Check for
Updates

Simultaneous and Heterogenous Multithreading

Kuan-Chieh Hsu
University of California, Riverside
Riverside, California, USA
khsu037@ucr.edu

ABSTRACT

The landscape of modern computers is undoubtedly heterogeneous,
as all computing platforms integrate multiple types of processing
units and hardware accelerators. However, the entrenched program-
ming models focus on using only the most efficient processing units
for each code region, underutilizing the processing power within
heterogeneous computers.

This paper simultaneous and heterogenous multithreading
(SHMT), a programming and execution model that enables opportu-
nities for “real” parallel processing using heterogeneous processing
units. In contrast to conventional models, SHMT can utilize hetero-
geneous types of processing units concurrently for the same code
region. Furthermore, SHMT presents an abstraction and a runtime
system to facilitate parallel execution. More importantly, SHMT
needs to additionally address the heterogeneity in data precision
that various processing units support to ensure the quality of the
result.

This paper implements and evaluates SHMT on an embedded
system platform with a GPU and an Edge TPU. SHMT achieves up
to 1.95X speedup and 51.0% energy reduction compared to GPU
baseline.

ACM Reference Format:

Kuan-Chieh Hsu and Hung-Wei Tseng. 2023. Simultaneous and Heteroge-
nous Multithreading. In 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO °23), October 28—November 01, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3613424.3614285

1 INTRODUCTION

The integration of graphics processing units (GPUs) and hardware
accelerators for artificial intelligence (AI) and machine learning
(ML) or Digital Signal Processing (DSPs) brings heterogeneous
computing models into all types of modern computers, ranging
from wearable devices, mobile phones, and personal computers
to data center servers. Famous, commercialized examples include
Tensor Cores (TCs)[76, 77] or Ray Tracing Cores (RT Cores)[12] on
NVIDIA GPUs, Tensor Processing Units (TPUs) on Google Cloud
servers [46, 48, 49], Neural Engines on Apple’s iPhones [8], Edge
Tensor Processing Units (Edge TPUs) on Google Pixel Phones.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO °23, October 28—November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614285

Hung-Wei Tseng
University of California, Riverside
Riverside, California, USA
htseng@ucr.edu

Through implementing more efficient architectures processing mod-
els for target applications domains, heterogeneous computing re-
sources help address the issue that general-purpose CPUs alone
can not afford the desired performance for modern workloads, in-
cluding artificial intelligence (AI), machine learning (ML), reality,
or gaming applications.

Recent research projects have proved that many co-processors
and hardware accelerators can perform the same functions at sim-
ilar orders of magnitude [20, 22, 25, 37, 39, 40, 59, 67, 68], despite
their differences in processing models and design agendas. Theo-
retically, the system can simultaneously use these heterogeneous
processors to maximize throughputs and minimize latency and
energy consumption. However, conventional programming frame-
works, including domain-specific languages, can only delegate a
code region exclusively to one kind of processor, leaving other
computing resources idle without contributing to the current func-
tion [1, 74, 88].

This paper presents SHMT, simultaneous and heterogeneous
multithreading, to evaluate the performance and tackle the chal-
lenges of simultaneously using heterogeneous computing resources.
Unlike conventional programming and execution models that focus
on using the most efficient computing resources and exploiting
homogeneous parallelism within the identified type of computing
resources for each function, SHMT can break up the computation
from the same function to multiple types of computing resources
and exploits heterogeneous types of parallelism in the meantime.

Figure 1 illustrates the advantage of SHMT against the conven-
tional execution model. Figure 1 assumes a program containing
five primary functions, A to E, and five computing resources, in-
cluding CPUs, GPUs, and three accelerators. Figure 1(a) presents
the execution flow in conventional programming models that del-
egate the function to the most efficient processing units. Though
conventional models can exploit parallelism within the same type
of processors, conventional models still let other resources idle or
make no progress to the current program. The program seems to
use multiple types of hardware concurrently through programming
techniques like software pipelining. Figure 1(b) assumes the pro-
gram can progress with partial results and pipeline the execution of
different functions on different hardware units. However, as each
function takes a different amount of time to generate partial re-
sults, the imbalance of execution can still lead to waste. SHMT,
as Figure 1(c) depicts, allows function B to use GPUs and other
accelerators. As a result, SHMT can significantly improve hard-
ware utilization and lead to better end-to-end latency and energy
consumption.

Enabling SHMT is challenging in the following aspects. First, as
heterogeneous computing resources use diverse programming mod-
els (e.g., vector processing in GPUs and matrix processing in Tensor
Cores), SHMT must present some mechanism that can describe

https://doi.org/10.1145/3613424.3614285
https://doi.org/10.1145/3613424.3614285
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613424.3614285
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613424.3614285&domain=pdf&date_stamp=2023-12-08

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

execution
slots

execution execution execution
slots slots slots

execution
slots

execution

slots slots

execution

Kuan-Chieh Hsu and Hung-Wei Tseng

execution
slots

execution execution
slots slots

execution
slots

execution
slots

execution execution execution
slots slots slots

cru | GPU Accit | Acc#2 | Acc#s cru |

Accil Acci#2 Acci#3 CPU l Acci#l Acc#2 Acc#3

time

(@)

(b)

©

Figure 1: The execution model of (a) conventional heterogeneous computers (b) conventional heterogeneous computers with

software pipelining, and (c) SHMT.

and divide equivalent operations and data on different computing
resources. Second, unlike traditional programming systems that
delegate each code region to a single type of hardware, SHMT must
be able to coordinate the execution on heterogeneous hardware
efficiently. Finally, and probably the most challenging, as various
hardware units deliver results at different levels of quality, SHMT
must assure the outcome without incurring significant overhead.

The SHMT framework proposed three components to address the
challenges above. First, SHMT promotes a set of virtual operations
(VOPs) and High-Level Operations (HLOPs) as an intermediate
between programming languages and hardware instructions/oper-
ations to facilitate task matching and distribution. Second, SHMT
presents a runtime system that dynamically adjusts the workloads
on various hardware units to maximize hardware efficiency while
allowing flexibility in scheduling policies. Finally, SHMT presents
a low-overhead scheduling policy that considers both results and
performance.

This paper develops the proposed SHMT framework on an em-
bedded system platform equipped with a multi-core ARM processor,
an NVIDIA GPU, and an Edge TPU. SHMT achieves up to 3.92x
speedup and 2.07X on average. With our proposed quality assur-
ance mechanisms, SHMT still achieves 1.95X speedup on average.
SHMT also reduces energy consumption by 51%.

In presenting SHMT, this paper makes the following contribu-
tions.

SHMT presents a new parallel programming and execution
model that distinguishes itself from prior work as SHMT
uses heterogeneous hardware concurrently to accomplish
parallel tasks from the same piece of code.

SHMT evaluates and demonstrates the potential of lever-
aging hardware using heterogeneous programming models
using a real system platform.

SHMT presents an abstraction and mechanisms to coordinate
concurrent execution on heterogeneous hardware compo-
nents.

SHMT proposes a low-overhead mechanism and scheduling
policy to ensure the quality of results.

138

2 BACKGROUND AND MOTIVATION

In modern heterogeneous computers, two technology trends make
sense of SHMT: first, the ubiquitous adoption of hardware acceler-
ators. Second, the abilities of hardware accelerators to applications
beyond their original target domains. However, before SHMT, no
existing work tried to have multiple types of accelerators collabo-
rate on the same code region. This section describes the technology
trends and the potential of SHMT.

2.1 Modern heterogeneous components

As Dennard scaling slows, the integration of domain-specific hard-
ware accelerators becomes universal. Most computer systems nowa-
days contain the following domain-specific hardware accelerators.
Graphics processing unit (GPU) Despite the broad spectrum of
applications, GPUs are initially accelerators for computer graphics.
The nature of pixel rendering algorithms makes vector processing
architecture using the single instruction multiple data (SIMD) para-
digm the best fit for the target domain. Modern GPU architectures
natively support computation in single precision (FP32) but also
provide half-precision (FP16) [36] for AI/ML applications.

AI/ML accelerators AI/ML accelerators have become popular in
all types of computer systems to tackle the rapidly growing demand
for AI/ML workloads and offer better energy efficiency and offload-
ing CPUs/GPUs for other workloads. As modern AI/ML models
intensively use matrix algebra, most AI/ML accelerators tailor their
internal architectures with circuits specialized for matrix opera-
tions. Google’s Edge TPUs, data center TPUs, and NVIDIA’s Tensor
Cores [76, 77] are all hardware implementations of frequently used
matrix operations in AI/ML workloads.

Most AI/ML applications are error-tolerant. As a result, the hard-
ware design can further improve performance, power consumption,
and area-efficiency through approximate computing and reduce
data precisions. The early version of Edge TPUs supports only
INTS precision support and thus can deliver more compelling per-
formance per Watt than the data center TPUs (2 TOPS/W v.s 0.36
TOPS/W for Cloud TPUs). NVIDIA’s tensor cores only natively
support half-precision and Bfloat16 (BF16).

Simultaneous and Heterogenous Multithreading

Other accelerators Computer systems have a long history of
adopting digital signal processors (DSPs) back in the 1970s. DSPs
have again become popular as strong demands in high-bandwidth
communication, teleconferencing, media streaming, and creating
visual and audio inputs/outputs for AI/ML applications. The hard-
ware logic may implement mathematical operations to support Fast
Fourier transforms (FFTs) or finite impulse response (FIR) filters. As
image data contain three bands of 8-byte color descriptions, most
image DSPs only support computation in 24-bit [6, 78]. Google
Visual Core’s Image Processing Unit implements stencil operations
in 16-bit. However, as many DSP applications have strong connec-
tions with AI/ML applications and rely on similar mathematical
functions, SHMT can easily extend the support to DSPs.

Ray Tracing is another emerging type of accelerator that simu-
lates the behavior of lights in the real world to fulfill the demand
for virtual reality and gaming applications. Modern ray-tracing
cores implement logics for bounding volume hierarchy (BVH) tree
traversal [12].

2.2 Generalization of Domain-Specific
Accelerators

Broadening the application of domain-specific accelerators has
two different approaches. First, use the mathematical functions in
DSAs to perform the equivalent operation in an out-of-domain
application. The other approach is to reduce the out-of-domain
problem as a problem inside the accelerator’s target domain. This
section will introduce the recent advances in both directions on
emerging hardware accelerators besides GPUs.

2.2.1 Using mathematical functions in DSAs. As most hardware
accelerators are accelerators for key mathematical operators, the
programmer can change the program implementations to invoke an
accelerator’s hardware operations directly. This approach typically
relies on support from appropriate hardware/software interfaces
and general-purpose programming frameworks. Famous examples
include CUDA and OpenCL which promote general-purpose com-
puting on GPUs (GPGPUs).

In the context of modern AI/ML accelerators, NVIDIA exposes
the MMA instruction support in Tensor Cores through the wmma
interface and cuBLAS library functions. Recent research projects, in-
cluding TCUSCAN [20], TCUDB [40], and RQTPU [37] demonstrate
the use of matrix multiplications on Tensor Cores to accelerate data-
base query operations like reduction, scan, and join. Besides AI/ML
workloads, Google also demonstrates the use of matrix multiplica-
tion in TPUs to accelerate Fourier Transform [22, 68] and facilitate
MRI image reconstruction [67]. GPTPU [39] reverse-engineered
the Edge TPU compiler and built a tensor operator-based program-
ming framework for Edge TPU to accelerate Rodinia benchmark
applications [14].

