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Abstract—

In-storage processing (ISP) is the most commercialized imple-
mentation of the near-data processing (NDP) model that executes
tasks near their storage locations. However, programming ISP
devices is complicated as it requires programmers to work closely
with the underlying hardware, and even highly-optimized code
can easily lead to suboptimal performance.

This paper introduces ActivePy. ActivePy makes the pro-
grammer completely agnostic to ISP hardware. ActivePy au-
tomatically, transpartently, and dynamically generates high-
performance code to balance system-wide trade-offs and max-
imize the benefits of ISP. Our real system implementation shows
that ActivePy can use ISP as efficiently as conventional C-based
frameworks.

I. INTRODUCTION

The increasing popularity of in-storage processing (ISP) or
computational storage solutions comes from two sources, the
mismatching of hardware evolution and the rapid growth of ap-
plication demands. With hardware accelerators offering orders-
of-magnitude speedup in compute kernels, the relatively slow
improvement in the interconnect bandwidth and non-volatile
memory technologies have made data supply an emerging
overhead. On the other hand, the datasets of applications have
grown rapidly, increasing the demand for data storage.

ISP addresses both problems by leveraging or extending
existing controllers near data storage. With more intelligent
controllers pre-processing storage data or offloading other host
computing resources’ workloads, ISP reduces the amount of
data volume going through the system interconnect or allows
the system to use host computing resources more efficiently.

Unfortunately, programming existing ISP frameworks is
challenging for the following reasons. First, identifying the
most advantageous use of the ISP model or computational
storage device (CSD) is not straightforward and relies heavily
on programmers’ knowledge of hardware and applications [2].
Second, composing a function on a CSD depends heavily on
firmware programming [9], [15], [26], customized libraries [9],
[13], [21], [25], specialized programming models [8], [20],
low-level commands attached to storage objects [1], and
hardware-description languages [5], [6], [11], [12], [27], and
finally, even though programmers have optimized the appli-
cation, the resulting program still lead to suboptimal perfor-
mance if computational resources or data sources change as
these frameworks have almost zero capability in dynamically
adjusting/migrating workloads [2], [13].

This paper proposes a principled design of ISP program-
ming frameworks to overcome the programming challenges.
We argue that an ideal ISP programming framework should
fulfill the following characteristics. First, the framework
should decide on the most valuable CSD functions to release
the burden on programmers. Second, the ISP device program-
ming interface should be an integral part of the host program-
ming interface and not require the programmer to compose
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the device function explicitly. In this way, the programming
framework will have the flexibility to transparently decide the
CSD function for the application and release the burden on
programmers. Finally, the framework should allow flexibility
in adjusting host/CSD workloads for system dynamics.

We designed and implemented ActivePy in response to the
design principles. The programmer interacts with ActivePy
using a high-level, interpreted, general-purpose programming
language (e.g., Python in the current prototype), and the
programmer is entirely agnostic to the presence of any CSD.
ActivePy enhances the runtime interpreter to transparently,
automatically, and dynamically compose functions for CSDs to
perform through sampling and prediction. ActivePy compiles
the resulting host application and the composed CSD functions
into machine code to avoid the overhead of continuous runtime
interpretation for better performance. ActivePy periodically
monitors the program’s execution and dynamically adjusts its
assignments if necessary to provide performance guarantees.

In summary, this paper makes the following contributions:
(1) It is the first paper that explores the use of an interpreted
language for programming CSDs in heterogeneous computing
platforms to demonstrate the deficiency of conventional com-
piled programming languages on the same platform.

(2) It proposes a set of mechanisms to analyze and automat-
ically generate programs on ISP platforms, making ActivePy
the first ISP programming platform that does not rely on any
programmer’s annotation, pragma, or hint.

(3) It identifies and optimizes the performance bottlenecks of
an interpreted-language runtime in heterogeneous computing.
(4) It evaluates ActivePy by building the complete system.

