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Abstract—Matching binary to source code and vice versa has
various applications in different fields, such as computer security,
software engineering, and reverse engineering. Even though there
exist methods that try to match source code with binary code
to accelerate the reverse engineering process, most of them are
designed to focus on one programming language. However, in
real life, programs are developed using different programming
languages depending on their requirements. Thus, cross-language
binary-to-source code matching has recently gained more at-
tention. Nonetheless, the existing approaches still struggle to
have precise predictions due to the inherent difficulties when
the problem of matching binary code and source code needs to
be addressed across programming languages.

In this paper, we address the problem of cross-language binary
source code matching. We propose GraphBinMatch, an approach
based on a graph neural network that learns the similarity
between binary and source codes. We evaluate GraphBinMatch
on several tasks, such as cross-language binary-to-source code
matching and cross-language source-to-source matching. We also
evaluate the performance of our approach on single-language
binary-to-source code matching. Experimental results show that
GraphBinMatch significantly outperforms state-of-the-art, with
improvements as high as 15% over the F1 score.

Index Terms—cross-language, code similarity, binary-source
matching

I. INTRODUCTION

Binary code is a collection of instructions that can be
executed by computing systems directly, whereas source code,
which programmers write, is readable and understandable.
Binary-to-source code matching is a technique to evaluate
the likeliness of binary code and source code. This is an
important aspect of many security software engineering tasks,
such as vulnerability [1] and malware detection [2] and reverse
engineering [3], [4].

Typically, when it comes to matching a binary code to a
source code, we either want to find the match for the binary
file or the source code file. For example, when we have a
binary code fragment, retrieving its similar source code snippet
would be helpful, which can be used in a reverse engineering
task. The retired source code snippet enables researchers to
understand what a binary code fragment does. From the other
aspect, if we have a source code snippet with a vulnerability,
matching it to a binary code form helps to identify whether
the vulnerability exists in the binary file.

Existing approaches try to measure the semantic similarity
between binary and source code. However, most works fo-

cus on matching binary to binary or source code to source
code [5]–[7]. Binary-to-source code is a non-trivial task
as two modalities are involved: binary and source codes.
Recent works have been trying to measure the similarity
between binary and source code; however, they fall short in
matching binary-to-source code across different programming
languages. Recently, Gui et al. [8] proposed a transformer-
based neural network to learn the similarity of binary and
source code across programming languages; they use LLVM
Intermediate Representation (IR) as input data for their model.
However, they treat IR as a sequence of tokens.

In this paper, we present GraphBinMatch. An approach
based on a Graph Neural Network to learn the semantic
similarities between binary and source code. Unlike previous
approaches, binary and source code are treated as graphs by
leveraging three types of flows: control flow, data flow, and
call flow.

Experimental results show that GraphBinMatch outperforms
state-of-the-art approaches by increasing F1 from 0.65 to 0.79,
recall from 0.59 to 0.82, and precision from 0.73 to 0.76.

Overall, the major contributions of this paper are:

1) Formulating the problem as learning the similarities be-
tween graphs.

2) Developing a special graph neural network as the back-
bone of GraphBinMatch to learn the similarity of graphs.

3) Evaluation of GraphBinMatch on a comprehensive set of
tasks.

4) Effectiveness of the approach not just for cross-language
but also single-language.

5) Up to 15% improvement in comparison to state-of-the-art
approach.

The rest of the paper is structured as follows: We first
formulate the binary-source matching problem in Section II.
Then, in Section III, our proposed approach is outlined and
explained. Experimental setups are discussed and explained in
Section IV. Section V presents the evaluation results, followed
by Section VI in which we discuss some insights. Next, in
Section VII, we provide an overview of related works, and
lastly, Section VIII concludes the paper and explains the future
works.



II. FORMULATING THE PROBLEM

We formulate cross-language binary code-matching detec-
tion as follows: Given two programs Pa as binary and Pb as
source code written in two different programming languages,
we aim to train a deep learning model to learn the function
γ, which can predict whether the two input programs are a
binary-code matching pair or non-binary-code matching pair.

The training set consists of triples (Pa, Pb, yab) where yab is
the label. We consider all pairs of binary and source programs
collected from the same coding task in the dataset as positive
samples and label them as 1, indicating that they are binary-
source matches. Conversely, we consider all pairs of binary
and source programs generated from different tasks in the
dataset as negative samples and label them as 0, indicating
that they are non-binary-source matches.

γ(Pa, Pb) =

{
1, if Pa and Pb are matching
0, otherwise

(1)

III. APPROACH

This section will discuss our proposed approach for identi-
fying binary-source matching pairs across programming lan-
guages. The overall workflow is shown in Figure 1. The input
to GraphBinMatch consists of two files: a source code file
and a binary file written in different programming languages.
The first step is to compile the source file and decompile the
binary file using the respective language-specific front-ends
and tools to produce Intermediate Representations (IR) that are
language-independent. Next, we create graphs capturing the
programs’ control, data, and call flow. We treat these graphs
as heterogeneous graphs to better model the different types
of nodes and edges. An edge in the graphs represents the
relationships between two nodes. These heterogeneous graphs
are inputs to our Graph Binary Matching Similarity Neural
Network (GraphBinMatch).

