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Abstract12

Reservoir operations related to natural gas extraction, fluid disposal, carbon diox-13

ide storage, or geothermal energy production, are capable of inducing seismicity. Mod-14

eling tools have been developed that allow for quantitative forecasting of seismicity based15

on operations data, but the computational cost of such models and the difficulty in rep-16

resenting various sources of uncertainties make uncertainty quantification challenging.17

We address this issue in the context of an integrated modeling framework, which com-18

bines reservoir modeling, geomechanical modeling, and stress-based earthquake forecast-19

ing. We use the Groningen gas field as a case example of application. The modeling frame-20

work is computationally efficient thanks to a 2-D finite-element reservoir model which21

assumes vertical flow equilibrium, and the use of semi-analytical solutions to calculate22

poroelastic stress changes and predict seismicity rate. The earthquake nucleation model23

is based on rate-and-state friction and allows for an initial strength excess so that the24

faults are not assumed initially critically stressed. The model parameters and their un-25

certainties are estimated using either a Poisson or a Gaussian likelihood. We investigate26

the effect of the likelihood choice on the forecast performance and we estimate uncer-27

tainties in the predicted number of earthquakes as well as in the expected magnitudes.28

We use a synthetic catalog to estimate the improved forecasting performance that would29

have resulted from a better seismicity detection threshold. Finally, we use tapered and30

non-tapered Gutenberg-Richter distributions to evaluate the most probable maximum31

magnitude over time and account for uncertainties in its estimation. We show that the32

framework yields realistic estimates of the seismicity model uncertainties and is appli-33

cable for operational forecasting or to design induced seismicity monitoring. It could also34

serve as a basis for probabilistic traffic-light systems.35

Plain Language Summary36

Some human industrial activities like oil and gas extraction induce earthquakes.37

These earthquakes are occasionally large enough to cause concern about the possibility38

of building damage. We address the need for uncertainty quantification in the forecast-39

ing of such earthquakes. We use an integrated modeling applied to the largest produc-40

ing natural gas field in western Europe which is close to the city of Groningen in the Nether-41

lands. Gas production started in the early 1960s and started to induce detectable seis-42

micity 30 years later. We propose and assess the performance of an algorithm for un-43

certainty quantification in the forecast of earthquake numbers and magnitudes. In ad-44
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dition, we discriminate between methods for quantifying the forecast performance and45

measure how much better the forecast could be by deploying better seismic networks from46

the start of operations. We forecast the number of future earthquakes and an estimate47

of the most probable maximum magnitude based on a hypothetical future gas extrac-48

tion scenarios.49

1 Introduction50

Stress changes in the earth’s lithosphere resulting from activities such as oil and51

gas extraction or geothermal energy production are capable of triggering or inducing seis-52

micity (Ellsworth, 2013; Candela et al., 2018). Much progress has been made recently53

in the development of a physics-based and computationally efficient model that maps54

the relation between fluid injection/extraction to stress changes and seismicity (Meyer55

et al., 2022; Smith et al., 2022; Bourne et al., 2014; Bourne & Oates, 2017; D. Dempsey56

& Suckale, 2017; Langenbruch et al., 2018; Zhai et al., 2019; Candela et al., 2019; Kim57

& Avouac, 2023; Kühn et al., 2022; Dahm & Hainzl, 2022; D. E. Dempsey & Suckale,58

2023). To create these models, it is necessary to combine a reservoir model, which de-59

scribes pore pressure diffusion in the subsurface, a geomechanical model, which describes60

the induced strain and stress, and a seismicity model, which relates the seismicity to stress61

changes.62

Because of the multiple model layers and the computational cost, optimizing model63

parameters and quantifying the uncertainties is a challenging task; it is however criti-64

cal that uncertainties be assessed so that the modeling can be used to help guide oper-65

ations for example through a traffic light systems (Baisch et al., 2019; Verdon & Bom-66

mer, 2021). Here we focus on quantifying the uncertainty associated with the predicted67

number of earthquakes and the maximum magnitude. We use the novel prior-free method-68

ology in (Bajgiran et al., 2021) for uncertainty quantification together with the Broyden-69

Fletcher-Goldfarb-Shamno (BFGS) method (Martins & Ning, 2021) for optimizing like-70

lihood functions. Unlike traditional Bayesian methods, this approach allows us to esti-71

mate uncertainties that do not depend on the choice of a prior probability distribution72

of the model parameters.73

We apply this approach to the Groningen gas field in the Netherlands, where pro-74

duction from the largest onshore gas field in Western Europe has induced significant and75

well documented induced seismicity (Bourne et al., 2014; Dost et al., 2017; Spetzler &76

Dost, 2017). This case study is particularly suitable for testing the methodology due to77
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the available high-quality information on reservoir characteristics and operations (Val-78

vatne, n.d.; Jager & Visser, 2017), as well as the well-documented seismicity (Dost et al.,79

2017; Spetzler & Dost, 2017; Smith et al., 2020). Our modeling framework integrates a80

reservoir model, which describes the diffusion of pore pressure in the subsurface, a ge-81

omechanical model, that describes the induced strain and stress changes both within and82

outside the reservoir, and a seismicity model, that relates the seismicity rate to the stress83

changes (Meyer et al., 2022; Smith et al., 2022; Heimisson et al., 2022). The reservoir84

and geomechanical models were calibrated using pressure well data and surface subsi-85

dence measurements (Fig 1a).86

The modeling workflow calculates the seismicity rate in both time and space. How-87

ever, the seismicity rate is not directly observable. Instead, we observe a seismicity cat-88

alog, which we consider as a stochastic realization of the forecasted seismicity rate. In89

this study, we differentiate between epistemic sources of uncertainty, which arise from90

uncertainties in the model parameters, and aleatoric sources of uncertainty, which stem91

from the stochastic nature of the seismicity process.We discuss and quantify these dif-92

ferent sources of uncertainty and propose a general method to determine the confidence93

intervals on the earthquake number forecast. Although our focus is on estimating earth-94

quake numbers, we also describe how our method can be used to estimate probabilities95

of observing earthquakes of a certain magnitude in a given time window. This requires96

a model describing the frequency-magnitude distribution of earthquakes and the asso-97

ciated uncertainty (Shcherbakov et al., 2019; Zoeller & Holschneider, 2016).98

This paper is organized as follows. Section 2 will describe the data and modeling99

framework used in the study. This section will also introduce two alternative likelihood100

functions, Gaussian and Poisson, to quantify the fit of the model to the observed num-101

ber of earthquakes. The algorithm to quantify uncertainties and estimate earthquake mag-102

nitude probabilities will also be described. Section 3 will apply and test the proposed103

uncertainty quantification method to the forecast of the number of induced earthquakes104

at Groningen. The performance of the Poisson and Gaussian likelihood functions will105

be compared, and earthquake magnitude probabilities will be estimated. Using a syn-106

thetic catalog, we will assess how much better our seismicity forecasting performance could107

have been if we had a better seismic network. Finally, we will conclude the paper by sum-108

marizing our findings and discussing their implications.109
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2 Methods110

This section is structured as follows. First, we introduce our integrated modeling111

approach, which includes a seismicity model as one component. We explain how the seis-112

micity model maps stress distribution to event rate. Second, we define the likelihood func-113

tions used in this paper. Then, we discuss our algorithm for uncertainty quantification.114

Lastly, we present a method for estimating the maximum moment magnitude, which lever-115

ages the techniques developed in this study.116

2.1 Integrated Modelling framework and Seismicity observations117

We use a framework that combines reservoir and geomechanical modeling to pre-118

dict seismicity rates in time and space. The reservoir model (Meyer et al., 2022) and ge-119

omechanical model (Smith et al., 2022) allow us to calculate stress changes within and120

around the reservoir, using data on well extraction rates and pressure. Details on stress121

distribution are available in Appendix A1. The Coulomb stress can be calculated based122

on some a priori assumptions on the fault geometry, or for the ’optimal’ orientation yield-123

ing the maximum Coulomb stress change. We consider optimally oriented faults since124

both options yield very similar seismicity forecasts (Smith et al., 2022). The hypocen-125

tral depth distribution shows a peak right above the reservoir top, in the anhydrite caprock126

(Smith et al., 2020). To reduce the computational cost, following Smith et al. (2022),127

we assume a nominal depth of 10m above the reservoir top. The reservoir is represented128

by cuboids with a vertical extent corresponding to the reservoir thickness and a 500m129

× 500m horizontal extent. The cuboids were designed to match as closely as possible the130

3-D geometry of the reservoir (Burkitov et al., 2016; Smith et al., 2022). Using the Coulomb131

stress history, a seismicity model is then used to predict the seismicity rate in time and132

space.133

We use the seismicity catalog from KNMI (Royal Dutch Meteorological Survey)1134

to assess the model prediction. Initially, there were only a few seismic stations around135

Groningen, but the observation of induced seismicity has led to the deployment of a denser136

network, resulting in an improvement of the magnitude of completeness of the catalog137

from about Mc 1.5 in the early 90s to about 0.5 by 2014 (Dost et al., 2017; Smith et al.,138

2022). For this study, unless specified otherwise, we use the Mw ≥ 1.5 events from the139

seismicity catalog of KNMI from the year 1990 to the year 2021. The seismicity is ob-140

1 www.knmi.nl, downloaded on May 23, 2022
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served in the zones of higher Coulomb stress changes (Fig1b). However, the consistency141

between the time evolution of the Coulomb stress changes and the observed seismicity142

is less obvious at first glance (Fig 1c). Despite extraction rates ramping up in the late143

60s, causing rapid and measurable subsidence and hence an early increase of Coulomb144

stress, the seismicity only ramped up in the 1990s (Fig 1c). The seismicity rate increased145

nearly exponentially initially, despite a relatively steady annual extraction rate. After146

the production rate was reduced by about 50% following the Mw 3.6 Huizinge earthquake147

in 2012 (Smith et al., 2022), the seismicity rate decreased gradually within a few years.148

The lag between the onset of seismicity and the Coulomb stress change history can149

be interpreted as an indication that the medium around the reservoir was initially not150

critically stressed (Bourne & Oates, 2017). This interpretation is compatible with the151

Groningen area being tectonically quiet since the early Cretaceous (Jager & Visser, 2017).152

