends the

same 2D view to all viewers who watch the same 360◦ frame,

without personalization.

As a result, viewers using AUTOENFORCED mode risk receiv-

ing a view that may be more or less important compared to

what they would obtain in MANUAL mode. In other words,

neither AUTOENFORCED nor MANUAL is consistently superior
to the other in terms of content-importance.

C. AUTOOPTIONAL/ MANUAL Mode

In AUTOOPTIONAL/MANUAL mode [16], [17], the viewer

can manually switch between algorithm-found views

(AUTOOPTIONAL) and viewer-found views (MANUAL) whenever

desired. The algorithm-found views in AUTOOPTIONAL are the

same as those in AUTOENFORCED. The key distinction is that the

viewer can interrupt AUTOOPTIONAL and switch to MANUAL,

but such interruptions are not possible in AUTOENFORCED.

These works aim to enhance content-importance by provid-

ing viewers with two mode options, allowing them to choose

the better one. However, they overlook the fact that humans are
incapable of accurately and instantly determining the better
mode for each frame without being distracted from enjoying
the video content.

III. OVERVIEW OF 360TRIPLEVIEW

Our 360TripleView has the following three view modes, and

utilizes one mode at a time.

• MANUAL. Each viewer manually selects their views.

• AUTOOPTIONAL. Algorithm-found views are provided, but

viewers in AUTOOPTIONAL have the option to switch be-

tween MANUAL and AUTOOPTIONAL.

• AUTOENFORCED. Algorithm-found views are provided, and

no manual intervention is permitted in AUTOENFORCED.

As illustrated in Fig. 2, 360TripleView involves the server

processing and transmitting video content, while viewers ac-

cess the content through their client-devices (e.g., headsets).

The View Mode Decision-Maker on the server receives two

inputs: � a 360◦ frame from the Video Database, and � the

viewer’s request to change their view mode. The decision-

maker determines � the view mode to use for each frame

and sends the decision (denoted as modeuse ∈ {MANUAL,

AUTOOPTIONAL, AUTOENFORCED}) to the viewer, the saliency

detection unit, and the 360-to-2D projection unit. If modeuse is

MANUAL, the viewer continues to provide � their manually

controlled viewing direction (ψ, θ) to the projection unit;

if modeuse is AUTOOPTIONAL or AUTOENFORCED, the saliency

detection unit processes the video frame and � automatically

recommends a (ψ, θ) to the projection unit. It is important

to note that 360TripleView can utilize any existing saliency

detection approach (e.g., we use ATSal [12], but other solu-

tions also work). Finally, the projection unit receives the video

frame and the (ψ, θ) (either � or �, depending on modeuse),

and delivers � the corresponding 2D view to the viewer.

Video
Database

360-to-2D 
Projection

Saliency
Detection

Client

2D view viewer
request

modeuse
manual (ψ, θ)

Server
❷

❸
❹

❺

❻

auto
(ψ, θ)

View Mode 
Decision-Maker

360° frame❶

Fig. 2: 360TripleView system architecture.

A. View Mode Decision-Maker

The cornerstone of 360TripleView (Fig. 2) is its View Mode

Decision-Maker (Fig. 3). This component determines, for

each 360◦ frame, which of the three view modes (MANUAL,

AUTOOPTIONAL, AUTOENFORCED) to utilize (i.e., be modeuse).

AUTOENFORCED

AUTOOPTIONAL/MANUAL

AUTOOPTIONAL

MANUAL

CVVP 
Estimator

high        CVVP         low
viewer
request

❷

360° frame❶

Fig. 3: 360TripleView View Mode Decision-Maker..

As depicted in Fig. 3, the View Mode Decision-Maker

operates as a state machine with three states: MANUAL,

AUTOOPTIONAL, AUTOENFORCED. The CVVP Estimator is re-

sponsible for determining whether to employ AUTOENFORCED or

AUTOOPTIONAL/MANUAL. It takes � a 360◦ frame as input

and estimates the Convergence Value of Viewer Preferences
(CVVP). The CVVP is a metric that indicates the better

mode, either AUTOENFORCED or AUTOOPTIONAL/MANUAL, in

terms of higher content-importance. We will provide further

details on this metric in Section IV. If the CVVP exceeds a

threshold, it suggests that algorithm-found views may offer

higher overall content-importance compared to viewer-found
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views. Therefore, in such cases, modeuse will be set to

AUTOENFORCED to ensure that algorithm-found views are not

missed by any viewer. Conversely, a low CVVP implies

that viewer-found views possess higher content-importance.

