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Waveguide quantum electrodynamics constitutes a modern paradigm for the interaction of light
and matter, in which strong coupling, bath structure, and propagation delays can break the ra-
diative conditions that quantum emitters typically encounter in free space. These characteristics
intertwine the excitations of quantum emitters and guided radiation modes to form complex mul-
tiphoton dynamics. So far, combining the collective decay of the emitters with the non-Markovian
effects induced by the modes has escaped a full solution and the detailed physics behind these
systems remains unknown. Here we analyze such a collective non-Markovian decay in a minimal
system of two excited emitters coupled to a one-dimensional single-band waveguide. We develop
an exact solution for this system in terms of elementary functions that unveils hidden symmetries
and predicts new forms of spontaneous decay. The collective non-Markovian dynamics, which are
strongly dependent on the vacuum coupling and the detuning from the center of the band, show
exotic features that can be characterized with a simple and readily available criterion. Our analytic
methods shed light on the complexity of collective light-matter interactions and open up a pathway

for understanding multiparticle open quantum systems.

I. INTRODUCTION

In a pioneering paper [1], Dicke departed from the
classical idea of emitters decaying independently. He
showed that, despite the lack of photon-to-photon
interactions, quantum emitters might be mutually influ-
enced by sharing the same electromagnetic modes, thus
decaying collectively. From the Markovian point of view,
the field modes establish decay channels that might be
super- or subradiant, but this picture is also incomplete.
Given that there is only a semantic difference between
a quantum emitter reabsorbing a photon in a certain
mode and the mode emitting the excitation back into
the quantum emitter, the reabsorption of photons can
only be accounted for by placing modes and emitters
at the same level [2]. Collective non-Markovian decay
is the natural next step in the study of superradiance,
where the “collective” not only refers to the quantum
emitters but the emitters and field modes altogether.

Several factors can cause and modify non-Markovian
decay, such as a strong coupling between the emitters
and the bath of electromagnetic modes [3, 4], a struc-
tured bath [5-7] with one [8] or multiple energy bands
[9], the topology [10] and dimensionality [11] of the bath,
the size [12-14] and the arrangement [9, 15, 16] of the
emitters, and the delay of radiation traveling between
them [17-22]. Such effects could become prominent in
large quantum networks [20, 23]; but despite rapid ex-
perimental advancements on multi-excitation super- and
subradiance [24], their interplay with non-Markovian
dynamics is an incipient area of experimentation [25].
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Theoretical studies of collective non-Markovian effects
in quantum optics rely on effective Hamiltonians [26-28],
numerical methods [8, 22, 29, 30], Feynman diagrams
[31-33] or analytic approximations [20]. While these
approximate methods tend to be simpler and more
versatile, an exact solution would benefit the field in
many ways: providing checkpoints for the approximated
methods, inspiring new anséitze for related problems,
unveiling hidden symmetries and new phenomena, and
developing mathematical tools to approach the problem.
But the solvability of non-Markovian systems beyond
the single-excitation sector is unclear [8, 27, 34], as an
infinite number of modes makes the dimension of the
Hilbert space diverge and the collective nature of the
decay couples the dynamics of the individual excitations
through effective interactions caused by photon blockade.

In this paper, we present an exact solution of collective
non-Markovian decay for a minimal system featuring
two adjacent quantum emitters spontaneously radiating
two excitations into a 1D single-band waveguide. We
develop techniques to analyze and solve this problem
and emphasize the connection between the sectors with
one and two excitations. The solution has a plethora
of features: multiple super- and subradiant states,
algebraic decay, mixed algebraic and exponential decay,
fractional decay with bound states in and out of multiple
continua, as well as logarithmic corrections to the
algebraic decay. We also establish a simple criterion to
ascertain the presence of collective non-Markovian decay.

The paper is structured as follows. In Section II, we
introduce the system and propose a way to visualize the
two-excitation sector. In Sec. I1I, we review the solution
to the single-excitation sector. In Sec. IV, we find a
convenient form to write down the equations describing
the dynamical evolution of the two excitations. In



FIG. 1.

The system. a Two quantum emitters coupled to a waveguide. The strong periodic modulation of the index of

refraction in the waveguide induces a single-band dispersion relation for the photons inside. b Adjacency graph of the matrix
representation of the system Hamiltonian restricted to a single excitation (in blue) and two excitations (in red). The connection
between the two is given by strings with two blue nodes at the sides and a red node at the center. For clarity, some of the
strings are omitted. ¢ Three asymptotic regions of the red graph that can be decoupled as tensor products between the blue
graph of either the system and the waveguide (yellow and magenta regions) or twice the waveguide (cyan region).

Sec. V, we look at the symmetries of the system, with
emphasis on an abstract symmetry that is crucial to
our analysis, despite deviating from the common notion
of physical symmetry. In Sec. VI, we present the full
solution together with a description of its analytic struc-
ture. In Sec. VII, we study the resulting spectrum of the
two-excitation sector and its physical implications for
collective non-Markovian decay. In Sec. VIII we explain
how the solution also captures the spatial distribution of
the bound states before concluding in Sec. IX.

II. THE SYSTEM

We consider the problem of two identical quan-
tum emitters (QEs) coupled by g to a 1D structured
waveguide (or coupled-cavity array [35]) with period
d and hopping rate J. The dispersion relation of the
waveguide features a single band (w, = —2J cos(qd), for
q € (—n/d,n/d] the quasimomentum of a photon in
the waveguide). The excitation energy hA of the QEs
is best interpreted as the detuning A from the middle
of this band, as it can also have a negative value. The
QEs are fixed to adjacent lattice sites of the waveguide
(represented in Fig. 1a).

