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Abstract—GPU-based HPC clusters are attracting more sci-
entific application developers due to their extensive parallelism
and energy efficiency. In order to achieve portability among a
variety of multi/many core architectures, a popular choice for
an application developer is to utilize directive-based parallel
programming models, such as OpenMP. However, even with
OpenMP, the developer must choose from among many strategies
for exploiting a GPU or a CPU. This paper introduces a
new graph-based program representation for optimization of
OpenMP applications. The originality of this work lies in the aug-
mentations of Abstract Syntax Trees (ASTs) and the introduction
of edge weights to account for loop and condition information.
We evaluate our proposed representation by training a Graph
Neural Network (GNN) to predict the runtime of OpenMP code
regions across CPUs and GPUs. Various transformations utilizing
collapse and data transfer between the CPU and GPU are used
to construct the dataset. The trained model is used to determine
which transformation provides the best performance. Results
indicate that our approach is effective and has normalized RMSE
as low as 4×10−3 to at most 1×10−2 in its runtime predictions.

Index Terms—OpenMP, HPC, offloading, program represen-
tation

I. INTRODUCTION

Over the years, the increase in the number of on-chip cores
has led to significant improvement in the performance of
parallel code. To exploit this increased computation capacity,
applications have been readily modified using Pthreads or
OpenMP constructs. In the last decade, General Purpose
Graphic Processing Units (GPGPUs) have gained popularity.
HPC platforms will continue to support more accelerators,
but given the difficulties in utilizing and configuring even
one accelerator, using and configuring multiple heterogeneous
accelerators will become increasingly difficult in the future.

On the other hand, utilizing GPUs effectively imposes
challenges that require re-engineering the code and appli-
cations. It is exceptionally challenging and burdensome for
developers to create applications for extremely heterogeneous
platforms with multiple devices. The recent emergence of tools
and programming models aims to automate this process of
application adaptation to heterogeneous platforms. One of the
most popular parallel programming models, OpenMP [1], aims
to make the process of developing parallel programs that can

run on different architectures simpler. Despite this, optimizing
a code to use the OpenMP directives correctly is still tedious
for large and complex applications.

Recent advances in Deep Learning (DL) have enabled re-
searchers to apply DL to a wide range of software engineering
problems and challenges. Programs need to be represented in
a suitable representation that not only serves as input to DL
models but also exposes necessary features. In this paper, we
propose ParaGraph, a graph-based program representation
that aims to expose critical characteristics (e.g., the flow of
a loop) of HPC applications. To the best of our knowledge,
existing program representations are not specifically designed
to expose and represent the characteristics of parallel HPC
applications. As a result, DL models built on top of these rep-
resentations cannot model features inherent to parallel codes
effectively. We apply our program representation to the task of
runtime prediction across CPUs and GPUs. Previous works,
such as [2], have relied on feature engineering to predict the
runtime of kernels on GPUs. However, feature engineering
requires expert knowledge. For a fast-evolving field such as
HPC, always relying on expert intervention for such feature
engineering is not realistic. There is a need for an adaptable
approach that can automatically extract such features. Our
proposed approach addresses this gap and leverages Graph
Neural Networks (GNNs) to model the code graphs generated
by ParaGraph. Experimental results show that our model can
predict the runtime of HPC kernels with a very low error rate
(at most 1× 10−2 in terms of normalized RMSE), confirming
the efficacy of our strategic approach.

In summary, the main contributions of the paper are as
follows:

• An innovative runtime prediction model that facilitates
portability across heterogeneous HPC platforms.

• A novel representation of HPC kernels for deep learning
models that highlights their HPC characteristics.

• Constructing a new data set consisting of variations of
HPC kernels supporting both CPUs and GPUs.

• Evaluation of the proposed HPC kernel representation by
predicting runtime for different devices, including both
CPUs and GPUs, and outperforming the state-of-the-art
approach.



II. BACKGROUND AND RELATED WORK

In this section, related works and some background for
program representation, OpenMP parallelism, and its tools are
discussed.

A. Program Representation

Recently, with breakthroughs in Machine Learning (ML)
and specifically Deep Learning (DL), researchers have been
applying data-driven approaches to various software engi-
neering tasks and challenges, ranging from code comment
generation [3] to compiler optimizations [4].

Recently, graph-based program representations have been
proposed that can model different program flows such as
control flow, data flow, etc. Allamanis et al. [5] proposed an
AST-based program graph representation to model programs
to two tasks of variable misuse detection and variable name
suggestion.

Cummins et al. in [4] provided a lower-level graph represen-
tation based on LLVM intermediate representation for solving
compiler optimization tasks.

