

1
2 **Earthquake nucleation characteristics revealed by seismicity response to seasonal**
3 **stress variations induced by gas production at Groningen.**

4 **Mateo Acosta^{1*}, Jean-Philippe Avouac^{1,2}, Jonathan D. Smith¹, Krittanon Sirorattanakul¹,**
5 **Hojjat Kaveh^{1,2}, Stephen J. Bourne³**

6 ¹Division of Geological and Planetary Sciences (GPS), California Institute of Technology,
7 Pasadena, CA, USA.

8 ²Mechanical and Civil Engineering (MCE), California Institute of Technology, Pasadena, CA,
9 USA.

10 ³Shell Global Solutions, Amsterdam, NL.

11 *Corresponding author. Mateo Acosta: acosta@caltech.edu

12 **Key Points:**

13 • An improved reservoir, geomechanical, and seismicity modelling workflow is proposed
14 for forecasting induced seismicity at various timescales.

15 • Short-timescale stress variations allow constraining the characteristics of the earthquake
16 nucleation process using Groningen as case study.

17 • Initial strength excess and finite duration of the nucleation process allow reproducing
18 long-and-short timescale characteristics of seismicity.

19 Abstract

20 Deterministic earthquake prediction remains elusive, but time-dependent probabilistic seismicity
21 forecasting seems within reach thanks to the development of physics-based models relating
22 seismicity to stress changes. Difficulties include constraining the earthquake nucleation model
23 and fault initial stress state. Here, we analyze induced earthquakes from the Groningen gas field,
24 where production is strongly seasonal, and seismicity began 3 decades after production started.
25 We use the seismicity response to stress variations to constrain the earthquake nucleation process
26 and calibrate models for time-dependent forecasting of induced earthquakes. Remarkable
27 agreements of modelled and observed seismicity are obtained when we consider (i) the initial
28 strength excess, (ii) the finite duration of earthquake nucleation, and (iii) the seasonal variations
29 of gas production. We propose a novel metric to quantify the nucleation model's ability to
30 capture the damped amplitude and the phase of the seismicity response to short-timescale
31 (seasonal) stress variations which allows further tightening the model's parameters.

32 Plain Language Summary

33 Earthquakes are difficult to predict with certainty, but progress in forecasting their likelihood
34 using probabilistic models based on stress changes has been made. However, challenges remain
35 in understanding how earthquakes start and the initial conditions of faults. Here, we analyzed
36 induced earthquakes in the Groningen gas field, where production is seasonal and seismic
37 activity began 34 years after gas production started. By studying how the earthquakes respond to
38 rapid changes in stress, we could better understand how they start and develop models to forecast
39 their temporal occurrence. By considering factors like the initial strength of the faults, the
40 duration of earthquake initiation, and seasonal variations in gas production we could accurately
41 match the observed seismic activity. We introduced a new measure to evaluate how well the
42 models captured the damped strength and timing of seismic activity in response to short-term
43 stress changes (such as seasonal variations), which helped refine the model's parameters.

44 1 Introduction

45 Numerous activities related to the decarbonization, or security of energy production
46 involve managing subsurface reservoirs (geothermal, CO₂ sequestration, hydrogen storage,
47 conventional and unconventional oil-and-gas extraction). Induced earthquakes are a major
48 obstacle to these activities (Candela, et al., 2018; Ellsworth, 2013; Goebel & Brodsky, 2018;
49 Grigoli, et al., 2017; Kaven, et al., 2015; Raleigh, et al., 1976; Shirzaei, et al., 2016; Walsh &
50 Zoback, 2015; Zhai, et al., 2019) raising the need for improved methods to forecast induced
51 seismicity. The modern understanding that earthquakes result from unstable frictional fault slip
52 (Scholz, 2019) provides a foundation to forecast changes of earthquake rate in response to stress
53 changes, ΔS (Bourne, et al., 2018; Bourne & Oates, 2017; Dahm & Hainzl, 2022; Dempsey &
54 Suckale, 2017; Dempsey & Suckale, 2023; King, et al., 1994; Kühn, et al., 2022; Langenbruch,
55 et al., 2018; Richter, et al., 2020; Zhai, et al., 2019). The approach requires a model of
56 earthquake nucleation and knowledge of the stress change needed to initiate it (strength excess).
57 At its simplest, the standard Coulomb friction model, CF, assumes that unstable fault slip
58 initiates instantaneously when the ratio of shear stress to effective normal stress exceeds the
59 static friction coefficient. In this context, the often-observed lagged response of the seismicity to
60 stress changes can be modeled through an initial strength excess (Bourne & Oates, 2017). While
61 the CF approach has been found satisfying in several case studies (Bourne, et al., 2018; Bourne

& Oates, 2017; Dempsey & Suckale, 2017; Dempsey & Suckale, 2023; Smith, et al., 2022), this model neglects that earthquake nucleation might not be instantaneous, as evidenced by laboratory experiments (Dieterich, 1994) and the weak correlation of earthquakes with solid Earth tides (Beeler & Lockner, 2003; Cochran, et al., 2004). Some models have introduced an *ad-hoc* critical time-to-failure (Dahm & Hainzl, 2022; Zhai, et al., 2019) to account for either the initial strength excess or non-instantaneous nucleation. A more physical way to account for the finite duration of the nucleation process consists in assuming that nucleation is governed by rate-and-state friction, RS, (Dieterich, 1994), a model adopted with success in a number of studies (Candela, et al., 2019; Candela, et al., 2022; Langenbruch, et al., 2018; Richter, et al., 2020). Discriminating between the CF and RS models has however proven elusive (Dempsey & Suckale, 2023) due to the lack of observational constraints on the nucleation process, and the eventual trade-off between the initial strength excess and the nucleation time. The CF and RS models yield very different forecasts if stress changes occur at short timescales compared to the characteristic time of the nucleation process (Heimisson, et al., 2022), and the nucleation process might therefore be revealed from the seismicity response to large amplitude, short-timescale stress variations (Ader, et al., 2014). Here we demonstrate that the nucleation process is not instantaneous and derive constraints on its characteristic timescales, fault friction parameters, and the initial strength excess by studying seismicity induced by gas extraction from the Groningen field, where strong seasonal variations of gas production (Figure 1A,B) generated significant seasonal seismicity variations.

The Groningen gas field in northeastern Netherlands (Figure 1A) is an ideal example to study induced seismicity due to well-known reservoir properties (Burkitov et al., 2016; de Jager & Visser, 2017; Oates, et al., 2022), detailed seismicity catalog (Dost, et al., 2017; Smith, et al., 2020; Willacy, et al., 2018), and well-resolved surface subsidence (Smith, et al., 2019; van Thienen-Visser & Breunese, 2015). Together, these data have allowed for calibration of models used to hindcast and forecast induced seismicity (Bourne, et al., 2014; Bourne, et al., 2018; Bourne & Oates, 2017; Buijze, et al., 2017; Candela, et al., 2019; Candela, et al., 2022; Dahm & Hainzl, 2022; Dempsey & Suckale, 2017; Dempsey & Suckale, 2023; Heimisson, et al., 2022) (Kühn, et al., 2022; Meyer, et al., 2022; Richter, et al., 2020; Van Wees, et al., 2017). Gas is extracted from a thin, laterally extensive (~100-300 m thickness for ~30*50 km horizontal dimension), porous and permeable (~15-20% porosity, ~3.55E-13 m² permeability (de Jager & Visser, 2017; Meyer et al., 2022)) reservoir hosted in the Rotliegend sandstone formation (Figure 1A,B). Production started in 1963 but earthquakes were not detected until 1991. Initially, the seismicity rate increased exponentially, despite annual extraction rates not being at their peak (Figure 1B, green curve). The 2012 M_w3.6 Huizinge earthquake, the largest event to date, caused public concern and a decision to decrease first and then shut-down production long before exhaustion of the gas reserve (de Waal, et al., 2015; Muntendam-Bos, et al., 2017; van Thienen-Visser & Breunese, 2015). The reduction in production was accompanied with a reduction of the seasonal variations of extraction as these variations were thought to increase the total seismicity (Muntendam-Bos & De Waal, 2013; Sijacic, et al., 2017). More details about the gas field and the available data are given in Supplementary Item 1.

The various stress-based models developed so far consider either instantaneous seismicity nucleation with an initial strength excess (Bourne, et al., 2018; Bourne & Oates, 2017; Dempsey & Suckale, 2017; Dempsey & Suckale, 2023; Meyer, et al., 2022; Smith, et al., 2022) a delayed response due to the nucleation process (Candela, et al., 2019; Candela, et al., 2022; Kühn, et al., 2022; Dahm & Hainzl, 2022; Richter, et al., 2020) or a combination of both (Dahm & Hainzl,

108 2022; Heimisson, et al., 2022). These models fit well the observed seismicity based on yearly
109 averaged stress changes, but predict drastically different responses to rapid variations of
110 production such as shut-ins (Heimisson, et al., 2022; Meyer, et al., 2022). Moreover, a bias could
111 be introduced as these models were calibrated ignoring that, in reality, gas extractions show ~60-
112 80% larger production in the winter from 1975 to 2013 (Figure 1B). Ignoring short-timescale,
113 large-amplitude stress variations could bias the model because the seismicity response to stress
114 changes is non-linear: the CF is non-linear through the initial strength excess and Kaiser effect
115 (seismicity rate drops to zero when the Coulomb stress is lower than previous peak values); the
116 RS includes a delayed Kaiser effect and, adding further non-linearity, an exponential dependence
117 on ΔS (Heimisson & Segall, 2018). The introduction of a stress threshold, if an initial strength
118 excess is allowed, is another source of non-linearity (Heimisson et al., 2022). Hereafter, we
119 compare models with or without accounting for seasonal stress variations to illuminate the
120 characteristics of the nucleation process.

121 **2 Materials and Methods**

122 We present a summary of the modelling strategy (Figure S1) that allows us to resolve (i)
 123 the pore pressure diffusion due to injection/extraction from a porous reservoir, (ii) the
 124 mechanical response of the reservoir to pressure variations, and (iii) the relation between stress
 125 changes and seismicity adopted in this study. We then present the fundamentals of other analysis
 126 techniques used such as the synthetic catalog generation, the Schuster test, and the metric to
 127 quantify seasonality in synthetic catalogs.

128 **2.1 Modelling workflow**

129 Our modeling workflow (Figure S1) consists of different modules which allow us to
 130 predict reservoir pressure, stress changes within and outside the reservoir, subsidence and
 131 seismicity based on the gas extraction flow rates at the wells. The parameters for the different
 132 modules are optimized from matching the observations (well pressure, subsidence, seismicity).

133 *2.1.1 From fluid extraction to pressure changes.*

134 To relate fluid extraction to pressure changes in the reservoir, we use a simplified
 135 reservoir model (Meyer, et al., 2022) which assumes vertical flow equilibrium (VFE) to compute
 136 fluid pressure diffusion in the reservoir from the extraction history. This model assumes that the
 137 timescale for vertical pressure equilibrium is much shorter than the horizontal one due to the thin
 138 and elongated geometry of the reservoir. The problem becomes a two-dimensional one and we
 139 solve the combined conservation of momentum and Darcy's law using the open-source finite
 140 element library FEniCS (Logg, et al., 2012) and calibrate the model's parameters by history
 141 matching the well pressure time-histories. By reducing the computation cost using the VFE
 142 assumption, we can generate pressure ($\Delta p(x, y, t)$) space-time histories in the Groningen
 143 reservoir with 1-month temporal discretization, allowing us for the first time to quantify the
 144 effect of seasonal variations of extraction in the pressure field (See Supplementary Item 2.1 for
 145 details).

146 *2.1.2 From pressure changes to reservoir deformation and stress changes.*

147 We use the poroelastic mechanical model from (Smith, et al., 2022) to relate the fluid
 148 pressure changes to stress changes within and outside the reservoir.

149 $\Delta p(x, y, t)$ calculated using the VFE reservoir model (section 2.2.1) is combined with the
 150 geodetically derived uniaxial compressibility ($C_m(x, y)$; (Smith, et al., 2019)), and the reservoir
 151 thickness ($h(x, y)$) such that the reservoir compaction writes:

$$152 \quad C = C_m(x, y) \cdot \Delta p(x, y, t) \cdot h(x, y) \quad (1)$$

153 We use a semi analytical Green's function approach (Geertsma, 1973; Kuvshinov, 2008) to
 154 relate compaction and displacement/stress. For details on the functions, the spatial smoothing
 155 used and the details on the stress calculation, see (Smith, et al., 2022); and Supplementary Item
 156 2.2. From the changes in shear stress, $\Delta \tau$, and effective normal stress ($\Delta \sigma'_N = \Delta \sigma_N - \Delta p$), we
 157 compute the changes in Coulomb stress, $\Delta S(x, y, t)$, computed 10 m above the reservoir and
 158 cumulated since 1960 (Figure 2A). We use a positive sign for compressive stress such that

159 $\Delta S = \Delta \tau + f \cdot \Delta \sigma'_N$, with f the static friction coefficient of the rock. In this field, the fault's dips
 160 are usually $\sim 85^\circ$ and the strikes show two dominant modes at $N270^\circ$ E and $N350^\circ$ E ((Smith, et
 161 al., 2022); Figure 1A). We use the maximum Coulomb stress changes for both dominant receiver
 162 fault strike modes but results show little sensitivity to this choice (Smith, et al., 2022), the chosen
 163 depth for calculation, and to f . Our model is computationally efficient and consistent with the 3-
 164 D stress changes computed using other methods (Bourne, et al., 2018; Bourne & Oates, 2017;
 165 Buijze, et al., 2017; Candela, et al., 2019; Candela, et al., 2022; Kühn, et al., 2022; Van Wees, et
 166 al., 2017). For detailed analysis of the effect of the different parameters of the model on
 167 seismicity forecasts, see (Smith, et al., 2022). Under reasonable stress sampling schemes, the
 168 forecasts are little affected by the choice of the stress model. Changing the stress model has the
 169 effect of rescaling the inverted seismicity model parameters but does not drastically affect the
 170 seismicity forecasts (Kaveh, et al., 2023).

