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Abstract

Reservoir operations related to natural gas extraction, fluid disposal, carbon diox-
ide storage, or geothermal energy production, are capable of inducing seismicity. Mod-
eling tools have been developed that allow for quantitative forecasting of seismicity based
on operations data, but the computational cost of such models and the difficulty in rep-
resenting various sources of uncertainties make uncertainty quantification challenging.
We address this issue in the context of an integrated modeling framework, which com-
bines reservoir modeling, geomechanical modeling, and stress-based earthquake forecast-
ing. We use the Groningen gas field as a case example of application. The modeling frame-
work is computationally efficient thanks to a 2-D finite-element reservoir model which
assumes vertical flow equilibrium, and the use of semi-analytical solutions to calculate
poroelastic stress changes and predict seismicity rate. The earthquake nucleation model
is based on rate-and-state friction and allows for an initial strength excess so that the
faults are not assumed initially critically stressed. The model parameters and their un-
certainties are estimated using either a Poisson or a Gaussian likelihood. We investigate
the effect of the likelihood choice on the forecast performance and we estimate uncer-
tainties in the predicted number of earthquakes as well as in the expected magnitudes.
We use a synthetic catalog to estimate the improved forecasting performance that would
have resulted from a better seismicity detection threshold. Finally, we use tapered and
non-tapered Gutenberg-Richter distributions to evaluate the most probable maximum
magnitude over time and account for uncertainties in its estimation. We show that the
framework yields realistic estimates of the seismicity model uncertainties and is appli-
cable for operational forecasting or to design induced seismicity monitoring. It could also

serve as a basis for probabilistic traffic-light systems.

Plain Language Summary

Some human industrial activities like oil and gas extraction induce earthquakes.
These earthquakes are occasionally large enough to cause concern about the possibility
of building damage. We address the need for uncertainty quantification in the forecast-
ing of such earthquakes. We use an integrated modeling applied to the largest produc-
ing natural gas field in western Europe which is close to the city of Groningen in the Nether-
lands. Gas production started in the early 1960s and started to induce detectable seis-
micity 30 years later. We propose and assess the performance of an algorithm for un-

certainty quantification in the forecast of earthquake numbers and magnitudes. In ad-
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dition, we discriminate between methods for quantifying the forecast performance and
measure how much better the forecast could be by deploying better seismic networks from
the start of operations. We forecast the number of future earthquakes and an estimate

of the most probable maximum magnitude based on a hypothetical future gas extrac-

tion scenarios.

1 Introduction

Stress changes in the earth’s lithosphere resulting from activities such as oil and
gas extraction or geothermal energy production are capable of triggering or inducing seis-
micity (Ellsworth, 2013; Candela et al., 2018). Much progress has been made recently
in the development of a physics-based and computationally efficient model that maps
the relation between fluid injection/extraction to stress changes and seismicity (Meyer
et al., 2022; Smith et al., 2022; Bourne et al., 2014; Bourne & Oates, 2017; D. Dempsey
& Suckale, 2017; Langenbruch et al., 2018; Zhai et al., 2019; Candela et al., 2019; Kim
& Avouac, 2023; Kiihn et al., 2022; Dahm & Hainzl, 2022; D. E. Dempsey & Suckale,
2023). To create these models, it is necessary to combine a reservoir model, which de-
scribes pore pressure diffusion in the subsurface, a geomechanical model, which describes
the induced strain and stress, and a seismicity model, which relates the seismicity to stress

changes.

Because of the multiple model layers and the computational cost, optimizing model
parameters and quantifying the uncertainties is a challenging task; it is however criti-
cal that uncertainties be assessed so that the modeling can be used to help guide oper-
ations for example through a traffic light systems (Baisch et al., 2019; Verdon & Bom-
mer, 2021). Here we focus on quantifying the uncertainty associated with the predicted
number of earthquakes and the maximum magnitude. We use the novel prior-free method-
ology in (Bajgiran et al., 2021) for uncertainty quantification together with the Broyden-
Fletcher-Goldfarb-Shamno (BFGS) method (Martins & Ning, 2021) for optimizing like-
lihood functions. Unlike traditional Bayesian methods, this approach allows us to esti-
mate uncertainties that do not depend on the choice of a prior probability distribution
of the model parameters.

We apply this approach to the Groningen gas field in the Netherlands, where pro-
duction from the largest onshore gas field in Western Europe has induced significant and
well documented induced seismicity (Bourne et al., 2014; Dost et al., 2017; Spetzler &

Dost, 2017). This case study is particularly suitable for testing the methodology due to
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the available high-quality information on reservoir characteristics and operations (Val-
vatne, n.d.; Jager & Visser, 2017), as well as the well-documented seismicity (Dost et al.,
2017; Spetzler & Dost, 2017; Smith et al., 2020). Our modeling framework integrates a
reservoir model, which describes the diffusion of pore pressure in the subsurface, a ge-
omechanical model, that describes the induced strain and stress changes both within and
outside the reservoir, and a seismicity model, that relates the seismicity rate to the stress
changes (Meyer et al., 2022; Smith et al., 2022; Heimisson et al., 2022). The reservoir
and geomechanical models were calibrated using pressure well data and surface subsi-
dence measurements (Fig 1a).

The modeling workflow calculates the seismicity rate in both time and space. How-
ever, the seismicity rate is not directly observable. Instead, we observe a seismicity cat-
alog, which we consider as a stochastic realization of the forecasted seismicity rate. In
this study, we differentiate between epistemic sources of uncertainty, which arise from
uncertainties in the model parameters, and aleatoric sources of uncertainty, which stem
from the stochastic nature of the seismicity process.We discuss and quantify these dif-
ferent sources of uncertainty and propose a general method to determine the confidence
intervals on the earthquake number forecast. Although our focus is on estimating earth-
quake numbers, we also describe how our method can be used to estimate probabilities
of observing earthquakes of a certain magnitude in a given time window. This requires
a model describing the frequency-magnitude distribution of earthquakes and the asso-
ciated uncertainty (Shcherbakov et al., 2019; Zoeller & Holschneider, 2016).

This paper is organized as follows. Section 2 will describe the data and modeling
framework used in the study. This section will also introduce two alternative likelihood
functions, Gaussian and Poisson, to quantify the fit of the model to the observed num-
ber of earthquakes. The algorithm to quantify uncertainties and estimate earthquake mag-
nitude probabilities will also be described. Section 3 will apply and test the proposed
uncertainty quantification method to the forecast of the number of induced earthquakes
at Groningen. The performance of the Poisson and Gaussian likelihood functions will
be compared, and earthquake magnitude probabilities will be estimated. Using a syn-
thetic catalog, we will assess how much better our seismicity forecasting performance could
have been if we had a better seismic network. Finally, we will conclude the paper by sum-

marizing our findings and discussing their implications.
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2 Methods

This section is structured as follows. First, we introduce our integrated modeling
approach, which includes a seismicity model as one component. We explain how the seis-
micity model maps stress distribution to event rate. Second, we define the likelihood func-
tions used in this paper. Then, we discuss our algorithm for uncertainty quantification.
Lastly, we present a method for estimating the maximum moment magnitude, which lever-

ages the techniques developed in this study.

2.1 Integrated Modelling framework and Seismicity observations

We use a framework that combines reservoir and geomechanical modeling to pre-
dict seismicity rates in time and space. The reservoir model (Meyer et al., 2022) and ge-
omechanical model (Smith et al., 2022) allow us to calculate stress changes within and
around the reservoir, using data on well extraction rates and pressure. Details on stress
distribution are available in Appendix A1l. The Coulomb stress can be calculated based
on some a priori assumptions on the fault geometry, or for the 'optimal’ orientation yield-
ing the maximum Coulomb stress change. We consider optimally oriented faults since
both options yield very similar seismicity forecasts (Smith et al., 2022). The hypocen-
tral depth distribution shows a peak right above the reservoir top, in the anhydrite caprock
(Smith et al., 2020). To reduce the computational cost, following Smith et al. (2022),
we assume a nominal depth of 10m above the reservoir top. The reservoir is represented
by cuboids with a vertical extent corresponding to the reservoir thickness and a 500m
x 500m horizontal extent. The cuboids were designed to match as closely as possible the
3-D geometry of the reservoir (Burkitov et al., 2016; Smith et al., 2022). Using the Coulomb
stress history, a seismicity model is then used to predict the seismicity rate in time and
space.

