THEME ARTICLE: TOP PICKS FROM THE 2023 COMPUTER

ARCHITECTURE CONFERENCES

Simultaneous and Heterogenous

Multithreading: Exploiting Simultaneous
and Heterogeneous Parallelism in
Accelerator-Rich Architectures

Kuan-Chieh Hsu ® and Hung-Wei Tseng ., University of California, Riverside, Riverside, CA, 92521, USA

The addition of domain-specific hardware accelerators and general-purpose processors
that support vector and scalar models makes modern computers undoubtedly
heterogeneous. However, existing programming models and runtime systems target
using the most efficient category of processing units to delegate computation from each
code region, undermining the potential parallelism that heterogeneous processing units
can provide. Simultaneous and heterogenous multithreading (SHMT) is a programming
and execution model that activates all possible heterogeneous processing units for
computation from a code region to enable “real” heterogeneous parallelism. SHMT
presents an abstraction and a runtime system to facilitate parallel execution. Despite
the new type of parallelism, SHMT also needs to additionally address the heterogeneity
in data precision that various processing units support to ensure the quality of the
result. This article implements and evaluates SHMT on an embedded system platform

with a GPU and an edge tensor processing unit.

ith the awareness of global environmental
issues, the consensus of reducing carbon
footprint, and the increasing cost of

manufacturing chips in more advanced process tech-
nologies, computer architects must maximize the use of
precious transistor resources while supporting the grow-
ing computation demand in applications. The recent
trend in developing and integrating hardware accelera-
tors, including GPUs and hardware accelerators for artifi-
cial intelligence (Al) and machine learning (ML) or digital
signal processors, helps alleviate specific application
demand across all forms of computers.

Recent research projects have made progress in
widening the spectrums of applications and compute
kernels on domain-specific accelerators with decent
performance."”**> However, conventional programming
models and frameworks, including domain-specific lan-
guages, still leverage the entrenched idea of delegating

0272-1732 © 2024 |EEE

Digital Object Identifier 10.1109/MM.2024.3414941

Date of publication 8 July 2024; date of current version
14 August 2024.

JMythaergeddigensed use limited to: Univ of OalifiSareBiegot Rovwrkmdastap Atigusiefe2024 at 20:38:13 UTC from IEEE Knlare. Restrictions apply.T1

the execution of code regions to their most “optimal”
processing resources. As a result, accelerators become
idle resources due to the limitation of existing execution
models. The resulting applications also miss the new
parallel execution opportunity that accelerator-rich
architectures create, where we can simultaneously use
heterogeneous processors but leave other resources
idle without contributing to the application’s progress.

Simultaneous and heterogenous multithreading (SHMT)
is a new parallel programming and execution model that
aims at enabling simultaneous use of heterogeneous
computing resources. SHMT can simultaneously exe-
cute threads that are homogeneous at the algorithm
level but heterogeneous from an architectural perspec-
tive. In addition to exploiting parallelism using homoge-
neous threads, that is, parallel execution streams on the
same architecture, SHMT can exploit heterogeneous
parallelism by breaking up the computation from the
same algorithm block into parallel threads running on

https://orcid.org/0009-0002-4285-9588
https://orcid.org/0000-0001-8383-5203

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

: import tensorflow as tf

: a = tf.random.uniform(shape=[16384, 16384])
: b = tf.random.uniform(shape=[16384, 16384])

1
2
3
4: with tf.device('/GPU:0'):
6: c = tf.matmul(a, b)
6
7
#
8

: with tf.device('/TPU:0'):
: e = tf.nn.conv2d(c, kernel, strides=1, padding='VALID')

utilize another accelerator
: tf.make_tensor_proto(e, shape=e.shape)

(a)

R :

©

FIGURE 1. (a) A typical domain-specific language code example, and the execution model of (b) conventional heterogeneous

computers with software pipelining and (c) SHMT. TPU: tensor processing unit; XPU: auxiliary processing unit.

multiple types of computing resources where each
resource may have distinct architecture and hardware
abstraction.