Our real system evaluation shows that ActivePy can allow
Python programs without any ISP-related hints to achieve
almost the same performance as equivalent, fully-optimized
ISP programs written in C. The average speedup of the end-to-
end latency from these applications is 1.33x, compared with
equivalent baseline implementations written in C. ActivePy
also makes the program less fragile to system dynamics than
conventional programming frameworks.

II. BACKGROUND AND MOTIVATION

With commercialized products [6], [7], [22] and working
groups on standards [23], the ISP model that offloads compu-
tation to computational storage drives (CSDs) starts to gain
ground in data-intensive computing platforms. This section
describes the architecture of modern CSDs and the challenges
of exploiting performance using existing system frameworks.

A. Computational storage devices (CSDs)

Figure 1 depicts the high-level architecture of a CSD in
a modern heterogeneous computer. In modern heterogeneous
computers, any peripheral device attached to the host com-
puter must communicate with another device through a host
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Fig. 1. The architecture of a computational storage device in a heterogeneous
computer.

system interconnect (e.g., PCle), except for the communication
between CPU and main memory. Therefore, the system inter-
connect can become a bottleneck when applications must move
large data volumes around different system components. For
example, in modern computers using the PCle 3.0 standard,
the storage device can only share 4 GB/sec data bandwidth.

In addition to the storage controller, the host interconnect
interface, the device memory (volatile), and the device stor-
age (non-volatile) that a storage device typically contains,
CSDs have a computational storage engine (CSE). The CSE
communicates with the device memory/storage with relatively
richer bandwidth of the exclusive intra-device interconnect,
up to 16 GB/sec [18]. In commercialized products, the
implementation of CSE can (1) leverage existing storage
controllers [7], (2) add general-purpose processor cores, or
(3) add an FPGA [6]. The processing power of the CSE
allows the ISP model to improve program efficiency by (1)
reducing the volume of data going through the relatively slow,
narrow system interconnect, and (2) permitting tasks running
on processors near data locations to receive data with richer
bandwidth than the available external bandwidth going to the
host [7]. Equation 1 quantifies the net profit (S) of performing
a task (code region) in a program using a CSD [4], [24],
instead of using the processors/accelerators from the host
computer:

D ST’(J,'IU

Dsprocessed
BWpon

S =
( BWpan

+ CTh,ost) - (CTdevice + ) >0

(1)
In this equation, DS, represents the raw input data size
associated with executing the code on the host, CT},,s; repre-
sents the latency of executing the code using the host processor
with all input data present in main memory, CTjeyice repre-
sents the latency of executing the equivalent code region on
the CSD, DSprocessed represents the size of the intermediate
data the device code produces, and BWpop represents the
bandwidth between the device and the host. An ISP-assisted
program is considered efficient if the program can make S >
0 in Equation 1.

B. Challenges

However, making S > 0 in Equation 1 is especially chal-
lenging in existing ISP platforms for the following reasons.

1) Limited CSE performance: Unlike GPU or ML/AI accel-
erators that deliver orders of magnitude speedup over the host
CPU, the CSE in a modern CSD has limited processing power,
typically slower than the host CPU. Previous studies [13],
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Fig. 2. The performance of the baseline task assignment compared with the
“oracle” (optimized for the case where CSE are free) under different available
hardware resources.

[25] have shown that the computation on the CSE is slower
than the host CPU, and a majority of performance gain
comes from reduced data volume. Therefore, a programmer
must comprehensively understand application behavior and
hardware characteristics to allocate application tasks to the
most appropriate computational resources.

2) Ad hoc, difficult-to-use and error-prone programming
frameworks: Programming of CSDs is further complicated
by the programming models. Existing platforms rely on (1)
firmware programming in C [9], [15], [26], (2) limited function
through customized libraries [9], [13], [21], [25], (3) special-
ized programming models [8], [20], (4) low-level commands
attached to storage objects [1], and (5) hardware-description
languages (e.g., Verilog) [5], [6], [11], [12], [27]. As a result,
the development of CSD functions are separated from the
application and requires significant changes in the original ap-
plication. The interface between different languages potentially
incurs additional memory and data exchange overhead. The
absence of hardware virtualization in these platforms makes
CSD programming error-prone and non-portable.

