
A integrated framework for surface deformation modeling and1

induced seismicity forecasting due to reservoir operations2

Hadrien Meyer ∗, Jonathan D. Smith ∗, Stephen Bourne †, Jean-Philippe Avouac ∗‡
3

May 20224

Abstract5

Induced seismicity and surface deformation are common observable manifestations of the6

geomechanical effect of reservoir operations whether related to geothermal energy production,7

gas extraction, or the storage of carbon dioxyde, gas, air or hydrogen. Modeling tools to predict8

quantitatively surface deformation and seismicity based on operation data could thus help9

manage such reservoirs. To that effect, we present an integrated modeling framework which10

combines reservoir modeling, geomechanical modeling and earthquake forecasting. To allow11

effective computational cost, we assume vertical flow equilibrium, semi-analytical Green functions12

to calculate surface deformation and poro-elastic stresses, and a simple earthquake nucleation13

model based on coulomb stress changes. We use the test case of the Groningen gas field in the14

Netherlands to validate the modeling framework and demonstrate its usefulness for reservoir15

management.16

1 Introduction17

The demand for increasing clean energy is driving various industry operations that involve either18

injecting or extracting fluids from the sub-surface. These operations include the storage of carbon19

dioxyde, air, gas or hydrogen, gas extraction or geothermal energy production. They imply pressure20

changes and geomechanical deformation which can lead to measurable surface displacements and21

seismicity (Vasco et al. [2018], Rutqvist et al. [2016]).22

Seismicity is a concern, because of the hazard paused to infrastructures and residents, but also23

because it could jeopardize the mechanical integrity of a reservoir in case of fracturing of the caprock.24

Surface deformation isn’t a major liability but can be a valuable source of information pressure25

changes in the reservoir. For these reasons there would be most value in computationally effective26

methods to relate reservoir operations (well flow rates and pressures) to surface deformation and27

seismicity. We present here such a framework. We use the well documented example of the Groningen28

gas field in the Netherlands (Figure 1), where gas extraction has caused measurable subsidence since29

the 1960s and induced seismicity since the 1990s due to the gas extraction (Bourne et al. [2014])30

prompting large efforts to monitor the seismicity and surface deformation and public release of31

information on the reservoir characteristics. There is therefore a wealth of information publicly32
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available on this reservoir (de Jager and Visser [2017], Burkitov et al. [2016], Dost et al. [2017]) and33

it has therefore been used as a test case in a number of previous studies of surface subsidence and34

induced seismicity (Bourne et al. [2014], Bourne and Oates [2017], Bourne et al. [2018], Buijze et al.35

[2017], Smith et al. [2019], Buijze et al. [2019], Candela et al. [2019], Dempsey and Suckale [2017], van36

Wees et al. [2019], Heimisson et al. [2021], Richter et al. [2020]). The region has experienced induced37

seismicity with small magnitudes starting in the 1990s (Figure 1b). Stronger and more frequent38

seismic events in 2012 caused public alarm and led authorities to request a reduction of production39

and complete shut down by 2030. Production went from 53.8 billions bcm in 2012 to about 20 bcm40

in 2018 and is supposed to decrease down to 12 bcm per year in 2018-2023 and completely cease by41

2030 (Figure 1c).42

This paper describes a modeling workflow which includes a simplified reservoir model based43

on the Vertical Flow Equilibrium (VFE) approximation, a Green’s function approach to calculate44

poroelastic stress changes and surface subsidence, and a simple earthquake nucleation model to45

relate stress changes to seismicity. We demonstrate the performance of this workflow and shows46

that it can be used to test production scenario and eventually help design pressure management so47

as to minimize geomechanical effects and induced seismicity. We use our workflow to forecast the48

geomechanical effects and induced seismicity, with account for uncertainties on the model parameters,49

based on the ’cold winter’ production scenario (Nederlandse Aardolie Maatschappij [2013]) from the50

end of 2016 to 2030, a shut-in scenario with arrest of the production at the end of 2016 and, as a51

thought experiment, a cold winter scenario with pressure management.52

2 Setting of the Groningen Gas Field53

The Groningen gas field was discovered in 1959 and has been in production since 1962 (Bourne54

et al. [2014]). It extends approximately by 35 km East-West and 50 km North-South. The reservoir55

is located in the Upper Permian Rotlingend formation, a sequence of fluvial-aeolian sandstones-56

conglomerates-clay. It was deposited in the Permian in a rift basin with a South-West to North-East57

distal to proximal facies trend from conglomerate-rich in the South, to sandstones-rich in the center58

of the Reservoir and clay-rich in the North (Stauble and Milius [1970], de Jager and Visser [2017]).59

The reservoir lies a depth of about 3000m and dips by about 3 degrees northwards, corresponding to60

≈ 600m deepening over its 40km extent. Its thickness increases from 90m in the South-East to 300m61

in the North West. An overlying thick and impermeable layer of evaporite and anhydrite provide62

the seal for the reservoir. This caprock formation comprises a 50-m-thick basal anhydrite and 0.2- to63

1-km-thick evaporite with disconnected anhydrite lenses. The reservoir is structurally controlled64

by normal faults in the East, South and West and closed by an aquifer in the North (de Jager and65