2.2.2 Reducing the original problem to the accelerator’s target do-
main. The other approach to using domain-specific accelerators is
to reduce the problem as one in the accelerator’s target domain.
In contrast to the method in Section 2.2.1, this approach requires
less programming language or ISA support in exposing the internal
hardware features to programmers.

139

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

: : :
o edge TPU ===
< Theoretical Gain of Conventional Approach s
] g Theoretical Gain of SHVT
85|]
28
G4 7
5%

S5 1
T
32t]
Q
®
a qf]
%)
0 0 @ e c w o) (=]
£ 2 8 E 8§ §F =3 o2 %
s o ° g 5 £ I T
2 a ° T @ [}
8 T -
o
Figure 2: The potential speedup of SHMT (and Edge TPU)

relative to GPU-only implementation

Neural Processing Units (NPUs) [3, 25, 66, 71] follow this route
to solve general-purpose problems using NN accelerators. NPUs
leverage universal the approximation theorem [19] in approximat-
ing any given problem/algorithm as an NN model, and thus the
process of solving the original problem becomes an instance of NN
inference. In this paper, we intensively used NPUs as our solutions
for Edge TPU implementations, as implementing the concept of
NPUs can make more efficient use of AI/ML accelerator hardware.
RTNN [111] also follows the same direction but with RT Cores as
the target domain-specific accelerator. RTNN formulates the tree-
based neighbor search algorithms on the BVH tree, thus enabling
the BVH traversal function on RT Cores.

2.3 Potential and challenges of SHMT

With existing efforts of general-purpose computing on hardware
accelerators, multiple types of accelerators can perform the same
function with compelling performance. Figure 2 compares the per-
formance of running the core kernel function in ten applications
using their NPU implementations on Edge TPU against their state-
of-the-art GPU implementations on the GPU of Jetson Nano. If
we offload all kernels to Edge TPU, the performance is 5% slower
than GPUs on average. The average theoretical speedup from con-
ventional approaches that delegate kernels to the best-performing
accelerator is 1.37X.

Using the performance number we gathered from running ex-
periments using GPUs or Edge TPUs, we derived the theoretical
performance gain of SHMT and presented the numbers in Figure 2.
By carefully finding the optimal planning of using GPUs and Edge
TPU simultaneously to share the computation from the same ap-
plication kernel and ignoring all data exchange/transformation
overhead, the average speedup is 3.14X.

However, a system must tackle the following challenges to enable
the simultaneous use of multiple types of hardware accelerators
in accomplishing the computation for a compute kernel. First, as
each hardware accelerator has its unique programming interface
and execution model, without appropriate system supports, the
programmer needs to figure out the equivalent set of operations on
various accelerators and manually create multiple threads that map
each partition of computation to different hardware and handle
the data exchange/synchronization. Second, as the microarchitec-
ture and execution model of each hardware accelerator differs, the

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

[user program]

[compiler]
instructions VOPs
virtual hardware device
virtual device driver (SHMT runtime system interface) |
o iHLOPs iHLOPs lHLOPs
partitioning
GPU NPU TPU
queue queue queue
" v v v
] scheduler (QAWS) \
Tsampling ! ‘ +
’ CUDA ‘ ’ Model ‘ ’ TF Lite ‘
Y ! v !
shared |- fo|
CPU [<p> memory |+ GPU Edge TPU
data v v v
syn w completion || completion |_| completion
queue | | queue queue

Figure 3: SHMT overview

relative performance ratio and data exchange overhead among hard-
ware accelerators change as data sizes or system dynamics change.
Therefore, even if the programmer can partition computation to
simultaneous threads working on different data partitions, the re-
sulting program is not always optimal for the underlying hardware
or cannot guarantee speedup. Finally, unlike homogeneous hard-
ware components that accept data in the same representation and
deliver the result with the same accuracy, heterogeneous hardware
components accept data and deliver results in different formats
and accuracies. As a result, carelessly using heterogeneous hard-
ware components simultaneously can lead to unwanted execution
results.

3 SHMT

In response to the challenges of supporting SHMT, we developed
a system architecture consisting of three main components. First,
SHMT defines an extensible set of hardware-independent virtual
operations (VOPs) that allows heterogeneous hardware to interact
with SHMT software as an intermediate. Second, an SHMT run-
time system that performs the low overhead task scheduling to
manipulate the use of heterogeneous hardware. And finally, run-
time mechanisms to ensure the quality of results. This section will
overview the proposed framework and present our proposed poli-
cies and mechanisms in each component.

3.1 Overview

Figure 3 presents the overview of SHMT. SHMT abstracts its sub-
system as a virtual hardware computing resource offering a rich set
of virtual operations (VOPs) that allows a CPU program to “offload”
computation to this virtual hardware device. The compiler or the
programmer can use VOPs to describe the desired computation for
SHMT. As the adoption of domain-specific languages (e.g., Tensor-
flow or PyTorch) using standard libraries and accelerated libraries
(e.g., cuBLAS, cuDNN) in modern programming languages, we ex-
pect the frontend authoring languages of user programs to remain
the same. Most changes should only occur at the library level.

140

Kuan-Chieh Hsu and Hung-Wei Tseng

During the program execution, the runtime system, which acts
as the “driver” of SHMT’s virtual hardware, dynamically parses
the VOPs and gauges the ability of hardware resources to make
scheduling decisions. The runtime system divides a VOP into one or
more high-level operations (HLOPs) to simultaneously use multiple
hardware resources. Each HLOP is a basic scheduling identity in
SHMT and performs a partition of computation for a VOP. The
implementation of each HLOP typically maps to a set of hardware
operations and functions on the target hardware resource. Finally,
the runtime system assigns these HLOPs to the task queues of the
target hardware. As HLOPs are also hardware-independent, the
runtime system can still adjust the task assignment if necessary.

As VOPs and HLOPs provide flexibility in scheduling, SHMT’s
runtime system can easily integrate scheduling policies to improve
performance. This paper presents a quality-aware work-stealing
(QAWS) scheduling policy that has low execution overhead but
helps to maintain quality and balance the workload.

Figure 4 provides an overview from the programmer’s perspec-
tive. We envision the programming interface for general application
programmers to remain the same. The application programmer can
still use domain-specific function calls or library functions at a high
level. In Figure 4, the application programmer invokes the general
matrix multiplication (GEMM) functions that TensorFlow provides
(i.e., tf.matmul). Most application programmers will be unaware of
the following change at the language runtime level: the TensorFlow
implementation of tf.matmul calls the shmt:: matmul() function
that SHMT provides to the system programmer to invoke the VOP
of GEMM. The SHMT internal implementation of shmt: :matmul ()
will then analyze and decompose the GEMM VOP into HLOPs,
where each HLOP is a native implementation of a chunk of GEMM
computation on the dedicated hardware resource.

Figure 4 presents the programming model of SHMT. In summary,
we have limited the programming efforts as we tried to present an
almost identical programming interface to most programmers. The
implementation of HLOPs also leverages existing support without
burdening most system engineers.

3.2 Virtual Operations (VOPs) and High-Level
Operations (HLOPs)

SHMT tackles the challenge of the heterogeneity from execution
models and data formats using VOPs and HLOPs. VOPs define
the available computation that SHMT can provide to the program
and HLOPs define available operations in the underlying hardware
that SHMT can leverage. In SHMT model, HLOPs without data
dependency can execute simultaneously, regardless of the actual
hardware performing the computation.

3.2.1 Virtual operations (VOPs). VOPs in SHMT is a set of defi-
nitions describing available operations that SHMT’s underlying
hardware can support. VOPs help to abstract the whole SHMT sub-
system as a single but powerful accelerator from the software’s
perspective. The SHMT subsystem is a big umbrella covering all
computing resources that SHMT can use to exercise sub-tasks from
VOPs simultaneously.

Table 1 lists the VOPs that our prototyping SHMT system sup-
ports. As SHMT focuses on the simultaneous use of multiple types
of computing resources, our current list covers the most frequently

Simultaneous and Heterogenous Multithreading

a : 4K x 4K tensor
b : 4K x 4K tensor
[c = tf.matmul(a, b)]
I
VOPs ¢
Library result = shmt::matmul(a, b);‘

|
[

’ 2K x 2K GEMM ‘ ’ 2K x 2K GEMM ‘
[I
’ 2K x 2K GEMM ‘ ’ 2K x 2K GEMM ‘

SHMT runtime
HLOPs
kernel
implementations
CPU Y

(i=0; i< C.size.x; i++) {
(j = 0; j < C.size.y; j++) {
C.get(i,j) = 0;
(k = 0; k < B.size.x; kt++) {
C.get(i,j) += A.get(i,k) * B.get(k,j);

A4
model_id = tpu_handler->build model(path);
tpu_handler->build interpreter(dev_num);
tpu_handler->assign_input(input);
tpu_handler->model_invoke(model_id);

GPU
CUDA

edge TPU
model

v
cublasSgemm() ;

Figure 4: The SHMT’s programming model

’ vector ‘ tiling ‘
add reduce_sum conv
log relu DCT8x8
max rsqrt FDWT97
min sqrt FFT
multiply sub GEMM
parabolic_PDE tanh Laplaican
reduce_average Mean_Filter
reduce_hist256 Sobel
reduce_max SRAD
reduce_min stencil

Table 1: The VOPs list in either vector or matrix tiling pro-
cessing model types.

implemented supported computation in hardware accelerators. In
our current list, these VOPs can either use an element-wise vector
processing model or a tile-wise matrix processing model to partition
and parallelize the computation without violating the correctness.

3.2.2 High-level operations (HLOPs). An HLOP in SHMT defines a
subset of a VOP operation that an underlying hardware comput-
ing device can support. An HLOP shares the same opcode as the
supporting VOP. However, unlike a VOP with no assumption/re-
striction on the input/output data sizes, an HLOP defines the data
sizes/granularities and the data types a hardware device can support.
For each VOP, SHMT’s runtime system will dynamically partition
computation tasks and data into HLOPs and assign each HLOP
to an underlying hardware device using the data sizes and the
parallelization model.

141

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

If the target device provides native support for an HLOP, the
HLOP’s implementation for such devices can directly invoke the
hardware command. For example, as edge TPU implements con-
volution 2D in hardware, the edge TPU’s HLOP implementation
simply invokes the corresponding hardware function. Otherwise,
the HLOP can still use multiple hardware operations to accomplish
the desired computation on optimal data sizes. For example, the
convolution 2D implementation on a GPU will internally become
a series of vector operations within the HLOP implementation.
For NPUs, the implementation makes an inference through a pre-
trained model that approximates the result of convolution 2D.

3.3 SHMT’s runtime system

In actual system implementation, the SHMT’s runtime system is
a kernel driver of a virtual device. The virtual device driver ac-
cepts VOPs as a subset of its commands and partitions VOPs into
HLOPs on the target hardware devices. SHMT’s runtime system
also provides interfaces for more advanced scheduling policies.
SHMT’s kernel driver maintains a pair of queues for each SHMT-
compatible hardware resource; one serves as the incoming queue
and the other as the completion queue. Upon the initialization of
the SHMT system, each hardware resource’s driver is responsible
for providing SHMT with its list of available HLOPs operations and
their implementations.