3) Lack of flexibility during execution: Most importantly,
even though the programmer carefully and exhaustively pro-
filed and composed the application, there is still no guarantee
of performance gain from using CSDs. The parameters in
Equation 1 can change due to (1) resource contention com-
ing from other applications, (2) resource contention coming
from the storage management workloads (e.g., garbage col-
lection), and (3) the change of input datasets itself. With the
programmer-directed design of CSD functions in modern ISP
platforms, there is no flexibility for existing ISP platforms
to be adaptive to these system dynamics. Take Figure 2
as an example, we leverage three TPC-H workloads used
for evaluating a representative CSD, Summarizer [13]. We
performed the same code optimization/distribution, all written
in C, on our baseline CSD described in Section IV-A. We
change the available CSE time for programs running on the
CSD to emulate the changes of computing resources. The code
optimization from Summarizer is based on the case when
the CSE is 100% available to the application. The x-axis
in Figure 2 represents the portion of CSE available for the
program, and the y-axis represents the speedup of the end-to-
end latency on the optimized workload under different CSE
availabilities. When the CSE fully dedicated its resources to
tasks from the CSD-assisted program (i.e., 100% in Figure 2),
these workloads are 1.25x faster than their baseline (i.e., the
same workload but not using CSDs at all). However, the same
optimizations to these workloads suffer from performance loss
when the CSD has less than 60% computation time available.

III. ACTIVEPY

Figure 3 illustrates the workflow of ActivePy. ActivePy
takes a typical interpreted language (i.e., Python in the current
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Fig. 3. The architecture of a computational storage device in a heterogeneous
computer.

implementation) based program that does not contain any
programmer’s annotation or hint about the ISP model as the
input. The host runtime system works with the CSD to form
sample inputs from the referenced files of the running program
to perform a sampling phase and collect statistics. The host
runtime system then estimates the latency of each line of code
when executing the code on the host processor and the CSD to
develop an initial task-assignment plan. In ActivePy, we define
a task as a program’s dynamic instance of a code region.

Next, ActivePy’s host runtime system separates the CSD
tasks and automatically rewrites parts of the program code
to enable the interaction between the CSD program and the
host program. Finally, ActivePy’s host runtime system will
generate binary running on both the host and the CSD and
start executing the program with the raw input. When the
ActivePy program runs, the host runtime system continues
monitoring task performance on each computing unit. If it
leads to performance degradation, ActivePy’s runtime system
can reassign the tasks between the host and the CSD, repar-
tition and regenerate the code, and migrate tasks between the
host processor and CSDs.

We describe the key elements of ActivePy in the followings.

A. Sampling Phase

Finding the sweet spot of slicing code from the original
program to maximize the benefits of using available CSDs
requires ActivePy to determine the parameters in Equation 1
for each line of code. ActivePy achieves this goal by running
a sampling phase that collects necessary statistics to guide the
values when evaluating Equation 1.

The design of ActivePy’s phase leverages two general
observations. (1) A small subset of input data can capture prop-
erties of the original input [14]. (2) the latency and resulting
data size are relational to the input data size. Therefore, the
sampling phase starts by heuristically selecting data from raw
inputs to create sample inputs of different sizes. The current
implementation generates inputs using four scaling factors
(F): (1) tiny, 2719%, (2) small, 27°x, (3) medium, 278x,
and (4) large, 277x.

After generating sample inputs, ActivePy will start running
the program using these sample inputs. When running each
line of code, ActivePy will record the execution time, the input
data size, and the output data size. If the code contains access
to stored data, ActivePy will separate the data access time
from the code execution time. This is because the data access
time is typically linear to the data size but not necessarily true
of the computation time. The sample inputs do not guarantee

Algorithm 1: CSD code assignment

Input: P, a collection of lines (Lo, L1, ..., L,) in the original program
Result: P}, a collection of lines in the host program, and P4, a
collection of lines in the CSD program
1 Tesqa = Thost:
2 foreach : L; € P do