A. Intermediate Representation

As mentioned, the first step in our proposed approach is
to convert the files from the source language and binary to an
intermediate representation. Intermediate representation (IR) is
an intermediate form that modern compilers use to represent
programs. IR provides a more straightforward abstraction. It
allows multiple stages of transformation and analysis in the
compiler to generate the target code more efficiently. Lowering
programs to intermediate representation is a common compiler
technique to simplify and optimize code. In GraphBinMatch,
we first convert input files to LLVM IR. Using LLVM IR, our
approach can represent input files in a language-independent
format, allowing for easier comparison of code written in
different programming languages.

We use two front-ends, JLang 1 and Clang 2, to convert
Java and C++ programs to LLVM IR, respectively. JLang
supports Java up to version 7, while Clang-5.0 converts C++

1https://polyglot-compiler.github.io/JLang
2https://clang.llvm.org

programs to LLVM IR. It is worth mentioning that different
versions of LLVM can produce slightly different IRs, so using
the same version of Clang as the one being used inherently
by JLang helps to have more similarities between Java and
C++ programs.

Our proposed approach uses RetDec3 to generate LLVM IR
from binary executables. RetDec is an open-source machine-
code decompiler that can generate LLVM IR from binary
executables. It supports various architectures, including x86,
ARM, MIPS, and PowerPC. RetDec uses instruction parsing,
data-flow analysis, and control-flow reconstruction techniques
to reverse-engineer the binary code into LLVM IR.

B. Graph Generation

While there exist various approaches [9]–[11] to represent
LLVM IR for deep learning models, recently, it has been
shown that presenting programs as graphs can help deep
learning models to learn the characteristics of programs more
effectively [12]–[14]. Following the recent success in present-
ing programs as graphs, we also create graphs using LLVM IR
files. In particular, we use ProGraML [14] to generate a graph
for each of the LLVM IR files in our dataset. ProGraML
extracts information from LLVM IR and constructs a graph
consisting of different types of nodes (i.e., instruction, variable
and constant) and edges (i.e., control flow, data flow, and call
flow). These graphs capture programs’ structural and semantic
information and can be used as inputs to machine learning
models for various program analysis tasks, including code
similarity detection. These graphs must be encoded and passed
to a graph neural network designed to learn the similarities
among matching pairs and dissimilarities among non-matching
pairs.

C. Node Feature Embedding

To generate node embeddings, we split the process into two
parts: preprocessing of the source code and processing within
the model itself. During source file preprocessing, we create a
feature vector for each node using the full_text or text
of the node’s attributes in the graph generated by ProGraML.
The full_text attribute represents the complete LLVM-IR
instruction for the node, whereas the text attribute only con-
tains the corresponding instruction type. For instance, in the in-
struction %16 = load i32 i32 %15 align 8, means
the integer pointer %15 is loaded and stored in temporary
variable %16. We can only obtain the instruction type from
the text attribute. However, using the full_text attribute,
we can determine that the load instruction is responsible for
loading an integer pointer. This additional information can
be used to better train the embedding layer and improve the
model’s accuracy.

We discovered that not all nodes have the full_text
attribute during the preprocessing process, as some nodes
only represent compiler configurations that only have text
attribute. To address this issue, we use the text attribute as a
fallback option when the full_text attribute is unavailable.

3https://github.com/avast/retdec

https://polyglot-compiler.github.io/JLang
https://clang.llvm.org
https://github.com/avast/retdec
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Fig. 1: The overview of our proposed approach.

The ProGraML paper itself uses text attribute of the nodes
as the feature of the nodes; however, later in the experimental
result section, we will see that using the full_text attribute
of the nodes improves the prediction of the GraphBinMatch.
Moreover, we use the edge position property provided by
ProGraML as the edge feature. The position property
in ProGraML contains the edge position information. For
instance, for a valid LLVM-IR instruction such as %result
= add i32 %1, %2, ProGraML generates an edge cor-
responding to %1 and an edge corresponding to %2. In this
example, the position of the first edge is 0, and the position
of the second edge is 1.

Finally, we use the Byte-Pair Encoding (BPE) tokenizer to
tokenize those LLVM-IR instructions to create the final node
features, which we then add to the graph. Tokenizer is also
able to map each token to a corresponding integer number.
Therefore, we would have a sequence of integer numbers rep-
resenting an LLVM-IR instruction for a node. This sequence of
integer numbers is considered as the feature of the node. In the
conversion process, we convert all LLVM-IR variables, such
as %12, to a special token named [VAR]. By utilizing the
tokenizer and carefully selecting the truncation and padding
lengths, we ensure that our feature vectors are informative
and can be effectively used in subsequent modeling steps.