We use the seismicity catalog from KNMI (Royal Dutch Meteorological Survey)?
to assess the model prediction. Initially, there were only a few seismic stations around
Groningen, but the observation of induced seismicity has led to the deployment of a denser
network, resulting in an improvement of the magnitude of completeness of the catalog
from about M, 1.5 in the early 90s to about 0.5 by 2014 (Dost et al., 2017; Smith et al.,
2022). For this study, unless specified otherwise, we use the M, > 1.5 events from the

seismicity catalog of KNMI from the year 1990 to the year 2021. The seismicity is ob-

1 www.knmi.nl, downloaded on May 23, 2022
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served in the zones of higher Coulomb stress changes (Figlb). However, the consistency
between the time evolution of the Coulomb stress changes and the observed seismicity
is less obvious at first glance (Fig 1c). Despite extraction rates ramping up in the late
60s, causing rapid and measurable subsidence and hence an early increase of Coulomb
stress, the seismicity only ramped up in the 1990s (Fig 1c). The seismicity rate increased
nearly exponentially initially, despite a relatively steady annual extraction rate. After
the production rate was reduced by about 50% following the Mw 3.6 Huizinge earthquake
in 2012 (Smith et al., 2022), the seismicity rate decreased gradually within a few years.
The lag between the onset of seismicity and the Coulomb stress change history can
be interpreted as an indication that the medium around the reservoir was initially not
critically stressed (Bourne & Oates, 2017). This interpretation is compatible with the
Groningen area being tectonically quiet since the early Cretaceous (Jager & Visser, 2017).
Alternatively, the lag could result from the time-dependent earthquake nucleation pro-
cess (Candela et al., 2019; Dieterich, 1994). Because both explanations may have merit,
we use the threshold Rate-and-State (RS) model (Heimisson et al., 2022) which includes
both effects. The non-instantaneous nucleation process is represented using the RS fric-
tion formalism (Dieterich, 1994) but relaxing the assumption of faults being critically
stressed. Heimisson et al. (2022) showed that, for a population of faults below steady-
state (initially ‘relaxed’), the rate of seismicity R(x1,x2,t) (the rate of earthquakes per

unit time and area) depends on the spatial stress history AS(z1, z2,t) according to

R(zy,w2,t)  fi(w,2,1)

= t>t
r fa(z1,22,t) ’
Blonoat) _, t<ty (1)
,
with
fenaat) = exp(AS(wl,ﬂii;z)—ASc>
1 t
fo(zr,20,t) = . fi(zy, e, t)dt +1 (2)
a Jt,

where x; and x5 are the positions in the East-West and North-South directions, r is the
background seismicity rate, Aog is a characteristic frictional-stress parameter with A be-
ing a constitutive parameter related to the direct effect of RS. ¢, is the characteristic time

of the nucleation process. AS, is the threshold Coulomb stress, analog to the strength
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excess in the Coulomb failure model (i.e. the Coulomb stress change needed to initiate
fault slip). ¢, is a parameter that varies in space and defines the time when at position
(z1,x2) the stress (AS(z1,xz2,t)) reaches AS.. This parameter is introduced to simplify
the expression but it can be eliminated from Eq 1. Eq 1 is a discontinuous function that
would make parameter inference challenging. To overcome this issue, we approximated

Eq 1 with a continuous function. The details are described in Appendix A2.

The vector of model parameters is hereafter defined as

u=|r t, Aoy AS.| €RY, (3)

The vector of seismicity observation ys, that depends on the cut-off magnitude

(M.) is defined by:

y:[yl Y2 ... Yr eR” (4)

where y; is the total number of earthquakes in 4t time bin and 7T is the number
of time bins. And finally, the vector of modeled seismicity rate, which comes from the

discretized version of Eq 1 is

B(w; AS) = [hy(w; ASy) ho(w; ASg) ... hr(u; ASy)| €RT (5)

where hj(u; AS;j) is the predicted rate of events in the 7t time bin. AS € RPe1XDeyxT
is the discretized stress distribution in time and space with D,, and D,, as the num-
ber of elements in the z; and x, direction and 7" as the number of time bins. AS; €
RP=1xDz3 %7 {5 the history of stress distribution up to j** time bin. For details on how
to discretize Eq 1 and find h(u, AS) see Appendix A2.

In this paper, we use yearly time bins: the average stress in a year at each grid point
and the cumulative number of events in each year as the observed seismicity. Since the
relationship between the stress variations and the rate of seismicity is nonlinear, one should
in principle take into account sub-annual variations, however, to limit the computational
cost we neglect these variations.

The model parameters are all assumed to be uniform over the reservoir. As a re-
sult, all models forecast very similar spatial distributions of earthquake rates (Smith et

al., 2022). They however predict substantially different temporal variations of the seis-
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micity rate when the parameters are varied. We, therefore, use likelihood functions that
do not account for the spatial distribution of seismicity but only temporal variations as

detailed in the following section.

2.2 Likelihood Functions

Now we introduce two likelihood functions using the definitions of the vectors, u,
v, , and h(u, AS). It is common practice to consider that earthquakes can be triggered
either by previous earthquakes or by other processes such as tectonic loading or stress
changes due to subsurface reservoir operations. The most adequate likelihood function
depends on the proportion of earthquakes triggered by other earthquakes in the observed
seismicity catalog. If the proportion is very small, the seismicity is generally well described
by a non-homogenous Poisson process, meaning that events are independent but trig-

gered at a rate that can vary in time depending on the loading rate (Ogata, 1988). If

the proportion of events triggered by previous earthquakes is large, then the non-homogeneous

Poisson model is less appropriate. In the context of faults governed by RS friction, co-
seismic stress changes result in earthquake clusters, and aftershock sequences, but the
total number of events is unchanged over a time-scale much longer than the character-
istic nucleation time (Heimisson & Segall, 2018). In that case, if earthquakes are binned
over a time step that is large compared to the typical duration of aftershock sequences,
it is probably more adequate to assume that the number of events per time bin results
from a Gaussian process (Heimisson et al., 2022).

In the case of seismicity induced at Groningen, Trampert et al. (2022) have found
that less than 7% of the M, > 0.5 earthquakes are triggered by other earthquakes. An-
other study suggests possibly as much as 27% of M,, > 1.3 events being aftershocks.

In any case, an inspection of the catalog shows that aftershock sequences have proba-
bly a short duration (smaller than a year) (Post et al., 2021). The clustering effect due
to earthquake interactions is therefore probably smoothed out when only yearly bins are
considered, as is the case when using the Gaussian Log Likelihood (GLL). It could how-
ever be a source of bias when the Poisson Log Likelihood (PLL) is used.

In the continuous-time form, the non-homogeneous PLL can be written (D. Dempsey

& Suckale, 2017) as:

N ~
PLL(y|u; AS) = Zlog()\(u; 7)) —/0 Au; 7)dr, (6)
=1
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where A(u;7) is the spatially summed seismicity rate continuously predicted by the model
in time (7) and 7; is the time when the [** event is observed. N is the total number of

observed events. The PLL is discretized as:

T
PLL(y|u; AS) = {y log(h)) — > hiAt, (7)
i=1

Where (,) is the inner product in RT and At is the size of discretized time and it is equal
to one year in our calculations. Also, log(h) is a vector in RT whose k*" element is log(hy).

The GLL as defined in (Heimisson et al., 2022) writes:
1
GLL(y[w; AS) = —Z |y —h(u; AS)[? ®)

where |.| denotes the norm in R” where T is the number of data points in y. Eq 8 as-
sumes that the difference between the observed and predicted number of events in each
year is normally distributed. When all the observations are independent and identically
distributed, I' is a diagonal matrix. We can borrow the concept from a Poisson process,
where the variance equals the mean, to approximate the elements on the main diagonal
of I' (variance) as the number of events in each year. However, in that case, since there
are some years with zero number of events, I' would not be invertible. To overcome this
issue, we use I' = al, where « is the average number of events in y and I € RT*7 ig
the identity matrix. The value of a does not change the maximum likelihood estimate
because it only scales the log-likelihood. However, it is important for the purpose of un-
certainty quantification. This additional assumption about the variance of the Gaussian
likelihood is one of its weak points compared to the Poisson likelihood which may cause
inaccuracy in estimating uncertainties.

Due to the small number of events at the onset of induced seismicity, the Poisson
and Gaussian likelihoods can still yield different results, even though the Poisson like-
lihood approaches the Gaussian likelihood as the number of events becomes large. Al-
ternatively, if aftershocks are present, the Poisson likelihood may lead to biased results
(Bourne et al., 2018). Hence, we consider both likelihood functions and analyze the im-

pact of aftershocks on their performance.

2.3 Uncertainty Quantification and Parameter Inference

There are several sources of uncertainty to consider when forecasting the future num-

ber of earthquakes using our modeling framework. They include the uncertainties in stress
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distribution calculations (which mostly comes from uncertainties in extraction/injection
rates, pore pressures, and stress model), the uncertainties in the seismicity model pa-
rameters, and the uncertainty due to the stochastic nature of the seismicity. Although
we propose a method to account for uncertainty in stress distribution, we neglect this
source of uncertainty in our numerical simulations, considering it to be comparatively
insignificant with respect to other sources. This is because varying the assumptions in-
volved in stress calculations, such as the sampling scheme, only results in a re-scaling
of the stress field AS (Smith et al., 2022). As the model prediction depends on the ra-

%}j)_m, the forecast is identical if Aog is rescaled so that this ratio is con-

tio
stant. The model is therefore insensitive to such re-scaling.