3 ifi==0o0r L;_1 € P.sq then
Din;
4 Triepogq = Tesd = OTihost + CTi device - BWpap
Dout;
BWpon’
5 else
Din,
6 TLiEPcsd = lecsd - CTi,host + CT’i,device + BWD;H
Dout;
BWpon~’
7 end
8 if Tp,ep,.q <Tecsa < Thost then
9 Pesq = Pesa U Li;
10 Phost = Phost — Li;
1 Tesa =TrL;eP, 4
12 end
13 end

the program to generate meaningful computation results for
the workload. However, since the purpose of the sampling
phase is simply collecting information to estimate the benefit
of ISP, this method is satisfactory for ActivePy. In this work,
we implemented the sampling phase using line profiler [19].

During sample runs, ActivePy generates a set of estimated
performance metrics for each line of code (L;), including
(1) CT; post, the estimated computation time on the host, (2)
CT; device, the estimated computation time on the CSD, (3)
Din;, the estimated volume of data inputs, and (4) Dout;,
the estimated volume of data outputs. Since our sampling
mechanism grows F' exponentially, ActivePy can extrapolate
the execution time and change to the raw data size for each
line once four sample runs are complete. ActivePy predicts
the execution time and data-size changes by selecting the
closest fit from one of five curves—O (1), O (n), O (n log n),
O (n?), and O (n?). ActivePy then estimate the expected
execution time on the target CSD by multiplying the predicted
computation time on the host with a constant factor (C').
ActivePy calculates C' by either (1) querying the CSD’s
performance counters (e.g., retired instructions per cycle), or
(2) running a small sample program on both a CSD and the
host computer if performance counters are not available.

The aforementioned execution time estimation mechanism
in ActivePy aims at a “good enough” rather than a highly
accurate one for the following reasons. First, ActivePy uses the
estimation for initial task allocation and can gradually adjust
and optimize the decision later. Second, as system dynamics
can change anytime, highly accurate estimation is not very
useful in most scenarios. Finally, the overhead of applying
highly accurate estimation mechanisms may not be able to
outweigh the gain from a “good enough” but lightweight one.

B. Identifying CSD code regions

Algorithm 1 summarizes ActivePy’s algorithm in identi-
fying the CSD functions. The design of the algorithm uses
one line of Python code as the basic unit of forming code
regions, but not finer-grained in the translated code level as:
(1) each line of Python code is a single-entry-single-exit code
region that facilitates code generation and optimization due to
the nature of line-by-line interpretation of the language, and
more importantly, (2) as CSDs must communicate with the
rest of the system through bandwidth-constrained, relatively-
long-latency interconnect, the BWpsp factor in Equation 1
is usually small and makes the data movement overhead
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significant. Therefore, ISP models cannot take advantage of
fine-grained task allocations that arbitrarily distribute tasks
among different components since the cost of sending data
back and forth through the interconnect is expensive.

Algorithm 1 initializes the set of code (i.e., CSD code)
to execute on the CSD, P.s, as an empty set and uses
the total execution time for all code on the host, T},,s:, as
the projected execution time on the CSD, T.s4. Using the
projected execution time and data-size changes, ActivePy (1)
examines every line to determine whether adding the line into
the P.sq can reduce execution time 71,4, and (2) records the
assignment that yields the shortest execution time, until the
algorithm went through every line of code.

C. Code generation

After ActivePy identifies P,.q, the computation and data
accesses in the CSD function, ActivePy will generate the
machine code on each hardware and automatically instrument
the program code for the following purposes: (1) memory
allocations, (2) CSD function invocations, and (3) elimination
of redundant memory operations.