Such a system is described by a Weisskopf-Wigner

Hamiltonian, which in the Wannier basis reads as
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where d;r- = [1¢) (0] is a fermionic creation operator and
l;; = [1%) (0] + v/2|25) (15| + ... is a bosonic one.

We will study the dynamic evolution when the two
emitters start off excited. Since the Hamiltonian con-
serves the number of excitations, we could expand it in
the sub-basis of two-excitation states
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where A(0) =1 and B; ;/(0) = C;;,(0) = 0. The factor
of 1/ V2 is necessary to make the basis orthonormal.

Following the above approach results in a large, sparse
matrix representation of the Hamiltonian. To gain
insight into the underlying geometry, without neces-
sarily computing this matrix, we introduce a graphical
representation of the problem, illustrated in Fig. 1. We
start with the adjacency graph of the Hamiltonian for a



single excitation (Fig. 1b, in blue), which resembles the
actual system (Fig. la). Then we denote two-excitation
states by drawing strings between any two points of
this graph. Because of fermionic exclusion, no such
string can be drawn with both ends at the same QE
single-excitation basis state (represented as a blue ball
with a A). To produce the nodes of a new graph rep-
resenting two-excitation states, we mark the centers of
these strings (in red) with the total energy of the state,
which is given by the sum of energies at the two ends of
the string due to the absence of interactions between ex-
citations (other than fermionic exclusion in the emitters).

Edges in the blue graph induce corresponding edges
in the red graph. More specifically, every excitation
experiencing coupling or hopping is represented by not
only a blue edge but also several red ones, one for every
two-excitation state containing the excitation. The
induced transition rates are identical to the original
rates, except for an additional factor of v/2 when either
the initial or final configuration contains two excitations
in the same site (bosonic enhancement).

The resulting red graph is the adjacency graph of
the Hamiltonian restricted to the subspace of two
excitations; despite the 1D nature of the waveguide,
the graph resembles that of a coupled 2D system.
There are asymptotic regions that factor into tensor
products of simpler graphs. Those simpler graphs are
(1, in yellow and magenta) the original blue graph,
and the one corresponding to an emitterless waveguide
containing a single excitation, or (2, in cyan) two
such emitterless waveguide graphs. Physically, this
decomposition implies that the two excitations are
independent and distinguishable when they are infinitely
apart. These decompositions will be instrumental in
finding and interpreting the general solution, which jus-
tifies treating the single-excitation case first (see Sec. III).

We emphasize that the bosonic/fermionic properties
of the particles are engraved in the geometry of this di-
agram. As a result, even a classical (non-planar) circuit
board [36] following this graph could serve to test and
simulate the dynamics of this quantum system.

III. SINGLE EXCITATION CASE

A system of quantum emitters containing a single
excitation and coupled to a band structure has previ-
ously been analyzed in [9]. Here we apply the formalism
developed in that paper to the present configuration.

For the rest of the paper and appendices let us take
half of the bandwidth, 2J, as the natural frequency scale
(2J = 1) and denote by f(w € C) the Wick-rotated
Laplace transform of a function, f(w) = —il{f}(—iw).
This choice, motivated by [9], differs from the usual

Laplace transform L£{f}(s)=[;° f(t)e *'dt in the re-
placement w = is that brings this complex variable closer
to its physical meaning of a frequency. In particular, w
can be mapped to the frequency of the system’s bound
states in Section VIII simplifying their analysis. Indeed,
with this choice the inverse transformation
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resembles a Fourier transform, but it has a displaced
integration contour that avoids all the complex singular-
ities of f(w) on the real line.

We note that, together with the number of excitations,
the system also conserves the parity o of an excitation
that is distributed symmetrically (¢ = +1) or antisym-
metrically (¢ = —1) over the two emitters. Thus, one
can take decoupled bases for both cases,
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For an emission process (a,(0) = 1 and b, ;(0) = 0), the
resulting transformed excitation amplitude of the emitter
pair

=)o

features decay to an ‘even edge’ at frequency —o, where
the parity of the emitter state matches that of the
emitted waves, and to an ‘odd edge’ at o, where the
parity of the emitter state is incompatible with that of
the emitted waves.

iy (w) = (w —A—0g®+o0g°

The singularities of Eqn. (5) encode the following
single-excitation decay behaviors (cf. Fig. 3):

2. There is always a bound state in the gap beyond
the even edge and no bound state in the continuum.
Another bound state can be found in the gap beyond
the odd edge if the detuning lies within this gap or the
coupling is large enough (¢ > 1 — oA).

#t. The band edges are a source of algebraic decay of
order 3/2. More specifically, the even edge contributes
asymptotically to a,(t) with
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while the odd edge contributes with
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An exception to this is the incidental case that
g?> — 1+ 0A = 0, where the algebraic order of the odd



edge changes to 1/2. Its influence becomes longer lived
as the result of the spectral overlap between this edge
and one of the bound states.

#t2. The Markovian approximation is applicable for
in-band detunings, |A| < 1, with weak edge effects,
g?> < 1 — Al In this limit the unemitted population
lay (t)]? decays through a single channel with an expo-
nential rate (1 — o A)L, where I' = 2¢%/v/1 — A? is the
decay rate of an isolated QE. The prefactor (1 — cA)
indicates that there is single-particle superradiance
when 0 A < 0 and subradiance if A > 0. No collective
decay exists at A = 0: in the band center, the symmetry
between two parity sectors leads to a suppression
of collective decay, in opposition to the naive idea
that every system symmetry favors collective decay.
These characteristics also hold for 2 excitations, see
Appendix A.

