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Key Points:

e An improved reservoir, geomechanical, and seismicity modelling workflow is proposed
for forecasting induced seismicity at various timescales.

e Short-timescale stress variations allow constraining the characteristics of the earthquake
nucleation process using Groningen as case study.

e Initial strength excess and finite duration of the nucleation process allow reproducing
long-and-short timescale characteristics of seismicity.
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Abstract

Deterministic earthquake prediction remains elusive, but time-dependent probabilistic seismicity
forecasting seems within reach thanks to the development of physics-based models relating
seismicity to stress changes. Difficulties include constraining the earthquake nucleation model
and fault initial stress state. Here, we analyze induced earthquakes from the Groningen gas field,
where production is strongly seasonal, and seismicity began 3 decades after production started.
We use the seismicity response to stress variations to constrain the earthquake nucleation process
and calibrate models for time-dependent forecasting of induced earthquakes. Remarkable
agreements of modelled and observed seismicity are obtained when we consider (i) the initial
strength excess, (ii) the finite duration of earthquake nucleation, and (ii1) the seasonal variations
of gas production. We propose a novel metric to quantify the nucleation model’s ability to
capture the damped amplitude and the phase of the seismicity response to short-timescale
(seasonal) stress variations which allows further tightening the model’s parameters.

Plain Language Summary

Earthquakes are difficult to predict with certainty, but progress in forecasting their likelihood
using probabilistic models based on stress changes has been made. However, challenges remain
in understanding how earthquakes start and the initial conditions of faults. Here, we analyzed
induced earthquakes in the Groningen gas field, where production is seasonal and seismic
activity began 34 years after gas production started. By studying how the earthquakes respond to
rapid changes in stress, we could better understand how they start and develop models to forecast
their temporal occurrence. By considering factors like the initial strength of the faults, the
duration of earthquake initiation, and seasonal variations in gas production we could accurately
match the observed seismic activity. We introduced a new measure to evaluate how well the
models captured the dampened strength and timing of seismic activity in response to short-term
stress changes (such as seasonal variations), which helped refine the model's parameters.

1 Introduction

Numerous activities related to the decarbonization, or security of energy production
involve managing subsurface reservoirs (geothermal, CO, sequestration, hydrogen storage,
conventional and unconventional oil-and-gas extraction). Induced earthquakes are a major
obstacle to these activities (Candela, et al., 2018; Ellsworth, 2013; Goebel & Brodsky, 2018;
Grigoli, et al., 2017; Kaven, et al., 2015; Raleigh, et al., 1976; Shirzaei, et al., 2016; Walsh &
Zoback, 2015; Zhai, et al., 2019) raising the need for improved methods to forecast induced
seismicity. The modern understanding that earthquakes result from unstable frictional fault slip
(Scholz, 2019) provides a foundation to forecast changes of earthquake rate in response to stress
changes, AS (Bourne, et al., 2018; Bourne & Oates, 2017; Dahm & Hainzl, 2022; Dempsey &
Suckale, 2017; Dempsey & Suckale, 2023; King, et al., 1994; Kiihn, et al., 2022; Langenbruch,
et al., 2018; Richter, et al., 2020; Zhai, et al., 2019). The approach requires a model of
earthquake nucleation and knowledge of the stress change needed to initiate it (strength excess).
At its simplest, the standard Coulomb friction model, CF, assumes that unstable fault slip
initiates instantaneously when the ratio of shear stress to effective normal stress exceeds the
static friction coefficient. In this context, the often-observed lagged response of the seismicity to
stress changes can be modeled through an initial strength excess (Bourne & Oates, 2017). While
the CF approach has been found satisfying in several case studies (Bourne, et al., 2018; Bourne
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& Oates, 2017; Dempsey & Suckale, 2017; Dempsey & Suckale, 2023; Smith, et al., 2022), this
model neglects that earthquake nucleation might not be instantaneous, as evidenced by
laboratory experiments (Dieterich, 1994) and the weak correlation of earthquakes with solid
Earth tides (Beeler & Lockner, 2003; Cochran, et al., 2004). Some models have introduced an
ad-hoc critical time-to-failure (Dahm & Hainzl, 2022; Zhai, et al., 2019) to account for either the
initial strength excess or non-instantaneous nucleation. A more physical way to account for the
finite duration of the nucleation process consists in assuming that nucleation is governed by rate-
and-state friction, RS, (Dieterich, 1994), a model adopted with success in a number of studies
(Candela, et al., 2019; Candela, et al., 2022; Langenbruch, et al., 2018; Richter, et al., 2020).
Discriminating between the CF and RS models has however proven elusive (Dempsey &
Suckale, 2023) due to the lack of observational constraints on the nucleation process, and the
eventual trade-off between the initial strength excess and the nucleation time. The CF and RS
models yield very different forecasts if stress changes occur at short timescales compared to the
characteristic time of the nucleation process (Heimisson, et al., 2022), and the nucleation process
might therefore be revealed from the seismicity response to large amplitude, short-timescale
stress variations (Ader, et al., 2014). Here we demonstrate that the nucleation process is not
instantaneous and derive constraints on its characteristic timescales, fault friction parameters,
and the initial strength excess by studying seismicity induced by gas extraction from the
Groningen field, where strong seasonal variations of gas production (Figure 1A,B) generated
significant seasonal seismicity variations.

