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Abstract

Tidal disruption events (TDEs) take place when a star ventures too close to a supermassive black hole (SMBH) and
becomes ruptured. One of the leading proposed physical mechanisms often invoked in the literature involves weak
two-body interactions experienced by the population of stars within the host SMBH’s sphere of influence,
commonly referred to as two-body relaxation. This process can alter the angular momentum of stars at large
distances and place them into nearly radial orbits, thus driving them to disruption. On the other hand, gravitational
perturbations from an SMBH companion via the eccentric Kozai-Lidov (EKL) mechanism have also been
proposed as a promising stellar disruption channel. Here we demonstrate that the combination of EKL and two-
body relaxation in SMBH binaries is imperative for building a comprehensive picture of the rates of TDEs. Here
we explore how the density profile of the surrounding stellar distribution and the binary orbital parameters of an
SMBH companion influence the rate of TDEs. We show that this combined channel naturally produces disruptions
at a rate that is consistent with observations and also naturally forms repeated TDEs, where a bound star is partially
disrupted over multiple orbits. Recent observations show stars being disrupted in short-period orbits, which is
challenging to explain when these mechanisms are considered independently. However, the diffusive effect of two-
body relaxation, combined with the secular nature of the eccentricity excitations from EKL, is found to drive stars
on short eccentric orbits at a much higher rate. Finally, we predict that rTDEs are more likely to take place in the
presence of a steep stellar density distribution.

Unified Astronomy Thesaurus concepts: Supermassive black holes (1663); Tidal disruption (1696); Black holes

(162); Eccentricity (441); Orbital evolution (1178)

1. Introduction

Tidal disruption events (TDEs) occur when a star passes near a
supermassive black hole (SMBH) and gets torn apart by
tidal forces (e.g., Hills 1975; Rees 1988; Guillochon &
Ramirez-Ruiz 2013). As the star begins to be torn apart, a fraction
of it may form an accretion disk, which may result in an
electromagnetic signature (Rees 1988; Evans & Kochanek 1989;
Ulmer 1999; Guillochon et al. 2014). Thus, TDEs are promising
signatures for understanding stellar populations around SMBHSs as
well as accretion processes onto SMBHs (e.g., Dai et al. 2021;
Gezari 2021; Mockler et al. 2022). The rates of these events have
recently been studied as possible probes in the search for ultra-light
bosons (e.g., Du et al. 2022). These rates seem also to have many
repercussions for SMBH and host-galaxy demographics (e.g., van
Velzen & Farrar 2014; Kochanek 2016; Law-Smith et al. 2017;
French et al. 2020; Dodd et al. 2021; Gezari 2021). For instance, it
has been suggested that the TDE rate can be used to discriminate
between SMBH formation scenarios (Stone & Metzger 2016) and
help probe the spin distribution of massive SMBHs (Kesden 2012;
Law-Smith et al. 2020). Despite these exciting prospects, many
challenges exist in effectively estimating TDE rates.

Previous studies calculating rates of TDEs have often
focused on the two-body relaxation process. In this process,
weak gravitational interactions, kicks from neighboring stars
Original content from this work may be used under the terms
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over long periods of time, are able to place stars in near radial
orbits around an SMBH (Frank & Rees 1976; Rees 1988;
Rauch & Tremaine 1996). This channel has received a lot of
attention, both analytically and numerically (Magorrian &
Tremaine 1999; Wang & Merritt 2004; Brockamp et al. 2011;
MacLeod et al. 2012; Stone & Metzger 2016). Notably, these
studies estimate the rate at which stars can be positioned in
orbit with pericenter distances comparable to or smaller than
their corresponding tidal radius (Frank & Rees 1976). The
estimated rates, both numerical and analytical, are in agreement
that about 10 °—10* stars per year will undergo a TDE in a
typical galaxy.

Another channel often considered in the literature involves
the presence of an SMBH binary. The hierarchical nature of
galaxy formation, combined with SMBHs residing in the
centers of almost every galaxy, implies that SMBH binaries are
prevalent in our Universe (e.g., Begelman et al. 1980; Di
Matteo et al. 2005; Hopkins et al. 2006; Robertson et al. 2006;
Callegari et al. 2009; Li et al. 2020). Furthermore, observations
of dual active galactic nuclei, typically a few kiloparsecs or
more apart, seem to suggest that these configurations will
eventually lead to a tight SMBH binary (e.g., Komossa et al.
2003; Bianchi et al. 2008; Comerford et al. 2009, 2018; Green
et al. 2010; Liu et al. 2010; Smith et al. 2010; Foord et al. 2020;
Li et al. 2020; Stemo et al. 2021). Closer to home, theoretical
arguments combined with observational campaigns insinuate
that our Galactic center may also host a massive black hole
companion (e.g., Hansen & Milosavljevi¢ 2003; Maillard et al.
2004; Giirkan & Rasio 2005; Gualandris & Merritt 2009;
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Chen & Liu 2013; Fragione et al. 2020; Generozov &
Madigan 2020; GRAVITY Collaboration et al. 2020; Naoz
et al. 2020; Zheng et al. 2020).

Gravitational perturbations from an SMBH companion can
significantly modify the orbits of surrounding stars (e.g., Chen
et al. 2008, 2009, 2011; Chen & Liu 2013). Most notably, the
Kozai-Lidov (EKL) mechanism (Kozai 1962; Lidov 1962;
Naoz 2016) has been shown to excite the eccentricities of stars
to high values (Li et al. 2014a, 2014b, 2015). The EKL channel
is expected to result in a burst-like TDE rate (Mockler et al.
2023), of tens to hundreds of times higher than two-body
relaxation alone for ~10 yr.