While these representations are effective for downstream
tasks, such as simple algorithm classification, to the best of
our knowledge, there does not exist a representation tailored
toward representing the characteristics of HPC kernels and
important control statements such as parallel loops and if-
statements. Other representations, such as the one in [2], are
engineered for specific accelerators and can not be applied
to various accelerators and platforms. Considering the het-
erogeneity of HPC platforms and the increasing demand for
portable applications that can be run on different accelerators,
the need for a program representation that is independent of
the underlying accelerator has never been more crucial.

B. OpenMP GPU Offloading

Developers need to ensure program portability across di-
verse GPU architectures and compilers, particularly in het-
erogeneous HPC systems. One approach to ensure portability
across heterogeneous architectures is using a directive-based
programming paradigm, such as OpenMP, the de-facto stan-
dard for parallel programming in C/C++ and Fortran. OpenMP
intends to move to extremely heterogeneous architectures [6]
and has supported GPU offloading from specification 4.0.
Unfortunately, even with OpenMP, optimizing large-scale ap-
plications remains a challenging task.

The “omp parallel for” pragma alone will only par-
allelize a code for CPUs; it won’t offload the computation to
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Fig. 1: OpenMP target teams distribute parallel for.

a GPU. We expect a high level of coarse grain parallelism
on a platform like GPU. The amount of parallelism that a
GPU can use is constrained by this design. Figure 1 illustrates
how OpenMP teams and distribute directives create
additional levels of parallelism. At the start of a target region,
only one team and one member thread are active. The teams
distribute directive distributes the full loop iteration space
among all available teams. We utilize the combined directive
“teams distribute parallel for” to distribute the
iteration space of one loop among teams and threads inside a
team when there is just one level of parallel loops or when
the outer loop has sufficient parallelism. teams are used to
group threads, and distribute enables a team group to be
scheduled to run in a loop.

There are several frameworks being worked on right now
that will automatically assist application developers in han-
dling severe heterogeneity. Hand-tuned cost functions are ex-
tensively employed currently; however, calculating optimiza-
tion costs requires a deeper understanding of the underlying
hardware. Since cost functions are crucial and manual tun-
ing is time-consuming, compiler engineers are investigating
Machine, and Deep Learning approaches as a means of
automating this process.

C. ML in Compiler

Recently, a lot of research has been done on how to use
learning-based techniques in compilation as well. Early work
exploiting ML in compilers primarily explored its use to
help optimize sequential programs. However, its application
to the task of optimizing parallel programs has recently
attracted attention due to the prevalence of multi-core plat-
forms and, more recently, heterogeneous systems [7], [8].
Mirka et.al. [9] devised a decision-tree-based approach to
predict the scheduling policy for an OpenMP parallel region.
Also, Denoyelle et.al. [10] uses machine learning techniques
to optimize OpenMP programs for scheduling policies and
the number of threads. Tree and graph-based features have
been used by Malik et.al. [11], who present a graph-based
approach for feature representation. Learning-based techniques
were used to build classifiers to determine whether to offload
OpenCL code [12] and to select a clock frequency at which the
processor should operate [13]. A high level of accuracy was
reported; however, the benefits could not be quantified as the
work did not attempt to generate modified code. They also
explored regression techniques to build curve fitting models
to search for the Pareto frontier for work partitioning among
processors [14] or a trade-off of energy and performance [15].

In COMPOFF [2], the authors provide a proof of concept
for using fully connected feed-forward network model to
make better decisions in offloading a kernel to a GPU using
OpenMP.

D. OpenMP Advisor

OpenMP Advisor [16] is a compiler tool that enables
OpenMP code offloading to a GPU via Machine Learning. The
Advisor is divided into three major modules: Kernel Analysis,



Cost Model, and Code Transformation. The Kernel Analysis
module recommends various variants for a given application,
and the Code Transformation module generates codes for
those variants. In our work, we use the code transformation
module of OpenMP Advisor to generate various kernels for
training our model. OpenMP Advisor uses COMPOFF [16]
to identify the kernels that are most suitable for offloading by
predicting their runtime. But COMPOFF has some limitations.
It requires figuring out how many operations are contained
within a kernel, which is a challenging task in and of itself.
The Advisor’s current functionality is restricted to GPUs. In
this work, we will compare ParaGraph to COMPOFF.