Various methods exist to infer the model parameters u from the data using differ-
ent likelihood functions (such as Eqs 8 or 7) and use them to forecast future earthquakes.
While Bayesian methods combine a prior p(u) with the data y and the likelihood p(y|u)
to generate a posterior distribution p(uly), their uncertainty quantification heavily re-
lies on the choice of prior. To overcome this challenge, we use a ”prior-free” methodol-
ogy (Bajgiran et al., 2021) for uncertainty quantification, along with the Broyden-Fletcher-
Goldfarb-Shamno (BFGS) method (Martins & Ning, 2021) (Algorithm 4.7) for optimiz-
ing the likelihood function. The BFGS algorithm, which uses both first- and second-order
derivatives of the cost function, starts from uniformly selected random initial points in
the parameter space.

Within this framework, we can separately account for different sources of uncer-
tainty involved in predicting future events. Firstly, there is uncertainty present in the
model parameters (u), which exhibit changes in the expected rate of events (epistemic).
Secondly, there is the uncertainty in the stochastic process (aleatoric), which arises from
the model of Eq 1, where the rate of events is modeled, rather than the number of events.
Distinguishing and estimating both these uncertainties is crucial, as they can be com-
bined to obtain a final uncertainty quantification (UQ) bound. To achieve this, we con-
sider a likelihood model with unknown physical parameters u € R? (where ¢ is four in
this paper), and observations from y ~ p(-|u), where p can be either the Gaussian or
the Poisson likelihood. Our first step is to determine a UQ region for the rate of future
events at the k" time, denoted by hj(u) € R. We consider a region in parameter space
around the Maximum Likelihood Estimate (MLE) for the observed data y, for some 0 <

a<1.

—10—
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Oy()i= {ucrr IO ol (9)

SUPy cra P(Y W)

where supy cge p(y|0') = p(y[uMEE) with uMLE as the MLE of the model pa-

rameters.

After maximizing the likelihood function and finding set Oy (), we obtain a con-
fidence interval for hy(u) as Eq 10. Note that Eq 10 only gives the confidence bound on

the rate of events at k' time and not the number of events.
min  hi(u’), max hi(u)|. 10
win k(') B k(u') (10)

We define h, and h;r as the minimum and maximum rate of events with proba-

bility (1 — &) at k' time as the following:

hy = min h(u’)
u’' €0y (o) (11)

ht = i h(u’

k u’Ern@l;l(a) (u )

Using Theorem 4.1 in (Bajgiran et al., 2021), in the asymptotic regime of a large
sample of model parameters under regularity conditions over the likelihood function (which
are satisfied by the Gaussian and Poisson likelihoods considered here), to obtain a con-
fidence interval that contains the true parameter with probability 1—&, one can choose
a = exp (—%wq(l — f)) with 1), the quantile function of a xg random variable (with
degrees of freedom (g) equal to the dimensionality of the parameter vector u). As £ —

1, the confidence interval collapses to hj applied to the maximum likelihood estimator
of u, and as ¢ — 0, the optimal decision becomes a robust estimate over all possible
u. The choice of « is made so that the selected interval has the desired probability cov-

erage 1 — £ (on the rate of events), with £ chosen by the practitioner.

So far, we showed how to put bounds on the rate of events hy at k' time (Eq 10);
the true rate is in the obtained UQ bound with probability 1 —¢&. However, a full UQ
bound on the number of events should also take into account the stochasticity of the pro-

cess. To that end, we add aleatoric bounds on top of the epistemic bounds to the quan-

—11-
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tity of interest function hy. Since hy, is the rate of events at k' time, the number of events
at that time follows a Poisson distribution with its mean equals to hy. Eq 12 provides
the confidence interval ([p_, p4]) for the number of events occurring at a rate of hy(u),

with a probability of 1 —« (Patil & Kulkarni, 2012).

oo (W) = g, (1/2)
1 (12
py(u) = §¢2(hk+1)(1 -7/2)

where oy, and ¥y, 41y are the quantile function of the x? distribution with 2h; and
2(hi+1) degrees of freedom. When hy, is large (> 30) one can approximate the confi-
dence interval of a Poisson process (Eq 12) by the confidence interval of a Gaussian pro-
cess (Brown et al., 2001). Here 1—7 is the aleatoric coverage probability where v is de-

fined by the practitioner.

Using elements in the set ©y (), the confidence interval of the number of events,
considering both aleatoric and epistemic uncertainties with probability (1 —&)(1 — )

is given by:

o p-(a), plax pr(u)| . (13)
Note that the practitioner chooses two parameters, &, and -y, that regulate the epistemic
and aleatoric uncertainty, respectively. As we prove in the following lemma if Oy (c) con-
tains the true parameter with probability 1—¢ and the worst-case 1—+ interval is cre-
ated on top (Eq 13), the combined interval contains the true number of events with a
probability of at least (1 —&)(1—+). There is the possibility of optimizing over £ and
~ such that for a fixed (1—£)(1—+), we obtain the tightest interval for the number of

events.

One practical point to be mentioned is that since the quantile function of x? monotonously

increases, we simplify Eq 13 as

1
[5¥anr () 3¥20 411 = 2] (14

—12—
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where w%; and 7/’2(h,j+1) are the quantile function of x? distribution with 2k, and 2(h;+
1) degrees of freedom. We use Eq 14 as the final rule for the confidence interval of the

number of events at k' point in time, with probability at least (1 —&)(1 — 7).

Lemma 1 (Product of probabilities). Let ¢_(u), ¢4 (u) be chosen based on Eq 12. Then,
based on (Ulm, 1990) for a fized k (time in the future), any parameters u and possible
data observation (number of earthquakes) z ~ py(-lu) Eq 15 holds.

P(z € [p—(u),pr()]) 21—~ (15)

Then, if Oy () is constructed to contain the true (unknown) parameter u' with (asymp-

totic) probability at least 1 — & (by e.g choosing o = exp(f% »(1 =), defining

I _ . B / , !/ ) 16
L e (u') u,g&f&)w(u) (16)

we (asymptotically) have, for all possible values of the true parameter u'

Pzel)=2(1-801-7) (17)

Proof. We split P(z € I) = P(z € I|ul € Oy(a))P(u’ € Oy()). By construction of
Oy (a)) the second term is at least 1 — £. Since for any u € Oy (), [p—(u), py(u)] C

1, the first term is at least 1 — -y, which completes the proof. O

We summarize the method in Algorithm 1.

2.4 Inclusion of uncertainties on the stress model

While not considered in this work numerically, the methods proposed here can ac-
commodate extra sources of uncertainty. As an example, we can consider uncertainty
in the discretized stress distribution AS. The stress changes used as input for the seis-
micity forecast depends on various factors, including the uncertainties associated with
the reservoir model parameters. These parameters were obtained through history match-
ing of the pressure data. The alterations in stress are also influenced by both the reser-
voir’s shape, which was acquired from literature (Burkitov et al., 2016), and the distri-
bution of the reservoir’s compressibility, which was determined by adjusting surface sub-
sidence data (Smith et al., 2019). Another factor that affects stress changes is the choice

of the stress sampling scheme, although the forecast is insensitive to this to a first-order
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Algorithm 1 Uncertainty quantification algorithm

1. Inputs:
(a) Likelihood model p(-|u)
(b)

(c) Datay

(d)

g = dim(u)

Significance levels £ and +, such that an interval of coverage probability
(1 =¢&)(1 — ) is obtained

2. Find uM™® = arg max, p(-|u) via an optimization algorithm
3. Set o = exp(—35tpg(1 — &))
4. Find the set Oy (a) := {u € R?: % > a}7
5. For all points in time (k), find hj, and h;
h, = min h(d
kT weoy(a) ()
hi = in  Ah(u
k u’én@l;l(a) ( )

6. The confidence bound on the number of events with probability (1 — ~)(1 — &) is
given by:

1 1
(5% 5 5 %o+ (1= )]

approximation. The spatial distribution of earthquake forecast is mostly affected by the
uncertainties in the spatial distribution of stress changes due to these factors. However,
because we have assumed uniform reservoir properties (permeability, porosity) and con-
sidered the reservoir geometry as known, the spatial distribution of the forecast is rel-
atively insensitive to the model parameters. Nevertheless, the formalism presented above
can be adapted to account for uncertainties in the stress model if necessary. We can write
the likelihood models we have been using as p(-|u, AS). If AS itself comes from a prob-
ability distribution (e.g modeling Gaussian noise) ¢(AS), one can define a new likelihood
function as a function over u only (that can later be used for optimization) by marginal-

izing over the random variables:
Prw(y|u) == / p(ylu, AS)q(AS)IAS (18)

Eq 18 is the integral of likelihood (p(y|u, AS)) weighted by ¢(AS).

