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Model-X approaches to testing conditional independence between a pre-
dictor and an outcome variable given a vector of covariates usually assume
exact knowledge of the conditional distribution of the predictor given the co-
variates. Nevertheless, model-X methodologies are often deployed with this
conditional distribution learned in sample. We investigate the consequences
of this choice through the lens of the distilled conditional randomization test
(dCRT). We find that Type-I error control is still possible, but only if the
mean of the outcome variable given the covariates is estimated well enough.
This demonstrates that the dCRT is doubly robust, and motivates a compari-
son to the generalized covariance measure (GCM) test, another doubly robust
conditional independence test. We prove that these two tests are asymptoti-
cally equivalent, and show that the GCM test is optimal against (generalized)
partially linear alternatives by leveraging semiparametric efficiency theory.
In an extensive simulation study, we compare the dCRT to the GCM test.
These two tests have broadly similar Type-I error and power, though dCRT
can have somewhat better Type-I error control but somewhat worse power in
small samples or when the response is discrete. We also find that post-lasso
based test statistics (as compared to lasso based statistics) can dramatically
improve Type-I error control for both methods.

1. Introduction.

1.1. Conditional independence testing and the model-X assumption. Given a predictor
X € R, response Y € R, and high-dimensional covariate vector Z € RP drawn from a joint
distribution (X,Y, Z) ~ L,, (potentially varying with n to accommodate growing p), con-
sider testing the hypothesis of conditional independence (CI)

at level o € (0,1) using n data points
(2) (X7Y7 Z) E{(X’Lv}/uzl)}’L:l,,n l’l\“d En

Throughout the paper, boldface (respectively, regular) font indicates population (respectively,
sample) quantities. In a high-dimensional regression setting, Hy,, is a model-agnostic way of
formulating the null hypothesis that predictor X is unimportant in the regression of Y on
(X, Z) (Candes et al., 2018). In a causal inference setting with treatment X, outcome Y,
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observed confounders Z, and no unobserved confounders, Hy, is the null hypothesis of no
causal effect of X onY (Pearl, 2009).

As Shah and Peters (2020) showed, the CI null hypothesis is too large in the sense that any
test controlling Type-I error on Hy,, must be powerless against all alternatives (if we assume,
for example, that Z is continuously distributed). Therefore, additional assumptions must be
placed on £,, to make progress. One such assumption is the model-X (MX) assumption (Can-
des et al., 2018), which states that £,,(X|Z) is known exactly. Under the MX assumption,
Candes et al. (2018) propose the MX knockoffs and conditional randomization test (CRT)
methodologies, which have elegant finite-sample Type-I error control guarantees. These MX
methodologies have since exploded in popularity, undergoing active methodological devel-
opment and deployment in a range of applications.

One of the primary challenges in the practical application of MX methods is to obtain the
required conditional distribution £,,(X|Z). Outside the context of randomized controlled
experiments (Aufiero and Janson, 2022; Ham, Imai and Janson, 2022), the MX assumption
is an approximation (Barber, Candes and Samworth, 2020; Huang and Janson, 2020; Li and
Liu, 2023). In genome-wide association studies, a realistic parametric distribution can be
postulated for this conditional law (Sesia, Sabatti and Candes, 2019), but the parameters of
this distribution must still be learned from data. In practice, the conditional law is usually
fit in sample on the same data that is used for testing, and then treated as if it were known
(Candes et al., 2018; Sesia, Sabatti and Candes, 2019; Sesia et al., 2020; Bates et al., 2020;
Liu et al., 2022; Li et al., 2022; Sesia et al., 2021; Barry et al., 2021). Such adaptations of
MX methodologies are widely deployed, but their robustness and power properties have not
been thoroughly investigated.

1.2. Our contributions. In this paper, we address this gap by investigating the properties
of MX methods with £, (X |Z) learned in sample. This investigation leads us to establish
close connections between these methods and double regression approaches to CI testing,
and to explore the optimality of CI tests against semiparametric alternatives. We focus our
analyses on the distilled conditional randomization test (dCRT), a fast and powerful instance
of the CRT (Liu et al., 2022), and the generalized covariance measure (GCM) test, a proto-
typical double regression approach to CI testing (Shah and Peters, 2020). Both tests involve
learning £,,(X | Z) and £, (Y | Z) in sample. Our main contributions are outlined next:

1. The dCRT with £,,(X | Z) learned in sample can have poor Type-I error control if
L, (Y | Z) is learned poorly. If £(X | Z) is known exactly, then the dCRT has finite-
sample Type-I error control regardless of L(Y | Z) or the quality of its estimate. This
is no longer the case once £(X | Z) is fit in sample, as we demonstrate in a numerical
simulation and a theoretical counterexample (Section 3).

2. The dCRT is doubly robust, in the sense that errors in £, (X | Z) can be compen-
sated for by better approximations of £,,(Y | Z). The MX assumption shifts the mod-
eling burden entirely from £, (Y | Z) to £,,(X | Z). When the latter is fit in sample,
shifting the modeling burden partially back towards £, (Y | Z) helps recover asymptotic
Type-I error control, as we demonstrate theoretically (Section 4.2).

3. The dCRT resampling distribution approaches normality, making this test asymp-
totically equivalent to the GCM test. The dCRT is a resampling-based test, whereas the
GCM test is asymptotic. In large samples, however, the resampling-based null distribution
of the former converges to the N (0, 1) null distribution of the latter (Section 2). We show
that these two tests are asymptotically equivalent against local alternatives (Section 4.1).

4. The GCM test is asymptotically uniformly most powerful against local non-
interacting alternatives. Optimality results are widely prevalent in the semiparametric
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literature, but not in the CI testing literature. We leverage semiparametric optimality the-
ory to prove that the GCM is the optimal CI test against local (generalized) partially linear
alternatives (Section 5), a broad class of alternatives in which X and Z do not interact.

. In finite samples, the dCRT and GCM test have broadly similar Type-I error and

power, with some exceptions. The asymptotic equivalence between the dCRT and GCM
test largely carries over to finite samples, as we demonstrate in numerical simulations
(Section 6). The two tests have broadly similar Type-I error and power, although there is
some divergence in small samples or when Y is discrete: in these cases dCRT can have
somewhat better Type-I error control but somewhat worse power.

. In finite samples, replacing the lasso with the post-lasso markedly improves Type-I

error control for both dCRT and GCM test. In MX applications, the lasso is perhaps
the most common approach for learning both £,,(X | Z) and £,(Y | Z). However, we
demonstrate in numerical simulations (Section 6) that the bias reduction offered by the
post-lasso greatly improves Type-I error control in the context of both GCM test and
dCRT, though at some cost in power.

On the way to making the aforementioned primary contributions, we make a few secondary

contributions of independent interest:

7.

We reexamine numerical simulation setups from prior MX papers, finding that many
have only low levels of marginal dependence between X and Y. Prior works have
used numerical simulations to establish that MX methods are fairly robust when fitting
L,(X|Z) in sample. However, we note that the conditional independence testing prob-
lem (1) is difficult to the extent that Z induces spurious marginal dependence between X
and Y (a “confounding” effect). We find simulation setups in prior works have low levels
of this marginal dependence (Section 6.1), potentially leading to optimistic conclusions.

. We collate a number of conditional analogs of classical convergence theorems (some

but not all novel). The dCRT involves resampling conditionally on the observed data,
so its asymptotic analysis requires reasoning about convergence after conditioning on a
o-algebra that changes with n. We state and prove conditional analogs of Slutsky’s theo-
rem, the law of large numbers, the central limit theorem, and other classical convergence
theorems (Appendix B of the Supplementary Material (Niu et al., 2023)). These results
are not surprising, but at least some appear novel.

We prove a sharpened theorem on optimality in semiparametric testing. In the liter-
ature on semiparametric estimation, an estimator need only be regular in the vicinity of
a point for efficiency bounds to hold, whereas popular textbooks (Van Der Vaart, 1998;
Kosorok, 2008) state semiparametric festing optimality results globally: a test must control
Type-I error on the entire semiparametric null, rather than just in the vicinity of a point,
for efficiency bounds to hold. We address this gap by proving a stronger local optimality
result for semiparametric testing (Appendix E.1 in Niu et al. (2023)).

1.3. Related work. We split related works into three categories: those investigating

the robustness of the original MX methods (knockoffs and CRT) to misspecification of
L, (X | Z), those proposing new variants of MX methods designed for robustness, and those
investigating the power of MX methods.

Robustness of original MX methods. One line of work investigates the Type-I error of
knockoffs (Barber, Candeés and Samworth, 2020) and the CRT (Berrett et al., 2020) when
L,(X | Z) is misspecified, in the worst case over all possible test statistics and all possible
distributions £, (Y | Z). In the context of the CRT, Berrett et al. (2020) proved that the excess
Type-I error is upper-bounded by the total variation error in approximating [ [;"; £,,(X; | Z;),
alongside a matching lower bound. A similar style of result holds for knockoffs (Barber,
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Candes and Samworth, 2020). These works do not allow for £,,(X | Z) to be fit in sample,
however. Even if they applied in this case, one could at most hope for the aforementioned
TV distance to be O(1). For these worst-case bounds to guarantee asymptotic Type-I error
control, one would need to learn the conditional distribution £,,(X | Z) on an additional
unlabeled sample of size N > n. For specific test statistics, however, MX methods may be
more robust. For example, Katsevich and Ramdas (2022) proved that the distilled CRT (an
instance of the CRT with a product-of-residuals test statistic) has asymptotic Type-I error
control when only the first two moments of £,,(X | Z) are correct but higher-order mo-
ments may be misspecified. Even this weaker assumption cannot be expected to hold when
L, (X | Z) is fit in sample, however. Another line of work (Fan et al., 2020a,b; Fan, Gao and
Lv, 2023) probes the robustness of MX knockoffs with imperfect covariate distribution for a
variety of specific test statistics and covariate distributions, with Fan et al. (2020a); Fan, Gao
and Lv (2023) allowing for the covariate distribution to be learned in sample while guaran-
teeing asymptotic FDR control. The robustness aspects of the present work can be viewed as
complementing the latter two existing works; we focus on the CRT rather than on knockoffs.