III. PARAGRAPH

In this section, we present ParaGraph, a graph repre-
sentation of programs that captures characteristics related
to HPC kernels. ParaGraph aims to represent programs
using information available at compile time to enable deep
learning models to reason over HPC kernels and supports
heterogeneous platforms. For instance, it can help users decide
which accelerator would be a better fit for a particular kernel
by predicting the runtime of that kernel statically. ParaGraph
leverages the compiler Abstract Syntax Tree (AST) and in-
corporates additional information, such as edge weights, to
count for loops and if-statements. For example, ParaGraph
presents loops by special edges conveying the order in which
the loop condition and its body execute iteratively. Addition-
ally, ParaGraph adds weights to the edges to expose how
many times each region or scope will be encountered during
the execution of a program if this information is available at
compile time. ParaGraph code representation can be easily
modeled by Graph Neural Networks. Our experimental results
show that, in performance optimization, this representation is
quite effective and outperforms the state-of-the-art approach.

A. ParaGraph Construction

1) Abstract Syntax Tree: ParaGraph graph structure is
built on top of AST. In this study, we use Clang1 to parse
and compile C/C++ programs. ASTs contain two types of
nodes: non-terminal and terminal. Non-terminal nodes are
often called syntax nodes, whereas terminal nodes are called
syntax tokens. Nodes in ASTs have a parent-child relation.
ParaGraph augments the AST by introducing additional
edges and attributes to convey control and data flow infor-
mation. The following subsections will provide more details
on these augmentations.

2) Augmenting Abstract Syntax Tree: ASTs typically pro-
vide structural and syntactic information about a program.
Although this information can be useful for neural networks to
learn the characteristics of programs to some extent, it has been
shown before [17], [5] that adding additional attributes and
information, especially from a compiler point of view, boosts
the learning capabilities of deep learning models. ParaGraph
introduces the following additional edges to AST (shown in
Figure 2).

1https://clang.llvm.org/

– NextToken: By default there is no order imposed among
the syntax tokens. However, from a compiler’s perspective,
syntax tokens have an order. To present this information in
a graph, ParaGraph introduces a new edge type called
NextToken. NextToken connects each syntax token to
the syntax token on its right side. This edge type is shown
in orange in Figure 2 (the AST on the left).

– NextSib: AST’s edges show a parent-child relationship
between nodes. On the other hand, compilers intrinsically
consider an order among children nodes. For example, a
binary operator such as division has two children. In an
AST, the left child is always the numerator, and the right
child is the denominator. Therefore, it is necessary to show
the order of children. NextSib connects each syntax node
to its sibling on the right (the blue edge in Figure 2).

– Ref: In Clang’s AST, referenced variables are presented
by DecRefExpr nodes. These nodes are terminal and do
not have children. ParaGraph adds Ref edges (shown
in pink in Figure 2) connecting a DecRefExpr node to
where the corresponding variable is defined. This edge will
convey information about where a declared variable is used
throughout the graph.

– ForNext, ForExec: Loops are typically shown as
ForStmt nodes in Clang’s AST. ForStmt nodes usu-
ally have four children. The first child initializes the loop
counter, the second is the loop’s condition. The third child
is a CompoundStmt, which presents the body of a loop.
Lastly, the fourth child modifies the loop counter such as
incrementing it by one. The relationship between these four
children exposes critical characteristics that are known by
compilers. We add ForExec edges, which connect the
first child (counter initialization) to the second child (loop
condition) and also connect the second child to the third
child (loop body), as shown in the right side of Figure
2. In fact, ForExec edges show the flow of executing
the next iteration of the loop. We connect the third child
(loop’s body) of the ForStmt node to the fourth child (loop
counter modifier) via a new type of edge called ForNext.
ForNext represents the information related to whether the
next iteration of the loop needs to be executed or not,
whereas ForExec represents the next execution of the
loop. The fourth child (loop counter modifier) is followed
by the second child (loop condition), which checks if the
next iteration is going to execute or if the loop has ended.
Therefore, the fourth child is connected to the second child
with a ForNext edge as shown in Figure 2.

– ConTrue, ConFalse: If statements in the ASTs are shown
by IfStmt nodes. IfStmt nodes typically have three
children. First child presents the condition; the second child
is the body of the if condition and the third child is the
body of the else part. To present this information, we
connect the first child to the second child through a new
type of edge called ConTrue to show that the flow moves
to the second child if the if statement is true. On the
other hand, the first child is connected to the third child via
a ConFalse edge. This edge shows that if the condition of
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Fig. 2: Modification to AST to create Augmented AST for ParaGraph.

if statement is not met, the flow moves to the third child.
– Child: Child edges are normal AST edges that present a

parent-child relationship among the nodes in AST.
3) Weighted Edges: In the previous section, we explained

how ParaGraph augments the AST by introducing new types
of edges to better present programs and exposes information
about how loops or if statements are executed. How-
ever, there is still some information missing in our repre-
sentation. For instance, whenever we encounter a loop in a
program, the loop’s body could be executed multiple times,
or the number of times each branch of an if statement
is executed is not the same. As a result, the constructed
graph needs to be further augmented to include this missing
information. To solve this issue, ParaGraph considers adding
weights to the edges. Weights of edges are calculated based on
the region and edge type. Weights are added only to Child
edges since these are AST edges, and a compiler uses the
AST nodes and child edges to transform an AST to lower-
level for machine execution. For illustration purposes, some
edge weights are shown in Figure 2. We add the weights as
follows:
– Default edge weight: By default, we initially add a weight

of 1 to each Child edge assuming, for now, that each
statement in the code executes only once, and once a
statement executes, the control moves to the next statement.