Consequently, modeuse will be set to AUTOOPTIONAL/MANUAL,

allowing each viewer to manually send � a viewer request

(e.g., through mouse clicks) and switch the modeuse between

MANUAL and AUTOOPTIONAL (without affecting other viewers’

modeuse). It suggests viewers select MANUAL to watch their

personally found views, but allows them the option to watch

algorithm-found views (AUTOOPTIONAL) if desired, especially

when they feel fatigued after prolonged use of MANUAL.

IV. VIEW MODE DECISION-MAKING DRIVEN BY CVVP

360TripleView’s View Mode Decision-Maker automatically

infers whether AUTOENFORCED or AUTOOPTIONAL/MANUAL will

yield higher content-importance, based on a novel metric

called the Convergence Value of Viewer Preferences (CVVP).

In this section, we elaborate on CVVP and its use in inferring

the better mode, and present a deep learning solution to

automatically estimate the CVVP for each 360◦ frame.

A. Definition of CVVP

Through experiments, we have made a key observation:

when multiple viewers are presented with a complete view

of a 360◦ frame, and each viewer is asked to identify the

viewing direction that holds their highest content-importance.

Their preferences—indicated by their labeled directions—

diverge in some frames while converge in others. Fig-

ure 4 illustrates the variation of ψ (yaw) labeled by dif-

ferent viewers over time in a video from the Pano2Vid [6]

dataset (www.youtube.com/watch?v=i9SiIyCyRM0):

their preferences diverge from second 57 to 80 and converge

well at other times. Divergence often occurs when a frame

contains zero or multiple significant regions, leading to dif-

ferent choices based on individual preferences. Conversely,

convergence occurs when a frame contains one dominant

important region which is favored by most viewers. Con-

sequently, viewers’ viewing preferences exhibit a dynamic

degree of convergence that varies across video frames.

Fig. 4: Variation of viewers’ labeled ψ (yaw), showing con-

vergence and divergence. Variation also exists for θ (pitch).

To quantify the degree of convergence for each 360◦ frame,

we introduce a novel metric—Convergence Value of Viewer

Preferences (CVVP). Computing the ground truth CVVP
requires the most important labeled viewing directions from

N viewers, denoted as (ψj , θj), where the viewer ID is

represented by j = 1, 2, . . . , N . The content-importance of

a viewing direction (ψ, θ) to viewer j is defined as follows:

importancej(ψ, θ) =

{
1 if gcd((ψ, θ), (ψj , θj)) < THdist

0 otherwise
(1)

where gcd() is the great-circle distance between two viewing

directions (each direction corresponds to a point on the unit

sphere), and THdist is the distance threshold. Specifically,

(ψ, θ) is considered important to viewer j if it is close enough

to the viewer’s labeled direction. Given that the human field

of view is < 120◦, we consider two directions to be close if

they are less than 30◦ apart. Thus, we set THdist to 30◦.

The overall content-importance of (ψ, θ) is defined as the

average of the content-importance values across all N viewers:

importance(ψ, θ) =
1

N

N∑
j=1

importancej(ψ, θ) (2)

Finally, the CVVP of the 360◦ frame is defined as the

maximum importance(ψ, θ) among all ψ ∈ [−180◦, 180◦],
θ ∈ [−90◦, 90◦]:

CVVP = max
ψ,θ

importance(ψ, θ) (3)

Figure 5 presents two examples of frames, their labels, and

ground truth CVVP values.

(a) CVVP = 2
6
≈ 0.33 (b) CVVP = 6

6
= 1

Fig. 5: Examples of ground truth CVVP. Each circle represents

a viewer-labeled most important viewing direction. Directions

close to each other are color-coded identically.

B. Using CVVP to Infer the Better Mode

The View Mode Decision-Maker utilizes CVVP to infer the

better mode (with higher overall content-importance), between

AUTOENFORCED and AUTOOPTIONAL/MANUAL. The inferred bet-

ter mode is then selected as the mode to use (modeuse):

modeuse =

{
AUTOOPTIONAL/MANUAL if CVVP < THCV V P

AUTOENFORCED otherwise
(4)

where THCV V P represents a configurable CVVP threshold.