The Groningen gas field in northeastern Netherlands (Figure 1A) is an ideal example to study
induced seismicity due to well-known reservoir properties (Burkitov et al., 2016; de Jager &
Visser, 2017; Oates, et al., 2022), detailed seismicity catalog (Dost, et al., 2017; Smith, et al.,
2020; Willacy, et al., 2018), and well-resolved surface subsidence (Smith, et al., 2019; van
Thienen-Visser & Breunese, 2015). Together, these data have allowed for calibration of models
used to hindcast and forecast induced seismicity (Bourne, et al., 2014; Bourne, et al., 2018;
Bourne & Oates, 2017; Buijze, et al., 2017; Candela, et al., 2019; Candela, et al., 2022; Dahm &
Hainzl, 2022; Dempsey & Suckale, 2017; Dempsey & Suckale, 2023; Heimisson, et al., 2022)
(Kiihn, et al., 2022; Meyer, et al., 2022; Richter, et al., 2020; Van Wees, et al., 2017). Gas is
extracted from a thin, laterally extensive (~100-300 m thickness for ~30*50 km horizontal
dimension), porous and permeable (~15-20% porosity, ~3.55E-13 m” permeability (de Jager &
Visser, 2017; Meyer et al., 2022)) reservoir hosted in the Rotliegend sandstone formation (Figure
1A,B). Production started in 1963 but earthquakes were not detected until 1991. Initially, the
seismicity rate increased exponentially, despite annual extraction rates not being at their peak
(Figure 1B, green curve). The 2012 M,,3.6 Huizinge earthquake, the largest event to date, caused
public concern and a decision to decrease first and then shut-down production long before
exhaustion of the gas reserve (de Waal, et al., 2015; Muntendam-Bos, et al., 2017; van Thienen-
Visser & Breunese, 2015). The reduction in production was accompanied with a reduction of the
seasonal variations of extraction as these variations were thought to increase the total seismicity
(Muntendam-Bos & De Waal, 2013; Sijacic, et al., 2017). More details about the gas field and
the available data are given in Supplementary Item 1.

The various stress-based models developed so far consider either instantaneous seismicity
nucleation with an initial strength excess (Bourne, et al., 2018; Bourne & Oates, 2017; Dempsey
& Suckale, 2017; Dempsey & Suckale, 2023; Meyer, et al., 2022; Smith, et al., 2022) a delayed
response due to the nucleation process (Candela, et al., 2019; Candela, et al., 2022; Kiihn, et al.,
2022; Dahm & Hainzl, 2022; Richter, et al., 2020) or a combination of both (Dahm & Hainzl,
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2022; Heimisson, et al., 2022). These models fit well the observed seismicity based on yearly
averaged stress changes, but predict drastically different responses to rapid variations of
production such as shut-ins (Heimisson, et al., 2022; Meyer, et al., 2022). Moreover, a bias could
be introduced as these models were calibrated ignoring that, in reality, gas extractions show ~60-
80% larger production in the winter from 1975 to 2013 (Figure 1B). Ignoring short-timescale,
large-amplitude stress variations could bias the model because the seismicity response to stress
changes is non-linear: the CF is non-linear through the initial strength excess and Kaiser effect
(seismicity rate drops to zero when the Coulomb stress is lower than previous peak values); the
RS includes a delayed Kaiser effect and, adding further non-linearity, an exponential dependence
on AS (Heimisson & Segall, 2018). The introduction of a stress threshold, if an initial strength
excess is allowed, is another source of non-linearity (Heimisson et al., 2022). Hereafter, we
compare models with or without accounting for seasonal stress variations to illuminate the
characteristics of the nucleation process.
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2 Materials and Methods

We present a summary of the modelling strategy (Figure S1) that allows us to resolve (i)
the pore pressure diffusion due to injection/extraction from a porous reservoir, (ii) the
mechanical response of the reservoir to pressure variations, and (iii) the relation between stress
changes and seismicity adopted in this study. We then present the fundamentals of other analysis
techniques used such as the synthetic catalog generation, the Schuster test, and the metric to
quantify seasonality in synthetic catalogs.

