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Abstract—The advancements in AI/ML accelerators have made
the core AI/ML computation relatively insignificant in application
pipelines. For example, inferencing only accounts for 3% of the
latency in an image-based ML pipeline with the help of Tensor
Cores. The mismatch in performance growth between ML model
computation and ML-adjacent computation, the producer and
consumer of ML models, will become the bottleneck leading to
system inefficiency.

This paper presents a set of innovative algorithms to allow
the entire ML-based computer vision pipelines to leverage
AI/ML accelerators. Our proposed algorithms feature matrix-
based operations that AI/ML accelerators specialize in. Simply
compiler optimizations cannot take full advantage of hardware
acceleration without revisiting algorithms.

This paper implements the proposed algorithms as an open-
source library, TensorCV, in a system platform with Tensor
Cores. TensorCV shows a 6.12⇥ speedup in optimized ML-
adjacent functions and saves 81% energy consumption on
modern heterogeneous computers. The code is available at
https://github.com/escalab/TensorCV.

I. INTRODUCTION

The broad spectrum of applications that use camera and
video inputs to sense the world make computer vision-related
workloads one of the essential categories in artificial intelli-
gence (AI) and machine learning (ML). Recent advancements
in AI/ML hardware accelerators, including Google’s Tensor
Processing Units (TPUs), NVIDIA’s Tensor Cores, Apple’s
Neural Engines, Intel’s Gaussian Neural Accelerators, etc., have
significantly improved the computation time directly related to
the core of AI/ML, namely, inference and training. As a result,
inferencing a highly optimized NN model can account for less
than 3% of the time in computer vision pipelines. Instead, these
non-inference code sections consume the majority of execution
time in these applications nowadays.

These code sections adjacent to the core ML inference
or training process of the computer vision pipeline typically
perform operations that help enhance or extract the most critical
part of images to enable more accurate and efficient ML results.
Unfortunately, the conventional approach typically relies on
CPU code whose performance can only scale with the relatively
slow improvement through Moore’s Law, but not the rapid
growth from emerging, innovative hardware accelerators. The
inefficiency of these ML-adjacent stages will lead to under-
utilized hardware accelerators and become the performance
bottleneck, as these stages cannot feed sufficient inputs to
well-optimized ML models.

To address the above problems without increasing hardware
costs, a potential solution is leveraging existing hardware
accelerators (e.g., Tensor Cores, TPUs) for inference/training-
adjacent stages. Using hardware accelerators can bring several
benefits. (1) These accelerators’ microarchitecture can directly

compute on higher dimensional datasets, providing more
efficient processing models for inference/training-adjacent
stages. (2) Using the same training/inference hardware for
adjacent computation can remove unnecessary data movement
and transformation overhead. (3) The associative property of
tensor algebra enables optimizations crossing the boundaries
of stages in the pipeline to further reduce operations. (4) By
moving more computation into AI/ML accelerators, the system
can free up CPUs/GPUs for more meaningful workloads. (5)
The system can reclaim the significantly wasted idle power in
AI/ML accelerators [20]. (6) The application can significantly
reduce the total energy consumption if the execution time is
at the same level, while AI/ML accelerators consume lower
power than other computing resources.

However, using AI/ML accelerators for non-
training/inference tasks is still challenging for the following
reasons. First, existing AI/ML accelerators take domain-specific
design approaches and abstract their hardware operations in
a domain-specific way. Converting existing general-purpose
programming language code to use a domain-specific language
interface is non-trivial. Second, and probably the most
important, due to the difference in micro-architectures and
execution models, existing workloads will need to change their
algorithms fundamentally to make use of AI/ML accelerators.

In this paper, we demonstrate the application of AI/ML
accelerators in accelerating inference/training-adjacent tasks.
We revisited the design of frequently used, performance-
critical inference-adjacent functions in modern computer vision
(CV) pipelines. We proposed matrix/tensor-based algorithms
to allow these functions to enjoy the facilities that AI/ML
accelerators provide. Though these algorithms potentially have
higher algorithmic complexity than existing solutions, these
algorithms can still supersede the performance of optimized
implementations on modern general-purpose processors since
AI/ML accelerators can execute our underlying operations
efficiently. Our implementation, TensorCV, shows our algo-
rithms and implementations can achieve 6.12⇥ and save 81%
energy consumption compared to the CPU implementation on
a desktop computer using the latest CPU and GPU approaches,
while the existing GPU implementation shows 2.98⇥ speedup
and 64% energy saving.