Visser [2017]).66

The initial gas reserve was estimated to 2,9139 bcm (Burkitov et al. [2016]) and about 2,200 bcm67

had been produced as of May 2017. The reservoir is layered (Burkitov et al. [2016]) with the free gas68

layer on top of the water interface. Due to the northern dip of the reservoir, the water-gas contact69

is responsible of the North boundary (Burkitov et al. [2016]). Because of its limited connection to70

groundwater, gas extraction has led to a significant pressure drop driven gas expansion and pressure71

drop. This is concordant with the pressure depletion through time and the small amount of water72

extracted (Burkitov et al. [2016]).73

The reservoir has a permeability ranging from tens of milli-Darcy (1mD = 9.869233× 10−16m−2)74

up to a few Darcy with an average value of 260 milli-Darcy (3.55× 10−13m−2), with higher values75
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in the center of the reservoir (Burkitov et al. [2016]). The porosity range from 10% to 25% with76

a mean value of 17% and a similar spatial distribution with larger values near the center of the77

reservoir (Burkitov et al. [2016]). The initial pressure of the reservoir was about 34.68 MPa, close to78

hydrostatic as expected (Burkitov et al. [2016]). The geothermal gradient is estimated to 27K/km79

leading so that the reservoir temperature ranges from 80 ◦C to 120 ◦C with a mean value of 10280

◦C. The gas is composed of 14% of Nitrogen, 1% of Carbon Dioxide (CO2) and the rest is mainly81

methane (CH4) (Stauble and Milius [1970], Burkitov et al. [2016]) and therefore can be described as82

a dry gas (Yang [2016]) and was modeled that way in the GFR2012 but has been updated and is83

modeled as a wet gas in GFR2015 because of the condensed water dissolved in the gas (Burkitov84

et al. [2016]).85

3 Reservoir Modeling86

State-of-the-art reservoir models can account for two-way interaction between a reservoir model87

and geomechanics model through macroscopic theory of poroelasticity (Jha and Juanes [2014]).88

These fully coupled reservoir models have been used to investigate our mechanistic understanding of89

induced seismicity (Juanes et al. [2016], Byrne et al. [2020], Kroll et al. [2020]). However, they also90

require substantial computational cost and thus makes it challenging to perform the large number91

of realizations needed to match observstions or to make data-driven predictions with account for92

uncertainties. To circumvent the heavy computational cost of a full 3D reservoir geomechanics93

model, recent studies have made simplifications of the model physics and/or reductions in physical94

dimensions. Analytical solutions of linear poroelasticity (Wang [2018]) can be used to predict surface95

deformation and induced seismicity in ideal cases of diffusion in 2-D or 3-D in a unbounde medium96

(Zhai and Shirzaei [2018], Zhai et al. [2019]). The approach, however, is limited to single-phase flow97

and is not suited to model fluid flow within a reservoir of finite dimension with complex geometry.98

Reduction in model dimension is another strategy that we adopt in this study. In the sub-sections99

below we first describe briefly the industry reservoir model which we used to benchmark our model100

and then provide details on our implementation of the VFE model and history matching.101

3.1 Industry High-Resolution Pressure Depletion Model102

The current standard used to model pressure depletion within the reservoir is MoReS (Modular103

Reservoir Simulator) which is used for business purposes and risk assesment (Nederlandse Aardolie104

Maatschappij [2013]). It accounts for the detailed reservoir geometry which was determines based in105

seismic reflection and seismic refraction data (Burkitov et al. [2016]): shape, faults, thickness and106

depth. The model ignores poro-elastic coupling but can be used to predict poroleastic deformation.107

The water-gas interaction is represented using a Pressure-Volume-Temperature (PVT) two-phase108

fluid flow model. The model depends on 96 adjustable parameters, These parameters were optimized109

through history matching using the production data (wells flow rates) and the borehole pressure110

measurements (Nederlandse Aardolie Maatschappij [2013]). However, this procedure is computa-111

tionally expensive requiring hundreds of computational hours to compute a single history matched112

model, only returning the optimal solution without quantification of uncertainties. We use MoReS113

to benchmark our simplified reservoir model.114
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3.2 Simplifying assumptions115

We aim at a computationally efficient reservoir model that can be used to forecast seismicity, with116

quantification of the uncertainties resulting from matching both the reservoir data and the seismicity117

observations. This objective requires a computationally effective workflow as the models are not118

linear and parameter estimation requires resorting to non-linear methods such as the Monte-Carlo119

Markov-Chain algorithm. Regarding the reservoir model, we make two major simplifications. We120

assume Vertical Flow Equilibrium, which leads to a 2-D instead of a 3-D calculation (Coats et al.121

[1971]).122

The reservoir is considered planar with a spatial extent identical to that used in MoReS and123

which (Burkitov et al. [2016]) which is clearly consistent with the pattern of surface subsidence124

(Smith et al. [2019])(Figure 1a). We assume no flow at the boundaries, which is probably realistic125

for the eastern, western and southern boundaries which are fault bounded. This condition is more126

questionable for the northern boundary which is bounded by an aquifer. The reservoir is additionally127

supposed to be horizontal, which is reasonable given the overall dip of the reservoir caprock. the128

reservoir is assumed entirely connected. Some areas near the southern and western edges of the129

reservoir have a pressure history than could suggest poor hydraulic connection with the main part of130

the reservoir (Burkitov et al. [2016]).131

We simulate pressure diffusion in the reservoir assuming Vertical Flow Equilibrium (Coats et al.132