New variants of MX methods designed for robustness. Modifications of the originally pro-
posed CRT and knockoffs have been designed specifically to have improved robustness to
misspecifications of £, (X | Z). For example, if this law is known to belong to a parametric
family with a low-dimensional sufficient statistic, a variant of MX knockoffs can be carried
out conditionally on this sufficient statistic without needing to accurately estimate the pa-
rameters themselves (Huang and Janson, 2020). The former methodology enjoys a double
robustness property, related to but different from the one we state for the dCRT (see contri-
bution 2). Even in the absence of a low-dimensional sufficient statistic, Barber and Janson
(2022) proposed a variant of the CRT based on conditioning on an approximate sufficient
statistic. Another method, the conditional permutation test (Berrett et al., 2020), is a variant
of the CRT based on conditioning on the order statistics of {X;} rather than on a sufficient
statistic for £,,(X | Z). This test was shown to be more robust than the CRT to misspecifica-
tion of £,,(X | Z). Finally, the Maxway CRT (Li and Liu, 2023) has recently been proposed
as a doubly robust variant of the dCRT. In this manuscript, we argue that, in fact, the dCRT
itself is doubly robust. Overall, our goal is not to introduce new methodology but to study
the robustness of (a special case of) the originally proposed CRT. Despite the emergence of
several new variants of MX methods like those described above, the originally proposed CRT
and knockoffs remain the most widely deployed MX methods in practice.

Power of MX methods. A number of works have investigated the power of the CRT and
knockoffs (Weinstein, Barber and Candes, 2017; Liu and Rigollet, 2019; Weinstein et al.,
2023; Fan et al., 2020a,b; Katsevich and Ramdas, 2022; Wang and Janson, 2022; Spector
and Fithian, 2022), although only Fan et al. (2020a,b); Katsevich and Ramdas (2022) do not
assume that £, (X | Z) is known exactly (the MX assumption). Beyond calculating power
against certain alternatives, Katsevich and Ramdas (2022) and Spector and Fithian (2022)
discuss test statistic choices for the CRT and MX knockoffs, respectively, that yield optimal
power under the MX assumption. In the current work, we investigate not just optimal statis-
tics for certain methods but optimal CI methods against certain classes of alternatives, and
without assuming that £,,(X | Z) is known (see contribution 4). We defer the discussion of
further optimality-related work to Section 5.3.

1.4. Preliminaries: The dCRT and GCM tests. Here we formally define two of the pri-
mary CI tests under investigation, the dCRT and the GCM test. For both of these, it will be
useful to define

3) pnz(Z)=E,, [X|Z] and  pny(Z) =E,, [Y|Z].
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1.4.1. The dCRT and dCRT. A simple approach to CI testing under the MX assumption
is the conditional randomization test (CRT, Candes et al. (2018)), which controls Type-I error
not just asymptotically (28) but in finite samples as well. The CRT is based on constructing a
null distribution for any test statistic 7,,(X,Y, Z) by resampling X conditionally on Z using
the known conditional law £,,(X|Z) (Algorithm 1).

Algorithm 1: The conditional randomization test (CRT).
Input: Data (X, Y, Z), number of randomizations M, conditional law £,,(X | Z).
1 Compute T,,(X,Y, Z);
2 form=1,2,...,M do
3 Sample X(™| XY, Z ~ [T, £n(X;|Z;) and compute To(X(™)Y, Z);
4 end
Output: CRT p-value 3/ (1+ S0 H{T,(X(™,Y, 2) > T (X, Y, 2)}).

The test statistic 7, is usually a measure of variable importance for the predictor X based
on a predictive model of Y on (X, Z) trained on the given data. In general, the CRT requires
retraining this predictive model for each resampled dataset ()Af m) 'y, z ), and can therefore
be computationally costly.

Motivated by the high computational cost of the CRT, a faster but similarly powerful dis-
tilled CRT (dCRT, Liu et al. (2022)) was proposed as a special case based on a test statistic
of the form

TI (XY, 2) = = (K = o (ZD)Y, = g (20).

Here, 1y, ; is known under the MX assumption and /iy, , is trained in sample. The dCRT is fast
because it does not require retraining the predictive model fi,, ,, for each resampled dataset, as
it depends on (Y, Z) only. Variants of the dCRT have now been deployed in genetics (Bates
et al., 2020) and genomics (Barry et al., 2021) applications. As discussed in Section 1.1,
MX methodologies (including the dCRT) are usually deployed by learning £,,(X | Z) in
sample. For clarity, we give the dCRT with £,,(X | Z) fit in sample a new name: dCRT. This
procedure is based on the test statistic

&) TR (Y, 7) ——Z — Fine(Z:))(Yi — finy(Zi)),
’L:1

where [i,, ,(Z;) =E 7 [X; | Zi]. The dCRT procedure is outlined in Algorithm 2; one of the
primary goals of this paper is to study this procedure.



Algorithm 2: The dCRT.
Input: Data (X, Y, Z), number of randomizations M.
1 Learn £,,(X|Z) based on (X, Z) and fin,y(Z) based on (Y, Z);
2 Compute T,‘?R\T(X, Y, Z),
3 form—1,2,.. M do
4 Sample X (™| XY, Z ~ ~ [T 1£ (X;|Z;) and compute

(5) TSR XY, 7) ——Z — Lin e (Z))(Y; = Tiny(Z:));

5 end
Output: dCRT p-value i (1+ M| TIRN(X (M) XY, 2) > TIRT (X, Y, 2)}).

The resampled test statistics T,‘?jR\T ()? (m) XY, Z ) (5) have four arguments instead of three
in order to emphasize that the conditional mean i, ,,(-) is not refit upon resampling.

1.4.2. The GCM test and double robustness. Another CI test is the GCM test (Shah and
Peters, 2020), defined as

(6) SCM(X7KZ)E]1(TTCL}CM(X7Y7Z)>Z1—a)a
where
(N
1 1 &« R R 1
TSCM(XaK Z)= @ﬁ Z(Xz‘ — Hnz(Zi))(Yi — Tiny(Zi)) = SGCMTSCRT(X Y, Z)

and (S9M)2 is the empirical variance of the product-of-residual summands:

(®) (SSM)? = Var{(Xi — fine (Z:)) (Y = Finy(Z:)) }.

It controls Type-I error if the following in-sample mean-squared error quantities are small
(Shah and Peters, 2020):

n 1/2
1 ~
Eng= (n Z(Hn,z(zi) - Nn,m(Zi))2> ; E7/’L,as = <

SRS

1/2
(ﬁn,z(Zi) - ﬂn,r(Zi))Qvarﬁn [Y2|Zz]> 5

i=1 =1
1 1/2 L 1/2
Eny= <n Z(ﬁn,y(zi) - ,Un,y(Zi))2> n = <n Z Fin,y ( Mn7y(Zi))2Vaan [X1|Zz]) .
i=1 1
In particular, Shah and Peters (2020) require that
(SP1) EpoBny=or,(n”'?), B, . =or,(1), By, =oc,(1),

and, for some constants ci,cs,d > 0,

i%f Ec,[(X - Mn,m(Z))2(Y - ﬂn,y(Z))z] >
(SP2) 2+s
sup Er, [[(X = pnz(2)(Y — pny(Z))]77°] < ca.

The GCM test is therefore doubly robust in the sense that it controls Type-I error if the
product of the estimation errors for E[X |Z] and E[Y'|Z] (£, .E, ) converges to zero at
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the oz, (n~1/?) rate. Note that this is a rate double robustness property rather than a model
double robustness property; see Smucler, Rotnitzky and Robins (2019) for a discussion of
this distinction. Unless otherwise specified, we use the term “doubly robust” to refer to rate
double robustness of Type-I error control.

2. dCRT resampling distribution converges to normal. To make it easier to analyze
the asymptotic properties of the dCRT, in this section we prove that it is asymptotically

equivalent to the resampling-free 1\6—((\2) F'-test, a variant of the MX(2) F'-test (Katsevich
and Ramdas, 2022) where the first two moments of £,,(X|Z) are estimated in sample. This
equivalence was already shown by these authors in the case when ji,, , is known and fiy, , is
fit out of sample (see their Theorem 2). They conjectured that the equivalence continues to
hold when i, , is fit in sample. Here, we prove this conjecture, not just when i, is fit in
sample, but also when the first two moments of 1, , are unknown and also fit in sample.

Note that the variance of the resampling distribution of TIRT ig

©) (ST = Var, [TIRN(X, XY, 2) | XY, 2] = ZVar X\ Zi) (Y — iny (Z0))2.

It will be convenient to reformulate E_R\T as

SR (X Y, 7) = 1(TIRN (XY, Z) > Q1_o[TER (X, X, Y, Z) | X, Y, Z))

_ dCRT dCRT
_11<§dC,R\TT (XYZ)>@1a[§(fR\TT (X,X,Y,2)| XY, 2

)

The conditional 1 — a quantile Cg/CR\T (X,Y, Z) is defined in the last line above. Note that this
test is obtained from that in Algorithm 2 by sending M — oo; we focus our theoretical analy-

=1 <§(ﬁ\ TSR (¥ Y, 7) > C{CR\T(X,Y,Z)> .

sis here and throughout on this infinite-resamples limit of the @ Here, the o conditional
quantile Q,[WW | F] of a random variable W given a o-algebra F is defined via

(10) Qu[W | Fl=inf{t :PW <t|F]>a}.

One would expect, based on the central limit theorem, that the conditional distribution of

the ratio T9RT (X, XY, Z) /SR tends to N(0,1). This statement is complicated by the
conditioning event, which requires us to be careful to define conditional convergence in dis-
tribution:

DEFRINITION 1. For each n, let W,, be a random variable and let F,, be a o-algebra.
Then, we say W,, converges in distribution to a random variable W conditionally on F,, if

(11)  P[W, <t|F,] 5 P[W <] for each ¢ € R at which ¢ — P[W < ] is continuous.
We denote this relation via W,, | 7, LR W

Based on an extension of the Lyapunov central limit theorem to conditional convergence
in distribution (Theorem 5 in Niu et al. (2023)), we get the following result:



THEOREM 1. Suppose the sequences of true and learned laws L, and /jn satisfy the
following two nondegeneracy properties:

(NDG1) Pr, [(S’\SFR\T)Q > €] — 1 for some € > 0;
(NDG2) Varz [Xi|Zi), (Yi = Finy(Zi))?, (Yi = piny(Zi))? < 00 almost surely.
If the conditional Lyapunov condition
1 < . =

(Lyap-1) 15/ Z Yi — Mn,y(Zi)’HéEfn | X — Fina(Z0)]7T0 ] X, Z} 50

i=1
is satisfied for some § > 0, then

1 —
(12) _—_7IRN(X XV, 2)| X,Y,Z 2% N(0,1)

GdCRT

and therefore

—— 1 =
(13) CIRUX Y, Z2)=Q1_q [A/\TdCRT(X, XY, 2)| XY, Z| Bz _,.

dCRT "
S5

This suggests that the dCRT is asymptotically equivalent to the m) F'-test, defined

1

GdCRT
Sn

(]4) (b%/)(\Q)(X?KZ)El( T?S/CR\T<X7Y7Z)>Z1—Q>

Indeed, we have the following corollary.