In presenting TensorCV, this paper makes the following
contributions. (1) It proposes a set of algorithms that enable
critical image-processing functions on AI/ML accelerators.
AI/ML hardware for the same functions is only possible with
these algorithms. (2) It implements and evaluates the proposed
algorithms on a real system platform to prove the performance
benefits. (3) It provides an open-source implementation aligning
with the interface of the most popular computer vision library
to impact a broad spectrum of CV applications.979-8-3503-1175-4/23/$31.00 ©2023 IEEE
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Fig. 1. Latency breakdown when running a MobileNetV3 object detection

II. BACKGROUND AND MOTIVATION

A. AI/ML accelerators

AI/ML accelerators have significant presence in modern
computer systems as they are more efficient than conventional
GPUs in AI/ML tasks for the following reasons. (1) AI/ML
accelerators require fewer operations and cycles in performing
the same task. For example, each Tensor Core operation
can multiply two tiles of matrices in one cycle. In contrast,
using GPUs’ vector processing model, a matrix multiplication
would require a vector element-wise multiplication and an
accumulation operation on each pair of rows and columns.
When multiplying two 8K ⇥ 8K matrices, tensor cores will
take 230 tile MMA operations that require 3.2 million cycles
on RTX 3090. Still, conventional CUDA cores will use 239

multiplications and 226 accumulations that require 100 million
cycles on the same GPU. (2) As the hardware is specialized
for matrix operations, the same circuit area can deliver higher
throughput than general-purpose architectures. (3) The design
can use smaller circuit areas to reduce power consumption.
However, due to AI/ML accelerators’ specialization for NN/ma-
trix operations, legacy programs cannot easily take advantage
of these accelerators unless their algorithms are presented in
matrix algebra.

This paper implements TensorCV algorithms on Tensor
Cores for accessibility reasons. Tensor Cores are ubiquitous
in NVIDIA’s GPU architectures, and NVIDIA made their API
available at various level programming frameworks. Conversely,
high-performance TPUs are only accessible through Google’s
cloud services, and Apple’s NPUs are only available on their
machines without revealing their API to the public. However,
as these AI/ML accelerators are essentially matrix processing
units, we envision the same algorithm that works efficiently on
Tensor Cores would work on other AI/ML accelerators with
minimal modifications.

B. Modern CV pipelines and performance bottlenecks

The advantage of avoiding a tremendous amount of manual
feature engineering while maintaining high accuracies in classi-
fications and recognitions makes NNs an inevitable component
in modern CV applications. In modern AI/ML-assisted CV
applications, the application must standardize, shrink and clean
up the content before inference because these inference-adjacent
operations can reduce both computational operations and
memory consumption and improve the accuracy of inference,
making NN models more efficient and economically available
in applications.

With AI/ML accelerators significantly improve the inference
performance, inference-adjacent computation becomes more
critical in CV pipelines. Figure 1 shows latency breakdown

TABLE I
OPENCV IMAGE PRE-PROCESSING FUNCTIONS

Function
Name

Number
of GitHub
Code

Description

resize() >1000k Resize an image or a video frame.
cvtColor() 682k Convert an image from one color space to another.
rect() 504k Define a rectangular region of interest in an image.
normalize() 477k Normalize an image or a matrix.
rotate() 295k Rotate an image or a matrix by a specified angle.
Canny() 262k Perform edge detection on an image.
Sobel() 188k Perform gradient calculation on an image.
dilate() 182k Perform morphological dilation on an image.
findContours() 169k Find the contours in an image.
erode() 158k Perform morphological erosion on an image.

in running popular image classification applications written in
PyTorch and TensorRT libraries. For these CV workloads, the
inference-adjacent stages take 4032⇥3024 images as inputs,
resize images to 256⇥256 (Resize) or crop images to 224⇥224
(Crop), reshape the tensors (ToTensor), and normalize the
images (Normalize). The result shows that inference-adjacent
stages account for 97% of overall latency. These applications
only spent 3% of time on Tensor Cores for inference.