Figure 1 illustrates the concept of SHMT and com-
pares SHMT with conventional heterogeneous pro-
gramming models. Figure 1(a) provides an exemplary
domain-specific language code where the programmer
and the runtime system will delegate lines 2 and 3 to
the CPU, lines 4 and 5 to GPUs, lines 6 and 7 to TPUs,
and line 8 to some other accelerator. Figure 1(b)
presents the runtime execution flow in state-of-the-art
programming models. State-of-the-art models can
exploit parallelism within the same type of processors,
improve the execution by allowing the code segments
to progress with partial results, and pipeline the execu-
tion of different code segments on different hardware
units. However, as each function takes a different
amount of time to generate partial results, the imbal-
ance of execution can still lead to idle hardware resour-
ces. SHMT, as Figure 1(c) depicts, allows line 2-8 to use
all available computing resources. As a result, SHMT
can significantly improve hardware utilization and lead
to better end-to-end latency and energy consumption.

Advantages of SHMT

SHMT is a competitive concept in modern heteroge-
neous, accelerator-rich computers for the several rea-
sons, which we discuss in the next sections.

Performance Gain at Zero Hardware Cost

The ubiquity of hardware accelerators and the broader
application spectrums of hardware accelerators allow
SHMT to improve the performance of applications at
zero hardware cost. Figure 2 illustrates the performance
advantage on an embedded platform. Figure 2 com-
pares the performance of running 10 application’s core
algorithms on their state-of-the-art edge tensor process-
ing unit (TPU) and GPU implementations on Jetson
Nano. By simply relying on an edge TPU, the applications

Edge TPU only
B Theoretical gain of SHMT

Speedup over GPU baselines
(%)

Blackscholes
DCT8x8
DWT

FFT
Histogram
Hotspot
Laplacian
MF

Sobel
SRAD
GMEAN

FIGURE 2. The potential speedup of SHMT (and Edge TPU)
relative to a GPU-only implementation. FFT: fast Fourier trans-
form; DWT: discrete wavelet transform; DCT8x8: discrete
cosine transform 8x8; SRAD: speckle reducing anisotropic dif-
fusion; MF: mean filter.

are 5% slower than those of GPUs. The average theoreti-
cal speedup from conventional approaches that dele-
gate kernels to the best-performing accelerator is 1.37x.
Using the same performance number, we derived the
theoretical performance gain of SHMT: 3.14 x.

Environmentally Friendly Computer Architecture
Data centers currently account for 3% of global electric-
ity and are projected to reach 4% in 2030. The nonstop-
pable operations of data centers can consume a
significant amount of energy in idle hardware resources
if we cannot make progress. As SHMT reclaims idle hard-
ware accelerators and allows applications to make pro-
gress using them, it has substantial implications in
energy savings (e.g, 51% in this article) that help to
reduce the carbon footprint in electricity. The continu-
ous upgrade of hardware, including processors and
accelerators, generates a significant carbon footprint
when producing new components. As SHMT uses

12Authorized licensed usedinviteddo: Univ of Calif San Diego. Downloaded on August 26,2024 at 20:38:13 UTC from IEEE Xplore. Besprictiensappty24

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

multiple heterogeneous accelerators simultaneously,
applications can continuously use an existing accelera-
tor, slowing down the demand for hardware upgrades or
the upscale of data centers.

Flexibility and Supply-Chain-Issue Free

As SHMT aims at executing parallel threads on various
hardware components, it makes the program inher-
ently flexible when scheduling computing resources.
With broader choices of hardware resources for per-
forming critical tasks, the system can reduce the queu-
ing delay after user requests. On the other hand, SHMT
also makes computer systems less fragile to supply-
chain issues. SHMT reduces applications’ and services'
reliance on specific hardware components by allowing
threads to easily use other accelerators if one becomes
a scarce resource, enabling more flexibility in data cen-
ter architectures and service deployments.

Challenges of SHMT

Despite its benefits, several roadblocks create chal-
lenges for implementing and supporting the SHMT
model.

Programming

As each hardware accelerator has its unique program-
ming interface and execution model, without appropriate
system supports, the programmer needs to figure out the
equivalent set of operations on various accelerators and
manually create multiple threads that map each partition
of computation to different hardware and handle the
data exchange/synchronization.

