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Abstract

We study the problem of multifidelity uncertainty propagation for computationally
expensive models. In particular, we consider the general setting where the high-fidelity
and low-fidelity models have a dissimilar parameterization both in terms of number of
random inputs and their probability distributions, which can be either known in closed
form or provided through samples. We derive novel multifidelity Monte Carlo estimators
which rely on a shared subspace between the high-fidelity and low-fidelity models where
the parameters follow the same probability distribution, i.e., a standard Gaussian.
We build the shared space employing normalizing flows to map different probability
distributions into a common one, together with linear and nonlinear dimensionality
reduction techniques, active subspaces and autoencoders, respectively, which capture
the subspaces where the models vary the most. We then compose the existing low-
fidelity model with these transformations and construct modified models with an
increased correlation with the high-fidelity model, which therefore yield multifidelity
estimators with reduced variance. A series of numerical experiments illustrate the
properties and advantages of our approaches.

Keywords. multifidelity, uncertainty quantification, Monte Carlo estimators, active
subspaces, autoencoders, normalizing flows.

1 Introduction

Uncertainty quantification has become a crucial component of computational modeling, as a
way to enhance the validity and utility of numerical simulations. Uncertainty quantification
studies can provide confidence metrics for quantities of interest and inform future data
collection through sensitivity and identifiability analysis. However, in many cases, a naive
approach to uncertainty quantification quickly becomes computationally infeasible as a
result of the large computational cost needed to numerically solve complex physics-based
mathematical models. Therefore, maintaining a reasonable computational cost for an
uncertainty quantification study becomes challenging when relying solely on high-fidelity
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simulations. This has motivated the development of multilevel and multifidelity Monte
Carlo strategies that offset the computational cost of estimation to low-fidelity models,
accelerating convergence and improving the tractability of uncertainty quantification for
computationally expensive simulations [3, 6, 14,15,27,29,34,35].

In some cases, however, the low fidelity-model can be obtained through a substantial
simplification of the high-fidelity model, resulting in input parameters with potentially
both different dimensionality and probability distribution, which we refer to as dissimilar
parameterization. We remark that in this case the performance of standard multifidelity
Monte Carlo estimators decreases, and it is important to concentrate the variability in few
dimensions to enhance the correlation [12,45]. We therefore propose two methodologies
to create a shared subspace of reduced dimension which acts as a bridge between the two
models. The first step in obtaining the shared subspace consists of finding an “important”
subspace individually for both the high-fidelity and low-fidelity models where they vary the
most, and consequently which captures most of the variance of the models. Perturbations
of the random inputs along such important directions are responsible for most of the
variability in the model response. If such a structure is present in the problem, then we can
consider model responses only for inputs in the subspace, effectively reducing the problem
dimensionality. In this work we employ two different dimensionality reduction techniques,
active subspaces and autoencoders, which provide linear and nonlinear transformations,
respectively. Active subspaces have been first formalized in [4, 5], while an introduction
about autoencoder for unsupervised learning can be found in [2]. Autoencoders have become
popular in the past few years thanks to their expressibility, as they leverage neural networks
to find nonlinear transformations of the data, as opposed to linear maps provided by active
subspaces. The second ingredient to obtain a shared subspace is a normalizing flow, i.e., an
invertible transformation from a generic probability distribution into an easy-to-sample base
distribution, usually a standard Gaussian. For a comprehensive review about normalizing
flows we refer to [22,28]. The goal of normalizing flows is enforcing the same probability
distribution, in particular a standard Gaussian, of the latent variables, i.e., the parameters
in the shared space. For active subspaces, which are known to preserve Gaussianity, we build
normalizing flows from the input distributions of the parameters, such that the reduced
subspaces of both the high-fidelity and low-fidelity models are automatically Gaussian. On
the other hand, for autoencoders we learn normalizing flows from the distributions of the
latent variables of the model into the shared subspace, which is therefore Gaussian. We
remark that these subspaces and normalizing flows are approximated from the results of a
pilot run that is typically employed as a first step in any multifidelity estimator, without
the need to run additional high-fidelity simulations.

We reasonably assume that if the variability of the high-fidelity and low-fidelity models
is concentrated in few variables, then using the shared space as a bridge aligning the
important directions of the fidelities would improve the correlations and consequently
reduce the variance of the multifidelity estimator. Starting from the existing low-fidelity
model, we therefore construct new low-fidelity models whose inputs are the same parameters
of the high-fidelity model which are transformed into inputs for the original low-fidelity
model in such a way that the correlation between the fidelities increases. We finally
obtain multifidelity estimators which are unbiased, as the high-fidelity model does not
change, and with reduced variance with respect to standard multifidelity Monte Carlo
estimators. The present work generalizes and extends a series of contributions in this
area like, e.g., [11, 12, 45], where the challenge of dissimilar parameterization has been
tackled with either active subspaces or adaptive basis [42]. The main extension regarding
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previous work on active subspaces is that we include a normalizing flow which allows for any
input distribution of the parameters, even known only through samples. Moreover, both
active subspaces and adaptive basis are linear dimension reduction strategies, and therefore
autoencoders are a natural extension since they provide nonlinear transformations.