This approach would incur a substantial increase of the computational cost of the

algorithm and has not been implemented here.
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2.5 Earthquake Magnitude probability

Above, we have described how to forecast the number of earthquakes while tak-
ing uncertainties into account. To estimate the probabilities of induced earthquake mag-
nitudes, it’s essential to use a model that describes their magnitude-frequency distribu-
tion. Earthquakes in any tectonic setting tend to follow the Gutenberg-Richter (GR) magnitude-
frequency distribution, which has different variants. Some of these variants assume trun-
cation at a maximum magnitude beyond which earthquakes are considered physically
impossible, while others have a gradual tapering (mostly exponential). Such options have
been studied in the context of the Groningen gas field (Bourne & Oates, 2020; D. E. Dempsey
& Suckale, 2023). In this study, we demonstrate our framework using both non-tapered

and tapered distributions.

Non-tapered GR

The number of events with a magnitude greater or equal to m, (N>,,) in non-tapered

GR is given by:

N>y = N> gy, 10(70m=Me) (19)

where M, is the cut-off magnitude (generally taken to be the magnitude above which

the catalog is considered 'complete’, say at the > 90% level), b is the slope of the lin-

ear regression line on a log-log plot of earthquake frequency versus magnitude and N>,

is the total number of events with a magnitude greater than or equal to M,.. Here, we

consider b and N>, as stochastic parameters and we sample from their distributions.
There are many methods in the literature for finding the b-value (Marzocchi & San-

dri, 2003). We have used the ”b-positive (b7)” method of van der Elst (2021) because

it is insensitive to variations of the magnitude of completeness of the earthquake cata-

log. Their estimator is calculated only based on positive differences in magnitude between

successive events according to

bt = !

= (' — M!)In(10) m' = M (20)

where m/ is the difference between the magnitude of two successive earthquakes.

M is a constant number that satisfies M > 2§ condition, where 26 is the discretiza-

tion level of the moments in the catalog. To use Eq 20, one should use a moving win-
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dow of events, and find those events whose m’ > M/, and then average all m’s in the
window to find m’. The standard deviation of the estimated b* can be approximated
where N(m’ > M') is the number of events that satisfy m’ > M’ con-

by — "
y /N(m'>M")’

dition in the time window.

The b-value might vary systematically in space, time, or with the stress level (Gu-

lia & Wiemer, 2019; Scholz, 2015; Muntendam-Bos & Grobbe, 2022; Bourne & Oates,

2020). Here, we assume for simplicity that the b-value is stationary, we construct a prob-

ability density function from the distribution obtained by considering successive time win-

dows (Fig 7). By sampling from this PDF, we find realizations of the b-value for our anal-

ysis.

To find a realization of N>, , we sample from a non-homogeneous Poisson pro-

cess with rate h(u; AS). h(u; AS) is the vector of seismicity rates for a desired time span

where u is sampled from the posterior distribution of the model parameters. The flowchart

of Fig 2a summarizes how one can sample from the non-tapered GR distribution while

considering both the epistemic and the aleatoric sources of uncertainty.

Using Eq 19, the most probable maximum magnitude (M,,q,) that would be ob-
served in a sample of size N> M, (Van der Elst et al., 2016) is :

1
Mz = M + ZZOQIO(NEZ\/IU)-

(21)

It should be noted that due to the distribution’s heavy tail, the expected maximum mag-

nitude (mean of the PDF of M,,,,) is actually larger than the most probable maximum

magnitude (mode of the PDF of M,,,.). Throughout this paper, we use M0 for the

most probable maximum magnitude for a non-tapered GR distribution.

It is straightforward to find the probability of exceeding any magnitude over any
chosen time duration as we describe below. In the limit of large N(M > M,), the con-
fidence level q on the most probable maximum magnitude can be calculated using Eq

22.

N N 1
Mq = Mmaw - El0910<_ln(q))

As a result, the probability of having an event with a magnitude greater than Mq is P(Mmaz >

Mq) =1 —q. We can write this quantity as a function of M,,q, and the b-value,
P(Mmagg > Mq) =1—exp (—10b(Mm/a,m_Mq)) .
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Tapered GR

Based on the tapered GR distribution, the probability of an event with seismic mo-

ment greater than M is given by Eq 24 (Kagan, 2002; Bourne & Oates, 2020):

M\’ My
PO MM = My) = () St (24)

where M., is a constant that will be defined shortly, 5 and ¢ are parameters in this
model that in principle can be a function of stress or stressing rate. Note that 3 is equiv-
alent to  in the non-tapered Gutenberg-Richter law. In the limit ¢ = 0 which corre-
spond to no-tapering, we have 8 = b * log(10). in this study, we consider 5 and ( as
independent stochastic parameters and we will sample from their posterior distribution.
The flowchart of Fig 2b summarizes the sampling scheme from a tapered GR distribu-
tion while considering both the epistemic and the aleatoric uncertainties. To generate
random realizations from Eq 24, the inverse transform sampling method is used (Stein-
brecher & Shaw, 2008). Posterior distributions of 8 and ¢ are found by maximizing the
following log-likelihood function.

Y M, M, M,
1=> (Zog <6+ cMm) — (L4 B)log 37— = (57— 1)) (25)

i=1

where N is the number of events. We can relate the seismic moment (M) to the

moment magnitude (M) using Eq 26.
lOgloM = (C + dM) (26)

where ¢ = 9.1 and d = 1.5. The value M,,, can be found using the following equation:

1
logM, = (c +d (MC - 2AM>> log10 (27)
where M., is the magnitude of completeness and AM is the size of binned intervals. Based

on Eq 24, the probability of an event with seismic moment smaller than M is given by:

P(< MIM > M) =1—P(> MM > M,,) (28)
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As a result, assuming the magnitude of events are independent and identically dis-
tributed according to Eq 24, the probability that N>, events having seismic moment

smaller than M can be found by Eq 29:

P(< M, X = Nsp M > M) = (1= P(> MM > M,,))V=re (29)

where X counts the occurrence of specific outcome. So the probability of having at least

one event out of N>y, realizations with seismic moment greater than M is given by:

P(> M, X >1M>M,,) =1~ (1 - P(> MM > M,,))"z"e (30)

3 Results and Discussion
3.1 Uncertainty in the forecast of earthquake numbers

As one example of Algorithm 1 for uncertainty quantification, the earthquake cat-
alog is split into a training set and a test set. In this particular instance, the training
set includes data up to the year 2008 (shown in white in Fig 3), while the test set includes
data from 2009 to 2021 (shown in grey in Fig 3). The maximum likelihood model pa-

uMLE)

rameters ( are estimated using the training set. We used the Poisson likelihood

to obtain the inversion results shown in Figure 3, but it’s worth noting that our method-

ology is independent of the choice of likelihood. Once we have estimated u™*¥, we run

the forward model to obtain the maximum likelihood estimate for the seismicity rate (h™LE)

as shown in Fig 3).

We now seek to bound the 90% confidence level ((1 — v)(1 — &) = 0.9) for the
number of events in each year, where (1—v) and (1—¢) are the confidence level in the
Poisson process (aleatoric uncertainty) and the model parameters (epistemic uncertainty).
As stated earlier, for a given confidence level ((1—-)(1—¢)), the values of (1—-y) and
(1—¢) are not uniquely determined. The confidence bounds slightly change when chang-
ing these two parameters while keeping the multiplication constant. We have analyzed
the sensitivity of selecting & and + on confidence interval for specific confidence levels
in Appendix A3. The balance between these two uncertainties helps to have the tight-
est interval of the number of events for a given confidence probability. We found that

having 1 — « close to 1 — £ is a good first guess. In the case of Fig 3, we selected the
combination 1 — vy =0.96 and 1 — ¢ = 0.94.
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The red lines in Fig 3 show the variability at the 94% confidence level of the fore-
casted seismicity rate (h%*%). The 90% confidence bound on the number of events (black
lines in Fig 3) is obtained by adding the uncertainty due to the Poisson process using
Eq 14.

Fig 4a compares the observed yearly rate (blue line) of seismicity with the various
confidence intervals obtained with our method (red to green lines). We can use that graph
to compare the difference between the observed and the predicted yearly number of events
with the uncertainties in the model prediction estimated from our method. The com-
parison shows that, as expected, the misfits lie well within the estimated bounds on the
confidence interval (Fig 4b). The uncertainties are largely overestimated at lower con-
fidence levels and less so at higher confidence levels. For example, 71% of the catalog data
points are within the 25% confidence interval, and 97% of the catalog data points are

within the 90% confidence interval.

3.2 Comparing Likelihoods

In this part, we compare the performance of the non-local Gaussian and Poisson
likelihood. When the number of events in a time bin is small (< 30), the Poisson like-
lihood is in principle more appropriate than the Gaussian likelihood, provided interevent
triggering can be neglected. This makes the effect of likelihood important in the context
of induced seismicity because, at the beginning of seismic activity, the number of events
is small and clustering is hard to assess. We also use our modeling framework to assess
how a better seismic monitoring would have helped to predict more accurately and ear-
lier induced seismicity at Groningen.