a) Memory allocations: ActivePy adopts a shared mem-
ory address space between the host program and the CSD
program. ActivePy’s memory allocation policy prefers to place
data near their consumers. This design reduces the software
overhead and redundant memory copies by leveraging existing
architectural supports. For CSDs attached to the host computer
using PCle interconnect, the CSD can expose its memory
available for ActivePy’s CSD functions by declaring them in
the PCle BARs (base address registers). ActivePy’s kernel
memory module can work with the OS’s virtual memory
subsystem to map these CSD locations into any ActivePy
program’s virtual memory address. The host program can later
directly access these locations using load/store instructions
without the demand for additional memory buffers and calls to
I/O library functions. If the CSD attaches to the host computer
through storage protocols over the network (e.g., NVMeoF),
the CSD can leverage the RDMA hardware infrastructure
NVMe already uses to support the storage function to map
the device’s internal memory into the host program’s virtual
address space. Similarly, the host program can use load/store
instructions to directly access the CSD’s device memory
without additional memory and library overhead.

b) CSD function calls: As modern CSDs use fast, non-
volatile memory, ActivePy’s approach to making CSD function
calls mimics the mechanism NVMe uses to communicate with
devices for shorter latency [10]. Like the concept of queue-
pairs in NVMe [10], [16], [17] and several CSD prototype
systems [5], [8], ActivePy maintains a function call queue
mapped from each CSD’s memory location visible to the
host. The CSD’s CSE fetches a request from the call queue
whenever the CSE is free.

To enable feedback and migration when running a CSD
function, ActivePy also patches the status update code that
reports the current execution status, typically the execution
rate, through the completion/response queue. ActivePy patches
status update code only at the end of each line of code at
the interpreted language level, typically once every tens of
machine instructions. The status update code also checks if
the host computer has any request that CSD needs to handle
with high priority. The overhead of status update code takes
very little overhead in code execution time.

c) Elimination of redundant memory operations: Ac-
tivePy also patches the code to avoid Python’s overhead

of calling libraries written in heterogeneous programming
languages. ActivePy does so by placing memory objects ex-
changed through different function calls directly into mutable
memory, potentially a memory location on a CSD. By placing
values in mutable memory objects, passing inputs when calling
wrapper functions is similar to call-by-reference; the caller
and callee share the same memory locations. If ActivePy can
determine the target type of memory objects, the relevant
library functions in ActivePy can produce memory objects in
the target data type (e.g., NumPy) directly to the destination
memory locations, further avoiding conversion overhead and
bypassing the memory buffer.

d) Code distribution: ActivePy compiles the CSD func-
tion into the CSD’s machine binary and the rest as the
host machine binary for performance. ActivePy leverages the
code generation functions in Cython [3] to produce high-
performance machine code. ActivePy invokes Cython func-
tions after ActivePy starts running the program and makes the
decisions of task and data allocation. ActivePy distributes the
CSD function using the mapped device locations. As men-
tioned before, CSDs supporting ActivePy make their device
memory available to the host computer. Therefore, ActivePy
can directly copy or emit the generated CSD binary into the
target device memory location without additional commands
or protocols.

D. Runtime monitoring and migration

ActivePy monitors the performance of code executing on
CSDs and potentially adjusts the workload distribution for
situations in which (1) the target device needs to handle high-
priority tasks or (2) the device’s projected performance does
not match its real performance. For the first case, the CSD
will signal ActivePy through the command pages to notify
ActivePy to take corresponding actions immediately. ActivePy
detects the second case by checking the throughput of the CSD
code. ActivePy will use the measured IPC to re-estimate the
time required for the remaining tasks on CSD if any of the
following cases occur: (1) the rate of instruction throughput
(i.e., instructions per cycle [IPC]) from the CSD code segment
is decreasing, or (2) the IPC significantly below the estimated
instruction throughput (i.e., the total amount of estimated
instructions divided by estimated execution time on CSD). If
the re-estimated execution time is longer than the total cost of
migrating the remaining task to the host computer, including
the host computation time and the data movement overhead,
ActivePy will initiate task migration to the host.

Once the system decides to migrate the CSD task, ActivePy
will break the execution of CSD code at the end of the
currently executing line of Python code. With the help of a
single memory abstraction for all computing units, migrating
tasks among different computing units only requires ActivePy
to save the local variables and the data in the shared memory
space. ActivePy will regenerate the machine code for the new
target-computing unit and resume execution of the offloaded
code segment at the breakpoint of the Python code. The
target-computing unit can resume execution of the originally
offloaded code segment by using the regenerated machine
mode and data/variables in the shared memory abstraction.