We apply our methodology to challenging examples, such as reaction-diffusion equations
with applications in biological pattern formation and cardiovascular simulations for a
coronary model with stenosis. Uncertainty quantification has recently gained momentum in
the field of cardiovascular modeling, with recent works exploring a range of methods which
can be used to address various sources of uncertainty within these models [8,9,33,36,37,39].
Moreover, various simplifying assumptions can be made to cardiovascular hemodynamics
to generate low-fidelity models of intermediate complexity for multifidelity uncertainty
propagation. In fact, integrating the Navier–Stokes equations on the vessel cross sections
leads to one-dimensional hemodynamic models [18], and a linearization of the incompressible
Navier–Stokes equations around rest conditions leads to an even simpler zero-dimensional
formulation utilizing analogous electrical circuits to solve vascular networks [31, 32]. These
low fidelity models grant us multiple orders of magnitude cost savings over a full three-
dimensional model.

Outline. The rest of the paper is organized as follows. In Section 2 we give background
on multifidelity uncertainty quantification, active subspaces, autoencoders, and normalizing
flows, which we employ in the definition of our novel methods, which are described in
details in Section 3. Then, in Section 4 we present several numerical experiments, and we
finally draw conclusions in Section 5.

2 Review of current methods

In this section we briefly review the main tools employed in our uncertainty quantification
pipelines. We recall that our goal is the efficient estimation of scalar quantities of interest
of computationally expensive models. Let Q : Rd → R represent a computational model,
and let ξ ∈ R

d be a random vector of inputs distributed according to the joint distribution
µ. We aim to characterize the statistical moments of the quantity of interest Q(ξ), focusing
in particular on its expectation E[Q(ξ)]. For higher-order moments, we can just replace
the quantity of interest Q(ξ) by its power Qm(ξ) with m > 1. The standard Monte Carlo
estimator approximates this expected value through a set of N realizations ¶ξn♢N

n=1 of the
input variable ξ ∼ µ as

Q̂MC
N =

1

N

N∑

n=1

Q(ξn).

This estimator is simple to compute and it is unbiased, in the sense that

E

[
Q̂MC

N

]
= E[Q(ξ)].

However, its root mean squared error is O(N−1/2), meaning that a large number of evalua-
tions might be necessary in order to reach the desired accuracy. In concrete applications
where the evaluation of Q is computationally expensive, increasing the number of samples
N can be intractable. Therefore, multifidelity Monte Carlo estimators have been developed
to overcome this issue.
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2.1 Multifidelity Monte Carlo estimator

Let us assume that a computationally cheap model for the original model Q is available,
and denote QHF and QLF the original (high-fidelity) and the cheap (low-fidelity) models,
respectively. We notice that the low-fidelity model can be any, even biased, approximation
of the high-fidelity model, as long as it is computationally cheap to simulate. We adopt
the estimator originally introduced in [27], which focus on the case of a single low-fidelity
model, but the multifidelity Monte Carlo estimator can be easily extended, or generalized,
to the case of multiple low-fidelity models, e.g., [3, 6, 15,29,34,35]. Let w = CLF/CHF be
the cost ratio between the two fidelities, and let B be the computational budget available
in terms of high-fidelity evaluations, i.e.,

B = NHF + wNLF,

where NHF and NLF are the numbers of high-fidelity and low-fidelity evaluations, re-
spectively. We aim to split the computationally budget between the high-fidelity and
low-fidelity models in such a way that the final multifidelity estimator has the smallest
possible variance [29]. Assuming that our budget is large enough, this is achieved by setting

NHF =
B

1 + wγ
and NLF = γNHF =

γB
1 + wγ

, with γ =

√
ρ2

w(1 − ρ2)
,

(2.1)
where ρ is the Pearson correlation coefficient between the HF and LF models

ρ =
Cov

(
QHF(ξ), QLF(ξ)

)

√
Var[QHF(ξ)]Var [QLF(ξ)]

.