Performance and Scheduling

As the microarchitecture and execution model of each
hardware accelerator differs, the relative performance
ratio and data exchange overhead among hardware
accelerators change as data sizes or system dynamics
change. Therefore, even if the programmer can parti-
tion computation to simultaneous threads working on
different data partitions, the resulting program can be
suboptimal for the underlying hardware or cannot
guarantee speedup.

Quality

Unlike homogeneous hardware components that accept
data in the exact representation and deliver the same
accuracy, application-specific hardware accelerators
aim to provide just enough result quality for the target
workloads. Most of the hardware accelerators, espe-
cially those targeting Al/ML workloads, do not support
the precision modes for exact, general-purpose
computing. As a result, SHMT must deal with

JAythergeddigensed use limited to: Univ of Calif San Diego. Downloaded on August 26,2024 at 20:38:13 UTC from IEEE Xpiere. Restrictions apply.13

heterogeneous hardware components, accept data,
and deliver results in different formats and accuracies.
Carelessly using heterogeneous hardware components
simultaneously can lead to unwanted execution results.

SHMT System Architecture

As an initial work exploring the SHMT model, we propose
a framework that contains three main components to
support and address the challenges of SHMT. Figure 3
presents an overview of the proposed framework.

Virtual Operations and HLOPs

SHMT promotes a set of virtual operations (VOPs) and
high-level operations (HLOPs) in addition to existing
abstractions between hardware and software. A VOP is
a mathematical or algorithmic operation that accepts
tensors as inputs and produces a tensor as a result. The
proposed framework abstracts the underlying hardware
resources as a powerful and resourceful hardware accel-
erator that offers a set of VOPs for a CPU program to
“offload” computation to this virtual device (e.g., an
SHMT virtual device driver in the operating system). The
compiler or the programmer can use VOPs to describe
the desired computation for SHMT. VOPs provide a
machine-independent abstraction interface for the soft-
ware and make no assumptions about the input/output
data size. As they adopt domain-specific languages (e.g.,
TensorFlow or PyTorch) using standard libraries and
accelerated libraries (e.g., cuBLAS and cuDNN) in mod-
ern programming languages, we expect the front-end
authoring languages of user programs to remain the
same. Most of the changes should occur only at the
library level.

An HLOP defines a subset of computations from a
VOP instance, and the SHMT framework contains a
mapping between a VOP and its HLOPs. An HLOP also
represents a task from a VOP instance that a comput-
ing resource in SHMT will later execute. Therefore, an
HLOP will have predefined data sizes/granularities and
types. An SHMT framework may contain multiple
implementations of the same HLOP. Each implementa-
tion of an HLOP is a machine-dependent code that
maps to a set of hardware operations and functions on
the target hardware resource. For example, as an edge
TPU implements convolution 2-D in hardware, the edge
TPU’s HLOP implementation invokes the correspond-
ing hardware function. Otherwise, the HLOP can still
use multiple hardware operations to accomplish the
desired computation on optimal data sizes. For exam-
ple, the convolution 2-D implementation on a GPU will
internally become a series of vector operations within
the HLOP implementation. For Al/ML accelerators or
neural processing units (NPUs), the implementation

¢ = shmt.matmul(a, b)

shmt.conv2d(c, kernel, strides=1, padding='VALID')

min,max,log,+,—,><.+,\ﬂ“.

\

Operator Mappings

Load Balancing

Data Partition

ZK‘ 2K
:%Ii) tpu.matmul(ﬁ

M

2K

cuBlasGemm @Ii ,5

¥

FIGURE 3. SHMT overview.

makes an inference through a pretrained model that
approximates the result of convolution 2-D.

The abstractions of VOPs and HLOPs help SHMT
address both the programming and scheduling chal-
lenges. As user programs and authoring languages inter-
act with the machine-independent VOPs, VOPs hide the
hardware details and facilitate code development. As
HLOPs carry the actual execution of a VOP instance and
the various implementations that an HLOP has, this
abstraction also enables flexibility in scheduling.

Runtime Systems
SHMT's runtime system resides in the virtual device
driver. The runtime system partitions VOPs into HLOPs
on the target hardware devices. SHMT's runtime sys-
tem also provides interfaces for more advanced sched-
uling policies. SHMT's kernel driver maintains a pair of
queues for each SHMT-compatible hardware resource:
one serves as the incoming queue and the other as the
completion queue. Upon initialization of the SHMT sys-
tem, each hardware resource’s driver is responsible for
providing SHMT with its list of available HLOPs and
their implementations.