Alternatively, the lag could result from the time-dependent earthquake nucleation pro-153

cess (Candela et al., 2019; Dieterich, 1994). Because both explanations may have merit,154

we use the threshold Rate-and-State (RS) model (Heimisson et al., 2022) which includes155

both effects. The non-instantaneous nucleation process is represented using the RS fric-156

tion formalism (Dieterich, 1994) but relaxing the assumption of faults being critically157

stressed. Heimisson et al. (2022) showed that, for a population of faults below steady-158

state (initially ’relaxed’), the rate of seismicity R(x1, x2, t) (the rate of earthquakes per159

unit time and area) depends on the spatial stress history ∆S(x1, x2, t) according to160

R(x1, x2, t)

r
=
f1(x1, x2, t)

f2(x1, x2, t)
t > tb161

R(x1, x2, t)

r
= 0 t < tb (1)162

163

with164

f1(x1, x2, t) = exp

(
∆S(x1, x2, t)−∆Sc

Aσ0

)
165

f2(x1, x2, t) =
1

ta

∫ t

tb

f1(x1, x2, t
′)dt′ + 1 (2)166

where x1 and x2 are the positions in the East-West and North-South directions, r is the167

background seismicity rate, Aσ0 is a characteristic frictional-stress parameter with A be-168

ing a constitutive parameter related to the direct effect of RS. ta is the characteristic time169

of the nucleation process. ∆Sc is the threshold Coulomb stress, analog to the strength170
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excess in the Coulomb failure model (i.e. the Coulomb stress change needed to initiate171

fault slip). tb is a parameter that varies in space and defines the time when at position172

(x1, x2) the stress (∆S(x1, x2, t)) reaches ∆Sc. This parameter is introduced to simplify173

the expression but it can be eliminated from Eq 1. Eq 1 is a discontinuous function that174

would make parameter inference challenging. To overcome this issue, we approximated175

Eq 1 with a continuous function. The details are described in Appendix A2.176

The vector of model parameters is hereafter defined as

u =
[
r ta Aσ0 ∆Sc

]
∈ R4

+, (3)

The vector of seismicity observation yMc
that depends on the cut-off magnitude177

(Mc) is defined by:178

y =
[
y1 y2 . . . yT

]
∈ RT (4)

where yj is the total number of earthquakes in jth time bin and T is the number179

of time bins. And finally, the vector of modeled seismicity rate, which comes from the180

discretized version of Eq 1 is181

h(u;∆S) =
[
h1(u;∆S1) h2(u;∆S2) . . . hT (u;∆ST)

]
∈ RT (5)

where hj(u;∆Sj) is the predicted rate of events in the jth time bin. ∆S ∈ RDx1×Dx2×T
182

is the discretized stress distribution in time and space with Dx1
and Dx2

as the num-183

ber of elements in the x1 and x2 direction and T as the number of time bins. ∆Sj ∈184

RDx1×Dx2×j is the history of stress distribution up to jth time bin. For details on how185

to discretize Eq 1 and find h(u,∆S) see Appendix A2.186

In this paper, we use yearly time bins: the average stress in a year at each grid point187

and the cumulative number of events in each year as the observed seismicity. Since the188

relationship between the stress variations and the rate of seismicity is nonlinear, one should189

in principle take into account sub-annual variations, however, to limit the computational190

cost we neglect these variations.191

The model parameters are all assumed to be uniform over the reservoir. As a re-192

sult, all models forecast very similar spatial distributions of earthquake rates (Smith et193

al., 2022). They however predict substantially different temporal variations of the seis-194
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micity rate when the parameters are varied. We, therefore, use likelihood functions that195

do not account for the spatial distribution of seismicity but only temporal variations as196

detailed in the following section.197

2.2 Likelihood Functions198

Now we introduce two likelihood functions using the definitions of the vectors, u,199

yMc , and h(u,∆S). It is common practice to consider that earthquakes can be triggered200

either by previous earthquakes or by other processes such as tectonic loading or stress201

changes due to subsurface reservoir operations. The most adequate likelihood function202

depends on the proportion of earthquakes triggered by other earthquakes in the observed203

seismicity catalog. If the proportion is very small, the seismicity is generally well described204

by a non-homogenous Poisson process, meaning that events are independent but trig-205

gered at a rate that can vary in time depending on the loading rate (Ogata, 1988). If206

the proportion of events triggered by previous earthquakes is large, then the non-homogeneous207

Poisson model is less appropriate. In the context of faults governed by RS friction, co-208

seismic stress changes result in earthquake clusters, and aftershock sequences, but the209

total number of events is unchanged over a time-scale much longer than the character-210

istic nucleation time (Heimisson & Segall, 2018). In that case, if earthquakes are binned211

over a time step that is large compared to the typical duration of aftershock sequences,212

it is probably more adequate to assume that the number of events per time bin results213

from a Gaussian process (Heimisson et al., 2022).214

In the case of seismicity induced at Groningen, Trampert et al. (2022) have found215

that less than 7% of the Mw > 0.5 earthquakes are triggered by other earthquakes. An-216

other study suggests possibly as much as 27% of Mw > 1.3 events being aftershocks.217

In any case, an inspection of the catalog shows that aftershock sequences have proba-218

bly a short duration (smaller than a year) (Post et al., 2021). The clustering effect due219

to earthquake interactions is therefore probably smoothed out when only yearly bins are220

considered, as is the case when using the Gaussian Log Likelihood (GLL). It could how-221

ever be a source of bias when the Poisson Log Likelihood (PLL) is used.222

In the continuous-time form, the non-homogeneous PLL can be written (D. Dempsey

& Suckale, 2017) as:

PLL(y|u;∆S) =

N∑
l=1

log(λ(u; τl))−
∫ τN

0

λ(u; τ ′)dτ ′, (6)
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where λ(u; τ) is the spatially summed seismicity rate continuously predicted by the model223

in time (τ) and τl is the time when the lth event is observed. N is the total number of224

observed events. The PLL is discretized as:225

PLL(y|u;∆S) ≃ ⟨y , log(h)⟩ −
T∑

i=1

hi∆t, (7)

Where ⟨ , ⟩ is the inner product in RT and ∆t is the size of discretized time and it is equal226

to one year in our calculations. Also, log(h) is a vector in RT whose kth element is log(hk).227

The GLL as defined in (Heimisson et al., 2022) writes:

GLL(y|u;∆S) = −1

2
|y − h(u;∆S)|2Γ (8)

where |.| denotes the norm in RT where T is the number of data points in y. Eq 8 as-228

sumes that the difference between the observed and predicted number of events in each229

year is normally distributed. When all the observations are independent and identically230

distributed, Γ is a diagonal matrix. We can borrow the concept from a Poisson process,231

where the variance equals the mean, to approximate the elements on the main diagonal232

of Γ (variance) as the number of events in each year. However, in that case, since there233

are some years with zero number of events, Γ would not be invertible. To overcome this234

issue, we use Γ = αI, where α is the average number of events in y and I ∈ RT×T is235

the identity matrix. The value of α does not change the maximum likelihood estimate236

because it only scales the log-likelihood. However, it is important for the purpose of un-237

certainty quantification. This additional assumption about the variance of the Gaussian238

likelihood is one of its weak points compared to the Poisson likelihood which may cause239

inaccuracy in estimating uncertainties.240

Due to the small number of events at the onset of induced seismicity, the Poisson241

and Gaussian likelihoods can still yield different results, even though the Poisson like-242

lihood approaches the Gaussian likelihood as the number of events becomes large. Al-243

ternatively, if aftershocks are present, the Poisson likelihood may lead to biased results244

(Bourne et al., 2018). Hence, we consider both likelihood functions and analyze the im-245

pact of aftershocks on their performance.246

2.3 Uncertainty Quantification and Parameter Inference247

There are several sources of uncertainty to consider when forecasting the future num-248

ber of earthquakes using our modeling framework. They include the uncertainties in stress249

–9–



manuscript submitted to Seismological Research Letters (SRL)

distribution calculations (which mostly comes from uncertainties in extraction/injection250

rates, pore pressures, and stress model), the uncertainties in the seismicity model pa-251

rameters, and the uncertainty due to the stochastic nature of the seismicity. Although252

we propose a method to account for uncertainty in stress distribution, we neglect this253

source of uncertainty in our numerical simulations, considering it to be comparatively254

insignificant with respect to other sources. This is because varying the assumptions in-255

volved in stress calculations, such as the sampling scheme, only results in a re-scaling256

of the stress field ∆S (Smith et al., 2022). As the model prediction depends on the ra-257

tio ∆S(x1,x2,t)−∆Sc

Aσ0
, the forecast is identical if Aσ0 is rescaled so that this ratio is con-258

stant. The model is therefore insensitive to such re-scaling.259

Various methods exist to infer the model parameters u from the data using differ-260

ent likelihood functions (such as Eqs 8 or 7) and use them to forecast future earthquakes.261

While Bayesian methods combine a prior p(u) with the data y and the likelihood p(y|u)262

to generate a posterior distribution p(u|y), their uncertainty quantification heavily re-263

lies on the choice of prior. To overcome this challenge, we use a ”prior-free” methodol-264

ogy (Bajgiran et al., 2021) for uncertainty quantification, along with the Broyden-Fletcher-265

Goldfarb-Shamno (BFGS) method (Martins & Ning, 2021) (Algorithm 4.7) for optimiz-266

ing the likelihood function. The BFGS algorithm, which uses both first- and second-order267

derivatives of the cost function, starts from uniformly selected random initial points in268

the parameter space.269

Within this framework, we can separately account for different sources of uncer-270

tainty involved in predicting future events. Firstly, there is uncertainty present in the271

model parameters (u), which exhibit changes in the expected rate of events (epistemic).272

Secondly, there is the uncertainty in the stochastic process (aleatoric), which arises from273

the model of Eq 1, where the rate of events is modeled, rather than the number of events.274

Distinguishing and estimating both these uncertainties is crucial, as they can be com-275

bined to obtain a final uncertainty quantification (UQ) bound. To achieve this, we con-276

sider a likelihood model with unknown physical parameters u ∈ Rq (where q is four in277

this paper), and observations from y ∼ p(·|u), where p can be either the Gaussian or278

the Poisson likelihood. Our first step is to determine a UQ region for the rate of future279

events at the kth time, denoted by hk(u) ∈ R. We consider a region in parameter space280

around the Maximum Likelihood Estimate (MLE) for the observed data y, for some 0 ≤281