– Loops: To expose the number of iterations in our graph
representation, we first observe the number of iterations in
a loop and then multiply the edge weights by that number.
ParaGraph uses the information available at compile time
to determine the loop bound (Lb). Moreover, the workload
of each thread is also implicitly taken into account if the
loop scheduling is static. This is done by dividing the
number of iterations by the number of threads.

– If statements: The nodes and edges under one branch
of an if statement versus the other one will not have the
same number of executions. Therefore, there is a need for
justification of edges of if statements. To illustrate the

execution of branches, ParaGraph can apply probabilities
to branches in the graph. Depending on the user’s choice,
different branch prediction tools can be used to estimate
the probability of each branch. Once the probabilities are
retrieved, ParaGraph applies them to the edge weight
of the if-statements (TPr: the probability that the
condition is true, FPr: the probability that the condition
is false as shown in Figure 2). Such that, if the edge weight
of the CompoundStmt before the IfStmt is W , then the
edge weight of the True branch will be W × TPr and that
of the False branch will be W × FPr. As a result, the
branch that has a higher probability will have a larger edge
weight, whereas the branch will a lower probability will
have a smaller edge weight.

ParaGraph, in the future, can be extended to other con-
ditional statements. One example of such extension is when
dealing with a Switch statement that has ‘n’ number of
cases or a chain of ‘n’ if-else-if statements. In such
scenarios, our representation can divide the edge weights by
‘n’ for each case. The ablation study results show that edge
weights help the models reason better over the kernels. It is
worth noting that because all these augmentations are applied
statically, therefore their overhead is minimal.

B. Adapting GNNs

ParaGraph can be used by existing GNN models, which
are a type of neural network that can operate over graphs for
downstream tasks. Typically, a graph is shown as Equation 1,
where V is a set of nodes and E contains an adjacency matrix.
Elements of E are either 1 or 0 to show whether an edge exists
between two nodes.

G = (V,E) (1)

We extend the AST for our new representation by including
new edges like NextToken, NextSib, and other types that
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were explained earlier. We formally define ParaGraph as
follows:

ParaGraph = (V,E, T,W ) (2)

Where V and E are previously defined in Equation 1 and T ∈
Z+ represents the type of the edges (such as NextToken,
NextSib etc). W ∈ Z+ presents the weight which is zero
for any edge type other than Child.

These additional edges and attributes are all added to the
graphs statically. Additionally, the overhead of generating
these AST-based graphs is minimal. We will later show in
our ablation study that our simple modeling technique benefits
significantly from the attributes and information presented in
ParaGraph.

We adapt Relational Graph Attention Networks (RGAT)
[18] and use ParaGraph representation as input to train
a model for predicting runtime of applications on different
accelerators. In RGAT, attention logits are computed per
each edge type. In the result section, we will see that with
ParaGraph, the model has a very small prediction error and
outperforms the current state-of-the-art approach.

Figure 3 shows the overall workflow of our GNN-based
pipeline for runtime prediction. The first step is preparing
different variants of an application for each accelerator used
in this study. This step is further explained in detail in the
next section. Then, using Clang, ASTs are produced, and a
series of augmentations, as discussed, are applied to them to
construct ParaGraph. In order to train a model to predict
the runtime of an application, we need to create a dataset
with a list of applications and their variant accompanied by
their runtime. Therefore, we execute each one of the variants
on the specified accelerator and measure the runtime. Lastly,
the ParaGraph representation of variants and their runtime
are used to train the GNN model. Along with ParaGraphs,
our feature set also includes the number of teams and threads
used for executing an application. These features are also fed
along ParaGraph into the GNN-based model for predicting
the runtime.

IV. EXPERIMENTS AND SETUPS

We used two clusters and compilers to test and evaluate
our tool. Our experiments were carried out on the ORNL’s
Summit supercomputing cluster [19] with LLVM/Clang (ver
13.0) and a nvptx backend for GPUs, as well as the LLNL’s
Corona cluster [20] with LLVM/Clang (ver 15.0) and a rocm
backend for GPUs. For the purposes of this study, we only
use one GPU per cluster node.