For each VOP that SHMT receives, the runtime sys-
tem figures out the available hardware resources to

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

User programs

X‘@ FFT. DgT
Ty T Virtual OPs (VOPs)

SHMT

Quality Sampling

High Level OPs (HLOPs)

Heterogeneous
processing units

perform the VOP, gathers information regarding the
parallelization method and data partitioning, and con-
sults the scheduler for the task mapping on hardware
resources. If the scheduler suggests a plan, the runtime
system realizes the plan by partitioning the VOP into
HLOPs on devices at supported data sizes. As SHMT
supports a limited number of parallelization models,
the runtime system can apply the template for each
parallelization model for dataset partition, aggregation,
and synchronization. SHMT assigns an HLOP to the
target device by sending the HLOP to the device's
incoming queue. A thread that monitors the queue will
work with the target device's kernel module and exe-
cute the HLOP implementation whenever the device is
available. Once the HLOP finishes, the thread will move
the task to a completion queue that the SHMT runtime
system can later dequeue and use for data aggregation
and synchronization purposes.

In modern heterogeneous systems, hardware accel-
erators are typically separated intellectual property
cores or chips that communicate with the CPU cores
through the system interconnect. Like the idea of pro-
cessor caches, most of the hardware accelerators also
own their private device memory to facilitate the execu-
tion of operations. As each device's HLOP accepts

14Authorized licensed WEediniteddo: Univ of Calif San Diego. Downloaded on August 26,2024 at 20:38:13 UTC from IEEE Xplore. Besjyistiensappty24

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

fix-sized, fix-shaped data, SHMT's runtime system cre-
ates memory operations that take the starting address
of the source data structure and use the element size
and dimensions of each input partition to calculate the
effective addresses of source and target data locations
that each HLOP uses. The runtime system will schedule
the data movement using the effective addresses
between the system’s shared main memory and each
device's memory location after assigning an HLOP.

Most of the hardware accelerators optimize their
computation models and architectures for targeted
application domains, thus supporting limited data pre-
cisions. Suppose that the scheduling policy determines
the appropriate use of a target hardware resource
despite the potential loss of accuracy. The runtime sys-
tem will perform data type casting through the desired
quantization method before distributing the input data.
When the device finishes computation, the runtime
system is again responsible for restoring the result to
the data precision that the application desires.

The runtime system design enables optimizations
that address performance and scheduling concerns. At
the HLOP level, each HLOP individual implementation
provides performance-optimized code on the hard-
ware. At the scheduler level, the runtime system
dynamically assigns tasks to ensure the best workload
distribution. The runtime system can also implement
load-balancing mechanisms, like work-stealing policies,
to maximize hardware efficiency.

Quality-Aware Scheduling

SHMT also addresses the quality issue at the schedul-
ing policy level with a low-overhead proposal that con-
siders results and performance. The proposed quality-
aware work-stealing (QAWS) scheduling policy has low
execution overhead but helps to maintain quality and
balance the workload. For each input data partition,
SHMT samples the data to determine criticality and
assigns computation to a device accordingly. We lever-
age the experience from previous works that consider
critical regions as data partitions with the widest value
distributions.® For data partitions where SHMT consid-
ers as critical to the quality of the execution result, the
runtime system will never assign the related HLOPs to
a hardware resource that does not support the data’s
desired precision.

Based on our experiments, we found that the
scheduling policy can be easy but still effective. The
current version of SHMT need only consider the follow-
ing two criteria:

1) Predefined device-dependent limits: SHMT deter-
mines task scheduling on a device considering

JMythaergeddigensed use limited to: Univ of Calif San Diego. Downloaded on August 26,2024 at 20:38:13 UTC from IEEE Xpiere. Restrictions apply.15

device-dependent hardware limits. Each comput-
ing device has a set of acceptable hardware limits,
including the supporting data precision, data
types, and accuracies. SHMT assigns only those
data inputs lower than the criticality limits to that
computing resource. Regarding work stealing for
loading balancing, SHMT only allows a device to
steal HLOPs from another device with the same
or a lower hardware limit to ensure quality.