LLVM-IR instructions have varying lengths; therefore, the
feature set of each node in our graph will have its own length.
To solve this problem and make sure that all nodes have the
same length for their features, We use the average length of
all nodes’ feature vectors rounded up to the nearest power of
2 as the final intercept length. For example, if the average
length of all LLVM-IR instructions in the dataset is 50 after
tokenization, the final truncation length is 64. All feature
vectors with a length of 64 will be truncated, and all feature
vectors with a length less than 64 will be padded with [PAD]
token.

D. Graph Binary Matching Similarity Neural Network

Once the preprocessing is finished, we will pass the graphs
to our Graph Binary Matching Similarity Neural Network
(GraphBinMatch) for further processing. GraphBinMatch is
built upon SimGNN [15], but we have made several modi-
fications to tailor it for heterogeneous graph similarity tasks,
which will be discussed in the next sections.

The architecture of GraphBinMatch can be seen in Figure
2. To train GraphBinMatch, we create data points consisting

of three items: Source File A, Binary File B, and Label. We
use an embedding layer as the first layer of GraphBinMatch.
This layer processes the feature vector of each node and tries
to embed the nodes by learning the embedding space so that
similar nodes would have similar embedding. The embedding
layer increases the dimensionality of the entire feature vector
to two dimensions. We utilize the max operation to reduce the
two-dimensional feature vector to a single dimension. This
one-dimensional feature vector serves as input to the graph
convolution layer.

In the following subsections, we will provide a detailed
explanation of each component of GraphBinMatch.

1) Heterogeneous Convolution:
GraphBinMatch is designed to take in the graph rep-

resentation of two files and predict whether they match.
The Convolution layer is constructed to support the hetero-
geneous graph using the HeteroConv wrapper from the
pytorch-geometric library. As previously discussed, our
Heterogeneous Graph representation has three types of rela-
tionships. This layer includes three separated GATv2Conv
[16] layers to model each one of the relationships. The outputs
of the GATv2Conv layers are stacked together, and then
the element-wise maximum values are computed to have a
latent representation of the nodes. After each GATv2Conv,
we include additional LayerNorm to stabilize training and
prevent overfitting.

2) Attention:
In GraphBinMatch, we incorporate an attention layer similar

to the one introduced by Bai et al. [15]. The attention layer
operates by taking node embeddings from the previous layer
and passing them through an attention mechanism. We use a
global graph embedding vector c ∈ RD where D is the same
dimension as the nodes’ embedding dimension. c is created
by averaging node embeddings passed through a non-linear
transformation. This global embedding vector c contains the
overall structure and information of the graph.

To calculate the attention for a given node ni, we compute
the inner product of c and the latent representation of ni. The
intuition behind this approach is that nodes that are more
similar to the overall context of the graph should receive
higher attention weights. Finally, the graph-level embedding
is created by computing the weighted sum of all nodes. Here,
the nodes’ weights refer to the nodes’ attention values.

3) Fully Connected Layer:
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Fig. 2: Structure of Graph Binary Matching Similarity Neural Network (GraphBinMatch).

Once the graph-level embeddings on the two files are
computed, the two vectors are concatenated and transposed to
be fed to the fully connected layer to have the final prediction.
In our study, we use two fully connected layers. After the first
fully connected layer, a normalization layer is also applied
to stabilize the learning process. Additionally, we introduce
an extra dropout layer before the last linear layer to increase
nonlinearity and regularization in the model.

In the next section, we evaluate GraphBinMatch and com-
pare its results with the state-of-the-art approach.

IV. EXPERIMENTAL SETUP

In this section, we evaluate GraphBinMatch, present the
results, and address four research questions.

A. Tasks and Research Questions

We evaluate GraphBinMatch on cross-language and single-
language tasks. For each one of these tasks, we use a specific
dataset. We define the research questions as follows

• RQ1: Can graph-based representation and GNNs outper-
form transformer-based models in cross-language binary
source code matching problems?

• RQ2: Does GraphBinMatch provide consistent results
when applied in a single-language context with different
optimization levels?

• RQ3: How is the performance of GraphBinMatch across
different compilers?

• RQ4: Does GraphBinMatch perform well in terms of
source-to-source matching?

B. Dataset Statistic

Cross Language Code Matching. To evaluate GraphBin-
Match for the cross-language binary-source matching task,
we use the CLCDSA dataset [17], which consists of source
code files collected from two programming competition web-
sites: AtCoder and Google CodeJam. These programming
competition websites feature multiple tasks, and the dataset
contains source code as solutions to the tasks in various
programming languages. We have selected C, C++, and Java
as the languages for our study to assess the effectiveness of
our model in learning binary-source code similarities across
different programming languages.

To ensure that our dataset has a balanced distribution of
positive and negative samples, we consider valid solutions to

the same task as matching pairs and valid solutions to different
tasks as non-matching pairs. We discard any file that is not
compilable. Following the baseline paper, we adopt the same
train, validation, and test split ratio, which is a ratio of 6:2:2
to split the dataset.