Once the number of evaluations for each model has been selected, the multifidelity Monte
Carlo estimator (MFMC) is defined as

Q̂MFMC
NHF,NLF = Q̂HF,MC

NHF − β
(
Q̂LF,MC

NHF − Q̂LF,MC

NLF

)

=
1

NHF

NHF∑

n=1

QHF(ξn) − β


 1

NHF

NHF∑

n=1

QLF(ξn) − 1

NLF

NLF∑

n=1

QLF(ξn)


 ,

where the optimal value for the coefficient β is given by

β =
Cov

(
QHF(ξ), QLF(ξ)

)

Var [QLF(ξ)]
, (2.2)

and NHF samples are shared between the two models.

Remark 2.1. Computing the optimal values for the numbers NHF and NLF of evaluations
and the coefficient β in equations (2.1) and (2.2), respectively, is important to take full
advantage of the method and get the smallest possible variance for the multifidelity Monte
Carlo estimator. However, it is not essential to employ the optimal values for NHF, NLF,
and β, and any choice would still produce an unbiased estimator. In case the optimal
values are used, then we obtain

Var
[
Q̂MFMC

NHF,NLF

]
= Var

[
Q̂HF,MC

B

] (√
1 − ρ2 +

√
wρ2

)2

, (2.3)
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which yields that

♣ρ♣ > 4w

(1 + w)2
=⇒ Var

[
Q̂MFMC

NHF,NLF

]
< Var

[
Q̂HF,MC

B

]
.

Therefore, variance reduction with respect to standard Monte Carlo is guaranteed as long
as the HF and LF models are well correlated.

This estimator, as with others available in literature, can be obtained as instances of the so-
called Approximate Control Variate (ACV) approach introduced in [15]. As a consequence,
the methodologies developed here will be applicable to a larger set of estimators. In
the presence of dissimilar parameterization, retaining high correlation among models is
paramount for the efficiency of the estimator. In the next section we introduce active
subspaces as a way to increase the correlation between the high-fidelity and low-fidelity
models. Moreover, active subspaces act as a bridge between models having a different
number of inputs.

2.2 Active subspaces

The active subspaces approach is a methodology which is usually employed in uncertainty
quantification studies in order to reduce the dimension of the random inputs, without
sacrificing accuracy in approximating a quantity of interest [5]. It allows one to find the
dominant directions, i.e., the linear subspace where the quantity of interest Q varies the
most. Let C be the matrix which quantifies the variation defined as

C = E

[
∇Q(ξ)∇Q(ξ)⊤

]
, (2.4)

where the expectation is taken with respect to the measure µ and the gradient is computed
with respect to the variable ξ, and which can be approximated using a collection of samples
¶ξn♢N

n=1 as

C ≃ C̃ =
1

N

N∑

n=1

∇Q(ξn)∇Q(ξn)⊤.

We remark that the gradient of the model Q is required in order to compute the matrix C.
It can be approximated through finite differences, linear approximations, surrogate models,
or any other technique to compute derivatives numerically. Additional details about how
we deal with the gradient in our work are given in Remark 3.1. Moreover, we note that
more sophisticated strategies could be introduced to reduce the data requirment of this
step, especially for the high-fidelity model. For instance, the approximation of C could
be obtained via a multifidelity approach as demonstrated in [23]. Note that since C̃ is a
symmetric positive semidefinite matrix, then it admits a real eigenvalue decomposition

C̃ = WΛW⊤ with W,Λ ∈ R
d×d,

where W is orthogonal and its columns are the eigenvectors of C, and Λ is a diagonal
matrix which contains the corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0, which can
be arranged in decreasing order. This ordering suggests a possible separation between
important (or active) and irrelevant (or inactive) contributions of the corresponding
eigenvector to the linear decomposition of C as a sum of rank-one matrices, in particular if
the smallest eigenvalues are close to zero. To better visualize such separation, we write

Λ =


ΛA

ΛI

]
and W =

[
WA WI

]
,
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where ΛA ∈ R
r×r and WA ∈ R

d×r contain the first r < d eigenvalues and eigenvectors,
respectively. The column spans of WA and WI represent the active and inactive subspace,
respectively. These linear transformations allow us to decompose the original input ξ ∈ R

d

into the active and inactive parts as follows

ξ = WAξA +WIξI , where ξA = W⊤
A ξ ∈ R

r, ξI = W⊤
I ξ ∈ R

d−r. (2.5)

If the dimensionality of the problem can actually be reduced, then the inactive component
of the decomposition can be ignored because it gives a negligible contribution to the
quantity of interest, i.e., Q(ξ) ≃ Q(WAξA), and the problem becomes r-dimensional.

Remark 2.2. The probability distribution of the random inputs µ often results from a
modeling choice, particularly when observational data are insufficient, and the matrix C in
equation (2.4) is dependent on this distribution. Therefore, we notice that different choices
for µ lead to different active subspaces for the same model.