α ≤ 1.282

–10–



manuscript submitted to Seismological Research Letters (SRL)

Θy(α) :=

{
u ∈ Rq :

p(y|u)
supu′∈Rq p(y|u′)

≥ α

}
, (9)

where supu′∈Rp p(y|u′) = p(y|uMLE) with uMLE as the MLE of the model pa-283

rameters.284

After maximizing the likelihood function and finding set Θy(α), we obtain a con-285

fidence interval for hk(u) as Eq 10. Note that Eq 10 only gives the confidence bound on286

the rate of events at kth time and not the number of events.287

[
min

u′∈Θy(α)
hk(u

′), max
u′∈Θy(α)

hk(u
′)

]
. (10)

We define h−k and h+k as the minimum and maximum rate of events with proba-

bility (1− ξ) at kth time as the following:

h−k = min
u′∈Θy(α)

h(u′)

h+k = min
u′∈Θy(α)

h(u′)
(11)

Using Theorem 4.1 in (Bajgiran et al., 2021), in the asymptotic regime of a large288

sample of model parameters under regularity conditions over the likelihood function (which289

are satisfied by the Gaussian and Poisson likelihoods considered here), to obtain a con-290

fidence interval that contains the true parameter with probability 1−ξ, one can choose291

α = exp
(
− 1

2ψq(1− ξ)
)
with ψq the quantile function of a χ2

q random variable (with292

degrees of freedom (q) equal to the dimensionality of the parameter vector u). As ξ →293

1, the confidence interval collapses to hk applied to the maximum likelihood estimator294

of u, and as ξ → 0, the optimal decision becomes a robust estimate over all possible295

u. The choice of α is made so that the selected interval has the desired probability cov-296

erage 1− ξ (on the rate of events), with ξ chosen by the practitioner.297

So far, we showed how to put bounds on the rate of events hk at kth time (Eq 10);298

the true rate is in the obtained UQ bound with probability 1−ξ. However, a full UQ299

bound on the number of events should also take into account the stochasticity of the pro-300

cess. To that end, we add aleatoric bounds on top of the epistemic bounds to the quan-301
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tity of interest function hk. Since hk is the rate of events at kth time, the number of events302

at that time follows a Poisson distribution with its mean equals to hk. Eq 12 provides303

the confidence interval ([φ−, φ+]) for the number of events occurring at a rate of hk(u),304

with a probability of 1− γ (Patil & Kulkarni, 2012).305

φ−(u) =
1

2
ψ2hk

(γ/2)

φ+(u) =
1

2
ψ2(hk+1)(1− γ/2)

(12)

where ψ2hk
and ψ2(hk+1) are the quantile function of the χ2 distribution with 2hk and306

2(hk+1) degrees of freedom. When hk is large (> 30) one can approximate the confi-307

dence interval of a Poisson process (Eq 12) by the confidence interval of a Gaussian pro-308

cess (Brown et al., 2001). Here 1−γ is the aleatoric coverage probability where γ is de-309

fined by the practitioner.310

Using elements in the set Θy(α), the confidence interval of the number of events,311

considering both aleatoric and epistemic uncertainties with probability (1 − ξ)(1− γ)312

is given by:313

[
min

u′∈Θy(α)
φ−(u

′), max
u′∈Θy(α)

φ+(u
′)

]
. (13)

Note that the practitioner chooses two parameters, ξ, and γ, that regulate the epistemic314

and aleatoric uncertainty, respectively. As we prove in the following lemma if Θy(α) con-315

tains the true parameter with probability 1−ξ and the worst-case 1−γ interval is cre-316

ated on top (Eq 13), the combined interval contains the true number of events with a317

probability of at least (1− ξ)(1−γ). There is the possibility of optimizing over ξ and318

γ such that for a fixed (1−ξ)(1−γ), we obtain the tightest interval for the number of319

events.320

One practical point to be mentioned is that since the quantile function of χ2 monotonously

increases, we simplify Eq 13 as

[
1

2
ψ2h−

k
(
γ

2
),
1

2
ψ2(h+

k +1)(1−
γ

2
)] (14)
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where ψ2h−
k
and ψ2(h+

k +1) are the quantile function of χ2 distribution with 2h−k and 2(h+k +321

1) degrees of freedom. We use Eq 14 as the final rule for the confidence interval of the322

number of events at kth point in time, with probability at least (1 − ξ)(1− γ).323

Lemma 1 (Product of probabilities). Let φ−(u), φ+(u) be chosen based on Eq 12. Then,

based on (Ulm, 1990) for a fixed k (time in the future), any parameters u and possible

data observation (number of earthquakes) z ∼ px(·|u) Eq 15 holds.

P(z ∈ [φ−(u), φ+(u)]) ≥ 1− γ (15)

Then, if Θy(α) is constructed to contain the true (unknown) parameter u† with (asymp-

totic) probability at least 1− ξ (by e.g choosing α = exp(− 1
2ψp(1− ξ)), defining

I =

[
min

u′∈Θy(α)
φ−(u

′), max
u′∈Θy(α)

φ+(u
′)

]
, (16)

we (asymptotically) have, for all possible values of the true parameter u†

P(z ∈ I) ≥ (1− ξ)(1− γ) (17)

Proof. We split P(z ∈ I) = P(z ∈ I|u† ∈ Θy(α))P(u† ∈ Θy(α)). By construction of324

Θy(α)) the second term is at least 1 − ξ. Since for any u ∈ Θy(α), [φ−(u), φ+(u)] ⊂325

I, the first term is at least 1 − γ, which completes the proof.326

We summarize the method in Algorithm 1.327

2.4 Inclusion of uncertainties on the stress model328

While not considered in this work numerically, the methods proposed here can ac-

commodate extra sources of uncertainty. As an example, we can consider uncertainty

in the discretized stress distribution ∆S. The stress changes used as input for the seis-

micity forecast depends on various factors, including the uncertainties associated with

the reservoir model parameters. These parameters were obtained through history match-

ing of the pressure data. The alterations in stress are also influenced by both the reser-

voir’s shape, which was acquired from literature (Burkitov et al., 2016), and the distri-

bution of the reservoir’s compressibility, which was determined by adjusting surface sub-

sidence data (Smith et al., 2019). Another factor that affects stress changes is the choice

of the stress sampling scheme, although the forecast is insensitive to this to a first-order
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Algorithm 1 Uncertainty quantification algorithm

1. Inputs:

(a) Likelihood model p(·|u)
(b) q = dim(u)

(c) Data y

(d) Significance levels ξ and γ, such that an interval of coverage probability
(1− ξ)(1− γ) is obtained

2. Find uMLE = argmaxu p(·|u) via an optimization algorithm

3. Set α = exp(− 1
2ψq(1− ξ))

4. Find the set Θy(α) :=
{
u ∈ Rq : p(y|u)

p(y|uMLE)
≥ α

}
,

5. For all points in time (k), find h−k and h+k

h−k = min
u′∈Θy(α)

h(u′)

h+k = min
u′∈Θy(α)

h(u′)

6. The confidence bound on the number of events with probability (1 − γ)(1 − ξ) is
given by:

[
1

2
ψ2h−

k
(
γ

2
),
1

2
ψ2(h+

k +1)(1−
γ

2
)]

approximation. The spatial distribution of earthquake forecast is mostly affected by the

uncertainties in the spatial distribution of stress changes due to these factors. However,

because we have assumed uniform reservoir properties (permeability, porosity) and con-

sidered the reservoir geometry as known, the spatial distribution of the forecast is rel-

atively insensitive to the model parameters. Nevertheless, the formalism presented above

can be adapted to account for uncertainties in the stress model if necessary. We can write

the likelihood models we have been using as p(·|u,∆S). If ∆S itself comes from a prob-

ability distribution (e.g modeling Gaussian noise) q(∆S), one can define a new likelihood

function as a function over u only (that can later be used for optimization) by marginal-

izing over the random variables:

pnew(y|u) :=
∫
p(y|u,∆S)q(∆S)d∆S (18)

Eq 18 is the integral of likelihood (p(y|u,∆S)) weighted by q(∆S).329

This approach would incur a substantial increase of the computational cost of the330

algorithm and has not been implemented here.331
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2.5 Earthquake Magnitude probability332

Above, we have described how to forecast the number of earthquakes while tak-333

ing uncertainties into account. To estimate the probabilities of induced earthquake mag-334

nitudes, it’s essential to use a model that describes their magnitude-frequency distribu-335

tion. Earthquakes in any tectonic setting tend to follow the Gutenberg-Richter (GR) magnitude-336

frequency distribution, which has different variants. Some of these variants assume trun-337

cation at a maximum magnitude beyond which earthquakes are considered physically338

impossible, while others have a gradual tapering (mostly exponential). Such options have339

been studied in the context of the Groningen gas field (Bourne & Oates, 2020; D. E. Dempsey340

& Suckale, 2023). In this study, we demonstrate our framework using both non-tapered341

and tapered distributions.342

Non-tapered GR343

The number of events with a magnitude greater or equal to m, (N≥m) in non-tapered344

GR is given by:345

N≥m = N≥Mc
10(−b(m−Mc)) (19)

where Mc is the cut-off magnitude (generally taken to be the magnitude above which346

the catalog is considered ’complete’, say at the > 90% level), b is the slope of the lin-347

ear regression line on a log-log plot of earthquake frequency versus magnitude and N≥Mc
348

is the total number of events with a magnitude greater than or equal to Mc. Here, we349

consider b and N≥Mc
as stochastic parameters and we sample from their distributions.350

There are many methods in the literature for finding the b-value (Marzocchi & San-351

dri, 2003). We have used the ”b-positive (b+)” method of van der Elst (2021) because352

it is insensitive to variations of the magnitude of completeness of the earthquake cata-353

log. Their estimator is calculated only based on positive differences in magnitude between354

successive events according to355

b+ =
1

(m̄′ −M ′
c) ln(10)

m′ ≥M ′
c (20)

where m′ is the difference between the magnitude of two successive earthquakes.356

M ′
c is a constant number that satisfies M ′

c ≥ 2δ condition, where 2δ is the discretiza-357

tion level of the moments in the catalog. To use Eq 20, one should use a moving win-358
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dow of events, and find those events whose m′ ≥ M ′
c, and then average all m′s in the359

window to find m̄′. The standard deviation of the estimated b+ can be approximated360

by b+√
N(m′≥M ′)