Why is CVVP an effective indicator for inferring the

better mode? Note that CVVP ∈ (0, 1] increases with the

convergence degree of viewing preferences:

1) In the case of the lowest convergence, where (ψj , θj) are

scattered, any (ψ, θ) is close to at most one (ψj , θj), i.e.,

∀(ψ, θ), importance(ψ, θ) ≤ 1, thus CVVP = 1
N .
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2) In the case of the highest convergence, where all

N viewers’ (ψj , θj) are closely clustered, there ex-

ists a (ψ, θ) that is close to all of them, i.e.,

∃(ψ, θ), importance(ψ, θ) = N, thus CVVP = 1.

3) In general, if a 360◦ frame has a CVVP of η%, it

implies that at most η% of the viewers will have

their preferred view when one (ψ, θ) is viewed by all

viewers. Notably, AUTOENFORCED recommends one (ψ, θ)
to all viewers without personalization (Section II). Thus,

CVVP serves as an upper bound for the actual overall

content-importance achieved by AUTOENFORCED.

Based on these observations, we make the inferences below:

• If CVVP < THCV V P (e.g., 60%), the actual overall

content-importance achieved by AUTOENFORCED must be

< THCV V P . Thus, AUTOOPTIONAL/MANUAL is inferred

as the better mode and becomes modeuse, allowing

viewers to use MANUAL.

• If CVVP ≥ THCV V P , the actual overall content-

importance achieved by AUTOENFORCED can be ≥
THCV V P . Thus, AUTOENFORCED is inferred as the better

mode and becomes modeuse, ensuring that algorithm-

found views are watched.

C. Automatic CVVP Estimator

To compute the ground truth CVVP (Section IV-A) of a

360◦ frame, we need to know the important viewing directions

labeled by multiple viewers for that frame. However, obtaining

this information from viewers during the use of 360Triple-

View is impractical. Therefore, we introduce a deep learning

solution: in the offline stage, we request a few viewers to

label some frames of some videos, enabling us to compute

the ground truth CVVP for model training; when utilized,

the model processes frames from new videos (not used in

training) and provides the estimated CVVP without requiring

any viewers to provide their viewing preferences.

1) Deep Learning-Based Regression: We have developed a

deep learning-based regression model that takes a 360◦ frame

(represented as I) as input and predicts its CVVP ∈ R

and ∈ (0, 1]. The model leverages ResNet101 for image

feature extraction. Since ResNet is pretrained on 2D images

and does not handle equirectangular 360◦ frames, which are

significantly distorted in the polar regions, we first convert

I to a cubemap comprising six 2D views denoted as {Ix},

where x = front, back, left, right, up, down. Each view is

passed through the feature extractor to obtain its visual features

VIx ∈ R
2048. These features are concatenated to VI ∈ R

12288.

VI is fed through two fully connected layers with output

sizes of 2048 and 1 (representing the predicted CVVP),

respectively. ReLU activation is applied to each layer. Mean

Absolute Error (L1) is used as the loss function instead of

Mean Squared Error (L2) because MAE is more robust against

outliers. Fig. 6 displays the predicted CVVP and the ground

truth for the video in Fig. 4. It is seen that the predicted and

ground truth values are relatively low from second 57 to 80,

consistent with the divergence depicted in Fig. 4.

Fig. 6: CVVP predicted by the neural network.

2) Binarization and Stabilization: The regression model

outputs a sequence of CVVP values {CV V Pi}, where i repre-

sents the frame ID. Note that if modeuse changes with CVVP

frame by frame, viewers will be disturbed. To stabilize it, we

compute the average CVVP per second, getting {CV V Pt}
where t = 1, 2, . . . , T second, CV V Pt ∈ R and ∈ (0, 1].
However, we notice that CV V Pt still fluctuates often. If

we simply binarize the {CV V Pt} in Fig. 6 using threshold

THCV V P (e.g., 0.6, Section IV-B), making a CVVP above

THCV V P be 1 (indicating the use of AUTOENFORCED) and

otherwise be 0 (indicating the use of AUTOOPTIONAL/MANUAL),

we will get the sequence shown in Fig. 7, with overly short

view modes and frequent view mode switching.

Fig. 7: Predicted CVVP sequence without stabilization.

To address this issue, we devise an advanced stabilization

module, which takes {CV V Pt} as input, along with two

parameters set by the system administrator: 1) THCV V P , the

threshold above which a CVVP is considered high enough to

use AUTOENFORCED; 2) tmin, the minimum duration (e.g., 20

seconds) for which the view mode must remain unchanged

before it can change again, ensuring stability.