COROLLARY 1. Consider a sequence of laws L, satisfying the assumptions (NDG1),
(NDG2), and (Lyap-1) of Theorem 1, and assume that the test statistic does not accumulate
near zi_q, L.e.

im limsup IP)LH[|T7§ER\T(X,KZ) —z1—a] <46 =0.

|
=0 n—oo

(15)

Then, the dCRT is asymptotically equivalent to the 1\6((\2) F-test:

(16) lim Pe, (615 (X,Y, 2) = 5D (X, Y, Z)] = 1.

This result extends Katsevich and Ramdas (2022, Theorem 2) by allowing /iy, and [ip, 4
to be fit in sample, rather than assuming ,, , is known and fiy, , is fit out of sample. It is a

first indication that the dCRT approximates a test based on asymptotic normality.

3. dCRT is not robust for general i, ,. One of the hallmarks of MX inference is that
it requires “no restriction on the dimensionality of the data or the conditional distribution of
[£,(Y|Z)]” (Candes et al., 2018). For the CRT, this means that Type-I error is controlled in
finite samples, regardless of the test statistic used or the distribution of the response variable.
If £,(X|Z) is described by a parametric model with & unknown parameters and we have
N > n -k unlabeled samples to learn this model, then at least asymptotic Type-I error control
is still possible without assumptions on £,,(Y'|Z) (Berrett et al., 2020). By contrast, in this
section we show that when £,,(X|Z) is approximated in sample, we cannot expect Type-I
error control without assumptions on the response variable.
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Let us consider a simple null model £,, with
(17) Ln.(Z)=N(0,1,), L,(X|Z)=N(Z"3,1), and L,(Y|Z)=N(Z'p,1).
Suppose we fit £, (X |Z) via a ridge regression while using the trivial estimate iy, ,(Z) =0

for E[Y | Z]. To build intuition while avoiding technical difficulties, we loosely approximate
the ridge regression estimator as (3, = (1 — ﬁ) B, where the 1/4/n error term reflects that

we are fitting Bn in sample (and is optimistic in the sense that it ignores possible growth in p).
Then, consider the dCRT based on £,,(X|Z) = N(Z7 3,,1) and Ji,,,(Z) = 0. In this case,
the normality of £,,(X|Z) leads to normality of the resampling distribution holding not just

asymptotically (12) but in finite samples as well. Therefore, the dCRT is equal to the m)
F-test:

a8)  oN(X,Y,2)=1 Z — ZTBa)Yi > 21

N

On the other hand, it is easy to derive that

2
(19) —ZTB,)Y; 4 N C”ﬁ”,1>.
LS 1Y2fz (\/\5“2+1

Therefore, the limiting Type-I error of the dCRT in this case is

VIIBIZ+1

which can be made arbitrarily close to one as ¢ — oco. This issue is caused by a combination
of the O(1/+/n) shrinkage bias in the estimator for ji,, , and the failure to estimate 4, ,,. This
leaves an O(1/4/n) correlation between X — [i,, »(Z) and Y induced by Z, which shifts

the mean of the null distribution of the dCRT test statistic away from zero by a nontrivial
amount.

Numerical simulations (although with lasso instead of ridge regression) confirm this
phenomenon. We constructed a numerical simulation based on the null model (17) with
n = 1600, p = 400, and $ having only s = 5 nonzero entries (see Section 6.2 below for more

T 2
(20) lim Bz, [68R1(X,Y,Z)]=1— & (zl_a _ Cllﬂll> 7
n—oo

on our data-generating model). In this setting, we applied the dCRT using the cross-validated
lasso and intercept-only models to estimate i, , and fiy, 4, Tespectively. As we increased the
magnitude of the coefficient vector (3, this test exhibited significant loss of Type-I error con-
trol (Figure 1). By contrast, using the lasso instead of the intercept-only model to estimate
Hin,y reduced the Type-I error to nearly the nominal level.

So even when £, (X |Z) is estimated at a parametric rate (albeit with regularization), the
dCRT can have inflated Type-I error rate for certain test statistics. A similar observation was
made by Li and Liu (2023) (see the discussion after Theorem 3). Similar phenomena have
been noted in the contexts of causal inference (Dukes and Vansteelandt, 2020) and doubly
robust estimation (Chernozhukov et al., 2018, 2022); in the latter literature this issue is called
“regularization bias.” We note that poor estimation of E[Y | Z], in conjunction with the plug-
in resampling scheme of the dCRT can also lead to conservative inference rather than liberal
inference. This happens in cases when Bn is an efficient estimator of 3, e.g. that derived from
ordinary least squares. In the causal inference context, this conservatism is a consequence of
the fact that using estimated propensity scores can lead to more efficient estimates than using
known propensity scores (Robins, Mark and Newey, 1992; Henmi and Eguchi, 2004). If the
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Fig 1: The Type-I error of two instances of the dCRT under the data-generating model (17),
depending on which method is used to estimate i, ,,, when the lasso is used to estimate iy, ;..
Improved estimation of fi,, , leads to markedly reduced Type-I error.

propensity score is estimated but the standard error is constructed as though it were known,
then conservative inference would result.

As already alluded to, the Type-I error inflation in the above example stems from the fact
that

Bz, [(fin.a(Z) = pin.a(Z))(finy(Z) = piny(2))] = O(1//n),

a rate insufficient for Type-I error control. If we had at least consistency of 7i,, ,,(Z), then this
rate would improve to o(1/4/n) and Type-I error control would be restored. This intuition is
supported by the simulation results in Figure 1, where estimating E[Y | Z] via lasso brought
the Type-I error down to nearly the nominal level. This discussion suggests that, if £,,(X|Z)
is learned in sample (or on an external sample of similar size), then assumptions must be
placed not only on £,,(X|Z) but also on £,,(Y | Z) for Type-I error control. This motivates

us to investigate the double robustness of the dCRT and compare it to the GCM test.

4. dCRT is doubly robust and equivalent to GCM test. Of course, in practice /iy, , is
not fit as naively as in the counterexample from Section 3. The conditional mean E[Y| Z]
is usually approximated via a machine learning algorithm, as improved approximation of
this quantity improves the power of the dCRT (Katsevich and Ramdas, 2022). In the context
where £, (X |Z) must be approximated, we claim that more accurate estimation of E[Y | Z]

can improve not just the power but also the Type-I error control of the dCRT. We formalize
this by showing that the dCRT is doubly robust (recall Section 1.4). This property is a con-
sequence of the fact that, under the null, the dCRT is asymptotically equivalent to the GCM

test, which itself is doubly robust. This equivalence also implies that the dCRT and GCM test
have the same asymptotic power against contiguous alternatives.

4.1. Equivalence between GCM test and dCRT. When comparing the GCM test (6) to
the MX(2) F'-test (14), which is asymptotically equivalent to the dCRT (Corollary 1), the



MODEL-X AND DOUBLY ROBUST CONDITIONAL INDEPENDENCE TESTING 11

only difference is the normalization term. Under the null hypothesis, this difference vanishes
asymptotically as long as the estimated variance Var; [X|Z] is consistent in the following
sense:

1 — .
21 — Var~ | X;| Z;] =V X | Z;])V Y | Z; 0.
@D n ;:1:( arg [Xi| Zi| = Vare, [X; | Zi])Vare, [Yi | Zi] =

In preparation to state our equivalence result, we augment the assumption (SP1) as follows:
(SP1”) BnoEny=or,(n"?), B, =0, (1), E,, =0, (1), El, ,=or,(1),

where
& 1/2
(22) By = < > (finy(Zi) = piny(Zi))*Varg, [Xz‘\Zz‘]) :

n-
=1

Furthermore, we denote by
(23) L) =ALn  Lu(XY | 2) = Lo(X | Z) % Lo(Y | Z)}
the set of laws satisfying conditional independence.
THEOREM 2. Suppose L, € £V is a sequence of laws satisfying the assumptions (SP1”)

and (SP2), the nondegeneracy condition (NDG?2), the variance consistency property (21) and
the Lyapunov condition

1 < -
Lyap2) —s > B, |13 = oy (2017 | 21| B, 1K = (2 PH | X, 2] 0.
i=1

Then, the dCRT and GCM variance estimates are asymptotically equivalent:

QdCRT\2
(24) (ki"i) ,
(5GCM)2
as are the @ and GCM tests themselves:
(25) Jim P [¢7™ (XY, 2) = 6, ™M(X,Y, Z)) = 1.

The variance consistency property (21) is relatively easy to achieve, given the other as-
sumptions of Theorem 2. The following proposition states two sufficient conditions for this

property.

PROPOSITION 1. If the assumptions of Theorem 2 other than variance consistency (21)
hold, then the latter property holds in the following two cases:
1. Varz [Xi|Zi] = (Xi — lina(Z:))%

2. Varg, [X|2] = f(fin(2)), if
» Varg, [X|Z] = f(pin(Z)) for f Lipschitz on domain 52 Conv (supp(L,(X))) and
supp(fin,(Z)) C Conv(supp(L,(X))) almost surely for every n;

o sup, Bz [|Y — piny(Z)>T0] < oo for some § > 0.

The first variance estimate given in the proposition can always be applied; the second
applies to cases when the mean-variance relationship for £,,(X|Z) is known and Lipschitz
on the convex hull of the support of X, denoted Conv (L, (X)). This is the case, for example,
if X is binary and we define f(t) =t(1 —t).

One consequence of Theorem 2 is that the dCRT and GCM test are also asymptotically
equivalent against local alternatives, so in particular have the same power.
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COROLLARY 2. If L] is a sequence of alternative distributions that is contiguous to a

sequence L,, € £ satisfying the assumptions of Theorem 2, then the dCRT and GCM tests
are asymptotically equivalent against L), :

(26) lim P, [630T(X, Y, 2) = 6SM(X, Y, 2)] = 1
and therefore have the same asymptotic power:
27) lim B, [0 (X, Y, 2)] — Eg, [65™M(X, Y, 2)] = 0.

By constructing a null distribution via resampling, the CRT allows for arbitrarily compli-

cated test statistics whose asymptotic distributions are not known. For the dCRT, however,
the resampling-based null distribution simply recapitulates the asymptotic normal distribu-
tion used by the GCM test (Theorems 1 and 2). Therefore, at least in large samples, the extra
computational burden of resampling is unnecessary as the equivalent GCM can be applied
instead.