As mentioned, in this study, we utilize JLang4 and clang-5.0
as compilers for all Java source code files. JLang is an open-
source compiler front-end that compiles Java source code into
the corresponding LLVM-IR. This compiler is used to generate
all corresponding LLVM-IR expressions for Java files. To
convert LLVM-IR to binary executable files, Clang-5.0 is
used. Throughout the experiments, -Oz is set as the default
optimization level of the compiler unless the optimization level
is explicitly mentioned. To convert all binary executables to
their LLVM-IR equivalent, we use an open-source RetDec
decompiler.

Same Language Code Matching For the task of detecting
matching within the same programming language, we use the
POJ-104 dataset [18] 5. This dataset comprises C++ solutions
submitted by 500 students for 104 different programming
problems from an Online Judge system (OJ) that serves an
educational purpose. We compile the C++ source code files
into LLVM-IR and binary executable using different opti-
mization levels of clang and gcc. To decompile the binary
executable to its corresponding LLVM-IR representation, we
utilized RetDec similarly for all the binary executables.

TableI shows the statistics of the two datasets.

C. Baselines

As discussed, we evaluate the performance of GraphBin-
Match for two different matching tasks: binary-source match-
ing and source-source matching. To assess the effectiveness of
GraphBinMatch, we compare it against BinPro [3], B2SFinder
[7], and XLIR for binary-source matching.

BinPro is a tool that aims to tackle the challenge of
identifying similarities between source and binary code even
when the compiler or optimization level used is unknown.
To this end, BinPro employs machine learning techniques
to compute the best code properties for determining binary-
to-source code similarity. These code properties are then

4https://github.com/polyglot-compiler/JLang
5https://drive.google.com/uc?id=0B2i-vWnOu7MxVlJwQXN6eVNONUU

https://github.com/polyglot-compiler/JLang
 https://drive.google.com/uc?id=0B2i-vWnOu7MxVlJwQXN6eVNONUU


TABLE I: Dataset Statistics

Languages # Sources # LLVM-IR # Binary Files # Decompiled LLVM—IR
C 15605 13929 14370 13929

CLCDSA C++ 16676 15375 15766 15589
Java 19836 15124 17072 15124

POJ-104 C++ 52000 38598 38598 37909

extracted and computed using static analysis tools to match
binary and source codes with a bipartite matching algorithm.

B2SFinder detects binary code clones by inferring seven
traceable features in binary and source code. It employs
a weighted feature-matching algorithm capable of handling
different features and calculating the weights of code feature
instances based on their specificity and frequency of occur-
rence.

XLIR [8] is a transformer-based neural network model that
is currently state-of-the-art for binary-source code matching.
XLIR, as its name suggests, uses LLVM IR. To embed the
tokens in LLVM IR, XLIR leverages a pre-trained BERT
model. The model first pre-trains the neural network using
a large external LLVM-IR corpus with masked language
modeling (MLM) [19] as the pre-processing step. This step
is aimed at learning meaningful representations of the LLVM-
IR tokens. Once the tokens are embedded, XLIR maps them
into a common space, and the LLVM-IR representations are
learned jointly using a ternary loss function. This approach
allows XLIR to match binary source code across different
programming languages.

D. Experiment Setup

GraphBinMatch is built using Pytorch-Geometric6.
For optimizing the learning parameters of GraphBinMatch,
Adam [20] Optimizer is used with a learning rate of 6.6e−5,
and Binary Cross Entropy is used as the loss function. We
use GATv2 [16] as the graph convolution layer. The hyper-
parameters of GraphBinMatch are tuned using RayTune7.

GraphBinMatch comprises a PyTorch Embedding layer with
a dimension of 128 to embed the tokens and five GATv2
graph convolution layers with a dimension of 256. In the
GraphBinMatch model, we use LeakyReLU as our activa-
tion function, except the last linear layer is followed by a
Sigmoid function. We train GraphBinMatch using four A100
NVIDIA GPUs with 80GB VRAM and Intel Xeon 6140 CPU
with 128GB RAM.

E. Evaluation Metrics

Parameter Prediction Actual
True Positive(TP) Matching Matching
True Negative(TN) Non-matching Non-matching
False Positive(FP) Matching Non-matching
False Negative(FN) Non-matching Matching

TABLE II

6https://pytorch-geometric.readthedocs.io
7https://docs.ray.io/en/latest/tune/index.html

In the realm of code matching detection, precision (P),
recall (R), and F1-scores (F1) are commonly used to evaluate
the performance and accuracy of the models. These three
criteria are derived from four measures: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). The
definitions of these measures can be found in Table II.

Precision is often used to describe the accuracy of a model’s
positive prediction, that is, the accuracy for pairs identified as
matching. It is defined as the proportion of true matching pairs
out of all the matching pairs predicted by the model, as shown
in Equation 2.