The distribution of the active part in the decomposition (2.5) is in general unknown.
Nevertheless, if the distribution of the data µ is the standard Gaussian, i.e., ξ ∼ N (0, Id),
then the active component remains standard Gaussian, i.e., ξA ∼ N (0, Ir), and in fact a
linear transformation of a Gaussian random variable is still Gaussian, and it holds

E[ξA] = W⊤
A E[ξ] = 0 and Var[ξA] = W⊤

A Var[ξ]WA = W⊤
AWA = Ir.

This suggests the possibility of generating shared parameterizations even for models
having a different number of random inputs, as long as their active inputs share the same
dimensionality and distribution [11,12]. For general probability distributions, it is often
possible to define a transformation mapping µ to a standard Gaussian via normalizing
flows, compute the active subspace, and finally transform the variables back to their
original distribution after sampling. We notice that this is a significant advantage since
it allows one to handle any type of input data, independently of their correlation. As
observed in [11], even if a transformation introduces additional complexity, the increase in
computational cost could be outweighed by the increase in correlation between models. A
strong limitation of the active subspace technique is that it provides only linear maps for
dimensionality reduction. This restriction can be overcome by replacing active subspaces
with autoencoders, which allow for nonlinear transformations. The next two sections will
therefore focus on autoencoders and normalizing flows, respectively.

2.3 Autoencoders

Autoencoders are a data-driven approach widely used for unsupervised dimensionality
reduction, with the ability to learn an intrinsic structure existing in the data by leveraging
neural networks. They consist of one encoder E followed by one decoder D, where the
encoder E : Rd → R

r with r < d compresses the original input ξ ∈ R
d into a latent

representation x ∈ R
r, and the decoder D : Rr → R

d seeks to reconstruct the original input
ξ starting from the latent representation x, in the sense that D(E(ξ)) ≃ ξ. The functions
E and D are usually parameterized by fully connected neural networks. In this work we are
not interested in reconstructing exactly the original input, but rather Q(ξ). In particular,
given a model Q, analogously to the active subspace approach, we would like to find a lower
dimensional representation of Q by selecting a manifold of dimension r where the function
varies the most. Hence, we aim to reconstruct the original quantity of interest, meaning
that Q(D(E(ξ))) ≃ Q(ξ). We notice that this can be seen as a supervised dimensionality
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reduction, where we would like to learn a structure in the data according to some metric,
which in this case is the model Q. We parameterize the encoder and the decoder as
fully connected neural networks E(·;ϕE) and D(·;ϕD) with hyperbolic tangent activation
functions, and we compute the optimal parameters by minimizing the loss function

LAE(ϕE , ϕD) =
1

N

N∑

n=1

♣Q(ξn) −Q(D(E(ξn;ϕE);ϕD))♣ ,

where ¶ξn♢N
n=1 is the sample of available data. We notice that minimizing the loss function

requires multiple evaluations of the model Q, and this can be impractical if the model is
computationally expensive. We therefore build a surrogate model which is only used in
the training process, as we discuss in Remark 3.3. Using the same terminology as for the
active subspaces technique, we say that the active variable is ξA = E(ξ) and we notice
that its distribution is unknown. Therefore, by constructing a map from the probability
distribution of the active variable into a standard Gaussian through normalizing flows (see
Section 2.4), we can generate a shared parameterization even for models having a different
number of inputs, as long as the reduced dimension of the autoencoder is the same.

2.4 Normalizing flows

Normalizing flows are invertible transformations which map generic probability distribu-
tions into more simple and tractable distributions, usually standard Gaussian. Let µ be
a probability distribution on R

d with density ψ and let µ0 with density ψ0 be the target
distribution, which in our work, like in most cases, is µ0 = N (0, Id). We aim to find a
diffeomorphism T : Rd → R

d such that T#µ = µ0, where T# denotes the pushforward mea-
sure through the map T . We consider a parameterization T (·; θ), which is the composition
of invertible transformations defined by neural networks. Then, given a sample ¶ξn♢N

n=1

from the initial distribution µ, the best parameters θ are computed by maximizing the
log-likelihood function for the density ψ̃(·; θ) of the measure T −1(·; θ)#µ0. In practice, we
minimize the loss function

LNF(θ) = −
N∑

n=1

log ψ̃(ξn; θ),

which, by the change of variable formula, can be written as

LNF(θ) = −
N∑

n=1

[logψ0(T (ξn; θ)) + log ♣det ∇T (ξn; θ)♣] . (2.6)

Remark 2.3. If the target distribution is standard Gaussian, i.e., µ0 = N (0, Id), then ψ0 is
the density of a multivariate normal distribution, and equation (2.6) reads

LNF(θ) =
N∑

n=1

[
1

2
∥T (ξn; θ)∥2 − log ♣det ∇T (ξn; θ)♣


+
Nd

2
log(2π),

where the last term in the right-hand side can be neglected since it is independent of θ.