IV. SECULAR EQUATIONS

The Schrodinger equation for (2) simplifies when writ-
and then

brought to a form that accommodates the asymptotic
solutions of the system (see Sec. II). For this purpose,
we introduce the Bloch modes of the waveguide via
b, = > e~1adG=3/2)p, where q € (—m/d,+7/d] is the
quasimomentum (restricted to the first Brillouin zone
because we only consider one band). The transformed
wavefunction in this picture is described by a set of am-
plitudes

ten in terms of the transformed field ‘&(w)>

that are connected by (see Appendix B)
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and in which Cy4(w) = Cf ,(w) for w € R; while de-
termining C’l)q(w) interweaves positions and momenta,
evading a simple treatment. However, it is possible to
proceed by introducing the analytic function

C(w,z) = Z Oy j(w)zt

j=—00

(with z € C), (10)

which simultaneously captures the position distribu-
tion of the amplitude C4 ;(w) in its Laurent coefficients
around z = 0, and the momentum distribution on the
unit circle z = e%¢ € S,

igd ~

Clw,e' 1) = e 2 O 4(w). (11)

After (anti-)symmetrizing this function,

Co(w,z) = % (C(w,z) + gC (w,zil)) , (12)

the secular equation becomes
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where the contour integral is positively oriented around
St and dw = w + (2 + 271)/2 is the dimensionless

counterpart of the energy left in the state after losing
one of the excitations to the waveguide, i(w — w,). The
reappearance of (5) establishes the connection between
one and two excitations analytically. We clarify that
(' 2 refers to the transformed field amplitude of having
one excitation in emitter 1 and another in the waveguide
at the position of emitter 2; this term can be treated as
a constant from the perspective of solving the integral
equation, although it couples the symmetry sectors
o= =+1.

To the best of our knowledge, this complex integral
equation has not been studied in the literature. In the
next two sections, we develop the analytical tools to
solve it based on two intertwined concepts: symmetries
and the analytic structure of the solution.

V. SYMMETRIES

In this section, we discuss symmetries of the system.
These symmetries generate a group of transformations of
the double complex plane (w, z) € C x C. We highlight
the following 3 generators:

i. The inversion (w,z) — (w,z7!) physically repre-
sents left-right parity in the system.

2. The reciprocation (w,z) — (—w,—z) finds its
physical origin in the symmetry of the band structure
Wq = —Wgir/d- This symmetry becomes explicit in
parameter space under the change A — —A (see Fig. 4)
and is broken when multiple bands are considered [9].
It is the one responsible for the suppression of collective
effects at A = 0 (see Sec. IIL.4%¢ or App. A). Signatures
of this symmetry in single-excitation, single-QE bound



states coupled to a single band were observed in [37].

#4i. The substitution (w, z) = (w, ((w, z)) is motivated
by the exchange of function variable z with the contribut-
ing pole of the two canceling the denominator in (13)’s
integrand,

(FHw, 2) == —dw £+ Vow + 1w — 1, (14)

where by ‘contributing” we mean that it lies within the
integration contour, |((w,z)| < 1. This inequality is
generally strict except for z € (*!(w,S'), at which
the integration contour crosses a pole and the integral
is not well defined. In this way, (! (w,S') defines
two mutually-inverse branch cuts in the shape of curve
segments connecting the branch points ¢*!(w,1) and
¢*! (w,—1). These cuts are present not only in C, (w, 2)
but also in @, (dw).

The function ¢ has many other mathematical proper-
ties, such as ((w,z) = ((w,271), ((w,2) = —((~w, —2),
or ((w,((w,2)) = 2Tt (for |2|*! < 1), that ensure the
closure of the symmetry group. From the point of view
of physics however, the substitution is a rather abstract
symmetry: it leaves certain properties of Cy(2) invariant
but not C,(z) itself (see Appendix F).

VI. ANALYTIC STRUCTURE

In this section, we investigate the analytic properties
of C, as a function of z, while omitting w as a variable
to avoid confusion. The analytic continuation of Cy(2)
can be investigated by modifying the integration contour
of (13) as z is displaced across the branch cuts (see
App. C for details). Crossing ¢ (Sl) results in an
increment 0C,(z) in the function, which is again lost
if the same branch cut is subsequently crossed in the
same direction. By inversion symmetry, the situation is
analogous when crossing ¢! (S'), while the increment
becomes o2 15C,(z71).

The analytically continued function is strikingly simi-
lar to the original: whereas the simple poles of C, inher-
ited by a, in (13) relocate, the branch cuts (which are
independent of g, A and o, see (14)) reappear over and
over in the same locations as illustrated in Fig. 2. Cross-
ing one branch cut after the other leads to an increment
of +62C,, where

§%Cy(2) = 6C,(2) — 02 10C, (271). (15)
This behavior can be written succinctly as
1, 1\ 1 1
= - @ pa— [E— —_—
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(16)
where we interpret this as a deconstruction of the ana-
lytic structure of Cy(2): ®(z) contains the monodromy

group of the function (it has the same branch cuts, see
Fig. 2b) but unlike C, it is independent of g, A, o, C~’171
or C1 o; then 62C,(2) and 6C,(z) are algebraic functions
that fix double and single leaps (respectively) in the Rie-
mann sheets of the function; and r,(z) is a rational func-
tion that fixes the form of C, within one Riemann sheet.
Closed formulas for these functions are given in Table I
and proof of these can be found in Appendices C, D, and
E.