[1971]). This assumption leads to approximate pressure diffusion in 3-D with a 2-D calculation133

whereby only the vertically-integrated pressure and flow are solved for. This method has been used134

to model pore-pressure diffusion or gravity driven flow of CO2 (Cowton et al. [2018]) and can be135

extended to model multiphase flow (Jenkins et al. [2019]). The VFE is valid if the ratio of the136

horizontal diffusion time over the vertical diffusion time is typically larger than 10 (Yortsos [1991]).137

This ratio expressed as a function of the thickness, ∆z, the horizontal extent, ∆x, and the vertical138

and horizontal permeabilities, kz and kx, writes:139

RL =

(
∆x

∆z

)
·
(
kz
kx

) 1
2

(1)

In the Groningen reservoir case, permeability can be assumed isotropic due to the conglomeratic140

and sandstone lithology. With kz = kx, ∆z of up 300 meters, and ∆x between 35 and 50 kilometers141

we find RL > 117, so the condition for the validity of the VFE approximation is met.142

Finally, we assume that the gas fills the entire thickness of the reservoir while the height of143

the gas layer might in fact occupy only a fraction of it. We therefore add a parameter, the gas144

saturation, to account for this. As a result our model depends only on 3 parameters: permeability,145

porosity and gas saturation. They are assumed uniform in space and constant in time. Not that146

we neglect the effect of sediment facies variation in space and of reservoir compaction on temporal147

variations of porosity and permeability. We also neglect that the gas saturation could be changing148

due to possible aquifer intrusion into the depleting reservoir. The 3 unknowns are solved for through149

history matching.150
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3.3 Governing equations151

The governing equations are derived from mass conservation and the balance of linear momentum152

for fluid flow in a porous medium (De Marsily [1986]). The mass conservation equation writes:153

(∂ϕρ)

∂t
+∇(ρu) = q. (2)

where ϕ is the porosity (comprised between 0 and 1), ρ is the density of the fluid, u is the fluid154

velocity and q is the source term representing injection or extraction of fluid. Darcy’s Law (Darcy155

[1856]) writes:156

u =

(
−k

µ
∇p+ ρgz

)
, (3)

where µ is the fluid dynamic viscosity and p the pressure. Combining (2) and (3) and ignoring the157

gravity effect thanks to the Vertical Flow Equilibrium assumption, (Coats et al. [1971]) yields :158

(∂ϕρ)

∂t
+∇ ·

[
ρ

(
−k

µ
∇p

)]
= q. (4)

The development of (4) relating each term to the pressure gives:159

ϕ
dρ

dp

dp

dt
+ ρ

dϕ

dp

dp

dt
+∇ ·

(
−ρ

k

µ
∇p

)
= q. (5)

Assuming that the compressibility of the solid grains is at least one order of magnitude lower than160

the compressibility of the bulk matrix (βs << βm) and that the regional stress has been constant161

(Birdsell et al. [2018]) during the exploitation of the reservoir we get :162

βm =
−1

Vtot

dVtot

dσ′ =
1

1− ϕ

dϕ

dp
. (6)

We can now write (5) using (6):163

ϕ
dρ

dp

dp

dt
+ (1− ϕ)ρβm

dp

dt
+∇ ·

(
−ρ

k

µ
∇p

)
= q. (7)

The matrix compressibility for the Groningen reservoir is estimated to βm ≈ 1− 10× 10−11Pa−1
164

(Burkitov et al. [2016], van Eijs and van der Wal [2017]). The fluid density is given by the equation165

of state (Yang [2016]) :166

ρ =
PM

ZRT
, (8)

where P is pressure, M is molar weight of the gas, R is the Gas constant, T is temperature and Z is167

compressibility factor, comprised between 0 and 1. The compressibility factor also depends on the168

temperature, pressure and composition, and can either be calculated using polynomial function or169

extracted from charts. The Groningen Gas is composed of mainly methane (CH4) (85%), Nitrogen170

(N) (14%) and carbon dioxide (CO2) (1%). The molar weight used in this study is the mean value171

over the 6 PVT zones considered in MoReS (Burkitov et al. [2016]) M = 18.3815g · mol−1. For172

methane at a temperature of 385K and pressure between 5 and 40 MPa, Z-factor varies between 0.95173
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and 1.02. For simplicity it is assumed to be constant and equal to 1. The term dρ
dp on the left-hand174

side of the equation is then a constant:175

dρ

dp
=

M

ZRT
. (9)

A comparison of the time dependent terms indicates that the second term of the left-hand side176

(1 − ϕ)ρβm
dp
dt can be neglected because of the compressibility term, which is extremely low and177

therefore (1− ϕ)ρβm
dp
dt ≈ 8 · 10−9 << ϕdρ

dp
dp
dt ≈ 9 · 10−7. This mean 7 can be simplified to :178

ϕ
dρ

dp

dp

dt
+∇ ·

(
−ρ

k

µ
∇p

)
= q. (10)

The source term, representing the flow rates at he wells, is given in kg ·m−3 · s−1. It is converted to a179

two-dimension source term in kg ·m−2 · s−1 by dividing by the local thickness of the reservoir, ∆z :180

q =
Q

∆z
, (11)

where Q is the source term in kg ·m−3 · s−1 and correspond to the extracted flux. The wells being181

considered as point sources, the area is taken to be 1 square meter. This assumption means there is182

an equal extraction along the thickness of the reservoir, an assumption consistent with the Vertical183