Recent observations of repeating tidal disruption events
(r'TDEs) have raised the question of why none of the
aforementioned channels, two-body relaxation or EKL, have
predicted a sizable number of rTDEs. In an rTDE, a star is
partially disrupted and may experience multiple disruptive
events (e.g., MacLeod et al. 2013, 2014; Campana et al. 2015;
Payne et al. 2021, 2022). A popular example is ASASSN-14ko,
which is a periodically flaring transient, every ~115 days
(Payne et al. 2021; Liu et al. 2023). How do these stars migrate
to such close distances around the SMBH without becoming
fully disrupted? The two-body relaxation process drives stars
on large separations from the SMBH onto nearly radial orbits
(e.g., Fragione & Sari 2018; Sari & Fragione 2019); therefore,
these stars have large semimajor axes and low angular
momentum. The EKL mechanism changes the angular
momentum of an orbit and can drive the eccentricity to
extreme values (e.g., Naoz et al. 2013a) while keeping the star
separation constant. At face value, both of these channels seem
to face challenges in explaining rTDEs. Specifically, for
repeated TDEs, the star separation needs to be small,
10 °-10 ?pc for an SMBH with mass in the range of
10557786 p1 . in order to have an orbital period ranging from
115 days to 30 yr (e.g., Payne et al. 2021; Evans et al. 2023;
Liu et al. 2023; Malyali et al. 2023; Wevers et al. 2023).
Another possible formation channel for rTDEs is the widely
discussed binary disruption and capture via the Hills mech-
anism (e.g., Antonini et al. 2011; Cufari et al. 2022).
Interestingly, eccentric stellar disks can yield promising
breeding grounds for a high rate of binary disruptions. Having
said this, the disruption of highly bound binaries is required in
order to explain a bound star with an orbital period ~115 days.

Following Naoz et al. (2022), we propose a novel
mechanism combining gravitational perturbations from a
faraway SMBH companion with weak two-body interactions
from the overall population of stars around the primary SMBH.
The combination of EKL and two-body relaxation is necessary
for the formation of rTDEs. While EKL on its own conserves
the energy of any individual orbit, two-body relaxation
describes the diffusive changes of the star’s energy and angular
momentum. Therefore, diffusive effects can drive a star’s orbit
to a part of the parameter space that is highly sensitive to EKL,
thus triggering eccentricity and inclination excitations, which
can more easily result in an rTDE. Here we show that this
combined mechanism not only creates a more continuous TDE
rate, in contrast to the burst-like EKL channel found in Mockler
et al. (2023), but also naturally forms a large relative number of
rTDEs. The paper is organized as follows. We describe the
basic physical concepts in Section 2. Then, we present our
numerical simulations, both for a representative system and
then for a large number of runs, in Section 3. In Section 4, we
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Figure 1. The hierarchical triple system. This hierarchical triple includes an
SMBH binary of masses m; and m, on an outer orbit, and a stellar cluster with
components m, on an inner orbit around m;.

describe the TDE rate and formation of trTDEs using this novel
mechanism. Finally, we end with a discussion of our findings in
Section 5.

2. Basic Concepts and Characteristic Timescales

We consider an SMBH with mass m; and an SMBH
companion 7, with a semimajor axis a;, and eccentricity ep;,.
In this system, we select m; < m,, where the primary SMBH was
fixed to m; =10’ M., while the secondary SMBH mass was
chosen as either m, = 10% or 10° M, for mass ratios of g = my/m
of 10 or 100. Surrounding m, is a population of stars, each with
mass m, ~ 0.8 M.. The initial mass function in our Galactic
center is suggested to be top heavy (peaking at higher masses), as
well as possibly exhibiting a depletion of smaller-mass stars (e.g.,
Lu et al. 2013). Thus, our mass choice reflects our Galactic
center’s nuclear star cluster. The stellar mass is treated as a test
particle; therefore, changes in mass choice will exhibit no major
dynamical effects. The stars are set on separation
ro=a,(l — ef)/(l + e, cosf,), where a,, e,, and f, are the
stars’ semimajor axis, eccentricity, and true anomaly, respectively.
The density profile p,(r) of the stellar components is calibrated by
the M—o relation (e.g., Tremaine et al. 2002):

3 -« ﬂ( G«/mlMo )3+a

p(r) = ey

2r 3 odr

where My=10®M_, and 0o=200kms ' are scaling factors.
We study two nominal density profiles, a=1 and a=2,
corresponding to a core and cusp stellar distribution,
respectively. The maximum separation of the stars is defined
by the hierarchical edge set by (e.g., Lithwick & Naoz 2011)

= ay €bin 2)

Abin 1 — ebzin
as depicted in Figure 1.

We solve the secular, hierarchical three-body equations up to
the octupole level of approximation following Naoz et al.
(2013a). The EKL mechanism can excite the stars’ eccentricity
and inclination as a time function. These eccentricity excita-
tions can lead to TDEs if the stars’ pericenter a,(l — e,),
crosses the tidal threshold:

m 1/3
Rw&(—‘) , A3)
my

where R, is the radius of the star. Here we assume a population
of stars with 0.8 M, which corresponds to R, =0.7R.. As
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Figure 2. Comparing characteristic timescales. Top panel: in orange, we show
the EKL timescale for an m; = 107 M, and m, = 10° M., SMBH binary and a
population of stars of m, = 0.8 M. In blue, we show the relaxation timescale
for the inner binary of m; and m,, allowing « to range between 1 and 2. The
dotted gray line is the star’s orbital period around m;, while the dashed line is
the period of the SMBH binary. Bottom panel: here, we compare the relative
change in angular momentum h. In orange h/Ah ~ gk /P, for the EKL

mechanism and in blue h/ Ah = \Jtyx/P. for two-body relaxation. Further
description is provided at the end of Section 2. See Naoz et al. (2022a) for a
similar analysis.

mentioned, previous studies have shown that the effect of EKL
is efficient in creating TDE:s for stars distributed around the less
massive SMBH (e.g., Li et al. 2015; Mockler et al. 2023). The
relevant timescale for these events is (e.g., Antognini 2015)
estimated by

16 ml-l-m*-l-mzpin(l

e .
307[ my * bm) ( )

IEKL &

This timescale is shown in Figure 2. Throughout this section,
we introduce relevant timescales to this system (as shown in
Figure 2), and whose comparison is further discussed toward
the end of the section.