, where N(m′ ≥M ′) is the number of events that satisfy m′ ≥M ′ con-361

dition in the time window.362

The b-value might vary systematically in space, time, or with the stress level (Gu-363

lia & Wiemer, 2019; Scholz, 2015; Muntendam-Bos & Grobbe, 2022; Bourne & Oates,364

2020). Here, we assume for simplicity that the b-value is stationary, we construct a prob-365

ability density function from the distribution obtained by considering successive time win-366

dows (Fig 7). By sampling from this PDF, we find realizations of the b-value for our anal-367

ysis.368

To find a realization of N≥Mc
, we sample from a non-homogeneous Poisson pro-369

cess with rate h(u;∆S). h(u;∆S) is the vector of seismicity rates for a desired time span370

where u is sampled from the posterior distribution of the model parameters. The flowchart371

of Fig 2a summarizes how one can sample from the non-tapered GR distribution while372

considering both the epistemic and the aleatoric sources of uncertainty.373

Using Eq 19, the most probable maximum magnitude (M̂max) that would be ob-

served in a sample of size N≥Mc (Van der Elst et al., 2016) is :

M̂max =Mc +
1

b
log10(N≥Mc

). (21)

It should be noted that due to the distribution’s heavy tail, the expected maximum mag-374

nitude (mean of the PDF of Mmax) is actually larger than the most probable maximum375

magnitude (mode of the PDF of Mmax). Throughout this paper, we use M̂max for the376

most probable maximum magnitude for a non-tapered GR distribution.377

It is straightforward to find the probability of exceeding any magnitude over any

chosen time duration as we describe below. In the limit of large N(M ≥Mc), the con-

fidence level q on the most probable maximum magnitude can be calculated using Eq

22.

M̂q = M̂max − 1

b
log10(−ln(q)) (22)

As a result, the probability of having an event with a magnitude greater than M̂q is P (M̂max >378

M̂q) = 1− q. We can write this quantity as a function of M̂max and the b-value,379

P (M̂max > M̂q) = 1− exp
(
−10b(M̂max−M̂q)

)
. (23)
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Tapered GR380

Based on the tapered GR distribution, the probability of an event with seismic mo-

ment greater than M is given by Eq 24 (Kagan, 2002; Bourne & Oates, 2020):

P (≥ M|M ≥ Mm) =

(
M
Mm

)−β

e−ζ( M
Mm

−1) (24)

where Mm is a constant that will be defined shortly, β and ζ are parameters in this

model that in principle can be a function of stress or stressing rate. Note that β is equiv-

alent to β in the non-tapered Gutenberg-Richter law. In the limit ζ = 0 which corre-

spond to no-tapering, we have β = b ∗ log(10). in this study, we consider β and ζ as

independent stochastic parameters and we will sample from their posterior distribution.

The flowchart of Fig 2b summarizes the sampling scheme from a tapered GR distribu-

tion while considering both the epistemic and the aleatoric uncertainties. To generate

random realizations from Eq 24, the inverse transform sampling method is used (Stein-

brecher & Shaw, 2008). Posterior distributions of β and ζ are found by maximizing the

following log-likelihood function.

l =

N∑
i=1

(
log

(
β + ζ

Mi

Mm

)
− (1 + β)log

Mi

Mm
− ζ(

Mi

Mm
− 1)

)
(25)

where N is the number of events. We can relate the seismic moment (M) to the

moment magnitude (M) using Eq 26.

log10M = (c+ dM) (26)

where c = 9.1 and d = 1.5. The value Mm can be found using the following equation:381

logMm =

(
c+ d

(
Mc −

1

2
∆M

))
log10 (27)

where Mc is the magnitude of completeness and ∆M is the size of binned intervals. Based382

on Eq 24, the probability of an event with seismic moment smaller than M is given by:383

P (<M|M ≥ Mm) = 1− P (≥ M|M ≥ Mm) (28)
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As a result, assuming the magnitude of events are independent and identically dis-384

tributed according to Eq 24, the probability that N≥Mc
events having seismic moment385

smaller than M can be found by Eq 29:386

P (<M, X = N≥Mc
|M ≥ Mm) = (1− P (≥ M|M ≥ Mm))

N≥Mc (29)

where X counts the occurrence of specific outcome. So the probability of having at least

one event out of N≥Mc
realizations with seismic moment greater than M is given by:

P (>M, X ≥ 1|M ≥ Mm) = 1− (1− P (≥ M|M ≥ Mm))
N≥Mc (30)

3 Results and Discussion387

3.1 Uncertainty in the forecast of earthquake numbers388

As one example of Algorithm 1 for uncertainty quantification, the earthquake cat-389

alog is split into a training set and a test set. In this particular instance, the training390

set includes data up to the year 2008 (shown in white in Fig 3), while the test set includes391

data from 2009 to 2021 (shown in grey in Fig 3). The maximum likelihood model pa-392

rameters (uMLE) are estimated using the training set. We used the Poisson likelihood393

to obtain the inversion results shown in Figure 3, but it’s worth noting that our method-394

ology is independent of the choice of likelihood. Once we have estimated uMLE , we run395

the forward model to obtain the maximum likelihood estimate for the seismicity rate (hMLE),396

as shown in Fig 3).397

We now seek to bound the 90% confidence level ((1 − γ)(1 − ξ) = 0.9) for the398

number of events in each year, where (1−γ) and (1−ξ) are the confidence level in the399

Poisson process (aleatoric uncertainty) and the model parameters (epistemic uncertainty).400

As stated earlier, for a given confidence level ((1−γ)(1−ξ)), the values of (1−γ) and401

(1−ξ) are not uniquely determined. The confidence bounds slightly change when chang-402

ing these two parameters while keeping the multiplication constant. We have analyzed403

the sensitivity of selecting ξ and γ on confidence interval for specific confidence levels404

in Appendix A3. The balance between these two uncertainties helps to have the tight-405

est interval of the number of events for a given confidence probability. We found that406

having 1 − γ close to 1 − ξ is a good first guess. In the case of Fig 3, we selected the407

combination 1− γ = 0.96 and 1− ξ = 0.94.408
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The red lines in Fig 3 show the variability at the 94% confidence level of the fore-409

casted seismicity rate (h94%). The 90% confidence bound on the number of events (black410

lines in Fig 3) is obtained by adding the uncertainty due to the Poisson process using411

Eq 14.412

Fig 4a compares the observed yearly rate (blue line) of seismicity with the various413

confidence intervals obtained with our method (red to green lines). We can use that graph414

to compare the difference between the observed and the predicted yearly number of events415

with the uncertainties in the model prediction estimated from our method. The com-416

parison shows that, as expected, the misfits lie well within the estimated bounds on the417

confidence interval (Fig 4b). The uncertainties are largely overestimated at lower con-418

fidence levels and less so at higher confidence levels. For example, 71% of the catalog data419

points are within the 25% confidence interval, and 97% of the catalog data points are420

within the 90% confidence interval.421

3.2 Comparing Likelihoods422

In this part, we compare the performance of the non-local Gaussian and Poisson423

likelihood. When the number of events in a time bin is small (< 30), the Poisson like-424

lihood is in principle more appropriate than the Gaussian likelihood, provided interevent425

triggering can be neglected. This makes the effect of likelihood important in the context426

of induced seismicity because, at the beginning of seismic activity, the number of events427

is small and clustering is hard to assess. We also use our modeling framework to assess428

how a better seismic monitoring would have helped to predict more accurately and ear-429

lier induced seismicity at Groningen.430

Fig 5 presents a comparison between the MLE models obtained with Poisson and431

Gaussian likelihoods. In this particular training-test scenario, the Poisson likelihood pro-432

duces a forecast that is more closely aligned with the observed data during the test pe-433

riod. To assess more broadly the performance of the two likelihoods, we performed sys-434

tematic tests on data sets with different sizes and different proportions of aftershocks.435

Based on (Heimisson et al., 2022) the overall magnitude of completeness in the KNMI436

catalog from 1991 to 2021 is almost 1.5. We therefore initially used a cut-off magnitude437

Mc = 1.5. To augment the number of events, we also tested using a cut-off magnitude438

Mc = 1.2. To augment further the catalog size and include a known proportion of af-439

tershocks, we also generated a synthetic catalog using the Epidemic-Type Aftershock Se-440

quence (ETAS) model. This catalog has almost ten times more events than the KNMI441

catalog and would correspond to a magnitude of detection of about Mc ≃ 0.5. So it mim-442
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ics the catalog that would have been obtained if the seismic network in operation since443

2014 had been deployed much earlier. The catalog that is generated based on the ETAS444

model (denoted by yETAS
Mc≈0.5) contains 24% of aftershocks, a value consistent with the es-445

timated proportion of aftershocks (Post et al., 2021). For further information on how the446

synthetic catalog (yETAS
Mc≈0.5) was created and to view an example of the forecast and un-447

certainty quantification algorithm utilized in it, please refer to Appendix A4. By low-448

ering the magnitude cut-off we should end up with a larger proportion of aftershocks.449

We should therefore expect the Gaussian likelihood to perform better.450

For each data set (y), we use a moving boundary between the training set and the451

test set (Fig 6a). The moving boundary enables us to use training sets of different sizes.452

Since we work on different catalogs that have different numbers of events each year, we453

define a prediction error that is normalized by the number of events as:454

ϵ(yo
test,htest) =

√
1

Ntest

〈
yo
test − htest

yo
test

,
yo
test − htest

yo
test

〉
, (31)

where yo
test and htest are the vectors of the observed seismicity and the MLE of the455

predicted seismicity rate in the test set. Ntest is the number of data points in the test456

set. By
(

yo−h
yo

)
we mean element-wise division and ⟨ , ⟩ is the dot product in RNtest .457

Fig 6 shows the performance of the likelihood functions for different data sets and458

different sizes of training sets. At the first glance, there is a reasonable trend of error re-459

duction as the last year that is used in the training set gets larger. For the data sets with460

Mc = 1.5 and Mc = 1.2 (these are from the measured seismicity catalog) the Poisson461

likelihood generally has a smaller error than the Gaussian likelihood. For the synthetic462

catalog corresponding to Mc ≈ 0.5, the Gaussian likelihood yields a better fit to the463

test set. The large size of the catalog and the large proportion of aftershocks make the464

Gaussian likelihood more appropriate in that case. In all three cases, the Poisson like-465

lihood has a more stable error, that there are fewer jumps in the error of its prediction.466