171 *2.2.3 From stress changes to seismicity rate changes*

172 Finally, we relate ΔS to the time-dependent seismicity rate change ΔR using the Threshold
 173 Rate and State failure function (TRS) of (Heimisson, et al., 2022) which follows Dieterich's
 174 hypothesis (Dieterich, 1994) that earthquake nucleation is governed by rate and state friction but
 175 allows for a population of faults to be sub-critical initially (below steady-state), as expected in a
 176 quiet, intraplate tectonic context such as Groningen. A critical stress threshold (analog to the
 177 strength excess of the Coulomb Failure model) ΔS_c has to be overcome to reach self-sustained
 178 fault slip acceleration (earthquake nucleation) and produce seismicity (Heimisson, et al., 2022).
 179 The TRS model writes for every point in space (x, y) :

$$\frac{\Delta R(t)}{r} = \frac{\exp\left(\frac{\Delta S(t) - \Delta S_c}{A\sigma_0}\right)}{\frac{1}{t_a} \int_{t_b}^t \exp\left(\frac{\Delta S(t') - \Delta S_c}{A\sigma_0}\right) dt' + 1} \quad (2)$$

180 if $t \geq t_b$, and

$$\frac{\Delta R}{r} = 0$$

181 if $t \leq t_b$,

182 with r the background seismicity rate (the seismicity rate that results from constant tectonic
 183 loading), $\Delta S(t)$ the change in Coulomb stress, ΔS_c the critical stress threshold, $A\sigma_0$ the
 184 frictional-stress parameter of Rate and State friction (Dieterich, 1994), t_a the characteristic time
 185 associated to the nucleation process characterizing the decay of seismicity to background rates
 186 after a stress step. Finally, t_b is the time at which ΔS first exceeded ΔS_c .

187 When the sources are critically stressed, $\Delta S_c \sim 0$, the formulation (Eq.2) is equivalent to that of
 188 (Heimisson & Segall, 2018). The characteristic time, t_a relates to the secular background
 189 stressing rate, due to tectonic loading, \dot{t} according to $t_a = \frac{A\sigma_0}{\dot{t}}$. It characterizes the nucleation
 190 process under such loading and would characterize the response time of the seismicity to a stress
 191 step added to the background seismicity. Note that if the system has been stressed, the relaxation

192 time will change as described in section 3.2. The TRS formulation allows for earthquake
 193 nucleation to be time dependent and nucleation would be nearly instantaneous in the limit where
 194 its response time goes to zero, as is assumed in the standard Coulomb failure model which is also
 195 commonly used to relate stress changes to seismicity (Dempsey & Suckale, 2017; Bourne &
 196 Oates, 2017; Bourne, et al., 2018; Dempsey & Suckale, 2023; Meyer, et al., 2022; Smith, et al.,
 197 2022).

198 We sample a probability distribution of the TRS model parameters using an ensemble
 199 Markov Chain Monte Carlo (*MCMC*) algorithm (Foreman-Mackey, et al., 2013) implemented in
 200 PyMC3 (Salvatier, et al., 2016) with uniform priors and a non-local Poisson log-likelihood
 201 function (See supplementary Item 2.3). For all TRS models generated in this study, we discretize
 202 the stress changes on a monthly basis to avoid numerical integration problems when comparing
 203 monthly and yearly discretizations. The difference between the ‘monthly’ and ‘yearly’ TRS
 204 model inversions presented hereafter is that the input stress changes and seismicity for the
 205 ‘yearly’ models are smoothed using a 12-month average for the whole time-history. The
 206 posterior parameter space accounts therefore for epistemic uncertainty on the model’s
 207 parameters. We report the 1000 model parameter sets with the lowest negative log-likelihood
 208 calculated over the training period only. This allows us to compare constraints on TRS models
 209 accounting or not for seasonal variations. Equivalently, if we were to consider goodness of fit
 210 from given confidence bounds, the number of models falling within a fixed interval would bring
 211 information about the constraints on the TRS model parameters.

212 Then, from the inverted model parameters we can generate the seismicity rates for the
 213 whole reservoir as function of time, $R(t)$. Finally, to generate earthquake catalogs we need to
 214 account for the aleatoric variability around the predicted rates which accounts for the fact that the
 215 earthquake generation is a non-stationary Poisson process of known rate. Details on the synthetic
 216 catalog generation are given in Supplementary Item 3.

217 2.2 Testing seasonality through the Schuster test & spectrum.

218 We test possible seasonality (periodicities) in the observed and synthetic seismicity
 219 catalogs using the Schuster test (Ader & Avouac, 2013; Beeler & Lockner, 2003; Schuster,
 220 1897). For a tested period T , a phase θ_i is associated to each event i occurring at time t_i such that
 221 $\theta_i = 2\pi \frac{t_i}{T}$. Then, a 2D walk of N successive unit length steps in the phase direction are
 222 performed. The total distance D between the start and end points of the walk relates to the
 223 Schuster *p-value* which measures the probability that the walked length is the result of a random
 224 Poisson point process as $p = e^{-\frac{D^2}{N}}$, with N the total number of steps taken. Thus, the lower this
 225 *p-value*, the higher the probability that the detected periodicity is real. To study the correlation
 226 with a periodic perturbation, we evaluate the *p-value* over a continuous range of periods $T \in$
 227 $[T_0, T_1]$ e.g. we evaluate the Schuster spectrum (Ader & Avouac, 2013). The measured *p-values*
 228 can then be compared with the expected value, which depends on the tested period, not to be
 229 exceeded at a certain confidence level. The spectrum allows for identification of periodicities
 230 that have little probability to be due to chance because periodicities in the earthquake catalog
 231 will show as isolated low *p-values* in the spectrum, and event clusters will show as a drifting low
 232 *p-value* close to the characteristic time of the cluster (Ader & Avouac, 2013).

233 We define a new metric to characterize the capacity of the TRS models to capture
 234 seasonality as the vector distance error of the median of all synthetic catalog's Schuster random
 235 walks to that of the observed catalog. To separate their contribution, we also compute the phase,
 236 and distance errors for the median of all synthetic catalogs to the observed catalog. See
 237 Supplementary Item 4 for details. This analysis allows to quantify the model's capacity of
 238 reproducing the amplitude and phase of the seasonal variations in the observed earthquake
 239 catalog.

240 **3 Results and discussion**

241 3.1 TRS model parameters not accounting for seasonal stress changes: 'yearly' models.

242 When seasonal fluctuations of ΔS and seismicity are ignored (Figure 1D, light purple curve), we
 243 obtain a 'yearly' TRS model which fits well the temporal (Figure 2A, green curve) and spatial
 244 distributions (Figure 2C) of seismicity. The prediction of the maximum-a-posteriori (MAP)
 245 yearly TRS model at the annual time scale is satisfying. However, if a range of acceptable
 246 models is considered (1000 best models out of 50,000, accounting for epistemic uncertainty, see
 247 (Kaveh, et al., 2023) for details), they yield widely different predictions outside the training
 248 period due to large trade-offs among the model parameters, especially between t_a and r (Figure
 249 S3). The response time of seismicity to sub-annual stress variations is not well constrained in this
 250 inversion. To illustrate this effect, the green curves in Figure 2B show the response of the 1000
 251 best yearly TRS models assuming no stress-changes after 2012 (frozen to $\Delta S(t_s)$, mimicking a
 252 hypothetical 'shut-in' at time t_s). The relaxation following the 'shut-in' is not characterized
 253 by t_a , (10-10,000 years for yearly TRS models), but by a new "accelerated" response time t_{acc}
 254 such that equation (2) becomes:

$$\frac{\Delta R}{r} = \frac{\exp\left(\frac{\Delta S(t_s) - \Delta S_c}{A\sigma_0}\right)}{1 + \frac{1}{t_a} \int_{t_b}^{t_s} \exp\left(\frac{\Delta S(t') - \Delta S_c}{A\sigma_0}\right) dt' + (t - t_s) \left(\frac{\exp\left(\frac{\Delta S(t_s) - \Delta S_c}{A\sigma_0}\right)}{t_a} \right)} \quad (3)$$

$$\frac{\Delta R}{r} = \frac{\frac{t_a}{(t - t_s) + \frac{t_a + \int_{t_b}^{t_s} \exp\left(\frac{\Delta S(t') - \Delta S_c}{A\sigma_0}\right) dt'}{\exp\left(\frac{\Delta S(t_s) - \Delta S_c}{A\sigma_0}\right)}}}{(t - t_s) + \frac{\exp\left(\frac{\Delta S(t_s) - \Delta S_c}{A\sigma_0}\right)}{\exp\left(\frac{\Delta S(t_s) - \Delta S_c}{A\sigma_0}\right)}} \quad (3)$$

255

256 We can identify this to the form:

$$\frac{\Delta R(t)}{r} = \frac{t_a}{(t - t_s) + t^{acc}}$$

257 whose characteristic decay time is:

$$t_a^{acc} = \frac{(t_a + \int_{t_b}^{t_s} \exp\left(\frac{\Delta S(t') - \Delta S_c}{A\sigma_0}\right) dt')}{\exp\left(\frac{\Delta S(t_s) - \Delta S_c}{A\sigma_0}\right)} \quad (4)$$

258 t_a^{acc} becomes much shorter than t_a because the nucleation process is accelerated exponentially
 259 due to stress increase induced by the reservoir compaction. Assuming an approximately linear

262 increase of $\Delta S(t)$ at the multiannual time scale, it converges quickly toward $t_a^{acc}(t_s) \sim \frac{A\sigma_0 \cdot \Delta t}{\Delta S(t_s)}$
 263 where Δt is the duration of production from onset of seismicity to “shut in”. It is therefore
 264 inversely proportional to the average stressing rate: $\frac{\Delta S(t_s)}{\Delta t}$, and proportional to $A\sigma_0$. In effect, our
 265 best yearly TRS models show t_a^{acc} ranging from 0.1 to 200 years after a hypothetical shut-in,
 266 showing that $A\sigma_0$ is poorly constrained (Figure S4, green curves, Figure S3A).

267 3.2 Seasonal stress changes effect on model parameter inversion: ‘monthly’ models.

268 We next take seasonal stress variations into account (Figure 3, Figure 1B,D). At the sub-
 269 yearly timescale, pressure is not homogenized over the whole reservoir. Given the permeability
 270 ($k \sim 3.55 \text{e-}13 \text{ m}^2$) and porosity ($\phi \sim 15\%$) of the reservoir, its average hydraulic diffusivity is
 271 $\alpha_{hy} \sim 0.5 \text{ m}^2/\text{s}$ and its characteristic diffusion length over one year is $r_{hy} = \sqrt{2\pi\alpha_{hy}t} \sim 10 \text{ km}$
 272 which is smaller than the minimum length scale from any well cluster to the reservoir’s edge
 273 (Figure 1B), effectively resulting in smeared seasonal reservoir pressure. This damping effect
 274 and the heterogeneity in reservoir compressibility (Burkitov et al., 2016; Smith, et al., 2019)
 275 control the spatial distribution of seasonal ΔS amplitude (Figure 3D) which can reach $\sim 20 \text{ kPa}$
 276 (Figure 3A, B). The effect of seasonal stress variations could be significant if the seismicity
 277 response to stress changes is fast enough. Figure 3E compares the observed seasonal variation of
 278 seismicity rate, obtained by stacking monthly earthquakes for all years (orange curve), with the
 279 stack of rates expected for the CF model with instantaneous nucleation (Figure 3E, yellow
 280 curve). In that case, since the stress evolution is monotonic, the seismicity rate is proportional to
 281 the Coulomb stress rate, $\Delta \dot{S}$ (Ader & Avouac, 2013; Dempsey & Suckale, 2017). The observed
 282 seasonal variation is much smaller than predicted by the instantaneous nucleation model and is
 283 out of phase by about 3 months. A time dependent nucleation process can in principle explain
 284 both the phase shift and the damped response (Ader & Avouac, 2013) as explored next.

285 We construct a ‘monthly’ TRS model which accounts for seasonal stress variations. The
 286 stress changes are computed using monthly gas extractions accounting for seasonality (Figure 3,
 287 Figure 1D, blue curve). The ‘monthly’ and ‘yearly’ TRS models predict temporal (Figure 2A)
 288 and spatial (Figure 2C,D) distributions of seismicity that fit equally well the observations (Figure
 289 2E) but yield significantly different posterior model parameter distributions (Figure S3). When
 290 seasonality in ΔS is accounted for, both the product $r \cdot t_a$ and $A\sigma_0$ are tightly constrained (Figure
 291 S3, blue points). The available seismic catalog is insufficient to derive good constraints on the
 292 background seismicity rate so the trade-off between t_a and r cannot be resolved, but the
 293 performance of the forecast is good as it depends chiefly on $r \cdot t_a$ and $A\sigma_0$ which are relatively
 294 well constrained. Better constraints in the ‘monthly’ TRS model parameters lead to consistently
 295 shorter and more tightly constrained relaxation times in response to changes in ΔS (Figure 2B,
 296 Figure S4). The annual stack of seismicity shows that the “yearly” models (Figure 3E, green
 297 curves) predict no seasonality with an average of ~ 35 to 90 events/month, confirming indeed
 298 large epistemic uncertainty. On the other hand, the “monthly” models (Figure 3E, blue curves)
 299 show a consistent stack with the observed catalog and a drastically reduced epistemic uncertainty
 300 as explored below.

301 3.3 Constraining the nucleation characteristics from earthquake seasonality.