Flow Equilibrium hypothesis. Taking the gas saturation into account, the differential equation184

governing pressure diffusion with the VFE assumption is reduced to:185

ϕ
dρ

dp

dp(x, y, t)

dt
−∇ ·

(
ρ(x, y, t)

k

µ(x, y, t)
∇p(x, y, t)

)
=

Q(x, y, t)

∆z(x, y) ∗GasSaturation
, (12)

where ∇ = ∂
∂x + ∂

∂y .186

The equation is then solved using the open-source finite element solver FEniCS (Alnaes et al.187

[2015]) with an implicit Euler method for time discretization, using a time step of one month. The188

source terms are then monthly average extraction rates. The equation solves for the pressure at each189

time step given the extraction history. The viscosity and density are computed using the formulation190

given by (Yang [2016]): see 8 and µ = 10−4Kexp(Xρyg) that is the empirical formula of Lee-Gonzalez191

(Lee et al. [1966]) and is also used in MoRES model (Burkitov et al. [2016]).192

3.4 Pressure & Extraction History Matching193

History matching consists in adjusting the 3 parameters characterizing the reservoir to best fit194

the pressure measurements given the production flow rates. We minimize the misfit between the195

modeled and the measured pressure at the boreholes, consisting of 1186 static (bottom well pressure196

is assumed to differ from wellhead pressure only due to the hydrostatic effect due to the weight197

of the fluid column) measurements between 1957 and 2017 across 29 different locations. We use198

a simple three-dimensional grid search of space of model parameters. The minimum, maximum199

and separation between grid points are given in Table 1 leading to a total of 12400 simulations of200

pressure depletion models. The fit is quantified using a simple root mean square error (RMSE).201

The reported pressure measurements don’t have uncertainties associated to them so we give equal202

weight to all the measurements. The best fitting model yields pressure histories that are remarkably203
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consistent the observations (Figure 2). Figure 3 shows the residuals from the best fitting VFE model204

and from MoReS as a function of time. The best fitting VFE model corresponds to a permeability of205

3.1± 0.68× 10−13m−2 a porosity of 18.5± 6.5%, and a gas saturation of 27± 2.4%. These values are206

consistent with average permeability (3.55× 10−13m−2) and porosity (17%) reported by (Burkitov207

et al. [2016]). Based on the figures presented in this report, the gas saturation should be in the208

range between 0.26 and 0.35, so pour estimate seems conistent as well. The best VFE model yields a209

RMSE of 5.5 MPa compared to 3.5 MPa for MoReS (Figure 3). This is a remarkably good fit given210

that the VFE model has only 3 adjustable parameters compared to 96 for MoReS. The distribution211

of residuals in space show larger misfits, a larger difference between the VFE and MoReS model212

prediction in the southwestern area of the reservoir which might in fact be poorly connected to the213

main reservoir (3). We also note a North-South gradient in the comparison between the MoReS and214

the VFE model, which is probably due to the fact that our model ignores the interaction with the215

aquifer at the northern edge of the reservoir. Another most obvious difference is the drift of the216

VFE residuals to larger values starting in the 1990s. No such drift is visible in the MoReS residuals,217

probably due to the account for the presumed intrusion of the aquifer bounding the reservoir to218

the North. The VFE could be tweaked to account for this effect by allowing for variations of the219

gas saturation. We didn’t try to keep the model as simple as possible, and also because a more220

rigorous approach would consist is using a multiphase VFE model (Jenkins et al. [2019]). Altogether221

the best-fitting VFE model yields a pressure depletion history remarkably close to the pressure222

evolution predicted by MoReS. We estimate the uncertainties on the VFE model parameters using223

Chi-Square statistics. We note however that the residuals are not normally distributed Figure 3 and224

that our uncertainty quantification could be improved. We assume that the model is well-specified225

and that the residuals are dominated by model errors, in particular because of the assumption of226

homogeneous properties. We assume that measurements from one single well have a correlated227

model error and that measurements made at different wells are independent. We choose a confidence228

level or 95%. Given the number of model parameters, 3, and the number of wells, 29, the 95 %229

confidence domain on the model parameters is given by all the parameter sets yielding a RMSE of230

less than 6.191 MPa. The uncertainties on each model parameter is derived from the corresponding231

marginal distributions (1). The framework could allow implementation of a more sophisticated232

method of uncertainty quantification could be implemented that would allow estimating the complete233

probability distribution of model parameters based on a likelihood function accounting for a priori234

knowledge of model parameters and the fit to the observations.235

3.5 Prediction of Pressure Evolution for Future Production Scenarios236

Our VFE model can then be used to forecast the pressure evolution in time and space for various237

hypothetical production scenarios. The Shut-In scenario assumes a sudden arrest of production at238

the end of 2016. The ’Cold-Winter’ production scenario uses temperature forecasts to determine239

how much Gas would be required in the case of cold winters starting from January 2017, and240

transitioning to complete shut-in of the reservoir by 2030 (Nederlandse Aardolie Maatschappij241

[2013]). We also simulated the pressure evolution for the Cold-Winter production scenario assuming242

pressure management. In this third scenario we consider that production is compensated by injection243

so that the net volume of fluid in the reservoir is kept constant from the beginning of 2017 on.244