IV. EXPERIMENTAL METHODOLOGY

This section describes both the hardware platform and the
applications that we established to evaluate ActivePy.
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Name Data Size Name Data Size
blackscholes 9.1 GB KMeans 53 GB
LightGBM 7.1 GB MatrixMul 6.0 GB
MixedGEMM 9.4 GB Pagerank 7.7 GB
TPC-H-1 6.9 GB TPC-H-6 6.9 GB
TPC-H-14 7.1 GB

TAB T
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Fig. 4. The speedup of ActivePy compared to the speedup of a static, C-based
ISP platform

A. Experimental platform

a) The Host Computer: The experimental platform we
used has an octa-core AMD AMD Ryzen 7 3700X processor
with a base clock rate of 3.6 GHz. We installed Ubuntu 16.04
(Linux kernel version 4.15), extended the language runtime,
and added user-space drivers to support the ActivePy model.
The motherboard contains a PCle 3.0 I/O hub that connects
the processor and other peripherals, including a Mellanox
InfiniBand NIC that connects to the CSD. The machine also
contains an NVIDIA RTX 2080 GPU.

b) The CSD: To evaluate the performance issues and our
proposed design, we built a CSD that includes a system-on-
chip (SoC) with 8 ARM Cortex-A72 processor cores and uses
2 TB flash memory arrays for data storage. The SoC and
the device DRAM have access to the internal NAND flash-
based arrays through an internal interconnect. We measured an
effective peak bandwidth at 9GB/sec when accessing the inter-
nal NAND array. The CSD uses NVMe [17] to communicate
with the host computer with up to 5GB/sec bandwidth, half of
that to the internal device bandwidth. In addition, the CSD’s
hardware supports RDMA/InfiniBand, which can help map
the CSD’s internal memory locations to the host computer.
The assembly of our CSD matches the specifications of
commercialized products or prototypes [7], [13] and delivers
similar performance gain as prior research prototypes [13].

B. Applications

We used nine Python workloads to evaluate the performance
of ActivePy. Table I provides a summary of each application’s
input data size and code regions. We select these workloads
as these applications have both Python and C implementations
with optimized compute kernels to allow this work to compare
the performance of optimized, programmer-directed versions
and the Python version automatically optimized by ActivePy.
These applications are also proved to beneficial through using
CSDs with general-purpose processors [8], [9], [13], [25].

V. RESULTS

ActivePy’s overall performance The evaluation result in
Figure 4 shows that the automatic ActivePy without any
programmer’s hint achieves almost the same performance
gain as optimal programmer-directed programming. Figure 4
shows ActivePy’s performance for the total execution time of
these applications when the CSD fully dedicated itself to the

running application. We normalize the speedup to the baseline
application (C-based, without ISP). ActivePy achieves almost
the same performance gain as the programmer-directed ISP
—1.34x vs. 1.33x—because ActivePy successfully identified
exactly the same set of code regions for our CSD to perform as
the optimal programmer-directed configuration. The execution
time of the baseline workloads varies from 11 secs (TPC-H-6)
to 73 sec (KMeans) on our machine. The small (1%) perfor-
mance difference between these two configurations reflects the
negligible overhead, typically 0.1 sec latency, of the sampling
mechanisms and the code-generation phase.

The programmer-directed ISP is a collection of manually
optimized C-based, ISP programs running on the same hard-
ware platform using the system infrastructure with a CSD.
In C-based implementations, programmers have to manually
specify/compose ISP code regions. On the other hand, the pro-
posed automatic ActivePy does not rely on any programmer’s
hint. To create an optimal programmer-directed code for each
C application, we exhaustively tried to offload all reasonable
combinations of single-entry-single-exit code regions in Ta-
ble I to the CSD when the CSD entirely dedicated itself to
the running program. We select the combination that delivers
the shortest end-to-end latency as the optimal programmer-
directed version for each application.