2.1 Modelling workflow

Our modeling workflow (Figure S1) consists of different modules which allow us to
predict reservoir pressure, stress changes within and outside the reservoir, subsidence and
seismicity based on the gas extraction flow rates at the wells. The parameters for the different
modules are optimized from matching the observations (well pressure, subsidence, seismicity).

2.1.1 From fluid extraction to pressure changes.

To relate fluid extraction to pressure changes in the reservoir, we use a simplified
reservoir model (Meyer, et al., 2022) which assumes vertical flow equilibrium (VFE) to compute
fluid pressure diffusion in the reservoir from the extraction history. This model assumes that the
timescale for vertical pressure equilibrium is much shorter than the horizontal one due to the thin
and elongated geometry of the reservoir. The problem becomes a two-dimensional one and we
solve the combined conservation of momentum and Darcy’s law using the open-source finite
element library FEniCS (Logg, et al., 2012) and calibrate the model’s parameters by history
matching the well pressure time-histories. By reducing the computation cost using the VFE
assumption, we can generate pressure (Ap(x,y, t)) space-time histories in the Groningen
reservoir with 1-month temporal discretization, allowing us for the first time to quantify the
effect of seasonal variations of extraction in the pressure field (See Supplementary Item 2.1 for
details).

2.1.2 From pressure changes to reservoir deformation and stress changes.

We use the poroelastic mechanical model from (Smith, et al., 2022) to relate the fluid
pressure changes to stress changes within and outside the reservoir.

Ap(x,y,t) calculated using the VFE reservoir model (section 2.2.1) is combined with the
geodetically derived uniaxial compressibility (C,,, (x, y) ; (Smith, et al., 2019)), and the reservoir
thickness (h(x, y)) such that the reservoir compaction writes:

C =Cnh(xy).Ap(x,y,1). h(x,y) (1)

We use a semi analytical Green’s function approach (Geertsma, 1973; Kuvshinov, 2008) to
relate compaction and displacement/stress. For details on the functions, the spatial smoothing
used and the details on the stress calculation, see (Smith, et al., 2022); and Supplementary Item
2.2. From the changes in shear stress, At, and effective normal stress (Aoy = Aoy — Ap), we
compute the changes in Coulomb stress, AS(x,y, t), computed 10 m above the reservoir and
cumulated since 1960 (Figure 2A). We use a positive sign for compressive stress such that
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AS = At + f. Aoy, with f the static friction coefficient of the rock. In this field, the fault’s dips
are usually ~85° and the strikes show two dominant modes at N270° E and N350¢ E ( (Smith, et
al., 2022); Figure 1A). We use the maximum Coulomb stress changes for both dominant receiver
fault strike modes but results show little sensitivity to this choice (Smith, et al., 2022), the chosen
depth for calculation, and to f. Our model is computationally efficient and consistent with the 3-
D stress changes computed using other methods (Bourne, et al., 2018; Bourne & Oates, 2017,
Buijze, et al., 2017; Candela, et al., 2019; Candela, et al., 2022; Kiihn, et al., 2022; Van Wees, et
al., 2017). For detailed analysis of the effect of the different parameters of the model on
seismicity forecasts, see (Smith, et al., 2022). Under reasonable stress sampling schemes, the
forecasts are little affected by the choice of the stress model. Changing the stress model has the
effect of rescaling the inverted seismicity model parameters but does not drastically affect the
seismicity forecasts (Kaveh, et al., 2023).

2.2.3 From stress changes to seismicity rate changes

Finally, we relate AS to the time-dependent seismicity rate change AR using the Threshold
Rate and State failure function (TRS) of (Heimisson, et al., 2022) which follows Dieterich’s
hypothesis (Dieterich, 1994) that earthquake nucleation is governed by rate and state friction but
allows for a population of faults to be sub-critical initially (below steady-state), as expected in a
quiet, intraplate tectonic context such as Groningen. A critical stress threshold (analog to the
strength excess of the Coulomb Failure model) AS, has to be overcome to reach self-sustained
fault slip acceleration (earthquake nucleation) and produce seismicity (Heimisson, et al., 2022).
The TRS model writes for every point in space (x, ¥):

exp (AS(t) - ASC)

AR(D) Ac,
r 1 ¢ AS(t) — AS,) ..,
E j:fb exp (A—O'O) dt’ +1
ift > t,, and (2)
AR
— =0
r

ift < ty,

with r the background seismicity rate (the seismicity rate that results from constant tectonic
loading), AS(t) the change in Coulomb stress, AS, the critical stress threshold, Ag,, the
frictional-stress parameter of Rate and State friction (Dieterich, 1994), t, the characteristic time
associated to the nucleation process characterizing the decay of seismicity to background rates
after a stress step. Finally, t;, is the time at which AS first exceeded AS,.