Fig 5 presents a comparison between the MLE models obtained with Poisson and
Gaussian likelihoods. In this particular training-test scenario, the Poisson likelihood pro-
duces a forecast that is more closely aligned with the observed data during the test pe-
riod. To assess more broadly the performance of the two likelihoods, we performed sys-
tematic tests on data sets with different sizes and different proportions of aftershocks.

Based on (Heimisson et al., 2022) the overall magnitude of completeness in the KNMI
catalog from 1991 to 2021 is almost 1.5. We therefore initially used a cut-off magnitude
M. = 1.5. To augment the number of events, we also tested using a cut-off magnitude
M. = 1.2. To augment further the catalog size and include a known proportion of af-
tershocks, we also generated a synthetic catalog using the Epidemic-Type Aftershock Se-
quence (ETAS) model. This catalog has almost ten times more events than the KNMI

catalog and would correspond to a magnitude of detection of about M, ~ 0.5. So it mim-
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ics the catalog that would have been obtained if the seismic network in operation since
2014 had been deployed much earlier. The catalog that is generated based on the ETAS
model (denoted by yhia§ 5) contains 24% of aftershocks, a value consistent with the es-
timated proportion of aftershocks (Post et al., 2021). For further information on how the
synthetic catalog (yﬁ{ég' 5) was created and to view an example of the forecast and un-
certainty quantification algorithm utilized in it, please refer to Appendix A4. By low-
ering the magnitude cut-off we should end up with a larger proportion of aftershocks.
We should therefore expect the Gaussian likelihood to perform better.

For each data set (y), we use a moving boundary between the training set and the
test set (Fig 6a). The moving boundary enables us to use training sets of different sizes.

Since we work on different catalogs that have different numbers of events each year, we

define a prediction error that is normalized by the number of events as:

o 1 yoes 7h8$ yoes 7hes
e(ytestaht%t)\/ < bt t t, et t t>7 (31)

o o
Ntest Yitest Yitest

where y{..; and h;.s are the vectors of the observed seismicity and the MLE of the

predicted seismicity rate in the test set. Nieq: is the number of data points in the test

set. By (y;Zh> we mean element-wise division and (,) is the dot product in RN¢est,

Fig 6 shows the performance of the likelihood functions for different data sets and
different sizes of training sets. At the first glance, there is a reasonable trend of error re-
duction as the last year that is used in the training set gets larger. For the data sets with
M. = 1.5 and M, = 1.2 (these are from the measured seismicity catalog) the Poisson
likelihood generally has a smaller error than the Gaussian likelihood. For the synthetic
catalog corresponding to M, = 0.5, the Gaussian likelihood yields a better fit to the
test set. The large size of the catalog and the large proportion of aftershocks make the
Gaussian likelihood more appropriate in that case. In all three cases, the Poisson like-
lihood has a more stable error, that there are fewer jumps in the error of its prediction.
Moreover, we note that the errors are smaller when using the catalog with M, = 1.5
compared to the catalog with M, = 1.2, although there are more events in the latter.
We interpret this observation as an indication that having an accurate estimate of the
magnitude of completeness is important for the performance of the forecast.

It should be noted that the inversion shows a strong trade-off between the back-
ground seismicity rate (r) and the characteristic time (¢,). This is because the system

has not yet settled back to a regime where the seismicity would result only from the tec-
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tonic loading. As a result, the model prediction depends only on the product r.t, and
the forecast is relatively well bounded in spite of the poor constraints on either of these
model parameters. Mathematically speaking, in Eqs 1 and 2, when ¢ > {3, in most of
the data points, one can approximate:

1 t

f2 =~ tf ; fl(xl,l'g,t/)dtl (32)
a Jip

then, the forecast of the model of Eq 1 (R) is proportional to the (r.t,) (R  r.t,.). when
t < tp the model of Eq 1 is not a function of the values of r and t,. This statement jus-
tifies why when using the model in Eq 1 with the current available data set, it is only
possible to find the multiplication of r and ¢, and not their values respectively. To be
able to constrain those parameters we need to have stress distributions such that f; ~

i fttb fi(x1,zo,t')dt’ is not valid which is not the case for the current data set. For more
information about the inverted model parameters see Appendix A5.

It is important to note that in comparing the two likelihood functions, the Gaus-
sian likelihood has an additional disadvantage compared to the Poisson likelihood: it has
one more parameter, which is its variance. We have assumed equal variance in each ob-
servation (I' = al), with a being the average number of events per year. This is only
a first-order approximation that is used in this paper for convenience and consistency
with the alternative Poisson process.

Fig 6b can also be used to assess how better seismic monitoring would have helped
detect events earlier and predict more accurately induced seismicity at Groningen. For
this purpose, we can compare the error in the forecast for the synthetic catalog (yf/ﬂ:‘ggﬁ)
with the error in the forecast of the measured seismicity catalog (yR;,—;.5 OF Yip.—1.2)-
As an example, the accuracy of a forecast based on the training set up to 1999 for yfg‘ggs
data set is almost equal to the accuracy of a forecast based on the information up to 2019

for yRr.—1.5- This result suggests that if we had a seismic network with M. = 0.5, we

could have reached the same level of accuracy 20 years earlier.

3.3 Prospective forecast of earthquake numbers and magnitudes

In this part, we show how our integrated framework and UQ methodology can be
used to quantify induced earthquake magnitude probabilities for the Groningen gas field
until the year 2030. We use both non-tapered and tapered GR distributions. To quan-
tify magnitude probabilities for both distributions, we have followed the steps in Fig 2.

To forecast the seismicity after 2021 (the grey region in Fig 8), we have assumed the ’cold
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winter’ scenario for gas extraction (NAM, 2013). Using observations up to the year 2021,
the posterior distribution of model parameters (u) is found using PLL. Then, based on
the 'cold winter’ scenario, the time series of stress distribution AS is calculated. Using
this information we can find the seismicity rate h(u, AS) for up to the year 2030 (Fig
8).

For the non-tapered GR distribution, we use the b-value determined with the b%
method (Eq 20) with a moving window of 400 events. The time-series of the b is plot-
ted in 7a. The fact that there is no systematic trend with time, supports our hypoth-
esis of a stationary b-value. We incorporate all the full distribution of b-value measure-
ments to build a PDF (Fig 7b) from which we can sample. For the tapered GR distri-
bution, to find the posterior distribution of # and (, the catalog up to 2021 is used with
uniform priors (0.3 < § < 1and 0 < ¢ < 1). The maximum likelihood estimates for
B and ¢ are B = 0.62, correspond to a b-value of 1.4, ¢ = 1.3 x 1073, with M,,, =
1.9 x 10" Nm.

We use Eqgs 23 and 21 for the non-tapered and Eq 30 for the tapered distribution
to determine the probability of exceeding a certain magnitude (P (Mm(w > Mq)). This
probability depends on stochastic parameters for both non-tapered and tapered GR dis-
tributions, and realizations of those parameters are required to accurately calculate it.
These stochastic variables include the model parameter (u), the number of events that
is a random realization of a non-homogenous Poisson process with the rate h(u, AS),
and the b-value for non-tapered GR distribution, as well as g and ( for tapered distri-
bution. By generating multiple realizations from all of these stochastic variables, we find

an empirical average for P(Mmax > Mq) for different Mq. Note that P(Mmax > Mq)

is an increasing function of the total number of events and, since the total number of events

increases over time, P(Mmaw > Mq) also increases. Fig 9 illustrates the empirical av-
erage evolution of P(Mm,u > M q) over time. Since the event rate has been decreas-
ing after 2012, the slope of E[P(M,,qx > Mgq)] has also been declining for the 2012-
2030 interval. The choice of a frequency-magnitude distribution type, whether tapered
or non-tapered, has a significant impact on the probability of surpassing a certain mag-

nitude. However, determining which distribution is more suitable for the Groningen gas

field (Bourne & Oates, 2020; D. E. Dempsey & Suckale, 2023; Varty et al., 2021; Muntendam-

Bos & Grobbe, 2022) is beyond the scope of this paper.

Realizations of the non-tapered and tapered GR distributions are obtained using

the workflow described in Fig 2. The non-tapered and tapered GR distributions are dis-
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played in Fig 10 (al and bl respectively). In Fig 10 (a2) and Fig 10 (b2), we have plot-
ted the PDF of the M,,q, (up to 2030) in which we have denoted the most probable max-
imum magnitude (M,,q, ) and its 97" and 377 percentiles as well as the observed max-
imum magnitude up to 2021. The maximum observed magnitude in the field lies close

to the 37? percentile for the non-tapered GR distribution whereas it is close to the most
probable maximum magnitude for the tapered distribution.