3.3.1 HLOP distribution. For each VOP that SHMT receives, the
runtime system figures out available hardware resources to per-
form the VOP, gathers the information regarding the parallelization
method and data partitioning, and consults the scheduler for the
task mapping on hardware resources. If the scheduler suggests
a plan, the runtime system realizes the plan by partitioning the
VOP into HLOPs on devices at supported data sizes. As SHMT
supports a limited number of parallelization models, the runtime
system can apply the template for each parallelization model for
dataset partition, aggregation, and synchronization. SHMT assigns
an HLOP to the target device by sending the HLOP to the device’s
incoming queue. A thread monitoring the queue will work with
the target device’s kernel module and execute the HLOP implemen-
tation whenever the device is available. Once the HLOP finishes,
the thread will move the task to a completion queue that SHMT
runtime system can later dequeue and use for data aggregation and
synchronization purposes.

3.3.2 Data distribution and transformation. In modern heteroge-
neous systems, hardware accelerators are typically separated intel-
lectual property cores or chips that communicate with the main
CPU cores through the system interconnect. Like the idea of pro-
cessor caches, most hardware accelerators also own their private
device memory to facilitate the execution of operations. As each
device’s HLOP accepts fix-sized, fix-shaped data, SHMT’s runtime
system creates memory operations using similar arguments as the
implementation of CUDA’s cudaMemcpy2D that takes the starting
address of the source data structure and use the element size, di-
mensions of each input partition to calculate the effective addresses
of source and target data locations that each HLOP uses. The run-
time system will schedule the data movement using the effective

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

addresses between the system’s shared main memory and each
device’s memory location after assigning an HLOP.

Most hardware accelerators optimize their computation models
and architectures for targeted application domains, thus supporting
limited data precisions. Suppose the scheduling policy determines
the use of a target hardware resource as appropriate despite the
potential loss of accuracy. In that case, the runtime system will
perform data type casting through the desired quantization method
before distributing the input data. When the device finishes com-
putation, the runtime system is again responsible for restoring the
result to the data precision that the application desires.

3.4 The basic work-stealing scheduler

Work-stealing is the basic scheduling policy that SHMT uses as
the policy best balances the workload among scheduling targets
with various performances. The scheduler makes an initial plan by
partitioning datasets evenly based on the parallelization model of
the scheduling VOP and assigning each data partition as well as the
computation associated with that partition to a target computing
resource. The runtime system will generate and enqueue the HLOPs
corresponding to the computation for each partition to the target
hardware’s incoming queue. When an HLOP completes, the runtime
system also reports to the scheduler.

As heterogeneous computing systems share and synchronize
data at the system’s main memory level, each input and output data
partition should be larger than and be multiples of the main memory
page size whenever possible. For example, using the most frequently
used 4KB page size, each partition of floating-point data inputs in
the vector processing model should contain at least 1,024 consecu-
tive elements, and a matrix tile should be at least 1,024 x1,024 sized.
Partitioning data at larger than page-sized granularities can make
more efficient use of memory bandwidth and avoid redundant page
accesses and write amplification issues.

When the workload is imbalanced, that is, the incoming queue of
a hardware device has more pending items than others, the sched-
uler informs the runtime system to withdraw HLOPs associated
with unprocessed data partitions from the current assignment and
reassign the HLOPs to the hardware with the most empty queue.
The granularities can mismatch between different devices, so the
runtime system may need to further fuse or partition HLOPs.

3.5 Quality-Aware Work-Stealing (QAWS) Policy

This paper proposes an exemplary quality-aware work-stealing
(QAWS) scheduling policy to demonstrate the effect of a first-level
quality control mechanism in the SHMT scheduler and the flexibility
of SHMT in changing scheduling policies. As the microarchitec-
ture of application-specific hardware accelerators aims to provide
just enough result quality for the target workloads, most hardware
accelerators, especially those targeting AI/ML workloads, do not
support the precision modes for exact, general-purpose computing.
Without any quality control mechanism, naively using hardware
accelerators as other general-purpose processors can lead to un-
wanted computation results.

The design of QAWS aims at ensuring the results’ quality of
critical data regions while maintaining low computation overhead
in scheduling. For each input data partition, QAWS samples the data

142

Kuan-Chieh Hsu and Hung-Wei Tseng

Algorithm 1 Device Limitation

Input: P, limits

1: N « |P|

22 M « |limits|

3: |Q| «— N

4 fori <« 0to N do

5 s « sampling_module(P;)

6: Qi —M-1 > your default choice
7: for j « 0to M do

8: if s < limits;[0] then

9 Q; « limits;[1]

10: break

11: return Q

Algorithm 2 Top-K Criticality

Input: P, K, W
1: N« |P|
2 |Q <« N
3 |window[]| « W
4 fori < 0to N do
5: window[i%W] « sampling_module(P;)
6: if (i%W ==W —1) or (i==N — 1) then
7 sort(window)
8: for j « 0to W do
9: Q;—(j<K)?0:1
10: return Q

to determine the criticality and assigns computation to a device
accordingly. We leverage the experience from prior works that
consider critical regions as data partitions with the widest value
distributions. In this paper, we examined two policies using sampled
criticalities.

(1) Device-dependent limits This policy determines the sched-
uling on a device using device-dependent limits. Each com-
puting device has a set of acceptable hardware limits based
on the supporting data precision and accuracy. QAWS as-
signs only data inputs lower than the criticality limits to
that computing resource. In the case of work stealing, QAWS
only allows a device to steal HLOPs from another device
with the same or a lower hardware limit.

(2) Application-dependent top—K% criticality This policy
ranks the criticality within a window of data partitions and
schedules top-K% partitions to the most accurate device,
second-L% to the second-most accurate device, and so on.
The threshold values of K and L are application-dependent.
The programmer or the library composer should provide,
along with each VOP, indicating the percentage of data in-
puts that are generally critical to results in this library func-
tion or the application. In the case of work stealing, QAWS
only allows a device with higher accuracy to steal HLOPs
from another device with the same or a lower accuracy.

Algorithm 1 and Algorithm 2 explain the algorithmic details
of how QAWS assigns computation to a device for two options:

Simultaneous and Heterogenous Multithreading

Algorithm 3 The striding sampling
Input: D, N, s

1: |S|<—N

2: fori < 0to N do
3 Si « DJ[i*s]
4

: return S

Algorithm 4 The uniform random sampling
Input: D, N

1: |S| «— N

2: fori < 0to N do

3 S; « D[random()]
4

: return S

Algorithm 5 The reduction sampling

Input: D, s
c S]
: dims « dimension(D)
: for i0 « dims, with step size s do
for i1 « dims; with step size s do

[T R

S.append(D[i0, i1, ...])
7: return S

(1) device-dependent limitation and (2) application-dependent top-
K criticality, respectively. In Algorithm 1, P is an array of input
partitions, and limits is an array of paired numbers - the limitation
number of a device and the index of the corresponding device
queue. limits is sorted by the first index in descending order. In
Algorithm 2, the two additional inputs other than P, K, and W, are
the threshold value of top-K and window size W, respectively. Any
given K has to be smaller than the W. And the result array Q from
each algorithm is an array of queues’ index numbers each HLOP
assigns to. For example, in the case of only GPU and Edge TPU
queues present in a SHMT system, the GPU queue has an index
value of 0, and the Edge TPU queue has an index value of 1.

The mechanism that SHMT uses to determine the criticality
leverages the insight of canary input from the input responsive-
ness approximation (IRA) technique [58]. IRA technique proposes
and proves that the computation result using canary input, a small
set of input data, can effectively approximate the overall computa-
tion quality. However, the complete IRA technique requires actual
computations on canary inputs that incur significant performance
overhead at the scheduler’s level. Therefore, SHMT only performs
the input evaluation from IRA and determines the criticality of an
input data partition using two metrics, data range (i.e., maximum
and minimum values) and standard deviation within the region.

As faithfully scanning through the input region increases the
computation overhead, SHMT proposes sampling. We examined
three different sampling mechanisms in this paper.

Algorithms 3, 4, and 5 summarize the three sampling methods
- striding, random, and reduction - QAWS uses, respectively. The
D of all options is the input data partition, the s for Algorithms 3

143

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Quad-core ARM A57 &

128 Maxwell GPU cores

Figure 5: The SHMT prototype platform

and 5 is a step size, and the N for Algorithms 3 and 4 is the desired
number of samplings.

4 THE SHMT SYSTEM PROTOTYPE

This paper evaluates SHMT using a custom-built prototype with
real hardware components and applications. This section describes
the hardware/software system architecture and the method of in-
corporating NPUs into this platform.

4.1 The system assembly

This paper built an exemplary SHMT prototype using NVIDIA’s Jet-
son Nano and Google’s Edge TPU. Figure 5 shows the photo of
the assembled system. The Jetson Nano module contains a quad-
core ARM A57 processor and 128 Maxwell GPU cores. We connect
an Edge TPU to the system via the m.2 slot on the back of the Jet-
son Nano processor/GPU module. The three types of processing
units, CPU, GPU, and Edge TPU exchange data through the on-
board PCle interface. The prototype system contains 4 GB 64-bit
LPDDR4 interface at 25.6 GB/s as the main memory. The system’s
main memory hosts the share data among CPU, GPU, and Edge
TPU. Edge TPU additionally contains 8 MB device memory. The
system assembly runs an Ubuntu Linux 18.04 with NVIDIA’s cus-
tomized 4.9.253-tegra kernel. We implemented the virtual SHMT
hardware device as a dynamically loadable kernel module.

We built the prototype using selected components and believe
that this prototype is representative of most use cases for the fol-
lowing reasons. First, the processing power and the available types
of processors and accelerators of this system platform resemble
the hardware components that modern smartphone or mobile de-
vices [31], allowing this platform to assess the real performance
of using SHMT on these scenarios. Second, the ratio of computing
power between Maxwell GPUs and Edge TPUs (472 GLOPS v.s.
4 TOPS) resembles those on data center servers (67 TFLOPS FP32 of
A100 and 275 TFLOPS of TPUv4) [47, 77], allowing this platform to
assess the relative performance of SHMT on cloud servers. Finally,
the most important reason is the availability of the hardware com-
ponents and customizing the software stack. As SHMT requires
changes in kernel modules, the evaluation platform must allow full
control for experimental purposes. However, Google only provides
access to data center TPUs through their cloud platforms without
permitting the creation of customized system modules. We can

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

only use the commercially available Edge TPUs to build the proto-
type platforms. Building SHMT using widely available hardware
components will also enable broader applications to the proposed
framework.

4.2 NPU implementations

Edge TPU can either serve as a matrix function accelerator as Sec-
tion 2.2.1 describes or implement an NPU as Section 2.2.2 describes.
In the case of using Edge TPU as matrix accelerators, we leverage
existing library to implement corresponding HLOPs [39].

Edge TPU can naturally implement the concept of NPU as the
target application of Edge TPU is inferencing NN models. Each
HLOP of Edge TPU using NPU mode is a pre-trained model for
the HLOP. Based on the microarchitecture of Edge TPUs, these
HLOP-NN models should (1) use multilayer perceptrons (MLPs)
with convolution and dense operators and sigmoid or relu as acti-
vation functions and (2) be the first found and the simplest topology
whenever the learning curve of a full precision TensorFlow model
training significantly improves throughout topology searching.

We use the following steps to construct an NPU model on Edge
TPU.

(1) Construct the training and validation datasets by run-
ning the target algorithm/function using high-performance
CPU/GPU platforms with randomly-generated input data
and collecting the output.