When the sources are critically stressed, AS. ~0, the formulation (Eq.2) is equivalent to that of
(Heimisson & Segall, 2018). The characteristic time, t, relates to the secular background

. . o . A . .
stressing rate, due to tectonic loading, 7 according to t, = % It characterizes the nucleation

process under such loading and would characterize the response time of the seismicity to a stress
step added to the background seismicity. Note that if the system has been stressed, the relaxation
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time will change as described in section 3.2. The TRS formulation allows for earthquake
nucleation to be time dependent and nucleation would be nearly instantaneous in the limit where
its response time goes to zero, as is assumed in the standard Coulomb failure model which is also
commonly used to relate stress changes to seismicity (Dempsey & Suckale, 2017; Bourne &
Oates, 2017; Bourne, et al., 2018; Dempsey & Suckale, 2023; Meyer, et al., 2022; Smith, et al.,
2022).

We sample a probability distribution of the TRS model parameters using an ensemble
Markov Chain Monte Carlo (MCMC) algorithm (Foreman-Mackey, et al., 2013) implemented in
PyMC3 (Salvatier, et al., 2016) with uniform priors and a non-local Poisson log-likelihood
function (See supplementary Item 2.3). For all TRS models generated in this study, we discretize
the stress changes on a monthly basis to avoid numerical integration problems when comparing
monthly and yearly discretizations. The difference between the ‘monthly’ and ‘yearly’ TRS
model inversions presented hereafter is that the input stress changes and seismicity for the
‘yearly’ models are smoothened using a 12-month average for the whole time-history. The
posterior parameter space accounts therefore for epistemic uncertainty on the model’s
parameters. We report the 1000 model parameter sets with the lowest negative log-likelihood
calculated over the training period only. This allows us to compare constraints on TRS models
accounting or not for seasonal variations. Equivalently, if we were to consider goodness of fit
from given confidence bounds, the number of models falling within a fixed interval would bring
information about the constraints on the TRS model parameters.

Then, from the inverted model parameters we can generate the seismicity rates for the
whole reservoir as function of time, R(t). Finally, to generate earthquake catalogs we need to
account for the aleatoric variability around the predicted rates which accounts for the fact that the
earthquake generation is a non-stationary Poisson process of known rate. Details on the synthetic
catalog generation are given in Supplementary Item 3.

2.2 Testing seasonality through the Schuster test & spectrum.

We test possible seasonality (periodicities) in the observed and synthetic seismicity
catalogs using the Schuster test (Ader & Avouac, 2013; Beeler & Lockner, 2003; Schuster,
1897). For a tested period T, a phase 6; is associated to each event i occurring at time t; such that

0; = 21'{% . Then, a 2D walk of N successive unit length steps in the phase direction are

performed. The total distance D between the start and end points of the walk relates to the
Schuster p-value which measures the probability that the walked length is the result of a random
D2
Poisson point process as p = e N, with N the total number of steps taken. Thus, the lower this
p-value, the higher the probability that the detected periodicity is real. To study the correlation
with a periodic perturbation, we evaluate the p-value over a continuous range of periods T €
[Ty, T;] e.g. we evaluate the Schuster spectrum (Ader & Avouac, 2013). The measured p-values
can then be compared with the expected value, which depends on the tested period, not to be
exceeded at a certain confidence level. The spectrum allows for identification of periodicities
that have little probability to be due to chance because periodicities in the earthquake catalog
will show as isolated low p-values in the spectrum, and event clusters will show as a drifting low
p-value close to the characteristic time of the cluster (Ader & Avouac, 2013).
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233 We define a new metric to characterize the capacity of the TRS models to capture

234 seasonality as the vector distance error of the median of all synthetic catalog’s Schuster random
235 walks to that of the observed catalog. To separate their contribution, we also compute the phase,
236  and distance errors for the median of all synthetic catalogs to the observed catalog. See

237 Supplementary Item 4 for details. This analysis allows to quantify the model’s capacity of

238 reproducing the amplitude and phase of the seasonal variations in the observed earthquake

239 catalog.