It has been suggested that the EKL mechanism is less
efficient in driving high eccentricity of the stars around the
more massive SMBH because general relativistic (GR)
precession can suppress the eccentricity excitation (e.g., Ford
et al. 2000; Naoz et al. 2013b; Li et al. 2015; Mockler et al.
2023). The first post-Newtonian precession takes place on the
following timescale:

_ Rcla (1 — e}

~ , 5
671G (my + m,) ®

I pN
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Figure 3. Principal timescales in an SMBH binary. Here we normalize the
timescales by the two-body relaxation timescale (Equation (6)) and depict the EKL
and the 1 pN timescales (Equations (4) and (5), respectively) as a function of the
mass ratio ¢g. To highlight the dependency on the mass ratio, we explicitly denote
Mgisrupior @S the one that forms the TDE and mpequrer as the faraway SMBH
companion. To generate this figure, we adopted Miperurper = 108 M., and vary
Maisruptor between 10° M, and 10" M., with ey, = 0.7 and e, = 0.9. The binary is
set at ap, = 1 pc and the star at a, = 0.07 pc. The dashed line denotes ¢ = 1. To
the right of the dashed line, we have the regime where Misrupior > Mperturbers and
the 1pN precession suppresses the EKL eccentricity excitations. For
Misruptor < Mperturber» ON the other hand, EKL excitations are dominant. In the
presence of two-body relaxation, high eccentricities can be excited to larger values
(Figure 2). Throughout the paper, we thus focus on the left regime, which can
excite eccentricities more efficiently.

where c is the speed of light. The relevant timescale is shown in
Figure 2. Large eccentricity excitations will take place
when the EKL timescale is shorter than the GR precession
timescale. We illustrate this in Figure 3, which depicts the EKL
and GR precession timescales normalized to the relaxation
timescale as a function of the mass ratio. We define the
mass ratio as ¢ = Maisruptor/ Mperturber- As shown in Figure 3, for
Mgisruptor > Mperturbers GR  precession  dominates the EKL
eccentricity excitations, thus suppressing TDE formation. On
the other hand, when mg;gruptor < Mperturbers the EKL eccentricity
excitation timescale is faster than GR precession. This trend
motivates the choice of having m; < m, in our analysis.

We note that the SMBH binary orbital timescale is comparable
to the EKL timescale in some parts of the parameter space. At face
value, this may suggest that the double-average approach adopted
here leads to misleading results. However, as was shown by
Antonini et al. (2014), Antognini et al. (2014), and Luo et al.
(2016), the main difference between our double-average approach
and an N-body approach (for these setups) is that N-body
simulations can result in even higher eccentricity excitations. As
shown in Bhaskar et al. (2022) and Grishin et al. (2018), overall
the secular approximation underpredicts the eccentricity. Thus, we
estimate that the eccentricity values achieved below represent a
lower limit.

As mentioned before, two-body relaxation processes were
proposed as a promising channel to produce TDEs. The typical
timescale to change the orbit’s angular momentum (%) and the
orbital energy by an order of its circular angular momentum is
estimated by (e.g., Binney & Tremaine 2008)

ol

tix = 0.34——mM8M=———,
o G?p, (Mgeyr) INA

(6)
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where (mg.,) is the mass of the average star that acts as a
scatterer, and o, is the velocity dispersion of stars around the
SMBH,
2= ﬂ (7
r(l + @)
where « is the slope of the stellar density profile. Lastly, the
Coulomb logarithm is

ros

B 2G <mscat> . ®

We adopt mge,y=m,=0.8M.. We show this timescale
(Equation (6)), in Figure 2, for different density profiles «,
between 1 and 2. This timescale is explicitly for stellar circular
orbits; noncircular stellar orbits are expected to be significantly
shorter (e.g., Sari & Fragione 2019).

The weak two-body relaxation processes are often neglected
in the literature because the relevant timescale is larger
compared to the EKL timescale (see Figure 2). However, as
shown recently, comparing the timescales can be misleading,
and instead the change applied to the angular momentum
should be compared (Naoz et al. 2022a). As depicted in
Figure 2, bottom panel, when comparing the i#/Ah, in a large
part of the parameter space the two-body relaxation for a cusp-
like profile, o =2, yields changes to the angular momentum
h/Ah comparable, or even shorter than, the EKL’s.

Following Naoz et al. (2022a), we model the change to the
stellar orbit’s velocity v, = \/ Gm(2/r, — 1/a,) due to one
encounter as a random walk with isotropically oriented kicks to
the stellar velocity once per orbit around the SMBH. The kick
is assumed to be instantaneous at some random phase of the
orbit about the SMBH. Each component of this three-
dimensional kick is drawn from a Gaussian distribution with
a zero average and a standard deviation of Av/~/3, where

P,

Av = v,

©)
Trelx

(see also Bradnick et al. 2017). See Naoz et al. (2022a) for the

complete set of equations.

3. Numerical Simulations
3.1. Dynamical Evolution of a Representative Example

In Figure 4 we consider our ﬁdu01al model of m; = 10" M,
and m, = 10° M., set on ap;, =4 X 10° au and epin = 0.5. The
star is initialized with a, = 4711 au, e, = 0.53, = 168°, and
w=738° where 2 and w are the longitude of ascending nodes
and the argument of periapsis, respectively. For this example,
we depict two cases, one which only includes EKL + GR
(in yellow), and EKL + GR + two-body relaxation processes
(in blue). We note that while we limit the EKL + GR
presentation to 15 Myr, to provide a comprehensive compar-
ison the system never had its eccentricity excited to cause a
TDE. However, in the EKL + GR + two-body relaxation
run, the star’s pericenter crossed the tidal radius, signifying
a TDE.

The final separation of m; and m, decreases to 877 au,
crossing the tidal radius. At around 107 yr the system begins
eccentricity oscillations, which change the inclination and
semimajor axis of the primary’s orbit with the stellar mass. By
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Figure 4. An example of a repeated TDE. The time evolution of a SMBH
binary is shown. The primary black hole is of mass m; = 10’ M., with a
secondary of m, = 10° M., There is a stellar mass of m, = 0.8 M, that is
gravitationally bound to the primary at a separation of 4.7 x 10° au. The top
panel compares the changes to the semimajor axis and pericenter radius of the
inner binary when the system undergoes only EKL (+GR) (yellow) and EKL
(+GR) with two-body relaxation (blue). The tidal radius is shown in red, where
in crossing this line we consider the system to have become a TDE. The
semimajor axis is shown to drop considerably in the EKL and two-body
relaxation simulation, indicating that this system could potentially be a
repeated TDE.