P =
TP

TP + FP
(2)

Recall is defined as the percentage of matching pairs in the
dataset that the model correctly predicts as matching pairs,
which is the case described by Equation 3.

R =
TP

TP + FN
(3)

F1-Score is commonly used to evaluate the performance of
models. F1-Score is defined as the harmonic mean of the
precision and recall values, which is the case described by
Equation 4.

F1 =
2PR

P +R
(4)

V. EXPERIMENTAL RESULTS

In this section, we address the research questions.
1) RQ1: Can graph-based representation and GNNs out-

perform transformer-based models in cross-language binary
source code matching problem?:

To answer the question of RQ1, we trained our model using
the CLCDSA dataset. We evaluated the performance of Graph-
BinMatch in the binary-source matching task by comparing it
against the aforementioned baselines, as shown in Table III.
We used LLVM-IR from binary C/C++ programs and Java
source code as GraphBinMatch’s input in our experiments.
The results show the effectiveness of GraphBinMatch with the
precision, recall, and F1 scores achieving 0.76, 0.82, and 0.79,
respectively. This represents over 20% improvement compared
to the baseline paper. To further strengthen the robustness
of our results, we conducted an additional experiment using
LLVM-IR from Java binary and C/C++ source code. This
yielded satisfactory results, with precision, recall, and F1
scores of 0.76, 0.77, and 0.77, respectively, which exceeded
the baseline by 25%.

Table III reveals a performance gap between using binary
Java source code and binary C/C++ code for the same task
and dataset. This gap may be attributed to certain differences

https://pytorch-geometric.readthedocs.io
https://docs.ray.io/en/latest/tune/index.html


TABLE III: Performance of cross-language binary-matching task (Threshold at 0.5).

C/C++ binary code with Java source code Java binary code with C/C++ source code
Precision Recall F1 Precision Recall F1

BinPro - - - 0.36 0.37 0.36
B2SFinder - - - 0.35 0.41 0.38
XLIR(LSTM) 0.62 0.53 0.57 0.55 0.51 0.53
XLIR(Transformer) 0.73 0.59 0.65 0.68 0.55 0.61
GraphBinMatch 0.75 0.73 0.74 0.75 0.78 0.77
GraphBinMatch(Tokenizer) 0.76 0.82 0.79 0.76 0.77 0.77

*Because of the limitations of BinPro and B2Sfinder in handling Java source code, we cannot provide test results for Java as source code
*In this table and the following ones, the results of the other tools are quoted from the baseline paper.

between the LLVM-IR obtained by decompiling and the one
obtained from source code, as GraphBinMatch struggles to
comprehend. The decompiled LLVM-IR is not always identi-
cal to the source code, and we attribute this difference to two
primary factors. Firstly, the decompiled code may not always
have the exact data type or the correct shape of arrays for array
types. Secondly, the decompilation process often involves
speculation and assumptions, resulting in variations in the
control flow generated by decompiling binaries. Combining
these factors within the binary file causes differences in the
LLVM-IR.

2) RQ2: Does GraphBinMatch provide consistent results
when applied in a single-language context with different
optimization levels?:

TABLE IV: Performace of single language binary matching
task (Threshold at 0.5).

Precision Recall F1
BinPro 0.38 0.42 0.40
B2SFinder 0.43 0.46 0.44
XLIR(LSTM) 0.67 0.72 0.44
XLIR(Transformer) 0.85 0.86 0.85
GraphBinMatch 0.88 0.86 0.87

TABLE V: Same language binary matching result from dif-
ferent optimization level

clang-10.0 gcc-9.4
Precision Recall F1 Precision Recall F1

O0 0.88 0.86 0.87 0.87 0.86 0.87
O1 0.87 0.88 0.88 0.89 0.85 0.85
O2 0.86 0.82 0.84 0.87 0.83 0.85
O3 0.86 0.83 0.85 0.84 0.81 0.83
Oz 0.90 0.85 0.87 0.87 0.87 0.87

The answer to this research question is affirmative. For
this study, we used a different dataset than CLCDSA due to
insufficient data for the same language. As shown in Table I,
CLCDSA has a maximum of only 15589 C++ source codes
available, whereas the POJ-104 dataset provides 37909 source
codes. This replacement of the dataset provides 1.5 times more
code. POJ-104 is also the dataset that has been used in the
baseline paper as well. Table IV reveals that GraphBinMatch
outperforms the baseline paper regarding precision, recall, and
F1 scores, with scores of 0.88, 0.86, and 0.87, respectively,
indicating that GraphBinMatch is more proficient at detecting
binary-source matching of the same language. This table
shows that the transformer-based model (XLIR) can perform

quite well as the LLVM-IR from the same language since these
IRs show more similarities. Despite the high scores of XLIR
on a single language, GraphBinMatch still outperforms it.

