2024 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS) | 979-8-3503-7638-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/ISPASS61541.2024.00038

2024 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

Accel-Bench: Exploring the Potential of
Programming using Hardware-Accelerated
Functions

Abenezer Wudenhe
University of California, Riverside
Rivsrside, California, USA
awude001 @ucr.edu

Yu-Chia Liu
University of California, Riverside
Rivsrside, California, USA
yliu719@ucr.edu

Chris Chen
University of California, San Diego
San Diego, California, USA
chc033 @ucsd.edu

Hung-Wei Tseng
University of California, Riverside
Rivsrside, California, USA
htseng @ucr.edu

Abstract—This paper presents Accel-Bench, a benchmark suite
that aims to capture the performance of accelerator-intensive
programming. To the best of our knowledge, Accel-Bench is
the first benchmark suite that utilizes applications that can
invoke different domain Kkernels in their algorithm and quantifies
the potential performance gain of using hardware-accelerated
functions to compose programs agnostic to their domain.

I. INTRODUCTION

The introduction of hardware accelerators has brought exotic
flavors of computing models into computer systems. Instead
of implementing a rich set of fine-grained mathematical or
logical operations, each operation in a hardware accelerator can
implement a complete compute kernel in the accelerator’s target
application domain. As each operation covers a coarse-grained
computation and each hardware accelerator has a limited target
application domain, the design of hardware accelerators can
use transistors more efficiently and deliver better performance
or energy consumption than general-purpose processors when
accomplishing the same task.

The integration of hardware accelerators also significantly
shifted the programming paradigm. Programmers no longer
describe the exact algorithm using the authoring programming
language but only need to invoke a function/method that maps
to an algorithm in an application domain that an underlying
hardware accelerator implements. In addition to addressing
the demands in accelerators’ original target domains, recent
research projects have successfully demonstrated the potential
of accelerating a broader spectrum of problems using these
domain-specific functions. Examples include using AI/ML
accelerators for database queries [6], [10], [12], fast Fourier
transforms [13], or scientific applications [7], [8], [11], [14],
[15], and using ray tracing accelerators for data analytics [20].

This paper presents Accel-Bench, a benchmark suite target-
ing the future world of accelerator-intensive programming.
Accel-Bench contains applications from various domains
that can leverage the most promising hardware accelerators,

including tensor processors, digital signal processors, and ray
tracing accelerators. In contrast to conventional programs,
Accel-Bench provides alternative implementations that invoke
hardware-accelerated functions whenever possible. To increase
the opportunities for using hardware accelerators, we carefully
re-engineered the algorithms or used different approaches in
several application kernels to map their core computation into
accelerated, domain-specific functions. In addition to running
applications on real hardware, the resulting applications can use
simulators like Accel-Sim as long as the framework provides
the required hardware-accelerated functions.

II. THE ACCEL-BENCH BENCHMARK SUITE

Accel-Bench aims to allow the community to access the
potential of programming using hardware-accelerated functions,
evaluate performance scaling with emerging hardware accelera-
tors, and assist the architecture design of more general hardware
accelerators. Accel-Bench identifies a broad spectrum of appli-
cations that cover several vital dwarfs while their algorithmic
problems can map to hardware-accelerated functions. Accel-
Bench revisited these applications and revised their state-of-
the-art implementations to leverage existing/potential hardware-
accelerated functions. This section will describe the goals and
the detailed implementations of Accel-Bench.

A. Workloads

Table I lists the applications that Accel-Bench includes.
These applications cover dwarfs, including dense linear algebra,
Structured Grid, Spectral Methods, and Graph Traversal. These
applications fall into image processing, data mining, physics
simulations, genomics, signal processing, web mining, and
social network analysis beyond the domains of the hardware
accelerators that modern computers provide.

For implementation on the CPU, we used a matrix mul-
tiplication and an optimized implementation from the GAP
Benchmark suite [4] as a baseline. For the GPU, we utilized

2766-0486/24/$31.00 ©2024 IEEE 301
DOI 10.1109/ISPASS61541.2024.00038
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 26,2024 at 22:59:18 UTC from IEEE Xplore. Restrictions apply.