To quantify earthquake magnitude probabilities, we have assumed that the distri-
bution of the b-value in non-tapered and 8 and ( in tapered GR distributions are sta-
tionary in time and uniform in space. This assumption might not be valid, especially for
the times/locations that have large fluctuations in fluid extraction. In addition, the stress
model is not assigned any uncertainties in this analysis. The validation test shows that
the uncertainty bounds are consistent with the observation. However, this might not be
necessarily correct in the prospective scenario. The reservoir model ignores the response
of the local aquifers to the pressure depletion (Meyer et al., 2022). As the result, the model
tends to overestimate the pressure depletion toward the end of the simulation. If this
trend continues in the future, it means that our model might be overestimating compaction
and the Coulomb stress changes going into the future scenario. Another caveat is that
we have assumed a purely poroelastic response of the medium. The assumption is prob-
ably a correct approximation over the historical period, as the model fits well with the
observed subsidence (Smith et al., 2019). There is however no guarantee that it will hold
true in the future given the possibility of rate-dependent rheology of the reservoir itself
and possible viscous flow of the salt layers outside the reservoir (Pruiksma et al., 2015).
This might be another cause for our model to overestimate Coulomb stress changes go-

ing into the future.

4 Conclusion

This study proposes a method to quantify epistemic and aleatoric sources of errors
in induced earthquake forecasting. The proposed algorithm (Algorithm 1) provides bounds
on the confidence intervals. We demonstrated and tested the performance of the approach
in a particular case example of induced seismicity at the Groningen gas field where abun-
dant information is available. We don’t take all possible sources of uncertainties into ac-
count. Especially uncertainties associated with the reservoir and geomechanical mod-
els are ignored (the stress model is assumed true). The method is general enough that

it could include these other sources of uncertainties, albeit at a computational cost. De-
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spite ignoring the uncertainty of the stress model, we find that the method provides con-
fidence intervals on the number of forecasted earthquakes consistent with the observa-
tions. This is because the possible bias introduced in the modeling of the stress changes
is compensated via the calibration of the seismicity model.

We compare the performance of the Gaussian and the Poisson non-local likelihoods
for different data sets. We find that the Poisson likelihood is more accurate than the Gaus-
sian likelihood for small datasets with a small proportion of aftershocks (say less than
1000 events over 30 years and less than 20% aftershocks). The Gaussian likelihood yields
a slightly higher accuracy for a larger dataset and a higher proportion of aftershocks, be-
cause the events are not independent anymore, as assumed if a Poisson likelihood is used.
However, we find that, in all the cases considered in the study, the Poisson likelihood yields
more stable results with smaller fluctuations in the misfit of the forecast.

We use our framework to quantify how the deployment of a more sensitive network
earlier than 2014 would have improved earthquake forecasting. There would have been
enough data by 2000 to calibrate the model and reach an accuracy comparable to the
forecasting accuracy attained in 2020 with the real seismicity catalog. We also show how
the proposed UQ method can be used to forecast earthquake numbers and magnitude
probabilities. To that effect, we examined non-tapered and tapered Gutenberg-Richter
frequency-magnitude distribution until 2030 assuming the ’Cold Winter’ scenario for gas
extraction (NAM, 2013). We note that our stress model for the future could be biased
due to the limitations of our reservoir model (no interactions with adjacent aquifers) and

the assumption of purely poro-elastic deformation.

Data and resource

We have used the seismicity catalog from KNMI (Royal Dutch Meteorological Sur-
vey)?. To find the stress distribution we have used previously published resources (Meyer
et al., 2022; Smith et al., 2022, 2019). To forecast for up to 2030, we have used the ’cold

winter’ scenario suggested in NAM (2013).
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List of Figure Captions

Figure 1: The Groningen field and geomechanical model results. (a) Cumulative
vertical displacement since the onset of gas production as of 2019. Black rectangles de-
note the locations of the wells. (b) Maximum Coulomb stress change at a nominal el-
evation of 10m since the onset of gas production and epicenters of M > 1.5 earthquakes
(circles) as of 2021. (c) Time evolution of the spatially averaged maximum Coulomb stress

change, and the cumulative number of events with a magnitude greater or equal to 1.5..

Figure 2: Flowchart illustrating the steps involved in sampling from a GR distri-
bution considering both the aleatoric and the epistemic sources of uncertainty. Firstly,
we sample from the posterior distribution of the model parameters u. Then, we sam-
ple from a nonhomogeneous Poisson process with the rate h(u, AS) to generate a real-
ization of N>,. For the non-tapered GR (a), we use the number of events and a real-
ization of the b-value to sample from Equation 19 and obtain the magnitudes of the events.
For the tapered GR (b), we use the number of events and the realizations of ¢ and §.
Then, the magnitude of each event is determined randomly using Eq 24. For both non-

tapered and tapered GR distributions we repeat the process multiple times.

Figure 3: Quantifying uncertainty and forecast up to the year 2021 using the Pois-
son likelihood: red lines show the seismicity rate with 94% probability, the cyan line is
the MLE of the rate of events, and black lines show 90% confidence interval of the num-
ber of events with 1—+ = 0.96 and 1—¢& = 0.94. Seismicity data (with M, = 1.5, blue
line) up to the year 2008 is used (white) and the rate is predicted for the years 2009-2021

(grey).

Figure 4: Confidence bound performance: (a) White region is used as the train-
ing set and the grey region is used as the test set. Dark blue is the seismicity data (with
M, = 1.5) and h™LF in cyan is the maximum likelihood estimate of the rate of events.
Different percent confidence interval bounds for the number of events are plotted as well.
(b) The percentage of events (x-axis) that lies inside a certain confidence interval bound

(y-axis). In this figure, for the sake of simplicity, & is considered to be equal to .

Figure 5: An example of a comparison of the MLE models obtained with the Pois-
son and Gaussian likelihoods. The white region is used for the training set and the grey
region is used for testing. The blue line is the seismicity data with M. = 1.5 and the
orange and the green lines are the maximum likelihood estimate for the rate of events

based on the Poisson and Gaussian likelihoods respectively. In this instance of training-
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test sets, the Poisson likelihood yields a forecast in better agreement with the observa-

tions over the test period than the Gaussian likelihood.

Figure 6: Comparing the performance of Poisson Log-Likelihood (PLL) and Gaus-
sian Log-Likelihood (GLL) on different catalogs using different combinations of train-
ing and testing sets. (a) the pink region serves as the training set, while the grey region
is the test set, and different boundaries between the two are examined (b) normalized
error as a function of the last year that is used in the training set. The green and orange
markers correspond to GLL and PLL, respectively, while the plus marker represents yR; _; s,
the diamond stands for yR;__; 5, and the star stands for the catalog based on ETAS model

with M, ~ 0.5 (yEFAS o).

Figure 7: (a) Time series of the b™ and its 68 % confidence interval; there is no

strong temporal change in the b-value (b) Probability distribution function (PDF) of b*.

Figure 8: The forecast of the number/rate of events for years 2022-2030, the white
region is used as the training set to forecast the seismicity in the grey region. The blue
line is the seismicity data (yR;__; 5), cyan is the predicted rate of events based on Pois-
son likelihood, and red lines are the predicted rate of events with a 94% confidence on
the model parameters (epistemic). Black lines are the confidence interval of the num-
ber of events (epistemic+aleatoric) with probability 0.9 and are generated using Algo-

rithm 1 with 1 — ¢ =0.94 and 1 — v = 0.96.

Figure 9: Evolution of the empirical average of the probability of the most prob-
able maximum magnitude (M,,q) being higher than specific magnitudes (M,) for dif-
ferent values of Mq. The solid lines are for the non-tapered GR distribution and the dashed

lines are for the tapered GR distributions.