VII. SPECTRUM AND DECAY

Combining the expression for A in Eqn. (9) with ex-

pressions for C~’1,2 (and nested definitions of z,; and )
in Tab. I yields

2 2
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) 29 5 o201

(17)
for the amplitude of both emitters being simultaneously
excited, which we use to study the spectrum and
decay properties of the system. While the spectrum is
determined by the complex singularities of A(w) (all

located on the real line), the decay properties are given
by the analytic continuation in the complex w-plane [9].
O(z) + 2
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FIG. 2. Domain coloring plots of functions C,(z) (a) and
®(z) (b), and ((2) (c). a and b extended analytically to
an oo number of Riemann sheets (only 4 shown), connected
through the branch cuts Cil (Sl) that are represented ver-
tically. These are also branch cuts of ((z), which are rep-
resented in ¢ together with S! as thick black lines. The
plots have a complex frequency of w = (1 — 1) (V5 —2) /2,
parameters A = 0 and ¢ = o = 1, and a plot range of
[Rez| < (1++/5)%/4 and [Imz| < (14 /5)/2.



TABLE I. Set of formulas for the evaluation of Cs(z) through (16).

Increments of C,
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More specifically, the branch cuts of A(w) are segments
along the real line representing different continua in
the spectrum; redrawing them vertically reveals other
singularities (as in Fig. 3a) that characterize the decay
dynamics.

The spectrum of the system is easily understood phys-
ically. There are simple real poles that represent bound
states with both excitations located around the emitters.
These poles satisfy the equation

Zaa(w,zai) =0, (18)

and they can be located away from or on the branch cuts
(in which case they represent bound states in the con-
tinuum and, consequently, they are hard to distinguish
with simple numerical approaches, such as a brute-force
diagonalization of the truncated Hamiltonian). The
largest of these cuts is [—2,2] and it represents two
excitations emitted into the waveguide. Additionally, a
cut is formed at [e5; — 1,£4; + 1] (for some i € {1,2,3})
when one excitation forms a bound state of parity o
and dimensionless energy e,; = — (zm- +z;i1) /2 (see
Sec. III) and another excitation is delocalized over the
waveguide. We note that Eqn. (18) is exact, in contrast

to previous approaches used to compute multiexcitation
bound state energies, such as variational [8] or perturba-
tive [27] methods.

To access the decay properties, one needs to analyti-
cally continue A(w) beyond these branch cuts. For most
of the calculations, this can be done by reverting the
signs of the square roots appropriately. The situation
is complicated by ®(w,z) when w crosses [—2,2] (see
Fig. 7): the two branch cuts in z-space, (! (w,S'),
come into contact when w € [—2, 2] and, as they separate
beyond this continuum, a new branch cut crosses from
one to the other. This topological change in analytic
structure is important for understanding the collective
decay of our system.

The analysis reveals several sources of decay:

i. Solutions to the analytic continuation of (18) that
do not describe bound states, contain the collective
exponential decay rates. Mathematically, they are
simple poles p in the continuation of A(w) and, while
their frequency is Rep, the amplitude decay rates are
given by —Imp. In some cases, this decay rate might
exceed the Markovian superradiant prediction 2T'/2 (for
instance, for A = —0.8 and ¢ = I' = 0.3 the dominant



pole is —1.5077(1) — 0.31956(1)i). However, even in
such cases and in contrast to [18, 21], the total decay is
generally slower than the Markovian prediction (App. A)
due to other non-Markovian effects such as the bound
population at late times, or the dynamics starting out as
Rabi oscillations between the QEs and the sites below
them at early times [37].

4. When ¢,; € C is a pole that contributes to
the decay dynamics of a single excitation (Sec. III),
then ¢,; £ 1 is a branch point of the two-excitation
problem, with frequency Re{e,; + 1} and a mixture of
exponential decay with rate —Ime,; (which can be 0)
and an algebraic decay with an order inherited from
the corresponding single-excitation band edge (generally

3/2).

44¢. In between branch points w = +2 at the borders
of [-2,2], there is an additional branch point at the
center (w = 0). All three points are a source of algebraic
decay, generally of order 3 (such as the expected for
quantum emitters in 2D [38]). From a mathematical
perspective, these singularities originate from ®(w,2)
and are thus the hardest to analyze (see the last part of
App. D).

Indeed, 44 and %2 are what one would expect for two
independently emitted excitations. However, the alge-
braic decay orders themselves can also present signs of
collective decay. For instance, for A = 0 and g = 1 (a
critical coupling between Markovian decay and bound-
state induced oscillations), one might expect w = (1 +
\/5) to be the dominant decay sources at very late times
(2Jt > 10) with an algebraic order of 1/2. However,
these sources actually have an order of 3/2, making the
branch points w = +2 the slowest decay sources in-
stead. Additionally, assuming independently emitted ex-
citations would imply those sources produce algebraic de-
cay of order 1, but there is a log*(t) correction to the
asymptotic decay that they induce,

o F2it

b tlog?(t)’ (19)

We note that such a logarithmic correction will be
difficult to access in measurements and simulations
because the bound state contributions overshadow the
algebraic decay at exponentially late times. For any
parameter values (other than A = 0 and g = 1) the
logarithmic corrections are also present at w = +2 and
w = 0, although not generally at leading order. As such,
we expect logarithmic modifications to higher algebraic
decay orders to be a very subtle yet robust indicator of
collective non-Markovian decay. The development of a
scheme capable of making this effect predominant and
readily measurable will be left for future work.