III. ALGORITHM

As modern AI/ML accelerators cannot work on computation
without matrix operations, the most critical task in this paper
is revisiting entrenched implementations to promote the use of
matrix operations. Therefore, the fundamental idea of this paper
is treating each input image as an input matrix Input, and
our algorithms dynamically create specialized matrices (i.e.,
matrix kernels) that the algorithm can later perform operations
together with Input to achieve equivalent image processing
results.

Table I lists the most frequently used image pre-processing
functions in Open-CV [2] ranked by their occurrence in public
GitHub repositories. Considering the demands of each function
in NN applications, this paper targets five functions; resize,
cvtColor, crop, rotate, and normalize. Existing im-
plementations of these functions target conventional CPU/GPU
applications and employee scalar or vector computation that
AI/ML cannot perform efficiently. The following sections
elaborate on the how this paper generates appropriate matrix
kernels for the corresponding algorithms.

A. Resize

1) Baseline resize algorithm: Resize is the most frequently
used pre-processing function. In AI/ML-assisted CV pipelines,
resize function can help the application shrink images to fit the
demanding input size of the model. By shrinking input size,
resizing helps a training or trained model work with various
sizes of input images and, probably the most important, reduce
memory consumption and execution time.

In the conventional bi-linear resizing implementation, the
code will first compute the relative ratio between input and
output matrix sizes, which we call row and column scales
(rowScale and columnScale). For an input image (Input)
sized m-by-n, the input matrix size is m-by-3n since each row
includes R, G, and B channels. If the target output image size
is m0-by-n0 the output matrix size is m0-by-3n0. Hence, the
code computes the row and column scales as follows:

rowScale =
m0

m
, columnScale =

n0

n
(1)
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Then, using the scales, the code iterates through every
bounding box containing the source pixels to a target pixel
and calculates the weighted average as the target pixel value.
The following equations show how the baseline code calculates
the boundary (topi, boti, leftj , rightj) of bounding boxes in
Input and weights for corresponding output pixel (i, j).

topi = b
i

rowScale
c

boti = d
i

rowScale
e

leftj = b
bj/3c

columnScalme
c

rightj = d
bj/3c

columnScale
e

rowWeighti =
i

rowScale
� topi,

colWeightj =
bj/3c

columnScale
� leftj

(2)

The finally, the conventional algorithm will calculates each
output pixel (i, j) value as follows:

outputi,j =

(1 � rowWeighti) · (1 � colWeightj) · Inputtopi,leftj
+

(1 � rowWeighti) · (colWeightj) · Inputtopi,rightj
+

(rowWeighti) · (1 � colWeightj) · Inputboti,leftj
+

(rowWeighti) · (colWeightj) · Inputboti,rightj

(3)

However, the algorithm in OpenCV-CUDA cannot exploit
Tensor Cores since the there is no matrix multiplications but
only exists element-wise weighted averages.

2) TensorCV resize algorithm: TensorCV transforms the
conventional implementation into two matrix multiplications.
Considering an m-by-3n input and m0-by-3n0 output images,
the proposed algorithm creates an m0-by-m matrix as Lresize

and 3n-by-3n0 matrix as Rresize. The content of Lresize and
Rresize is only related to the target image’s size; therefore,
TensorCV only needs to create them once for every batch. In
contrast, the conventional approach not only prevents the code
from using Tensor Cores but also recalculates weights for the
same pixel position in each channel. The proposed algorithm
will fill the content of Lresize using the following formula:

Lresize
m⇥m0 3 lresizei,j =

8
<

:

1 � rowWeightj if j = topi

rowWeightj if j = boti
0 else

(4)

Rresize holds column-related weights, and TensorCV’s
algorithm fills the Rresize using the following formula:

Rresize
3n⇥3n0 3 rresizei,j =

8
>>>><

>>>>:

1 � colWeighti if bi/3c = lefti
and i (mod 3) = j (mod 3)

colWeighti if bi/3c = righti
and i (mod 3) = j (mod 3)

0 else

(5)

After filling matrices Lresize and Rresize using Equation 4
and 5 at the beginning of each batch of images, the proposed
algorithm can compute the output of each image resizing result
as the following.