We assumed gas extraction at the wells located in the southern portion of the gas field, where245

the reservoir is shallower, compensated by injection at the same rate at the wells located in the246
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northern portion of the field (see locations of extracting and injecting wells in the inset of Figure 4).247

Although a simplistic representation the reservoir gas extraction distribution. We assumed that the248

gas is extracted from the shallower part We acknowledge that this simulation is not very realistic249

as the injected fluid is assumed to have the same properties as the extracted fluids since our VFE250

model considers only one phase. Using the history matched Vertical Flow Equilibrium model we251

can forecast the pressure depletion for each of these scenarios taking into account the uncertainties252

on the model parameters. To do so, for each scenario, we store the model predictions of all models253

within the 95% confidence domain derived from history matching. We use this model ensemble to254

forecast subsidence and seismicity om the next sections.255

4 Geomechanical Modeling and Surface Subsidence256

Surface subsidence over the Groningen gas field has been well documented with different geodetic and257

remote sensing techniques including optical levelling, persistent scatterer interferometric synthetic258

aperture radar (PS-InSAR) and continuous GPS (cGPS). (Smith et al. [2019]) combined all these259

data to describe the evolution of surface subsidence and the related reservoir compaction from the260

start of gas production until 2017.Here we show that the VFE model predicts a reservoir compaction261

consistent with the measured surface subsidence (Figure 5). For a given distribution of pressure262

depletion within the reservoir the surface displacement since the onset of production can be estimated263

assuming poroelastic compaction of the reservoir. Given the relatively shallow depth of the reservoir264

compared to its lateral extent, strain can be assumed uniaxial and vertical. The uniaxial compaction265

due to pressure depletion then only depend on the compressibility of the reservoir (Geertsma, J.266

[1973]) according to267

∆h = Cmh∆P, (13)

where ∆h is the compaction of the reservoir, Cm the uniaxial compressibility, ∆P the pressure drop268

and h the reservoir thickness. The deforming reservoir might be represented as a series of point269

sources of strain (van Wees et al. [2019], Candela et al. [2019]). This approach is efficient as the Green270

Functions are analytical. It allows to calculate strain and stress changes in the 3-D volume and can271

feed a seismicity forecasting scheme easily. The method is however very sensitive to the distribution272

of the point sources representing the reservoir and to the distribution of the receiver points where273

stress changes are evaluated due to the stress singularity at the source location. Here the deforming274

reservoir is represented as a series of cuboidal volumes which are deforming poroelastically and275

assumed to be isotropic and homogeneous. It is an efficient way to represent, to the first order,276

spatial variations of the reservoir geometry, due in particular to the faults offsetting the reservoir.277

The displacement and stress Green’s functions for polyhedral volumes are semi-analytical and can278

be obtained by integration of the point source solution (Geertsma, J. [1973]) over the volume of279

each cuboid (Kuvshinov [2008]). The distribution of uniaxial compressibility over the reservoir was280

estimated by (Smith et al. [2019]) based on the pressure depletion predicted by MoReS, the reservoir281

thickness, and the reservoir compaction derived from the linear inversion of the surface displacements282

measured from InSAR and GPS.283

Figure 5 compares the time evolution of the spatial pattern of compaction predicted by our VFE284

model and MoReS with the compaction derived from the inversion of the geodetic and remote sensing285

measurements of surface subsidence (Smith et al. [2019]). It shows that both the VFE and MoReS286

predicts a compaction quite consistent with the measured surface subsidence. MoReS does however287
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better at fitting the spatial distribution of compaction. In fact, the VFE model fits the time evolution288

of the compaction derived from the surface displacements better than MoReS. The quality of the fit289

obtained with the VFE model is remarkable as the compressibility distribution was optimised to fit290

MoReS. The surface measurement of displacement could therefore be included in the dataset used for291

reservoir history matching (van Oeveren et al. [2017]) and our framework would allow to introduce292

spatial variations of reservoir properties to improve the fit to both the pressure measurements and293

the surface subsidence. This could help refine the spatial distribution of the reservoir characteristics,294

including its geometry. This approach could be interesting to constrain reservoirs less well known295

than Groningen where injection or production would produced a measurable surface displacement296

signal. In any case, this comparison suggests that the strain, and the stress changes predicted by the297

VFE and MoReS models are valid to first order.298

5 Stress-based Seismicity Forecasting299

We describe here how induced seismicity is predicted based on the temporal evolution of the fluid300

pressure distribution predicted by the reservoir model. Rock failure is commonly assessed using the301

Mohr-Coulomb failure criterion (Handin [1969]). A number of studies have demonstrated that this302

criterion applies effectively to assess earthquake triggering by stress changes (King et al. [1994]).303

According to this criterion failure occurs when the shear-stress τ exceeds the shear-strength of the304

material τf , represented by305

τf = µ(σn − P ) + C0, (14)

where τf is shear-stress, σn is the normal-stress (positive in compression), P is the pore pressure, µ306

is the internal friction and C0 is the cohesive strength. If the material is not at failure the strength307

excess is τf − τ . Fluid pressure changes play an important role in preventing or promoting fault308

failure. Assuming the total stresses do not change, a greater pore pressure acts to lower the effective309

normal stress and promotes failure. By contrast, a pressure decrease should inhibit failure. It is310

therefore customary to assess jointly the effect of stress changes and pore pressure changes using the311