For our system, the predominant contributions to
the decay are generally exponential, algebraic decay, or

FIG. 3. Spectrum and decay properties of the system for
A = g = 1. a. Simple poles (open circles) e,; of the trans-
formed symmetric (¢ = +1) and antisymmetric (¢ = —1)
emitter amplitudes aq(w) split into branch points (solid cir-
cles) £5%1 of the doubly-excited amplitude A(w). Black open
circles correspond to collective exponential decay sources. b.
Corresponding bound-state amplitudes in Wannier space for a
single excitation (e41,€e+2, and e_1) and two excitations (BS;
and BS2). Hue encodes the phase (red for positive, cyan for
negative) and saturation encodes the absolute value.

bound states depending on the interplay between g and
A. Qualitatively, for weak couplings ¢ (see Fig. 4), the
decay is mostly Markovian for deep in-band detunings
A, mostly algebraic when A is resonant with the band
edges and suppressed for detunings far outside the band,
when none of the two excitations may significantly leave
its emitter (this means they form a two-excitation bound
state of energy ~ 2A). As one increases the coupling,
the Markovian decay for in-band detunings becomes
algebraic with pronounced oscillations that eventually
become bound-state oscillations [37] for couplings that
surpass the band width. The dynamics is not sensitive
to detuning changes smaller than the coupling.

A clear signature of non-Markovian collective behavior
can be found in the probability of having one excitation
in the emitters and the other in the waveguide (the right
plot of Fig. 4). If we use p to denote the probability for
the first excitation to be held by one of the emitters,
then assuming independence between the two excitations
would result in a probability 2p(1 — p) of having just
one emitter excited. Since 2p(1 — p) < 1/2 regardless
of the value of p, 0.5 is a fundamental limitation for
this probability, were the excitations independent. The
collective nature of the decay allows it to break this
limitation, as seen in the plot. As shown in Appendix A,
the violation is also a sign of non-Markovianity, because
the Markovian prediction for this probability peaks
at 0.5 for A = 0 when the decay channels are not
collectively enhanced or suppressed.
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FIC. 4. Dynamical evolution of the probability |A(t)|*> of having both emitters simultaneously excited and the probability
S |C1;(#)]2+|Ca,;(t)]? of having only one excited for a coupling strength g = 1/3. Three white lines in each plot delineate

j=—o00

examples of dynamics dominated by Markovian decay (at A = 0), algebraic decay (A = —3J), and a bound state (A = 6.J).
The dashed lines on the right plot are level lines of probability 0.5, the theoretical maximum if the excitations were independent.

VIII. BOUND STATES

The shape of two-excitation bound states can most
easily be computed by reusing the equations that
describe the transformed field amplitudes in Sec-
tions IV and VI. These equations (except those for
(5'1,1 and él,g in Table I) are affine, with a homoge-
neous part proportional to the field amplitudes and
an inhomogeneous part. Removing the tildes and the
inhomogeneous parts (e.g. through the substitutions
(296’1,10— 1) — 2¢C1 10 in Table I) yields equations that
describe the field amplitudes of the bound states instead.

There are two ways to justify dropping the tildes and
the inhomogeneous part to compute the bound states.
First, the eigenstate equation is formally identical to the
transformed Schrodinger equation (B1), except for the
tildes and a “-1” that represents the initial conditions
and breaks the linearity of the equations. Second,
the transformed field amplitudes are divergent at the
bound state energies, so the inhomogeneous terms are
negligible in comparison. Scaling the amplitudes A
(from Eqn. (17)), C1,1 and Ci2 (from Table I) with
the vanishing factor ) ;s (z5;) fixes the divergent
terms and yields the correct (not yet normalized)
multi-excitation bound-state amplitudes. This argument
can be made more rigorous by using the residue theorem
in the inverse transform (3) and separating the bound
states using a harmonic decomposition of the solution.

Examples of bound states are presented in Fig. 3b.

IX. CONCLUSION

In this work, we have made an original use of sym-
metries and analytic methods to solve the problem of
two excited QEs coupled to a single-band waveguide.
This is a minimal scenario for the study of collective
non-Markovian decay, and the solution could be gener-
alized to many other cases whose exact single-excitation
dynamics are known [3, 4, 7-11, 14-16, 35, 39, 40].
The most immediate generalizations are to revisit the
multi-photon scattering problem [26, 31, 33, 41] by
means of a different initial state; to change the distance
between the emitters and investigate delay-induced
entangled dark states [20]; to replace the two QEs by
one giant atom with two connection points [42] for the
study of atom-multiphoton bound states [43]; or to
consider multiband waveguides, which can also be done
analytically and efficiently by using infinite products a
la Euler [9].

Non-Markovian collective decay is commonly related
to either strong coupling or retardation delays between
emitters. This characterization oversimplifies the full
complexity of the problem, which has infinitely many
degrees of freedom. We instead treat the quantum
emitters and the radiation modes as a collective in which
every constituent partakes in the decay process since
the spectral decay components of the solution cannot be
traced back to individual origins.



The closed expression for the transformed field am-
plitudes in terms of elementary functions exposes a
spectrum with a wide variety of decay types. Whereas
the amount, frequencies, or decay rates of bound and
exponentially-decaying states are independent of the
single excitation spectrum, this is not the case for the
algebraic decay components. The algebraic decay is
generally caused by edges of continua involving free
states, where the two excitations can be considered to be
independent. A peculiar case of algebraic decay occurs
at the center of the band, which is not singular for
one excitation and does not lead to collective decay in
the Markovian limit, and yet it is a source of collective
non-Markovian decay with logarithmic modifications.
These modifications might be the result of interference
between superposed algebraic decays, as they also
affect the edges of the continuum representing two free
particles.

Despite their stark difference in functional depen-
dence, logarithmic modifications to the decay would
be extremely hard to measure, as they would require
interrogating the emitters for exponentially long times
with exponentially high precision. In contrast, finding
more than a 50% chance of having exactly one emitter
excited should be feasible in state-of-the-art experiments
while also being a conceptually clearer indicator of
collective non-Markovian decay. Our results could be
tested in a variety of platforms, including atoms near
photonic crystals [44] or optical fibers [45], semicon-
ductor quantum dots [46], matter-wave emitters [47],
quantum acoustic systems [48], or superconducting
circuits [49].