240 3  Results and discussion

241 3.1 TRS model parameters not accounting for seasonal stress changes: ‘yearly’ models.

242 When seasonal fluctuations of AS and seismicity are ignored (Figure 1D, light purple curve), we
243 obtain a ‘yearly’ TRS model which fits well the temporal (Figure 2A, green curve) and spatial
244 distributions (Figure 2C) of seismicity. The prediction of the maximum-a-posteriori (MAP)

245  yearly TRS model at the annual time scale is satisfying. However, if a range of acceptable

246 models is considered (1000 best models out of 50,000, accounting for epistemic uncertainty, see
247 (Kaveh, et al., 2023) for details), they yield widely different predictions outside the training

248  period due to large trade-offs among the model parameters, especially between t, and r (Figure
249 S3). The response time of seismicity to sub-annual stress variations is not well constrained in this
250  inversion. To illustrate this effect, the green curves in Figure 2B show the response of the 1000
251  best yearly TRS models assuming no stress-changes after 2012 (frozen to AS(t,), mimicking a
252 hypothetical ‘shut-in’ at time t;). The relaxation following the ‘shut-in’ is not characterized

253 by t,, (10-10,000 years for yearly TRS models), but by a new “accelerated” response time ¢,
254 such that equation (2) becomes:

exp (AS(tS) — ASC)

A_R _ Ao,
ro ) AS(E) — 25 ex (AS(tz\) — ASC>
L ts t') — c ’ _ Op
1+ £ ftb exp (—Aoo )dt + (t—tg) £
255
AR t,
o ts AS(t) — AS.) ..,
ty + ftb exp (%) dt
(t—t)+ AS(t,) — AS,
P\ Ac,
256 3)

257  We can identify this to the form:
AR(t) B t,

r (t — tg) + tace

258 whose characteristic decay time is:

t As(t))-as
(tat ft]: exp(i(m)rO C)dt’)

259 tacc —_ ~ (4)
a exp(AS(:S;OASC)

260  tZ°¢ becomes much shorter than t, because the nucleation process is accelerated exponentially
261  due to stress increase induced by the reservoir compaction. Assuming an approximately linear
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Aocj.At
AS(ts)
where At is the duration of production from onset of seismicity to “shut in”. It is therefore
AS(ts)

At
best yearly TRS models show t3¢¢ ranging from 0.1 to 200 years after a hypothetical shut-in,
showing that Ao is poorly constrained (Figure S4, green curves, Figure S3A).

increase of AS(t) at the multiannual time scale, it converges quickly toward tZ¢¢(tg)~

inversely proportional to the average stressing rate: and proportional to Ac. In effect, our

3.2 Seasonal stress changes effect on model parameter inversion: ‘monthly’ models.

We next take seasonal stress variations into account (Figure 3, Figure 1B,D). At the sub-
yearly timescale, pressure is not homogenized over the whole reservoir. Given the permeability
(k~3.55¢-13 m?) and porosity (¢p~15%) of the reservoir, its average hydraulic diffusivity is

Apy~0.5 m?/s and its characteristic diffusion length over one year is 1, = /2, t ~10 km

which is smaller than the minimum length scale from any well cluster to the reservoir’s edge
(Figure 1B), effectively resulting in smeared seasonal reservoir pressure. This damping effect
and the heterogeneity in reservoir compressibility (Burkitov et al., 2016; Smith, et al., 2019)
control the spatial distribution of seasonal AS amplitude (Figure 3D) which can reach ~20 kPa
(Figure 3A, B). The effect of seasonal stress variations could be significant if the seismicity
response to stress changes is fast enough. Figure 3E compares the observed seasonal variation of
seismicity rate, obtained by stacking monthly earthquakes for all years (orange curve), with the
stack of rates expected for the CF model with instantaneous nucleation (Figure 3E, yellow
curve). In that case, since the stress evolution is monotonic, the seismicity rate is proportional to
the Coulomb stress rate, AS (Ader & Avouac, 2013; Dempsey & Suckale, 2017). The observed
seasonal variation is much smaller than predicted by the instantaneous nucleation model and is
out of phase by about 3 months. A time dependent nucleation process can in principle explain
both the phase shift and the damped response (Ader & Avouac, 2013) as explored next.