Coulomb stress change defined as312

∆CFF = ∆τ + µ(∆σm +∆P ), (15)

where ∆CFF is the change in Coulomb stress (the notation is customary and refers to the ’Coulomb313

Failure Function’; an alternative common notation is ∆CFS for ’Coulomb Failure Stress’), ∆τ is314

the shear stress change, µ is the internal friction, ∆σm is the change in normal stress, and ∆P is the315

change in pore pressure.316

Detailed studies of the seismicity show hypocenters within the reservoir (Dost et al. [2017], Willacy317

et al. [2019], Spetzler and Dost [2017]), or in the caprock (Smith et al. [2020]). We thus need to318

model the stress redistribution due to the reservoir compaction and pore pressure variations within319

and outside the reservoir with account for poroelastic effects (Wang [2018]). A number of previous320

studies have explored different approaches. (Bourne et al. [2018]) developed the Elastic Thin Sheet321

model (ETS), a semi-analytical reservoir depth integrated model. The ETS formulation approximates322

the reservoir deformation as a uniaxial vertical strain field, with zero horizontal strain. It does not323

describe the associated caprock deformation but allows estimating stress changes within the reservoir.324

It was designed to account for stress concentrations at the faults offsetting the reservoir. The faults325

characteristics are not explicitly represented but accounted for indirectly from the smoothed spatial326
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gradient of the reservoir thickness. Another approach relies on the cuboids representation of the327

reservoir used to model surface subsidence. It can indeed be used to calculate stress changes within328

and outside the reservoir (Kuvshinov [2008], ?). The knowledge of faults geometry can be accounted329

for via the cuboid mesh. The two approaches were implemented in our framework and compared in330

the previous study based on MoReS (?). They make equivalent predictions so, for the purpose of331

this study, we use only the ETS model which is computationally more effective.332

The next element needed to forecast seismicity needs to relate stress changes to seismicity. The333

time of onset of seismic slip on a particular fault will depend on the initial stress and on the rheological334

law relating stress to fault slip. Methods based on the rate and state friction law determined in335

laboratory studies (Dieterich [1994]) have shown success, in particular in applications to induced336

seismicity at Groningen (Candela et al. [2019], Richter et al. [2020]). The original formulation of337

(Dieterich [1994]) assumes that all faults are initially ’above steady state’ meaning that they are338

assumed to have been on their way to failure from the start of perturbation of the stress field when gas339

production started. A significant improvement was obtained by relaxing this hypothesis (Heimisson340

et al. [2021]). This new formulation assumes that the faults were initially in a relaxed state, which is341

a reasonable finding in the stable tectonic context of the Groningen gas field. The consequence is that342

the formulation introduces a stress threshold needed to be exceeded for earthquake nucleation. This343

threshold is equivalent to the stress change, the ’initial strength excess’, needed to reach the condition344

for failure in the case of simple static Coulomb failure model. With the introduction of this threshold345

it turns out that the duration of the nucleation process, the time needed to reach failure, is greatly346

reduced so that assuming instantaneous failure provides a good approximation of the seismicity347

rate (smith2021). The computational cost of the model is then significantly reduced. We therefore348

adopt here the simple assumption of instantaneous nucleation once a the stress change equates349

an initial strength excess which is treated as a stochastic quantity. The stochastic representations350

provides a way to account for stress heterogeneity and the diversity of fault orientations. These351

assumptions lead to a model of (Bourne and Oates [2017]) which assumes that the seismicity only352

reflects the tail of the failure probability function (failure of the faults with the smallest strength353

excess). However, it is possible that the seismicity may have transitioned to a more steady regime in354

which case the representation of only the tail of the distribution might be inadequate. We therefore355

adopt a modified version of the model. For each fault the distribution of strength excess depends356

on the probability distributions describing its orientation, stress and strength. Heterogeneities of357

stress resulting from variations of elastic properties of lithological origin can result in a Gaussian358

distribution of Coulomb stress changes (Langenbruch and Shapiro [2014]). If we assume that the359

initial Coulomb stress values on different fault patches are independent and identically distributed360

random values, the probability of failure of a fault at a location with a maximum Coulomb stress361

changes ∆C is derived from integration of the Gaussian function yielding (Smith2021),362

Pf =
1

2

(
1 + erf

(
∆C − θ1

θ2
√
2

))
, (16)

where θ1, θ2 represent the mean and standard deviation of the Gaussian distribution, representing the363

fault strength distribution. While the extreme value theory implies an exponential rise of seismicity364

for a constant stress rate (Bourne and Oates [2017]), the seismicity rate will gradually evolve to a365

regime where the seismicity rate will be proportional to the stress rate as the stress increases to a366

value of the order of the mean initial strength excess (θ1). If the faults that have already ruptured367

are allowed to re-rupture and if the Coulomb stress has increased to a value significantly larger368
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than the typical stress drop during an earthquake, the distribution of strength excess will become369

uniform (constant between 0 and the co-seismic stress drop); the seismicity rate would then remain370

proportional to the stress rate. This is the steady regime expected an active tectonic setting for371

instantaneous nucleation (Ader et al. [2014]). The formulation allows in principle the system to372

move out of the initial exponential rise of seismicity. A third parameter, where θ0, is needed to373

represent the density of nucleation points per unit area. This parameters depends primarily on the374

detection threshold of the seismicity catalog used for model calibration. Hypocentral depths are not375

accounted for since, with the ETS formulation, earthquakes are assumed to occur within or at the376

boundary of the reservoir.377

For consistency with the study of (Heimisson et al. [2021]), we quantify the misfit between the378

predicted and observed seismicity using a Gaussian log-likelihood function379

log(p(m | Ro)) = −1

2

i=2016∑
i=1990

(
Ro

i −
∫
Σ
R(m, i, x, y)dxdy

)2

, (17)

where R(m, i) is the model predicted rate density in year i, where m is the vector of model parameters.380