We expect that the connections we established
between the one- and two-excitation sectors can be
extrapolated to arbitrary excitation numbers and that
the solution presented here can also be used for studies
of the fundamental connection between superradiance,
synchronization [50, 51], and entanglement [29, 52, 53].
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APPENDIX A: TWO EXCITATIONS IN THE
MARKOVIAN LIMIT

In this section, we present the Markovian approach
[65] to this system for completeness. This section is

somewhat independent of the rest of the paper because
it will not be used to find the general solution.

When each of the QEs is holding an excitation
there is no phase relation between the two excitations,
despite the initial state seeming symmetric. This allows
for the system to decay into either the symmetric or
anti-symmetric decay channels presented in Sec. I1l%z
(see Fig. 5).

The density matrix p = Trp|¢¥) (¢| resulting from
partial-tracing over the waveguide subsystem B follows
a dynamics that in the Markovian limit are described by
the master equation [55]

2
p=—i|> Adlasp
j=1

(A1)
4

+ 30 (20000) ~ 90O, ~ O10,p)

v=1

where v runs over the decay channels of Fig. 5, e.g.
I = (1+ AT and &) = /1/2 (a} ,&;) 10) (0] a1ds.
This results in a 4 x 4 density matrix that is diago-

nal in the implied parity-explicit basis and describes
exponential decay of the total population of the emitters,

Tr (a{al + a;az) p=

1-A L 1+A W 4N op
—(1-2)T¢ -+ _T= 20
1+A° tTIoAC 1-A2°
(A2)
aja}|0)
(1+A)T (1-A)T
. (a{ —a;) 0) e (di +&£) 10)
(1+A)T 1-A)T
10)

FIG. 5. Decay channels and rates for the superradiant cascade
of two excitations leaving two emitters through the coupling
with a single sinusoidal band. [54]



We note that this decreases monotonically, so although
they cooperate, two distant quantum emitters are not
enough to produce a superradiant burst [56].

The decay channels illustrated in Fig. 5 become
identical at A = 0, and (A2) reduces to the decay of
two independent emitters. This signals a suppression of
the collective effects, similar to the single-excitation case
discussed in Section III.

Another relevant observable (see Section VII) is the
probability of finding exactly one excitation in the emit-
ters,

1+A)TE _ o 1+ A2 2T

1— A2
(A3)
The global maximum of this function is 0.5 at A = 0
and I't = log 2, so any evidence of a higher value would
signal physics beyond the Markovian approximation.

+ e

~ geiqmj
(W—A—-wy) Cjq=

eipri+az;) C, s+ ei(peataz;)
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APPENDIX B: DYNAMICS OF THE
TRANSFORMED FIELD AMPLITUDES

For the exact non-Markovian solution we make use
of the Schridinger equation, which in terms of the
transformed Bloch basis (8) and the initial conditions
A(0) =1 and B, 4(0) = C; 4(0) = 0 becomes

wA—-1=20A+gY" (eiqwlé’gﬁq + eiqxzé'l,q)
q
wBpq = (2“’17 + wq)Bp,q
+9 > (e*"m-‘f Cj g + e 1% C’jﬁp) ifp<gq
j=1
~ - 2 . ~
wByq = 2w,By g+ V29 Y e " C;,
j=1
wCiq = (A +wg)Cjq + ge'®™ A

+g | X e? Bz),q + 3 e Bq,p +V/2¢%4% Bq‘”) ’

p<q a<p

(B1)
where z; = —d/2 and z3 = +d/2 are the positions of
the quantum emitters on the waveguide. Solving for the
Cjq, we get Eqns. (9) and the additional equation

+g22

P

w—2A

w—2A

2 iplwj—xy) A, i(pzj—qzy) (.
e i C e J i C

W— Wy —w
p j'=1 p q

(B2)

We can use this equation to prove that C'Lq(w) = C'g‘q(w) for all w € R. Beyond informing us about the form of

the bound states (see Fig. 3b), this allows us to obtain C~’27q from C~’17q through analytic continuation. For the proof,
notice that conjugating this equation while rewriting j — —j and j' — —5’, the equation becomes

geiqwj

(W—A—w,) C*

6i(pw1+qwj)éfp + ei(pxz-&-qwj)é;

+gQ Z
P

~5a T 5 9A w—2A

2 ip(xj—x0) 1% i(px;—qx;r) Frx
(& J C—\j’,q+e J C_‘j/,p

,P+g2zz

W — Wy —Ww
p j'=1 p q

(B3)

which is identical to the original writing (B2) after exchanging C~'1,q ~ C~'§7q. Since the dynamics are unequivocally

determined by the Schrédinger equation and initial conditions, (B2) has a unique solution and therefore C~'1yq = CN’cj}q.
We note that this also implies through (9) that A, prq € R for w € R.

Using this result, Eqn. (B2) with j = 1 and arbitrary w € C can also be written as

(0w — A)C(w, ) = 9=

T w—2A

2/z 2C (w, 2") 2C0(w,2) + C(w,1/2) /2 + (2 + 2/)C(w, 2") ,
+92m' _y{{w—QA 2 }dz

B4
14+ 20w 2" + 22 (B4)

in terms of the function C'(w, z) defined in (10). After splitting C' into symmetric and antisymmetric parts as in (12),

this equation simplifies into (13).

APPENDIX C: INCREMENTS OF C,

As mentioned in Sec. VI, Eqn. (13) imposes a very
particular analytic structure on the function C,(z). For
starters, knowing the value of the function for values
of z € St (corresponding to real quasimomenta) allows

to determine the analytic continuation CP(z) of the
function to all z € C\ (¢(S')U¢t(S')), through
direct integration of the RHS in (13).