First, we normalize {CV V Pt} to {CV V P ′
t} such that

CV V Pt = THCV V P is mapped to 0.5. Then, we binarize

{CV V P ′
t} to {CV V P t}, where CV V P t ∈ {0, 1}. The ob-

jective is to minimize the difference between {CV V P t} and

{CV V P ′
t} while ensuring that each time CV V P t changes

(from 0 to 1 or 1 to 0), the new value persists for at least

tmin seconds. We can formulate the problem as follows:

argmin
{CV V P t}v,[t1,t2,...,tm]

MSE({CV V P t}v,[t1,t2,...,tm], {CV V P ′
t})

s.t. v ∈ {0, 1}
m∑
i=1

ti = T 1 ≤ m ≤
⌊

T

tmin

⌋
, ti ≥ tmin

(5)
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where v represents the initial value of {CV V P t} (0 or 1), and

[t1, t2, . . . , tm] indicates that {CV V P t} consists of m disjoint

subsequences, with ti being the length of the ith subsequence.

Thus, {CV V P t}v,[t1,t2,...,tm] represents the sequence that

starts with the value v, lasts for t1 seconds, toggles the value

(0 to 1 or 1 to 0), lasts for t2 seconds, and so on. The second

constraint ensures that all ti add up to T (the total length

of the sequence) and that each subsequence is at least tmin

seconds long. The optimal solution, which minimizes the mean

squared error (MSE) to {CV V P ′
t}, is the resulting sequence

{CV V P t}. With tmin = 20 seconds, the stabilized result of

the sequence in Fig. 7 is illustrated in Fig. 8.

Fig. 8: CVVP sequence with stabilization.

V. EXPERIMENTS

A. Implementation and Experimental Settings

1) Dataset: To train and test the deep learning model, we

acquire 360◦ videos with ground truth CVVP. We utilize the

Pano2Vid dataset [6], which has videos of diverse content,

such as tours, sports, and parades. Each frame of each video

in Pano2Vid has most important (ψ, θ) labeled by different

participants (see examples in Fig. 5). We convert these labels

to ground truth CVVP per frame, following the definition

of CVVP (Section IV-A). It is worth noting that Pano2Vid

is the only dataset that meets our criterion for ground truth

CVVP generation, because each participant is given the entire
view of a 360◦ frame and asked to check every viewing
direction and label the highest content-importance view ac-
cording to their viewing preference, frame by frame. More

recent 360◦ video datasets [18], [19] are collected by having

participants watch videos with headsets in MANUAL mode

while recording their viewing directions in real time. However,

MANUAL cannot guarantee that the most important (ψ, θ) is

found, because of its limited field of view. Therefore, these

datasets are unsuitable for generating ground truth CVVP.

2) Deep Learning: For feature extraction in our CVVP

regression model, we use ResNet101. We have experimented

with other models, such as VGG19 and Inception-v3, but

found no significant impact on the accuracy of CVVP esti-

mation. We conduct three validation schemes:

• No Tuning (leave-one-out): Each video is tested using

the model trained on the other videos. This is a commonly

used cross-validation scheme.

• 1-sec Tuning: For each video, we randomly select 1 sec-

ond (30 frames) of its content and use the corresponding

ground truth CVVP to fine-tune the model trained on the

other videos, and then test the video. Note that tuning
is not obligatory; it can be selected when available to
improve CVVP prediction accuracy.

• 3-sec Tuning: This scheme is similar to 1-sec Tuning,

but we use 3-second ground truth CVVP for fine-tuning.

3) Evaluation Metrics:
• Error of Estimated CVVP: This metric represents the

difference between the predicted CVVP per frame and

the ground truth CVVP.

• Accuracy of Better Mode Inference: A true positive

(TP) occurs when both predicted and ground truth CVVPs

are 1 (indicating the use of AUTOENFORCED). A true

negative (TN) occurs when both are 0 (indicating the use

of AUTOOPTIONAL/MANUAL). accuracy = TP+TN
total

.

• Overall Content-Importance: It measures the actual

overall content-importance (Equation 2 in Section IV-A).

4) Baselines: 360TripleView automatically determines

modeuse based on CVVP. We compare it with two baseline

methods that determine modeuse.

• AUTOENFORCED ONLY: modeuse is AUTOENFORCED from

beginning to end.

• AUTOOPTIONAL/MANUAL ONLY: modeuse manually

switches between AUTOOPTIONAL and MANUAL.