Moreover, we note that the errors are smaller when using the catalog with Mc = 1.5467

compared to the catalog with Mc = 1.2, although there are more events in the latter.468

We interpret this observation as an indication that having an accurate estimate of the469

magnitude of completeness is important for the performance of the forecast.470

It should be noted that the inversion shows a strong trade-off between the back-

ground seismicity rate (r) and the characteristic time (ta). This is because the system

has not yet settled back to a regime where the seismicity would result only from the tec-
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tonic loading. As a result, the model prediction depends only on the product r.ta and

the forecast is relatively well bounded in spite of the poor constraints on either of these

model parameters. Mathematically speaking, in Eqs 1 and 2, when t > tb, in most of

the data points, one can approximate:

f2 ≈ 1

ta

∫ t

tb

f1(x1, x2, t
′)dt′ (32)

then, the forecast of the model of Eq 1 (R) is proportional to the (r.ta) (R ∝ r.ta.). when471

t < tb the model of Eq 1 is not a function of the values of r and ta. This statement jus-472

tifies why when using the model in Eq 1 with the current available data set, it is only473

possible to find the multiplication of r and ta and not their values respectively. To be474

able to constrain those parameters we need to have stress distributions such that f2 ≈475

1
ta

∫ t

tb
f1(x1, x2, t

′)dt′ is not valid which is not the case for the current data set. For more476

information about the inverted model parameters see Appendix A5.477

It is important to note that in comparing the two likelihood functions, the Gaus-478

sian likelihood has an additional disadvantage compared to the Poisson likelihood: it has479

one more parameter, which is its variance. We have assumed equal variance in each ob-480

servation (Γ = αI), with α being the average number of events per year. This is only481

a first-order approximation that is used in this paper for convenience and consistency482

with the alternative Poisson process.483

Fig 6b can also be used to assess how better seismic monitoring would have helped484

detect events earlier and predict more accurately induced seismicity at Groningen. For485

this purpose, we can compare the error in the forecast for the synthetic catalog (yETAS
Mc≈0.5)486

with the error in the forecast of the measured seismicity catalog (yo
Mc=1.5 or yo

Mc=1.2).487

As an example, the accuracy of a forecast based on the training set up to 1999 for yETAS
Mc≈0.5488

data set is almost equal to the accuracy of a forecast based on the information up to 2019489

for yo
Mc=1.5. This result suggests that if we had a seismic network with Mc = 0.5, we490

could have reached the same level of accuracy 20 years earlier.491

3.3 Prospective forecast of earthquake numbers and magnitudes492

In this part, we show how our integrated framework and UQ methodology can be493

used to quantify induced earthquake magnitude probabilities for the Groningen gas field494

until the year 2030. We use both non-tapered and tapered GR distributions. To quan-495

tify magnitude probabilities for both distributions, we have followed the steps in Fig 2.496

To forecast the seismicity after 2021 (the grey region in Fig 8), we have assumed the ’cold497
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winter’ scenario for gas extraction (NAM, 2013). Using observations up to the year 2021,498

the posterior distribution of model parameters (u) is found using PLL. Then, based on499

the ’cold winter’ scenario, the time series of stress distribution ∆S is calculated. Using500

this information we can find the seismicity rate h(u,∆S) for up to the year 2030 (Fig501

8).502

For the non-tapered GR distribution, we use the b-value determined with the b+503

method (Eq 20) with a moving window of 400 events. The time-series of the b+ is plot-504

ted in 7a. The fact that there is no systematic trend with time, supports our hypoth-505

esis of a stationary b-value. We incorporate all the full distribution of b-value measure-506

ments to build a PDF (Fig 7b) from which we can sample. For the tapered GR distri-507

bution, to find the posterior distribution of β and ζ, the catalog up to 2021 is used with508

uniform priors (0.3 ≤ β ≤ 1 and 0 ≤ ζ ≤ 1). The maximum likelihood estimates for509

β and ζ are β = 0.62, correspond to a b-value of 1.4, ζ = 1.3 × 10−3, with Mm =510

1.9× 1011Nm.511

We use Eqs 23 and 21 for the non-tapered and Eq 30 for the tapered distribution512

to determine the probability of exceeding a certain magnitude (P (M̂max > M̂q)). This513

probability depends on stochastic parameters for both non-tapered and tapered GR dis-514

tributions, and realizations of those parameters are required to accurately calculate it.515

These stochastic variables include the model parameter (u), the number of events that516

is a random realization of a non-homogenous Poisson process with the rate h(u,∆S),517

and the b-value for non-tapered GR distribution, as well as β and ζ for tapered distri-518

bution. By generating multiple realizations from all of these stochastic variables, we find519

an empirical average for P (M̂max > M̂q) for different M̂q. Note that P (M̂max > M̂q)520

is an increasing function of the total number of events and, since the total number of events521

increases over time, P (M̂max > M̂q) also increases. Fig 9 illustrates the empirical av-522

erage evolution of P (M̂max > M̂q) over time. Since the event rate has been decreas-523

ing after 2012, the slope of E[P (M̂max > M̂q)] has also been declining for the 2012-524

2030 interval. The choice of a frequency-magnitude distribution type, whether tapered525

or non-tapered, has a significant impact on the probability of surpassing a certain mag-526

nitude. However, determining which distribution is more suitable for the Groningen gas527

field (Bourne & Oates, 2020; D. E. Dempsey & Suckale, 2023; Varty et al., 2021; Muntendam-528

Bos & Grobbe, 2022) is beyond the scope of this paper.529

Realizations of the non-tapered and tapered GR distributions are obtained using530

the workflow described in Fig 2. The non-tapered and tapered GR distributions are dis-531
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played in Fig 10 (a1 and b1 respectively). In Fig 10 (a2) and Fig 10 (b2), we have plot-532

ted the PDF of the Mmax (up to 2030) in which we have denoted the most probable max-533

imum magnitude (M̂max ) and its 97th and 3rd percentiles as well as the observed max-534

imum magnitude up to 2021. The maximum observed magnitude in the field lies close535

to the 3rd percentile for the non-tapered GR distribution whereas it is close to the most536

probable maximum magnitude for the tapered distribution.537

To quantify earthquake magnitude probabilities, we have assumed that the distri-538

bution of the b-value in non-tapered and β and ζ in tapered GR distributions are sta-539

tionary in time and uniform in space. This assumption might not be valid, especially for540

the times/locations that have large fluctuations in fluid extraction. In addition, the stress541

model is not assigned any uncertainties in this analysis. The validation test shows that542

the uncertainty bounds are consistent with the observation. However, this might not be543

necessarily correct in the prospective scenario. The reservoir model ignores the response544

of the local aquifers to the pressure depletion (Meyer et al., 2022). As the result, the model545

tends to overestimate the pressure depletion toward the end of the simulation. If this546

trend continues in the future, it means that our model might be overestimating compaction547

and the Coulomb stress changes going into the future scenario. Another caveat is that548

we have assumed a purely poroelastic response of the medium. The assumption is prob-549

ably a correct approximation over the historical period, as the model fits well with the550

observed subsidence (Smith et al., 2019). There is however no guarantee that it will hold551

true in the future given the possibility of rate-dependent rheology of the reservoir itself552

and possible viscous flow of the salt layers outside the reservoir (Pruiksma et al., 2015).553

This might be another cause for our model to overestimate Coulomb stress changes go-554

ing into the future.555

4 Conclusion556

This study proposes a method to quantify epistemic and aleatoric sources of errors557

in induced earthquake forecasting. The proposed algorithm (Algorithm 1) provides bounds558

on the confidence intervals. We demonstrated and tested the performance of the approach559

in a particular case example of induced seismicity at the Groningen gas field where abun-560

dant information is available. We don’t take all possible sources of uncertainties into ac-561

count. Especially uncertainties associated with the reservoir and geomechanical mod-562

els are ignored (the stress model is assumed true). The method is general enough that563

it could include these other sources of uncertainties, albeit at a computational cost. De-564
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spite ignoring the uncertainty of the stress model, we find that the method provides con-565

fidence intervals on the number of forecasted earthquakes consistent with the observa-566

tions. This is because the possible bias introduced in the modeling of the stress changes567

is compensated via the calibration of the seismicity model.568

We compare the performance of the Gaussian and the Poisson non-local likelihoods569

for different data sets. We find that the Poisson likelihood is more accurate than the Gaus-570

sian likelihood for small datasets with a small proportion of aftershocks (say less than571

1000 events over 30 years and less than 20% aftershocks). The Gaussian likelihood yields572

a slightly higher accuracy for a larger dataset and a higher proportion of aftershocks, be-573

cause the events are not independent anymore, as assumed if a Poisson likelihood is used.574

However, we find that, in all the cases considered in the study, the Poisson likelihood yields575

more stable results with smaller fluctuations in the misfit of the forecast.576

We use our framework to quantify how the deployment of a more sensitive network577

earlier than 2014 would have improved earthquake forecasting. There would have been578

enough data by 2000 to calibrate the model and reach an accuracy comparable to the579

forecasting accuracy attained in 2020 with the real seismicity catalog. We also show how580

the proposed UQ method can be used to forecast earthquake numbers and magnitude581

probabilities. To that effect, we examined non-tapered and tapered Gutenberg-Richter582

frequency-magnitude distribution until 2030 assuming the ’Cold Winter’ scenario for gas583

extraction (NAM, 2013). We note that our stress model for the future could be biased584

due to the limitations of our reservoir model (no interactions with adjacent aquifers) and585

the assumption of purely poro-elastic deformation.586

Data and resource587

We have used the seismicity catalog from KNMI (Royal Dutch Meteorological Sur-588

vey)2. To find the stress distribution we have used previously published resources (Meyer589

et al., 2022; Smith et al., 2022, 2019). To forecast for up to 2030, we have used the ’cold590

winter’ scenario suggested in NAM (2013).591
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Eĺıas Rafn Heimisson, Kyungjae Im, and Jan Van Elk.597

References598

Baisch, S., Koch, C., & Muntendam-Bos, A. (2019). Traffic light systems: To what599

extent can induced seismicity be controlled? Seismol. Res. Lett., 90 (3), 1145–600

1154.601

Bajgiran, H. H., Franch, P. B., Owhadi, H., Scovel, C., Shirdel, M., Stanley, M., &602