(2) Train the NPU-HLOP model using high-performance
CPU/GPU platforms.

(3) Perform post-training quantization for the trained model
into an Edge TPU-compatible model using TensorFlow Lite
(TFLite) and edgetpu_compiler [30].

(4) Test the Edge TPU-compatible model with validation dataset
again. If the Edge TPU-compatible model’s accuracy is sig-
nificantly lower than its version on the high-performance
platform, we will enable quantization-aware training mode
to re-train the model with weights in 8-bit precisions.

5 RESULTS

SHMT with QAWS achieves 1.95X speedup compared with the
case where we can only offload computation to the fastest accel-
erator. As SHMT leverages low-power hardware accelerators to
assist the program execution along with GPUs, SHMT reduces the
energy consumption by 51.0%. This section describes the speedup,
quality, and energy consumption of SHMT when running various
applications using the prototype Section 4 presents.

5.1 Benchmark applications

Table 2 lists the benchmark applications this paper uses to evaluate
SHMT and the sources of their baseline GPU implementations.
We select these applications as these applications have both high-
performance GPU and NPU implementations that we can gather
from public code repositories through our best-effort search. In
addition, these applications cover multiple application domains,
including image processing, signal processing, physics simulation,
medical imaging, and finance. Without otherwise mentioned, the
default input data size for each benchmark contains 8192x8192
randomly generated floating-point numbers.

144

Kuan-Chieh Hsu and Hung-Wei Tseng

Benchmark Category Baseline Implementation
Blackscholes Finance CUDA Examples [74]
DCT8x8 Image Processing CUDA Examples [74]
DWT Signal Processing Rodinia 3.1 [14]
FFT Signal Processing CUDA Examples [74]
Histogram Statistical Opencv 4.5.5 [11]
Hotspot Physics Simulation Rodinia 3.1 [14]
Laplacian Image Processing Opencv 4.5.5 [11]
Mean Filter(MF) | Image Processing Opencv 4.5.5 [11]
Sobel Image Processing Opencv 4.5.5 [11]
SRAD Medical Imaging CUDA Examples [74]

Table 2: Table of benchmarks

5.2 Speedup of end-to-end latency

Comparing the end-to-end latency of SHMT with optimized base-
line GPU implementations, SHMT with the best-performing QAWS
policy achieves 1.95x speedup. Figure 6 illustrates the speedup
of SHMT with various scheduling policies. In Figure 6 and the
following sections, we denote the variation of QAWS results as
QAWS-XY where X stands for hardware assignment policies using
(1) Device Limitation or (2)Top-K methods, and Y stands for the
sampling method, either (1)Stridding, (2)Uniform random sampling
or (3)Reduction.

We also include two policies that do not consider the quality of
results, even distribution, and work-stealing, as references. Naively
distributing HLOPs evenly between the GPU and the Edge TPU
would make the performance bounded by the slower hardware and
result in performance loss in 6 out of ten benchmark applications
where Edge TPU’s implementations are slower. In contrast, work-
stealing can achieve 2.07X speedup on average as work-stealing ad-
justs the workloads based on the consumption rate of HLOPs, allow-
ing faster hardware to perform more HLOPs and slower hardware
as an auxiliary device supporting the parallel execution. The per-
formance work-stealing policy also represents the optimal speedup
of SHMT without considering result qualities.

All QAWS policies in this paper sample and adjust workload
distributions on top of the basis of work-stealing. The speedup
that Figure 6 reports for each policy already includes the sampling
overhead. Among all SHMT policies with quality control mech-
anisms, QAWS-TS performs the best and achieves 1.95X speedup
compared with the GPU baseline on average. QAWS-TU seconds at
1.92% average speedup. Compared with the two policies QAWS-LU
and QAWS-LS that use the same sampling mechanism with initial
queue assignment policy using device limitations, the performance
of QAWS-TS and QAWS-TU reveals that “Top-K” is more suitable for
performance-critical workloads. Compared with device limitations,
the rank-based approach in Top-K may increase the amount of data
partitions that Edge TPU can perform in our platform since Edge
TPU can still work on some data partitions with wider value ranges
or variances than its hardware limitation. Regardless of using Top-K
or device limitations, reduction performs the worst due to the rela-
tively higher sampling overhead. As each SHMT policy implements
a subset of IRA-sampling [58], Figure 6 also includes that policy as
another baseline. Implementing the full features of IRA-sampling
will result in a 45% slowdown and render SHMT unusable.

Simultaneous and Heterogenous Multithreading

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

T T T T

o IRA-sampling === even distribution —— QAWS-TS == QAWS-TR —3 QAWS-LU ===
£ SW pipelining === work-stealing = QAWS-TU =3 QAWS-LS s QAWS-LR ===
Q
N~ 8o
82*
o I

m
523
ok
852
ST
°
& 1
o
%)

0 |
Blackscholes DCT8x8 DWT FFT Histogram Hotspot Laplacian MF Sobel SRAD GMEAN
Figure 6: The application speedup relative to the baseline GPU implementations

50% - : : : : : i
= S edgeTPU QAWS-TU &3 QAWS-LR 3 N
L IRA-sampling QAWS-TR —— oracle —— |
& 40% work-stealing QAWS-LS mmmm
" QAWS-TS QAWS-LU mmmm
©30% r J
]
Q
S5
—20% | 1
I
&
< 10% - 32,050,0,0:050:0:0.0 T 3 i
= Sgeoirtih g e

0%

Blackscholes DCT8x8 DWT FFT Histogram

Hotspot

Laplacian MF Sobel SRAD GMEAN

Figure 7: The Mean Absolute Percentage Errors (MAPEs) for SHMT applications

Figure 6 also includes the performance of optimized GPU imple-
mentations with software pipelining as another reference design.
Software pipeline can only achieve 1.25X speedup. For compute-
intensive workloads, software pipelining cannot compete with
SHMT. Software pipelining is effective for Blacksholes and MF
as computation becomes relatively minor in these applications.
However, this is not a limitation of SHMT. SHMT can potentially
parallelize the data preprocessing part to further speed up these
applications if appropriate hardware and algorithm exist.

5.3 Quality of QAWS policies

This section evaluates the quality of results for all proposed QAWS
policies and their sampling mechanisms. We quantitatively measure
result qualities using Mean Absolute Percentage Error (MAPE) and
structural similarity index measure (SSIM). The experimental result
shows all proposed policies can effectively improve the quality of
results to a similar level.

Figure 7 shows the MAPEs of all QAWS mechanisms. In addition
to SHMT policies and the baseline IRA-sampling mechanisms, we
create an “oracle” scenario where we manually identify critical input
data regions and assign HLOPs accordingly without considering the
performance. If the program can only use less precise Edge TPUs,
the MAPE is 5.15% on average. With careful manual optimizations,
the MAPE of the Oracle assignment is 1.77%. The MAPE of the
baseline IRA-sampling is 1.85%. Without using any QAWS policies,
the pure work-stealing approach can deliver the result with an
average MAPE of 2.85%.

145

For the proposed QAWS policies, the MAPEs of all policies are
lower than 2% on average, close to the Oracle assignment and IRA-
sampling. Furthermore, the difference in MAPEs between the QAWS
policy with the lowest and the QAWS policy with the highest end-
to-end latency is a marginal 0.07%, implying that a high-overhead
sampling mechanism is overkill for most cases.

Due to the various result distributions of each application, the
MAPEs across different applications vary significantly. For example,
resulting images of edge detection type of applications, Sobel filter,
and Laplacian, contain vast amounts of near-zero values represent-
ing non-edge areas. Thus, any moderately approximated non-edge
value will contribute a much higher percentage of the error rate to
the overall MAPE. The limitation in dealing with close-to-zero is a
well-known issue of MAPE [53].

To more effectively evaluate the quality of results in image data
containing near-zero values, we introduced SSIM as an additional
metric. SSIM is a measure that predicts perceived visual quality,
and an SSIM score of more than 0.95 is the generally agreed thresh-
old of very good quality. We use SSIM for the six image-related
workloads, DCT8x8, DWT, Laplacian, Mean Filter, Sobel filter, and
SRAD. Figure 8 presents the SSIMs of these applications. All QAWS
policies can maintain higher than 0.97 SSIMs as the average SSIM
results across these applications are 0.9916, 0.9924, 0.9949, 0.9873,
0.9829, and 0.9798 for QAWS-TS, QAWS-TU, QAWS-TR, QAWS-
LS, QAWS-LU, and QAWS-LR, respectively. All QAWS policies can
achieve SSIM results close to the oracle of 0.9957, especially the
top-K QAWS policies. This set of experiments again shows that
using high-overhead mechanisms is not necessary in most cases.

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Kuan-Chieh Hsu and Hung-Wei Tseng

dge TPU B work-stealing = QAWS-TU /3 QAWS-LS QAWS-LR 3
IRA-sampling = QAWS-TS QAWS-TR —— QAWS-LU m=mm oracle ——3
803335038 3 23333
s 533338888¢ 58 § +x38888 2 ex%, &
1 E §c§dddgggo s E§§E % di;gddddcﬁ wmggﬂz5§mj’i
S g 82%c o 8§23 g Ry
3 g N E 3
g 5
N ° g
= O
_ 3
= 3
]
2 5
So g
@09 3]
»e
5
<
0.8 - -
DCT8x8 DWT Laplacian MF Sobel SRAD GMEAN
Figure 8: The Structural Similarity Index Measures (SSIMs) for image-related SHMT applications
. - - baseline active energy = SHMT idle energy ——1
020 | g;‘, = g}? = g}f — 1 baseline idle energy E=== SHMT EDP
219 == 216 mmmm @ ; SHMT active energy
£ ' 2 o
Wm m Q
@ n _07 S
<2 ot0f - oT o
5 g &0
S O] gos
3 oos| 1 2% 04
Sh 2
o) 6 0.3
>
0.00 o 3z g‘?
123 «© B c [T o) () 2 .
$ 2L 5§ 8 8 5 8 2 % == [i
5 &5 ° g & £ o 6 = N 8 @ £ F £ B § L B O Z
g ° 2 * 3 2 s o P & & £ § § = 8 £ §
g : B E : £ B g & & 3 5 £
@ S g2 0 2 T g 0]
4 S T -
(@ @
50 e e s S ———— . .
@ T R T — Figure 10: Energy consumption and energy-delay products
3 a0 L 220 —— o8 /3 216 == 24 = || (EDP)
=
08
2% osof i
@ . - - , .
Gy We changed the sampling rate from 272! to 2714, As SHMT’s policy
o E 2or] already reduces the post-processing after each sample, QAWS-TS
5 . o .
a2 achieves competitive performance regardless of the sampling rate.
=] O T . . .
s | | However, the MAPEs decrease monotonically until the sampling
;J.’_ 0.0 rate reaches 271°. The result suggests that the sampling rate of 271
% g % E £ g § = 8 % E can generate significant enough input samples for QAWS policies
<= > 2 & »? . o . .
3 8 g 2 e ° Z without sacrificing performance gain considerably.
3 T -
o .
5.5 Energy Consumption
(b)

Figure 9: (a) Quality v.s. QAWS sampling rates, (b) Speedup
v.s. QAWS sampling rates

Since all QAWS policies deliver a similar level of result quali-
ties but QAWS-TS obtains the best performance compared with all
QAWS policies, in the rest of the paper, we use QAWS-TS by default.