15 Myr, the system has reached an eccentricity of 0.998,
resulting in a nearly 90° rotation in the inclination. The stellar
mass can potentially become a repeated TDE by m; and
continue to orbit the SMBH, where this rTDE would be seen
every P, =9yr.

3.2. Monte Carlo Simulations

We ran a total of 12,000 runs for 12 realizations varying the
SMBH binary eccentricity, mass ratio, and the power law of the
stellar density profile. The system was initialized with
my =10’ M, and m, = 0.8 M. The primary SMBH choice of
my = 10" M., is motivated by the inferred SMBH masses of the
potential rTDE observations, which average to ~10” M., (e.g.,
Payne et al. 2021; Evans et al. 2023; Liu et al. 2023; Malyali
et al. 2023; Wevers et al. 2023). The main consequence of
choosing a different mass will be to change the number of stars
available in the TDE process, as was highlighted in Naoz &
Fabrycky (2014), Naoz et al. (2022a), and Mockler
et al. (2023).
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Figure 5. Results of the Monte Carlo runs for ey, = 0.5. We show a collection of systems that have undergone two-body relaxation and EKL. In gray, we indicate the
initial conditions for the inner binary. Each panel has distinct initial conditions: the top panels have a black hole mass ratio of 10, while the bottom panels have a black
hole mass ratio of 100; left panels have a = 1, while right panels have o = 2. Systems that end near their starting point are marked in dark blue, while those to the
right of the dashed light-blue line have crossed the threshold for maintaining their hierarchical triple-system configuration and thus are marked as nonhierarchical in
magenta. Systems below the red line, resulting in the crossing of the tidal radius, are marked as TDEs in green. Green stars on the Ry line are considered to be repeated
TDEs on orbital periods P, < 30 yr. As shown, more systems become tidally disrupted or nonhierarchical for an « of 2.

We chose two representative masses for the companion of
m,=10*M_ and 10°M.. We explore three outer-orbit
eccentricities of ep;, = 0.3, 0.5, and 0.7. The semimajor axis
of the companion was set to be half the sphere of influence of
the primary for all runs.

For the stellar population, we chose two representative
density profiles, « =1 and 2, following Equation (1), which
yields the semimajor axis distribution of the stars; see Figure 5.
Moreover, we require that € < 0.1; see Equation (2), as well as
the Mardling & Aarseth (2001) stability criterion. Motivated by
our own Galactic center (e.g., Yelda et al. 2014; Gillessen et al.
2017), we set the minimum semimajor axis of the stars to
500 au. Furthermore, we adopted a thermal eccentricity
distribution for the stars, while the argument of periapsis and
longitude of ascending nodes were chosen from a uniform
distribution between 0 and 27. The mutual inclination was
chosen from an isotropic distribution, i.e., uniform in cos i; see
Table 1 for the list of parameters chosen for the 12 realizations.

Figure 5 shows a representative example of the runs, where
the gray points mark the initial conditions. In total, we see four
distinct outcomes (the color code in Figure 5, as well as
Figures 12 and 13 from Appendix B, is described below):

1. During the evolution the star’s pericenter crossed 2Rrp;
see Equation (3). We mark these systems as stars that
become tidally disrupted. These systems are marked in
green points below the a,(1 —e,)=2R; line. The
fraction of systems in which we mark TDEs is shown

as the upper limit in the 6th column (frpg) of Table 1.
The lower limit of the TDE fraction includes only TDEs
that are within the Hill radius of the primary SMBH.

2. Systems that have crossed the disruption threshold of
Ryeri = 2R7 (8= 0.5) and have periods shorter or equal to
30 yr we mark as repeated TDEs ( firpg).” These systems
are highlighted as green stars.

3. Systems that have not crossed 2Ry within 1 Gyr are
considered as “survived” and marked in dark blue.®

4. Finally, in some cases, the system violated the hierarch-
ical condition, Equation (2). These systems are marked as
magenta and reside to the right of the vertical hierarchical
line. The fate of these systems is somewhat unclear, but,
as discussed in Naoz et al. (2022), we expect these stars
to have their eccentricity excited to large values (e.g.,
Bhaskar et al. 2021), and thus perhaps all of them will
end as TDEs. We consider this case as an upper limit for
the TDE fraction (see Table 1, seventh column (frpg +

fnonhierarchical))'

5 The 30 yr period value is directly motivated by the observed potential

repeated TDEs, which range from 30 yr periods to 115 days.

 The expected lifetime of high-mass binaries is only a few billion years
(Kelley et al. 2017); thus our simulations end at the 1 Gyr mark. For
completeness, we ran our simulations to 10 Gyr, which resulted in the o = 1
case reaching similar TDE fractions as the current o = 2 case due to two-body
relaxation being longer for the aw = 1 case. Those results are omitted here to
avoid clutter.
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Table 1
Simulation Parameters

Run # q €bin [e] JroE + JerpE Ni(<hinax)
fnonhierarchical
0 10 0.3 1 0.18-0.33 0.85 6e5
1 10 0.3 2 0.22-0.31 0.98 0.0156 4e6
2 100 0.3 1 0.035-0.37 0.82 6e5
3 100 0.3 2 0.15-0.47 0.99 0.0101 4e6
4 10 0.5 1 0.24-0.41 0.84 le5
5 10 0.5 2 0.21-0.30 0.99 0.0260 2e6
6 100 0.5 1 0.056-0.51 0.87 le5
7 100 0.5 2 0.18-0.48 1.0 0.0122 2e6
8 10 0.7 1 0.20-0.48 0.81 3ed
9 10 0.7 2 0.14-0.29 1.0 0.0238 9e5
10 100 0.7 1 0.034-0.62 0.87 3e4
11 100 0.7 2 0.087-0.50 1.0 0.0196 9e5
3.3. Simulation Results o q=10 a=1 : a=2 -

As discussed in the previous section, Figure 5 shows the ® g=100 ! I
trajectory of stars at the end of our simulations (see also i
Figures 12 and 13, Appendix B). We have summarized the 106} E .5
variable parameters in our simulations and their impact on the A '
fraction of TDEs and rTDEs in Table 1. Here we examine the 1§ W 4 i =05
impact of the stellar density distribution, the SMBH mass ratio, E mo_?.--” i
and the SMBH binary eccentricity on the evolution of our = lepin = 0.7
simulations. 105} I =

Two-body relaxation is sensitive to the underlying density ot ‘ i
profile. This is further highlighted in Figure 5, which shows =05 :
simulation results for « =1 and « =2, left and right panels, I !
respectively, as described above. A shallow density profile (i.e., i
a=1) yields a longer two-body relaxation timescale, thus 104k 8oin = 07 L
minimizing the angular momentum changes per interaction (see 10° 10°

Figure 2). Thus, in this case, we find less migration inwards
(compared to the steeper, a=2 case). The immediate
consequence of the combined EKL and two-body relaxation
is that repeated TDEs are more likely to take place for a cusp-
like (« = 2) distribution, as discussed in Section 4.2. Compared
to the EKL-only scenario (Mockler et al. 2023), we still find
that including two-body relaxation is required for the formation
of r'TDEs.