4.2. Double robustness of dCRT. Another consequence of Theorem 2 is that the dCRT
is doubly robust under the variance consistency condition (21), since it is equivalent under
the null hypothesis to the doubly robust GCM test. We will formulate this result in terms of
a class of distributions %, satisfying some regularity assumptions. For any regularity class
Ky, we consider testing the null hypothesis

Hon(%n) : L € L0 N .

A sequence of tests ¢, : (X,Y, Z) — [0, 1] of this null hypothesis has asymptotic Type-I error
control if

(28) limsup sup Eg [o.(X,Y,2)] <a.

n—oo L,€LN%n

COROLLARY 3. Let %, be a sequence of regularity conditions such that for any se-
quence L, € %, we have the nondegeneracy condition (NDG2), the Lyapunov condi-
tion (Lyap-2), the conditions (SP1°) and (SP2), and consistent variance estimates (21). Then,

the dCRT has asymptotic Type-I error control over £ N %, in the sense of the defini-
tion (28).

Therefore, Type-I error control requires accuracy of only the first two moments of En,
in parallel to Theorem 2 of Katsevich and Ramdas (2022). The condition on the second
moment of En(X | Z) is needed because the variance of the resampling distribution must not
be smaller (asymptotically) than the true variance of the test statistic. This condition does not
require much more than accurate estimation of the first momgts\(Proposition 1). It can be

dropped altogether if we build normalization directly into the dCRT test statistic. We explore
this possibility in Appendix A in the supplementary material (Niu et al., 2023).

Our double robustness result for the dCRT evokes the double robustness result proved for
a conditional variant of MX knockoffs by Huang and Janson (2020). We note that these two
results refer to two different notions of double robustness. Corollary 3 states that the dCRT
is rate doubly robust, while Huang and Janson (2020) finds that conditional knockoffs are
model doubly robust (Smucler, Rotnitzky and Robins, 2019). Our result requires a condition
on the product of the estimation rates for £, (Y | Z) and £,,(X | Z), and accommodates
high-dimensional settings. The double robustness of conditional knockoffs requires that one



MODEL-X AND DOUBLY ROBUST CONDITIONAL INDEPENDENCE TESTING 13

of L,(Y | Z) and L, (X | Z) belongs to a correctly specified, low-dimensional parametric
family. We leave the investigation of the CRT’s model double robustness to future work.

Our conclusion that dCRT is doubly robust initially appears at odds with the statement that
“the model-X CRT...does not pursue such double robustness through learning and adjusting
for both X|Z and Y| Z...” (Li and Liu, 2023). This statement is in reference to the worst-case
performance of the CRT across all possible test statistics (Berrett et al., 2020). We agree that
this worst-case performance can be poor when learning £,,(X|Z) in sample (Section 3).
However, the test statistics applied in conjunction with the CRT (such as the dCRT statistic)
do usually involve learning and adjusting for £,,(Y'|Z). In this sense, practical applications
of the (d)CRT do learn and adjust for both £,,(X|Z) and £, (Y |Z); the former is learned
when approximating the “model for X" and the latter when computing the test statistic. If
the quality of these estimates is sufficiently good, then the dCRT will control Type-I error
(Corollary 3).

5. GCM test is optimal against certain alternatives. We have shown that, in large
samples, the dCRT has the same power against local alternatives as the resampling-free GCM
test. Of course, other instances of the much more general CRT paradigm have better power
than the GCM test against certain alternatives. We show in this section, however, that this is
not the case for generalized partially linear models (GPLMs), a broad class of alternatives.
In fact, the GCM test is asymptotically most powerful against GPLM alternatives. We lever-
age classical semiparametric efficiency theory (Choi, Hall and Schick, 1996; Van Der Vaart,
1998; Kosorok, 2008) to prove this result. We state our optimality result in Section 5.1, give
an example of its application in Section 5.2, and then compare it to existing semiparametric
optimality results in Section 5.3.

5.1. Optimality result. To facilitate the link with semiparametric theory, in this section
of the paper we operate in a fixed-dimensional setting. Accordingly, we drop the subscript n
from £ and %,,. For each value of n, we have (X,Y, Z) € R1*1P for fixed p. We will
seek power against semiparametric GPLM alternatives of the form

(29) ﬁg(X,Y,Z) Eﬁﬁm(X?Y,Z) Eﬁz,z(XaZ) X f'II(Y|XaZ)a "7:X5+9(Z)

Here, L, . is a fixed law, f,, is a one-parameter exponential family with natural parameter
1 € R and log-partition function 1, 5 € R and

(30) gEH, C L* (L, -(2)),

where H, is a linear subspace of the L? space of functions on R? with the measure £, .(Z).
The alternatives (29) are those where Y| X, Z follows an exponential family distribution
with natural parameter linear in X and potentially nonlinear in Z. Note that GPLMs include
linear and generalized linear models as special cases, and therefore cover a broad range of
alternative distributions.

We focus on power against local alternatives Ly, ;) near 6y = (0, go), defined by

(1) 6u(h) = bu(hg.hg) = (hs/ VL. go + hg/V/n), for h=(hg,hy) € (0,00) x Hy.
We leave the dependence of 6,,(h) on go implicit. Next, we define asymptotic optimality
against such local alternatives following Choi, Hall and Schick (1996):

DEFINITION 2. For h € (0,00) x Hg4, we say a test ¢, is the locally asymptotically most

powerful level « test of

(32) Hy:LeRC LY versus Hy,: L= Lo, (n)
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if ¢, has asymptotic Type-I error control over # at level a and for any other test ¢,, satisfying
the same property we have
(33) lim sup Eﬁen(m [(bn (XY, Z)] <liminf Eﬁanw) [¢Z (XY, Z)] :

n—o00 n—0o0
If this is true for every h € (0, 00) X H,, such a test is locally asymptotically uniformly most
powerful at go, or LAUMP(go). A test is LAUMP(S) against Ly, (5 for h € (0,00) x H, if
it is LAUMP(g) for each gy € S C H,.

Finally, define
(34) s*(00) =Er,, [Varg, [X|Z]Varg, [Y|Z]).

We are now ready to state our main optimality result.

THEOREM 3. Consider the conditional independence testing problem (32), with a col-
lection of null distributions # C £° satisfying some regularity conditions, a linear subspace
Hy C L*(L,.(Z)) specifying possible values for the nonparametric component g in the
GPLM alternative model (29), and some subset S C H,. If the following four assumptions
hold:

35) assumptions (SP1) and (SP2) hold for all L € %,
(36) =K >0and Eg, . [X?] < 00 OR supp(X, Z) is compact and Hy C C(RP),
(37) Ee, . [ X[ ] €My,
(38) Vgo €S,hg €Hy, Lo, (0,n,) € X for large enough n,
then ¢ M is LAUMP(S) against Ly, 1) for h € (0,00) x Hg, with

(39) Jim Ee,, o, [0 (XY, 2)] =1 = ®(21-0 — hs - 5(60)).

Let us discuss each of the four assumptions of Theorem 3:

* The assumption (35) is a set of regularity conditions on the null distributions Z. It is the
same set of assumptions made by Shah and Peters (2020) to ensure Type-I error control of
the GCM test over %, including the assumption that the conditional means i, ; and i,
are fit accurately enough (SP1) and fairly mild moment assumptions (SP2).

* The assumption (36) is a set of regularity conditions on the alternative distribution (29).
These conditions are required for the semiparametric optimality theory to apply. These
assumptions allow for GPLMs based on the normal distribution (assuming X has second
moment) or any other exponential family (assuming (X, Z) is compactly supported and
the functions g are continuous).

* The assumption (37) states that the conditional expectation Z — E., _[X|Z] must belong
to the subspace H,. It guarantees that the “least favorable” value of the nonparametric
component g is in the space H,, yielding the optimality of the GCM statistic.

» The assumption (38) connects the semiparametric alternative hypothesis to the conditional
independence null hypothesis. In some sense it requires Ly, = L(q 4,) (derived from the
semiparametric alternative distribution (29)) to be an interior point of &% (the conditional
independence null) for each gg € S.

We give an example of when these assumptions hold in the next section.
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5.2. Example: Kernel ridge regression. We illustrate Theorem 3 with a kernel ridge re-
gression example, borrowed from Shah and Peters (2020, Section 4). Suppose the condi-
tional expectations p,(Z) =E.[X|Z] and py(Z) = E.[Y | Z] satisty iz, jty € Hy, for some
reproducing kernel Hilbert space (Hy, || - ||, ) with reproducing kernel k& : R x R — R. In
particular, we consider H;, = W12([0,1]) C L?([0,1]), i.e. the Sobolev space defined

Wh2([0,1)) = {f:[0,1] = R| f(0) =0, f is absolutely continuous with f € L*([0,1])},

equipped with the inner product

1 .
(fs@)wr2(0,1)) E/o f(2)g(2)d=

W12([0,1]) is an RKHS with kernel k(z,y) = min{z,y} (Wainwright, 2019, Example
12.16). Consider the kernel ridge estimators

=)

£ = argmin E | X — (2. |2+)\HM33HV[712 }
,uEW”[Ol]{ (1)
(40)

fy= argmin Y5 = (20 + Nl oy
= i {05 i oo

with X tuned as described in Shah and Peters (2020, Section 4). Using Shah and Peters (2020,
Theorem 11), the following result can be derived as a consequence of Theorem 3.
COROLLARY 4. Fix C > 0, and consider the following regularity class # C £°:
Z={L(X,)Y,Z)=L(Z)x LIX|Z)x LY |X,Z):
41 L(Z) = Unif([0,1]), L(X[Z) = N(uz(2),1), LIY|X, Z) = N(py(Z),1),
fas fy € By12(0,0)},
where we define the W12([0,1]) ball
(42) By12(0,0) = {f € WH([0,1]) : | fllyyrs.2 (o1 < C}-

Now, fix [0z, poy € Bw1.2(0,C) and for each h = (hg, hy) € (0,00) x W12([0,1]) consider
the set of local alternatives Ly, (1, (X,Y,Z) given by

Ly, (n)(Z) = Unif([0, 1]);
(43) Lo, 1) (X|Z) = N(po:(2),1);
Lo, (Y|X,2Z) = N(Xhg/vn+ poy(Z) + hy(Z)/v/n,1).
Then, the GCM test based on the kernel ridge estimators (40) is LAUMP(By.2(0,C))

against alternatives Egn(h).

Hence, the GCM test based on kernel ridge regression does not just control Type-I error
(Shah and Peters, 2020, Theorem 11); it is also optimal against local alternatives.