2) Application-dependent top-K% criticality: SHMT
ranks criticality within a window of data parti-
tions and schedules top-K% partitions to the
most accurate device, second-L% to the second-
most precise device, and so on. The threshold
values of K and L are application dependent. The
programmer or the library composer should pro-
vide, along with each VOP, an indication of the
percentage of data inputs that are generally crit-
ical to the results of this library function or the
application. In the case of work stealing, QAWS
only allows a device with higher accuracy to
steal HLOPs from another device with the same
or a lower accuracy.

WE IMPLEMENTED THE VIRTUAL
SHMT HARDWARE DEVICE AS A
DYNAMICALLY LOADABLE KERNEL
MODULE.

The System Prototype

We evaluated the proposed SHMT framework and
ideas on a custom-built, exemplary SHMT prototype
system. The system uses Nvidia's Jetson Nano, and
we added Google's Edge TPU as an Al/ML accelera-
tor. The Jetson Nano module contains a quad-core
ARM A57 processor and 128 Maxwell GPU cores. The
system assembly runs an Ubuntu Linux 18.04 with
Nvidia's customized 4.9.253-tegra kernel. We imple-
mented the virtual SHMT hardware device as a
dynamically loadable kernel module. We built the
prototype using selected components and believe
that this prototype is representative of most of the
use cases for the following reasons. First, the proc-
essing power and the available types of processors
and accelerators for this system platform resemble
the hardware components of modern smartphones
or mobile devices, allowing this platform to assess
the real performance of using SHMT in these scenar-
ios. Second, the ratio of computing power between

the Maxwell GPUs and the Edge TPUs (472 giga
floating-point operations versus 4 tera operations)
resembles those on data center servers [67 teraflops
(Tflops) FP32 of A100, and 275 Tflops of TPUv4]”®
allowing this platform to assess the relative perfor-
mance of SHMT on cloud servers.

Implementations of HLOPs

As an initial proof of concept, the current SHMT sup-
ports two types of accelerators, GPUs and Edge TPUs,
and implements HLOPs optimized for their architec-
tures. For the GPU HLOPs, the implementation invokes
the state-of-the-art library that Nvidia and the open
source community provide.

For Edge TPUs, the device can either serve as a
matrix function accelerator or a general-purpose neu-
ral accelerator (i.e., an NPU)® for algorithms that do
not map well to tensor algebra. Each HLOP of the
Edge TPU using the NPU approach is a pretrained
model that approximates the result of the HLOP.
Based on the microarchitecture of Edge TPUs and our
experiences, we suggest that these models should 1)
use multilayer perceptrons with convolution and
dense operators, and sigmoid or a rectified linear unit
as activation functions, and 2) be the first found and
the simplest topology whenever the learning curve of
a full-precision model training significantly improves
throughout topology searching.

We use the following steps to construct an NPU
model on an Edge TPU:

1) Construct the training and validation datasets
by running the target algorithm/function using
high-performance CPU/GPU platforms with ran-
domly generated input data and collecting the
output.

2) Train the NPU-HLOP model using high-performance
CPU/GPU platforms.

3) Perform posttraining quantization for the trained
model into an Edge-TPU-compatible model using
TensorFlow Lite and edgetpu_compiler.®

4) Test the Edge-TPU-compatible model with a vali-
dation dataset again. If the Edge-TPU-compatible
model's accuracy is significantly lower than its
version on the high-performance platform, we
will enable a quantization-aware training mode to
retrain the model with weights in 8-bit precisions.