As shown in Figures 5, 12, and 13, the dynamics is nearly
independent of the mass ratio and the eccentricity of the SMBH
binary. In other words, the same qualitative TDE and rTDE
results are duplicated across these parameters. The main
contributor to the rate and the number of TDEs and rTDEs is
the “available” number of stars within the hierarchical limit.
The M-o relation (Equation (1)) correlates to the number of
stars within the sphere of influence with the mass of the
SMBH. On the other hand, the hierarchical limit (Equation (2))
determines the number of stars based on the SMBH
eccentricity, which ultimately influences the TDE rate. This
is discussed below, in Section 4.1.

4. Predictions and Observational Signatures
4.1. Tidal Disruption Event Rate

A key factor in estimating the TDE rate is the number of
stars in the sphere inside the hierarchical edge N, (r < Fax)-
This number is sensitive to the density profile as well as to the
eccentricity of the SMBH binary. To estimate the number of

N.

Figure 6. Comparing the number of stars to the number of tidally disrupted
events. Here the eccentricity of the outer binary is varied on values ey, = 0.3,
0.5, and 0.7. Mass ratios of ¢ =10 and ¢ = 100 are also compared and
are indicated by circles and X’s, respectively. Pairs of ey;, and ¢ are indicated
by different colors, as seen in the legend. The stellar density profile is
changed, and a dashed line shows a =1 values to the left and o =2 to the
right. A linear trend is seen in the number of TDEs as e, decreases and o
increases.

stars within this range, N, (<rnax), We use the M—o relation:

—— \3+a
N*(grmax) = ﬂ m 5
(my) o7
and

a
Finax = ?*ebin(l — egn)s (10)

where we take € =0.1. Given this number of stars and the
fraction of systems that become TDEs for all simulation runs
(see Table 1), we can estimate the number of stars that become
TDEs, Ntpg. Figure 6 depicts Ntpg as a function of N, (<rpax),
for the different density profile values (see arrows), eccen-
tricity, and mass ratios. As shown in Figure 6, the cusp profile,
a =2, which has a larger constriction of stars closer to the
SMBH compared to o = 1, results in a larger number of stars.
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Figure 7. Calculated TDE rates. The rate for all systems is calculated and compared to both the average observed rate and the observed PSB rate. The left column
panels show systems with the density distribution power law o = 1, while the right column panels show that of o = 2. The top panels have a mass ratio of ¢ = 10, and
the bottom panels ¢ = 100. As seen, « = 2 systems produce TDEs at an enhanced rate with little dependence on eccentricity.

We calculate the rate of TDEs for the different values of the
power law of the stellar distribution («), the outer-orbit
eccentricity (ep;,), and the mass ratio (g), as outlined in
Table 1. The calculated TDE rates from our simulations are
then compared to the average observed TDE rate as taken from
van Velzen et al. (2020) and the observed post-starburst (PSB)
TDE rate from French et al. (2020), shown by the shaded
regions in Figure 7. As seen, for a =1, the spread of rates for
the different eccentricities are consistent with both the average
and PSB observed rates. In particular, the o =2 rates are at
least an order of magnitude larger than the observed rates. Note
that the plateau in the figure is a result of adopting only a single
star formation episode for the purposes of this exercise.
Hopefully, in the near future, surveys such as the Vera Rubin
Observatory and the LISA space mission will close the gap
between our rate estimates and observations. The calculated
rates span from a minimum which is chosen by including all
the hierarchical systems that end up as TDEs (indicated as
green dots and green stars below the solid critical line in
Figure 5). The maximum rate additionally includes all the
nonhierarchical systems (indicated as the light magenta dots to

the right of the dashed lines in Figure 5). These nonhierarchical
systems are likely to be excited to high eccentricities (e.g.,
Bhaskar et al. 2021) and may eventually become TDEs
(similarly to the maximum rate of extreme mass ratio inspirals,
EMRIs; Naoz et al. 2022).

We point out that while we initialize the particles within the
hierarchical limit, the two-body relaxation may drive
them beyond this limit (e.g., magenta dots to the right of the
vertical line in Figure 5), thus potentially getting too
close to the companion m,. However, as was shown by Zhang
et al. (2023), this configuration does not produce an
instantaneous destabilization of the star’s orbit. Rather, the
system can undergo eccentricity excitations before changing
the energy of the stellar orbit (i.e., the semimajor axis). We find
that in most of the systems the destabilization timescale
(following Zhang et al. 2023) is larger than the time to become
a TDE. We thus adopt the lower limit of the rate to be
the TDEs within the hierarchical limit (set by € <0.1; see
Equation (2)).

Consider first the comparison between the calculated rates as
a function of a. As shown above, « is one of the key
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parameters that affect the combined effect of EKL with two-
body relaxation (see Figure 2). Thus, in Figure 7, we compare
the results between o =1 and a =2, left and right columns,
respectively, for the simulations with ey, = 0.3, 0.5, and 0.7
(see labels), and for ¢g=10 and g =100, top and bottom
panels, respectively. As depicted, the av=2 case yields a
slightly higher rate, with somewhat less dependency on the
eccentricity of the SMBH binary eccentricity ep;,. The o =2
case represents a cusp density profile for which the two-body
relaxation angular momentum changes are significant over a
larger part of the parameter space. Thus, this behavior assists
the EKL eccentricity excitations nearly independent of the
binary eccentricity.