Therefore, a good parameterization for a normalizing flow needs to be sufficiently expressive,
in order to be able to approximate the exact transformation, and efficient in terms of
computation of the map itself, and the determinant of its Jacobian matrix. Moreover,
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goal is finding the lower dimensional subspace of each model separately, and then create a
link between them through a shared subspace. We then assume that we want to keep the
original high-fidelity model for two reasons. First, we could not have additional resources
for generating new high-fidelity simulations on the shared space, and second we would
like to preserve the unbiasedness of the multifidelity estimator. On the other hand, we
create a modified low-fidelity model which is better correlated to the high-fidelity one. We
achieve this by employing normalizing flows and dimensionality reduction techniques, in
particular active subspaces for the method in Section 3.1 and autoencoders for the method
in Section 3.2. We remark that the main difference between the two approaches is that
autoencoders allow for nonlinear transformations which cannot be obtained from the active
subspace technique. A summary of the two methodologies, which are outlined in the next
two sections, is showed in Fig. 1.

3.1 Coupling MFMC with active subspaces and normalizing flows

In this section we create a shared parameterization between QHF and QLF using the active
variables given by the active subspaces of the two models. Let ¶ξHF

n ♢N
n=1 ∼ µHF and

¶ξLF
n ♢N

n=1 ∼ µLF be samples from the input distributions, and consider the normalizing

flows T HF(·; θHF) : RdHF → R
dHF

and T LF(·; θLF) : RdLF → R
dLF

such that

T HF(·; θHF)#µ
HF = N (0, IdHF) and T LF(·; θLF)#µ

LF = N (0, IdLF), (3.1)

and which, due to Remark 2.3, are obtained minimizing the loss functions

LHF
NF(θHF) =

N∑

n=1

[
1

2

∥∥∥T HF(ξHF
n ; θHF)

∥∥∥
2

− log
∣∣∣det ∇T HF(ξHF

n ; θHF)
∣∣∣

,

LLF
NF(θLF) =

N∑

n=1

[
1

2

∥∥∥T LF(ξLF
n ; θLF)

∥∥∥
2

− log
∣∣∣det ∇T LF(ξLF

n ; θLF)
∣∣∣

.

We can now define the modified models Q̃HF : RdHF → R and Q̃LF : RdLF → R, whose input
distributions are standard Gaussian, employing the inverse of the normalizing flows

Q̃HF(xHF) = QHF((T HF)−1(xHF; θHF)) and Q̃LF(xLF) = QLF((T LF)−1(xLF; θLF)).
(3.2)

Applying the procedure described in Section 2.2 to Q̃HF and Q̃LF, we compute the matrices

C̃HF =
1

N

N∑

n=1

∇Q̃HF(xHF
n )∇Q̃HF(xHF

n )⊤ and C̃LF =
1

N

N∑

n=1

∇Q̃LF(xLF
n )∇Q̃LF(xLF

n )⊤,

(3.3)
where xHF

n = T HF(ξHF
n ; θHF) and xLF

n = T LF(ξLF
n ; θLF), and we learn the active subspaces

WHF
A ∈ R

dHF×r and WLF
A ∈ R

dLF×r of dimension r, which capture the directions of
maximum change of the two models. Hence, the shared space is obtained applying first the
normalizing flow and then the transpose of the active subspace matrix as follows

zHF
n = (WHF

A )T xHF
n = (WHF

A )T T HF(ξHF
n ; θHF) ∈ R

r,

zLF
n = (WLF

A )T xLF
n = (WLF

A )T T LF(ξLF
n ; θLF) ∈ R

r,

where both zHF
n and zLF

n are distributed accordingly to a standard Gaussian N (0, Ir). We
recall here that ξ stands for the original input, x is the corresponding normally distributed
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parameter, and z is the active variable in the shared space. We remark that, if the optimal
reduced dimensions differ between the two fidelities, the value of r should be chosen in
the range given by these two dimensions finding the best trade-off between capturing all
the variability of the models and increasing their correlation. We recall that our goal is
increasing the correlation between the high-fidelity, which we do not modify, and the low
fidelity models. We therefore construct a new low-fidelity model in which we map the input
parameters of the high-fidelity model into the input parameters of the original low-fidelity
model by means of the shared space. In particular, we define QLF

AS : RdHF → R as

QLF
AS(ξHF) = QLF((T LF)−1(WLF

A (WHF
A )⊤T HF(ξHF; θHF), θLF)), (3.4)

and we employ it to introduce a new multifidelity estimator

Q̂MFMC,AS

NHF,NLF =
1

NHF

NHF∑

n=1

QHF(ξHF
n ) − β


 1

NHF

NHF∑

n=1

QLF
AS(ξHF

n ) − 1

NLF

NLF∑

n=1

QLF
AS(ξHF

n )


 .