302 We now assess the ability of the TRS models to explain both the phase and amplitude of the
 303 seismicity response to seasonal stress variations. We adopt the Schuster test & spectrum ((Ader

304 & Avouac, 2013), Supplementary Item 3) which allows searching for any possible periodicity by
305 building a spectrum of the Schuster *p-values*. The Schuster spectrum calculated on the 1991-
306 2022 Groningen earthquake catalog (Dost, et al., 2017; KNMI, 2023) for $M \geq 1.1$, shows a
307 significant, isolated periodicity at 1-year period (Figure 4, orange colors, Figure S6). The
308 Schuster *p-value* at 1 year ($\sim 2.4e-3$) uniquely falls above 90% confidence level (meaning the
309 chance of one tested period yielding such a low *p-value* being due to chance is less than 10%).
310 The corresponding Schuster walk at 1-year (Figure 4, orange wiggles, (Beeler & Lockner, 2003;
311 Noël, et al., 2019)) shows consistent year to year drift indicative of excess seismicity in the
312 winter, peaking between March and April, delayed with respect to peak extraction rates in
313 January but synchronized with the maximum amplitude of calculated pressure, and ΔS in most of
314 the reservoir (Figure 3D, and orange tick in Figure 4C,D). Note that if smaller earthquakes were
315 considered in the analysis, the seasonality amplitude would become larger (Figure S6). The
316 Schuster test and spectrum are not affected by the use of different magnitudes of completion, but
317 we keep only events with magnitude ≥ 1.1 for consistency with the presented earthquake
318 forecasts. To test if the observed seasonality is predicted by TRS models, we generate 100
319 synthetic catalogs from the MAP TRS models accounting for aleatoric variability in the
320 seismicity generation (Figure S5) and calculate a Schuster spectrum (Figure 4A,B) and a
321 Schuster walk at 1 year period (Figure 4C, D) for each catalog. The catalogs generated with the
322 monthly TRS model (accounting for seasonal stress variations in the model inference and
323 forecast) show clear periodicity at 1-year period with *p*-values centered around the observed
324 catalog ones, quantitatively recovering the amplitude of seasonality (Figure 4A, blue dots).
325 Remarkably, the synthetic catalogs generated from the MAP ‘monthly’ TRS model (Figure 4C,
326 blue wiggles) show a marked drift, with similar phase and amplitude as the observed catalog. We
327 also generate synthetic catalogs using the MAP parameters of the ‘yearly’ TRS model but using
328 the seasonal variation of ΔS in input (Figure 4B, D, green colors). These example catalogs show
329 no significant periodicity above $\sim 50\%$ confidence. This ‘yearly’ model predicts a more damped
330 response to temporal variations of seasonal stress changes. We statistically quantify the capacity
331 of the models to constrain annual seasonal variations through the errors of the Schuster walks at 1
332 year period on synthetic catalogs (aleatoric uncertainty) with seasonal stress input to the
333 observed walk (Figure 4F, Figure S7). Remarkably, the 1000 best models (accounting for
334 epistemic uncertainty) using yearly TRS models show \sim one order of magnitude larger errors in
335 phase and amplitude of seasonality compared to the monthly TRS ones (Figure 4F). Using this
336 seasonal analysis and the metrics to quantify seasonality, we can further tighten the constraints
337 on the range of admissible parameters (Figure 4E, Figure S3B light blue dots). Finally, we
338 evaluate the seasonality predicted by the instantaneous nucleation CF model in Figure 4E
339 (yellow curves). This model strongly over-predicts seasonality and responds in phase to the
340 maximum Coulomb stress rate, ΔS , (Ader & Avouac, 2013; Dempsey & Suckale, 2023),
341 effectively showing that the nucleation process cannot be instantaneous.

342 Solid Earth tides -deformations of Earth's surface caused by gravitational forces- are
343 another source of short-timescale stress variations that may also affect seismicity (Cochran, et
344 al., 2004). In Groningen, the amplitude of stress variations due to tidal loads is < 0.5 kPa (Figure
345 S8, Supplementary Text) so ~ 40 times smaller than the estimated amplitude due to seasonal
346 extraction variations, consistently with the observation that the Schuster spectrum doesn't reveal
347 any detectable periodicity at the dominant semi-diurnal and diurnal tidal periods (Figure S6).

348 **4 Conclusions and implications**

349 Our results highlight the merit of accounting for the finite duration of earthquake nucleation and
 350 a possible initial strength excess to forecast induced seismicity. These two elements are needed
 351 to obtain a model that can predict the response of seismicity to stress changes on both short-and-
 352 long timescales, and we have proposed a method to quantify the goodness of fit to the short-
 353 timescales in addition to the conventional evaluation on long timescales. If the initial strength
 354 excess is ignored (Candela, et al., 2019), the seismicity response time can be overestimated by
 355 orders of magnitude leading to seismicity forecasts with a sustained seismicity tail because the
 356 delay between the start of operations and the onset of seismicity is adsorbed by a long
 357 characteristic nucleation time. This bias effectively shuts-down the effect of short-timescale
 358 stress variations, and over-predicts seismicity rates following decreases in fluid extraction rates
 359 (Figure 2B, (Heimisson, et al., 2022)). Alternative formulations than rate-and-state friction to
 360 account for a finite nucleation time should lead to a similar behavior (Dahm & Hainzl, 2022;
 361 Zhai, et al., 2019). This study shows that the seismicity response to seasonal stress variations at
 362 Groningen is consistent with the principle that stress variations result in an earthquake time
 363 advance (if the Coulomb stress change is positive) or delay (if the Coulomb stress change is
 364 negative) (Stein, 1999). This principle holds for earthquake nucleation models based on rate-and-
 365 state or coulomb friction with instantaneous failure. A Coulomb stress increase has the effect of
 366 bringing potential earthquake nucleation sites to failure but the transient increase in seismicity
 367 rate will drop as nucleation sites are consumed, and the duration of the transient is characterized
 368 by t_a^{acc} . The opposite occurs under a stress decrease. The total number of events averaged over a
 369 period of the order of t_a^{acc} or larger will not change if periodic stress variations are added over
 370 the mean stressing rate. Models with long (>1000 yr) response times (Candela, et al., 2019) can
 371 give the impression that more events occur due to seasonal variations if the observation period is
 372 not long enough to capture the system's relaxation (Fig. 2b, and S4, green curves). Our study
 373 shows that t_a^{acc} is actually small enough (<10 yr) that the seasonal variations of stress don't
 374 augment the seismicity averaged over an annual to multiannual time scale.

375 The mitigation of seismic hazard associated to subsurface fluid injection or extraction
 376 operations may be improved by accelerating model calibrations in three ways. First, the
 377 deployment of a sensitive seismic network well before starting subsurface operations, combined
 378 with enhanced earthquake detection techniques (Kong, et al., 2018) would help constrain the
 379 background seismicity rates (r , which presents a strong tradeoff with t_a , Figure S3) and reveal
 380 any induced seismicity early on, allowing for early calibration of the forecasting model. Second,
 381 varying fluid injection or production rates in a harmonic manner with various periods, would
 382 also help tighten the forecasting model (even if no correlated seismicity response is observed).
 383 Third, by performing shut-in operations over long enough time durations to track and constrain
 384 the relaxation of seismicity. Unbiased forecasting models of induced seismicity obtained by
 385 coupling pressure modelling with geomechanical deformation and seismicity should help
 386 mitigate the risk associated to the exploitation of subsurface reservoirs (geothermal, CO₂
 387 sequestration, hydrogen storage, hydrocarbon extraction).

388 Finally, stress variations at short-and-long times scales also affect natural systems
 389 (tectonic loading, post-seismic relaxation, hydrological/glacial load variations, and fault-to-fault
 390 interactions) and their seismicity response can provide insight into earthquake physics as shown
 391 here for induced seismicity. Commonly, in such studies, only one source of stress variations is
 392 considered, and our study shows that using a model calibrated at one time scale to forecast
 393 seismicity at another timescale can be flawed.

394 **Acknowledgments**

395 This study was supported by the NSF/IUCRC Geomechanics and Mitigation of Geohazards
396 (National Science Foundation award # 1822214), and Extended Project GMG-3. M.A.
397 Acknowledges funding from the Swiss National Science Foundation through grant
398 P2ELP2_195127. We gratefully acknowledge data and support from Shell Global
399 Solutions. Authors declare that they have no competing interests. We thank two anonymous
400 reviewers for their helpful comments.

401

402 **Open Research**

403 The data needed to reproduce this article can be found in (Burkitov et al., 2016) and (Oates, et
404 al., 2022). Codes necessary for the reproduction of figures in this article are available through
405 (Acosta, et al., 2023).

406

407 **References**

408

409 Acosta, M. et al., 2023. Dataset and codes for : Earthquake nucleation characteristics revealed by
410 seismicity response to seasonal stress variations induced by gas production at Groningen.
411 [Software]. *Zenodo* <https://doi.org/10.5281/zenodo.8329298>.

412 Ader, T. J. & Avouac, J.-P., 2013. Detecting periodicities and declustering in earthquake
413 catalogs using the Schuster spectrum, application to Himalayan seismicity. *Earth and*
414 *Planetary Science Letters*, September, Volume 377-378, p. 97–105.

415 Ader, T. J., Lapusta, N., Avouac, J. P. & Ampuero, J. P., 2014. Response of rate-and-state
416 seismogenic faults to harmonic shear-stress perturbations. *Geophysical Journal*
417 *International*, Volume 198, p. 385–413.

418 Beeler, N. & Lockner, D., 2003. Why earthquakes correlate weakly with the solid Earth tides:
419 Effects of periodic stress on the rate and probability of earthquake occurrence. *Journal of*
420 *Geophysical Research*, Volume <https://doi.org/10.1029/2001JB001518>.

421 Bourne, S. J. & Oates, S. J., 2017. Development of statistical geomechanical models for
422 forecasting seismicity induced by gas production from the Groningen field. *Geologie en*
423 *Mijnbouw/Netherlands Journal of Geosciences*, Volume 96, p. s175–s182.

424 Bourne, S. J. & Oates, S. J., 2017. Extreme Threshold Failures Within a Heterogeneous Elastic
425 Thin Sheet and the Spatial-Temporal Development of Induced Seismicity Within the
426 Groningen Gas Field. *Journal of Geophysical Research: Solid Earth*, Volume 122, pp.
427 10,299–10,320.

428 Bourne, S. J. & Oates, S. J., 2020. Stress-Dependent Magnitudes of Induced Earthquakes in the
429 Groningen Gas Field. *Journal of Geophysical Research: Solid Earth*, Volume 125.

430 Bourne, S. J., Oates, S. J. & van Elk, J., 2018. The exponential rise of induced seismicity with
431 increasing stress levels in the Groningen gas field and its implications for controlling
432 seismic risk. *Geophysical Journal International*, June, Volume 213, p. 1693–1700.

433 Bourne, S. J., Oates, S., van Elk, J. & Doornhof, D., 2014. A seismological model for
434 earthquakes induced by fluid extraction from a subsurface reservoir. *Journal of*
435 *Geophysical Research: Solid Earth*, Volume 119, p. 8991–9015.

436 Buijze, L. et al., 2017. Fault reactivation mechanisms and dynamic rupture modelling of
437 depletion-induced seismic events in a Rotliegend gas reservoir. *Netherlands Journal of*
438 *Geosciences*, December, Volume 96, p. s131–s148.

439 Burkitt et al., 2016. Groningen Field Review 2015 Subsurface Dynamic Modelling Report..
440 *Nederlandse Aardolie Maatschappij*, [https://nam-feitenencijfers.data-
441 app.nl/download/rapport/e683753a-e085-417d-995d-b7ae7a9c820f?open=true](https://nam-feitenencijfers.data-app.nl/download/rapport/e683753a-e085-417d-995d-b7ae7a9c820f?open=true).

442 Candela, T. et al., 2019. Depletion-Induced Seismicity at the Groningen Gas Field: Coulomb
443 Rate-and-State Models Including Differential Compaction Effect. *Journal of Geophysical*
444 *Research: Solid Earth*, Volume 124, p. 7081–7104.

445 Candela, T. et al., 2022. Controls on the spatio-temporal patterns of induced seismicity in
446 Groningen constrained by physics-based modelling with Ensemble-Smoothening data
447 assimilation. *Geophysical Journal International*, February, Volume 229, p. 1282–1308.

448 Candela, T., Wassing, B., ter Heege, J. & Buijze, L., 2018. How earthquakes are induced.
449 *Science*, May, Volume 360, p. 598–600.

450 Chanard, K. et al., 2019. Sensitivity of Acoustic Emission Triggering to Small Pore Pressure
451 Cycling Perturbations During Brittle Creep. *Geophysical Research Letters*, Volume 46, p.
452 7414–7423.

453 Cochran, E. S., Vidale, J. E. & Tanaka, S., 2004. Earth Tides Can Trigger Shallow Thrust Fault
454 Earthquakes. *Science*, November, Volume 306, p. 1164–1166.

455 Dahm, T. & Hainzl, S., 2022. A Coulomb Stress Response Model for Time-Dependent
456 Earthquake Forecasts. *Journal of Geophysical Research: Solid Earth*, September, Volume
457 127.

458 de Jager, J. & Visser, C., 2017. Geology of the Groningen field – an overview. *Netherlands*
459 *Journal of Geosciences*, December, Volume 96, p. s3–s15.

460 de Waal, J. A., Muntendam-Bos, A. G. & Roest, J. P. A., 2015. Production induced subsidence
461 and seismicity in the Groningen gas field – can it be managed?. *Proceedings of IAHS*,
462 November, Volume 372, p. 129–139.

463 Dempsey, D. & Suckale, J., 2017. Physics-based forecasting of induced seismicity at Groningen
464 gas field, the Netherlands. *Geophysical Research Letters*, Volume 44, p. 7773–7782.

465 Dempsey, D. & Suckale, J., 2023. Physics-Based Forecasting of Induced Seismicity at
466 Groningen Gas Field, The Netherlands: Post Hoc Evaluation and Forecast Update.
467 *Seismological Research Letters*, January, Volume 94, p. 1429–1446.

468 Dieterich, J., 1994. A constitutive law for rate of earthquake production and its application to
469 earthquake clustering. *Journal of Geophysical Research*, Volume
470 <https://doi.org/10.1029/93JB02581>.

471 Dost, B. & Kraaijpoel, D., 2013. The August 16, 2012 earthquake near Huizinge (Groningen).
472 *KNMI reports*.

473 Dost, B., Ruigrok, E. & Spetzler, J., 2017. Development of seismicity and probabilistic hazard
474 assessment for the Groningen gas field. *Netherlands Journal of Geosciences*, December,
475 Volume 96, p. s235–s245.

476 Ellsworth, W. L., 2013. Injection-Induced Earthquakes. *Science*, Volume 341, p. 1225942–
477 1225942.

478 Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J., 2013. emcee: The MCMC
479 Hammer. *Publications of the Astronomical Society of the Pacific*, February, Volume 125,
480 p. 306.

481 Geertsma, J., 1973. Land Subsidence Above Compacting Oil and Gas Reservoirs. *Journal of
482 Petroleum Technology*, June, Volume 25, p. 734–744.