However, several studies have suggested that the stellar
distribution in our own Milky Way’s Galactic center is core-
like rather than cusp-like, with « closer to unity (e.g., Schodel
et al. 2018, 2020; Lu & Naoz 2019; Gallego-Cano et al. 2020).
Thus, if our Galactic center is representative of galaxy nuclei’s
stellar distribution, the left column of Figure 7 may be a more
representative scenario. In this case, the weak kicks due to two-
body relaxation are important but do not wash out the EKL
sensitivity to the outer-orbit eccentricity. Thus, as depicted in
this figure, lower SMBH eccentricity yields a higher TDE rate
(simply more stars). We see that the ey, =0.5 TDE rate is
consistent with the PSB TDE observed rate. Thus, this may
highlight a preferred SMBH formation channel (e.g., Dotti
et al. 2012).

We remind the reader that the SMBH binary was set at half
the distance to the sphere of influence. The latter dictates the
number of stars within that sphere via the M—o relation, thus
setting the number of stars that can potentially undergo TDEs.
Therefore, the dependency on the eccentricity is degenerate
with the dependency of the SMBH binary separation, which is
beyond the scope of this paper.

4.2. Formation of Repeated Tidal Disruption Events

TDE observations present many intriguing puzzles. For
example, how do these stars get only partially disrupted? This
question has been addressed in earlier studies (Guillochon &
Ramirez-Ruiz 2013; Coughlin & Nixon 2015) and is still under
investigation. Here we focus on the question of how these stars
get to such short separations from the SMBH without having
their eccentricity excited to high values at larger distances from
the SMBH.

The combined effect of EKL with two-body relaxation
slightly changes the star’s semimajor axis due to kicks.
Suppose the star migrates to a regime where EKL is more
efficient (for example, a higher € or an inclination closer to
90°). In that case, the star will undergo large eccentricity
excitations due to EKL. This behavior is depicted in Figure 4,
where the star undergoes faster EKL oscillations, and its
eccentricity is excited to higher values as its semimajor axis
slightly increases. Furthermore, since the kicks are proportional
to the star’s orbital velocity (Equation (9)), the kick can be
larger for a star initially closer (larger velocity). The example
system shown in Figure 4 highlights this behavior, and we
outline this signature below.

We arbitrarily choose a period of 30 yr to mark the rTDEs
candidates. As for the nonrepeating TDEs, the number of
expected rTDEs is proportional to the number of stars in the
sphere of influence (see Figure 8). As depicted in Figure 5, the
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Figure 8. Comparing the number of rTDEs to the total number of tidal
disruption events. The eccentricity of the outer binary is varied on values
epin = 0.3, 0.5, and 0.7. Mass ratios of ¢ = 10 and g = 100 are represented as
circles and x’s, respectively. The colors represent the pairs of ey, and c. Here,
unlike in Figure 6, only « =2 is shown as only this cuspy profile produced
r'TDEs as seen in Figures 5, 12, and 13.

initial cuspier density distribution (i.e., o« = 2) results in a larger
fraction of rTDEs. Thus, these results suggest that detections of
rTDEs may be used as an indicator for the stars' underlying
density profile.

Figure 9 shows the expected rTDE period distribution
adopting the M—o normalization explained above. As shown,
this mechanism results in a period distribution consistent with
known observations of potential repeated TDEs with periods
ranging from hundreds of days up to 30 yr (e.g., Wevers et al.
2019, 2023; Payne et al. 2022; Evans et al. 2023; Liu et al.
2023; Malyali et al. 2023). Note that our simulations do not
suggest a preferred initial semimajor axis that rTDEs originate
from in the star cluster based on this channel. It has been
suggested that the Hills mechanism may contribute to the
formation of rTDEs, as recently proposed by Cufari et al.
(2022). However, one can relate the period of the captured star
from the Hills mechanism as a function of the separation of the
inner binary (e.g., Hills 1975; Yu & Tremaine 2003). A binary
undergoes many weak gravitational interactions with neighbor-
ing stars during its lifetime. These encounters tend to widen
and unbind the binary (e.g., Binney & Tremaine 2008). Thus,
for a binary to remain bound before the Hills mechanism
takes place, its semimajor axis should be smaller than a critical
value and larger than at least 2 times the radius of the binary
members (Rose et al. 2020). Taking the minimum separation
between a binary, i.e., assuming a hard binary in which its
binding energy is larger than the kinetic energy of neighboring
stars (Binney & Tremaine 2008) and more specifically an
extremely hard binary that does not evolve, we can find the
corresponding minimum period for a repeated TDE. We show
this period in Figure 9, suggesting the long-period J1331 could
have originated from the Hills mechanism, while the other
potential rTDEs seem to be consistent with the channel
described here. Note that the minimum period is, in fact, a
contact binary; thus, in practice, the shaded area in Figure 9
begins further to the left.
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Figure 9. Period distribution of expected rTDEs. The expected number of rTDEs, normalized by the M—o relation, is shown for different pairs of binary eccentricity
and mass ratio, top panel ¢ = 10 and bottom panel ¢ = 100. Arrows show the current observations of potential r-TDEs. The shaded gray region spans the parameter

space for which the Hills mechanism produces 1rTDEs (see text for details).

4.3. Comparison with Tidal Disruption Event without Two-
body Relaxation

Combined with EKL, two-body relaxation efficiently drives
the stars onto the SMBH. As discussed above, the efficiency
depends on the number of stars within the hierarchical limit
(thus the SMBH binary separation of their eccentricity) and the
density profile. The latter is largely unknown within the inner
parsec of observed galaxies. Currently, some of the best
estimations can reach as close as 30 pc to a few kiloparsecs
(e.g., French et al. 2020), finding a cusp-like distribution. On
the other hand, the stellar distribution of our own Galactic
center seems to follow a core-like distribution (e.g., Genzel
et al. 2003; Gallego-Cano et al. 2018).

In Figure 10, we compare the combined effect with an EKL-
only approach adopted from Mockler et al. (2023). The figure
shows the time-dependent TDE rate for two examples of
my=10"M., my,=10M., m,=0.8M,., ep,=0.5, and
apin ~ 2 pc, with the violet shaded region indicating the system
with =1 and the cyan shaded region o =2. We note that in
the case of EKL-only, there is no system that is pushed beyond
the hierarchical limit (systems beyond the vertical line in
Figure 5). Thus, the maximum value calculated differs between
the two runs. However, as can be seen, the possible additional
nonhierarchical TDEs do not yield a significant difference,
especially for the shallow, a = 1 profile. It is worth noting that
the combined effect results in a longer, extended time-
dependent rate, perhaps allowing star formation to occur and
replenish the TDEs.