5.4 QAWS sampling rate

The number of samples during each sampling phase is another
parameter that helps optimize the sampling overhead. Figure 9(a)
and Figure 9(b) show the speedup and MAPEs when the sampling
rate (the portion as samples from the raw datasets) of our best-
performing QAWS-TS changes, respectively. A sampling rate of
271 means we select 256 samples from a 2048x2048-sized input.

146

By reducing the total execution time and offloading computation to
a lower-power-consuming Edge TPU, SHMT has a strong potential
for energy saving. We connect the power source of the prototype
through a power meter and collect the periodical measurements
from the meter. Figure 10 reports the breakdown of energy consump-
tion of both GPU baseline and SHMT with QAWS-TS. The same
figure also shows the relative energy-delay products (EDP) of SHMT
with QAWS-TS, compared against the GPU baseline. SHMT with
QAWS-TS reduces energy consumption and EDP by 51.0% and 78.0%
on average, respectively.

The peak power consumptions of three cases including (1) plat-
form idling, (2) GPU baseline, and (3) the SHMT with QAWS-TS
are 3.02 watts, 4.67 watts, and 5.23 watts, respectively. Although
SHMT with QAWS-TS reaches higher peak power since both GPU
and Edge TPU are functioning during runtime than GPU baseline,

Simultaneous and Heterogenous Multithreading

T) T © T T
120 o 2 8 = 2 8
S ~ 3 = — <
S - —

1.00

0.80

0.60

0.40

0.20

Memory Footprint Ratio
Over GPU Baseline

0.00

DCT8x8
DWT

FFT
Histogram
Hotspot
Laplacian
MF

Sobel
SRAD
GMEAN

[}
Q£
[}
=
3]
12}
X
3]
L
&)

Figure 11: SHMT’s Memory Footprint (Normalized to GPU

Baseline)
Benchmark | Communication || Benchmark | Communication
Overhead(%) Overhead(%)

Blackscholes 0.77% DCT8x8 0.89%

DWT 0.66% FFT 1.03%

Histogram 0.47% Hotspot 1.04%

Laplacian 0.49% MF 0.67%

Sobel 0.79% SRAD 0.59%

GMEAN 0.71%

Table 3: Communication Overhead

on average, the 51.0% energy reduction of SHMT with QAWS-TS
comes from the 1.95X speedup that reduces the period consuming
the power with 5.23 Watt at peak.

5.6 Memory and communication overhead

Figure 11 presents the total memory footprint when running bench-
mark applications at each process’s virtual memory abstraction
level. As the specialized logic in Edge TPUs provides more acceler-
ated functions in hardware, Edge TPUs require less system memory
than equivalent implementations on GPUs. For example, the buffers
in Edge TPU processing elements can replace the memory in storing
the intermediate results of vector products that GPUs require. As a
result, the memory footprint of SHMT counter-intuitively reduces
for applications with significant amounts of HLOPs on Edge TPUs,
despite the additional buffers for inputs to Edge TPUs.

Table 3 describes the communication overhead resulting from
the nature of peripheral devices like Edge TPUs. The computing
resources in SHMT only spend about or less than 1% of the time
waiting for data exchanges for the following reasons. (1) The paral-
lel programming model of SHMT promotes data-parallel algorithms
like matrix semiring tiling ones that implicitly have low data ex-
changes among parallel chunks of computing. (2) The computation
time is relatively longer on each processing resource than the data
exchange time, allowing mechanisms like double buffering to hide
the latency. (3) The amount of HLOPs from each application al-
lows the SHMT runtime system to easily oversubscribe available
processing resources and cover the latency of data exchange.

5.7 Discussion on SHMT’s limitation

Figure 12 shows the speedups of SHMT under QAWS-TS variation
when problem sizes of benchmarks vary. Within the tested problem

147

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Blackscholes —+— Histogram —l— Sobel
DCT8x8 —*— Hotspot —5— SRAD —v—
Q | Laplacian —¥ GMEAN —@—
£ 4 FFT MF
[]
oo
g
S>3
om
[OX%] /R—\,\%/ /
A ¥
Qo2
85 g :
oT = =
] == ; //: '//-<":£
[0
0]
o
(2]
Oy > > > : : :
< © < © = % % <§r
- © el - ©

Figure 12: Speedup v.s. problem sizes

size interval, from 4K to 64M, the speedup increases as the problem
size increases. We did not go beyond 64M as the working set size of
GPU kernels in some applications will surpass the physical memory
limitation and crashes, not the limitation of SHMT. SHMT is more
effective for larger problem sizes as larger problem size provides
more parallelism among HLOPs for various devices.

Reviewing the result in Section 5.6 presents, SHMT does not
lead to significant memory and communication overhead if we can
leverage the embarrassingly data-level massive parallelism as the
applications we demonstrated in this paper. Therefore, the adoption
of SHMT simply helps the system to enjoy more parallel processing
resources to tackle larger problem sizes without significantly further
burdening the system. In other words, the limitation of SHMT is
not the model itself but more on whether the programmer can
revisit the algorithm to exhibit the type of parallelism (e.g., matrix
tiling [70, 82, 106]) that makes SHMT easy to exploit.

6 RELATED WORK

Existing runtime for parallel programming on heteroge-
neous systems. Popular domain-specific languages, including Ten-
sorFlow [1] and Pytorch [80], allow the automatic delegation of
domain-specific functions to one particular accelerator. Suppose
the back-end implementation of functions can exploit parallelism
among the delegated type of accelerators. In that case, these frame-
works can concurrently execute pieces of computation on multiple
devices but the same type. These frameworks can also employ
pipeline parallelism to overlap different domain-specific functions
with concurrency. However, none of the existing domain-specific
language frameworks can employ multiple types of accelerators
simultaneously in the manner that SHMT can perform. IR-level opti-
mizations like XLA [65], or model-level optimizations like TVM [15]
and AutoTVM [16] do not consider the simultaneous use of hetero-
geneous devices but can only optimize for a single type of device
for each code region.

Heterogeneous programming frameworks like OpenCL [88] al-
low programmers to compose a single code version but generate bi-
nary running on multiple hardware devices. However, the OpenCL
does not generate code that can simultaneously execute on hetero-
geneous devices. Though programmers can use OpenCL or other
alternatives to create programs running in SHMT model manually,
the resulting program still lacks scheduling flexibility and quality
assurance.

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

OpenMP [13] provides an automatic parallel programming model
that enables multithreading execution on homogeneous multi-
processors. Through adding pragmas, OpenMP can exploit data-
level parallelism and create homogeneous threads. SHMT can lever-
age the identified data-level parallelism and create parallel exe-
cution using HLOPs to make use of multiple types of hardware.
However, without the abstraction and mechanisms that SHMT
framework presents, existing homogeneous programming frame-
works cannot take advantage of the presence of heterogeneous
hardware.

Existing task distribution solutions for heterogeneous sys-
tems utilizing multiple accelerators in the system use the following
methods.

(1) Partitioning one application and mapping the partitions onto
multiple accelerators of the same type (such as GPUs) in the com-
puter system for concurrent execution [5, 18, 24, 50, 51, 64, 72, 73,
79, 81, 86, 104, 105, 110]. Some works extend the same method to
computer clusters such as distributed deep learning training/infer-
encing [26, 32, 38, 42, 45, 57], federated learning [35, 54, 93, 100], de-
centralized ad-hoc computing [23], inter-datacenter scheduling [83],
and scalable computing on supercomputer environments [84, 94].
Although these methods can achieve higher performance with par-
allel execution of multiple devices of the same type, they do not
consider the simultaneous use of the other types of heterogeneous
accelerators on the same system as SHMT does.

(2) Extending method (1) to multiple accelerators with different
configurations or versions [10, 17, 72, 85, 90, 107] but still falling
into the same type. HDA [56] can configure multiple heterogeneous
dataflow accelerators for different neural-network layers where
each only differs from others with different PE configurations and
connecting topology. HASCO [102] can efficiently generate systolic
array architectures with different configurations for executing var-
ious tensor computation kernels. Again works using this method
do not overcome the challenge of programming model discrep-
ancy among devices. SHMT presents a parallel programming and
execution model addressing this challenge.

(3) Allowing limited concurrent usage of multiple types of ac-
celerators only when the task execution triggers multiple types of
dedicated functions at the same time [9, 55, 91, 98]. However, the
behavior of the program’s execution flow and the diverse charac-
teristics of dedicated functions mapping to DSAs limit the simulta-
neous level of heterogeneous execution. Whereas SHMT provides a
machine-independent programming model for task partitions such
that the concept of SHMT can achieve higher hardware utilization
and allow broader applicability for accelerators.

Heterogeneous computing for AI/ML workloads. The high
computing demands of AI/ML workloads motivating the develop-
ment of AI/ML accelerators provoke many performance optimiza-
tion techniques that utilize heterogeneous accelerators. Examples
are (1) tensor tiling [44, 108, 109], (2) pipelining [29, 101], (3) op-
eration fusing [2, 75], (4) neural architecture searching (NAS) [61-
63, 92, 95], and (5) model quantization/compression [4, 7, 28, 33, 43,
87,89, 96, 97]. Essentially, these techniques re-consider the computa-
tional graphs of AI/ML workloads for better workload-to-hardware
matchings that exploit parallelisms. SHMT is orthogonal to these
techniques as SHMT allows extensions upon these software-based

148

Kuan-Chieh Hsu and Hung-Wei Tseng

optimizations that explore opportunities enabling intra-kernel con-
current utilization on multiple heterogeneous accelerators.
Existing quality assurance policies rely on several methods in-
cluding (1) taking advantage of the precision-tolerable characteristic
of workloads themselves like data precision adaptation on AI/ML
models [4, 33, 96], (2) providing numerical composition solutions
to increase resulting precision such as iterative refinement [34] and
extended precision [27], or (3) performing mixed-precision compu-
tation [21, 52, 69, 99, 103] or providing multi-resolution data [41]
to adjust overall required quality according to needs. Existing ap-
proximated techniques include loop perforation [60] and numerical
approximation. Another example is IRA [58] which uses canary
inputs to dynamically select the most effective approximation tech-
nique for speedup before target output quality (TOQ) violation
happens.

SHMT is orthogonal to these quality assurance policies as our
QAWS policies are low-overhead sampling methods without actual
function execution runs. As long as any aforementioned policy has
low-overhead and can avoid using application-specific prior knowl-
edge to assure quality, they can substitute QAWS as a replaceable
module.

This work needs additional quality assurance simply because
the hardware performs approximate computing rather than the
limitation of the concept SHMT itself. Conventional homogenous
simultaneous multithreading hardware does not need to cope with
quality assurance. In contrast, SHMT has to ensure quality because
of the potential precision mismatch of underlying architectures.

7 CONCLUSION

Modern computer systems are already heterogeneous and consist
of several types of hardware architectures. Conventional execution
models usually under-utilize these hardware devices by only offload-
ing certain workloads that depend on the kernel’s characteristics
and performance requirements.