Performance Gain

Figure 4 shows the performance of SHMT's real-system
implementation on Jetson Nano with an Edge TPU.
Comparing the end-to-end latency of SHMT with

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

4

B SW pipelining
B SHMT w/o QA
B SHMT w/ QA

<
o

[

[

Speedup (Higher is better)
- [N)

FIGURE 4. The application speedup relative to the baseline

0

Blackscholes
Histogram
Hotspot
Laplacian
Sobe
GMEA

GPU implementations. SW: software; w/: with; w/o: without;
QA: quality assurance; GMEAN: geometric mean.

optimized baseline GPU implementations, SHMT with
the best-performing quality-assurance policy achieves
a 1.95x speedup, while work-stealing without quality
assurance can achieve 2.07x speedup. Figure 4 also
includes the performance of optimized GPU implemen-
tations with software pipelining as another reference
design. Software pipeline can achieve only a 1.25x
speedup. For compute-intensive workloads, software
pipelining cannot compete with SHMT. Software pipe-
lining is effective for Blackscholes and mean filter as
computation becomes relatively minor in these appli-
cations. However, this is not a limitation of SHMT.
SHMT can potentially parallelize the data preprocess-
ing part to further speed up these applications if appro-
priate hardware and algorithms exist.

Performance of Quality-Assurance
Mechanisms

The design of SHMT's quality-assurance mechanism
should balance the quality of results and sampling
overhead. Our experiments found that SHMT can
deliver reasonable results with relatively low overhead
for the examined datasets and applications. Figure 5(a)
and (b) shows the speedup and mean absolute per-
centage errors (MAPEs) under various sampling rates
(the portion as samples from the raw datasets). A
sampling rate of 2% means that we select 256 sam-
ples from a 2048 x 2048-sized input. We changed the
sampling rate from 272" to 2% The MAPEs decrease
monotonically until the sampling rate reaches 2.
The result suggests that the sampling rate of 27"
can generate significant-enough input samples for
SHMT policies without sacrificing performance gain
considerably.

T6Authorized licensed useginviieddo: Univ of Calif San Diego. Downloaded on August 26,2024 at 20:38:13 UTC from IEEE Xplore. Besprictiensappty24

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES-

0.25

MAPE
(Lower is Better)

«©
x
& II
-
a

Blackscholes
Histogram
Hotspot

Laplacian

MF

Sobel

SRAD
GEOMEAN

—~
&0
~

2
2
3.5
1
1

1
0
9
8

2-.
2-.
2-
2=
2-
25 2=
2-
2=

15

Speedup over GPU baseline
(Higher is Better)
-)

0.

2}

W 2721
16
(b)

FIGURE 5. (a) Quality versus sampling rates and (b) speedup

SRAD _

Sobe| |E—
GMEAN |

co
x
[
e
o
a

Blackscholes
Histogram

Hotspot
Laplacian

versus sampling rates.

Energy Consumption

By reducing the total execution time and offloading
computation to a lower-power-consuming Edge TPU
that potentially idles, SHMT has a strong promise for
energy savings. Figure 6(a) reports the breakdown of
energy consumption of both the GPU baseline and
SHMT. Figure 6(b) shows the relative energy-delay
products (EDPs) of SHMT compared to the GPU base-
line. SHMT reduces energy consumption and EDPs by
51% and 69% on average, respectively.

Scalability

Figure 7 shows the speedups of SHMT when problem
sizes of benchmarks vary. Within the tested problem-
size interval, from 4 K to 64 M, the speedup increases
as the problem size increases. We did not go beyond
64 M as the working set size of GPU kernels in some
applications will surpass the physical memory limita-
tion and crash, not the limitation of SHMT. SHMT is
more effective for larger problem sizes as a larger prob-
lem size provides more parallelism among HLOPs for
various devices. The main reason behind SHMT's

JMythergeddigensed use limited to: Univ of Calif San Diego. Downloaded on August 26,2024 at 20:38:13 UTC from IEEE Xpiere. Restrictions apply.17

1.000

c

o

-]

g o750

ST

oo

c

5%

oaQ

Y

9‘_0500

2

23

o=

£ 0250

o

« I Active Energy

Idle Ene:

§5 8 §9 F¢ £5 f5 85 £ 05 G O
o o o o o o o o o o o
24 29 2 aF 2 £ 2§ 2% 23 2 £z
ng QD w ¢ w2 c5 W 3L o z
£ 20 55 E° 5 22 Br rT 35 2% 3L
£§ Ka © 93 28I S8 @ 3 =
2 22 o]
g o 2z 3§ 5
gm =
o

—_
LY
~

-~ 4
o N o ©

(Lower is Better)
1
P

Energy-Delay Product

o §

||
£

MF

o ©o o
- N W
DCT8x8 .