We construct a ‘monthly” TRS model which accounts for seasonal stress variations. The
stress changes are computed using monthly gas extractions accounting for seasonality (Figure 3,
Figure 1D, blue curve). The ‘monthly’ and ‘yearly” TRS models predict temporal (Figure 2A)
and spatial (Figure 2C,D) distributions of seismicity that fit equally well the observations (Figure
2E) but yield significantly different posterior model parameter distributions (Figure S3). When
seasonality in AS is accounted for, both the product r.t, and Ag, are tightly constrained (Figure
S3, blue points). The available seismic catalog is insufficient to derive good constraints on the
background seismicity rate so the trade-off between t, and r cannot be resolved, but the
performance of the forecast is good as it depends chiefly on r.t, and Ao, which are relatively
well constrained. Better constraints in the ‘monthly’ TRS model parameters lead to consistently
shorter and more tightly constrained relaxation times in response to changes in AS (Figure 2B,
Figure S4). The annual stack of seismicity shows that the “yearly” models (Figure3E, green
curves) predict no seasonality with an average of ~35 to 90 events/month, confirming indeed
large epistemic uncertainty. On the other hand, the “monthly” models (Figure 3E, blue curves)
show a consistent stack with the observed catalog and a drastically reduced epistemic uncertainty
as explored below.

3.3 Constraining the nucleation characteristics from earthquake seasonality.

We now assess the ability of the TRS models to explain both the phase and amplitude of the
seismicity response to seasonal stress variations. We adopt the Schuster test & spectrum ( (Ader
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& Avouac, 2013), Supplementary Item 3) which allows searching for any possible periodicity by
building a spectrum of the Schuster p-values. The Schuster spectrum calculated on the 1991-
2022 Groningen earthquake catalog (Dost, et al., 2017; KNMI, 2023) for M >1.1, shows a
significant, isolated periodicity at 1-year period (Figure 4, orange colors, Figure S6). The
Schuster p-value at 1 year (~2.4e-3) uniquely falls above 90% confidence level (meaning the
chance of one tested period yielding such a low p-value being due to chance is less than 10%).
The corresponding Schuster walk at 1-year (Figure 4, orange wiggles, (Beeler & Lockner, 2003;
Noél, et al., 2019)) shows consistent year to year drift indicative of excess seismicity in the
winter, peaking between March and April, delayed with respect to peak extraction rates in
January but synchronized with the maximum amplitude of calculated pressure, and AS in most of
the reservoir (Figure 3D, and orange tick in Figure 4C,D). Note that if smaller earthquakes were
considered in the analysis, the seasonality amplitude would become larger (Figure S6). The
Schuster test and spectrum are not affected by the use of different magnitudes of completion, but
we keep only events with magnitude > 1.1 for consistency with the presented earthquake
forecasts. To test if the observed seasonality is predicted by TRS models, we generate 100
synthetic catalogs from the MAP TRS models accounting for aleatoric variability in the
seismicity generation (Figure S5) and calculate a Schuster spectrum (Figure 4A,B) and a
Schuster walk at 1 year period (Figure 4C, D) for each catalog. The catalogs generated with the
monthly TRS model (accounting for seasonal stress variations in the model inference and
forecast) show clear periodicity at 1-year period with p-values centered around the observed
catalog ones, quantitatively recovering the amplitude of seasonality (Figure 4A, blue dots).
Remarkably, the synthetic catalogs generated from the MAP ‘monthly’ TRS model (Figure 4C,
blue wiggles) show a marked drift, with similar phase and amplitude as the observed catalog. We
also generate synthetic catalogs using the MAP parameters of the ‘yearly’ TRS model but using
the seasonal variation of AS in input (Figure 4B, D, green colors). These example catalogs show
no significant periodicity above ~50% confidence. This ‘yearly’ model predicts a more damped
response to temporal variations of seasonal stress changes. We statistically quantify the capacity
of the models to constrain annual seasonal variations though the errors of the Schuster walks at 1
year period on synthetic catalogs (aleatoric uncertainty) with seasonal stress input to the
observed walk (Figure 4F, Figure S7). Remarkably, the 1000 best models (accounting for
epistemic uncertainty) using yearly TRS models show ~one order of magnitude larger errors in
phase and amplitude of seasonality compared to the monthly TRS ones (Figure 4F). Using this
seasonal analysis and the metrics to quantify seasonality, we can further tighten the constraints
on the range of admissible parameters (Figure 4E, Figure S3B light blue dots). Finally, we
evaluate the seasonality predicted by the instantaneous nucleation CF model in Figure 4E
(yellow curves). This model strongly over-predicts seasonality and responds in phase to the
maximum Coulomb stress rate, AS , (Ader & Avouac, 2013; Dempsey & Suckale, 2023),
effectively showing that the nucleation process cannot be instantaneous.