Note that 360TripleView innovates in modeuse determina-

tion (i.e., deciding which mode to use), not in saliency detec-

tion. When modeuse becomes AUTOENFORCED or AUTOOPTIONAL,

the saliency detection unit (Fig. 2) executes an existing

saliency detection algorithm, and its performance impacts the

resulting overall content-importance. We test the following

saliency detection approaches:

• CubePad: CubePadding [15] is a seminal and well-

known saliency detection approach for 360◦ video.

• ATSal: ATSal [12] is one of the most recent state-of-the-

art saliency detection methods for 360◦ video.

• Pano2Vid: The (ψ, θ) in Pano2Vid [6] are manually la-

beled, not algorithmically derived like CubePad or ATSal.

We include it here because it represents the “ceiling”

of (ψ, θ) recommendation, which may be approached by

future algorithms.

B. Error of Estimated CVVP

Fig. 9a shows the cumulative distribution function (CDF) of

the error of predicted CVVP for each validation scheme. All

of them have an error within 0.15 for about 70% of the time,

and an error within 0.25 for more than 90% of the time.

Unsurprisingly, the error decreases as more data are used

for fine-tuning. But even without any tuning, it still achieves

a mean error of 0.19. For 1-sec Tuning and 3-sec Tuning, the

mean errors are 0.14 and 0.12, respectively. Considering that

the range of CVVP is (0, 1], these errors may not be very

small. However, it is important to note that CVVP will be bi-

narized and stabilized before being used to control view mode

switching. For example, a CVVP of 0.7 (with its ground truth

being 0.9) will be binarized to 1—the same as the binarized

ground truth if the threshold THCV V P (Section IV-B) is 0.6.
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(a) Error of estimated CVVP. (b) Accuracy of better mode inference.

Fig. 9: Performance of CVVP estimation and mode inference.

Thus, errors of this level do not prevent 360TripleView from

overall accurately inferring the better mode (Section V-C).

C. Accuracy of Better Mode Inference

Fig. 9b shows the accuracy in inferring the better mode

between AUTOENFORCED and AUTOOPTIONAL/MANUAL. Even

without any tuning, the accuracy is still around 80%. When

1-sec Tuning is used, the accuracy is raised to above 90%
most of the time. The mean accuracy of each scheme is 74%,

91% and 96%, respectively. The threshold THCV V P varying

from 0.5 to 0.8 has no significant impact on the accuracy.

D. Overall Content-Importance

We compare the overall content-importance when using

AUTOENFORCED ONLY, AUTOOPTIONAL/MANUAL ONLY, and our

360TripleView. Note that for some videos, 360TripleView

infers that AUTOENFORCED is the better mode throughout the

video, resulting in the same content-importance as the first

baseline (AUTOENFORCED ONLY). To focus on the performance

difference, we exclude those videos and present the average

content-importance of the remaining videos whose content-

importance varies with modeuse determination strategies.

Impact of modeuse Determination Strategies: The impact

of modeuse determination strategies when THCV V P = 0.6
is shown in Table II. It demonstrates that our 360Triple-

View achieves higher overall content-importance than the

other modeuse determination strategies (AUTOENFORCED ONLY,

AUTOOPTIONAL/MANUAL ONLY) in almost all cases, when the

saliency detection strategy (CubePad, ATSal, Pano2Vid) and

the tuning time are held constant. Similar results are observed

when THCV V P = 0.5 (Table I) and 0.7 (Table III).

Impact of Saliency Detection Strategies: 360TripleView

focuses on modeuse determination and does not propose a

new saliency detection solution. When modeuse becomes

AUTOENFORCED or AUTOOPTIONAL, an existing saliency detection

approach is employed (Fig. 2). Comparing CubePad with

ATSal, we observe that the latter generally achieves higher

content-importance. This is because both approaches infer

content-importance based on saliency detection, but ATSal,

being a more recent work, combines global and local visual

features to predict saliency more accurately compared to

previous methods. However, when comparing ATSal with

Pano2Vid, a significant difference is still evident. This suggests

TABLE I: Overall content-importance (THCV V P = 0.5). The

best performance value is marked in bold.