Blackscholes
DWT
Histogram
Hotspot
Laplacian
SRAD

~_~
=
~

FIGURE 6. (a) Energy consumption and (b) energy-delay prod-
uct. AVG: average.

N 4
I 16K
64K
B 256K
| IR1Y]
W am
1 16M
M 64m

FIGURE 7. Speedup versus problem sizes.

Speedup over the GPU baseline
(Hugher is better)
N

Blackscholes
Dct8x8
Histogram
Hotspot
Laplaclan
Sobel
GMEAI

scalability is that SHMT does not lead to significant
memory and communication overhead when algo-
rithms leverage embarrassingly matrix-tile, data-level
parallelism. Therefore, the adoption of SHMT helps the
system to enjoy more parallel processing resources to

tackle larger problem sizes without significantly further
burdening the system.

Through our experience with developing and evaluat-
ing SHMT, we found several aspects that may need
more investigation and may potentially inspire more
research topics.

Hardware/Software Interface in
Accelerator-Rich Architectures

In addition to its flexibility and programmability, SHMT's
two-layer VOPs and HLOPs abstractions also bring
back the “free ride” of software programmers on com-
puter architecture advancement. SHMT programs can
naturally take advantage of a new hardware compo-
nent if the HLOP implementation on the new hardware
is present. In fact, recent research projects have
revealed the potential of automating the process of
matching tensor operators to the functions of hard-
ware accelerators.”® However, if SHMT's experience
suggests a future of compilation and low-level program-
ming on an abstraction like VOPs, which kinds of VOPs
would offer the best efficiency, flexibility, and program-
mability for future applications?

Quality-Assurance and Scheduling
Policies

The current progress of SHMT is still at the concept-
proving stage. However, putting SHMT into real prac-
tice would require more investigation of the runtime
system'’s policies, especially the aspect of ensuring the
execution result. The current implementation follows
the best-effort philosophy but cannot guarantee the
correctness. The current scheduling policy is perfor-
mance oriented, but future work can cover carbon
footprint considerations or clean energy costs.

SHMT in Other Architectures

The current SHMT proposal assumes discrete accelera-
tors and a runtime system. However, as modern process-
ors integrate accelerators onto the same chip, the
runtime system should also become a part of the system
on chip to ensure the lowest overhead of the model. In
addition, emerging processors’ support in matrix instruc-
tion set architectures also opens up the potential of
SHMT at the level of processor instructions.

SHMT presents a new model that is fundamentally dif-
ferent from all existing parallel computing models as

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

SHMT creates heterogeneous threads that perform
homogeneous operations at the algorithm level, but
the implementation of each thread is native to the tar-
get heterogeneous hardware. To the best of our knowl-
edge, this is the only parallel computing model that
exploits heterogeneous hardware in this way. SHMT
can yield orders-of-magnitude improvements in perfor-
mance and energy without adding costs to existing
components. SHMT also has implications in more envi-
ronmentally friendly execution models and the poten-
tial to inspire more research projects.

This work was sponsored by two U.S. National Science
Foundation awards: CNS-2007124 and CNS-2231877.
This work was also supported by Intel Corporation
and new faculty start-up funds from the University of
California, Riverside.

—_

. P. Holanda and H. Muhleisen, “Relational queries
with a tensor processing unit,” in Proc. 15th Int.
Workshop Data Manage. New Hardware, (DaMoN),
2019, pp. 1-3.

2. A. Dakkak, C. Li, J. Xiong, |. Gelado, and W-m Hwu,
“Accelerating reduction and scan using tensor core
units,” in Proc. ACM Int. Conf. Supercomput. (ICS),
2019, pp. 46-57.

3. Y.-C. Hu, Y. Li, and H.-W. Tseng, “TCUDB: Accelerating
database with tensor processors,” in Proc. Int. Conf.
Manage. Data (SIGMOD), 2022, pp. 1360-1374, doi: 10.
1145/3514221.3517869.

4. K.-C. Hsu and H.-W. Tseng, “Accelerating applications
using edge tensor processing units,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal. (SC),
2021, pp. 1-14.