Benchmark Dwarf Application Domain Hardvtyare gccelerated Baseline Implementation
unction(s)

Canny Edge Detection (CED) Dense Linear Algebra Image Processing CONV RosettaCode [2], Chai [9]

K Nearest Neighbor (KNN) Dense Linear Algebra Data Mining GEMM KNNCUDA [19], RTNN [20]

Heat (Heat2D/Head3D) Structured Grid Physics Simulation CONV/FFT TEAlab [1], FDTD3D [16]

KMeans (KM) Dense Linear Algebra Data Mining GEMM Rodinia [5]

Genomic Relationship Matrix (GRM) Dense Linear Algebra | Bioinformatics / Genomics GEMM GenomicsBench [18]

Short-Time Fourier Transform (STFT) Spectral Methods Digital Signals Processing FFT RosettaCode [3]

PageRank (PR) Graph Traversal Web Minning GEMV GAP [4]

Triangle Counting (TC) Graph Traversal Social Network Analysis GEMM GAP [4]

TABLE I
TABLE OF BENCHMARKS

10000
[l GPU (CUDA)
S 1000 M Hardware-accelerated library 18
g RT Cores 5
] 1466
2 100 »
3 28
:l,. 1282 15%5.0 54 05 os 120 0z 121 s o 134
Q 10 ., i 4 af7 5 56.4 PP W22 7'
£ 381 9 9 29, 2 21 282
: 1 J44 il 1d -5a nl
< 1 = n I ia k)
095 04 o
M . - - - & e - = - =5 A== = == ===
o s (DR ® s d o s 2 @ s d ® s d “ s 2 @ s d o s (DR
o a 4 4 [a] [a] [a] [a] 2] @ - = 2o o (8]
oo 223z S8 28 e S 2 ¢ EEE EEE afa eeR 555
0o o O ¥ g X B I rT & 3 S G 5 O ol o
€ E¢&

Fig. 1. The performance result on the default machine

cuBLAS [17] with and without Tensor Cores to accelerate
matrix multiplication, along with CUDA kernels to calculate
the Hamming product and summarize the final count.

ITII. RESULTS

This section summarizes our evaluation of Accel-Bench. The
result shows that the hardware-accelerated API-based paradigm
that Accel-Bench promotes is on par with or outperforms the
state-of-the-art implementation’s performance.

A. Performance

On average, using hardware accelerated API as the pro-
gramming paradigm can speed Accel-Bench applications
by 1.13x to 1.77x compared to the state-of-the-art GPU
implementations, despite that GPU implementations are already
2.8 to 7.6 faster than CPU implementations. Figure 1 details
the relative speedup of running Accel-Bench on the default
server, compared to the CPU baseline.

In general, we found the performance gain of using hardware-
accelerated APIs is more significant when dataset sizes become
more extensive. As the data structures that hardware-accelerated
APIs accept do not always fit the original application’s
data structures, Accel-Bench must contain code to explicitly
convert and prepare data structures for the inputs and outputs
of hardware-accelerated APIs. When the dataset becomes
larger, the increased complexity in the accelerated function’s
counterpart helps mitigate the overhead of such a process.

H2D and H3D provide another aspect in showing the strength
of hardware-accelerated APIs. Despite simulating the thermal

302

states using stencil operations, H3D additionally considers
twice as many diagonals as H2D. Therefore, the computation
of H3D becomes significantly higher than H2D. The current
Accel-Bench implementation maps stencil operations into
convolution and the rest in FFT. Using the convolution function
for stencil will result in zero elements in computation and
negate the effect of hardware acceleration to a certain degree.
FFT requires high overhead in data conversion but is also less
optimized due to the absence of FFT accelerators on NVIDIA
GPUs. Therefore, the amount of computation in functions
that hardware-accelerated APIs can accelerate does not allow
hardware-accelerated APIs to gain performance. In contrast,
hardware-accelerated APIs become more effective as these
functions take more computation in H3D.

IV. CONCLUSION

This paper generates two critical insights. First, a hardware-
accelerated-API-centric programming model is evenly or
more competitive than conventional performance programming
methods. Second, as architectural innovations focus more on
hardware accelerators, we have seen more significant gains with
upgraded hardware using a hardware-accelerated-API-centric
programming model.

We envision Accel-Bench will encourage more exploration
of hardware-accelerated-API-centric programming models. We
also anticipate Accel-Bench can help identify and design
architectures to optimize the potential performance issues in
such models.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 26,2024 at 22:59:18 UTC from IEEE Xplore. Restrictions apply.