Solid Earth tides -deformations of Earth's surface caused by gravitational forces- are
another source of short-timescale stress variations that may also affect seismicity (Cochran, et
al., 2004). In Groningen, the amplitude of stress variations due to tidal loads is <0.5 kPa (Figure
S8, Supplementary Text) so ~40 times smaller than the estimated amplitude due to seasonal
extraction variations, consistently with the observation that the Schuster spectrum doesn’t reveal
any detectable periodicity at the dominant semi-diurnal and diurnal tidal periods (Figure S6).
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4 Conclusions and implications

Our results highlight the merit of accounting for the finite duration of earthquake nucleation and
a possible initial strength excess to forecast induced seismicity. These two elements are needed
to obtain a model that can predict the response of seismicity to stress changes on both short-and-
long timescales, and we have proposed a method to quantify the goodness of fit to the short-
timescales in addition to the conventional evaluation on long timescales. If the initial strength
excess is ignored (Candela, et al., 2019), the seismicity response time can be overestimated by
orders of magnitude leading to seismicity forecasts with a sustained seismicity tail because the
delay between the start of operations and the onset of seismicity is adsorbed by a long
characteristic nucleation time. This bias effectively shuts-down the effect of short-timescale
stress variations, and over-predicts seismicity rates following decreases in fluid extraction rates
(Figure 2B, (Heimisson, et al., 2022)). Alternative formulations than rate-and-state friction to
account for a finite nucleation time should lead to a similar behavior (Dahm & Hainzl, 2022;
Zhai, et al., 2019). This study shows that the seismicity response to seasonal stress variations at
Groningen is consistent with the principle that stress variations result in an earthquake time
advance (if the Coulomb stress change is positive) or delay (if the Coulomb stress change is
negative) (Stein, 1999). This principle holds for earthquake nucleation models based on rate-and-
state or coulomb friction with instantaneous failure. A Coulomb stress increase has the effect of
bringing potential earthquake nucleation sites to failure but the transient increase in seismicity
rate will drop as nucleation sites are consumed, and the duration of the transient is characterized
by t3<¢. The opposite occurs under a stress decrease. The total number of events averaged over a
period of the order of t3°¢ or larger will not change if periodic stress variations are added over
the mean stressing rate. Models with long (>1000yr) response times (Candela, et al., 2019) can
give the impression that more events occur due to seasonal variations if the observation period is
not long enough to capture the system’s relaxation (Fig. 2b, and S4, green curves). Our study
shows that t3°¢ is actually small enough (<10yr) that the seasonal variations of stress don’t
augment the seismicity averaged over an annual to multiannual time scale.

The mitigation of seismic hazard associated to subsurface fluid injection or extraction
operations may be improved by accelerating model calibrations in three ways. First, the
deployment of a sensitive seismic network well before starting subsurface operations, combined
with enhanced earthquake detection techniques (Kong, et al., 2018) would help constrain the
background seismicity rates (r, which presents a strong tradeoff with t,, Figure S3) and reveal
any induced seismicity early on, allowing for early calibration of the forecasting model. Second,
varying fluid injection or production rates in a harmonic manner with various periods, would
also help tighten the forecasting model (even if no correlated seismicity response is observed).
Third, by performing shut-in operations over long enough time durations to track and constrain
the relaxation of seismicity. Unbiased forecasting models of induced seismicity obtained by
coupling pressure modelling with geomechanical deformation and seismicity should help
mitigate the risk associated to the exploitation of subsurface reservoirs (geothermal, CO2
sequestration, hydrogen storage, hydrocarbon extraction).

Finally, stress variations at short-and-long times scales also affect natural systems
(tectonic loading, post-seismic relaxation, hydrological/glacial load variations, and fault-to-fault
interactions) and their seismicity response can provide insight into earthquake physics as shown
here for induced seismicity. Commonly, in such studies, only one source of stress variations is
considered, and our study shows that using a model calibrated at one time scale to forecast
seismicity at another timescale can be flawed.
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Figure 1. The Groningen gas field & simulation results.