Figure 10: Forecast of the earthquake numbers and magnitudes using the flowchart
of Fig 2. (al) and (b1) show the non-tapered and tapered GR distributions, respectively.
For the non-tapered GR samples, 20 realizations of the model parameter (u), 20 real-
izations for the number of events (for each model parameter), 50 realizations of b-value,
and finally, 10 realizations of Eq 19 are used to generate total 2x10° black lines in al.
For the tapered GR distribution, 5 realizations of model parameters u, 5 realizations for
the numbers of events, 20 realizations of 3, 20 realizations of {, and finally 10 realiza-
tions from Eq 24 are generated for a total of 10° realizations. The blue lines in (al) and
(b1) show the expected number of earthquakes above a certain magnitude by 2030, while

the red lines display the recorded number of such events until 2021. (a2) and (b2) de-
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pict the PDF of the maximum magnitude for the non-tapered and the tapered distri-
butions. The blue lines represent the most probable maximum magnitude (Mmaw), and

the green lines indicate the 97¢" and 37¢ percentiles. The red lines denote the maximum

magnitude recorded until 2021.
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Figure 1. The Groningen field and geomechanical model results. (a) Cumulative vertical dis-

placement since the onset of gas production as of 2019. Black rectangles denote the locations of

the wells. (b) Maximum Coulomb stress change at a nominal elevation of 10m since the onset of

gas production and epicenters of M > 1.5 earthquakes (circles) as of 2021. (c¢) Time evolution
of the spatially averaged maximum Coulomb stress change, and the cumulative number of events

with a magnitude greater or equal to 1.5.
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Non-tapered GR
‘ Sample b-value using its PDF (Fig 7b) } l,

‘ Sample N>, from Eq 19 ‘ (a)

‘ Sample from Posterior of u H Sample N> )y, using the rate (h(u, AS)) }7

‘ Sample magnitudes from Eq 24 ‘ (b)

‘ Sample from posterior of ¢ and 8 } T

Tapered GR

Figure 2. Flowchart illustrating the steps involved in sampling from a GR distribution con-

sidering both the aleatoric and the epistemic sources of uncertainty. Firstly, we sample from the
posterior distribution of the model parameters u. Then, we sample from a nonhomogeneous Pois-
son process with the rate h(u, AS) to generate a realization of N>,,. For the non-tapered GR
(a), we use the number of events and a realization of the b-value to sample from Equation 19 and
obtain the magnitudes of the events. For the tapered GR (b), we use the number of events and
the realizations of ¢ and . Then, the magnitude of each event is determined randomly using Eq

24. For both non-tapered and tapered GR distributions we repeat the process multiple times.
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Figure 3. Quantifying uncertainty and forecast up to the year 2021 using the Poisson like-
lihood: red lines show the seismicity rate with 94% probability, the cyan line is the MLE of

the rate of events, and black lines show 90% confidence interval of the number of events with
1—~=20.96 and 1 — £ = 0.94. Seismicity data (with M. = 1.5, blue line) up to the year 2008 is
used (white) and the rate is predicted for the years 2009-2021 (grey).
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Figure 4. Confidence bound performance: (a) White region is used as the training set and the
grey region is used as the test set. Dark blue is the seismicity data (with M, = 1.5) and h™L¥
in cyan is the maximum likelihood estimate of the rate of events. Different percent confidence
interval bounds for the number of events are plotted as well. (b) The percentage of events (x-
axis) that lies inside a certain confidence interval bound (y-axis). In this figure, for the sake of

simplicity, £ is considered to be equal to 7.
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used as the training set to forecast the seismicity in the grey region. The blue line is the seis-
micity data (y¥.—1.5), cyan is the predicted rate of events based on Poisson likelihood, and red
lines are the predicted rate of events with a 94% confidence on the model parameters (epistemic).
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bility 0.9 and are generated using Algorithm 1 with 1 — ¢ =0.94 and 1 — v = 0.96.
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Figure 9. Evolution of the empirical average of the probability of the most probable maxi-
mum magnitude (Mqz) being higher than specific magnitudes (M,) for different values of M,.
The solid lines are for the non-tapered GR distribution and the dashed lines are for the tapered
GR distributions.
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Figure 10. Forecast of the earthquake numbers and magnitudes using the flowchart of Fig

2. (al) and (b1) show the non-tapered and tapered GR distributions, respectively. For the non-
tapered GR samples, 20 realizations of the model parameter (u), 20 realizations for the number
of events (for each model parameter), 50 realizations of b-value, and finally, 10 realizations of

10° black lines in al. For the tapered GR distribution, 5

realizations of model parameters u, 5 realizations for the numbers of events, 20 realizations of f3,

Eq 19 are used to generate total 2 x
20 realizations of ¢, and finally 10 realizations from Eq 24 are generated for a total of 10° realiza-
tions. The blue lines in (al) and (b1l) show the expected number of earthquakes above a certain
magnitude by 2030, while the red lines display the recorded number of such events until 2021.
(a2) and (b2) depict the PDF of the maximum magnitude for the non-tapered and the tapered
Mmaz), and the
green lines indicate the 97*" and 3"¢ percentiles. The red lines denote the maximum magnitude
recorded until 2021.

distributions. The blue lines represent the most probable maximum magnitude (
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Appendix A
Al From Extraction Rates to Coulomb Stress Changes

To calculate the stress distribution in and around the reservoir, we use the mod-
ular and computationally efficient modeling framework that contains reservoir and ge-
omechanical modeling (Meyer et al., 2022; Smith et al., 2022). In this section, we briefly
review this framework and discuss how we calculate stress distribution using geodetic
and gas extraction information. Overall, this framework is computationally efficient and
reproduces stress changes in a 3-D volume.

Assuming homogeneous and constant hydraulic properties, we first compute the
fluid pressure diffusion inside the reservoir due to gas extraction using the history and
extraction previsions. We use the vertical equilibrium flow model (VFE) from (Meyer
et al., 2022). The VFE assumption (Yortsos, 1995) holds when there is a significantly
larger vertical fluid diffusion capacity compared to the horizontal one. The assumption

is valid when Ry, > 10 with R, defined in Eq Al.
Ry = (Az/Az). (k. ks )"/ (A1)

where Az and Az are the horizontal and vertical dimensions of the reservoir and k, and
k. are the horizontal and vertical permeabilities of the reservoir. In the Groningen gas
field case, Az ~ 35 — 50(K'm) and Az ~ 0.1 — 0.3(K'm). k, and k, can be approxi-
mated to be of the order of 10713(m?). As a result, we can assume that the Groningen
gas field is a long and thin gas reservoir (R > 117) and the VFE assumption holds.
For this part, we use the reservoir properties from (Oates et al., 2022).
The combination of mass conservation in porous rock (De Marsily, 1986) with Darcy’s
law gives Eq A2. This equation assumes low matrix compressibility for the Groningen

reservoir (Yang & Wei, 2017), and a smooth spatial gradient of the reservoir thickness.

Q(z,y,t)

dpdp(z.yt) o (—p(x, y, ks (A2)

8]9 dt /J(l’,y,t)

where ¢ is the reservoir’s porosity and p, p, p are the fluid’s density, viscosity, pressure,
and velocity. @ is the flow rate, Az is the reservoir’s thickness and Gy, is the gas sat-
uration in the reservoir (Meyer et al., 2022). A history matching procedure on the pres-
sure measurements at the wells yields an error lower than 1 MPa during the whole reser-

voir history for ¢ = 16%, k, = 2.573 (m?), and Gur = 35.7%.
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We use the computed field of fluid pressure depletion (p), together with the geode-
tically derived uniaxial compressibility (C,,; (Smith et al., 2019)) such that the reser-

voir compaction writes C' = C,, (x, y)Ap(x, y, t)b(z,y, t).

The reservoir is separated into 500(m)x500(m)x Az offset cuboidal volumes that
deform poroelastically and represent first-order variations in reservoir geometry. The re-
lation between compaction and stress uses a semi-analytical Green’s function approach

combined with a strain-volume formulation (Kuvshinov, 2008) that takes the form:

Opy,z = —ApCr Fy Vertices , Observation Points) (A3)

es

where o is the stress, and F,, is a function of the cuboid’s position, and the ob-

servation points. For details on this function, the reader is referred to (Kuvshinov, 2008;
Li et al., 2021). Due to the resolution on compressibility values in the reservoir (Smith
et al., 2019), the strain and stress fields are smoothed to 4 km length using a Gaussian
kernel. From the changes in shear stress (A7) and effective normal stress (Aol = Aoy—
Ap), we compute the changes in Coulomb stress (AS) from 1960 to 2021. Then, using

a cold winter scenario (NAM, 2013) for the gas extraction (after 2021), we extend the

Coulomb stress distribution time-series to the year 2030. The changes in Coulomb stress

are calculated using Eq A4.

AS = AT+ fAd)y (A4)

with f = 0.6 the static friction coeflicient of the reservoir rock.

The numerous faults offsetting the reservoir are the main cause of the Coulomb stress
changes. Only the largest faults are represented in our reservoir model. Numerous sec-
ondary faults are ignored or are not even visible in the seismic profiles used to construct
the reservoir model. The seismicity is not limited to the zones of high-stress concentra-
tion corresponding to the main faults though. To allow for stress increase away from these
main faults, the Coulomb stress field is smoothed using a Gaussian filter with 4km stan-
dard deviation (Smith et al., 2022). This procedure essentially affects the spatial distri-
bution but not the time evolution of the predicted seismicity rate. The Coulomb stress

changes on optimally oriented faults as of 2021 are shown in Fig 1b.
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A2 Approximation and Discretization of Eq 1

Eq 1 is discontinuous and it is numerically convenient to approximate it with a con-
tinuous function for the purpose of parameter inference. In this section, we present our
approximation, as well as the formulation for discretizing the approximate equation. We

first start by eliminating the dependent parameter ¢, from Eq 1 to form Eq A5.