483 Goebel, T. H. W. & Brodsky, E. E., 2018. The spatial footprint of injection wells in a global
484 compilation of induced earthquake sequences. *Science*, August.

485 Grigoli, F. et al., 2017. Current challenges in monitoring, discrimination, and management of
486 induced seismicity related to underground industrial activities: A European perspective.
487 *Reviews of Geophysics*, Volume 55, p. 310–340.

488 Heimisson, E. R., Smith, J. D., Avouac, J.-P. & Bourne, S. J., 2022. Coulomb threshold rate-and-
489 state model for fault reactivation: application to induced seismicity at Groningen.
490 *Geophysical Journal International*, March, Volume 228, p. 2061–2072.

491 Heimisson, E. & Segall, P., 2018. Constitutive Law for Earthquake Production Based on Rate-
492 and-State Friction: Dieterich 1994 Revisited. *Journal of Geophysical Research: Solid*
493 *Earth*, Volume 123, p. 4141–4156.

494 Kühn, D. et al., 2022. A review of source models to further the understanding of the seismicity of
495 the Groningen field. *Netherlands Journal of Geosciences*, Volume 101, p. e11.

496 Kaiser, J., 1950. Untersuchungen über das Auftreten von Geräuschen beim Zugversuch.
497 *Dissertation Technische Hochschule München*.

498 Kaveh, H. et al., 2023. Induced Seismicity Forecasting with Uncertainty Quantification:
499 Application to the Groningen Gas Field. *Authorea Preprints*,
500 *doi:10.22541/au.168607320.06892091/v1*.

501 Kaven, J., Hickman, S., McGarr, A. & Ellsworth, W., 2015. Surface monitoring of
502 microseismicity at the Decatur, Illinois, CO₂ sequestration demonstration site..
503 *Seismological Research Letters*, Volume 86, p. 1096–1101.

504 King, G., Stein, R. & Lin, J., 1994. Static stress changes and the triggering of earthquakes.
505 *Bulletin of the Seismological Society of America*, Volume 84, p. 935–953.

506 KNMI, 2023. KNMI Earthquake Catalog - Groningen - Last Accessed 2023.01.25.

507 Kong, Q. et al., 2018. Machine Learning in Seismology: Turning Data into Insights.
508 *Seismological Research Letters*, November, Volume 90, p. 3–14.

509 Kuvshinov, B. N., 2008. Elastic and piezoelectric fields due to polyhedral inclusions.
510 *International Journal of Solids and Structures*, March, Volume 45, p. 1352–1384.

511 Langenbruch, C., Weingarten, M. & Zoback, M. D., 2018. Physics-based forecasting of man-
512 made earthquake hazards in Oklahoma and Kansas. *Nature Communications*, September,
513 Volume 9, p. 3946.

514 Logg, A., Mardal, K.-A. & Wells, G., 2012. Automated Solution of Differential Equations by the
515 Finite Element Method The FEniCS book.. *Lecture Notes in Computational Science and*
516 *Engineering*, Volume Vol. 84..

517 Meyer, H., Smith, J. D., Bourne, S. J. & Avouac, J.-P., 2022. An integrated framework for
518 surface deformation modeling and induced seismicity forecasting due to reservoir
519 operations. *Geological Society, London, Special Publications*, August, Volume 528, p.
520 SP528–2022–169.

521 Muntendam-Bos, A. G., 2020. Clustering characteristics of gas-extraction induced seismicity in
522 the Groningen gas field. *Geophysical Journal International*, May, Volume 221, p. 879–
523 892.

524 Muntendam-Bos, A. G. & De Waal, H., 2013. Reassessment of the probability of higher
525 magnitude earthquakes in the Groningen gas field. *SODM reports*, January.

526 Muntendam-Bos, A. G. et al., 2022. An overview of induced seismicity in the Netherlands.
527 *Netherlands Journal of Geosciences*, January, Volume 101, p. e1.

528 Muntendam-Bos, A. G., Roest, J. P. A. & Waal, H. A. d., 2017. The effect of imposed
529 production measures on gas extraction induced seismic risk. *Netherlands Journal of*
530 *Geosciences*, December, Volume 96, p. s271–s278.

531 Noël, C., Passelègue, F. X., Giorgetti, C. & Violay, M., 2019. Fault Reactivation During Fluid
532 Pressure Oscillations: Transition From Stable to Unstable Slip. *Journal of Geophysical*
533 *Research: Solid Earth*, Volume 124, p. 10940–10953.

534 Oates, S. et al., 2022. Geomechanical, seismological, and geodetic data pertaining to the
535 Groningen gas field: a data package used in the "Mmax II Workshop", on constraining
536 the maximum earthquake magnitude in the Groningen field. *Data Publication platform of*
537 *Utrecht University*, [https://acc.epos-](https://acc.epos-msl.uu.nl/dataset/b91f6311c0babb899e1aa5d9d79a2eb6)
538 [msl.uu.nl/dataset/b91f6311c0babb899e1aa5d9d79a2eb6](https://acc.epos-msl.uu.nl/dataset/b91f6311c0babb899e1aa5d9d79a2eb6), September.

539 Post, R. A. J. et al., 2021. Interevent-time distribution and aftershock frequency in non-stationary
540 induced seismicity. *Scientific Reports*, February, Volume 11, p. 3540.

541 Raleigh, C., Healy, J. & Bredehoeft, J., 1976. An experiment in earthquake control at Rangely,
542 Colorado. *Science*.

543 Richter, G., Hainzl, S., Dahm, T. & Zöller, G., 2020. Stress-based, statistical modeling of the
544 induced seismicity at the Groningen gas field, The Netherlands. *Environmental Earth*
545 *Sciences*, May, Volume 79, p. 252.

546 Salvatier, J., Wiecki, T. V. & Fonnesbeck, C., 2016. Probabilistic programming in Python using
547 PyMC3. *PeerJ Computer Science*, April, Volume 2, p. e55.

548 Scholz, C. H., 2019. The Mechanics of Earthquakes and Faulting.

549 Schuster, 1897. On lunar and solar periodicities of earthquakes |. *Proceedings of the Royal*
550 *Society of London..*

551 Shirzaei, M. et al., 2016. Surface uplift and time-dependent seismic hazard due to fluid injection
552 in eastern Texas. *Science*, September, Volume 353, p. 1416–1419.

553 Sijacic, D., Pijpers, F., Nepveu, M. & Thienen-Visser, K. v., 2017. Statistical evidence on the
554 effect of production changes on induced seismicity. *Netherlands Journal of Geosciences*,
555 December, Volume 96, p. s27–s38.

556 Smith, J. D. et al., 2019. Reconciling the Long-Term Relationship Between Reservoir Pore
557 Pressure Depletion and Compaction in the Groningen Region. *Journal of Geophysical*
558 *Research: Solid Earth*, Volume 124, p. 6165–6178.

559 Smith, J. D., Heimison, E. R., Bourne, S. J. & Avouac, J.-P., 2022. Stress-based forecasting of
560 induced seismicity with instantaneous earthquake failure functions : Applications to the
561 Groningen Gas Reservoir .. *Earth and Planetary Science Letters*, Volume 594.

562 Smith, J. D., White, R. S., Avouac, J. P. & Bourne, S. J., 2020. Probabilistic earthquake locations
563 of induced seismicity in the Groningen region, the Netherlands. *Geophysical Journal*
564 *International*, Volume 222, p. 507–516.

565 Stein, R. S., 1999. The role of stress transfer in earthquake occurrence.. *Nature*, 402(6762), pp.
566 605-609.

567 Trampert, J., Benzi, R. & Toschi, F., 2022. Implications of the statistics of seismicity recorded
568 within the Groningen gas field. *Netherlands Journal of Geosciences*, Volume 101, p. e9.

569 van Thienen-Visser, K. & Breunese, J., 2015. Induced seismicity of the Groningen gas field:
570 History and recent developments. *The Leading Edge*, Volume 34, p. 664–671.

571 Van Wees, J.-D. et al., 2017. Geomechanical models for induced seismicity in the Netherlands:
572 inferences from simplified analytical, finite element and rupture model approaches.
573 *Netherlands Journal of Geosciences*, December, Volume 96, p. s183–s202.

574 Walsh, F. & Zoback, M., 2015. Oklahoma's recent earthquakes and saltwater disposal. *Science*
575 *Advances*, Volume 1.

576 Willacy, C. et al., 2018. Application of full-waveform event location and moment-tensor
577 inversion for Groningen induced seismicity. *The Leading Edge*, February, Volume 37, p.
578 92–99.

579 Zaliapin, I. & Ben-Zion, Y., 2013. Earthquake clusters in southern California I: Identification
580 and stability: Identification of Earthquake Clusters.. *Journal of Geophysical Research: Solid Earth*, June, Volume 118, p. 2847–2864.

582 Zhai, G., Shirzaei, M., Manga, M. & Chen, X., 2019. Pore-pressure diffusion, enhanced by
583 poroelastic stresses, controls induced seismicity in Oklahoma. *Proceedings of the National Academy of Sciences*, August, Volume 116, p. 16228–16233.

585



586
587 **Figure 1. The Groningen gas field & simulation results.**

588 (A) Geographic context showing extensive seismicity due to the gas field in an otherwise stable
589 tectonic setting (left), and top view of the reservoir (right) showing identified faults (gray traces;
590 (Oates, et al., 2022)), and the earthquake catalog (with magnitude ≥ 1.1 ; (Dost, et al., 2017;
591 KNMI, 2023)) color coded by time. Sizes represent the earthquake magnitudes. (B) Observed
592 data averaged over the gas reservoir versus time. Left y-axes shows cumulative extraction
593 (black), and cumulative earthquake number (orange) since 1991, 34 years after the start of
594 extraction. Right y-axis shows the discretized extraction data averaged either yearly (green line),
595 or monthly (blue line). The monthly averaged extraction shows more than 80% seasonal
596 variations with more gas extraction in the winter months. (C) Map view snapshots of simulation
597 results at the dates shown in inset: fluid pressure (top row, with the position of extraction well
598 clusters shown as triangles) and maximum Coulomb stress change calculated 10 m above the
599 reservoir (ΔS , bottom row). (D) Simulation results averaged over the reservoir versus time. Left
600 y-axis shows pressure (blue), and right y-axis shows maximum Coulomb stress changes (dark
601 purple includes seasonal variations used as input for the monthly TRS model inversions, light
602 purple shows smoothed seasonality used as input for the yearly TRS model inversions).
603 Vertical dotted lines correspond to the snapshots shown in panel (C).
604

586
587

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

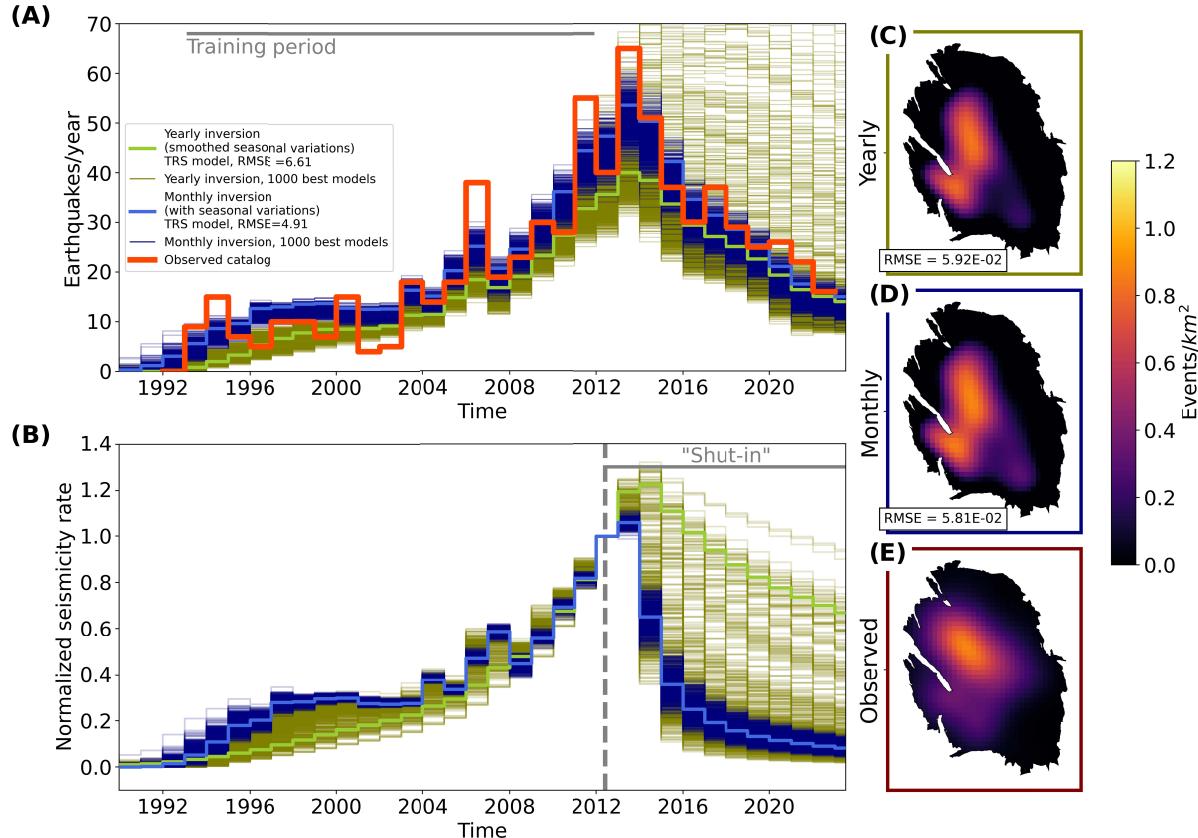


Figure 2. Yearly averaged seismicity rate forecasts for different models. (A) Earthquake rates comparing observed seismicity (orange curve, for $M \geq 1.1$), and inversions for the different models tested in this study. Green curves represent the yearly inversion (seasonality smoothed out in input Coulomb stress). Blue curves represent the monthly inversion (seasonality accounted for in input Coulomb stress). Thin lines represent the 1000 best models out of 50 000, accounting for epistemic uncertainty on model parameters. Thick lighter lines show the Maximum-A-Posteriori models from the MCMC inversion. Gray line represents the training period from 1993 to 2012. (B) Predicted seismicity rates for a hypothetical ‘shut-in’ of the reservoir with no change of Coulomb stress past 2012 (dashed gray line). All curves are normalized to 2012. A Coulomb failure model with instantaneous nucleation would predict an immediate drop of the seismicity to the background level. Colors correspond to the inversions in (A), and different lines represent the 1000 best models. (C, D, E) Epicentral event density for the MAP TRS models for yearly (C), monthly (D), and for the observed catalog (E).