Continuing the function to C¥(z) beyond the ¢ (S!)
branch cut (in Fig. 2a, this corresponds to crossing from

b



the second lowest to the lowest sheet) is possible by de-
forming the integration contour, as shown in Fig. 6. Sub-
sequently applying the residue theorem results in

D(,) = V=o(®) co z
C(z) VM(Z)CJ( )
S e fCa) el <1

2v_ 4( )C(Z) — {1 (2) X { CO(¢(2)) if 2| > 1,

(C1)

where for briefness we introduced

l-I-cr

"2 (6w — A) £oEl

vt o(2) = (C2)

— O

We note that crossing the same branch cut again in either
direction brings you back to C?(z), as the modification
to the integration contour is reverted around the poles.
This is no longer the case (i.e. C2(z) # C2(z)) if one
subsequently crosses the other branch cut instead, but

a i (Sl)

Re 2’

FIG. 6. a Domain coloring plot of C2(z) for the same parame-
ters as in Fig. 2. In white, a path for z that crosses the branch
cuts ¢*! (Sl) (in black) is suggested. The circled numbers
enumerate the analytic continuations C2(z), C2(z), C2(z),
and C2(z) that the path traverses. b Corresponding domain
coloring plot of Eqn. (13)’s integrand at z = 0.5 — 0.4i. The
integration contour (originally S', in black) has been adapted
to avoid the mobile poles Cil(z), whose trajectory as z fol-
lows the white path in a is marked with white lines and black
circles.
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unexpectedly both increments

5C,(2) = C2(z) - C2(2) (C3)

and
52Cy(2) = CP(2) = CZ(2) (C4)

become meromorphic functions when multiplied by
Vow + o /\dw —o.

The proof for §C, is elaborated (for §2C, it then fol-
lows from (15)). We start by noticing that, by construc-
tion, the only possible branch cuts of 6C, are ( (Sl) and
¢t (Sl). This is how the function extends when we cross
them:

§1
50, = co—co L8 oo _co s,
—1 Sl
sc, = co—co ) oo ca

The last function can also be equated to —6C,. To do
$0, one should write C2(z) and C2(z) in terms of C?(z)
and C2({(z)), which is a tedious calculation but shows
that indeed the equality holds iff

((z)+0 z+4+0
((z)—CHz)z -zt
+ (10 (C(2) =2, (C(2) (Vi (2) —vZo(2) =0,

4

(C5)
which, in turn, holds because
vil(s) — vl (s) = —Z YT ()
7 ’ o+z ow+o

This concludes that 6C,(z)Vow + o/vdéw — o is mero-
morphic.

In fact, using these formulas and briefly denoting
sl(z) = signlog|z| for all z ¢ S* U {0}, one can rewrite
the function as

500(2) VJr,U(C(z)) —

V—,O’(z)l/* sl(z),o(C(z))
20 ow—o C(z)+0o
o VL) ~ 2 TS 00 e(o)

(C7)
which can be regarded as the way in which C,(z) trans-
forms under the z «+ {(z) symmetry (in the sense speci-
fied in App. F). We use this formula to extract the sym-
metries of 6C,,

Vi s1(z),0 (€(2))
=02y 0o (2)

3Gy (4(2) = () R i 220, ),
(C8)

With these symmetries, we build up the projectors
el V_sl(z), O'(C(Z))

Punlfo} ) = & (fo(2) + 2y p (o))
PAfo}(2) = (fa< )+
()

1
2
Vow—o v_.o(2)
+ Sl(Z) Vowto Visi(z),o (€(2)) ZJFG

(C9)



that take functions of the form meromorphicx
V0w — 0/v/dw + o and imbues in them the correspond-
ing symmetry. P o P, spans a linear subspace of func-
tions so limited that only one has the correct asymptotic
dependence for 6C,(z — o0), which can be found by
using (13) to extract

9 (1 + 29@1,2)

Cole)=os = n
1—20(w—A) 4 29C 1 (w — 2A) + 29C1 (1 — ow)
g 22(w — 2A)
+0(27%)
(C10)
and combine it with (C7) to obtain
5Co(2) =8g%27%(2¢C1 10 — 1)+ O (274
(2) g°2""(29C1 10 ) (Z ) (C11)

= 893022(2901710 - 1) + O (23) .

The only function matching the symmetries and asymp-
totic dependence is listed as dC,(z) in Table I.

APPENDIX D: THE FUNCTION &

The core idea behind our solution is that since the
overall form of the analytic structure of C,(z) (see
Fig. 2) is independent of the system parameters, we
can define a simpler parameter-free version ®(z) of the
function hosting the same overall structure.

As a starting point, one can tweak Eqn. (13) to simplify
it while keeping the essential analytic structure of the
solution unaltered. There are many choices for this; we
propose

q)(z) _ 1 l n 21/ V ow' +1 (I)(z/)dz/
z—1 4 14+26wz’+2'2? m 271 ’
(b1)
where dw’ = w + (2/ + 2'71)/2 and the integration takes

place around a positively oriented circle of radius 1~
and center in 0.