5.3. Discussion of Theorem 3. Theorem 3 states that the GCM test of Shah and Peters
(2020) is the optimal test of conditional independence against a broad class of semiparamet-
ric GPLM alternatives, including linear and generalized linear models. To our knowledge, it
is the first result at the intersection of conditional independence testing and semiparametric
optimality, although Shah and Peters (2020) have already noted the connection between the
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GCM test and nonparametric estimation of the expected conditional covariance between X
and Y given Z. Our result complements another line of work on minimax optimality for con-
ditional independence testing (Canonne et al., 2018; Neykov, Balakrishnan and Wasserman,
2021; Kim et al., 2022). In the related model-X context, few optimality results are available.
Two existing works show optimality statements based on likelihood ratio statistics; one in the
context of the CRT (Katsevich and Ramdas, 2022) and the other in the context of model-X
knockoffs (Spector and Fithian, 2022).

Theorem 3 closely parallels results on estimation in semiparametric regression (Robinson,
1988; Bickel et al., 1993; Donald and Newey, 1994; Hirdle, Liang and Gao, 2000; Robins and
Rotnitzky, 2001; Van De Geer et al., 2014; Ning and Liu, 2017; Jankova and Van De Geer,
2018; Chernozhukov et al., 2018). It follows from Bickel et al. (1993); Robins and Rotnitzky
(2001) that the GCM statistic with the true conditional means j, and g, is the efficient
score under the null hypothesis 8 = 0 in the context of GPLMs based on one-parameter
exponential families with canonical link. Existing results on semiparametric optimality for
hypothesis testing state that tests based on optimal estimators are themselves optimal (Choi,
Hall and Schick, 1996; Van Der Vaart, 1998; Kosorok, 2008).

Despite the similarity between Theorem 3 and existing semiparametric optimality results,
we emphasize that this theorem is a statement about optimality for conditional independence
testing rather than for semiparametric testing. The semiparametric model (29) plays the role
of the alternative distribution with respect to which power is evaluated, and need not hold
under the null hypothesis. To bridge this gap, it suffices to find an open ball within the condi-
tional independence null hypothesis containing the semiparametric null hypothesis (38). This
allows us to reduce the conditional independence testing problem to a semiparametric testing
problem, and therefore to leverage existing semiparametric optimality results (Appendix E in
Niu et al. (2023)).

Note that Theorem 3 gives the power against local alternatives of the GCM test with p,
and p, estimated in sample. This complements Shah and Peters (2020, Theorem 8), where
these authors compute the power of the GCM test against non-local alternatives by resorting
to sample splitting, which is not required to show Type-I error control for the GCM test. This
sample splitting is necessary under non-local alternatives to avoid Donsker conditions; using
either sample splitting or Donsker conditions is also standard practice in the semiparametric
literature. By contrast, we avoid sample splitting by exploiting the special structure of the
conditional independence null and contiguity arguments to compute limiting power under
local alternatives.

While the Type-I error control results in Section 4 are stated in the high-dimensional set-
ting, Theorem 3 is stated only for fixed-dimensional covariate vectors Z. Indeed, semipara-
metric optimality theory is predominantly low-dimensional. A notable exception is the work
of Jankova and Van De Geer (2018), which provides a semiparametric theory of estimation
in high dimensions. Extending this theory to hypothesis testing is nontrivial, and beyond the
scope of the current work. Nevertheless, proving optimality statements for conditional inde-
pendence testing in high dimensions is an interesting direction for future work. We note in
passing that high-dimensional results for lasso-based estimators often assume exact sparsity
of the coefficient vector, which poses a problem for condition (38) requiring the regularity
class Z to have interior points.

Finally, we note that Theorem 3 gives the optimality of the GCM statistic against alterna-
tive models for Y in which X and Z do not interact. For alternatives where the conditional
association between Y and X is modified by Z, the GCM test will no longer be optimal.
Variants of the CRT (Zhong, Kuffner and Lahiri, 2021; Sesia and Sun, 2022), model-X knock-
offs (Li et al., 2022), and the GCM test (Lundborg et al., 2022) are designed to improve power
in the presence of effect modification are available, although their optimality properties are
not described. Optimal tests developed specifically for detecting interaction effects between
X and Z (rather than main effects) may be constructed based on Vansteelandt et al. (2008).
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6. Finite-sample performance assessment. The results in the preceding sections are all
asymptotic. In this section, we complement these results with a comprehensive simulation-
based assessment of Type-I error and power in finite samples. Previous simulation-based
assessments of the Type-I error of MX methods have come to differing conclusions: Sesia,
Sabatti and Candes (2019); Romano, Sesia and Candes (2019); Sesia et al. (2020); Liu et al.
(2022) found broad robustness to misspecification of £,,(X|Z) while Li and Liu (2023)
found such misspecifications to cause marked Type-I error inflation. We show that differences
in the level of marginal association between X and Y implied by the simulation design
explain these discrepancies, and then use this insight to inform our own simulation design
in Section 6.2. Then, we present the results of our numerical simulations in Section 6.3.
Numerical simulation results and instructions to reproduce them are available at https:
//github.com/Katsevich-Lab/symcrt-manuscript.

6.1. Revisiting prior simulations of robustness. The question of robustness of MX meth-
ods to the misspecification of £, (X |Z) has been investigated starting from the paper in
which the model-X framework was originally proposed (Candes et al., 2018). In this pa-
per, the joint distribution £, (X, Z) was estimated in sample via the graphical lasso, which
is similar to estimating the conditional distribution £,,(X|Z) via the ordinary lasso. These
authors found that

“Although the graphical Lasso is well suited for this problem since the covariates have a sparse
precision matrix, its covariance estimate is still off by nearly 50%, and yet surprisingly the resulting
power and FDR are nearly indistinguishable from when the exact covariance is used...the nominal
level of 10% FDR is never violated, even for covariance estimates very far from the truth.”

Similar conclusions have been drawn from numerical simulations in subsequent papers as
well (Sesia, Sabatti and Candes, 2019; Romano, Sesia and Candes, 2019; Sesia et al., 2020;
Liu et al., 2022), the latter studying the dCRT specifically. On the other hand, the numerical
simulations of Li and Liu (2023) show that the dCRT can suffer significant Type-I error
inflation when £,,(X |Z) is inaccurately fit. These authors state that “for model-X inference,
the dependence of X on Z is not adequately characterized and adjusted [for] due to the
shrinkage bias of lasso.”

To resolve this apparent contradiction, we consider a common data-generating model used
in MX literature:

(44) Lo(X,Z)=N(0,%), Lu(Y|X,Z)=N(X0+2Z"p,0,).

Often, (X, Z) are assumed to have a spatial structure (motivated by the GWAS application),
with ¥ = ¥(p) € R(HP)X(14P) taken to be the AR(1) covariance matrix with autocorrelation
parameter p € (—1,1). This covariance matrix roughly approximates linkage disequilibrium
structure among genotypes, where correlations among variables are local with respect to the
spatial structure. Conditional independence under this model (44) reduces to Hy : 0 = 0.
Furthermore, the conditional distribution £,,(X|Z) implied by the normal joint distribution
is that of a linear model:

(45) Under Hy, Ln(X|Z)=N(Z"v,0}), Ln(Y|Z)=N(Z"B,0)).

In the context of this model, the conditional independence testing problem is nontrivial to the
extent that Z induces marginal association between X and Y even in the absence of condi-
tional association. In a causal inference context, this spurious marginal association would be
called a confounding effect of Z. This marginal association can be small or large, depending
on the correlation structure of Z and the extent to which the supports of 5 and v overlap.
Properly adjusting for Z is important to the extent that Z induces marginal association be-
tween X and Y.
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We claim that the simulation studies in much of the original MX literature had relatively
low levels of marginal association between X and Y, whereas the simulation studies in Li
and Liu (2023) were done in a regime with much more marginal association. To illustrate this
point, we quantify the level of marginal association in a given problem setup as the Type-I
error of the GCM test with intercept-only models for £,,(X|Z) and £,,(Y'|Z). This test is
essentially a Pearson test of (marginal) independence between X and Y, and ignores the
variables Z altogether. We compute this Type-I error for the data-generating models used to
assess robustness by Candes et al. (2018); Liu et al. (2022); Li and Liu (2023) (Appendix
F.1 in Niu et al. (2023)). The former two papers are framed in the variable selection context,
where several explanatory variables W; are considered, and the hypothesis Hy : Y 1L W} |
W.; is tested for each j. Therefore, X = W) for each j. On the other hand, Li and Liu (2023)
considered a conditional independence testing framework, where X was a single variable of
interest.

For the data-generating models used by Candes et al. (2018); Liu et al. (2022), we evaluate
the Type-I error of the marginal GCM test for each hypothesis Hy : Y 1L W, | W_;, plotting
these as a function of 7 (Figure 2, top row). We superimpose onto these plots a blue horizontal
line indicating the Type-I error of the marginal GCM test (fitting the intercept only model)
for the data-generating model used by Li and Liu (2023) (equal to 0.99, suggesting strong
marginal association), and a red dashed horizontal line indicating the nominal level of this
marginal test (equal to 0.05). The green ticks indicate the locations of the non-null variables.
As expected for a setting where variable correlation is local, we see that Type-I error is
inflated for null variables near the signal variables. The extent of this inflation depends on
the autocorrelation parameter (set at 0.3 by Candes et al. (2018) and 0.5 by Liu et al. (2022))
and the locations of the signal variables. Most null variables, however, are not near signal
variables, and therefore the marginal GCM test shows no inflation. This is reflected by the
histograms of the Type-I error inflations (Figure 2, bottom row). The median Type-I error of
the marginal GCM test is near the nominal level of 0.05 in all three of the simulation setups
from Candes et al. (2018); Liu et al. (2022).