This paper presents SHMT, a framework for heterogeneous
systems to enable a simultaneous and heterogeneous execution
scheme. SHMT automatically partitions given VOPs of a workload
into HLOPs to allow concurrent execution of these sub-kernels on
heterogeneous devices. By integrating the concept of neural gener-
alization, SHMT enables devices such as Edge TPU that have limited
programming capabilities to contribute their computational powers.
Also, QAWS policy mitigates the precision mismatch issue from
accelerators with low data precision causing the potential result
quality degradation. Throughout the low-overhead re-scheduling
behavior of QAWS introduced on HLOPs, SHMT achieves less than
2% MAPE error across applications on average via prioritizing tasks
over criticality. Also, SHMT achieves 1.95X speedup and 51.0%
energy reduction by enabling simultaneous and heterogeneous
execution of architectures compared to GPU baseline.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their
helpful comments. This work was sponsored by the two National
Science Foundation (NSF) awards, CNS-2007124 and CNS-2231877.
This work was also supported by Intel Corporation and new faculty
start-up funds from University of California, Riverside.

Simultaneous and Heterogenous Multithreading

A ARTIFACT APPENDIX
A.1 Abstract

This document describes the artifact of "Simultaneous and Het-
erogenous Multithreading" and the process of reproducing the ex-
perimental results in this paper. To run the benchmarks that this
paper evaluates, the evaluator must have a computer equipped
with (1) NVIDIA’s GPU, (2) Google’s Edge TPU, and (3) capable of
running a Linux distribution supporting the software stacks for the
GPU and Edge TPU. To build a prototype virtual hardware device
that supports SHMT in hardware, the evaluator must also have
a prototype similar to Jetson Nano platform where the platform
contains (1) a Cortex-A57 ARM processor, (2) a 128-core Maxwell
NVIDIA GPU that is capable of running the GPU implementation
of HLOP kernels, and (3) a Edge TPU that is capable of running the
NPU implementation of HLOP kernels.

A.2 Artifact check-list (meta-information)

e Program: Blackscholes [74], Discrete Cosine Transform
(DCT8x8) [74], Discrete Wavelet Transform (DWT) [14], Fast
Fourier Transform (FFT) [74], Histogram [11], Hotspot [14],
Laplacian [11], Mean Filter(MF) [11], Sobel [11], Speckle Reducing
Anisotropic Diffusion (SRAD) [74]

e Compilation: cmake 3.10, gcc 7.5.0

e Data set: Synthetic datasets from each program’s dataset generator.

Run-time environment: Ubuntu 18.04 with NVIDIA’s customized

4.9.253-tegra kernel, CUDA 10.2, nvidia-docker 20.10.7

e Hardware: A Jetson Nano (4 GB ram) platform equipped with Edge
TPU

e Execution: To reduce the disturbance from another workload, we

recommend running experiments with a sole user.

Metrics: End-to-end latency (second), Mean Absolute Percentage

Error (MAPE)

e Output: Each benchmark program will display its execution result
through the console or log files.

e How much time is needed to complete experiments (approxi-

mately)?: 1- 2 hours

Publicly available?: Yes

Code licenses (if publicly available)?: We will be using an MIT

license for our code.

Data licenses (if publicly available)?: The datasets are publicly

available through their original licensing terms.

Archived (provide DOI)?: https://zenodo.org/record/8210452

A.3 Description

A3.1
https://zenodo.org/record/8210452. For the latest version, the user
can access our GitHub page: https://github.com/escalab/SHMT

How to access. We archive the source code and workloads at

A.3.2 Hardware dependencies. To build the SHMT prototype sys-
tem, the user will need the hardware components and the construc-
tion guide as Section 4.1 mentions. In summary, the experimental
Jetson Nano-based platform contains the following hardware com-
ponents.

e Processor: Cortex-A57 ARM processor
o DRAM: 4 GB 64-bit LPDDR4

e GPU: 128-core Maxwell NVIDIA GPU
e Edge TPU: M.2 Accelerator A+E key

149

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

A.3.3 Software dependencies. The SHMT artifact relies on the fol-
lowing software components.

e CUDA 10.2
e nvidia-docker 20.10.7

Since the SHMT artifact leverages nvidia-docker to avoid manu-
ally installing many software dependencies, the following software
dependencies are required if nvidia-docker is not used during com-
pilation.

cmake 3.10 or newer
gee 7.5.0

Opencv 4.5.5

CUDA 10.2
OpenMP

A.3.4 Models. Since this work implements the Edge TPU ker-
nels using NPU [25] as Section 4.2 mentions, the user can refer
to NPU [25] for how to generate neural-network-based kernel mod-
els. To reduce the workflow time of preparing the Edge TPU kernels,
we prepare pre-trained kernel models under models/ directory for
this particular experiment.

The user can refer to src/Python/generate_kernel_model.py
for more details about the pre-train workflow.

A.4 Installation

Before installing any SHMT software/library, the user should install
the software components as Section A.3.3 mentions. Then, the user
can install the SHMT artifact through the following steps.

git clone https://github.com/escal/SHMT

sh scripts/docker_setup_partition.sh

sh scripts/docker_launch_partition.sh
And within the docker container, do the following steps.

mkdir build

cd build

cmake ..

make -j4
This step will generate the example executable that utilizes SHMT
library.

A.5 Experiment workflow
To run the example executable named gpgtpu, the user can leverage
the existing shell scripts under scripts/ called AE_run. sh to begin
the process.

sh ../scripts/AE_run.sh

A.6 Evaluation and expected results

A.6.1 Evaluate Results. The evaluator can redirect the outputs to
a log file and carefully examine the results.

A.6.2 Expected Results. Compared to the GPU baseline, SHMT
with QAWS-TS policy can offer 1.95X speedup with MAPE equals
to 1.98% on average. Please refer to Section 5 for the expected
results.

A.7 Notes

To build the dependent shared library libgptpu_utils.so from
source code that provides generic APIs interacting with Edge TPU,

https://zenodo.org/record/8210452
https://github.com/escalab/SHMT

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

which the artifact already provides under the 1ib/aarch64 direc-
tory, the user can additionally download the submodules when
cloning the artifact. Please follow the installation instructions un-
der edgetpu/ for more details.

A.8 Methodology

Submission, reviewing and badging methodology:

e https://www.acm.org/publications/policies/artifact-review-
and-badging-current

o http://cTuning.org/ae/submission-20201122.html

o http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaogiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. https://www.tensorflow.org/ Software available from
tensorflow.org.
Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. MICRO ’16.
Fused-layer CNN accelerators. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture.
Renée St. Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, Hadi
Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger. ISCA "14. General-
purpose code acceleration with limited-precision analog computation. In 2014
ACM/IEEE 41st International Symposium on Computer Architecture. https://doi.
org/10.1109/ISCA.2014.6853213
Sam Amiri, Mohammad Hosseinabady, Simon McIntosh-Smith, and Jose Nunez-
Yanez. DATE ’18. Multi-precision convolutional neural networks on heteroge-
neous hardware. In 2018 Design, Automation Test in Europe Conference Exhibition.
[5] Sam Amiri, Mohammad Hosseinabady, Andres Rodriguez, Rafael Asenjo, Ange-
les Navarro, and Jose Nunez-Yanez. FPL *18. Workload Partitioning Strategy
for Improved Parallelism on FPGA-CPU Heterogeneous Chips. In 2018 28th
International Conference on Field Programmable Logic and Applications.
[6] Analog Devices, Inc. 2023. Analog Devices’ Processors and DSP. https://www.
analog.com/en/product-category/processors-dsp.html.
[7] Renzo Andri, Beatrice Bussolino, Antonio Cipolletta, Lukas Cavigelli, and Zhe
Wang. MICRO °22. Going Further With Winograd Convolutions: Tap-Wise
Quantization for Efficient Inference on 4x4 Tiles. In 2022 55th IEEE/ACM Inter-
national Symposium on Microarchitecture.
Apple Inc. 2020. Apple M1. https://www.apple.com/newsroom/2020/11/apple-
unleashes-m1/.
Thilini Kaushalya Bandara, Dhananjaya Wijerathne, Tulika Mitra, and Li-Shiuan
Peh. ASPLOS *22. REVAMP: A Systematic Framework for Heterogeneous CGRA
Realization. In Proceedings of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems.
Saambhavi Baskaran, Mahmut Taylan Kandemir, and Jack Sampson. MICRO
’22. An architecture interface and offload model for low-overhead, near-data,
distributed accelerators. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture.
G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).
John Burgess. 2020. RTX on—The NVIDIA Turing GPU. IEEE Micro 40, 2 (2020),
36-44. https://doi.org/10.1109/MM.2020.2971677
Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and
Jeff McDonald. 2001. Parallel programming in OpenMP. Morgan Kaufmann
Publishers Inc.
Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. IISWC ’09. Rodinia: A benchmark suite for
heterogeneous computing. In 2009 IEEE International Symposium on Workload
Characterization.
Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. OSDI °18. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation.

=

B3

[4

=

[9

[10

[11

[12

(13

=
=t

[15

150

[16]

[17

[18

[19

[20

[21

[22

[23

[24

[25]

[26]

[27

[28

[29]

[30
[31

[32

[33]

[34

[35

[36]

[37]

[38]

Kuan-Chieh Hsu and Hung-Wei Tseng

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. NIPS *18. Learning to Opti-
mize Tensor Programs. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems.

Xinyu Chen, Yao Chen, Feng Cheng, Hongshi Tan, Bingsheng He, and Weng-Fai
Wong. MICRO ’22. ReGraph: Scaling Graph Processing on HBM-enabled FPGAs
with Heterogeneous Pipelines. In 2022 55th IEEE/ACM International Symposium
on Microarchitecture.

Yujeong Choi and Minsoo Rhu. HPCA °20. PREMA: A Predictive Multi-Task
Scheduling Algorithm For Preemptible Neural Processing Units. In 2020 IEEE
International Symposium on High Performance Computer Architecture.

George Cybenko. 1989. Approximation by superpositions of a sigmoidal func-
tion. Mathematics of control, signals and systems (1989).

Abdul Dakkak, Cheng Li, Jinjun Xiong, Isaac Gelado, and Wen-mei Hwu. ICS
’19. Accelerating Reduction and Scan Using Tensor Core Units. In Proceedings
of the ACM International Conference on Supercomputing.

F. Fernandes dos Santos, C. Lunardi, D. Oliveira, F. Libano, and P. Rech. HPCA
’19. Reliability Evaluation of Mixed-Precision Architectures. In 2019 IEEE Inter-
national Symposium on High Performance Computer Architecture.

Sultan Durrani, Muhammad Saad Chughtai, Mert Hidayetoglu, Rashid Tahir,
Abdul Dakkak, Lawrence Rauchwerger, Fareed Zaffar, and Wen-mei Hwu. PACT
’21. Accelerating Fourier and Number Theoretic Transforms using Tensor Cores
and Warp Shuffles. In 2021 30th International Conference on Parallel Architectures
and Compilation Techniques. https://doi.org/10.1109/PACT52795.2021.00032
Janick Edinger, Martin Breitbach, Niklas Gabrisch, Dominik Schéfer, Christian
Becker, and Amr Rizk. IPDPS *21. Decentralized Low-Latency Task Schedul-
ing for Ad-Hoc Computing. In 2021 IEEE International Parallel and Distributed
Processing Symposium.

Venmugil Elango. IPDPS °21. Pase: Parallelization Strategies for Efficient DNN
Training. In 2021 IEEE International Parallel and Distributed Processing Sympo-
sium.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. MICRO ’12.
Neural Acceleration for General-Purpose Approximate Programs. In 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture.

Yuping Fan, Zhiling Lan, Paul Rich, William Allcock, and Michael E. Papka.
IPDPS ’22. Hybrid Workload Scheduling on HPC Systems. In 2022 IEEE Interna-
tional Parallel and Distributed Processing Symposium.