Output
m0⇥3n0 = Lresize

m0⇥m · Inputm⇥3n · Rresize
3n⇥3n0 (6)

B. Color space conversion

1) Baseline cvtColor algorithm: As the sensor designs vary,
image sources may encode pixels differently. Therefore, CV
applications must convert the color spaces between the raw

image encoding to the RGB color space that computing devices
most frequently use. Taking the most common conversion
between YUV color space that most video encoders use to
RGB color space as an example, each pixel would require
several element-wise multiplications with different coefficients
and accumulations of scalar values. [9]. The vectorized version
in OpenCV-CUDA already expands the functions into matrix-
vector multiplications with each pixel as a 1⇥3 vector and the
coefficients (we call matrix C) as a 3⇥ 3 matrix as follows:

(Y U V ) = (R G B) ·
✓0.299 �0.147 0.615
0.587 �0.289 �0.515
0.114 0.436 �0.100

◆

(R G B) = (Y U V ) ·
✓ 1 1 1

0 �0.395 2.032
1.140 �0.581 0

◆ (7)

However, the algorithm in OpenCV-CUDA still cannot fully
exploit Tensor Cores since each Tensor Core Unit can work
on larger sizes of matrices.

2) TensorCV cvtColor algorithm: The proposed algorithm
multiplies the original m-by-3n input matrix with 3n-by-
3n RcvtColor, which is similar to an identical matrix. Each
element in the RcvtColor is filled by coefficient matrix C in
the following formula:

RcvtColor
3n⇥3n 3 rcvtColor

i,j =
⇢
Ci (mod 3),j (mod 3) if bi/3c = bj/3c
0 else

(8)

Still, each three-by-three partial matrix is a coefficient matrix
for color space conversion.

Outputm⇥3n = Inputm⇥3n · RcvtColor
3n⇥3n (9)

C. Cropping

1) Baseline crop algorithm: Cropping (i.e., rect in
OpenCV) extracts an essential part within an image for the
AI/ML model. For a source image with size m-by-n and target
image size of m0-by-n0 and offset (x, y), the conventional
implementation would require at least n0 memory operations
where each operation copies the length of m0 from an offset
of x from the beginning of each row. Suppose the cropping
operation occurs during the middle stage of the pipeline. In
that case, the application typically has to transfer the control to
the memory controller and under-utilize the AI/ML hardware.

2) TensorCV crop algorithm: The proposed algorithm keeps
the matrix content in matrix units and performs matrix
multiplications but requires zero memory operations. Similar
to equation 6, the proposed algorithm creates two matrices,
Lcrop
m0⇥m and Rcrop

3n⇥3n0 . Lcrop
m0⇥m contains an identity matrix sizes

m-by-m starting from column y and Rcrop
3n⇥3n0 contains an

identity matrix sizes 3n-by-3n starting from row x.

D. Normalize

1) Baseline normalize algorithm: Since the AI/ML models
are trained on normalized data, the models must normalize
input images before inference. To normalize an image, CV
applications calculate the mean (mean) and standard deviation
(stddev) of the input image’s pixel values, subtract mean from
each pixel value, and divide it by the stddev for each channel.
In conventional CV applications, the code calculates mean and
standard deviation and conducts normalization as follows:

mean =

P
Inputi,j

m ⇥ n
, stddev =

pP
(Inputi,j � mean)2

m ⇥ n
,

Outputm⇥n =
Inputm⇥n � mean

stddev

(10)
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Again, the baseline OpenCV-CUDA algorithm contains no
matrix operations for Tensor Cores.

2) TensorCV normalize algorithm: To calculate the mean,
TensorCV multiplies 16-by-m matrix Lmean

16⇥m and n-by-16
matrix Rmean

n⇥16 with only ones in the first row and column.
We scale the row and column dimensions to Lmean

16⇥m and
Rmean

n⇥16 because the current Tensor Core hardware optimizes
for 16⇥8 matrix operations. Since normalization transposes
and resizes the matrices, handle all color spaces simultaneously
is challenging. Hence, each element in the kernels Lmean

16⇥m and
Rmean

n⇥16 are filled in the following formula:

Lmean
16⇥m 3 lnorm

i,j =

⇢
1 if i = 0
0 else ,

Rmean
n⇥16 3 rnorm

i,j =

⇢
1 if j = 0
0 else

(11)

TensorCV then multiplies matrice Lmean
16⇥m and Rmean

n⇥16 with the
Input and results in the sum of all pixel values in the first
element of the output matrix as follows:

Mean16⇥16 =

0

@

P
Inputi,j · · ·

...
. . .