As expected, the EKL-only channel produces a burst-like
event, depicted as a shorter rate in Figure 10. This behavior was
noted in Naoz & Fabrycky (2014) and Naoz et al. (2022a). In
particular, we suggest that systems with a core-like density
distribution, thus a longer two-body relaxation timescale, may

avg. observed rate (van Velzen et al. 2020)

a=2 1 observed PSB rate (French et al. 2020)
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Figure 10. TDE rates with and without two-body relaxation. Rates shown here
are for systems with two distinct stellar distributions, « = 1 in violet and @ =
2 in cyan. The shaded rates are for systems that underwent both two-body
relaxation and EKL (+GR), while the hatched gray-like rates are for those with
only EKL (4+GR) processes as adapted from Mockler et al. (2023). The adapted
rates showcase high peaks on shorter timescales, while rates in this work have
lower peaks and are extended further in time. The minimum for all rates is
calculated only for our conservative lower limit for TDEs, constrained within
the Hill radius. The maximum for the EKL-only rates includes the systems that
are beyond the Hill and the Roche limits. This limit corresponds to the solid
line in the figure. The maximum value for the rates for the EKL (+GR) + two-
body relaxation includes the systems beyond the hierarchical limit as well.

undergo a burst-like rate. In other words, these systems may
have already formed their TDEs and, without newly formed
stars, are less likely to produce a TDE at a high rate.
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4.4. Combined Tidal Disruption Event and Extreme Mass Ratio
Inspiral Events

The rates suggested here (and in Mockler et al. 2023) are
much higher than previously considered when considering
single SMBHs (e.g., Stone & Metzger 2016). Given the right
conditions regarding density profile and the SMBH binary
separation and eccentricity, Figures 6 and 7 suggest that a
galaxy may have multiple TDEs. Similarly, for the right
conditions, a galaxy may have repeated TDEs (as suggested
by Figures 5 and 8). Beyond TDEs, it was recently suggested
that the similar physical processes described here could yield
much higher EMRIs rates (orders of magnitude than
estimated before; Mazzolari et al. 2022; Naoz et al. 2022a).
Thus, by combining the two findings, we speculate that a
combined TDE and EMRI event may have a nonnegligi-
ble rate.

5. Discussion

We demonstrate that the combined physical processes of
two-body relaxation and EKL in SMBH binaries significantly
affect the dynamics of TDEs. Two-body relaxation has been
proposed as one of the most promising physical processes to
form TDEs efficiently. In this process, weak two-body kicks
from the population of stars surrounding the SMBH can change
the star’s orbit over time, plunging it into the SMBH from large
distances. Perturbations from an SMBH companion via the
EKL mechanism can also excite the star to high eccentricities,
providing another channel for forming TDE:s.

Here we demonstrated that the two-body relaxation,
combined with the EKL-induced eccentricity, plays a crucial
role in forming TDEs and rTDEs. In this case, stars experience
high eccentricities due to the two-body relaxation process,
which drives the stars into a more EKL-sensitive regime, as
demonstrated in Figure 2. This combination not only leads to
more TDEs than EKL on its own, but it also naturally produces
repeating TDEs. Additionally, two-body relaxation leads to
more stars scattering beyond the hierarchical radius (Figure 5),
where we expect many to be disrupted (e.g., Grishin et al.
2018; Bhaskar et al. 2021).

In addition to combining the aforementioned two effects, we
have also explored the effect of the stars’ density profile by
comparing two extreme cases, one of a shallow profile,
corresponding to o= 1, and the second of a cusp profile of
a=2 (see Figure 5). Observations of the Galactic center
suggest that the stellar distribution in the inner 0.1 pc may be
shallow, i.e., closer to o =1 (e.g., Genzel et al. 2003; Schodel
et al. 2018, 2020). While it may be that other galactic nuclei
have similar conditions to our Galactic center, TDEs have been
preferentially found in PSB galaxies, which may have different
properties (e.g., Yang et al. 2008; French et al. 2016; Law-
Smith et al. 2017; Dodd et al. 2021); thus, we also considered a
cusp profile (i.e., « =2). A shallower density profile has two
main consequences. First, it creates a longer two-body
relaxation timescale, and thus the angular momentum changes
via the two-body scattering are smaller than via EKL (see
bottom panel of Figure 2). Second, it effectively changes the
number of stars inside the hierarchical limit, which has a direct
consequence on the number of stars resulting in TDEs and
rTDEs (as highlighted in Figures 6 and 8).

We also investigated the effect of the SMBH binary’s mass
ratio and eccentricity. We show representative results of our
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Monte Carlo simulations in Figure 5 (see Figures 12 and 13 in
Appendix B for the configurations involving ey, =0.3 and
epin = 0.7). As seen in Figure 7, the rate is nearly independent
of the binary eccentricity. However, ey,;, = 0.3 tended toward a
higher and more extended rate compared to the higher
eccentricities. This is a direct result of the fact that the lower-
eccentricity SMBH binary configuration allows for more stars
to reside in the hierarchical limit (see for reference Figure 6).
Thus, as shown in Figure 7, the rate is largely insensitive to the
mass ratio and the orbital eccentricity of the SMBH binary.’

We note that we have neglected possible stellar collisions or
star—compact object collisions, which may have significant
consequences on the masses of stars in galactic nuclei (e.g.,
Rose et al. 2022, 2023). Additionally, a substantial fraction of
stars are expected to be in binaries (see Raghavan & Steprans
2012), even in the Galactic center (Naoz et al. 2018).
Collisions, two-body relaxation, and weak perturbations that
may unbind the binary stars may also affect the orbital
configuration of these binaries (e.g., Rose et al. 2020). The
EKL mechanism can also merge binary stars together (e.g.,
Stephan et al. 2016, 2019). In general, we expect that binaries
which undergo the combined effect of two-body relaxation and
EKL from an SMBH companion will yield a possible Hills
(e.g., Hills 1975) process or, in some cases, even double TDE
(e.g., Mandel & Levin 2015). The details of such a process are
beyond the scope of this paper.