To verify the robustness of GraphBinMatch in different op-
timization scenarios, we evaluated its performance using clang
on the same dataset but with four different optimization levels
(-O0, -O1, -O2, -O3, -Oz). TableV shows that GraphBinMatch
achieves consistent performance across different optimization
levels. This indicates that the model’s performance is not
dependent on a specific compiler or optimization level and
can provide reliable results under varying optimizations.

By examining the performance of GraphBinMatch with dif-
ferent optimization levels of the same compiler, we can obtain
some insights regarding RQ2. We suspect that higher optimiza-
tion levels would result in more aggressive optimizations by
the compiler, such as control flow tuning. These optimizations
would provide the decompiler with additional assumptions
and speculations, resulting in an increased difference between
LLVM-IR from both the source code and the binary exe-
cutable. As shown in Table V, we observe that the precision,
recall, and F1 scores used to measure model performance
gradually decrease as the optimization level increases. This
suggests that more aggressive optimizations can slightly affect
the model’s performance in code matching detection.

3) RQ3: How is the performance of GraphBinMatch
across different compilers?:

GraphBinMatch showed consistent performance across dif-
ferent optimization levels of the same compiler; in this sub-
section, we want to investigate further to see whether it could
also provide similar performance across different compilers.
This is an important consideration for real-world applications
where the compiler used to generate a binary executable may
be unknown. To test this, we used clang to generate LLVM-
IR from the source code, but gcc to generate the binary
executable of the POJ-104s dataset compared to RQ2. We kept
the same settings as in RQ2 to convert the binary executable to
the corresponding LLVM-IR using RetDec. Table V presents
the performance of GraphBinMatch when generating binary
executable using gcc. The results show that GraphBinMatch
performs relatively the same when using different compilers.

We suspect the better performance figures of gcc than
clang because the used decompilers tend to provide more
information when compiling the C++ code generated by gcc.
This is supported by our analysis, which shows that the
average size of LLVM-IR generated by binary executables



compiled with clang is about 10, 769.9 bytes, while the
average size of those compiled with gcc is about 18, 525.2
bytes. This means at the decompilation stage, the size of gcc
compiled binary files is approximately 70% larger than those
compiled with a clang. Such a significant difference in size
will likely affect GraphBinMatch’s ability to accurately detect
binary matching.

4) RQ4: Does GraphBinMatch perform well in terms of
source-to-source matching?:

In the source-source matching task, we evaluate the per-
formance of GraphBinMatch using the CLCDSA dataset and
compare it with the baseline paper. The experimental setup
was the same as in RQ1, except that we used the LLVM-
IR generated by JLang as input to GraphBinMatch. We test
three language combinations: C/C++ vs. Java, C vs. Java, and
C++ vs. Java. Table VI shows that GraphBinMatch outper-
formed the baseline paper by about 20% regarding precision,
recall, and F1 scores. GraphBinMatch can also effectively
detect source code matching across different programming
languages.

A. Varying Threshold

Fig. 3: [Higher is better] Varying the threshold results in
different scores for precision, recall, and f1.

In the previous subsection, we mentioned that the threshold
for GraphBinMatch was set to 0.5. We experimented with
varying thresholds to investigate the effect of different thresh-
olds on precision, recall, and F1 scores. Figure 3 shows the
different scores that can be achieved by varying the threshold.
Based on our findings, a threshold value of 0.2 would provide
a slightly better F1 score. However, we also observed that
using this threshold would significantly decrease accuracy to
as high as 7%, making it impractical to use for optimal F1
score to find the best threshold. As a result, we chose to use
a threshold value of 0.5, which we considered to be a more
reasonable default threshold for our study. A smaller threshold
yields higher recall since GraphBinMatch will predict all pairs

as matching pairs. On the other hand, a larger threshold
will result in higher precision, as GraphBinMatch predicts all
pairs as non-matching pairs. Depending on the use case, a
user of GraphBinMatch can manually set the threshold or let
GraphBinMatch decide the best threshold based on the given
metric (i.e., precision, recall, F1).

VI. DISCUSSIONS

In this section, we discuss some challenges that can affect
the performance of GraphBinMatch.

A. Investigating why GraphBinMatch may fail
Our experiments revealed that our model occasionally

misidentifies pairs of matching code fragments. After review-
ing the mispredicted samples individually, we found that most
false positives occur because of a large gap in the sizes of the
LLVM-IR fragments. We calculated and analyzed the number
of nodes in the test set graphs and obtained Table VII. The
table shows that the difference in the mean and the median
number of nodes predicted by our model is much larger for
the false positive set than for the true positive set. The median
difference in the number of nodes between the two sets is
nearly 50%.

After conducting an in-depth analysis, we found two main
reasons for these false positives. The first reason is that
the gap between LLVM-IR is larger than the tolerance of
GraphBinMatch. For example, some code snippets may use
sorting methods provided by the standard library, while oth-
ers may implement their own sorting methods internally.
GraphBinMatch may not effectively recognize that the method
calls of the standard library are equivalent to the sorting
methods the authors themselves have implemented in their
code. Additionally, the template mechanism in C++ can impact
GraphBinMatch since many of the C++ standard libraries are
published as templates. This means that templates are also
compiled as a part of LLVM-IR, which causes struggles for
GraphBinMatch to recognize that the compiled template code
is equivalent to standard library calls in Java.