(A) Geographic context showing extensive seismicity due to the gas field in an otherwise stable
tectonic setting (left), and top view of the reservoir (right) showing identified faults (gray traces;
(Oates, et al., 2022)), and the earthquake catalog (with magnitude >1.1; (Dost, et al., 2017,
KNMLI, 2023)) color coded by time. Sizes represent the earthquake magnitudes. (B) Observed
data averaged over the gas reservoir versus time. Left y-axes shows cumulative extraction
(black), and cumulative earthquake number (orange) since 1991, 34 years after the start of
extraction. Right y-axis shows the discretized extraction data averaged either yearly (green line),
or monthly (blue line). The monthly averaged extraction shows more than 80% seasonal
variations with more gas extraction in the winter months. (C) Map view snapshots of simulation
results at the dates shown in inset: fluid pressure (top row, with the position of extraction well
clusters shown as triangles) and maximum Coulomb stress change calculated 10 m above the
reservoir (AS, bottom row). (D) Simulation results averaged over the reservoir versus time. Left
y-axis shows pressure (blue), and right y-axis shows maximum Coulomb stress changes (dark
purple includes seasonal variations used as input for the monthly TRS model inversions, light
purple shows smoothened seasonality used as input for the yearly TRS model inversions).
Vertical dotted lines correspond to the snapshots shown in panel (C).
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Figure 2. Yearly averaged seismicity rate forecasts for different models. (A) Earthquake
rates comparing observed seismicity (orange curve, for M >1.1), and inversions for the different
models tested in this study. Green curves represent the yearly inversion (seasonality smoothened
out in input Coulomb stress). Blue curves represent the monthly inversion (seasonality accounted
for in input Coulomb stress). Thin lines represent the 1000 best models out of 50 000, accounting
for epistemic uncertainty on model parameters. Thick lighter lines show the Maximum-A-
Posteriori models from the MCMC inversion. Gray line represents the training period from 1993
to 2012. (B) Predicted seismicity rates for a hypothetical ‘shut-in’ of the reservoir with no
change of Coulomb stress past 2012 (dashed gray line). All curves are normalized to 2012. A
Coulomb failure model with instantaneous nucleation would predict an immediate drop of the
seismicity to the background level. Colors correspond to the inversions in (A), and different lines
represent the 1000 best models. (C, D, E) Epicentral event density for the MAP TRS models for
yearly (C), monthly (D), and for the observed catalog (E).
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Figure 3. Spatial and temporal seasonal stress variations in the field & stacked seismicity.
(A) Simulated local stress changes versus time at discrete locations color-coded in panel (C). (B)
12-month moving average detrended local stress changes at the same locations as in panel (A)
versus time for the 1999-2021 period. The seasonal amplitudes of extraction and thus of stress
changes were drastically reduced following the 2012 M,,,3.6 Huizinge earthquake. (C) Map view
of maximum seasonal stress variations peak-to-peak amplitude between 2000 and 2012. The
points color-code locations at which local Coulomb stress evolution in time is shown in panels
(A) and (B). (D) Mean month (during the 2000 to 2012 period) where the local maximum
seasonal stress variations occur in the reservoir. The edges of the reservoir show a clear phase
change for occurrence of maximum seasonal stress variations but have small amplitudes whereas
the central and southern regions of the reservoir have in-phase large seasonal stress amplitudes
(e.g., panel C). (E) Seasonal variation of seismicity rate obtained by stacking all years in the
observed catalog (orange curve) compared with prediction of a Coulomb failure model with
instantaneous nucleation (yellow curve, seismicity rate proportional to stress rate), and the stack
of earthquake rates in our model inversions (accounting for epistemic uncertainty: green curves
for the “yearly” models, blue for the “monthly” models).
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Figure 4. Quantitative constraints on earthquake nucleation models using seasonality. (A,
B) Schuster spectrum (Ader & Avouac, 2013) for the observed catalog (with M > 1.1, orange
points), and 100 synthetic catalogs (accounting for aleatoric uncertainty, Supplementary
Material, Figure S5) derived from the yearly ((A), green points), and monthly ((B), blue points)
MAP TRS models respectively. The Schuster spectrum is evaluated for periods from 6 to 18
months (a larger range of period spectra is shown in Figure S6). Low, isolated p-values quantify
seasonality at a given period. (C, D, E) Schuster walks at 1 year period on the same catalogs as
(A) and (B) respectively, and the instantaneous CF model ((E), orange lines). Circles denote the
probability that the seismicity results from a random process at 50, 1, and 0.1% confidence
levels. Drift direction reflects the times of year with the maximum seismicity rate. The orange
tick mark (MCS) shows the phase of the maximum seasonal Coulomb stress averaged over the
whole reservoir history (March-April). The observed catalog (orange lines) shows a clear
maximum in seismicity rate toward March-April. This phase (and amplitude) is quantitatively
recovered by the shown monthly TRS model (considering seasonal stress variations in input).
The example yearly TRS model does not show signs of seasonality. The instantaneous CF model
overestimates the seasonality. (F) Median vector distance error of synthetic catalogs (accounting
for both epistemic and aleatoric uncertainty) to the observed catalog versus the parameter Ao,
(Supplementary Material). The right-hand inset shows the error density
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Figure 3.
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