6.2. Simulation design.

Data-generating model. As discussed in the previous section, appropriately setting the
marginal correlation between X and Y in a given data-generating model is crucial to prop-
erly evaluate the impact of inaccurate estimation of £,,(X|Z) on the Type-I error control of
a model-X method. Keeping this in mind, we propose the following data-generating model:

(46) ﬁn(Z) = N(O,E(p)), Ln(X|Z) = N(ZT/871)7 ﬁn(Y‘X,Z) =N(X0+ ZTB: 1)'

We set the first s coefficients of J to be equal to v and the rest to zero. Therefore, the entire
data-generating process is parameterized by the six parameters (n, p, s, p, 6, v) (Table 1). For
both null and alternative simulations, we vary each of the first four across five values each,
setting the remaining three to the default value indicated in bold. The fifth parameter 6 con-
trols the signal strength and the sixth parameter v controls the extent of marginal association
between X and Y . For the null simulation, we set § = 0, and for each setting of (n,p, s, p),
we choose five values of v equally spaced between 0 (no marginal association) and vy ax
(computed so that the marginal GCM method has Type-I error 0.99). Note that v, depends
on the parameters (n,p, s, p), so not exactly the same values of v were used across settings
of these four parameters. For the alternative simulation, we kept v fixed at vyax/2 while
for each setting of (n, p, s, p), we choose five values of 6 equally spaced between 0 (no sig-
nal) and 0y, (computed so that the GCM method with oracle settings of fi,, , and ﬁnyy has
power 0.99). Finally, we complement the linear regression data-generating model (46) with
an analogous one based on logistic regression.
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Fig 2: Comparing the marginal associations between X and Y in the robustness simulations
of Candes et al. (2018); Liu et al. (2022); Li and Liu (2023) (Appendix F.1 in Niu et al.
(2023)). Top: Type-I error of the marginal GCM test as a function of the position of null vari-
ables with respect to the non-null variables (represented as green ticks). Bottom: Histograms
of the Type-I error across null variables. The solid blue line indicates the Type-I error of the
marginal GCM test for the robustness simulation of Li and Liu (2023), and the dashed red
line the nominal Type-I error level of the marginal GCM test (0.05).

n P s p 6 (null) v (null) 6 (alt) v (alt)

100 100 5 0 0 0 0 Vmax /2

200 200 10 0.2 0 l/max/4 9max/4 l/max/2

400 400 20 04 0 Vmax/2 9max/2 Vmax/2

800 800 40 0.6 0 3I/max/4 30max/4 I/max/z

1600 1600 80 0.8 0 Vmax Hmax Vmax /2
TABLE 1

The values of the sample size n, covariate dimension p, sparsity s, autocorrelation of covariates p, signal
strength 0, and marginal association strength v used for the simulation study. Each of the parameters n,p, s, p
was varied among the values in the first table while keeping the other three at their default values, indicated in
bold. For example, p = 400, s =5, p = 0.4 were kept fixed while varying n € {100, 200,400,800, 1600}. The

second and third tables denote the values of (8,v) used for the null and alternative simulations. Each
combination of (n,p, s, p) was paired with each of the five values of (0,v) displayed for null and alternative
simulations.

Methodologies compared. In Section 4, we found that the GCM test and the dCRT are
equivalent when applied with the same estimation methods for u,, , and p, . Using this

equivalence, we also showed that the dCRT is robust to errors in i, , if they are compensated
for by accurate estimates /i, ,. In our simulation to assess Type-I error, we wish to probe

the finite-sample Type-I error control of the GCM and the dCRT. We apply both of these
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methods with the lasso to estimate i, , and i, 4, as this is the most common choice in the
MX literature. -

In addition to the GCM test and the dCRT, we apply the Maxway CRT (Li and Liu, 2023),
designed specifically to improve the Type-I error control of the dCRT in the context when
}in, must be estimated. The Maxway CRT is inherently a semi-supervised method, assuming
the existence of an auxiliary unlabeled dataset containing observations of X and Z but not of
Y . The methodology (specifically, “Maxway;, example 1) proceeds—roughly—by fitting
En(X |Z) on the unlabeled data via the post-lasso (i.e. selecting active variables via the
lasso and then refitting via ordinary least squares, Belloni and Chernozhukov (2013)), fitting
liny(Z) on the labeled data via post-lasso, and then applying dCRT on the labeled data based
on these two models.

Since the primary focus of this paper is the setting when no auxiliary unlabeled data are
available, we implement the Maxway CRT by randomly splitting the data into two equal
pieces, using the first as the unlabeled data (in particular, ignoring the response data) and
the second as the labeled data. This strategy is consistent with the real data analysis in Li
and Liu (2023, Section 6). We also consider a bona-fide semi-supervised setup, in order to
compare the GCM test and dCRT to the Maxway CRT in the setting originally considered by
Li and Liu (2023). However, in the semi-supervised setting we use all of the available data
on (X, Z) (i.e. both unlabeled and labeled data) to fit £,,(X|Z). By contrast, Li and Liu
(2023) used only the unlabeled data to learn £,,(X|Z) in their implementation of the dCRT
for semi-supervised data.

Finally, we noted in Section 4 that the dCRT already has a built-in doubly robust property.
Therefore, we conjectured that the Type-I error inflation observed in the simulations of Li
and Liu (2023) is attributable to poor estimation of i, (X|Z) and/or p,,(Y|Z) and that the
dCRT can achieve Type-I error control if used in conjunction with better estimators of these
conditional means. Taking inspiration from Li and Liu (2023), we also considered versions
of the dCRT and the GCM test based on the post-lasso in addition to those based on the
usual lasso. In summary, we compared five methods: lasso and post-lasso based GCM, lasso
and post-lasso based @, and Maxway CRT (Table 2). As a point of reference for the null
simulation, we also included the GCM test with intercept-only models for 1, , and piy, o ; the
Type-I error of this test quantifies the degree of marginal association in the data-generating
model (Section 6.1). As a point of reference for the alternative simulation, we also included
the GCM test with p,, , and p, , set to their ground truth values; the power of this test is
the maximum power achievable by any test and therefore quantifies the signal strength in the
data-generating model.

Evaluation of power in the presence of Type-I error inflation. The methodologies compared
control Type-I error to differing extents across the variety of simulation parameters in Table 1.
This makes it challenging to compare power across methods, since some control Type-I error
while others do not. To address this challenge, we chose to compare the power of the test
statistics underlying the methods, each under oracle calibration to ensure Type-I error control.
Given the composite null, exact oracle calibration is computationally intractable. Therefore,
we instead calibrated each test with respect to the point null given by

La(Z)=N(0,5(p), La(X|Z)=N(Z"B,1), Ls(Y|X,Z) = N(E[X|Z]"0+2Z"§,1).

This is the “closest” point in the null to the alternative (46) under consideration; therefore
ensuring Type-I error control at this point null should be a decent proxy for ensuring Type-I
error control over the whole null. To calibrate two-sided tests with respect to this point null,
we generate samples of a test statistic from the null and then define lower and upper critical
values as the 2.5% and 97.5% quantiles of this distribution. Using potentially asymmetric
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Method name Estimating pn,z  Data for fin,z  Estimating uny  Data for fin,y
GCM (LASSO) lasso all lasso all/labeled
dCRT (LASSO)  lasso all lasso all/labeled
GCM (PLASSO)  post-lasso all post-lasso all/labeled
ﬁ (PLASSO) post-lasso all post-lasso all/labeled
Maxway CRT post-lasso unlabeled post-lasso labeled
GCM (marginal)  intercept-only all intercept-only all/labeled
GCM (oracle) ground truth - ground truth -

TABLE 2

The five methodologies compared, how they estimate jin gz and pn,y, and what data they use for each in the
context of semi-supervised or fully supervised data. Note that in the fully supervised case, data is split in half to
form “unlabeled” and labeled sets for Maxway CRT. In this case, the dCRT and GCM tests still use all of the
data available for estimating pin,z and pn,y. Two additional tests were used for reference purposes: the GCM
test with intercept-only models for pin. z and pn,y and the GCM test with pun . and pin.y set to their ground
truth values.

lower and upper critical values is necessary, as the null distribution may not be symmetric
and centered at zero (Liu et al., 2022).

6.3. Simulation results. We conducted simulations for Gaussian and binary models for
the response Y, each within the supervised and semi-supervised settings. We present the
Type-I error and power for Gaussian responses in the supervised setting in Figures 3 and 4,
respectively, while deferring the other cases to Appendix F.3 in Niu et al. (2023). Note also
that for the sake of brevity Figures 3 and 4 only present three out of the five values for the
four parameters n,p, s, p; the complete results are presented in Appendix F.3 in Niu et al.
(2023).

Next we list the main conclusions regarding Type-I error based on the results including
figures in main text (Figure 3 (Gaussian supervised)), and figures in the supplementary mate-
rial(Figure 4 (Gaussian semi-supervised), Figure 6 (binary supervised), and Figure 8 (binary
semi-supervised) in Niu et al. (2023)):

* As one would expect, across all simulation settings, all methods have poorer Type-I error
control as sample size n decreases, dimension p increases, number of nonzero coefficients
s increases, autocorrelation p increases, or marginal association strength v increases.

* For Gaussian responses, the dCRT and GCM methods based on the same test statistics have
very similar Type-I error control, echoing the asymptotic equivalence of the two methods
(Theorem 2). For binary responses, the lasso-based dCRT has somewhat lower Type-1I
error than the lasso-based GCM test (Figure 6 in Niu et al. (2023)). The discreteness of
binary responses likely slows down the convergence to normality of the GCM statistic,
rendering the resampling-based null distribution of the dCRT a better approximation to
the null distribution. We explore this phenomenon further in Appendix G.2 in Niu et al.
(2023).

* Across all simulation settings, the dCRT and GCM methods based on the post-lasso have
dramatically better Type-I error control than their lasso-based counterparts. This is because
the post-lasso tends to more fully regress the confounders Z out of the response Y'; see
also Appendix F.2 in Niu et al. (2023).

* Across all simulation settings, Maxway CRT has better Type-I error control than the lasso-
based dCRT (in line with the results of Li and Liu (2023)), but worse Type-I error control
than the post-lasso-based dCRT. The latter is likely due to the fact that Maxway CRT uses
only half of the available data on (X, Z) to fit £,,(X|Z), and therefore does not adjust
for Z as accurately.
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Fig 3: Type I error control for Gaussian supervised setting: we vary only one parameter in
each column and there are five values of the marginal association strength v in each subplot.
Each point is the average of 400 Monte Carlo replicates. All the standard errors are less than
0.026.

Next, we list the main conclusions regarding power based on the results including fig-

ures in the main paper(Figure 4 (Gaussian supervised)), and figures in supplementary mate-
rial(Figure 5 (Gaussian semi-supervised), Figure 7 (binary supervised), and Figure 9 (binary
semi-supervised) in Niu et al. (2023)):

Across all simulation settings, GCM-based methods have somewhat higher power than
their dCRT-based methods. This may have to do with the stabilizing effect of the GCM

normalization, compared to the unnormalized dCRT statistic. The difference between the
two tends to vanish as sample size grows, reflecting the asymptotic equivalence of the two
methods (Corollary 2).