The main contributor to the TDE rate is the underlying stellar
distribution and, of course, the existence of the SMBH binary.
Therefore, comparing to observations, this may help constrain
the stellar cusp- or core-like distribution and the frequency of
SMBH binaries. Note that increasing the cusp of the density
profile yields a shorter two-body relaxation timescale compared
to a core-like profile. While this was noted before for a single
SMBH system (Stone et al. 2018), here we report an opposite
dependency as a function of the SMBH (disruptor) mass and
thus the number of stars. In other words, since the two-body
relaxation timescale is increasing as a function of the SMBH
mass, a single SMBH system predicts a decreasing rate as the
SMBH mass. In the case of the combined two-body relaxation
with EKL (for a given mass ratio), we find the opposite trend,
i.e., an increasing rate with the disruptor mass (see Figure 6). A
similar result was obtained for the EMRI rate as a function of
the SMBH mass; see Figure 5 in Naoz et al. (2022).

As shown by Mockler et al. (2023), the EKL mechanism
leads to a unique signature of TDEs on the smaller SMBH
companion. Combining the two-body relaxation processes and
the EKL mechanism leads to higher-eccentricity excitations,
yielding an extended time-dependent rate (see Figures 7 and
10). Additionally, we demonstrated that combining EKL and
two-body relaxation can be used as a signature of the
underlying cusp of the less massive SMBH in an SMBH
binary configuration. Further, we suggested that this combined
dynamical effect can naturally give rise to rTDEs. Lastly, these
results can be used to constrain the SMBH binary fraction. In
other words, we suggest that since these predictions only rely
on one main assumption, i.e., the existence of binary SMBHs,
they can be used to constrain SMBH binary fractions.

7 Note that, as depicted in Figure 7, the SMBH eccentricity yields a slight
difference in the rate for a core-like distribution. This behavior is expected
because the two-body relaxation is somewhat less dominant compared to the
EKL exaction, and the latter is susceptible to the eccentricity (e.g., Li et al.
2014a, 2014b).



THE ASTROPHYSICAL JOURNAL, 960:39 (14pp), 2024 January 1

Acknowledgments

We thank the anonymous referee for their thoughtful
comments, and we thank Giovanni Mazzolari for useful
discussions. D.M. acknowledges the partial support from NSF
graduate fellowship DGE-2034835, the Eugene V. Cota-Robles
Fellowship, and the NASA ATP, grant No. 8ONSSC20K0505. B.
M. is grateful for support from the U.C. Chancellor’s Postdoctoral
fellowship and from Swift (grant No. 8ONSSC21K1409). S.N.
acknowledges the partial support from NASA ATP, grant No.
8ONSSC20KO0505 and from NSF grant (grant No. AST 2206428),
as well as thanks to Howard and Astrid Preston for their generous
support. S.R. thanks the Nina Byers Fellowship, the Charles E
Young Fellowship, and the Michael A. Jura Memorial Graduate
Award for support, as well as partial support from NASA ATP,
grant No. 80ONSSC20K0505. E.R.R. thanks the Heising-
Simons Foundation, the NSF (grant Nos. AST-1615881 and
AST-2206243), Swift (grant Nos. 80NSSC21K1409 and
8ONSSC19K1391) and Chandra (grant No. 22-0142) for support.

Appendix A
The Orbit’s Time Evolution

The EKL mechanism is a resonant system in which the
argument of periapsis (w) and the longitude of ascending nodes
(€2) can undergo libration or rotation (e.g., Li et al. 2014b;
Hansen & Naoz 2020). The diffusive nature of the two-body
relaxation can drive the system from libration to rotation (as
shown in Naoz et al. 2022). In Figure 11, we illustrate the
evolution of w and €2, for both EKL (+GR) and the combined
EKL(+GR) and two-body relaxation effects. While the
evolution of w and () appears solid, they oscillate rapidly for
the EKL (+GR) and two-body relaxation case. We remind the
reader that this system for the combined EKL(+GR) and two-
body relaxation case is a repeated TDE system.

11

Melchor et al.

100F a

ol ‘Mﬂ
2
— 102 2

a.(l-e.) L
101k repeated TDE
tidal radius

10° T T

180

160
= EKL (+GR) + 2-body rix

140
3

w [deg]
2

150

100 |

y - f l’,ﬁ

t [Myr]

Q [deg]
G
¥
il —.
S
.
_—J_‘ o=
e
e
R ——

Figure 11. Repeated TDE evolution including €2 and w. Additional orbital
elements of the same system in Figure 4 illustrate the evolution of the argument
of periapsis w, third panel, and the longitude of ascending nodes 2, bottom
panel, both of which are taken from a uniform distribution between 0 and 2.
We compare the evolution of these orbital parameters as they undergo EKL
(+GR) (yellow) to the combined effects of EKL (+GR) and two-body
relaxation (blue).
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Appendix B
Additional Monte Carlo Results

In Table 1, we described the full Monte Carlo simulations.
As an example, in Figure 5, we showed the results from
simulations with binary eccentricity ey;, = 0.5. Here we show
additional systems undergoing two-body relaxation and EKL in
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Figures 12 and 13. Like in Figure 5, these additional figures
show the final evolution of several systems with different
pairings of mass ratio, stellar density distribution, and binary
eccentricity. In Figure 12, the binary eccentricity is set to
epin = 0.3, and in Figure 13, it is set to ep;, = 0.7. Similar to
Figure 5, repeated TDEs are only produced in the cuspier
stellar density environments.
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Figure 12. Results of the Monte Carlo runs for ep;, = 0.3. Similar to Figure 5, we show a collection of systems that have undergone two-body relaxation and EKL,
with the only change being the binary eccentricity reduced to ey, = 0.3. As shown, only systems with o = 2 produce rTDEs on orbital periods of 30 yr or less.
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Figure 13. Results of the Monte Carlo runs for ey, = 0.7. Similar to Figure 5, we show a collection of systems that have undergone two-body relaxation and EKL
with the only change being the binary eccentricity increased to ep;, = 0.7. As shown, only systems with o = 2 produce rTDEs on orbital periods of 30 yr or less.
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