Ro
i is the observed rate in year i. Integration in Easting, x, and Northing y, is carried over the area381

Σ corresponding to the outline of the reservoir in mapview. During the training we sample the PDF382

(Equation 17) using an Metropolis-Hastings sampler. After sufficient number of samples, hindcasts383

are obtained by selecting 1000 random samples of m = m1,m2, . . . at random and computing Rp(m, t)384

for t > ye + 1. For calibration of the model, we use the catalogue of (Dost et al. [2017]) which385

reports earthquake locations since 1990, with a completeness of MLN > 1.5 since 1993. The model386

parameters and their uncertainties derived using the best fitting (MAP) history matched VFE model387

are listed in Table 2. We also list the mean and the range of model parameters obtained from the388

ensemble of models within the 95% confidence domain determined during the history matching389

procedure. The model parameters derived when using MoReS as input to the stress calculation are390

listed in Table 3. They are close those obatined with VFE models.391

Not surprisingly, the spatial and temporal variations of seismicity rate predicted with either the392

VFE models or the MoReS model are very similar and quite consistent with the observations (Figure393

6). One noticeable difference is that the VFE models predicts more seismicity than MoReS in the394

southwestern area of the reservoir. This is due to the fact that the VFE models predict a smaller395

pore pressure drop in that area than MoReS. By contrast the VFE model predicts a lesser seismicity396

rate than MoReS in the central part of the reservoir. Both models are consistent to first order with397

the observed distribution of earthquakes. Figure 6d shows the mean expected annual seismicity rate398

(blue line), and the range of expected seismicity rate for the ensemble of VFE models within the399

95 % confidence domain derived from history matching. The two models predict a seismicity rate400

consistent with the observations over the validation period. A slightly better validation fit is actually401

obtained with the VFE model. It should be noticed that the plot doesn’t account for the variability402

of seismicity rate expected from the stochastic nature of seismicity. here is therefore more variability403

in the observed rate. This term could be included assuming a non-homogeneous Poisson process and404

some model of aftershock statistics such as ETAS (Ogata [1998]). It is not included here as it would405

obscure the contribution of the uncertainties on reservoir model parameters. Figure 6 also shows the406

expected maximum magnitude based on the VFE and MoReS models. This calculation assumes407

that the frequency-magnitude distribution of earthquakes follow the Gutenberg-Richter law for a408

b-value of 1. For simplicity we didn’t include any consideration for the uncertainty and possible409

temporal variations of the b-value (Bourne and Oates [2020]).410
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Once the history matched seismicity production values are determined, we can forecast the411

earthquake rate for the different hypothetical production scenarios described above. Figure 7 shows412

the seismicity forecast for the cold winter scenario, the shut-in scenario and the cold winter scenario413

with pressure management. The shut-in scenario leads to the most abrupt drop of seismicity.414

Seismicity doesn’t completely shut down however because of pressure readjustment in the gas field415

after production is stopped. It should be noticed that the model doesn’t account for the lag in the416

seismicity response that would result from the earthquake nucleation which is not instantaneous, as417

assumed in our model, but time dependent. Comparison with Figure 6 of Heimisson et al. (Heimisson418

et al. [2021]), which accounts for the effect of the nucleation process but assumes no further stress419

changes after shut-in, shows that the induced lag is in fact quite short. It is however probable420

that our model predicts a too abrupt drop of seismicity at the time of shut-in because this effect is421

neglected.422

5.1 Conclusion423

When combined with semi-analytical formulations to calculate poro-elastic stress changes and a424

simple model of earthquake nucleation, the Vertical Flow Equilibium assumption allows calculating425

reservoir fluid pressure, compaction, surface subsidence and induced seismicity at a low computational426

cost. The VFE assumption appears to be a valid approximation in the context of the Groningen gas427

field. It indeed leads to predictions of surface subsidence and seismicity consistent with observations428

and close to the predictions obtained based of the more sophisticated model, MoReS, which was429

developed by the operator. It thus provides a tool to assess the expected subsidence and seismicity430

response to production scenarios with account for uncertainties with bootstrapping or Monte-Carlo431

methods for example. In principle, our modeling framework could also be used to optimize pressure432

management. The location and the flow rates of the injection wells could for example be adjusted so433

that seismicity and subsidence would be minimized. A limitation of the model presented here is that434

it considers only one single fluid phase. In the context of Groningen, this is probably the reason for435

the drift in the residuals obtained from history matching with the VFE model. This issue does not436

appear with the MoReS model which allows groundwater intrusion at the northern boundary of the437

field. A multiphase VFE flow model could be implemented (Jenkins et al. [2019]) to alleviate that438

limitation. This would be beneficial also for the application of this framework to other applications439

where multiphase flow is required such as for CO2 storage.440
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Parameter Search Optimised Value <95% confidence
Parameter Minimum Maximum Separation MAP Value Standard Deviation
Permeability (m2) 1× 10−13 4.0× 10−13 1× 10−14 3.1× 10−13 6.78× 10−14