(3.5)
We remark that since the high-fidelity model does not change, then Q̂MFMC,AS

NHF,NLF is unbiased.
In Algorithm 1 we summarize the main steps needed to construct the estimator. The same
considerations presented in Section 2.1 regarding the choice of the coefficient β and of
the numbers NHF and NLF of high-fidelity and low-fidelity evaluations are still valid here.
Moreover, we remark that, if we do not have the possibility to generate new high-fidelity
simulations, we can fix NHF = N , where N is the dimension of the pilot sample used
to build the new low-fidelity model, and increase only the number NLF of low-fidelity
simulations. In this case, we would not get the optimal variance reduction outlined in
Remark 2.1, but we can still obtain a reduction in the variance of the multifidelity estimator
due to the higher correlation between QHF and QLF

AS with respect to QHF and QLF.

Algorithm 1: MFMC AS

Input: High fidelity and low fidelity models QHF and QLF

Distributions µHF and µLF for the input parameters
or samples ¶ξHF

n ♢N
n=1 ∼ µHF and ¶ξLF

n ♢N
n=1 ∼ µLF from them

Computational budget B.

Output: Estimation Q̂MFMC,AS

NHF,NLF of E[QHF(ξHF)].

1: Compute the normalizing flows T HF(·; θHF) and T LF(·; θLF) which satisfy (3.1).

2: Compute the active subspaces WHF
A and WLF

A from the matrices C̃HF and C̃LF

in (3.3) obtained from the modified models Q̃HF and Q̃LF in (3.2).

3: Define the new low-fidelity model QLF
AS in (3.4).

4: Compute the optimal allocation NHF, NLF from a pilot sample.

5: Compute the estimator Q̂MFMC,AS

NHF,NLF in (3.5).

Remark 3.1. In order to learn the active subspace matrices, it is necessary to compute the
gradients of the models in equation (3.3), which might not be available or might be too
computationally expensive. An approximation of the gradients can be obtained replacing the
partial derivatives with finite differences, but this approach can be unfeasible, in particular
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in high dimensions, even for the low-fidelity model. Therefore, we propose to train surrogate
models QHF

NN and QLF
NN for QHF and QLF based on fully connected neural networks with

ReLU activation functions, and then compute the gradients using automatic differentiation.
Given a set of realizations ¶(ξHF

n , QHF(ξHF
n ))♢N

n=1 and ¶(ξLF
n , QLF(ξLF

n ))♢N
n=1, we obtain

the neural networks QHF
NN(·;αHF) and QLF

NN(·;αLF) minimizing the loss functions

LHF
NN(αHF) =

1

N

N∑

n=1

∣∣∣QHF(ξHF
n ) −QHF

NN(ξHF
n ;αHF)

∣∣∣ ,

LLF
NN(αLF) =

1

N

N∑

n=1

∣∣∣QLF(ξLF
n ) −QLF

NN(ξLF
n ;αLF)

∣∣∣ .

We notice that these approximations might not be accurate if the number N of data points
is not sufficiently large. On the other hand, if the surrogate models were suitably accurate,
then it would make more sense to consider the neural network surrogate rather than the
low fidelity model. We emphasize here that these surrogate models are employed with the
only purpose of helping to find low dimensional subspaces where the models vary the most,
and should not be used to approximate the models themselves for the evaluations needed
to compute the multifidelity estimator. Hence, even if the approximation provided by the
neural networks surrogates can be quite poor, and this is a problem for identifying the
best lower-dimensional subspaces, it can still be sufficient for capturing lower-dimensional
manifolds that increase the correlation between the models.

3.2 Coupling MFMC with autoencoders and normalizing flows

A strong limitation of the method presented in the previous section is that it relies on linear
dimensionality reduction. In this section, we extend the previous methodology by replacing
active subspaces with the supervised autoencoders introduced in Section 2.3, and therefore
admitting nonlinear transformations for dimensionality reduction. Although nonlinear
transformations are more expressive, they do not preserve Gaussianity, and consequently
the normalizing flows used to map the input distributions into standard Gaussian become
redundant. Hence, given samples ¶ξHF

n ♢N
n=1 ∼ µHF and ¶ξLF

n ♢N
n=1 ∼ µLF from the input

distributions, we first learn the autoencoders with r-dimensional latent variables




EHF(·;ϕHF
E ) : RdHF → R

r

DHF(·;ϕHF
D ) : Rr → R

dHF
and





ELF(·;ϕLF
E ) : RdLF → R

r

DLF(·;ϕLF
D ) : Rr → R

dLF
, (3.6)

by minimizing the loss functions

LHF
AE(ϕHF

E , ϕHF
D ) =

1

N

N∑

n=1

∣∣∣QHF(ξHF
n ) −QHF(DHF(EHF(ξHF

n ;ϕHF
E );ϕHF

D ))
∣∣∣ ,

LLF
AE(ϕLF

E , ϕLF
D ) =

1

N

N∑

n=1

∣∣∣QLF(ξLF
n ) −QLF(DLF(ELF(ξLF

n ;ϕLF
E );ϕLF

D ))
∣∣∣ .