Tavallali, P. (2021). Uncertainty Quantification of the 4th kind; optimal posterior603

accuracy-uncertainty tradeoff with the minimum enclosing ball. arXiv preprint604

arXiv:2108.10517 .605

Bourne, S. J., & Oates, S. J. (2017). Extreme threshold failures within a het-606

erogeneous elastic thin sheet and the spatial-temporal development of induced607

seismicity within the Groningen gas field. J. Geophys. Res., 122 (12), 10–299.608

Bourne, S. J., & Oates, S. J. (2020). Stress-Dependent Magnitudes of In-609

duced Earthquakes in the Groningen Gas Field. J. Geophys. Res., 125 (11),610

e2020JB020013. doi: 10.1029/2020JB020013611

Bourne, S. J., Oates, S. J., & van Elk, J. (2018). The exponential rise of induced612

seismicity with increasing stress levels in the Groningen gas field and its impli-613

cations for controlling seismic risk. Geophys. J. Int., 213 (3), 1693–1700. doi:614

10.1093/gji/ggy084615

Bourne, S. J., Oates, S. J., van Elk, J., & Doornhof, D. (2014). A seismological616

model for earthquakes induced by fluid extraction from a subsurface reservoir. J.617

Geophys. Res., 119 (12), 8991–9015.618

Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval Estimation for a Bino-619

mial Proportion. Stat Sci., 16 (2), 101–133. doi: 10.1214/ss/1009213286620

Burkitov, U., Henk, v. O., & Per Valvatne. (2016). Groningen Field Review 2015621

Subsurface Dynamic Modelling Report.622

Candela, T., Osinga, S., Ampuero, J., Wassing, B., Pluymaekers, M., Fokker, P. A.,623

. . . Muntendam-Bos, A. G. (2019). Depletion-induced seismicity at the Groningen624

gas field: Coulomb rate-and-state models including differential compaction effect.625

J. Geophys. Res., 124 (7), 7081–7104.626

Candela, T., Wassing, B., Ter Heege, J., & Buijze, L. (2018). How earthquakes are627

–25–



manuscript submitted to Seismological Research Letters (SRL)

induced. Science, 360 (6389), 598–600.628

Dahm, T., & Hainzl, S. (2022). A Coulomb Stress Response Model for Time-629

Dependent Earthquake Forecasts. J. Geophys. Res., 127 (9), e2022JB024443. doi:630

10.1029/2022JB024443631

De Marsily, G. (1986). Quantitative hydrogeology (Tech. Rep.). Paris School of632

Mines, Fontainebleau.633

Dempsey, D., & Suckale, J. (2017). Physics-based forecasting of induced seismicity634

at Groningen gas field, the Netherlands. Geophys. Res. Lett., 44 (15), 7773–7782.635

Dempsey, D. E., & Suckale, J. (2023). Physics-Based Forecasting of Induced Seismic-636

ity at Groningen Gas Field, The Netherlands: Post Hoc Evaluation and Forecast637

Update. Seismol. Res. Lett.. doi: 10.1785/0220220317638

Dieterich, J. (1994). A constitutive law for rate of earthquake production and its ap-639

plication to earthquake clustering. J. Geophys. Res., 99 (B2), 2601–2618.640

Dost, B., Ruigrok, E., & Spetzler, J. (2017). Development of seismicity and prob-641

abilistic hazard assessment for the Groningen gas field. NETH J GEOSCI , 96 (5),642

s235–s245. doi: 10.1017/njg.2017.20643

Ellsworth, W. L. (2013). Injection-induced earthquakes. Science, 341 (6142).644

Felzer, K. R., Becker, T. W., Abercrombie, R. E., Ekström, G., & Rice, J. R. (2002).645

Triggering of the 1999 Mw 7.1 Hector Mine earthquake by aftershocks of the 1992646

Mw 7.3 Landers earthquake. J. Geophys. Res., 107 (B9), ESE–6.647

Gulia, L., & Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks648

and aftershocks. Nature, 574 (7777), 193–199.649

Heimisson, E. R., & Segall, P. (2018). Constitutive law for earthquake produc-650

tion based on rate-and-state friction: Dieterich 1994 revisited. J. Geophys. Res.,651

123 (5), 4141–4156.652

Heimisson, E. R., Smith, J. D., Avouac, J.-P., & Bourne, S. J. (2022). Coulomb653

threshold rate-and-state model for fault reactivation: application to induced seis-654

micity at Groningen. Geophys. J. Int., 228 (3), 2061–2072.655

Jager, J. d., & Visser, C. (2017, December). Geology of the Groningen field – an656

overview. NETH J GEOSCI , 96 (5), s3–s15. doi: 10.1017/njg.2017.22657

Kagan, Y. Y. (2002, March). Seismic moment distribution revisited: I. Statistical re-658

sults. Geophys. J. Int., 148 (3), 520–541. doi: 10.1046/j.1365-246x.2002.01594.x659

Kim, T. J., & Avouac, J.-P. (2023). Stress-Based and Convolutional Forecasting of660

Injection-Induced Seismicity: Application to The Otaniemi Geothermal Reservoir661

–26–



manuscript submitted to Seismological Research Letters (SRL)

Stimulation (preprint). Preprints.662

Kuvshinov, B. N. (2008). Elastic and piezoelectric fields due to polyhedral inclu-663

sions. Int J Solids Struct ., 45 (5), 1352–1384.664
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List of Figure Captions760

Figure 1: The Groningen field and geomechanical model results. (a) Cumulative761

vertical displacement since the onset of gas production as of 2019. Black rectangles de-762

note the locations of the wells. (b) Maximum Coulomb stress change at a nominal el-763

evation of 10m since the onset of gas production and epicenters of M ≥ 1.5 earthquakes764

(circles) as of 2021. (c) Time evolution of the spatially averaged maximum Coulomb stress765

change, and the cumulative number of events with a magnitude greater or equal to 1.5..766

Figure 2: Flowchart illustrating the steps involved in sampling from a GR distri-767

bution considering both the aleatoric and the epistemic sources of uncertainty. Firstly,768

we sample from the posterior distribution of the model parameters u. Then, we sam-769

ple from a nonhomogeneous Poisson process with the rate h(u,∆S) to generate a real-770

ization of N≥m. For the non-tapered GR (a), we use the number of events and a real-771

ization of the b-value to sample from Equation 19 and obtain the magnitudes of the events.772

For the tapered GR (b), we use the number of events and the realizations of ζ and β.773

Then, the magnitude of each event is determined randomly using Eq 24. For both non-774

tapered and tapered GR distributions we repeat the process multiple times.775

Figure 3: Quantifying uncertainty and forecast up to the year 2021 using the Pois-776

son likelihood: red lines show the seismicity rate with 94% probability, the cyan line is777

the MLE of the rate of events, and black lines show 90% confidence interval of the num-778

ber of events with 1−γ = 0.96 and 1−ξ = 0.94. Seismicity data (with Mc = 1.5, blue779

line) up to the year 2008 is used (white) and the rate is predicted for the years 2009-2021780

(grey).781

Figure 4: Confidence bound performance: (a) White region is used as the train-782

ing set and the grey region is used as the test set. Dark blue is the seismicity data (with783

Mc = 1.5) and hMLE in cyan is the maximum likelihood estimate of the rate of events.784

Different percent confidence interval bounds for the number of events are plotted as well.785

(b) The percentage of events (x-axis) that lies inside a certain confidence interval bound786

(y-axis). In this figure, for the sake of simplicity, ξ is considered to be equal to γ.787

Figure 5: An example of a comparison of the MLE models obtained with the Pois-788

son and Gaussian likelihoods. The white region is used for the training set and the grey789

region is used for testing. The blue line is the seismicity data with Mc = 1.5 and the790

orange and the green lines are the maximum likelihood estimate for the rate of events791

based on the Poisson and Gaussian likelihoods respectively. In this instance of training-792
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test sets, the Poisson likelihood yields a forecast in better agreement with the observa-793

tions over the test period than the Gaussian likelihood.794

Figure 6: Comparing the performance of Poisson Log-Likelihood (PLL) and Gaus-795

sian Log-Likelihood (GLL) on different catalogs using different combinations of train-796

ing and testing sets. (a) the pink region serves as the training set, while the grey region797

is the test set, and different boundaries between the two are examined (b) normalized798

error as a function of the last year that is used in the training set. The green and orange799

markers correspond to GLL and PLL, respectively, while the plus marker represents yo
Mc=1.5,800

the diamond stands for yo
Mc=1.2, and the star stands for the catalog based on ETAS model801

with Mc ≈ 0.5 (yETAS
Mc≈0.5).802

Figure 7: (a) Time series of the b+ and its 68 % confidence interval; there is no803

strong temporal change in the b-value (b) Probability distribution function (PDF) of b+.804

Figure 8: The forecast of the number/rate of events for years 2022-2030, the white805

region is used as the training set to forecast the seismicity in the grey region. The blue806

line is the seismicity data (yo
Mc=1.5), cyan is the predicted rate of events based on Pois-807

son likelihood, and red lines are the predicted rate of events with a 94% confidence on808

the model parameters (epistemic). Black lines are the confidence interval of the num-809

ber of events (epistemic+aleatoric) with probability 0.9 and are generated using Algo-810

rithm 1 with 1− ξ = 0.94 and 1− γ = 0.96.811

Figure 9: Evolution of the empirical average of the probability of the most prob-812

able maximum magnitude (M̂max) being higher than specific magnitudes (M̂q) for dif-813

ferent values of M̂q. The solid lines are for the non-tapered GR distribution and the dashed814

lines are for the tapered GR distributions.815

Figure 10: Forecast of the earthquake numbers and magnitudes using the flowchart816

of Fig 2. (a1) and (b1) show the non-tapered and tapered GR distributions, respectively.817

For the non-tapered GR samples, 20 realizations of the model parameter (u), 20 real-818

izations for the number of events (for each model parameter), 50 realizations of b-value,819

and finally, 10 realizations of Eq 19 are used to generate total 2×105 black lines in a1.820

For the tapered GR distribution, 5 realizations of model parameters u, 5 realizations for821

the numbers of events, 20 realizations of β, 20 realizations of ζ, and finally 10 realiza-822

tions from Eq 24 are generated for a total of 105 realizations. The blue lines in (a1) and823