5. H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger,
“Neural acceleration for general-purpose approximate
programs,” in Proc. 45th Annu. IEEE/ACM Int. Symp.
Microarchit., Vancouver, BC, Canada, 2012, pp.
449-460, doi: 10.1109/MICR0O.2012.48.

6. M. A. Laurenzano, P. Hill, M. Samadi, S. Mahlke,

J. Mars, and L. Tang, “Input responsiveness: Using
canary inputs to dynamically steer approximation,” in
Proc. 37th ACM SIGPLAN Conf. Program. Lang.
Design Implementation (PLDI), 2016, pp. 161-176.

7. "NVIDIA A100 tensor core GPU architecture.” NVIDIA.

Accessed: 2020. [Online]. Available: https://www.

nvidia.com/content/dam/en-zz/Solutions/Data-

Center/nvidia-ampere-architecture-whitepaper.pdf

18Authorized licensed usedinviteddo: Univ of Calif San Diego. Downloaded on August 26,2024 at 20:38:13 UTC from IEEE Xplore. Besprictiensappty24

http://dx.doi.org/10.1145/3514221.3517869
http://dx.doi.org/10.1145/3514221.3517869
http://dx.doi.org/10.1109/MICRO.2012.48
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

8. N. P. Jouppi et al., “TPU v4: An optically
reconfigurable supercomputer for machine learning
with hardware support for embeddings,” in Proc.
ACM/IEEE 50th Annu. Int. Symp. Comput. Archit.
(ISCA), 2023, 1-14, doi: 10.1145/3579371.3589350.

9. Google LLC. “Edge TPU compiler.” coral.ai. Accessed:
2020. [Online]. Available: https://coral.ai/docs/
edgetpu/compiler

10. P. A. Martinez, J. Woodruff, J. Armengol-Estapé,
G. Bernabé, J. M. Garcia, and M. F. P. O'Boyle,
“Matching linear algebra and tensor code to
specialized hardware accelerators,” in Proc. 32nd
ACM SIGPLAN Int. Conf. Compiler Construction (CC),
2023, pp. 85-97, doi: 10.1145/3578360.3580262.

KUAN-CHIEH HSU received his Ph.D. degree in computer
science and engineering from the University of California,
Riverside, Riverside, CA, 92521, USA. His research interests

include heterogeneous computing and high-performance
computing, with a primary focus on enhancing the versatility
of current artificial intelligence accelerators for broader
application domains cost-effectively. He is a Student Mem-
ber of IEEE. Contact him at khsuO37@ucr.edu.

HUNG-WEI TSENG is an associate professor in the Depart-
ment of Electrical and Computer Engineering, University of
California, Riverside, Riverside, CA, 92521, USA. His research
interests include designing architecture, programming lan-
guage frameworks, and system infrastructures that allow
applications and programmers to use modern heteroge-
neous hardware components more efficiently, with a focus
on using artificial intelligence (Al)/machine language (ML)
accelerators to improve the performance of non-Al/ML work-
loads. Tseng received his Ph.D. degree from the University of
California, San Diego. Contact him at htseng@ucr.edu.

Il °rofessional

TECHNOLOGY SOLUTIONS FOR THE ENTERPRISE

IT Professional seeks original submissions on technology
solutions for the enterprise. Topics include

We welcome articles accompanied by web-based demos.
For more information, see our author guidelines at
www.computer.org/itpro/author.htm.

WWW.COMPUTER.ORG/ITPRO

CALL FOR ARTICLES

e emerging technologies, e social software,

e cloud computing, e data management and mining,
e Web 2.0 and services, e systems integration,

e cybersecurity, e communication networks,

e mobile computing, e datacenter operations,

e green [T, e [T asset management, and

e RFID, e health information technology.

\ | IEEE
/| COMPUTER
| SOCIETY

4 IEEE

Jyiharigedticensed use limited to: Univ of Calif San Diego. Downloaded on August 26,2024 at 20:38:13 UTC from IEEE Xpiore. Restrictions apply.19

http://dx.doi.org/10.1145/3579371.3589350
https://coral.ai/docs/edgetpu/compiler
https://coral.ai/docs/edgetpu/compiler
http://dx.doi.org/10.1145/3578360.3580262
mailto:khsu037@ucr.edu
mailto:htseng@ucr.edu