The latent variables of the autoencoders

xHF
n = EHF(ξHF

n ;ϕHF
E ) ∈ R

r and xLF
n = ELF(ξLF

n ;ϕLF
E ) ∈ R

r

now share the same dimensionality, but not the same probability distribution. Therefore,
in order to create a shared space, we construct two normalizing flows which map the

11



distributions of the latent spaces of the two autoencoders into a standard Gaussian. In
particular, let νHF = EHF(·;ϕHF

E )#µ
HF and νLF = ELF(·;ϕLF

E )#µ
LF, and consider the

normalizing flows SHF(·;σHF) : Rr → R
r and SLF(·;σLF) : Rr → R

r such that

SHF(·;σHF)#ν
HF = N (0, Ir) and SLF(·;σLF)#ν

LF = N (0, Ir), (3.7)

and which are obtained minimizing the loss functions

LHF
NF(σHF) =

N∑

n=1

[
1

2

∥∥∥SHF(xHF
n ;σHF)

∥∥∥
2

− log
∣∣∣det ∇SHF(xHF

n ;σHF)
∣∣∣

,

LLF
NF(σLF) =

N∑

n=1

[
1

2

∥∥∥SLF(xLF
n ;σLF)

∥∥∥
2

− log
∣∣∣det ∇SLF(xLF

n ;σLF)
∣∣∣

.

Remark 3.2. The autoencoders and the normalizing flows are trained sequentially, meaning
that we first compute the best autoencoders and then train the normalizing flows on the
resulting latent spaces, in order to get latent variables distributed as standard Gaussians.
We would also like to point out that we could have used variational autoencoders which
would certainly result in a more regular latent space, but without any guarantees on the
distribution of the latent space to be a standard Gaussian, unlike normalizing flow where
this is guaranteed by construction. Moreover, we remark that, in principle, the normalizing
flows could be replaced by any other map between the latent spaces of the autoencoders
of the high-fidelity and low-fidelity models, and we leave the determination of the most
efficient method for this task to subsequent work.

We therefore obtain a shared space by applying first the encoder and then the normalizing
flow as follows

zHF
n = SHF(xHF

n ;σHF) = SHF(EHF(ξHF
n ;ϕHF

E );σHF) ∈ R
r,

zLF
n = SLF(xLF

n ;σLF) = SLF(ELF(ξLF
n ;ϕLF

E );σLF) ∈ R
r,

where both zHF
n and zLF

n are distributed accordingly to a standard Gaussian N (0, Ir). We
recall here that ξ stands for the original input, x is the latent variable of the autoencoder,
and z is the corresponding normally distributed variable in the shared space. We remark
that the autoencoders do not provide a ranking of the variables in the latent dimension
according to their variance contributions like the active subspace technique. Hence, if the
latent space is multidimensional, we propose to select the best ordering of the components
of the latent variable in terms of the estimated correlation. The next steps are analogous
to the previous methodology introduced in Section 3.1. In order to increase the correlation
between the high-fidelity and low-fidelity models, and without modifying the former, we
construct a new low-fidelity model in which we map the input parameters of the high-fidelity
model into the input parameters of the original low-fidelity model by means of the shared
space. In particular, we define

QLF
AE(ξHF) = QLF(DLF((SLF)−1(SHF(EHF(ξHF;ϕHF

E );σHF);σLF);ϕLF
D )), (3.8)

which yields another new multifidelity estimator

Q̂MFMC,AE

NHF,NLF =
1

NHF

NHF∑

n=1

QHF(ξHF
n ) − β


 1

NHF

NHF∑

n=1

QLF
AE(ξHF

n ) − 1

NLF

NLF∑

n=1

QLF
AE(ξHF

n )


 ,

(3.9)
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which is unbiased since we do not modify the high-fidelity model. In Algorithm 2 we
summarize the main steps needed to construct the estimator. The same observations
highlighted for the methodology based on active subspaces still hold here. In particular,
we notice that, in case we cannot generate new high-fidelity simulations, we can reuse
the evaluations employed for training the autoencoder, and change only the low-fidelity
simulations. Moreover, without reaching the optimal allocation for NHF and NLF we would
not get the optimal variance reduction stated in Remark 2.1, but we would still decrease
the variance of the multifidelity estimator due to the higher correlation between QHF and
QLF

AE with respect to QHF and QLF.