R(z1,22,t) fi(zy, 2, ) H(AS(x1, 2, t) — AS,)

o1t / / / (A5)
r Efo fl(l‘l,a?g,t)H(AS(Z‘l,l‘Q,t)—ASC)dt +1

where H is the Heaviside function. Eq A5 is approximated by Eq A6. Note that,
for AS(x1,xe,t) < AS., fi1(x1,22,t) is smaller than one and r is a small number which

is in the order of 1075 event/ Km?.yr.

R(xy,x0,t) _ fi(z1,22,t)
r L [y fu(@n, w2, ) H(AS (@1, 22, ¢) — AS.)dt + 1

(A6)

The variables AS(z1,x2,t) and R can be discretized in space and time. We define
AS as the discretized stress distribution. Its value in spatial element of % and x} at time
ty is denoted by AS(z%,z),t1). Note that AS € RP=1*P=2*T where D,, and D,, are
the number of elements in the x1 and x5 direction and 7T is the number of time snap-
shots. To simplify equations, we use the notation ASy(z%,23) as the stress history of
the element i and j up to time k.

We concatenate all the model parameters into one vector u € Ri as defined in
Eq A7.

u=|r t, Aoy AS.|€RY, (A7)

For any vector u we define G € RP#1%P=*T whose elements G (u; ASy (2, 23)) in
2% and x is dependent on the stress history of that element up to time k and is defined

as Eq AS.

Tfl(l’li,lé,tk)

L (S0 Al o ) HAS (e, 2], 0) - ASL)) +1

Gr(u; ASk(zh, 2)) = (A8)

where H is the Heaviside function. Note that Eq A8 is a discrete version of Eq A6 and
G|, is the seismicity rate (per unit area and time) for a specific element x} and x% at spe-

cific time t;. At a given time ({j), we integrate the spatial seismicity rates (Gy’s) over
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space, to find the seismicity rate (per unit time) of the whole area of interest. We de-
note this variable by hj(u; ASyk) and is defined in discrete form as the following sum-

mation.

Do, Da,
hi(u; ASy) = Z Z Gr(u; AS (2%, 23)) Az  Axy (A9)

i=1 j=1
where Ax; and Axs are the lengths of the grids along the z; and o directions. Then,
we construct a vector in R” such that it contains seismicity rates in a discrete-time fash-
ion.

h(u; AS) = |hy(u; ASy)  ha(u; ASz) ... hT(u;AST)]eRT (A10)

The next step is to compare the seismicity rate that is defined in A10 with the time-
series of a reference seismicity data (y). y can be either the observed seismicity data (yR;_)

with a given cut-off (M,) or a synthetic catalog (yf\;y[:bth).

y=|m w ... y]cR" (A11)

A3 Sensitivity of confidence bounds on choosing + and &

As stated in Section 2, for a given confidence level (1—£)(1—7) the values of (1—
v) and (1 — &) are not uniquely determined. There is a possibility of finding the opti-
mum combination of v and £ to have the tightest interval of the number of events for
a fixed confidence level of (1 —&)(1 — ). We have found that in our framework & =~
is a good first guess. Fig A1l shows different confidence intervals for a fixed confidence
level (90%) while changing the value . This figure suggests that there is a small sen-

sitivity to the selection of those parameters close to £ = ~.

A4 Seismicity Data and Synthetic Catalog

We have applied our analysis in this paper to different earthquake catalogs. The
Groningen seismicity catalog has a time-varying completeness magnitude. Until 1993 the
completeness magnitude in the region was 2.5. The seismic network gradually enhanced
and it reached below magnitude 0.5 after 2016. Heimisson et al. (2022) assumed a sim-
plified constant magnitude of completeness of 1.5. In this work, we mostly use a cut-off
magnitude of 1.5 which gives a total 356 number of events. In one case, where we want

to see the effect of aftershocks, we use a cut-off magnitude of 1.2 with 633 total events.
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Figure A1l. Sensitivity of confidence bounds on choosing v and £ while keeping (1 — &)(1 —
v) = 0.9. 90% confidence bounds of the number of events using different values of . This fig-
ure suggests that there is a small change in confidence bounds when changing ¢ and v while (1 —
&)(1 —~)=0.9 and close to £ = .

A simplified constant magnitude of completeness is an assumption that has been used
in this work.

To see the effect of aftershocks on the performance of the likelihood functions and
also to study the value of a better seismic network, we have generated a synthetic cat-
alog based on the ETAS model. The ETAS catalog is designed to have a completeness
magnitude of almost 0.5 (with the b-value ~ 0.99), which implies ten times more events
compared to the catalog with M, = 1.5.

Based on (Post et al., 2021) a mean fraction of 76.6% of events in the Groningen
catalog is the background seismicity. Since we want to amplify the number of events by
almost ten times, we need to generate the rate of events with almost 7.6 times more than
the rate of events in the original catalog (with M, = 1.5). Then, when the effect of af-
tershocks is added, we will have a catalog with almost ten times more events than the
catalog with M, = 1.5.

We first need to invert for the model parameters u in Eq 1 for a catalog with M, =
1.5 and data up to the year 2021. After inverting for the model parameters, we forward
simulate the seismicity model (Eq 1) to find the rate of events corresponding to max-

uMLE))  Assuming a nonhomogenous Poisson process, we

imum likelihood estimates (h(
amplify this rate using the so-called thinning process (Ross, 2014) with a factor of 7.6.

This is the rate of events corresponding to a catalog with M, =~ 0.5. Finally, we add
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Figure A2. Forecast of the synthetic catalog (M. =  0.5) shows that in the case of having
a better seismic network, we could predict the number of events much earlier. The data up to

the year 2001 is used for the training set and the grey part is the test set. The blue line is the
number of events in each year in the ETAS synthetic catalog. The cyan line is the MLE for the
rate of events, the red lines are the rates in the 94% confidence interval of the model parameters,

and the black lines are the 90% confidence interval for the number of events.

aftershocks to this catalog using the ETAS parameters introduced in (Post et al., 2021):

n(t) K
=1/r)+y —— 10*(mi—mmin) A12
wETAS /T( ) ; (C+t — Ui)l+9 ( )

where 1(t) is the hazard of temporal ETAS model, 1/7(t) is the background rate, n(t)
number of events before time t, m; and v; are the moment magnitude and time of the

it" event. Based on (Post et al., 2021), ¢ = 6 hours, § = 0.1, « = 0.3 and g = 0.4;
where g = g—ﬁ% is defined as the branching ratio. To add the effect of aftershocks,

the seismicity rate from the thinning process and the mentioned ETAS parameters are
used in the code that was provided by (Felzer et al., 2002). The catalog that is synthet-
ically generated by the ETAS model has 3359 events from 1979 up to 2021. Fig A2 shows
the forecast of seismicity using the data set generated by the ETAS model. This figure
suggests that we could predict the number of earthquakes much earlier if we had a bet-

ter seismic network.
A5 Parameter Space

In the previous parts, we showed that the maximum likelihood model parameters

MLE)

(u can be used to find the maximum likelihood of the rate of events (h™LE) (e.g
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cyan line in Fig 3). We have also shown how to find a set of event rates for a certain con-
fidence level (e.g red lines Fig 3). In this part, we focus on the distribution of the model
parameter space (u). In our inversion of Eq 1, between the parameters of the study, Acg
and AS. are well-constrained. However, the values of the likelihoods of r and t, are not
well constrained because of the specific form of the Eq 1.

We can examine the distribution of the likelihood in the space of the model param-
eters. Fig A3 shows the distribution of the Poisson likelihood as a function of model pa-
rameters when information up to the year 2021 is used. As stated earlier, the inversion
is almost insensitive to the individual values of 7 and ¢, while keeping the multiplica-
tion of those constant.

We have delved into a careful examination r—t, plot of the Fig A3 in Fig A4. The
black dots in Fig A4 are the points whose likelihood ratios to the maximum likelihood
are almost one (greater than 0.99). Our analysis reveals that our model/observation can-
not constrain ¢, and r independently. Specifically, it is possible for a very small r with
a big t, to have the same likelihood as a very big r with a small ¢t,. We employed the
least square method to derive a relation between these two model parameters. Our anal-

ysis yields the following relationship:

4.5 x 1075 (£euept)

r( i)

ta(K'yr) =

(A13)
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Figure A3.

Ratio of the (Poisson) likelihood to the maximum (Poisson) likelihood estimate

(Data until the year 2021 have been used). This graph suggests that with the current data, we

cannot constrain r and t, separately. However, the Aoy — AS. plot shows the convergence of Acgg

and AS..

Figure Ad4.
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Relationship between r and t,. The black dots are the points whose likelihoods

are close to the maximum likelihood (their likelihood ratio to the maximum likelihood is greater

than 0.99). Using the least square method we can fit a y

< line to the data. The resulting

blue line represents the fitted line, indicating that we can only invert for the multiplication of

to(Kyear)

event
Km?2.yr

and r(

), as given by the Eq A13.
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