One of the primary obstacles we faced, as with any other
data-driven approach, is the lack of a publicly accessible
dataset. Creating a dataset that can be used to train our
model was the first step in building a data-driven cost model.
Although benchmark suites like Rodinia [21], PolyBench [22],
SPEC OMP [23] and the Barcelona OpenMP Task Set
(BOTS) [24] are developed to evaluate the performance of
parallel applications on various hardware platforms and to
compare the performance of various parallel programming
models, little effort has been put into OpenMP GPU offloading
benchmarking. While useful for assessing and comparing the
performance of parallel applications, these benchmark suites
are not suitable for investigating the efficacy of a novel pro-
gram representation or optimization strategy on heterogeneous
architectures. There is a lack of OpenMP GPU offloading
benchmarks that are publicly accessible. Therefore, as a first
step, we create a collection of benchmarks, borrowing from
existing benchmarks like Rodinia and adding a few com-
monly used benchmarks in scientific applications that leverage
OpenMP GPU offloading. The goal is to include a broad
class of application domains that would cover a spectrum of
statistical simulation, linear algebra, data mining, etc. This
gave us the opportunity to train and test our proposed program
representation in a more realistic and representative setting.

A. Data Collection

There are three parts to our data collection: Code Variant
Generation, Graph Generation, and Runtime Collection.



1) Code Variant Generation: The first step was to collect
and analyze kernels that are widely used in real-world state-
of-the-art HPC setups from multiple application domains.
Table I shows nine such benchmark applications that have
been used in this paper. From these nine applications, all
seventeen unique OpenMP kernels were extracted and used
for data collection. For this work, we have only focused on
the following six transformations:
• cpu: A cpu parallel kernel using omp parallel for.
• cpu collapse: In the case of a nested collapsible loop, we

collapse it with omp parallel for collapse(2)
directive.

• gpu: A gpu kernel using a combined omp target
teams distribute parallel for directive. All
data is already considered to be present on the GPU.

• gpu collapse: A gpu kernel with nested collapsible loop
using omp target teams distribute parallel
for collapse(2) directive. All data is already consid-
ered to be present on the GPU.

• gpu mem: Same as combined gpu offloading, but with data
transfer.

• gpu collapse mem: Same as combined gpu collapse, but
with data transfer.

We used the OpenMP Advisor tool [16] to generate these
kernel variants, leading to the creation of 66 distinct kernels.
To further augment our dataset, we also varied the levels of
parallelism and input data for each of these kernels. Taking
into account these modified parameters and the kernel vari-
ants, we were able to generate ≈ 2000-3000 unique kernels
from each application and around 26,000 unique data points
across all applications. These steps, so far, are independent of
the target architecture. The code kernels, variations in code
transformations, variations in degree of parallelism, and data,
in reality, create new unique kernels. When compiled to their
corresponding ASTs, these are unique in their structure, as
each code transformation modifies the AST output by the com-
piler. Our representation accounts for such differences in the
compiled ASTs and adds new additional features relevant to
parallel code, as discussed. These design choices are essential
to convey to a model/tool enough details about the kernel being
modeled.

2) ParaGraph Generation: In this step of our pipeline, we
create the ParaGraphs for the unique kernels created in the
previous section. As shown in Figure 3, prior to generating the

TABLE I: Benchmark Applications.

Application Num
Kernels Domain

Correlation Coefficient [25] 1 Statistics
Covariance 2 Probability Theory
Gauss Seidel Method 1 Linear Algebra
K-nearest neighbors [21] 1 Data Mining

Laplace’s Equation [26] 2 Numerical
Analysis

Matrix-Matrix Multiplication 1 Linear Algebra
Matrix-Vector Multiplication 1 Linear Algebra
Matrix Transpose 1 Linear Algebra
Particle Filter [21] 7 Medical Imaging

Fig. 4: Distribution of all collected data points.

ParaGraphs for each kernel, they are first compiled to their
corresponding ASTs. Each AST is then traversed and updated
with additional edges and weights as outlined in Section III-A.
As mentioned before, these additional edges and weights are
critical for exposing probable execution bottlenecks, such as
loops, as well as providing information to the GNN model
about data and control flow in the kernel. Typically, edges
within a ForLoop have larger weights to represent the
number of iterations of a loop. Loop bounds are extracted
from the AST itself, and branch weights are considered 0.5
for the sake of simplicity.