1

A = Lmean
16⇥m · Inputm⇥n · Rmean

n⇥16 (12)

Unlike the conventional algorithm calculating the stddev
as Equation 10, TensorCV calculates stddev using the square
root of the variance of data, allowing matrix multiplications in
computing stddev.

stddev =

sP
Input2i,j
m ⇥ n

� mean2 (13)

To compute the sum of the squared values of the input
matrix, TensorCV multiplies the Input and transposed one,
generating the squared input values in the diagonal elements
of the output as the following formula:

StdDev
0
m⇥m

= Inputm⇥n · InputT
m⇥n

=

0

BBBBBBBB@

P
Input20,j · · · · · · · · ·

...
P

Input21,j · · · · · ·
...

...
. . .

...
...

... · · ·
P

Input2m�1,j

1

CCCCCCCCA

(14)

To accumulate the diagonal values with matrix multiplication,
the TensorCV utilizes an observation that real matrix values
are stored in a single-dimension array, and users can define
the length and height of the matrix before computing matrix
multiplication. Thus, the algorithm add one to the height of the
matrix to align the target values in the first row. Consequently,
multiplying the output matrix with the transposed matrix
Lmean
16⇥m allows calculating the sum of the squared values of the

input matrix as the following formula:

StdDevm⇥16 =

0

@

P
Input2i,j · · ·

...
. . .

1

A

= StdDev0

0

BBBBBBB@

P
Input20,j

P
Input21,j · · ·

P
Input2m�1,j

...
...

...
...

...
...

...
...

...
...

...
...

1

CCCCCCCA

· Lmean T
16⇥m

(15)
After calculating the sum of pixel values and squared pixel

values, the proposed algorithm normalizes Input using pair-
wise vector operations, again, not matrix operations as the

following equation.

mean =
Mean16⇥16[0]

mn

stddev =

s
StdDevm⇥16[0]

mn
� (

Mean16⇥16[0]

mn
)2

Outputm⇥n =
Inputm⇥n � mean

stddev

(16)

E. Rotate

1) Baseline rotate algorithm: To acquire accurate infer-
encing results, the input images’ layout must be exact to
its original intent [22]. Thus, CV applications must be able
to rotate the input matrix. Taking the most common case,
the proposed algorithm supports 90, 180, and 270 degrees
of counter-clockwise rotation. The existing CV applications
rotate an image by allocating corresponding coordinate values
to new coordinates. For example, a 90-degree rotation allocates
the (x,y) coordinate values to (y,width � 1 � x). In that
respect, 180- and 270-degree move (x,y) coordinate values
to (width � 1 � x,height � 1 � y) and (height � 1 � y,x),
respectively.

2) TensorCV rotate algorithm: We observe that rotation can
be represented by swapping x and y coordinates and reversing
coordinates (1 � width � x and 1 � height � y). Thus, the
TensorCV algorithm swaps the coordinates by transposing the
matrix and reverses by multiplying flipped identical matrices
Lrotate
m⇥m and Rrotate

n⇥n . The matrices Lrotate
m⇥m and Rrotate

n⇥n are
filled in the following formula:

Lrotate
m⇥m 3 lrotate

i,j =

⇢
1 if j = m � 1 � i,
0 else ,

Rrotate
n⇥n 3 rrotate

i,j =

⇢
1 if j = n � 1 � i,
0 else

(17)

Like normalize, TensorCV performs the rotation operation
on each color channel separately (using a W-H/C format) due
to the transpose operation, requiring split and merge operations.
The following equations depict how the proposed algorithm
computes the 90-, 180-, and 270-degree rotations.

