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Abstract—This paper presents Accel-Bench, a benchmark suite
that aims to capture the performance of accelerator-intensive
programming. To the best of our knowledge, Accel-Bench is
the first benchmark suite that utilizes applications that can
invoke different domain Kkernels in their algorithm and quantifies
the potential performance gain of using hardware-accelerated
functions to compose programs agnostic to their domain.

I. INTRODUCTION

The introduction of hardware accelerators has brought exotic
flavors of computing models into computer systems. Instead
of implementing a rich set of fine-grained mathematical or
logical operations, each operation in a hardware accelerator can
implement a complete compute kernel in the accelerator’s target
application domain. As each operation covers a coarse-grained
computation and each hardware accelerator has a limited target
application domain, the design of hardware accelerators can
use transistors more efficiently and deliver better performance
or energy consumption than general-purpose processors when
accomplishing the same task.

The integration of hardware accelerators also significantly
shifted the programming paradigm. Programmers no longer
describe the exact algorithm using the authoring programming
language but only need to invoke a function/method that maps
to an algorithm in an application domain that an underlying
hardware accelerator implements. In addition to addressing
the demands in accelerators’ original target domains, recent
research projects have successfully demonstrated the potential
of accelerating a broader spectrum of problems using these
domain-specific functions. Examples include using AI/ML
accelerators for database queries [6], [10], [12], fast Fourier
transforms [13], or scientific applications [7], [8], [11], [14],
[15], and using ray tracing accelerators for data analytics [20].

This paper presents Accel-Bench, a benchmark suite target-
ing the future world of accelerator-intensive programming.
Accel-Bench contains applications from various domains
that can leverage the most promising hardware accelerators,

including tensor processors, digital signal processors, and ray
tracing accelerators. In contrast to conventional programs,
Accel-Bench provides alternative implementations that invoke
hardware-accelerated functions whenever possible. To increase
the opportunities for using hardware accelerators, we carefully
re-engineered the algorithms or used different approaches in
several application kernels to map their core computation into
accelerated, domain-specific functions. In addition to running
applications on real hardware, the resulting applications can use
simulators like Accel-Sim as long as the framework provides
the required hardware-accelerated functions.

II. THE ACCEL-BENCH BENCHMARK SUITE

Accel-Bench aims to allow the community to access the
potential of programming using hardware-accelerated functions,
evaluate performance scaling with emerging hardware accelera-
tors, and assist the architecture design of more general hardware
accelerators. Accel-Bench identifies a broad spectrum of appli-
cations that cover several vital dwarfs while their algorithmic
problems can map to hardware-accelerated functions. Accel-
Bench revisited these applications and revised their state-of-
the-art implementations to leverage existing/potential hardware-
accelerated functions. This section will describe the goals and
the detailed implementations of Accel-Bench.

A. Workloads

Table I lists the applications that Accel-Bench includes.
These applications cover dwarfs, including dense linear algebra,
Structured Grid, Spectral Methods, and Graph Traversal. These
applications fall into image processing, data mining, physics
simulations, genomics, signal processing, web mining, and
social network analysis beyond the domains of the hardware
accelerators that modern computers provide.

For implementation on the CPU, we used a matrix mul-
tiplication and an optimized implementation from the GAP
Benchmark suite [4] as a baseline. For the GPU, we utilized
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Benchmark Dwarf Application Domain Hardvtyare gccelerated Baseline Implementation
unction(s)

Canny Edge Detection (CED) Dense Linear Algebra Image Processing CONV RosettaCode [2], Chai [9]

K Nearest Neighbor (KNN) Dense Linear Algebra Data Mining GEMM KNNCUDA [19], RTNN [20]

Heat (Heat2D/Head3D) Structured Grid Physics Simulation CONV/FFT TEAlab [1], FDTD3D [16]

KMeans (KM) Dense Linear Algebra Data Mining GEMM Rodinia [5]

Genomic Relationship Matrix (GRM) Dense Linear Algebra | Bioinformatics / Genomics GEMM GenomicsBench [18]

Short-Time Fourier Transform (STFT) Spectral Methods Digital Signals Processing FFT RosettaCode [3]

PageRank (PR) Graph Traversal Web Minning GEMV GAP [4]

Triangle Counting (TC) Graph Traversal Social Network Analysis GEMM GAP [4]

TABLE I
TABLE OF BENCHMARKS
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Fig. 1. The performance result on the default machine

cuBLAS [17] with and without Tensor Cores to accelerate
matrix multiplication, along with CUDA kernels to calculate
the Hamming product and summarize the final count.

ITII. RESULTS

This section summarizes our evaluation of Accel-Bench. The
result shows that the hardware-accelerated API-based paradigm
that Accel-Bench promotes is on par with or outperforms the
state-of-the-art implementation’s performance.

A. Performance

On average, using hardware accelerated API as the pro-
gramming paradigm can speed Accel-Bench applications
by 1.13x to 1.77x compared to the state-of-the-art GPU
implementations, despite that GPU implementations are already
2.8 to 7.6 faster than CPU implementations. Figure 1 details
the relative speedup of running Accel-Bench on the default
server, compared to the CPU baseline.

In general, we found the performance gain of using hardware-
accelerated APIs is more significant when dataset sizes become
more extensive. As the data structures that hardware-accelerated
APIs accept do not always fit the original application’s
data structures, Accel-Bench must contain code to explicitly
convert and prepare data structures for the inputs and outputs
of hardware-accelerated APIs. When the dataset becomes
larger, the increased complexity in the accelerated function’s
counterpart helps mitigate the overhead of such a process.

H2D and H3D provide another aspect in showing the strength
of hardware-accelerated APIs. Despite simulating the thermal
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states using stencil operations, H3D additionally considers
twice as many diagonals as H2D. Therefore, the computation
of H3D becomes significantly higher than H2D. The current
Accel-Bench implementation maps stencil operations into
convolution and the rest in FFT. Using the convolution function
for stencil will result in zero elements in computation and
negate the effect of hardware acceleration to a certain degree.
FFT requires high overhead in data conversion but is also less
optimized due to the absence of FFT accelerators on NVIDIA
GPUs. Therefore, the amount of computation in functions
that hardware-accelerated APIs can accelerate does not allow
hardware-accelerated APIs to gain performance. In contrast,
hardware-accelerated APIs become more effective as these
functions take more computation in H3D.

IV. CONCLUSION

This paper generates two critical insights. First, a hardware-
accelerated-API-centric programming model is evenly or
more competitive than conventional performance programming
methods. Second, as architectural innovations focus more on
hardware accelerators, we have seen more significant gains with
upgraded hardware using a hardware-accelerated-API-centric
programming model.

We envision Accel-Bench will encourage more exploration
of hardware-accelerated-API-centric programming models. We
also anticipate Accel-Bench can help identify and design
architectures to optimize the potential performance issues in
such models.
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