3) Runtime Collection: Due to the lack of existing datasets
targeting OpenMP GPU offloading, our first step was to
develop/build such a dataset. The aim of this step was to
collect the runtimes of each combination of code kernel, code
variant, and other parameters, such as the degree of parallelism
and input data used. This dataset has been used for evaluating
the strength of our code representation. But it can also be used
for research tasks that aim to optimize decision-making or cost
functions in the compiler.

We used the OpenMP Advisor tool [16] to collect kernel
runtime information. This tool inserts function calls before and
after a kernel call to evaluate the wall time of a kernel’s exe-
cution. Each application with its kernel variants was compiled
individually on each cluster with the appropriate compile-time
parameters to utilize the respective backends. The compiled
binary was then executed on the cluster to capture their
corresponding runtime. This led to the collection of around
83k samples across the two clusters with runtimes ranging
between 0.024 ms and 737 seconds. Statistics about individual
clusters and devices are shown in Table II. Additionally, Figure
4 shows the distribution of collected datapoint on 2 CPUs and
2 GPUs.

These runtimes were used as targets to train our GNN-based
regressor model.

B. ParaGraph Model

Post data collection on the Summit and Corona clusters,
we begin training our model. We implemented a GNN-based
neural network using RGAT [18] as the convolution layers.
The inputs to the RGAT layers are the ParaGraphs generated



TABLE II: Statistics of collected data points.

Platform #Data
Points

Runtime Range
(ms)

Std.
Dev.

Summit
IBM POWER9 (CPU) 13,023 [0.23 - 736,798] 48,502
NVIDIA V100 (GPU) 26,040 [0.035 - 30,174] 3,708
Corona
AMD EPYC7401
(CPU) 17,681 [0.024 -

291,627] 16,942

AMD MI50 (GPU) 26,668 [0.448 - 46,913] 4,828

from the code kernels and transformations. For each node, we
extract four features from AST: kind (e.g, IntegerLiteral),
type (e.g., int), opcode (e.g., ==) and value (the value of
the node if it is a terminal node). If a feature does not exist for
a node, we set that feature to None. Edge weights are regarded
as the feature of the edges. Our model is implemented using
Pytorch-Geometric library with Mean Squared Error as the
loss function and Adam [27] as the optimizer. To embed the
input graph, the model uses three graph convolution layers
based on RGAT, followed by two fully connected layers with
ReLu activation function. As mentioned, the number of teams
and threads are considered as two additional features. Another
fully connected layer is used to embed these two features.
Finally, the embedding of the graph and the two features
are concatenated together and passed through the last fully
connected layer for runtime prediction.

The edge weights and the two additional features are
normalized using MinMaxScaler. The dataset is split randomly
into train-validation sets using a 9:1 ratio. There is no overlap
between the train set and the validation set as each ParaGraph
graph will be placed only in one of them.

V. RESULTS

In the following subsection, we explain the metrics we have
used to evaluate the ParaGraph model.

A. Evaluation Metric

To evaluate the performance of ParaGraph, we use
RMSE, which is Root Mean Square Error (Equation 3).

RMSE =

√∑N
i=1(xi − x̂i)2

N
(3)

Where xi stands for the runtime of a data point in microsec-
onds, x̂i is the predicted runtime by ParaGraph, and N is
the total number of samples.

Since the range of runtime differs across platforms, the
normalized version of RMSE is also considered. Normalized
RMSE is calculated by dividing the RMSE by the distance
between the minimum and maximum runtime. We also use
relative error (i.e., absolute error divided by the range of
runtime) to report the error rate.

B. Experimental Results

Table III shows the experimental results for each accelerator
and CPU. We have NVIDIA V100, AMD MI50, and IBM
POWER9 with 22 cores and AMD EPYC 7401 with 24

TABLE III: Experimental Results.

Platform RMSE (ms) Norm-RMSE
Summit
IBM POWER9 (CPU) 4325 6× 10−3

NVIDIA V100 (GPU) 280 9× 10−3

Corona
AMD EPYC7401 (CPU) 968 4× 10−3

AMD MI50 (GPU) 510 1× 10−2
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Fig. 5: Prediction error per 10-second bins.

cores. As shown, the RMSE values range from 280 (ms)
to 4325 (ms). The reason why we have different RMSE
values, such as 4325 (ms) for POWER9 accelerator, lies in the
fact that the runtime dispersion differs across the accelerators.
Standard Deviation in Table II gives us some insights on how
dispersed the collected data are. Moving on to Normalized-
RMSE, which is independent of the range of runtime, we see
ParaGraph has relatively the same error across accelerators;
thus, it can be applied to different accelerators.