Across all simulation settings, the dCRT and GCM methods based on the lasso have lower
power than their post-lasso-based counterparts. This is because the post-lasso introduces
more variance into the estimation of ji,, ,,; see also Appendix F.2 in Niu et al. (2023).
Across Gaussian and binary supervised simulation settings (Figures 3 and 7 in Niu et al.
(2023)), Maxway CRT has the lowest power among all methods compared. The reason for
this is that Maxway CRT relies on data splitting and therefore has half the effective sample
size of the other methods. On the other hand, for semi-supervised settings (Figures 5 and
9 in Niu et al. (2023)), Maxway CRT has power comparable to or better than those of the
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post-lasso-based methods, but still worse than the lasso-based methods. This is due to the
additional variance introduced by the refitting step in the post-lasso.

Power

0560 Onax O

Effect size (6)

~ dCRT (LASSO) —~ dCRT (PLASSO) — GCM (LASSO) ~ GCM (PLASSO) — Maxway CRT

GCM (oracle)

Fig 4: Power for Gaussian supervised setting: we vary only one parameter in each column
and there are five values of the signal strength § in each subplot. Each point is the average of
400 Monte Carlo replicates. All the standard errors are less than 0.026.

In summary, the methods with the best Type-I error control across all simulation settings

are the dCRT and the GCM test based on the post-lasso, although this improved robustness
does come with a cost in terms of power when compared to the lasso-based methods. We
investigate the associated trade-off in Appendix F.2 in Niu et al. (2023).

7. Conclusion. We conclude by summarizing our main findings and highlighting direc-
tions for future work.

Model-X inference with L(X |Z) fit in sample can be doubly robust. Model-X inference
(Candes et al., 2018) is presented as a mode of inference where the assumptions are trans-
ferred entirely from £(Y'|Z) to £(X|Z); no restrictions are made on the former law (or
the test statistic used, at least in the context of the CRT), while the latter law is assumed
exactly known. In practice, however, the law £(X|Z) is often fit in sample. In the context
of the dCRT, we show that Type-I error control cannot be guaranteed without restrictions
on L(Y|Z) or the test statistic used (Section 3). On the other hand, test statistics based on
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decent estimates of E[Y'|Z] can compensate for errors in the estimation of £(X|Z) and re-
store Type-I error control (Corollary 3), a double robustness phenomenon. This result brings
model-X inference more in line with double regression inferential methodologies: The con-
ditional mean E[X |Z] is estimated in the context of in-sample approximation to the “model
for X,” and the conditional mean E[Y'|Z] is estimated when computing the model-X test
statistic. Relatedly, a double robustness property was noted for conditional model-X knock-
offs (Huang and Janson, 2020). A doubly robust version of the dCRT has also been recently
proposed (the Maxway CRT; Li and Liu (2023)), although we argue that the original dCRT
is itself doubly robust.

The GCM test has broadly similar Type-1 error and power as the dCRT for large enough
sample sizes, but requires no resampling. When fitting £(X|Z) in sample, the dCRT is
essentially a double regression methodology. This prompts a comparison to the GCM test
(Shah and Peters, 2020), another conditional independence test based on double regression.
We established that the two tests are asymptotically equivalent under the null (Theorem 2)
and under arbitrary local alternatives (Corollary 2). This suggests that the dCRT and the
GCM test—when applied with the same estimators for E[ X | Z] and E[Y | Z]—should have
similar Type-I error control and power. Our numerical simulations (Section 6) largely con-
firm this behavior in finite samples. An exception to this conclusion is the case when small
samples or discreteness in the data slows down the convergence of the GCM null distribution
to normality. In such cases, we observed that the dCRT can in fact have better Type-I error
control than the GCM based on the same estimators (Figures 6 and 10 in Niu et al. (2023)),
thanks to a better approximation to the null distribution in finite samples. Nevertheless, the
broad similarity between the performances of the GCM test and the dCRT and the fact that
the former test requires no resampling suggest that the GCM test may be preferable to the
dCRT in practical problems with relatively large sample sizes.

The post-lasso yields much better Type-1 error control than the lasso. Double robustness
results for the GCM test and the dCRT apply only insofar as the estimation methods used in
conjunction with these tests are accurate enough (SP1). The default estimation method for
E[X|Z] and E[Y| Z] in many model-X applications is the lasso. As was demonstrated by Li
and Liu (2023), the shrinkage bias of the lasso leads to inadequate adjustment of X and Y
for Z, which in turn leads to inflated Type-I error. The same authors proposed the Maxway
CRT, an extension of the dCRT involving the identification of coordinates of Z impacting X
and Y via the lasso followed by least squares refitting. Inspired by this work, we applied the
original dCRT with post-lasso estimates for E[ X |Z] and E[Y | Z]. We found vastly improved
Type-I error control (Figure 2 in Niu et al. (2023)), compared not just to the lasso-based dCRT
but also to the Maxway CRT itself. The decreased bias of the post-lasso helps adjust for Z
more fully, although we found that the extra variance incurred by refitting does come at a cost
in power. Nevertheless, our results suggest that applying the post-lasso in conjunction with
model-X methodologies can lead to significant improvements in robustness.

The GCM test is the optimal conditional independence test against alternatives without in-
teractions between X and Z. 1t is widely known in the semiparametric literature that the
GCM test is the efficient score test for (generalized) partially linear models. The connec-
tion between the GCM test and semiparametric theory was noted briefly by Shah and Peters
(2020), though not explored in depth; presumably because the GCM test is a conditional in-
dependence test rather than a test of a parameter in a semiparametric model. Nevertheless,
we find that if the semiparametric null hypothesis can be embedded within the conditional in-
dependence null hypothesis (38), semiparametric optimality theory can be carried over fairly
directly to conditional independence testing to establish optimality against semiparametric
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alternative distributions (Theorem 3). Thanks to this connection, we find that the GCM test
has optimal asymptotic power among conditional independence tests against local general-
ized partially linear model alternatives (29). On the other hand, we leave open the question
of optimality against alternatives where X and Z are allowed to interact. We also leave open
whether our optimality result can be extended to the high-dimensional regime.

Future work: The proportional regime, other test statistics,. and the variable selection prob-
lem

Our results about the equivalence between the GCM test and the dCRT, and the double
robustness of the latter, require estimates of E[X | Z] and E[Y | Z] that are individually con-
sistent and whose rates of convergence are sufficiently fast (SP1). In the case of sparse linear
models, we can get such rates if E[X | Z] and E[Y| Z] depend on at most s = o(y/n/log(p))
of the coordinates of Z. Such assumptions are common in other lines of work on high-
dimensional / semiparametric / doubly robust inference, including the debiased lasso (Van
De Geer et al., 2014; Zhang and Zhang, 2014; Javanmard and Montanari, 2014; Ning and
Liu, 2017; Jankov4 and Van De Geer, 2018) and doubly robust causal inference (Belloni,
Chernozhukov and Hansen, 2014; Chernozhukov et al., 2018). On the other hand, consis-
tent estimates are typically not available in the regime when n, p, and s grow proportionally
(Bayati and Montanari, 2011), causing a failure in traditional debiased estimates (Celentano
and Montanari, 2021). An additional limitation of the current work is that we prove double
robustness of the CRT for only one test statistic, namely the dCRT statistic. A natural ques-
tion to ask is whether this property is enjoyed by a broader class of test statistics. This may be
accomplished by proving equivalence of the CRT based on other doubly robust test statistics
to the corresponding asymptotic tests. However, this would likely entail deriving the limiting
CRT resampling distribution (analogously to Section 2), which may be harder for test statis-
tics whose dependence on X is more complex than that of the dCRT statistic. Finally, we did
not directly consider the variable selection problem or the MX knockoffs procedure in the
current work. We conjecture that MX knockoffs also enjoys some notion of double robust-
ness; indirect evidence for this was presented recently (Fan, Gao and Lv, 2023). It would also
be interesting to explore whether MX knockoffs enjoys any optimality properties as a vari-
able selection procedure, though this is a complex question because its power is a function of
not just the test statistic choice but also of the knockoff filter multiple testing procedure.
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Supplement to: ‘“Reconciling model-X and doubly robust approaches to conditional
independence testing”
This supplement includes all the proofs of the results in the main paper and additional simu-
lation results.



26

REFERENCES

AUFIERO, M. and JANSON, L. (2022). Surrogate-based global sensitivity analysis with statistical guarantees via
floodgate. arXiv.

BARBER, R. F., CANDES, E. J. and SAMWORTH, R. J. (2020). Robust inference with knockoffs. Annals of
Statistics, 48 1409-1431.

BARBER, R. F. and JANSON, L. (2022). Testing goodness-of-fit and conditional independence with approximate
co-sufficient sampling. Annals of Statistics 50 2514-2544.

BARRY, T., WANG, X., MORRIS, J. A., ROEDER, K. and KATSEVICH, E. (2021). SCEPTRE improves calibra-
tion and sensitivity in single-cell CRISPR screen analysis. Genome Biology 22 1-19.

BATES, S., SESIA, M., SABATTI, C. and CANDES, E. (2020). Causal Inference in Genetic Trio Studies. Pro-
ceedings of the National Academy of Sciences 117 24117-24126.

BAYATI, M. and MONTANARI, A. (2011). The LASSO risk for Gaussian matrices. I[EEE Transactions on Infor-
mation Theory 58 1997-2017. https://doi.org/10.1109/TIT.2011.2174612

BELLONI, A. and CHERNOZHUKOV, V. (2013). Least squares after model selection in high-dimensional sparse
models. Bernoulli 19 521-547. https://doi.org/10.3150/11-BEJ410

BELLONI, A., CHERNOZHUKOV, V. and HANSEN, C. (2014). Inference on treatment effects after selection
among high-dimensional controls. The Review of Economic Studies 81 608—650.

BERRETT, T. B., WANG, Y., FOYGEL BARBER, R. and SAMWORTH, R. J. (2020). The conditional permutation
test for independence while controlling for confounders. Journal of the Royal Statistical Society. Series B:
Statistical Methodology 82 175-197.

BICKEL, P. J., KLAASSEN, C. A., RITOV, Y. A. and WELLNER, J. A. (1993). Efficient and Adaptive Estimation
for Semiparametric Models. Johns Hopkins University Press, Baltimore.

CANDES, E., FAN, Y., JANSON, L. and LV, J. (2018). Panning for gold: ‘model-X’ knockoffs for high dimen-
sional controlled variable selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
80 551-577.

CANONNE, C. L., DIAKONIKOLAS, I., KANE, D. M. and STEWART, A. (2018). Testing conditional indepen-
dence of discrete distributions. 2018 Information Theory and Applications Workshop, ITA 2018 735-748.
https://doi.org/10.1109/1TA.2018.8503255

CELENTANO, M. and MONTANARI, A. (2021). CAD: Debiasing the Lasso with inaccurate covariate model.
arXiv.