Boyuan Feng, Yuke Wang, Guoyang Chen, Weifeng Zhang, Yuan Xie, and
Yufei Ding. PPoPP "21. EGEMM-TC: Accelerating Scientific Computing on
Tensor Cores with Extended Precision. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.

Boyuan Feng, Yuke Wang, Tong Geng, Ang Li, and Yufei Ding. SC "21. APNN-
TC: Accelerating Arbitrary Precision Neural Networks on Ampere GPU Tensor
Cores. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis.

Petko Georgiev, Nicholas D. Lane, Kiran K. Rachuri, and Cecilia Mascolo. Mobi-
Com ’16. LEO: Scheduling Sensor Inference Algorithms across Heterogeneous
Mobile Processors and Network Resources. In Proceedings of the 22nd Annual
International Conference on Mobile Computing and Networking.

Google LLC. 2020. edgetpu compiler. https://coral.ai/docs/edgetpu/compiler.
Google LLC. 2022. Google Pixel 6a. https://store.google.com/product/pixel_6a?
hl=en-US.

Xiuxian Guan, Zekai Sun, Shengliang Deng, Xusheng Chen, Shixiong Zhao,
Zongyuan Zhang, Tianyang Duan, Yuexuan Wang, Chenshu Wu, Yong Cui,
Libo Zhang, Yanjun Wu, Rui Wang, and Heming Cui. MICRO ’22. ROG: A High
Performance and Robust Distributed Training System for Robotic IoT. In 2022
55th IEEE/ACM International Symposium on Microarchitecture.

Cong Guo, Chen Zhang, Jingwen Leng, Zihan Liu, Fan Yang, Yunxin Liu, Minyi
Guo, and Yuhao Zhu. MICRO °22. ANT: Exploiting Adaptive Numerical Data
Type for Low-bit Deep Neural Network Quantization. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture.

Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. SC
’18. Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-
Precision Iterative Refinement Solvers. In International Conference for High
Performance Computing, Networking, Storage and Analysis.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. NIPS °20. Group
Knowledge Transfer: Federated Learning of Large CNNs at the Edge. In Pro-
ceedings of the 34th International Conference on Neural Information Processing
Systems.

Nhut-Minh Ho and Weng-Fai Wong. HPEC ’17. Exploiting half precision arith-
metic in Nvidia GPUs. In 2017 IEEE High Performance Extreme Computing Con-
ference. https://doi.org/10.1109/HPEC.2017.8091072

Pedro Holanda and Hannes Miihleisen. DaMoN ’19. Relational Queries with
a Tensor Processing Unit. In Proceedings of the 15th International Workshop on
Data Management on New Hardware.

Xueyu Hou, Yongjie Guan, Tao Han, and Ning Zhang. IPDPS ’22. DistrEdge:
Speeding up Convolutional Neural Network Inference on Distributed Edge De-
vices. In 2022 IEEE International Parallel and Distributed Processing Symposium.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://www.tensorflow.org/
https://doi.org/10.1109/ISCA.2014.6853213
https://doi.org/10.1109/ISCA.2014.6853213
https://www.analog.com/en/product-category/processors-dsp.html
https://www.analog.com/en/product-category/processors-dsp.html
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://doi.org/10.1109/MM.2020.2971677
https://doi.org/10.1109/PACT52795.2021.00032
https://coral.ai/docs/edgetpu/compiler
https://store.google.com/product/pixel_6a?hl=en-US
https://store.google.com/product/pixel_6a?hl=en-US
https://doi.org/10.1109/HPEC.2017.8091072

Simultaneous and Heterogenous Multithreading

[39] Kuan-Chieh Hsu and Hung-Wei Tseng. SC "21. Accelerating Applications Using

[40

[41

(42

(43

(44

[45

[47

(48

[50

(51

[52

(54

(55

Edge Tensor Processing Units. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis.

Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. SIGMOD ’22. TCUDB: Acceler-
ating Database with Tensor Processors. In Proceedings of the 2022 International
Conference on Management of Data.

Yu-Ching Hu, Murtuza Taher Lokhandwala, Te I., and Hung-Wei Tseng. MICRO
’19. Dynamic Multi-Resolution Data Storage. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture.

Zhiming Hu, Ahmad Bisher Tarakji, Vishal Raheja, Caleb Phillips, Teng Wang,
and Igbal Mohomed. EMDL ’19. DeepHome: Distributed Inference with Het-
erogeneous Devices in the Edge. In The 3rd International Workshop on Deep
Learning for Mobile Systems and Applications.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-
drew Howard, Hartwig Adam, and Dmitry Kalenichenko. CVPR ’18. Quanti-
zation and Training of Neural Networks for Efficient Integer-Arithmetic-Only
Inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

Zhihao Jia, Matei Zaharia, and Alex Aiken. MLSys ’19. Beyond Data and Model
Parallelism for Deep Neural Networks.. In Proceedings of Machine Learning and
Systems.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
OSDI °20. A Unified Architecture for Accelerating Distributed DNN Training in
Heterogeneous GPU/CPU Clusters. In 14th USENIX Symposium on Operating
Systems Design and Implementation.

Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B. Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu
Ma, Thomas Norrie, Nishant Patil, Sushma Prasad, Cliff Young, Zongwei Zhou,
and David Patterson. ISCA *21. Ten Lessons From Three Generations Shaped
Google’s TPUv4i : Industrial Product. In 2021 ACM/IEEE 48th Annual Interna-
tional Symposium on Computer Architecture.

Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng
Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Cliff
Young, Xiang Zhou, Zongwei Zhou, and David Patterson. ISCA ’23. TPU v4:
An Optically Reconfigurable Supercomputer for Machine Learning with Hard-
ware Support for Embeddings. In 2023 ACM/IEEE 50th Annual International
Symposium on Computer Architecture.

Norman P Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil,
James Laudon, Cliff Young, and David Patterson. 2020. A Domain-specific
Supercomputer for Training Deep Neural Networks. In Communications of the
ACM.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley,
Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gotti-
pati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Ka-
plan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller,
Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. ISCA ’17. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture. https://doi.org/10.1145/3079856.3080246
Liu Ke, Udit Gupta, Mark Hempstead, Carole-Jean Wu, Hsien-Hsin S. Lee, and
Xuan Zhang. HPCA ’22. Hercules: Heterogeneity-Aware Inference Serving for
At-Scale Personalized Recommendation. In 2022 IEEE International Symposium
on High-Performance Computer Architecture.

Hamidreza Khaleghzadeh, Ravi Reddy Manumachu, and Alexey Lastovetsky.
2020. A Hierarchical Data-Partitioning Algorithm for Performance Optimiza-
tion of Data-Parallel Applications on Heterogeneous Multi-Accelerator NUMA
Nodes. IEEE Access (2020).

Daya S Khudia, Babak Zamirai, Mehrzad Samadi, and Scott Mahlke. ISCA ’15.
Rumba: An online quality management system for approximate computing. In
2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture.

Sungil Kim and Heeyoung Kim. 2016. A new metric of absolute percentage
error for intermittent demand forecasts. International Journal of Forecasting
(2016).

Young Geun Kim and Carole-Jean Wu. MICRO ’21. AutoFL: Enabling
Heterogeneity-Aware Energy Efficient Federated Learning. In 54th Annual
IEEE/ACM International Symposium on Microarchitecture.

Anish Krishnakumar, Samet E. Arda, A. Alper Goksoy, Sumit K. Mandal, Umit Y.
Ogras, Anderson L. Sartor, and Radu Marculescu. 2020. Runtime Task Sched-
uling Using Imitation Learning for Heterogeneous Many-Core Systems. IEEE

151

[56

[57

[58

[59

[60

[61]

[62]

[63

[64

[65

[66

[67

[68

[69

[70]

[71

[72

[73

[74]

[75]

[76

[77

[78]

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Transactions on Computer-Aided Design of Integrated Circuits and Systems (2020).
Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin
Chen, and Vikas Chandra. HPCA ’21. Heterogeneous Dataflow Accelerators
for Multi-DNN Workloads. In 2021 IEEE International Symposium on High-
Performance Computer Architecture.

Matthias Langer, Zhen He, Wenny Rahayu, and Yanbo Xue. 2020. Distributed
Training of Deep Learning Models: A Taxonomic Perspective. In IEEE Transac-
tions on Parallel and Distributed Systems.

Michael A. Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke, Jason Mars,
and Lingjia Tang. PLDI ’16. Input Responsiveness: Using Canary Inputs to
Dynamically Steer Approximation. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation.

Binrui Li, Shenggan Cheng, and James Lin. CLUSTER °21. tcFFT: A Fast Half-
Precision FFT Library for NVIDIA Tensor Cores. In 2021 IEEE International
Conference on Cluster Computing. https://doi.org/10.1109/Cluster48925.2021.
00035

Shikai Li, Sunghyun Park, and Scott Mahlke. ICS *18. Sculptor: Flexible Approx-
imation with Selective Dynamic Loop Perforation. In Proceedings of the 2018
International Conference on Supercomputing.

Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. NIPS ’21.
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning.
In Annual Conference on Neural Information Processing Systems.

Ji Lin, Wei-Ming Chen, John Cohn, Chuang Gan, and Song Han. NIPS ’20.
MCUNet: Tiny Deep Learning on IoT Devices. In Annual Conference on Neural
Information Processing Systems.

Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song
Han. NIPS "21. On-Device Training Under 256KB Memory. In Annual Conference
on Neural Information Processing Systems.

Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo.
ASPLOS ’22. VELTAL Rowards High-Performance Multi-Tenant Deep Learn-
ing Services via Adaptive Compilation and Scheduling. In Proceedings of the
27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems.

Google LLC. 2022. XLA: Domain-specific compiler for linear algebra to optimize
tensorflow computations. https://www.tensorflow.org/xla.

Atieh Lotfi, Abbas Rahimi, Hadi Esmaeilzadeh, and Rajesh K Gupta. 2015.
SqueezCL: Squeezing OpenCL kernels for approximate computing on contem-
porary GPUs. In Workshop on Approximate Computing.

Tianjian Lu, Thibault Marin, Yue Zhuo, Yi-Fan Chen, and Chao Ma. HPEC ’20.
Accelerating MRI Reconstruction on TPUs. In 2020 IEEE High Performance Ex-
treme Computing Conference. https://doi.org/10.1109/HPEC43674.2020.9286192
Tianjian Lu, Thibault Marin, Yue Zhuo, Yi-Fan Chen, and Chao Ma. ISBI ’21.
Nonuniform Fast Fourier Transform on Tpus. In 2021 IEEE 18th International
Symposium on Biomedical Imaging.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. ICLR ’18. Mixed Precision Training. In International
Conference on Learning Representations.

Mehryar Mohri. 2002. Semiring Frameworks and Algorithms for Shortest-
Distance Problems. jJournal of Automata, Languages and Combinatorics (2002).
Thierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Esmaeilzadeh,
Luis Ceze, and Mark Oskin. HPCA ’15. SNNAP: Approximate computing on
programmable SoCs via neural acceleration. In IEEE 21st International Sym-
posium on High Performance Computer Architecture. https://doi.org/10.1109/
HPCA.2015.7056066

Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee,
and Matei Zaharia. OSDI ’20. Heterogeneity-Aware Cluster Scheduling Policies
for Deep Learning Workloads. In 14th USENIX Symposium on Operating Systems
Design and Implementation.