606

607

608

609

610

611

612

613

614

615

616

617

618

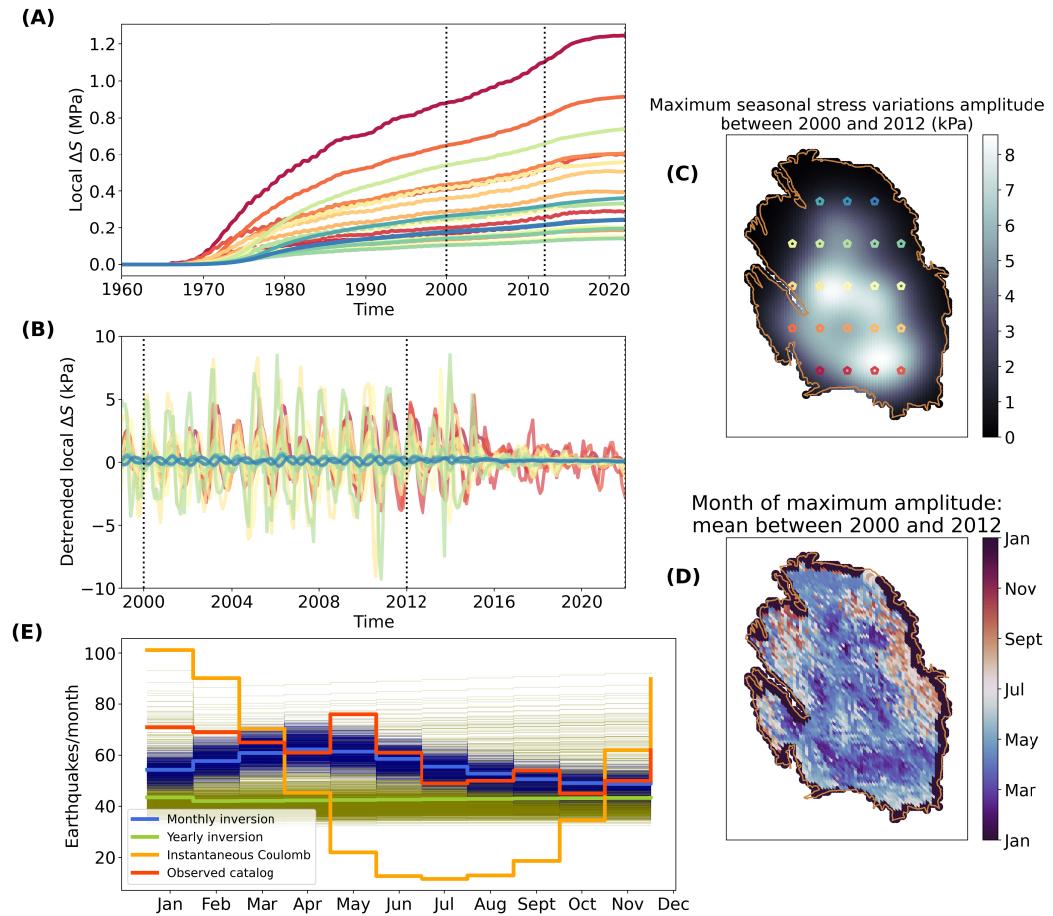
619

620

621

622

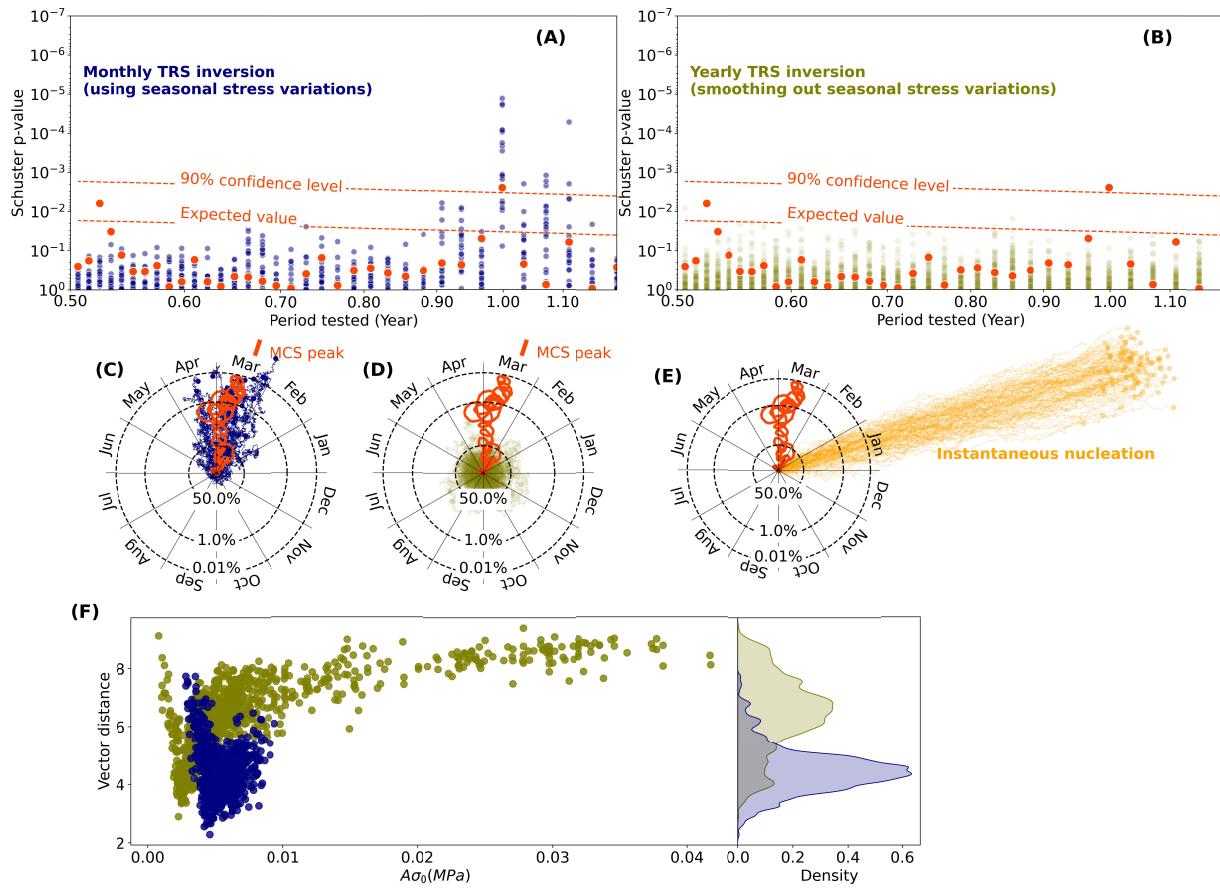
623



624

625 **Figure 3. Spatial and temporal seasonal stress variations in the field & stacked seismicity.**
626 (A) Simulated local stress changes versus time at discrete locations color-coded in panel (C). (B)
627 12-month moving average detrended local stress changes at the same locations as in panel (A)
628 versus time for the 1999-2021 period. The seasonal amplitudes of extraction and thus of stress
629 changes were drastically reduced following the 2012 M_w 3.6 Huizinge earthquake. (C) Map view
630 of maximum seasonal stress variations peak-to-peak amplitude between 2000 and 2012. The
631 points color-code locations at which local Coulomb stress evolution in time is shown in panels
632 (A) and (B). (D) Mean month (during the 2000 to 2012 period) where the local maximum
633 seasonal stress variations occur in the reservoir. The edges of the reservoir show a clear phase
634 change for occurrence of maximum seasonal stress variations but have small amplitudes whereas
635 the central and southern regions of the reservoir have in-phase large seasonal stress amplitudes
636 (e.g., panel C). (E) Seasonal variation of seismicity rate obtained by stacking all years in the
637 observed catalog (orange curve) compared with prediction of a Coulomb failure model with
638 instantaneous nucleation (yellow curve, seismicity rate proportional to stress rate), and the stack
639 of earthquake rates in our model inversions (accounting for epistemic uncertainty: green curves
640 for the “yearly” models, blue for the “monthly” models).

641



642

643 **Figure 4. Quantitative constraints on earthquake nucleation models using seasonality.** (A, 644 B) Schuster spectrum (Ader & Avouac, 2013) for the observed catalog (with $M \geq 1.1$, orange 645 points), and 100 synthetic catalogs (accounting for aleatoric uncertainty, Supplementary 646 Material, Figure S5) derived from the yearly ((A), green points), and monthly ((B), blue points) 647 MAP TRS models respectively. The Schuster spectrum is evaluated for periods from 6 to 18 648 months (a larger range of period spectra is shown in Figure S6). Low, isolated p-values quantify 649 seasonality at a given period. (C, D, E) Schuster walks at 1 year period on the same catalogs as 650 (A) and (B) respectively, and the instantaneous CF model ((E), orange lines). Circles denote the 651 probability that the seismicity results from a random process at 50, 1, and 0.1% confidence 652 levels. Drift direction reflects the times of year with the maximum seismicity rate. The orange 653 tick mark (MCS) shows the phase of the maximum seasonal Coulomb stress averaged over the 654 whole reservoir history (March-April). The observed catalog (orange lines) shows a clear 655 maximum in seismicity rate toward March-April. This phase (and amplitude) is quantitatively 656 recovered by the shown monthly TRS model (considering seasonal stress variations in input). 657 The example yearly TRS model does not show signs of seasonality. The instantaneous CF model 658 overestimates the seasonality. (F) Median vector distance error of synthetic catalogs (accounting 659 for both epistemic and aleatoric uncertainty) to the observed catalog versus the parameter $A\sigma_0$ 660 (Supplementary Material). The right-hand inset shows the error density

661

Figure 1.