Some properties that follow from the equation are the
following. ¢. Symmetries:

O(z) = —0(1/2)
{M@=M@@@@%ﬂﬁ) (b2)
#t. Asymptotic expansion:
o) = ;2 10 (7) (D3)

iii. ®(—1) = 0 and (z — 1)®(2) € H(C\ (¢(S') U
¢! (S*))). This can be used to regularize the integral
equation of (z — 1)®(z) in the unit circumference. This
allows for a Picard iteration scheme to both prove
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existence and uniqueness and to compute the numerical
solution of the equation, albeit not efficiently.

tv. Analytic extension (see Fig. 2b). It can be
achieved by carefully changing the shape of the integra-
tion contour, completely analogous to the study of the
analytic extensions of C,(z) presented in App. C.

v. An algorithm to compute ® is the following. Due to
the analytic structure of this function, it can be written
as

1 1 o "o Jow—1
B(x) = 14 + D anZ w W2 <

2 4(1 — 2) dw+1 [C(£1)]
(D4)
Applying (D2), this has to be equal to
1 ()" 2 +1
Be(z) = Lz WS ZHL o

41-¢(z)) =z2z-1
where the convergence is improved to the whole complex
plane thanks to the fact that always |[¢(z)| < 1. Now,
one can show that any function with the generic ana-
lytic shape of (D4) that also has property (D2) satisfies
equation (D1). In other words, enforcing

V]2 < min{|¢(1)|71, [¢(=1)I7"} (D6)

can be used to fit the real coefficients {a,}5°; unequiv-
ocally, and subsequently evaluate ® in any point of the
complex plane through the expression for ®.(z) in (D6).
Since it is essentially solving a least-square problem, this
method is efficient in practice if one chooses to enforce
this along equispaced points on the circumference S*
excluding the singular z = 1 (this choice makes the
branch cut of the a,(w) to be at w € [—2,2]). And the
accuracy of the algorithm gets compromised the closer
one gets to this branch cut.

D(z) = ¢ (2)

vi. The analytic structure displayed in Fig. 2b simpli-
fies greatly by taking the derivative with respect to z, to
the point that it can be expressed algebraically as

' (2) o

(2 = 20)(2 — 29 ) (2 = ¢(20))(2 = ¢"*(20)) Vow — 1

(0w? —1)22(z —1)? Vw1
(D7)
where 2y is one of the four symmetric points where
d'(29) = 0.

vit. Reintegrating the expression above means that
®(z) can be expressed in terms of elliptic integrals [57].
In the Legendre normal form, the incomplete elliptic
integral of the first and second kind we use are presented
in Table I together with the integrated expression for
®(z). Our choice of branch cuts for these functions
matches the branch cuts of their respective integrands
(where we also choose argy/z € (—7/2,7/2] ).



While integrating, it is useful to notice that zo = zp(w)
can be extracted from

-1
20 + 2y .
w—+ 5 =

w  w+2 1 2w
2 2 E(k=Y\’

(D8)

whereas taking the opposite sign in the large square
root yields w + (¢(z0) + ¢~ 1(20))/2 instead. Also one can
express the residue

w(2+w)k—1!

Res{®(z),z =1} = -

K (k™). (D9)

The second line in the closed formula of ®(z) at Tab. I
is very particular and, although there is no value of w
or z such that z(z) = 1, if we enforce this, the second
line becomes +1 due to Legendre’s relation. In other
words, excluding algebraic functions (see App. F), ®(2)
is a modification of Legendre’s relation for incomplete
elliptic integrals.

vitt. If we include the dependencies in w explicitly,
we have the additional symmetry

z+1
z—1

—K(k)VksgnRew [ 27! — 2 n
27 1—-((»)
2k sgnRe w

P, (2) =

+¢
i

It should be pointed out that @ (w, z) is a continuation
in the space of functions that still have a z dependence
to be evaluated. To know the analytic extension of
the function evaluated at a particular zy € C, one
additionally has to take into account all the instances in
which a branch cut of ®(z) or ®,(z) crosses the point
zp and correct for them accordingly. This is needed e.g.
to plot A(w) in Fig. 3a.

We caution that expression (D12) is only valid for
Re w > 0 and Im w < 0 if (0,2) is crossed from above
to below (as illustrated in Fig. 7), or for Re w > 0 and
Im w > 0 if it is crossed from below. The correspond-
ing continuation ®_ for w crossing (—2,0) C C can be
computed as

O (w,2) =P (—w,—2)+
sgnRew 2w\/k(w) (2% + wz + 1) K (k(w))
m (22 — 1) vVow+ 1w — 1

(D13)

_ 2 _
() + 220y - S )
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P(w,z) =P(—w,—2)+
sgnRew 2w (22 +wz+1) K (k7 (w))
7 (22 — 1) k(W) Vow + 10w — 1

(D10)

ixz. There is a two-particle continuum at w € [—2,2],
which represents a branch cut in the w plane. We can
use the closed form of ®(w, z) to analytically continue it
beyond the branch cut, which will be needed to compute
the super- and subradiant states of the system. For that
purpose, we introduce &£ = £(w, z) as

e_ LB - \/x 0y S ¢
1= (1) -
o2 ) =

X\/L(Oﬂ ) -

where z (07) denotes the limit of the amplitude x (see
Tab. I) when z — 0. It can be shown that £ € {—1,1} is
a sign dependent on w and z. Consequently, the extension
O (w,z) of ®(w,z) when w crosses the positive part of
the continuum (0, 2) can then be written as

z 1

(D12)

(K(k)E (x5 kY =k 2E(R)F (25 k) — (1= )K(R)F (25 k) )

using the symmetry (D10). Interestingly, ®; and ®_
have the same z <+ 27! and z ¢ ((z) symmetries as
® (see (i)), but they cannot be obtained through the
algorithm described in v because their analytic structure
is fundamentally different. They have an additional
branch cut joining the previous two cuts ((*! (S1), see
Fig. 7). The appearance of this branch cut is topological
and is the essence underlying the difficulty in computing
superradiant decays in the system at hand.

x. An additional surprise is the center of the contin-
uum w = 0, which is a branch point in the middle of
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