Daniel Nichols, Aniruddha Marathe, Kathleen Shoga, Todd Gamblin, and Abhi-
nav Bhatele. IPDPS *22. Resource Utilization Aware Job Scheduling to Mitigate
Performance Variability. In 2022 IEEE International Parallel and Distributed Pro-
cessing Symposium.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable
parallel programming with cuda: Is cuda the parallel programming model that
application developers have been waiting for? Queue (2008).

Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. PLDI ’21.
DNNFusion: Accelerating Deep Neural Networks Execution with Advanced Op-
erator Fusion. In Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation.

NVIDIA Corporation. 2019. NVIDIA T4 TENSOR CORE GPU.
https://www.nvidia.com/content/dam/en-zz/Solutions/Data- Center/tesla-
t4/t4-tensor-core-datasheet-951643.pdf.

NVIDIA Corporation. 2020. NVIDIA A100 Tensor Core GPU Architec-
ture. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
nvidia-ampere-architecture-whitepaper.pdf.

NXP Semiconductors N.V. 2023. NXP MSC8154E Quad-Core DSP with Security.
https://www.nxp.com/products/processors-and-microcontrollers/additional-

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/Cluster48925.2021.00035
https://doi.org/10.1109/Cluster48925.2021.00035
https://doi.org/10.1109/HPEC43674.2020.9286192
https://doi.org/10.1109/HPCA.2015.7056066
https://doi.org/10.1109/HPCA.2015.7056066
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nxp.com/products/processors-and-microcontrollers/additional-mpu-mcus-architectures/digital-signal-processors/high-performance-quad-core-dsp-with-security:MSC8154E
https://www.nxp.com/products/processors-and-microcontrollers/additional-mpu-mcus-architectures/digital-signal-processors/high-performance-quad-core-dsp-with-security:MSC8154E

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

[79

(80]

)
=

[82

(83

(84

oo
2

[86

(87

(8]

[90

[91

)
&,

[93

[94

[95]

[96]

[97

[98

mpu-mcus-architectures/digital-signal-processors/high-performance-quad-
core-dsp-with-security:MSC8154E.

Alberto Parravicini, Arnaud Delamare, Marco Arnaboldi, and Marco D. Santam-
brogio. IPDPS °21. DAG-based Scheduling with Resource Sharing for Multi-task
Applications in a Polyglot GPU Runtime. In 2021 IEEE International Parallel and
Distributed Processing Symposium.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. NIPS *19. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems.
Kiran Ranganath, Joshua D. Suetterlein, Joseph B. Manzano, Shuaiwen Leon
Song, and Daniel Wong. SC ’21. MAPA: Multi-Accelerator Pattern Allocation Pol-
icy for Multi-Tenant GPU Servers. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.

Stanislav G. Sedukhin and Marcin Paprzycki. 2012. Generalizing Matrix Multipli-
cation for Efficient Computations on Modern Computers. In Parallel Processing
and Applied Mathematics.

Jiuchen Shi, Jiawen Wang, Kaihua Fu, Quan Chen, Deze Zeng, and Minyi Guo.
IPDPS ’22. QoS-awareness of Microservices with Excessive Loads via Inter-
Datacenter Scheduling. In 2022 IEEE International Parallel and Distributed Pro-
cessing Symposium.

Siddharth Singh and Abhinav Bhatele. IPDPS "22. AxoNN: An asynchronous,
message-driven parallel framework for extreme-scale deep learning. In 2022
IEEE International Parallel and Distributed Processing Symposium.

Linghao Song, Fan Chen, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen.
HPCA, ’20. AccPar: Tensor Partitioning for Heterogeneous Deep Learning Ac-
celerators. In 2020 IEEE International Symposium on High Performance Computer
Architecture.

Linghao Song, Jiachen Mao, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen.
HPCA ’19. HyPar: Towards Hybrid Parallelism for Deep Learning Accelerator
Array. In 2019 IEEE International Symposium on High Performance Computer
Architecture.

Pierre Stock, Angela Fan, Benjamin Graham, Edouard Grave, Rémi Gribon-
val, Herve Jegou, and Armand Joulin. ICLR ’21. Training with Quantization
Noise for Extreme Model Compression. In International Conference on Learning
Representations.

John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A Parallel
Programming Standard for Heterogeneous Computing Systems. Computing in
Science and Engineering (2010).

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong
Cui, Swagath Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi (Viji) Srini-
vasan, and Kailash Gopalakrishnan. NIPS ’20. Ultra-Low Precision 4-bit Training
of Deep Neural Networks. In Advances in Neural Information Processing Systems.
Tuan Ta, Khalid Al-Hawaj, Nick Cebry, Yanghui Ou, Eric Hall, Courtney Golden,
and Christopher Batten. MICRO ’22. big. VLITTLE: On-Demand Data-Parallel
Acceleration for Mobile Systems on Chip. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture.

Cheng Tan, Manupa Karunaratne, Tulika Mitra, and Li-Shiuan Peh. ISCA ’18.
Stitch: Fusible Heterogeneous Accelerators Enmeshed with Many-Core Archi-
tecture for Wearables. In 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, An-
drew Howard, and Quoc V. Le. CVPR ’19. MnasNet: Platform-Aware Neural
Architecture Search for Mobile. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition.

Chunlin Tian, Li Li, Zhan Shi, Jun Wang, and ChengZhong Xu. MICRO ’22. HAR-
MONY: Heterogeneity-Aware Hierarchical Management for Federated Learning
System. In 2022 55th IEEE/ACM International Symposium on Microarchitecture.
Han D. Tran, Milinda Fernando, Kumar Saurabh, Baskar Ganapathysubrama-
nian, Robert M. Kirby, and Hari Sundar. IPDPS °22. A scalable adaptive-matrix
SPMV for heterogeneous architectures. In 2022 IEEE International Parallel and
Distributed Processing Symposium.

Jack Turner, Elliot J. Crowley, and Michael F. P. O’'Boyle. ASPLOS ’21. Neural
Architecture Search as Program Transformation Exploration. In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. CVPR ’19. HAQ:
Hardware-Aware Automated Quantization With Mixed Precision. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash
Gopalakrishnan. NIPS "18. Training Deep Neural Networks with 8-bit Floating
Point Numbers. In Advances in Neural Information Processing Systems.

Shuo Wang, Yun Liang, and Wei Zhang. HPCA °19. Poly: Efficient Heterogeneous
System and Application Management for Interactive Applications. In 2019 IEEE
International Symposium on High Performance Computer Architecture.

152

Kuan-Chieh Hsu and Hung-Wei Tseng

[99] Ting Wang, Qian Zhang, and Qiang Xu. DATE "17. ApproxQA: A unified quality

[100

[101

[102

[103

[104

[105

[106

[107

[108

[109

[110

[111

]

assurance framework for approximate computing. In Design, Automation and
Test in Europe Conference and Exhibition.

Joel Wolfrath, Nikhil Sreekumar, Dhruv Kumar, Yuanli Wang, and Abhishek
Chandra. IPDPS ’"22. HACCS: Heterogeneity-Aware Clustered Client Selection
for Accelerated Federated Learning. In 2022 IEEE International Parallel and
Distributed Processing Symposium.

Yecheng Xiang and Hyoseung Kim. RTSS ’19. Pipelined Data-Parallel CPU/GPU
Scheduling for Multi-DNN Real-Time Inference. In 2019 IEEE Real-Time Systems
Symposium.

Qingcheng Xiao, Size Zheng, Bingzhe Wu, Pengcheng Xu, Xuehai Qian, and Yun
Liang. ISCA "21. HASCO: Towards Agile HArdware and Software CO-design for
Tensor Computation. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture.

Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata Mitra, Sasa Misailovic,
and Saurabh Bagchi. USENIX ATC ’18. VideoChef: Efficient Approximation
for Streaming Video Processing Pipelines. In 2018 USENIX Annual Technical
Conference.

Zichao Yang, Heng Wu, Yuanjia Xu, Yuewen Wu, Hua Zhong, and Wenbo
Zhang. 2023. Hydra: Deadline-aware and Efficiency-oriented Scheduling for
Deep Learning Jobs on Heterogeneous GPUs. IEEE Trans. Comput. (2023).
Minjia Zhang, Zehua Hu, and Mingqin Li. IPDPS "21. DUET: A Compiler-
Runtime Subgraph Scheduling Approach for Tensor Programs on a Coupled
CPU-GPU Architecture. In 2021 IEEE International Parallel and Distributed Pro-
cessing Symposium.

Yunan Zhang, Po-An Tsai, and Hung-Wei Tseng. ISCA ’22. SIMD2: A Gen-
eralized Matrix Instruction Set for Accelerating Tensor Computation beyond
GEMM. In Proceedings of the 49th Annual International Symposium on Computer
Architecture.

Size Zheng, Renze Chen, Anjiang Wei, Yicheng Jin, Qin Han, Ligiang Lu,
Bingyang Wu, Xiuhong Li, Shengen Yan, and Yun Liang. ISCA "22. AMOS:
Enabling Automatic Mapping for Tensor Computations On Spatial Accelerators
with Hardware Abstraction. In Proceedings of the 49th Annual International
Symposium on Computer Architecture.

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. ASPLOS
’20. FlexTensor: An Automatic Schedule Exploration and Optimization Frame-
work for Tensor Computation on Heterogeneous System. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems.

Li Zhou, Mohammad Hossein Samavatian, Anys Bacha, Saikat Majumdar, and
Radu Teodorescu. SEC ’19. Adaptive Parallel Execution of Deep Neural Networks
on Heterogeneous Edge Devices. In Proceedings of the 4th ACM/IEEE Symposium
on Edge Computing.

Wentao Zhu, Can Zhao, Wengqi Li, Holger R. Roth, Ziyue Xu, and Daguang Xu.
MICCAI "20. LAMP: Large Deep Nets with Automated Model Parallelism for
Image Segmentation. In International Conference on Medical Image Computing
and Computer-Assisted Intervention.

Yuhao Zhu. PPoPP "22. RTNN: Accelerating Neighbor Search Using Hardware
Ray Tracing. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming.

https://www.nxp.com/products/processors-and-microcontrollers/additional-mpu-mcus-architectures/digital-signal-processors/high-performance-quad-core-dsp-with-security:MSC8154E
https://www.nxp.com/products/processors-and-microcontrollers/additional-mpu-mcus-architectures/digital-signal-processors/high-performance-quad-core-dsp-with-security:MSC8154E

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Modern heterogeneous components
	2.2 Generalization of Domain-Specific Accelerators
	2.3 Potential and challenges of SHMT

	3 SHMT
	3.1 Overview
	3.2 Virtual Operations (VOPs) and High-Level Operations (HLOPs)
	3.3 SHMT's runtime system
	3.4 The basic work-stealing scheduler
	3.5 Quality-Aware Work-Stealing (QAWS) Policy

	4 The SHMT system prototype
	4.1 The system assembly
	4.2 NPU implementations

	5 Results
	5.1 Benchmark applications
	5.2 Speedup of end-to-end latency
	5.3 Quality of QAWS policies
	5.4 QAWS sampling rate
	5.5 Energy Consumption
	5.6 Memory and communication overhead
	5.7 Discussion on SHMT's limitation

	6 Related Work
	7 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Notes
	A.8 Methodology

	References