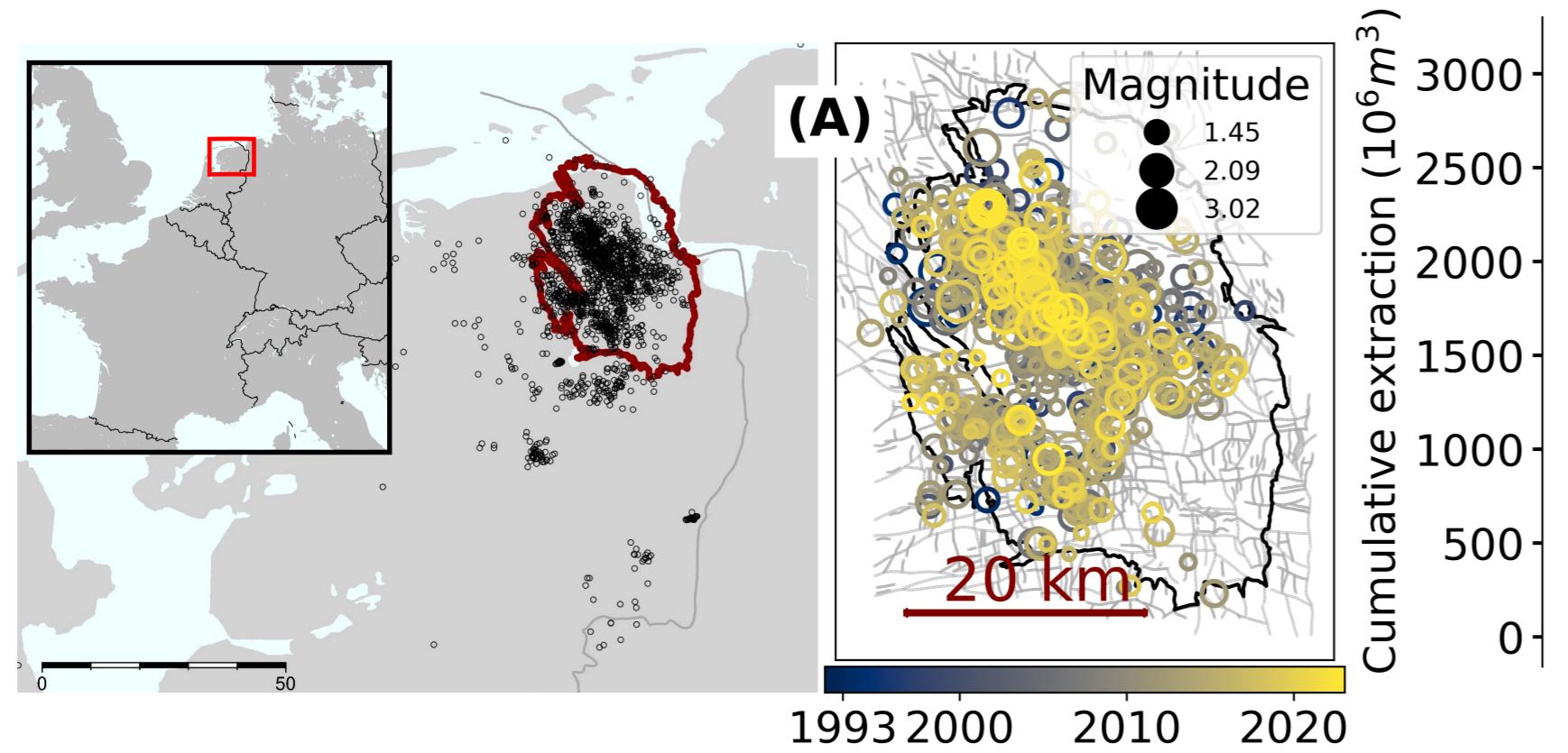
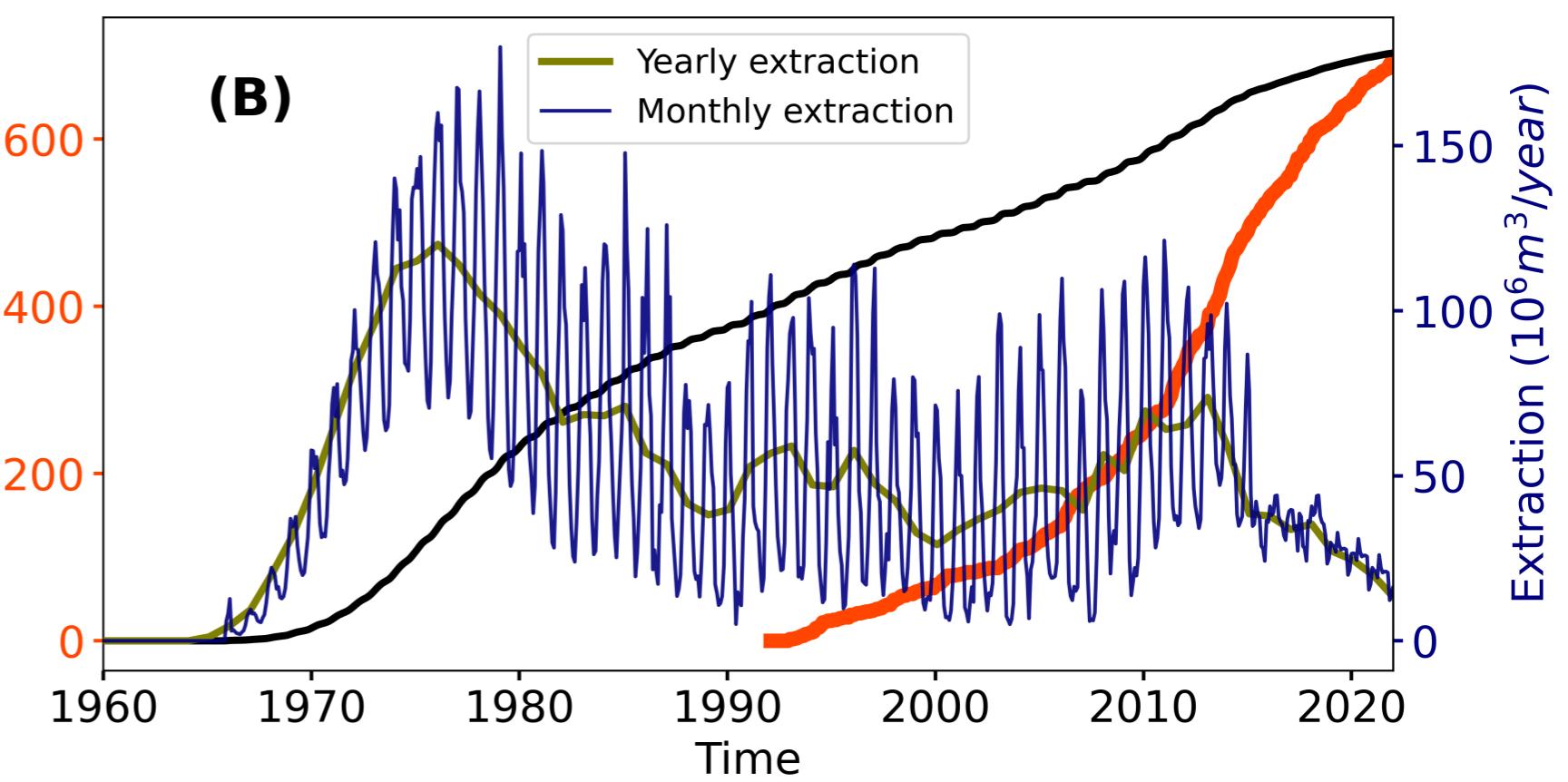
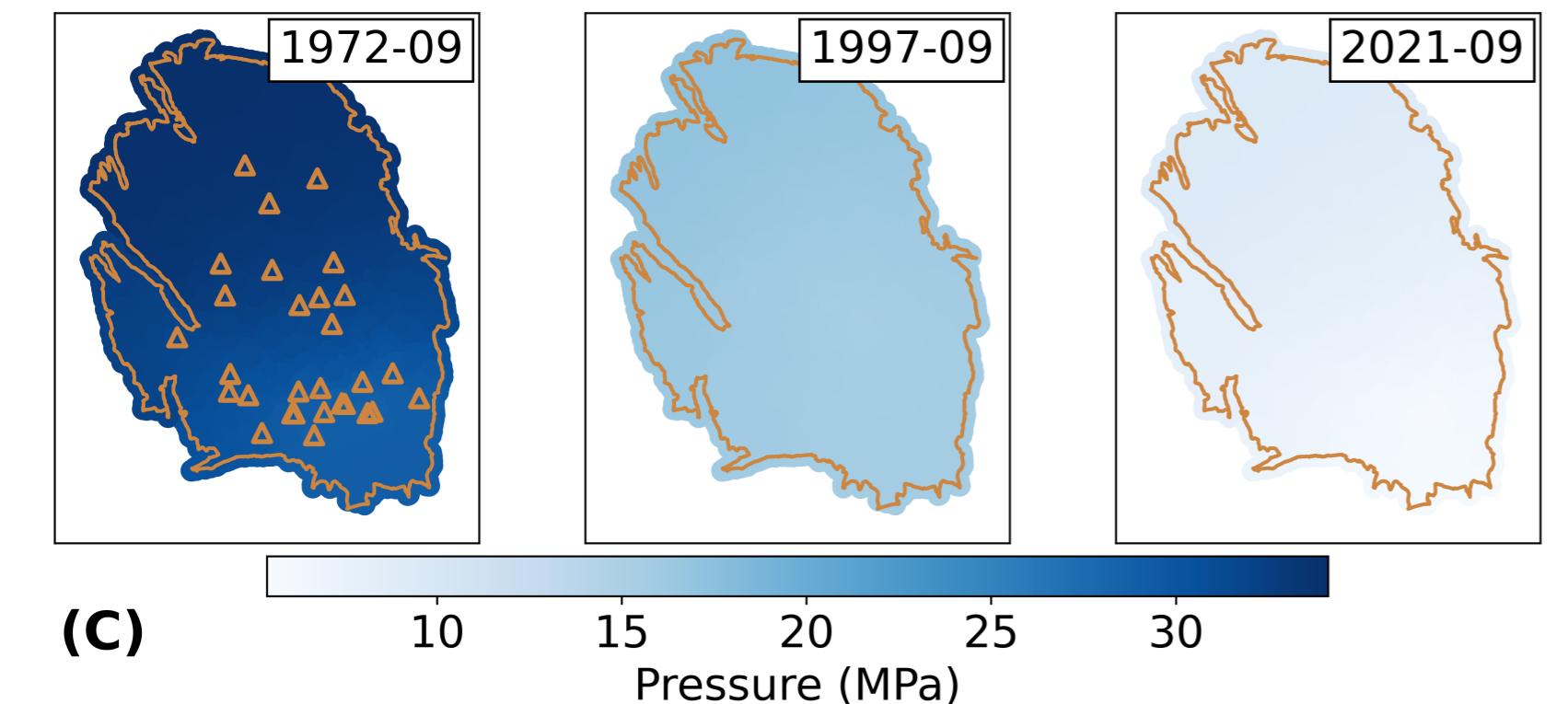
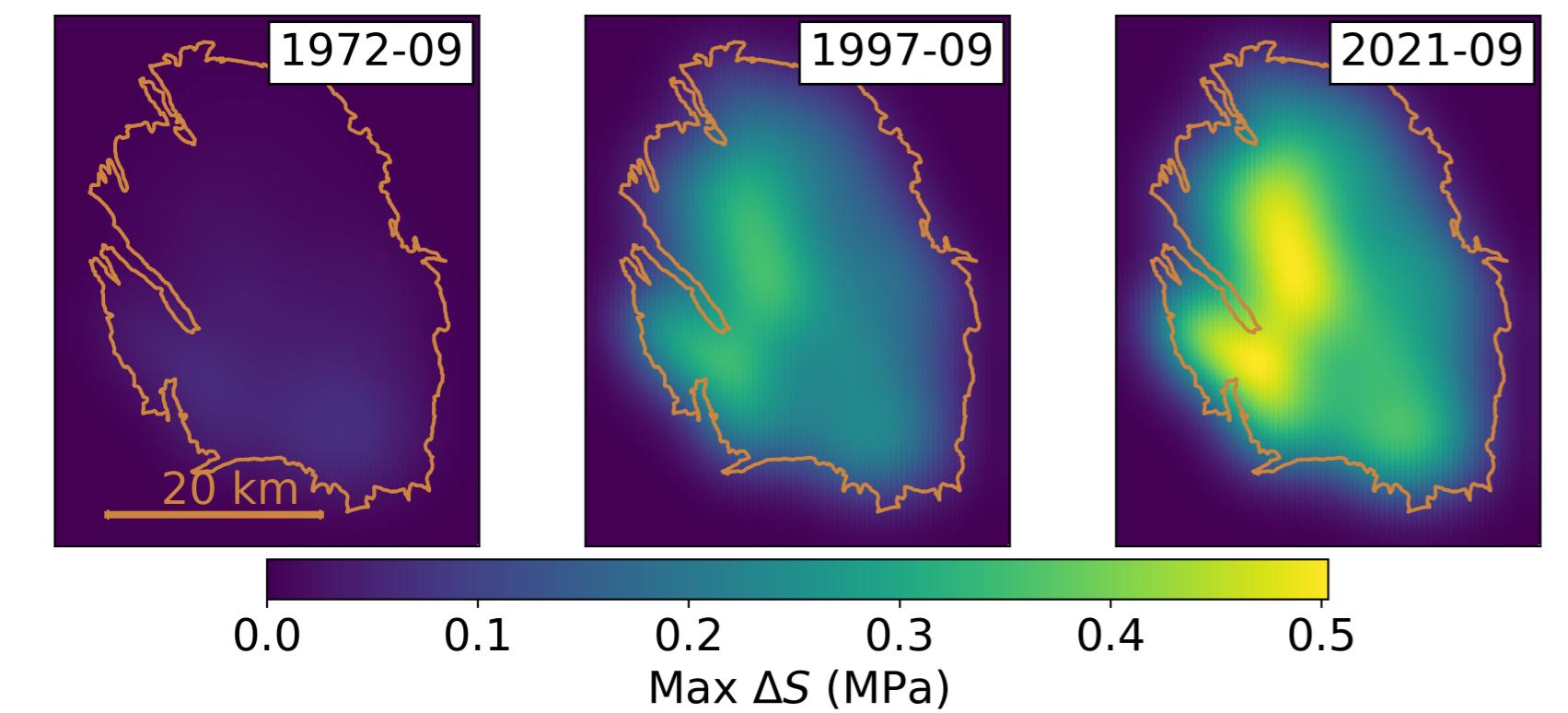
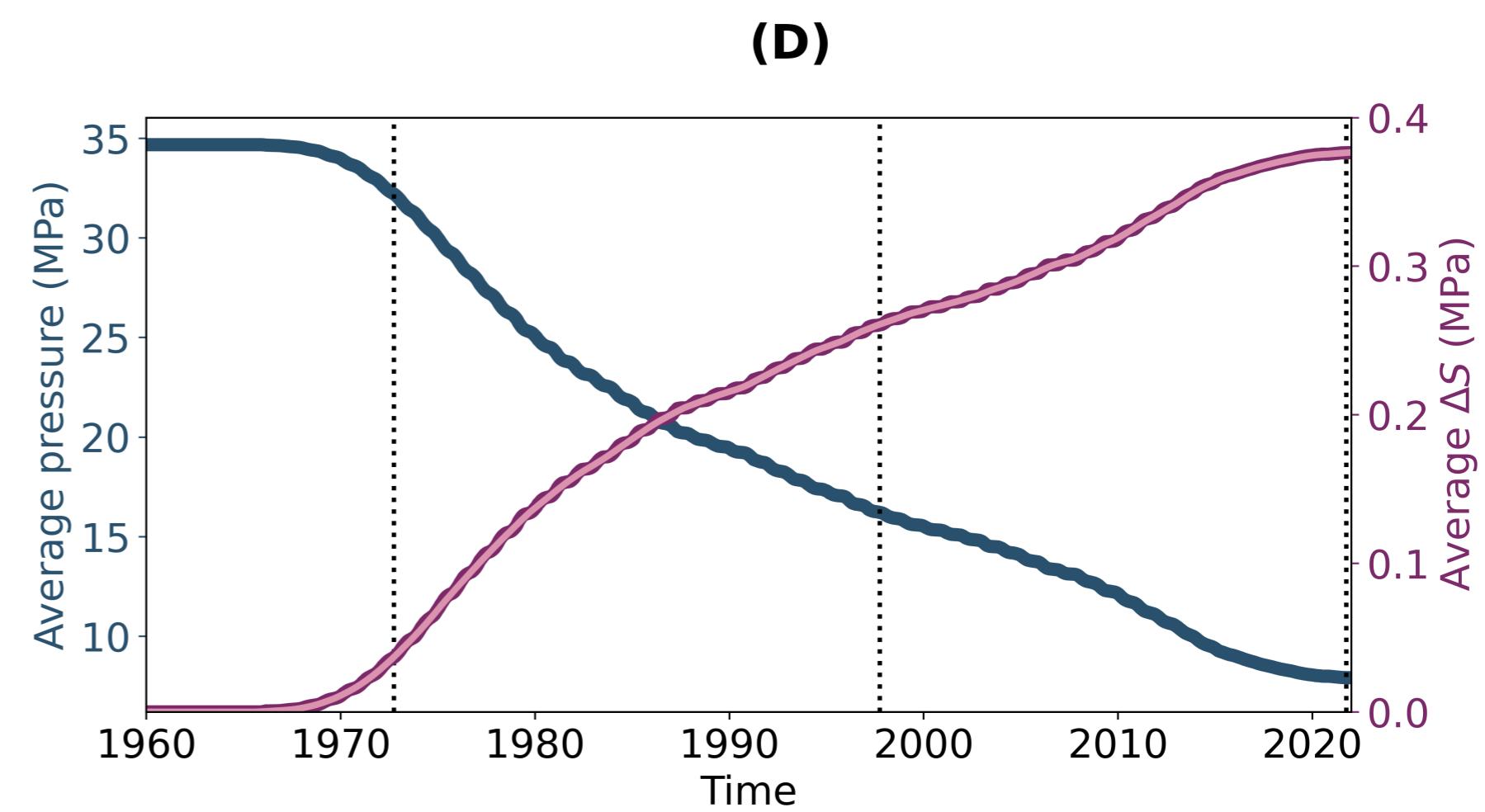


Figure 2.