The second scenario involves language differences between
Java and C++ and different usage habits among their respective
user communities, which can result in significant discrepancies
in the LLVM-IR even when both are converted to compile
as LLVM-IR. These discrepancies are rooted in the varying
habits of different programming language users. For example,
Figure 4 displays a matching pair that, despite their similarity,
generate IR graphs with vastly different sizes: the Java-
generated IR graph has 330 nodes and 660 edges, whereas the
C++-generated IR graph has only 65 nodes and 115 edges.
Such discrepancies can cause challenges for GraphBinMatch
to recognize matching pairs, as the model may not account
for the impact of language usage habits on the IR generation
process, leading to incorrect results.

B. Extending GraphBinMatch to other programming lan-
guages

This study introduced a novel approach to detecting cross-
language binary-code matching using graph neural networks



TABLE VI: Cross language source matching result

GraphBinMatch XLIR (LSTM) XLIR (Transformer)
Precision Recall F1 Precision Recall F1 Precision Recall F1

C vs Java 0.77 0.80 0.78 0.62 0.51 0.56 0.75 0.55 0.63
C++ vs Java 0.76 0.82 0.79 0.65 0.53 0.58 0.77 0.57 0.66

C/C++ vs Java 0.81 0.73 0.78 - - - - - -

TABLE VII: Statistics for the number of nodes in test set

Type Mean Median
True Positive 1506 864
False Positive 2133 1303
True Negative 2573 1680
False Negative 2293 1289

(GNNs). A crucial component of our approach is using LLVM
IR to measure the similarities between two programs written in
different languages. By leveraging LLVM IR, we can capture
high-level information about the code independent of the
underlying programming languages.

While our approach is designed to be cross-language, it
relies on the availability of compiler front-ends. One must use
the corresponding compiler front-end to extend our approach
to support additional programming languages to produce
LLVM IR. Once the IR is generated, our approach remains
the same. Our method is flexible enough to support any
programming language compiled into LLVM IR.

C. How different token embedding influence the result

TABLE VIII: Performance of different LLVM-IR embedding
techniques for same-language binary matching and cross-
language binary matching

Cpp vs Cpp Cpp/C vs Java
Precision Recall F1 Precision Recall F1

text 0.86 0.83 0.85 0.75 0.73 0.74
full text 0.89 0.87 0.88 0.84 0.75 0.79

In this section, we conduct an experimental study using the
CLCDSA dataset with the same settings and preprocessing
methods as in RQ1. Our objective is to investigate the impact
of various token embedding techniques and tokenizers on
the performance of GraphBinMatch. Specifically, we aim to
explore the effects of different embedding methods and tok-
enization schemes on the ability of GraphBinMatch to match
binary and source code pairs across multiple programming
languages or the same languages. By examining these factors,
we hope to better understand how to optimize the performance
of GraphBinMatch and improve its ability to detect code
clones in diverse language pairs.

First, we aim to evaluate the impact of using the
full_text property versus full_text for the source-
binary matching task. In the approach section of our paper,
we mentioned that using the full_text property provided
by ProGraML could lead to better performance than using
full_text alone. As shown in Table VIII, we observe that
using the full_text attribute improves the performance for

both cross-language binary-source matching tasks and same-
language binary-source matching tasks. Notably, for cross-
language binary-source code tasks, using the full_text
attribute provides more significant improvement than binary-
source code matching tasks written in the same language. We
believe this result is because by exposing more information to
the model, we can better bridge the understanding gap of the
model on cross-language tasks.

VII. RELATED WORKS

Code similarity detection has recently gained considerable
attention with the advent of research tools and machine learn-
ing models. These advancements provide new opportunities
for research in this field. In code similarity detection, the
similarity of source code is generally classified into four levels,
as outlined in [13]:

• Type I: This is also called Exact Clone. The source code
can be identical, with only the indentation, comments,
and code layout modified.

• Type II: This is also called Parameterized clone. The
source code’s structure and syntactic are similar except
for some variable names, method names, and data types
modified in addition to those mentioned in Type I.

• Type III: Compared to Type II, Type III code clone
involves modification of statements, but the functional
similarity is maintained.

• Type IV: The structure between two code fragments
is syntactically and structurally different, but both code
fragments perform similar behavior for the same input.

Research on code similarity detection is broadly divided
into two research directions: algorithm-based and machine
learning-based. Each of these two different directions will be
described in detail below:

A. Algorithm based Approaches

The algorithm-based code clone detection is based on lexi-
cal or semantic analysis, so most do not have a good detection
result for Type IV code clones, or even when Type III gaps
are too large or too frequent. Most of the algorithms are only
applicable to Type I, Type II, and part of Type III code clones.
Also, their results for cross-language code clone detection are
often unsatisfactory.