To further analyze our results, we have calculated a relative
error per bins of 10 seconds. Figure 5 shows 11 bins for all
four accelerators. Each bin has a 10-second range except the
last bin. The figure shows that the relative error is small across
different bins and accelerators (less than %10), meaning that
our ParaGraph model has stable behavior across varying
problem sizes, accelerators, and kernels.

Moreover, we analyze how stable the model is during the
training process in Figure 6. The figure shows validation
RMSE for the two GPUs and two CPUs. In the first few
epochs, as expected, the ParaGraph model is not very stable,
resulting in fluctuations in the RMSE; however, as the model
is trained further, it is able to better extract and reason about
the features from the code representation and reduce RMSE
value per each epoch and ultimately converges.

Lastly, we calculate the average relative error per application
to evaluate the prediction error rate of the ParaGraph model
for all types of applications. Figure 7 shows the error rate of
each application. As can be seen, the model can indeed make
accurate predictions for a wide variety of applications resulting
in a low error rate. This proves that the model trained on the
code ParaGraphs is generalizable and not biased towards
specific kernels/applications. On the AMD MI50 GPU, the
Laplace data was corrupted during collection. Consequently,
neither this study nor the training process includes that data.
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Fig. 6: Normalized RMSE per each epoch.

C. Ablation Study

ParaGraph representation, as explained in Section III, is
built by applying a series of major augmentations on top
of AST. In this section, we quantify the impact of these
augmentations. First, we consider the AST itself without
additional edges and weights; we call it Raw AST. Then, we
add additional edges and edge types to the AST and name it
Augmented AST. Lastly, we have ParaGraph that contains
both additional edges and also edge weights. Table IV shows
the results of the ablation study. We see that Raw AST results
in the highest error for all CPUs and GPUs included in this
study. Adding new edges and introducing new types of edges
(Augmented AST) improve the prediction to some extent. For
example, the RMSE of V100 drops from 2114 (ms) to 786
(ms) with the addition of these new edges.

One of the key characteristics of our proposed program
representation is the edge weights. Edge weights convey
essential information about how often different regions of the
AST execute. Therefore, we see quite a good improvement
in RMSE when edge weights are added. For instance, the
RMSE for V100 is further improved to 280 (ms).

We analyze the addition of edges and their weights further
to see how the training process of the ParaGraph model is
affected by these augmentations.

Figure 8 shows how the model behaves during training. This
figure depicts the RMSE value per each epoch for Raw AST,
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Fig. 7: Error rate per each application.

TABLE IV: RMSE of training with and without edges’ weight.

Platform Raw
AST

Aug
AST ParaGraph

Summit
IBM POWER9 (CPU) 27593 26860 4325
NVIDIA V100 (GPU) 2114 786 280
Corona
AMD EPYC7401
(CPU) 11911 9633 968

AMD MI50 (GPU) 2888 1177 510

Augmented AST, and ParaGraph on the MI50 accelerator.
Using only the Raw AST without any augmentations, which

means having only one edge type, the model is able to
learn some characteristics of the applications and reduce the
RMSE per epoch; however, this reduction in RMSE is not
significant. Augmented AST contains eight different types of
edges. We see the addition of these edges destabilized the
training process of the model. In the first few epochs, the
model is challenged to learn different relations between the
nodes. However, eventually, after several epochs, the predic-
tion of the model is stabilized, and it achieves RMSE of
1177 (ms). Once edges of the Augmented AST are augmented
with weights, thus ParaGraph is constructed, and we see
further improvements in the model’s predictions. Although the
validation RMSE fluctuates in the initial epochs, it ultimately
converges with a considerably smaller error.

D. Comparison with State-of-the-art Tool

To the best of our knowledge, COMPOFF [2] is the
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Fig. 8: RMSE of the validation set during training the GNN
models on MI50 data points.

1 void mm_kernel_gpu_mem(double (*A)[N2], double
(*B)[N3], double (*C)[N3], FILE *fp)↪→

2 {
3 #pragma omp target teams distribute parallel

for map(to: A[0:N1][0:N2], B[0:N2][0:N3])
map(from: C[0:N1][0:N3])

↪→

↪→

4 for(int i=0; i<N1; i++) {
5 for(int j=0; j<N3; j++) {
6 double sum = 0.0;
7 for (int k = 0; k < N2; k++)
8 sum = sum + A[i][k] * B[k][j];
9 C[i][j] = sum;

10 }
11 }
12 }

Listing 1: Matrix Multiplication OpenMP Offloading.