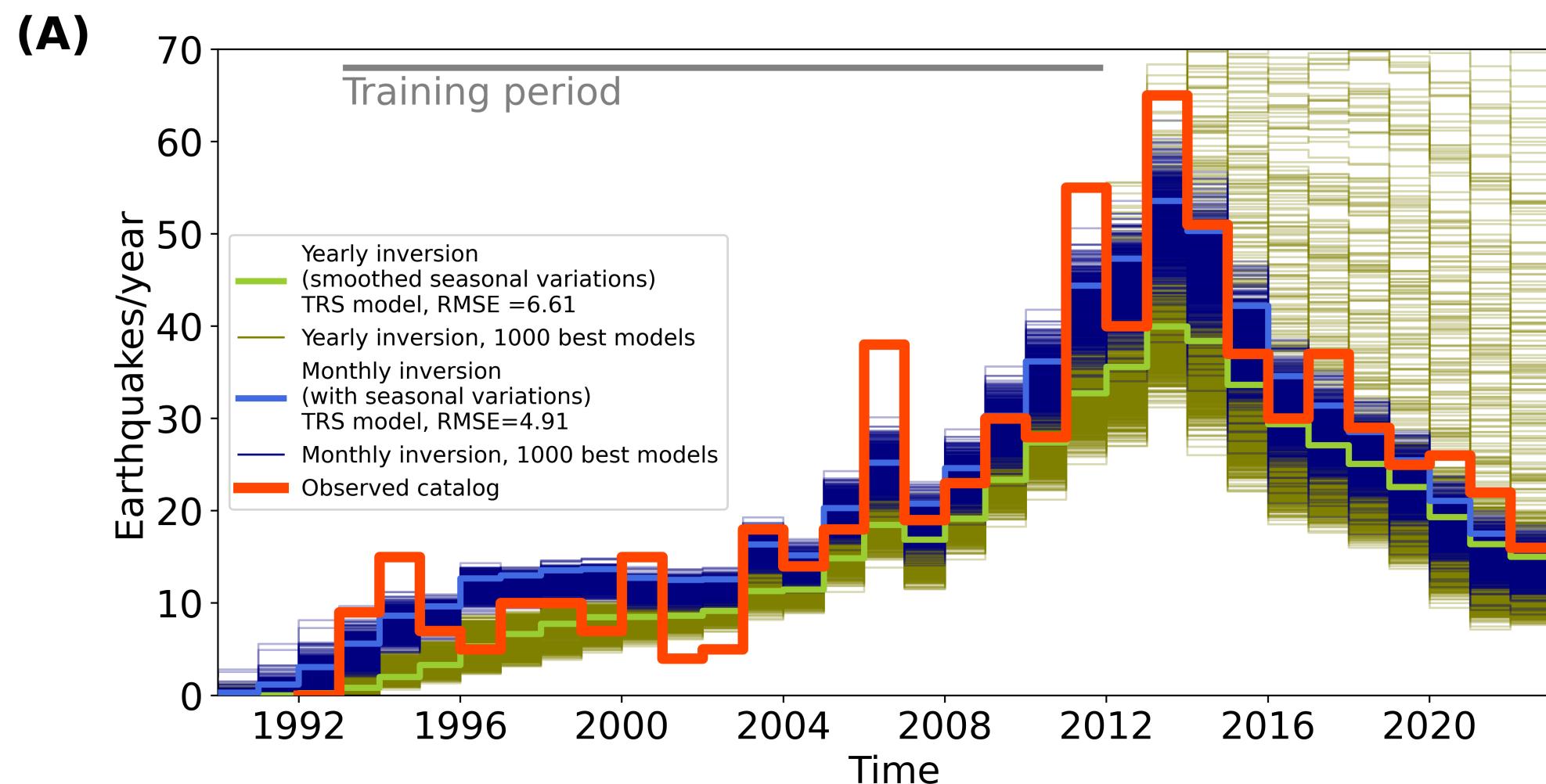
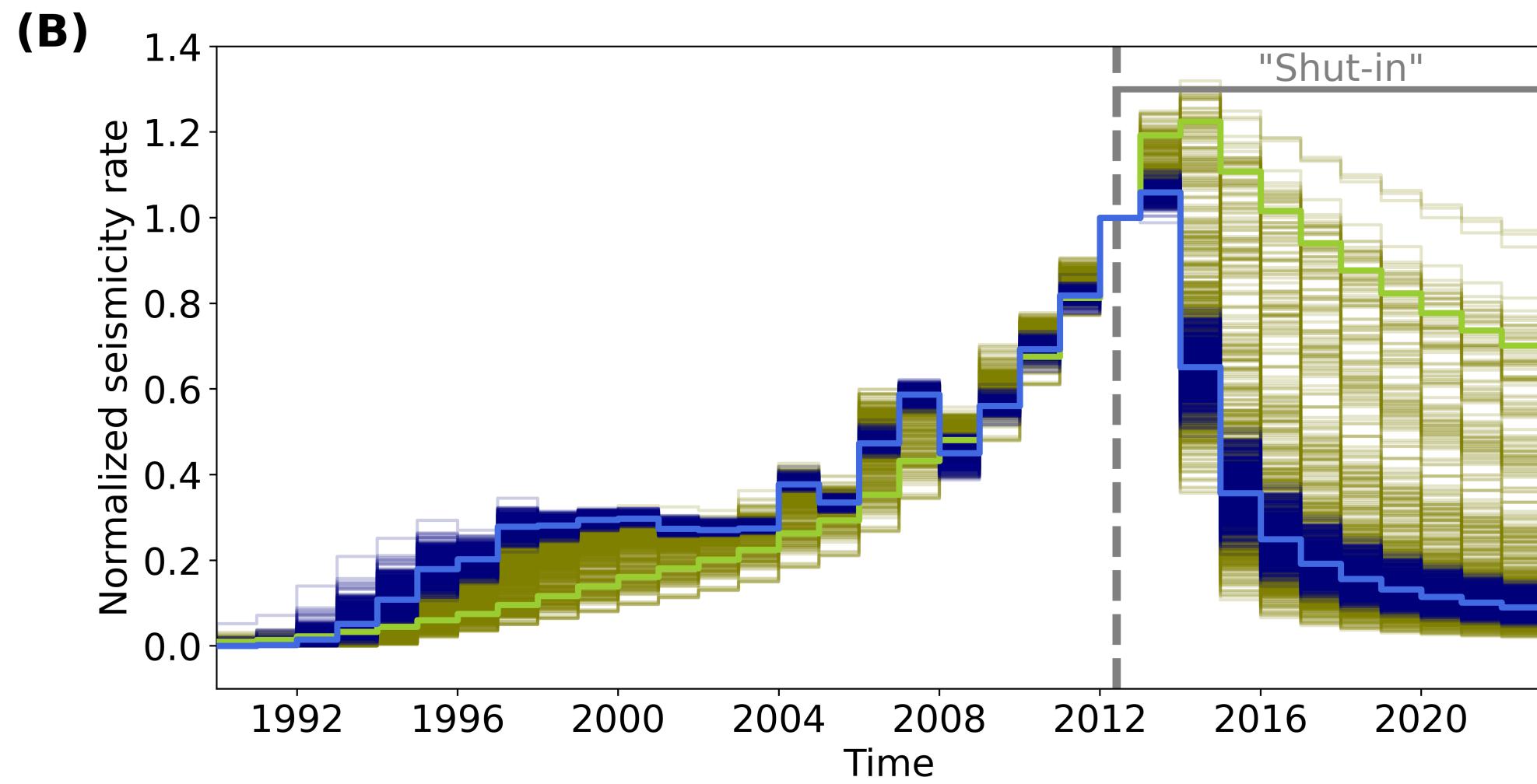
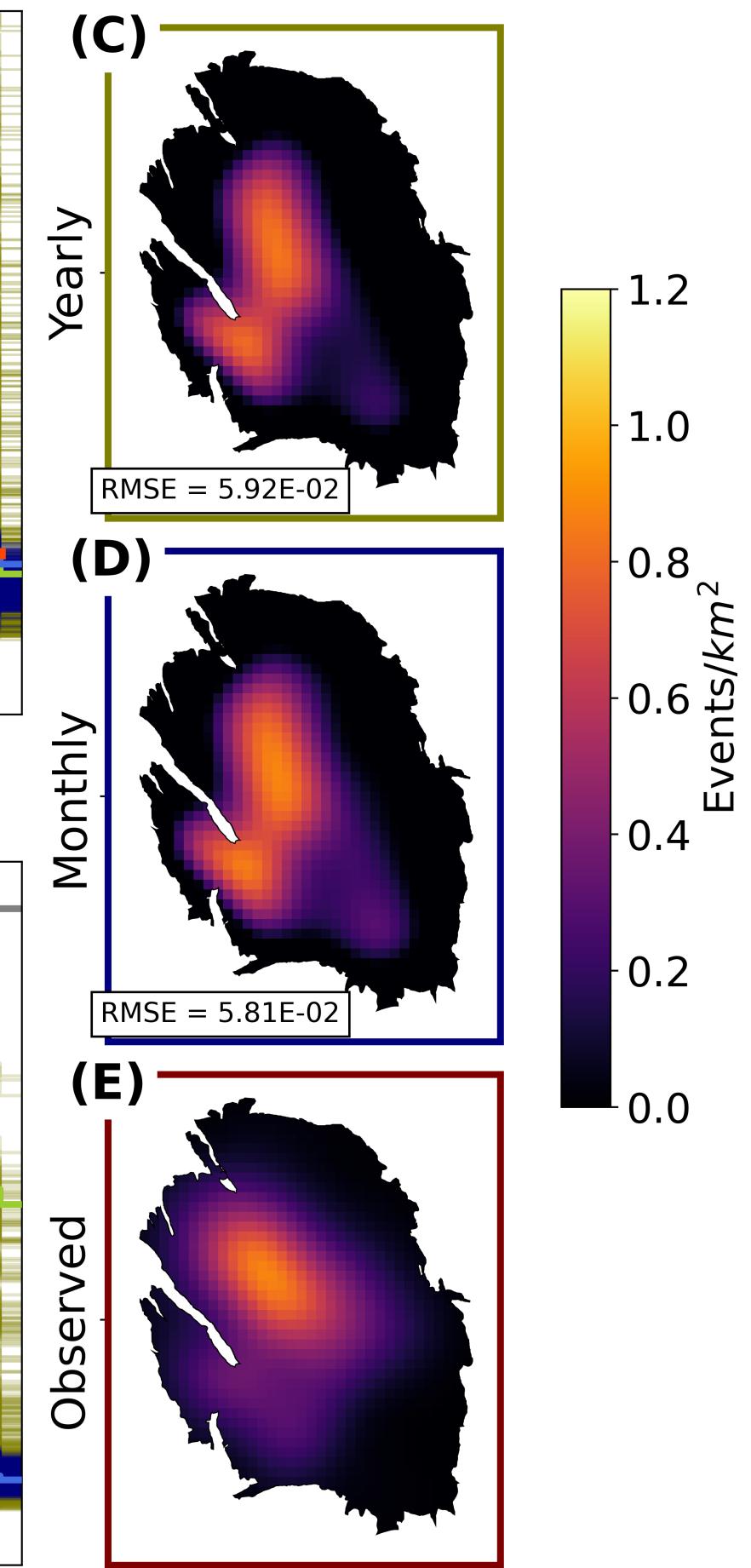
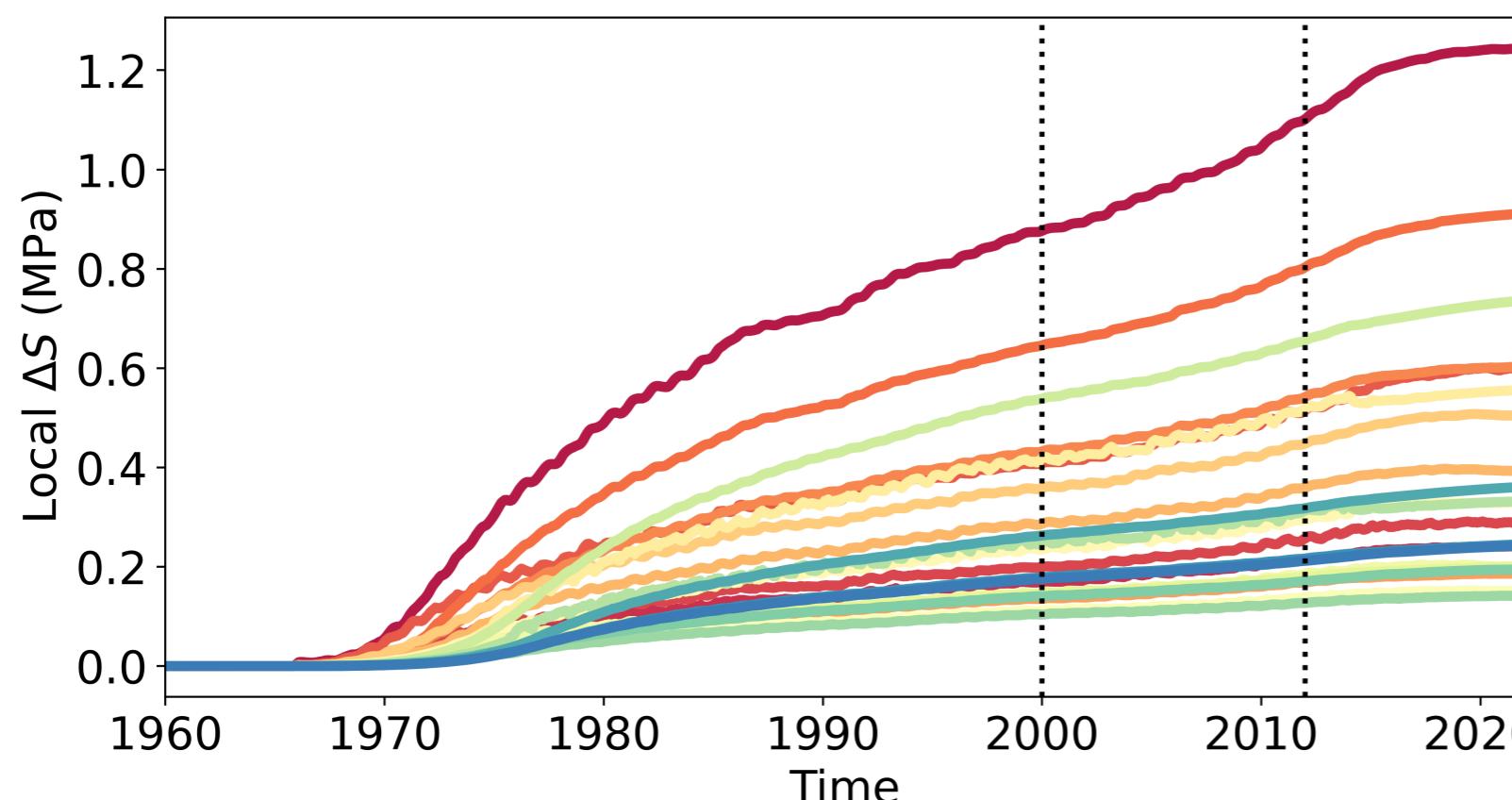