Research projects like CCFinderSW [21] and SourcerCC
[22] use a token-based approach to detect code clones. Each
of these tools uses its own implementation of a lexical analyzer
to convert the source code into a token stream which serves
as a basis for analysis and similarity score measurement using
different algorithms. However, because of the lack of lexical



(a) Java sample (b) C++ sample

Fig. 4: An example of false negative case

information abstraction, it is difficult for these algorithms to
obtain and understand the inherent semantics.

Semantic analysis-based code clone detection tools try to
solve this problem. DECKARD [23] proposes a tree-based
code clone detection scheme: it innovatively uses feature
vectors to describe the structure of the syntax tree and clusters
the clones by the Euclidean distance of the feature vectors.

Traditional algorithm-based code clone detection methods
are often difficult to transfer to cross-language clone detection,
resulting in very few studies addressing this problem. Even
if the relevant studies propose corresponding solutions, they
are limited by various restrictions and cannot address real-
world requirements. Two of the most representative studies are
LICCA [24] and CLCMiner [25]. LICCA detects code clones
by attempting to convert different languages into uniform
expressions, which can only cover cases where two pieces
of code have a similar structure and syntactic elements.
CLCMiner uses an NLP approach to view the source code
but relies on the modification records of the source code.

B. Machine Learning Approaches

With the advancements in machine learning and graph
neural networks, new ideas have emerged to solve the code
clone detection problem. With the introduction of various
code cloning datasets, it has become possible to use machine
learning to solve such problems. Like CLCDSA [17] and
BigCloneBench [26], they both contain code clones with
Type IV similarity. Many recent studies have tried to replace
traditional algorithms with machine learning models to achieve
better accuracy and gain the ability to compare across different
languages.

CDLH [27] first proposed a hash method to detect whether
two pieces of code in the same language are clones. Their
model accepts raw code fragments as input, encodes the
abstract syntax tree using specific rules, and transforms it into
a vector representation of the source code using an LSTM
network. However, their encoding approach focuses more on
the structure of the AST without considering other semantic
information like node type.

In addition to tree-based methods, methods like CCLearner
[28] and C4 [29] use token-based code clone detection: One of

the first studies to use tokens as input to a code clone detection
model is CCLearner. It classifies tokens into eight categories,
calculates the similarity score for each category separately, and
then uses the similarity of vectors to calculate the similarity
between code fragments. This study concluded that more
similarities in feature vectors imply a higher probability that a
code pair is a code clone. This study only captures token and
partial syntax level information but not the structure of the
code. Their paper stated that CCLearner does not have good
detection performance for Type IV/Type III clones due to this
reason.

Another token-based research is C4 [29]. Their study used
a pre-trained BERT model called CodeBERT [30] to embed
the model’s inputs. Since CodeBERT supports encoding mul-
tiple languages, C4 also supports cross-language code clone
detection. Their study uses raw source code as input and first
use CodeBERT to encode the raw source code to obtain a
feature vector, and then their model learns and classifies the
feature vector to obtain the final similarity score. They also
implemented Contrastive Learning to increase the usage of
the dataset. However, C4 only supports encoding the first 512
tokens because of the limitation of CodeBERT, affecting the
final applicability of C4.

While great attention has been given to code clone detection,
XLIR [8] is one of the recent works that has tried to tackle
the problem of binary source code matching. It is common for
software applications to be written in different programming
languages to meet various requirements and computing plat-
forms. Therefore, detecting binary source code clones across
multiple programming languages can be beneficial in prac-
tical scenarios. For instance, when vulnerable binary code is
detected, it becomes necessary to retrieve relevant source code
fragments of all possible programming languages written for
better vulnerability assessment. XLIR provides a transformers-
based approach to this problem. We use XLIR as the baseline
paper; more details the comparison results are provided in the
Section V.

VIII. CONCLUSION AND FUTURE WORKS

This paper introduced GraphBinMatch, a novel cross-
language binary-source matching model that uses LLVM IRs



and Heterogeneous graphs to learn the similarities. The model
takes LLVM IR as input and can handle three types of code-
matching detection tasks: cross-language binary matching de-
tection, single-language binary matching detection, and cross-
language source matching detection. It should be noted that
GraphBinMatch is not limited to these specific languages. It
can support any programming language with a compiler front
end to generate LLVM IR.

Experimental results show that GraphBinMatch is effective
and outperforms all three state-of-the-art tools. Specifically,
our approach outperforms these tools regarding precision,
recall, and F1 score.

In future work, we aim to extend GraphBinMatch to more
programming languages, incorporating additional compiler
front-ends to generate LLVM IR for these languages. More-
over, since our approach is data-driven, we are collecting more
source code files to increase the size of the dataset, which will
believe will improve the prediction of GraphBinMatch.
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