CHERNOZHUKOV, V., CHETVERIKOV, D., DEMIRER, M., DUFLO, E., HANSEN, C., NEWEY, W. and
ROBINS, J. (2018). Double/debiased machine learning for treatment and structural parameters. Econometrics
Journal 21 C1-C68. https://doi.org/10.1111/ectj.12097

CHERNOZHUKOV, V., ESCANCIANO, J. C., ICHIMURA, H., NEWEY, W. K. and ROBINS, J. M. (2022). Locally
Robust Semiparametric Estimation. Econometrica 90 1501-1535. https://doi.org/10.3982/ectal 6294

CHoI, S., HALL, W. J. and SCHICK, A. (1996). Asymptotically uniformly most powerful tests in parametric and
semiparametric models. Annals of Statistics 24 841-861. https://doi.org/10.1214/a0s/1032894469

DoNALD, S. G. and NEWEY, W. K. (1994). Series estimation of semilinear models.
https://doi.org/10.1006/jmva.1994.1032

DUKES, O. and VANSTEELANDT, S. (2020). How to obtain valid tests and confidence intervals
after propensity score variable selection? Statistical Methods in Medical Research 29 677-694.
https://doi.org/10.1177/0962280219862005

FAN, Y., GAO, L. and Lv, J. (2023). ARK: Robust Knockoffs Inference with Coupling. arXiv.

FAN, Y., Lv, J., SHARIFVAGHEFI, M. and UEMATSU, Y. (2020a). IPAD: Stable Interpretable Fore-
casting with Knockoffs Inference. Journal of the American Statistical Association 115 1822-1834.
https://doi.org/10.2139/ssrn.3245137

FAN, Y., DEMIRKAYA, E., Li, G. and Lv, J. (2020b). RANK: Large-Scale Inference With
Graphical Nonlinear Knockoffs. Journal of the American Statistical Association 115 362-379.
https://doi.org/10.1080/01621459.2018.1546589

HaM, D. W., IMAL, K. and JANSON, L. (2022). Using Machine Learning to Test Causal Hypotheses in Conjoint
Analysis. arXiv.

HARDLE, W., LIANG, H. and GAO, J. (2000). Partially linear models. Springer Science & Business Media.

HENMI, M. and EGUCH]I, S. (2004). A Paradox concerning Nuisance Parameters and Projected Estimating Func-
tions. Biometrika 91 929-941.

HUANG, D. and JANSON, L. (2020). Relaxing the Assumptions of Knockoffs by Conditioning. Annals of Statis-
tics 48 3021-3042.

JANKOVA, J. and VAN DE GEER, S. (2018). Semiparametric efficiency bounds for high-dimensional models.
Annals of Statistics 46 2336-2359. https://doi.org/10.1214/17-A0S1622


https://doi.org/10.1109/TIT.2011.2174612
https://doi.org/10.3150/11-BEJ410
https://doi.org/10.1109/ITA.2018.8503255
https://doi.org/10.1111/ectj.12097
https://doi.org/10.3982/ecta16294
https://doi.org/10.1214/aos/1032894469
https://doi.org/10.1006/jmva.1994.1032
https://doi.org/10.1177/0962280219862005
https://doi.org/10.2139/ssrn.3245137
https://doi.org/10.1080/01621459.2018.1546589
https://doi.org/10.1214/17-AOS1622

MODEL-X AND DOUBLY ROBUST CONDITIONAL INDEPENDENCE TESTING 27

JAVANMARD, A. and MONTANARI, A. (2014). Confidence Intervals and Hypothesis Testing for High-
Dimensional Regression. Journal of Machine Learning Research 15 2869-2909.

KATSEVICH, E. and RAMDAS, A. (2022). On the power of conditional independence testing under model-X.
Electronic Journal of Statistics 16 6348—-6394.

KiMm, 1., NEYKOV, M., BALAKRISHNAN, S. and WASSERMAN, L. (2022). Local permutation tests for condi-
tional independence. Annals of Statistics 50 3388-3414.

KO0SOROK, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference. Springer, New
York.

L1, S. and L1u, M. (2023). Maxway CRT: Improving the Robustness of Model-X Inference. Journal of the Royal
Statistical Society, Series B 85 1441-1470.

L1, S., SESIA, M., ROMANO, Y., CANDES, E. and SABATTI, C. (2022). Searching for robust associations with
a multi-environment knockoff filter. Biometrika 109 611-629.

L1u, J. and RIGOLLET, P. (2019). Power analysis of knockoff filters for correlated designs. In 33rd Conference
on Neural Information Processing Systems.

Liu, M., KATSEVICH, E., JANSON, L. and RAMDAS, A. (2022). Fast and powerful conditional randomization
testing via distillation. Biometrika 109 277-293. https://doi.org/10.1093/biomet/asab039

LUNDBORG, A. R., KiMm, 1., SHAH, R. D. and SAMWORTH, R. J. (2022). The Projected Covariance Measure
for assumption-lean variable significance testing. arXiv.

NEYKOV, M., BALAKRISHNAN, S. and WASSERMAN, L. (2021). Minimax optimal conditional independence
testing. Annals of Statistics 49 2151-2177. https://doi.org/10.1214/20-A0S2030

NING, Y. and L1U, H. (2017). A general theory of hypothesis tests and confidence regions for sparse high dimen-
sional models. Annals of Statistics 45 158-195. https://doi.org/10.1214/16-A0S1448

Ni1U, Z., CHARABORTY, A., DUKES, O. and KATSEVICH, E. (2023). Supplement to “Reconciling model-X and
doubly robust approaches to conditional independence testing”.

PEARL, J. (2009). Causality. Cambridge University Press.

ROBINS, J. M., MARK, S. D. and NEWEY, W. K. (1992). Estimating Exposure Effects by Modelling the Expec-
tation of Exposure Conditional on Confounders. Biometrics 48 479—495.

ROBINS, J. M. and ROTNITZKY, A. (2001). Comment on the Bickel and Kwon article, "Inference for semipara-
metric models: Some questions and an answer". Statistica Sinica 11 920-936.

ROBINSON, P. M. (1988). Root-N-Consistent Semiparametric Regression. Econometrica 56 931-954.

ROMANO, Y., SESIA, M. and CANDES, E. (2019). Deep Knockoffs. Journal of the American Statistical Associ-
ation 115 1861-1872. https://doi.org/10.1080/01621459.2019.1660174

SESIA, M., SABATTI, C. and CANDES, E. J. (2019). Gene hunting with hidden Markov model knockoffs.
Biometrika 106 1-18. https://doi.org/10.1093/biomet/asy033

SESIA, M. and SUN, T. (2022). Individualized conditional independence testing under model-X with heteroge-
neous samples and interactions. arXiv.

SESIA, M., KATSEVICH, E., BATES, S., CANDES, E. and SABATTI, C. (2020). Multi-resolution localization of
causal variants across the genome. Nature Communications 11 1093.

SESIA, M., BATES, S., CANDES, E., MARCHINI, J. and SABATTI, C. (2021). False discovery rate control in
genome-wide association studies with population structure. Proceedings of the National Academy of Sciences
of the United States of America 118 1-12. https://doi.org/10.1073/pnas.2105841118

SHAH, R. D. and PETERS, J. (2020). The Hardness of Conditional Independence Testing and the Generalised
Covariance Measure. Annals of Statistics 48 1514-1538.

SMUCLER, E., ROTNITZKY, A. and ROBINS, J. M. (2019). A unifying approach for doubly-robust L1 regularized
estimation of causal contrasts. arXiv.

SPECTOR, A. and FITHIAN, W. (2022). Asymptotically Optimal Knockoff Statistics via the Masked Likelihood
Ratio. arXiv.

VAN DE GEER, S., BUHLMANN, P., RITOV, Y. and DEZEURE, R. (2014). On asymptotically optimal confidence
regions and tests for high-dimensional models. Annals of Statistics 42 1166—-1202. https://doi.org/10.1214/14-
AOS1221

VAN DER VAART, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.

VANSTEELANDT, S., VANDERWEELE, T. J., TCHETGEN, E. J. and ROBINS, J. M. (2008). Multiply ro-
bust inference for statistical interactions. Journal of the American Statistical Association 103 1693-1704.
https://doi.org/10.1198/016214508000001084

WAINWRIGHT, M. J. (2019). High-dimensional statistics: A  non-asymptotic ~ viewpoint.
https://doi.org/10.1017/9781108627771

WANG, W. and JANSON, L. (2022). A high-dimensional Power Analysis of the Conditional Randomization Test
and Knockoffs. Biometrika 109 631-645.

WEINSTEIN, A., BARBER, R. and CANDES, E. (2017). A power analysis for knockoffs under Gaussian designs.
arXiv.


https://doi.org/10.1093/biomet/asab039
https://doi.org/10.1214/20-AOS2030
https://doi.org/10.1214/16-AOS1448
https://doi.org/10.1080/01621459.2019.1660174
https://doi.org/10.1093/biomet/asy033
https://doi.org/10.1073/pnas.2105841118
https://doi.org/10.1214/14-AOS1221
https://doi.org/10.1214/14-AOS1221
https://doi.org/10.1198/016214508000001084
https://doi.org/10.1017/9781108627771

28

WEINSTEIN, A., SU, W. J., BOGDAN, M., BARBER, R. F. and CANDES, E. J. (2023). A power analysis for
model-X knockoffs with 1 p-regularized statistics. The Annals of Statistics 51 1005-1029.

ZHANG, C.-H. and ZHANG, S. S. (2014). Confidence intervals for low dimensional parameters in high dimen-
sional linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76 217-242.

ZHONG, Y., KUFFNER, T. and LAHIRI, S. (2021). Conditional Randomization Rank Test. arXiv.



	Introduction
	Conditional independence testing and the model-X assumption
	Our contributions
	Related work
	Preliminaries: The dCRT and GCM tests
	The dCRT and dCRT"055BdCRT
	The GCM test and double robustness


	dCRT"055BdCRT resampling distribution converges to normal
	dCRT"055BdCRT is not robust for general "055Bn,y
	dCRT"055BdCRT is doubly robust and equivalent to GCM test
	Equivalence between GCM test and dCRT"055BdCRT
	Double robustness of dCRT"055BdCRT

	GCM test is optimal against certain alternatives
	Optimality result
	Example: Kernel ridge regression
	Discussion of Theorem 3

	Finite-sample performance assessment
	Revisiting prior simulations of robustness
	Simulation design
	Simulation results

	Conclusion
	Acknowledgments
	Funding
	Supplementary Material
	References