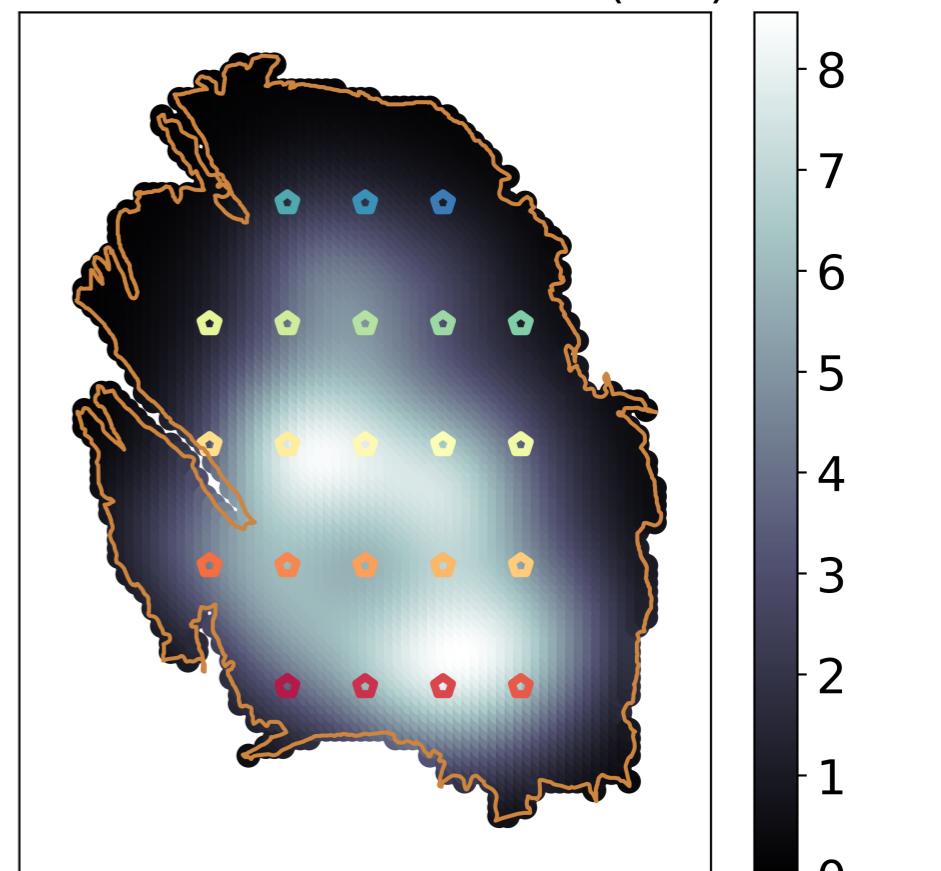
Figure 3.

(A)

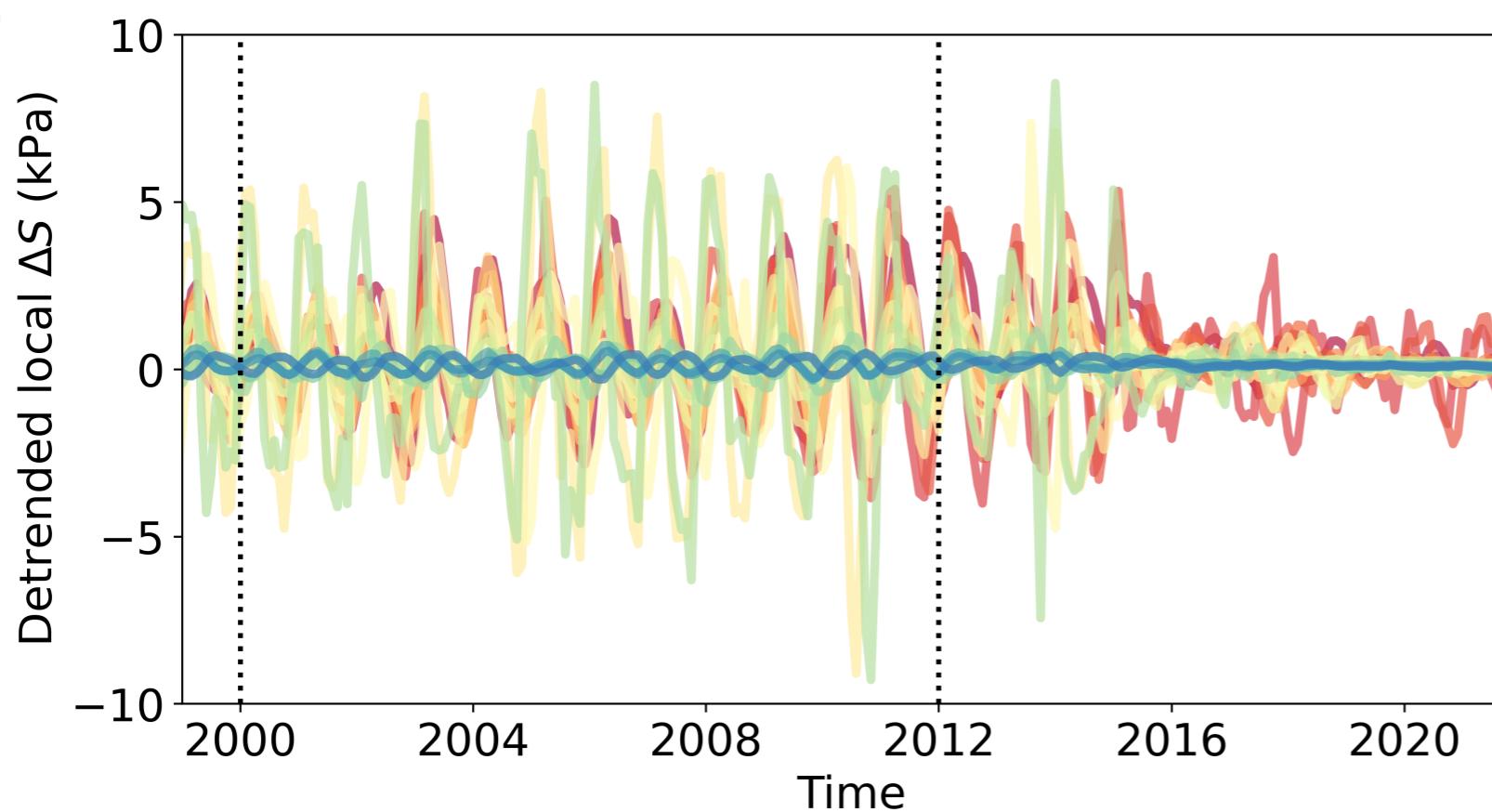


Maximum seasonal stress variations amplitude between 2000 and 2012 (kPa)

(C)

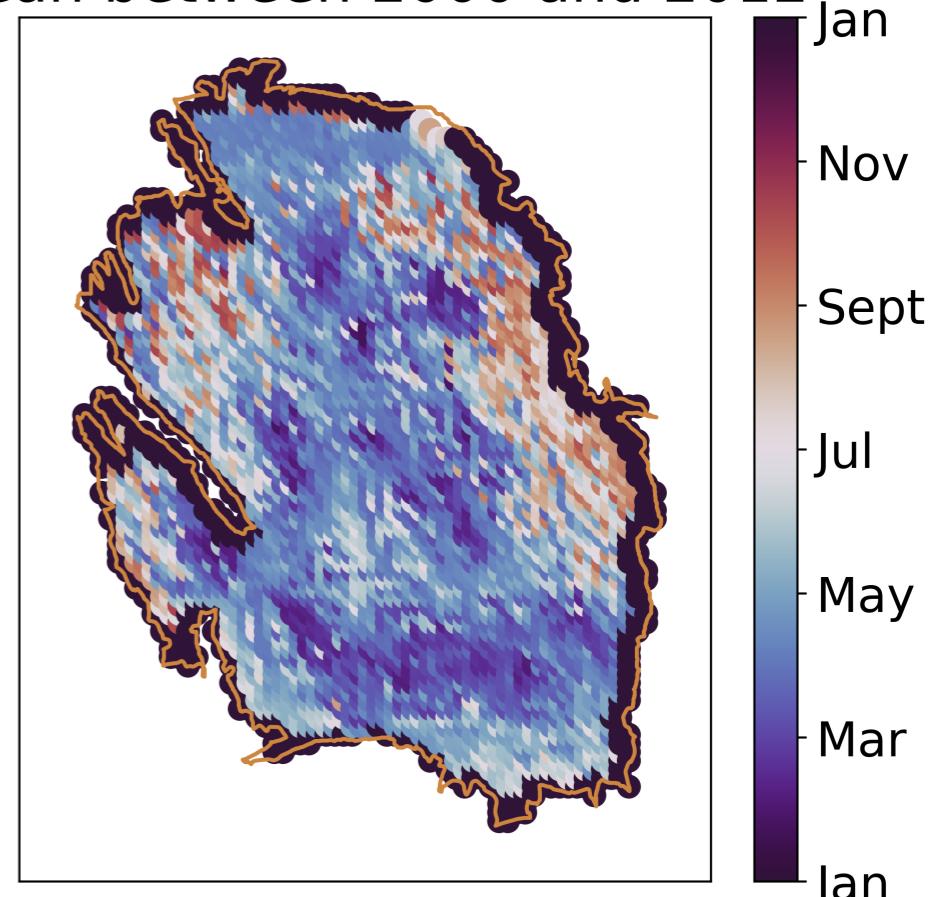


(B)



Month of maximum amplitude: mean between 2000 and 2012

(D)



(E)

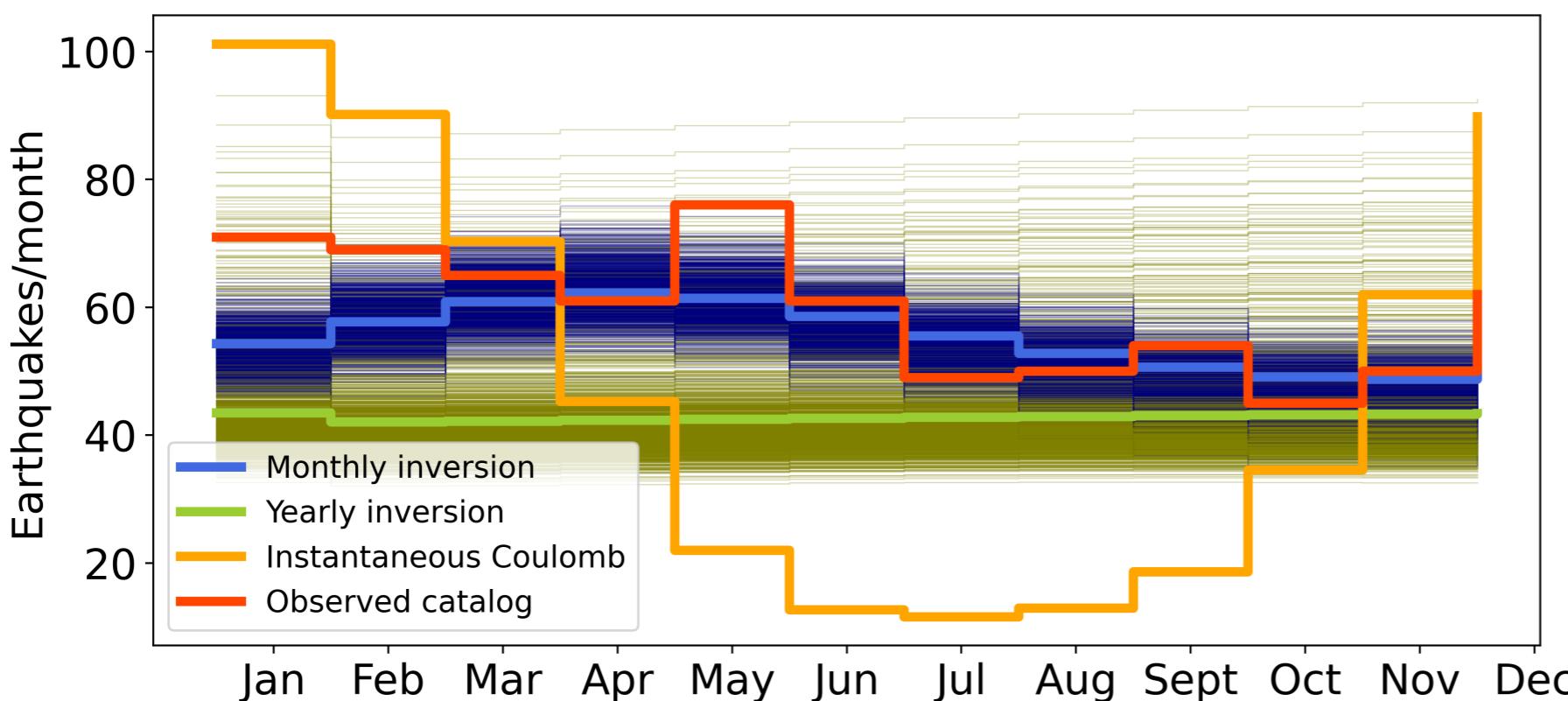


Figure 4.