Porosity 0.1 0.2 0.005 0.185 0.0165

Gas Saturation 0.24 0.35 0.005 0.27 0.0268

Table 1: Parameter space used for running forward simulations of the reservoir pressure depletion
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Mean Standard Deviation
θ0 θ1 θ2 θ0 θ1 θ2

unit m−2 MPa MPa m−2 MPa MPa
MAP Reservoir Pressure 0.291 0.075 −0.355 0.0211 0.0070 0.3118

Ensemble (95% confidence domain) 0.334 0.086 0.279 0.0468 0.0116 0.5400

Table 2: Mean and standard deviation of the parameters of the Gaussian stress threshold model
used to relate stress changes to seismicity for the best fitting (MAP) VFE model and across all the
pressure history match models within the 95% confidence domain.
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Mean Standard Deviation
θ0 θ1 θ2 θ0 θ1 θ2

unit m−2 MPa MPa m−2 MPa MPa
MAP Reservoir Pressure 0.342 0.076 1.584 0.0097 0.0025 0.1755

Table 3: Mean and Standard deviation of the parameters of the Gaussian stress threshold model
used to relate stress changes to seismicity for MoReS.
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Figure 1: (a) Cumulated surface subsidence (Smith et al. [2019]) and seismicity between 1964 and
2017 (pink circles) (ref). The largest event reached ML = 3:6. Black dashed line shows the ouline
of the gas reservoir. Grey lines show the faults affecting the reservoir (ref). (b) Cumulated gas
production and cumulated number of earthquakes since the onset of gas production in 1959. (c)
Planned production for the ’Cold Winter’ scenario from the end of 2016 to 2030 (ref).
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Figure 2: Comparison of measured well pressure with prediction from our history matched VFE
model at all 29 wells.
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Figure 3: (a) Comparison of the reservoir pressure predicted by the history matched Vertical Flow
Equilibrium (VFE) model and MoReS in time (left panel) and space (right panel). The red and
green lines show the mean reservoir pressure predicted by the VFE and the MoReS models. Gray
lines present the realizations of all the pressure depletion models with darker colors representing
lower misfits. (b) Temporal (left panel) and spatial (right) distribution of misfits from the history
matching of the VFE model. The red line shows the RMSE and the dashed lines encompass 88% of
the residuals. (c) same as (b) for the MoReS model
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Figure 4: Predicted mean pressure evolution withe VFE model for the Shut-In scenario, the Cold-
Winter production scenario and the Cold-Winter production with pressure management scenario.
Inset shows the distribution of extraction and injection wells in the pressure management scenario.
The lines and shaded areas show the prediction from the best VFE fitting model obtained from
history matching and the associated 88% confidence interval assuming Shut-in (red), Cold-Winter
(blue) and the Cold-Winter with pressure management (green) scenarios. The blue line and blue
shading show the Cold-Winter prediction from the best fitting VFE model obtained from history
matching and the associated 88% confidence interval. Blue and Blue region representing the vertical
flow equilibrium model for Cold-Winter scenario with the solid line representing the optimal history
matched scenario and bounding region emcompassing 88% of the measurements. The purple line
shows the mean reservoir pressure from MoReS. The vertical dashed line marks the transition from
history matching to forecasting in 2016.
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Figure 5: Comparison between the reservoir compaction derived from the inversion of the geodetic
and inSAR measurements of surface displacement Smith et al. [2019] (1st row) with the compaction
predicted based on the pressure distribution calculed with the VFE (2d row) and MoReS models (3d
row) for different periods (columns). The root mean square (RMS) difference between the compaction
derived from geodesy and from the reservoir models are reported on the panels. The bottom panel
show the time evolution of the mean subsidence derived from the geodetic measurements and
predicted by the VFE and MoReS models.
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Figure 6: Spatial and temporal variations of seismicity rate predicted with our framework until
2016. Stress changes induced by poroelastic deformation of the reservoir were calculated either with
MoReS or with our VFE models. (a) Observed seismicity (white dots) and density of earthquakes
(color shading) predicted with the best fitting history matched VFE model. (b) Observed seismicity
(white dots) and density of earthquakes (color shading) predicted with MoReS. (c) Expected annual
seismicity rate for the best fitting history matched VFE model (blue line) and MoReS (purple line).
Grey lines: range of expected seismicity rate for the ensemble of VFE models within the 95 %
confidence domain derived from history matching. (d) Expected maximum magnitude predicted by
tMoReS (purple line) and the VFE models (blue line for MAP model grey lines for 95 % confidence
domain)
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Figure 7: Predicted spatial distribution of seismicity from 2016 to 2030 using the MAP VFE model
for the shut-in scenario (a), the cold winter scenario (b), and the cold winter scenario with pressure
management (c). Temporal evolution of annual seismicity rate (d) and expected maximum magnitude
(e) for the three scenarios. Shaded areas show the range of model predictions from the ensemble
of VFE reservoir model within the 95% confidence domain. The expected maximum magnitude is
calculated assuming a b-value of 1.
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