Output90n⇥m =
h
Inputm⇥n · Rrotate

n⇥n

iT

Output180m⇥n = Lrotate
m⇥m · Inputm⇥n · Rrotate

n⇥n

Output270n⇥m =
h
Lrotate

m⇥m · Inputm⇥n

iT
(18)

F. Kernel Integration

By transforming algorithms into matrix-based ones, Ten-
sorCV can treat this series of operations as a series of matrix
operations that the system can fuse these functions into a
single one to further reduce matrix operations and memory
usage. In TensorCV, we demonstrate the fusion of resize,
cropping, color space conversion, and rotation into just two
matrix multiplications. Considering a code performs resize,
center crop, RGB to YUV color space conversion, and 90-
degree rotation, we can represent the process as:

h
Lcrop

M00⇥M0 · Lresize
M0⇥M · InputM⇥3N ·

Rresize
3N⇥3N0 · Rcrop

3N0⇥3N00 · RcvtColor
3N00⇥3N00 · Rrotate

3N00⇥3N00
iT (19)

As mentioned in Section III-A2, the values of two left kernels
and four right kernels are only related to the target image’s
size and function parameters, not input values. Thus, TensorCV
simply needs to compute the matrix multiplications between
kernels once for every batch.

h
Linteg

M00⇥M0 · InputM⇥3N · Rinteg
3N⇥3N00

iT (20)
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Fig. 2. Performance of TensorCV compared with baseline OpenCV imple-
mentation using CPUs and GPUs

One issue is that naively extending Rrotate
N 00⇥N 00 to Rrotate

3N 00⇥3N 00

generates the incorrect output image. TensorCV solves such
an issue by transposing the matrix first. Then, the integrated
kernels use modified RcvtColor

3N 00⇥3N 00 to convert an RGB format
matrix to VUY one. After color space conversion, Rrotate

3N 00⇥3N 00

flips VUY to YUV, and the transpose operation generates YUV
format output. And finally, transpose the result back to the
original format. As such, the algorithm fulfills RcvtColor

3N 00⇥3N 00 and
Rrotate

3N 00⇥3N 00 as follows:

RcvtColor_integ
3n⇥3n 3 rcvtColor_integ

i,j =

8
><

>:

rcvtColor
i,3j+2 if bj/nc = 0

rcvtColor
i,3(j�n)+1 if bj/nc = 1

rcvtColor
i,3(j�2n) if bj/nc = 2

,

Lrotate_integ
m⇥m 3 lrotate_integ

i,j =

⇢
1 if j = m � 1 � i
0 else ,

Rrotate_integ
3n⇥3n 3 rrotate_integ

i,j =

⇢
1 if j = 3n � 1 � i
0 else

(21)

IV. EXPERIMENTAL METHODOLOGY

We conducted experiments on a machine with an Intel Core
i7-12700K processor, 64 GB DDR5 DRAM. The GPU in
our experiments is an NVIDIA GeForce RTX 3090 GPU
based on Ampere architecture. We implemented TensorCV is
implemented using NVIDIA CUDA Toolkit 11.7 and cuBLAS
in IEEE 754 half precision. The system runs a Linux 5.15.0
kernel. We ran each function with 100 batches of images, where
each batch had 20 samples. The inference-adjacent tasks include
resizing the image from 4032⇥3024 to 256⇥256, cropping
the center of the resized image with 224⇥224 box, converting
the color space RGB to YUV, rotating the image 90-degree
counter-clockwise, and normalizing the image values. Note that
the applications RsCp, RsCpCv, RsCpCvRt, and RsCpCvRtNm
indicate integrated functions of Resize (Rs), Crop (Cp), Color
space conversion (Cv), Rotate (Rt), and Normalize (Nm).

V. RESULTS

This section summarizes our evaluation of TensorCV. Ten-
sorCV delivered 6.12⇥ speedup in RsCpCvRtNm functions of
CV pipelines and saved 81% of the energy.

Figure 2 compares the performance of TensorCV with
conventional OpenCV implementations that can only use CPUs
or CUDA cores. The baseline of Figure 2 is the CPU-based
implementation. TensorCV’s algorithm achieves up to 7.43⇥
speedup in the color space conversion function. Note that
TensorCV shows a performance drop in the center crop because
OpenCV implements the crop with simple memory operations.
However, TensorCV also can employ such an approach when
it needs to run a single crop, and integrating multiple functions
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image sizes

removes the high latency of the crop. Excepting the outlier,
center crop, TensorCV achieved 4.67⇥ speedup on average,
while OpenCV-CUDA only sped up 3.14⇥ on average.