(b1) show the expected number of earthquakes above a certain magnitude by 2030, while824

the red lines display the recorded number of such events until 2021. (a2) and (b2) de-825
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pict the PDF of the maximum magnitude for the non-tapered and the tapered distri-826

butions. The blue lines represent the most probable maximum magnitude (M̂max), and827

the green lines indicate the 97th and 3rd percentiles. The red lines denote the maximum828

magnitude recorded until 2021.829
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Figure 1. The Groningen field and geomechanical model results. (a) Cumulative vertical dis-

placement since the onset of gas production as of 2019. Black rectangles denote the locations of

the wells. (b) Maximum Coulomb stress change at a nominal elevation of 10m since the onset of

gas production and epicenters of M ≥ 1.5 earthquakes (circles) as of 2021. (c) Time evolution

of the spatially averaged maximum Coulomb stress change, and the cumulative number of events

with a magnitude greater or equal to 1.5.
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Sample b-value using its PDF (Fig 7b)

Non-tapered GR

Sample N≥Mc using the rate (h(u,∆S))

Sample N≥m from Eq 19 (a)

Sample from Posterior of u

Sample from posterior of ζ and β

Sample magnitudes from Eq 24

Tapered GR

(b)

Figure 2. Flowchart illustrating the steps involved in sampling from a GR distribution con-

sidering both the aleatoric and the epistemic sources of uncertainty. Firstly, we sample from the

posterior distribution of the model parameters u. Then, we sample from a nonhomogeneous Pois-

son process with the rate h(u,∆S) to generate a realization of N≥m. For the non-tapered GR

(a), we use the number of events and a realization of the b-value to sample from Equation 19 and

obtain the magnitudes of the events. For the tapered GR (b), we use the number of events and

the realizations of ζ and β. Then, the magnitude of each event is determined randomly using Eq

24. For both non-tapered and tapered GR distributions we repeat the process multiple times.
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Figure 3. Quantifying uncertainty and forecast up to the year 2021 using the Poisson like-

lihood: red lines show the seismicity rate with 94% probability, the cyan line is the MLE of

the rate of events, and black lines show 90% confidence interval of the number of events with

1 − γ = 0.96 and 1 − ξ = 0.94. Seismicity data (with Mc = 1.5, blue line) up to the year 2008 is

used (white) and the rate is predicted for the years 2009-2021 (grey).

Figure 4. Confidence bound performance: (a) White region is used as the training set and the

grey region is used as the test set. Dark blue is the seismicity data (with Mc = 1.5) and hMLE

in cyan is the maximum likelihood estimate of the rate of events. Different percent confidence

interval bounds for the number of events are plotted as well. (b) The percentage of events (x-

axis) that lies inside a certain confidence interval bound (y-axis). In this figure, for the sake of

simplicity, ξ is considered to be equal to γ.
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Figure 5. An example of a comparison of the MLE models obtained with the Poisson and

Gaussian likelihoods. The white region is used for the training set and the grey region is used for

testing. The blue line is the seismicity data with Mc = 1.5 and the orange and the green lines are

the maximum likelihood estimate for the rate of events based on the Poisson and Gaussian likeli-

hoods respectively. In this instance of training-test sets, the Poisson likelihood yields a forecast in

better agreement with the observations over the test period than the Gaussian likelihood.

Figure 6. Comparing the performance of Poisson Log-Likelihood (PLL) and Gaussian Log-

Likelihood (GLL) on different catalogs using different combinations of training and testing sets.

(a) the pink region serves as the training set, while the grey region is the test set, and different

boundaries between the two are examined (b) normalized error as a function of the last year that

is used in the training set. The green and orange markers correspond to GLL and PLL, respec-

tively, while the plus marker represents yo
Mc=1.5, the diamond stands for yo

Mc=1.2, and the star

stands for the catalog based on ETAS model with Mc ≈ 0.5 (yETAS
Mc≈0.5).
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Figure 7. (a) Time series of the b+ and its 68 % confidence interval; there is no strong tempo-

ral change in the b-value (b) Probability distribution function (PDF) of b+.

Figure 8. The forecast of the number/rate of events for years 2022-2030, the white region is

used as the training set to forecast the seismicity in the grey region. The blue line is the seis-

micity data (yo
Mc=1.5), cyan is the predicted rate of events based on Poisson likelihood, and red

lines are the predicted rate of events with a 94% confidence on the model parameters (epistemic).

Black lines are the confidence interval of the number of events (epistemic+aleatoric) with proba-

bility 0.9 and are generated using Algorithm 1 with 1 − ξ = 0.94 and 1− γ = 0.96.
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Figure 9. Evolution of the empirical average of the probability of the most probable maxi-

mum magnitude (M̂max) being higher than specific magnitudes (M̂q) for different values of M̂q.

The solid lines are for the non-tapered GR distribution and the dashed lines are for the tapered

GR distributions.
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Figure 10. Forecast of the earthquake numbers and magnitudes using the flowchart of Fig

2. (a1) and (b1) show the non-tapered and tapered GR distributions, respectively. For the non-

tapered GR samples, 20 realizations of the model parameter (u), 20 realizations for the number

of events (for each model parameter), 50 realizations of b-value, and finally, 10 realizations of

Eq 19 are used to generate total 2 × 105 black lines in a1. For the tapered GR distribution, 5

realizations of model parameters u, 5 realizations for the numbers of events, 20 realizations of β,

20 realizations of ζ, and finally 10 realizations from Eq 24 are generated for a total of 105 realiza-

tions. The blue lines in (a1) and (b1) show the expected number of earthquakes above a certain

magnitude by 2030, while the red lines display the recorded number of such events until 2021.

(a2) and (b2) depict the PDF of the maximum magnitude for the non-tapered and the tapered

distributions. The blue lines represent the most probable maximum magnitude (M̂max), and the

green lines indicate the 97th and 3rd percentiles. The red lines denote the maximum magnitude

recorded until 2021.
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Appendix A830

A1 From Extraction Rates to Coulomb Stress Changes831

To calculate the stress distribution in and around the reservoir, we use the mod-832

ular and computationally efficient modeling framework that contains reservoir and ge-833

omechanical modeling (Meyer et al., 2022; Smith et al., 2022). In this section, we briefly834

review this framework and discuss how we calculate stress distribution using geodetic835

and gas extraction information. Overall, this framework is computationally efficient and836

reproduces stress changes in a 3-D volume.837

Assuming homogeneous and constant hydraulic properties, we first compute the

fluid pressure diffusion inside the reservoir due to gas extraction using the history and

extraction previsions. We use the vertical equilibrium flow model (VFE) from (Meyer

et al., 2022). The VFE assumption (Yortsos, 1995) holds when there is a significantly

larger vertical fluid diffusion capacity compared to the horizontal one. The assumption

is valid when RL > 10 with RL defined in Eq A1.

RL = (∆x/∆z).(kz/kx)
1/2 (A1)

where ∆x and ∆z are the horizontal and vertical dimensions of the reservoir and kx and838

kz are the horizontal and vertical permeabilities of the reservoir. In the Groningen gas839

field case, ∆x ≈ 35 − 50(Km) and ∆z ≈ 0.1 − 0.3(Km). kx and kz can be approxi-840

mated to be of the order of 10−13(m2). As a result, we can assume that the Groningen841

gas field is a long and thin gas reservoir (RL > 117) and the VFE assumption holds.842

For this part, we use the reservoir properties from (Oates et al., 2022).843

The combination of mass conservation in porous rock (De Marsily, 1986) with Darcy’s

law gives Eq A2. This equation assumes low matrix compressibility for the Groningen

reservoir (Yang & Wei, 2017), and a smooth spatial gradient of the reservoir thickness.

ϕ
∂ρ

∂p

dp(x, y, t)

dt
+∇

(
−ρ(x, y, t)kx
µ(x, y, t)

∇p(x, y, t)
)

=
Q(x, y, t)

∆z(x, y) ∗Gsat
(A2)

where ϕ is the reservoir’s porosity and ρ, µ, p are the fluid’s density, viscosity, pressure,844

and velocity. Q is the flow rate, ∆z is the reservoir’s thickness and Gsat is the gas sat-845

uration in the reservoir (Meyer et al., 2022). A history matching procedure on the pres-846

sure measurements at the wells yields an error lower than 1 MPa during the whole reser-847

voir history for ϕ = 16%, kx = 2.5−13 (m2), and Gsat = 35.7%.848
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We use the computed field of fluid pressure depletion (p), together with the geode-849

tically derived uniaxial compressibility (Cm; (Smith et al., 2019)) such that the reser-850

voir compaction writes C = Cm(x, y)∆p(x, y, t)b(x, y, t).851

The reservoir is separated into 500(m)×500(m)×∆z offset cuboidal volumes that852

deform poroelastically and represent first-order variations in reservoir geometry. The re-853

lation between compaction and stress uses a semi-analytical Green’s function approach854

combined with a strain-volume formulation (Kuvshinov, 2008) that takes the form:855

σx,y,z = −∆pCmFσx,y,z (V ertices ,ObservationPoints) (A3)

where σ is the stress, and Fσx,y,z
is a function of the cuboid’s position, and the ob-856

servation points. For details on this function, the reader is referred to (Kuvshinov, 2008;857

Li et al., 2021). Due to the resolution on compressibility values in the reservoir (Smith858

et al., 2019), the strain and stress fields are smoothed to 4 km length using a Gaussian859

kernel. From the changes in shear stress (∆τ) and effective normal stress (∆σ′
N = ∆σN−860

∆p), we compute the changes in Coulomb stress (∆S) from 1960 to 2021. Then, using861

a cold winter scenario (NAM, 2013) for the gas extraction (after 2021), we extend the862

Coulomb stress distribution time-series to the year 2030. The changes in Coulomb stress863

are calculated using Eq A4.864

∆S = ∆τ + f∆σ′
N (A4)

with f ≈ 0.6 the static friction coefficient of the reservoir rock.865

The numerous faults offsetting the reservoir are the main cause of the Coulomb stress866

changes. Only the largest faults are represented in our reservoir model. Numerous sec-867

ondary faults are ignored or are not even visible in the seismic profiles used to construct868

the reservoir model. The seismicity is not limited to the zones of high-stress concentra-869

tion corresponding to the main faults though. To allow for stress increase away from these870

main faults, the Coulomb stress field is smoothed using a Gaussian filter with 4km stan-871

dard deviation (Smith et al., 2022). This procedure essentially affects the spatial distri-872

bution but not the time evolution of the predicted seismicity rate. The Coulomb stress873

changes on optimally oriented faults as of 2021 are shown in Fig 1b.874
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A2 Approximation and Discretization of Eq 1875

Eq 1 is discontinuous and it is numerically convenient to approximate it with a con-

tinuous function for the purpose of parameter inference. In this section, we present our

approximation, as well as the formulation for discretizing the approximate equation. We

first start by eliminating the dependent parameter tb from Eq 1 to form Eq A5.