Fig. 9: ParaGraph and COMPOFF prediction on NVIDIA
V100 as compared to the actual runtime.

only state-of-the-art OpenMP GPU offloading cost model. We
further compare the results from ParaGraph with those of
COMPOFF . As mentioned in Section II-D OpenMP Advi-
sor uses COMPOFF for predicting runtime for OpenMP
kernels. While OpenMP Advisor eventually needs a cost
model that can forecast for all possible underlying architec-
tures, Due to the feature selection part of COMPOFF , it is
only suitable for GPU executions as features are engineered
toward GPU executions. In contrast, ParaGraph enables
GNN models to learn the features automatically. Thus it can
be applied to any other architecture given enough data points,
as we saw ParaGraph was applied to predict the runtime of
both CPUs and GPUs in our experiments. Here, We compare
ParaGraph against COMPOFF on NVIDIA V100 GPU.

Figure 9 demonstrates a correlation between the actual and
predicted runtime from COMPOFF and ParaGraph. The
results for COMPOFF are represented by blue dots, while
those for ParaGraph are represented by orange dots. As
we can see, ParaGraph demonstrates a stronger correlation
between the predicted and actual runtime. Listing 1 shows
an implementation of Matrix Multiplication kernel being of-
floaded to GPU. N2 and N3 are specified during compilation
time. In our setup, it takes 10.5 seconds to execute this
kernel on a V100 GPU with N2 = 7600 and N3 = 9600.
ParaGraph predicts the execution time for this kernel to be
10.3 seconds, having a small error, whereas COMPOFF ’s
prediction is 8.5 seconds with a higher error.

As demonstrated in Figure 11, COMPOFF (blue) demon-
strates a higher error rate for smaller runtime kernels, but as
the runtime increases, this error rate decreases. However, for
all kernels, ParaGraph has a lower error rate on average and
it does not suffer a high error rate for smaller runtime kernels.

We also compare ParaGraph and COMPOFF in terms of
percent error. Due to the very high percent error of COMPOFF
(especially for smaller runtimes), we present the result in log
scale in Figure 10. As it can be seen, on average ParaGraph
has a lower error rate. On larger runtime, ParaGraph is
on par with COMPOFF, however, sometimes it has a slightly
higher error rate. We posit the reason is that more data points
with larger runtimes are needed.

Fig. 10: Logscale of percent error of ParaGraph and COM-
POFF.
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Fig. 11: Comparison of ParaGraph and COMPOFF on predict-
ing runtimes on NVIDIA V100 for each data point.

E. Discussion

As demonstrated by our experimental results, ParaGraph
has exceptional static modeling capability, allowing it to make
accurate predictions of application runtimes across hetero-
geneous devices. ParaGraph is a compile-time tool lim-
ited to information available during compilation only. Other
complementary prediction tools can be used in situations
when some information is unavailable to estimate the missing
data. Handling missing runtime inputs is outside the scope
of ParaGraph, as it primarily focuses on compile-time
code variant selection. In such circumstances, ParaGraph
can leverage specialized tools such as loop-bound or branch
prediction algorithms to gain significant insights beyond static
analysis.

Combining ParaGraph’s compile-time code variant selec-
tion with complementary prediction tools (e.g., loop-bound,
branch prediction, and profilers) results in a comprehensive
runtime prediction strategy that is adaptive to diverse contexts.
This dynamic hybrid methodology enhances predictions when
runtime inputs are unavailable during compilation. Through
their collaboration, ParaGraph and other prediction tools can
improve the overall efficacy and usability across heterogeneous
architectures.



VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed ParaGraph, a novel way of
representing HPC kernels. ParaGraph includes some of the
insights of the compiler by adding new edges to the AST. We
evaluated ParaGraph on a set of applications for four differ-
ent architectures. It achieved a low error rate, highlighting the
effectiveness of ParaGraph. The hardware-architecture inde-
pendence of ParaGraph is a significant advantage, allowing
it to be applied to a broader spectrum of architectures than
previous approaches. This feature is especially crucial given
the growing demand for portable kernels and the prevalence
of heterogeneous HPC platforms.

In this work, we used ParaGraph to predict the execution
time of a given kernel for the OpenMP GPU offloading
problem. We plan to explore and analyze how ParaGraph
can help other OpenMP optimization strategies, such as pre-
dicting SIMD stride, scheduling strategies, loop chunk size,
etc. Another interesting research area to explore is to use
ParaGraph and capture parallelism for other parallel pro-
gramming models, such as OpenACC, Kokkos, HIP, etc.

In the future, we also plan on looking into the potential
benefits of using a hybrid approach that combines both static
and dynamic features to more accurately model application
runtime. We can potentially improve the accuracy of our
predictions for applications with unstable runtime behaviors by
incorporating dynamic features such as performance counters,
which can provide real-time information about an application’s
execution. We believe that this hybrid approach will result in
better prediction results and will allow us to model a wider
range of applications more effectively.
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