B=
D=

G
&

(6

—

[7

—

=
x

[9

[10]

REFERENCES

TEAlab/FFTStencils. https:/github.com/TEAlab/FFTStencils/tree/main.
Canny edge detector. https://rosettacode.org/wiki/Canny_edge_detector,
November 2015.

Fast Fourier transform.
transform, December 2023.
Scott Beamer, Krste Asanovi¢, and David Patterson. The gap benchmark
suite. arXiv preprint arXiv:1508.03619, 2015.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite
for heterogeneous computing. In 2009 IEEE international symposium
on workload characterization (IISWC), pages 44-54. leee, 2009.
Abdul Dakkak, Cheng Li, Jinjun Xiong, Isaac Gelado, and Wen-mei Hwu.
Accelerating reduction and scan using tensor core units. In Proceedings
of the ACM International Conference on Supercomputing, ICS °19, pages
46-57, 2019.

Sultan Durrani, Muhammad Saad Chughtai, Mert Hidayetoglu, Rashid
Tahir, Abdul Dakkak, Lawrence Rauchwerger, Fareed Zaffar, and Wen-
mei Hwu. Accelerating fourier and number theoretic transforms using
tensor cores and warp shuffles. In 2021 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages
345-355, 2021.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
Neural acceleration for general-purpose approximate programs. In Pro-
ceedings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-45, pages 449-460, Washington, DC, USA,
2012. IEEE Computer Society.

Juan Gémez-Luna, Izzat El Hajj, Li-Wen Chang, Victor Garcia-Floreszx,
Simon Garcia De Gonzalo, Thomas B Jablin, Antonio J Pena, and Wen-
mei Hwu. Chai: Collaborative heterogeneous applications for integrated-
architectures. In 2017 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 43-54. IEEE, 2017.
Pedro Holanda and Hannes Miihleisen. Relational queries with a tensor
processing unit. In Proceedings of the 15th International Workshop on

https://rosettacode.org/wiki/Fast_Fourier_

303

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

Data Management on New Hardware, DaMoN’19, New York, NY, USA,
2019. Association for Computing Machinery.

Kuan-Chieh Hsu and Hung-Wei Tseng. Accelerating Applications using
Edge Tensor Processing Units. In SC: The International Conference for
High Performance Computing, Networking, Storage, and Analysis, SC
2021, 2021.

Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. TCUDB: Accelerating
Database with Tensor Processors. In the 2022 ACM SIGMOD/PODS
International Conference on Management of Data, SIGMOD 2022, 2022.
Binrui Li, Shenggan Cheng, and James Lin. tcfft: A fast half-precision fft
library for nvidia tensor cores. In 2021 IEEE International Conference
on Cluster Computing (CLUSTER), pages 1-11, 2021.

Tianjian Lu, Thibault Marin, Yue Zhuo, Yi-Fan Chen, and Chao Ma.
Accelerating mri reconstruction on tpus. In 2020 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1-9, 2020.

Tianjian Lu, Thibault Marin, Yue Zhuo, Yi-Fan Chen, and Chao
Ma. Nonuniform fast fourier transform on tpus. In 2021 IEEE 18th
International Symposium on Biomedical Imaging (ISBI), pages 783787,
2021.

Nvidia. Fdtd3d - cuda c¢ 3d fdtd. https:/github.com/olcf/cuda-training-
series/blob/master/exercises/hw2/readme.md.

NVIDIA. cuBLAS. https://docs.nvidia.com/cuda/cublas/index.html, 2019.
Arun Subramaniyan, Yufeng Gu, Timothy Dunn, Somnath Paul,
Md Vasimuddin, Sanchit Misra, David Blaauw, Satish Narayanasamy,
and Reetuparna Das. Genomicsbench: A benchmark suite for genomics.
In 2021 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 1-12, 2021.

Michel Barlaud Vincent Garcia, Eric Debreuve. kNN-CUDA. https:
/Igithub.com/vincentfpgarcia/kNN-CUDA, 2018.

Yuhao Zhu. RTNN: Accelerating Neighbor Search Using Hardware
Ray Tracing. In Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP °22, pages
76-89, 2022.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 26,2024 at 22:59:18 UTC from IEEE Xplore. Restrictions apply.