ActivePy’s capability in identifying and composing CSD
code ActivePy’s mechanism usually makes very accurate
predictions on data volume changes, the main factor affecting
ISP program performance. As the data volume reduction after
processing on our CSD is the main factor that leads to the
performance gain, the accuracy in predicting volume changes
compensates for the errors in estimating computation time. The
only exception is the conversion to CSR format in PageRank
and SparseMV — ActivePy can over-estimate the data volume
that our CSD produced after generating CSR by up to 2.41 x.
The geometric mean of our error rate that discounts the
outliers (e.g., CSR format) is only 9%. ActivePy does not
predict accurately for CSR format because the sparsity is
challenging to estimate with the limited number of samples we
created in our algorithms. Our experiments on different input
matrices show that ActivePy always over-estimates the data
volume after generating CSR on our CSD, meaning that our
algorithm under-estimates the potential of our CSD. Therefore,
ActivePy at least makes no harm to performance if ActivePy
conservatively schedules tasks on the host machine due to the
under-estimated data reduction benefit from our CSD.
ActivePy’s optimizations in its language runtime It is worth
mentioning the performance of code optimizations of ActivePy
in Section III-COd. F Without any optimization, the baseline
Python code without using CSDs is 41% slower than the C
baseline due to the overhead of the original Python runtime.
Using Python-to-C compiler (e.g., Cython) to generate code
helps close the performance gap and shrink the slowdown to
20%. By eliminating unnecessary memory copies, the end-to-
end latency of running the baseline Python program (ActivePy
program without using ISP) makes almost no difference as the
C baseline, excluding the 1% compilation overhead.
ActivePy with dynamic task migration Unlike traditional
compiled-language-based platforms that cannot easily migrate
tasks once assigned, ActivePy can reassign task locations and
generate high-performance binaries on each computing unit
with reasonably low overhead. To demonstrate ActivePy’s
task-migration capabilities, we created a version of ActivePy
that cannot migrate tasks dynamically (ActivePy w/o mi-
gration) and compared its performance with the full-fledged
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Fig. 5. The speedup of all workloads on ActivePy under 50% and 10%

available CSP resources with and without task migration

ActivePy (ActivePy). We stressed the CSD processor by
executing similar workloads right after each application’s ISP
tasks make 50% of their progress to simulate a situation where
the CSD must load multiple tasks.

Figure 5 lists the cases when only 50% and 10% of
the CSD computing resource is available to ISP workload.
For both cases, full-fledged ActivePy outperforms ActivePy
w/o migration. When the CSD has only 10% computing
resources available for the assigned CSD tasks, ActivePy w/
task migration outperforms ActivePy w/o task migration by
2.82x. Relative to the no-CSD-assisted, baseline condition,
ActivePy suffers 8% slowdown on average for the overhead
of regenerating code on the host and accessing live data in
CSD from the host computer. Without ActivePy’s capability
in migrating tasks dynamically, always using CSD can lead to
an average of 67%, up to 88% performance loss when only
10% computing resource is available.

When the CSD has 50% computing resource, the case shows
that ActivePy is still capable of balancing the trade-offs of
migration or slower ISP tasks. ActivePy decides to migrate
for Blackscholes, KMeans, SparseMV, MixedGEMM, TPC-H-
1, and TPC-H-14. ActivePy’s decisions outperform ActivePy
w/o task migration in all cases except for Blackscholes.

VI. CONCLUSION

This paper presents ActivePy, a dynamic-language-based
programming framework for ISP. ActivePy makes ISP more
accessible to application designers by generating code that
works on processors near data storage without programmer
involvement. ActivePy can easily migrate tasks among differ-
ent compute units to prevent performance degradation when
workloads change. Through experiments conducted with the
prototype ActivePy platform, this paper shows that intepreted
languages with our proposed optimizations can be as compet-
itive as compiled languages. ActivePy successfully identifies
ISP use cases in a diverse range of applications, yielding a
speedup of 1.33x. ActivePy’s flexibility is underscored by
its capacity to migrate ISP tasks among different units while
minimizing the impact of inappropriate task assignments when
workloads change.
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