CubePad ATSal Pano2Vid

No Tuning
AUTOENFORCED 0.150 0.208 0.582
AUTOOPT/MAN 0.137 0.215 0.599
360TripleView 0.199 0.211 0.636

1-sec Tuning
AUTOENFORCED 0.123 0.145 0.507
AUTOOPT/MAN 0.097 0.160 0.482
360TripleView 0.188 0.155 0.613

3-sec Tuning
AUTOENFORCED 0.094 0.151 0.545
AUTOOPT/MAN 0.068 0.130 0.512
360TripleView 0.154 0.170 0.647

TABLE II: Overall content-importance (THCV V P = 0.6).

CubePad ATSal Pano2Vid

No Tuning
AUTOENFORCED 0.293 0.411 0.782
AUTOOPT/MAN 0.230 0.387 0.727
360TripleView 0.115 0.498 0.798

1-sec Tuning
AUTOENFORCED 0.089 0.187 0.594
AUTOOPT/MAN 0.086 0.157 0.574
360TripleView 0.119 0.230 0.723

3-sec Tuning
AUTOENFORCED 0.112 0.218 0.603
AUTOOPT/MAN 0.098 0.224 0.580
360TripleView 0.189 0.239 0.720

TABLE III: Overall content-importance (THCV V P = 0.7).

CubePad ATSal Pano2Vid

No Tuning
AUTOENFORCED 0.368 0.616 0.855
AUTOOPT/MAN 0.133 0.809 0.877
360TripleView 0.056 0.716 0.962

1-sec Tuning
AUTOENFORCED 0.097 0.268 0.652
AUTOOPT/MAN 0.092 0.246 0.640
360TripleView 0.144 0.299 0.773

3-sec Tuning
AUTOENFORCED 0.141 0.296 0.657
AUTOOPT/MAN 0.081 0.311 0.660
360TripleView 0.242 0.312 0.781

that the algorithm-generated (ψ, θ) values are currently quite

distinct from the human-labeled ones, indicating room for

improvement. While saliency detection falls outside the scope

of this paper, we consider it as a potential area for future work.

Impact of Tuning: We observe that when the modeuse de-

termination and saliency detection strategies are held con-

stant, the performance does not always increase with tun-

ing time. This is because the no-tuning model wrongly

uses AUTOENFORCED consistently on many videos. As pre-

viously mentioned, if 360TripleView consistently uses

AUTOENFORCED on a video, it is essentially equivalent to

AUTOENFORCED ONLY, so we exclude the video. Consequently,

the no-tuning model excludes more videos, which may make

the average content-importance of the remaining videos higher.

VI. USER STUDY

A. User Study Settings

We design and implement an online platform, utilizing

it to conduct a user study. A total of 25 participants (21
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males and 4 females) are recruited. The dataset used for

evaluation is the Pano2Vid dataset, and we select 6 videos

that represent diverse content, including tours (hiking/driving),

sports (outdoor/indoor), and parades (daytime/nighttime).

User Ratings: Each participant watches each video un-

der three view modes sequentially: 1) MANUAL ONLY, 2)

AUTOOPTIONAL/MANUAL ONLY, and 3) 360TripleView. Partic-

ipants are asked to rate the content-importance for each video

and each mode on a scale from 0 (worst) to 10 (best).

B. User Study Results

Favorite Mode: If a view mode receives a higher rat-

ing than the other two modes from a participant, it is re-

garded as the participant’s favorite mode. Fig. 10a shows

the statistics: MANUAL ONLY is favored 17.2% of the time,

AUTOOPTIONAL/MANUAL ONLY is favored 28.6% of the time,

while 360TripleView emerges as the clear winner, being the

favorite mode 54.2% of the time.

(a) Favorite mode. (b) User rating distribution (green:
mean, orange: median).

Fig. 10: User study results.

User Ratings: The distribution of user ratings for

content-importance in each view mode is presented

in Fig. 10b. The mean ratings for MANUAL ONLY,

AUTOOPTIONAL/MANUAL ONLY and 360TripleView are 4.96,

5.90 and 6.38, respectively. The corresponding median ratings

are 4.71, 5.29 and 6.18. It is evident that 360TripleView

receives the highest ratings in both measures.

VII. CONCLUSION

In this paper, we have presented the design, implementa-

tion, and evaluation of 360TripleView, a groundbreaking view

management system for 360◦ video viewing. It offers three

view modes and automatically infers the better mode be-

tween AUTOENFORCED and AUTOOPTIONAL/MANUAL to enhance

viewers’ overall content-importance. Our evaluation results

demonstrate that 360TripleView achieves an accuracy above

90% in inferring the better mode and results in significantly

higher content-importance compared to existing approaches.
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