Another advantage of TensorCV is the ability to optimize
across functions and combine several matrix multiplications
into fewer ones. We presented four different use cases that com-
bine multiple pre-processing functions. Compared with other
implementations, TensorCV achieves 5.93⇥ geometric mean
in speedup in integration functions. However, the performance
is limited in the conventional GPU implementation as 3.04⇥
speedup, where cross-function optimization is complicated.

Tensor Cores also share the power/energy advantages of
other AI/ML accelerators. We use a Watts Up Power Meter to
measure the system power. While running these functions using
Tensor Cores, the total system power peaked at 203 W. However,
the total system power reaches 192 W and 178 W when using
CUDA cores and CPU only, respectively. As TensorCV reduces
execution time, TensorCV receives huge benefits in energy
consumption. Figure 3 compares the energy consumption of
TensorCV with its counterparts. TensorCV saves 81% of energy
on the RsCpCvRtNm function. In contrast, the existing GPU
implementation of OpenCV-CUDA shows only 64% energy
saving.

To demonstrate that TensorCV delivers performance ad-
vantages regardless of the image size, Figure 4 shows the
normalized speedup of TensorCV in a variety of input image
sizes. Our evaluation opts for the input image sizes from the
default photo sizes of Apple iPhones. TensorCV achieves 4.04⇥
speedup compared to OpenCV implementation on average,
while OpenCV-CUDA leads to 1.70⇥ speedup. Moreover,
compared to the OpenCV-CUDA implementation, TensorCV
shows at least 1.6⇥ higher speedup in all image sizes with
2.36⇥ speedup on average.

VI. RELATED WORK

In addition to aforementioned related work, several other
lines of TensorCV-relevant research deserve mention.
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Inference-adjacent computation Prior work identified
inference-adjacent computation as the bottleneck in many CV
applications [3], [10], [13], [19]. However, most prior work
focus on scheduling inference-adjacent stages and managing
computing resources, not accelerating the inference-adjacent
stage itself. Kang et al. [10] propose a runtime engine for
efficient resource management and scheduling for ML-adjacent
stages. DLBooster [3] offers an FPGA design to selectively
offload and compute some critical decoding workloads to
provide high performance in inferencing. Tf.Data [13] proposes
a framework for building and executing efficient ML-adjacent
stages, allowing the user to schedule, compose, and reuse the
computations. FastFlow [19] proposes an ML training system
offloading some ML-adjacent computations to remote CPUs
to mitigate the bottlenecks.
Image processing on GPUs With the growing interest in GPUs
as a general-purpose parallel computing platform, there are
studies and frameworks exploiting GPUs in image processing
algorithms [1], [2], [7], [15]. However, as mentioned in
Section II, ML-adjacent stages can be the bottleneck of ML
applications, although such parallelized algorithms, because
matrix multiplication accelerators can accelerate only AI/ML
parts. Although there are a few studies that employ matrix
multiplication accelerators for image processing algorithms [6],
[17], they focus on accelerating convolution-based algorithms
only. In contrast, TensorCV proposes novel algorithms to
utilize matrix multiplication accelerators on ML-related image
processing algorithms.
Non-AI/ML applications on AI/ML accelerators Prior work
demonstrates that exploiting matrix multiplication accelerators
in non-AI/ML algorithms by rewriting the algorithms can
improve their latency and throughput [4], [5], [8], [11],
[12], [14], [16], [18]. They target reduction operation [4],
[14], fractal processing [16], database operations [8], stencil
computation [12], Fourier transform [5], [11], [18], and general
tensor computation [21]. To our best knowledge, TensorCV is
the first research exploiting matrix multiplication accelerator
on ML-related image processing algorithms.

VII. CONCLUSION

This paper revisited the algorithms of several most frequently
used and under-optimized inference-adjacent functions in
CV pipelines. We showed an average of 7.6⇥ compared
with state-of-the-art GPU implementations. Furthermore, the
energy efficiency is solid – an average of 82% energy saving.
As the first work that utilizes Tensor Cores for inference-
adjacent computation in CV pipelines, we envision this work
would encourage revisits to existing problems and bring more
discussions on related topics.
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