R(x1, x2, t)

r
=

f1(x1, x2, t)H(∆S(x1, x2, t)−∆Sc)
1
ta

∫ t

0
f1(x1, x2, t′)H(∆S(x1, x2, t′)−∆Sc)dt′ + 1

(A5)

where H is the Heaviside function. Eq A5 is approximated by Eq A6. Note that,876

for ∆S(x1, x2, t) < ∆Sc, f1(x1, x2, t) is smaller than one and r is a small number which877

is in the order of 10−5 event/Km2.yr.878

R(x1, x2, t)

r
=

f1(x1, x2, t)
1
ta

∫ t

0
f1(x1, x2, t′)H(∆S(x1, x2, t′)−∆Sc)dt′ + 1

(A6)

The variables ∆S(x1, x2, t) and R can be discretized in space and time. We define879

∆S as the discretized stress distribution. Its value in spatial element of xi1 and xj2 at time880

tk is denoted by ∆S(xi1, x
j
2, tk). Note that ∆S ∈ RDx1

×Dx2
×T where Dx1 and Dx2 are881

the number of elements in the x1 and x2 direction and T is the number of time snap-882

shots. To simplify equations, we use the notation ∆Sk(x
i
1, x

j
2) as the stress history of883

the element i and j up to time k.884

We concatenate all the model parameters into one vector u ∈ R4
+ as defined in

Eq A7.

u =
[
r ta Aσ0 ∆Sc

]
∈ R4

+, (A7)

For any vector u we define G ∈ RDx1
×Dx2

×T whose elements Gk(u;∆Sk(x
i
1, x

j
2)) in885

xi1 and xj2 is dependent on the stress history of that element up to time k and is defined886

as Eq A8.887

Gk(u;∆Sk(x
i
1, x

j
2)) =

rf1(x
i
1, x

j
2, tk)

1
ta

(∑l=k
l=0 f1(x

i
1, x

j
2, tl)H(∆S(xi1, x

j
2, tl)−∆Sc)

)
+ 1

(A8)

where H is the Heaviside function. Note that Eq A8 is a discrete version of Eq A6 and888

Gk is the seismicity rate (per unit area and time) for a specific element xi1 and xj2 at spe-889

cific time tk. At a given time (tk), we integrate the spatial seismicity rates (Gk’s) over890
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space, to find the seismicity rate (per unit time) of the whole area of interest. We de-891

note this variable by hk(u;∆Sk) and is defined in discrete form as the following sum-892

mation.893

hk(u;∆Sk) =

Dx1∑
i=1

Dx2∑
j=1

Gk(u;∆Sk(x
i
1, x

j
2))∆x1∆x2 (A9)

where ∆x1 and ∆x2 are the lengths of the grids along the x1 and x2 directions. Then,

we construct a vector in RT such that it contains seismicity rates in a discrete-time fash-

ion.

h(u;∆S) =
[
h1(u;∆S1) h2(u;∆S2) . . . hT (u;∆ST)

]
∈ RT (A10)

The next step is to compare the seismicity rate that is defined in A10 with the time-

series of a reference seismicity data (y). y can be either the observed seismicity data (yo
Mc

)

with a given cut-off (Mc) or a synthetic catalog (ysynth
Mc

).

y =
[
y1 y2 . . . yT

]
∈ RT (A11)

A3 Sensitivity of confidence bounds on choosing γ and ξ894

As stated in Section 2, for a given confidence level (1−ξ)(1−γ) the values of (1−895

γ) and (1− ξ) are not uniquely determined. There is a possibility of finding the opti-896

mum combination of γ and ξ to have the tightest interval of the number of events for897

a fixed confidence level of (1− ξ)(1− γ). We have found that in our framework ξ = γ898

is a good first guess. Fig A1 shows different confidence intervals for a fixed confidence899

level (90%) while changing the value ξ. This figure suggests that there is a small sen-900

sitivity to the selection of those parameters close to ξ = γ.901

A4 Seismicity Data and Synthetic Catalog902

We have applied our analysis in this paper to different earthquake catalogs. The903

Groningen seismicity catalog has a time-varying completeness magnitude. Until 1993 the904

completeness magnitude in the region was 2.5. The seismic network gradually enhanced905

and it reached below magnitude 0.5 after 2016. Heimisson et al. (2022) assumed a sim-906

plified constant magnitude of completeness of 1.5. In this work, we mostly use a cut-off907

magnitude of 1.5 which gives a total 356 number of events. In one case, where we want908

to see the effect of aftershocks, we use a cut-off magnitude of 1.2 with 633 total events.909
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Figure A1. Sensitivity of confidence bounds on choosing γ and ξ while keeping (1 − ξ)(1 −
γ) = 0.9. 90% confidence bounds of the number of events using different values of ξ. This fig-

ure suggests that there is a small change in confidence bounds when changing ξ and γ while (1 −
ξ)(1− γ) = 0.9 and close to ξ = γ.

A simplified constant magnitude of completeness is an assumption that has been used910

in this work.911

To see the effect of aftershocks on the performance of the likelihood functions and912

also to study the value of a better seismic network, we have generated a synthetic cat-913

alog based on the ETAS model. The ETAS catalog is designed to have a completeness914

magnitude of almost 0.5 (with the b-value ≈ 0.99), which implies ten times more events915

compared to the catalog with Mc = 1.5.916

Based on (Post et al., 2021) a mean fraction of 76.6% of events in the Groningen917

catalog is the background seismicity. Since we want to amplify the number of events by918

almost ten times, we need to generate the rate of events with almost 7.6 times more than919

the rate of events in the original catalog (with Mc = 1.5). Then, when the effect of af-920

tershocks is added, we will have a catalog with almost ten times more events than the921

catalog with Mc = 1.5.922

We first need to invert for the model parameters u in Eq 1 for a catalog with Mc =

1.5 and data up to the year 2021. After inverting for the model parameters, we forward

simulate the seismicity model (Eq 1) to find the rate of events corresponding to max-

imum likelihood estimates (h(uMLE)). Assuming a nonhomogenous Poisson process, we

amplify this rate using the so-called thinning process (Ross, 2014) with a factor of 7.6.

This is the rate of events corresponding to a catalog with Mc ≈ 0.5. Finally, we add

–45–



manuscript submitted to Seismological Research Letters (SRL)

Figure A2. Forecast of the synthetic catalog (Mc ≈ 0.5) shows that in the case of having

a better seismic network, we could predict the number of events much earlier. The data up to

the year 2001 is used for the training set and the grey part is the test set. The blue line is the

number of events in each year in the ETAS synthetic catalog. The cyan line is the MLE for the

rate of events, the red lines are the rates in the 94% confidence interval of the model parameters,

and the black lines are the 90% confidence interval for the number of events.

aftershocks to this catalog using the ETAS parameters introduced in (Post et al., 2021):

ψETAS = 1/τ(t) +

n(t)∑
i=1

K

(c+ t− vi)1+θ
10α(mi−mmin) (A12)

where ψ(t) is the hazard of temporal ETAS model, 1/τ(t) is the background rate, n(t)923

number of events before time t, mi and vi are the moment magnitude and time of the924

ith event. Based on (Post et al., 2021), c = 6 hours, θ = 0.1, α = 0.3 and g = 0.4;925

where g = K
cθ

b
b−α

1
θ is defined as the branching ratio. To add the effect of aftershocks,926

the seismicity rate from the thinning process and the mentioned ETAS parameters are927

used in the code that was provided by (Felzer et al., 2002). The catalog that is synthet-928

ically generated by the ETAS model has 3359 events from 1979 up to 2021. Fig A2 shows929

the forecast of seismicity using the data set generated by the ETAS model. This figure930

suggests that we could predict the number of earthquakes much earlier if we had a bet-931

ter seismic network.932

A5 Parameter Space933

In the previous parts, we showed that the maximum likelihood model parameters934

(uMLE) can be used to find the maximum likelihood of the rate of events (hMLE) (e.g935
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cyan line in Fig 3). We have also shown how to find a set of event rates for a certain con-936

fidence level (e.g red lines Fig 3). In this part, we focus on the distribution of the model937

parameter space (u). In our inversion of Eq 1, between the parameters of the study, Aσ0938

and ∆Sc are well-constrained. However, the values of the likelihoods of r and ta are not939

well constrained because of the specific form of the Eq 1.940

We can examine the distribution of the likelihood in the space of the model param-941

eters. Fig A3 shows the distribution of the Poisson likelihood as a function of model pa-942

rameters when information up to the year 2021 is used. As stated earlier, the inversion943

is almost insensitive to the individual values of r and ta, while keeping the multiplica-944

tion of those constant.945

We have delved into a careful examination r−ta plot of the Fig A3 in Fig A4. The

black dots in Fig A4 are the points whose likelihood ratios to the maximum likelihood

are almost one (greater than 0.99). Our analysis reveals that our model/observation can-

not constrain ta and r independently. Specifically, it is possible for a very small r with

a big ta to have the same likelihood as a very big r with a small ta. We employed the

least square method to derive a relation between these two model parameters. Our anal-

ysis yields the following relationship:

ta(K.yr) =
4.5× 10−5(K.event

Km2 )

r( event
Km2.yr )

(A13)

946
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Figure A3. Ratio of the (Poisson) likelihood to the maximum (Poisson) likelihood estimate

(Data until the year 2021 have been used). This graph suggests that with the current data, we

cannot constrain r and ta separately. However, the Aσ0 −∆Sc plot shows the convergence of Aσ0

and ∆Sc.

Figure A4. Relationship between r and ta. The black dots are the points whose likelihoods

are close to the maximum likelihood (their likelihood ratio to the maximum likelihood is greater

than 0.99). Using the least square method we can fit a y = a
x
line to the data. The resulting

blue line represents the fitted line, indicating that we can only invert for the multiplication of

ta(Kyear) and r( event
Km2.yr

), as given by the Eq A13.
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