Algorithm 2: MFMC AE

Input: High fidelity and low fidelity models QHF and QLF

Distributions µHF and µLF for the input parameters
or samples ¶ξHF

n ♢N
n=1 ∼ µHF and ¶ξLF

n ♢N
n=1 ∼ µLF from them

Computational budget B.

Output: Estimation Q̂MFMC,AE

NHF,NLF of E[QHF(ξHF)].

1: Compute the autoencoders (EHF(·;ϕHF
E ),DHF(·;ϕHF

D )) and
(ELF(·;ϕLF

E ),DLF(·;ϕLF
D )) in (3.6).

2: Compute the normalizing flows SHF(·;σHF) and SLF(·;σLF) which satisfy (3.7).

3: Select the best ordering of the components of the latent variable.

4: Define the new low-fidelity model QLF
AE in (3.8).

5: Compute the optimal allocation NHF, NLF from a pilot sample.

6: Compute the estimator Q̂MFMC,AE

NHF,NLF in (3.9).

Remark 3.3. In order to train the autoencoder, it is necessary to evaluate the models QHF

and QLF multiple times, and this not only is impossible for the expensive high-fidelity
model, but can also be impractical for the cheaper low-fidelity model. Therefore, we propose
to train surrogate models QHF

NN and QLF
NN for QHF and QLF based on fully connected neural

networks with ReLU activation functions, analogously to what we did in Remark 3.1. We
recall that these surrogate models might not be highly accurate, in particular for small
amount of data, and therefore should not be used for model approximation, but only
with the aim of finding nonlinear subspaces of reduced dimension during the training of
the autoencoders. We also recall that even if these surrogate models are not sufficiently
accurate to determine the best lower-dimensional manifolds, they can still capture nonlinear
subspaces that increase the correlation.

3.2.1 A particular choice for the autoencoder

In this section we restrict ourselves to the particular case where the encoder is the model
itself, i.e., EHF = QHF and ELF = QLF. Then, the decoders DHF and DLF need to satisfy

QHF(ξHF) ≃ QHF(DHF(QHF(ξHF))) and QLF(ξLF) ≃ QLF(DLF(QLF(ξLF))),
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which imply

xHF ≃ QHF(DHF(xHF)) and xLF ≃ QLF(DLF(xLF)), (3.10)

for all xHF in the image of QHF and xLF in the image of QLF. It is possible to show that
the equalities in (3.10) can be satisfied exactly by choosing DHF and DLF to be the right
inverses of the functions QHF and QLF, respectively. Indeed, the right inverse of a function
exists if the function is surjective, but we can make the function surjective by restricting its
codomain to its image. Moreover, an advantage of this formulation is that it is not required
to compute the decoders explicitly because we only need the compositions QHF ◦ DHF and
QLF ◦ DLF, which correspond to the identity function by equations (3.10), and therefore
we do not need to train the autoencoders. In this case, the modified low-fidelity model
simplifies to

QLF
AE(ξHF) = (SLF)−1(SHF(QHF(ξHF);σHF);σLF).

The only limitation of this approach is that the new low-fidelity model QLF
AE depends on

the high-fidelity model QHF, which must therefore be replaced by a cheaper surrogate
model based on fully connected neural networks, as already done for the other methods
and described in Remarks 3.1 and 3.3. On the other hand, when the quantity of interest is
scalar, the fact that the encoder is the model itself implies that the shared space is one-
dimensional, which in turn yields that the normalizing flows SHF(·;σHF) and SLF(·;σLF)
are one-dimensional mappings.

3.3 Computational complexity analysis

In this section we analyze the computational budget C that we need to spend in order to
perform our pipelines. It is clear that this additional computational cost is not required
for the standard multifidelity Monte Carlo estimator. Hence, one can argue that this
budget might be better invested in high-fidelity samples rather than in methodologies for
increasing the correlation between the models. In the next proposition we study when it
is worth spending part of the computational budget in building our modified estimators.
The result is dependent on the ratio η = C/B between the cost for training the networks
in the pipelines and the total computational budget, and on the improvement in term of
correlation between the models.

Proposition 3.4. Let ρ be the initial correlation between the high-fidelity and low-fidelity
models, and let ρAS and ρAE be new correlations after performing the pipelines based on
active subspace and autoencoder, respectively. Assume that

♣ρA∗♣ > ♣ρ♣ > 4w

(1 + w)2
,

and

C

B = η < 1 −

√
1 − ρ2

A∗ +
√
wρ2

A∗√
1 − ρ2 +

√
wρ2

,

where C is the cost for training the networks, B is the total computational budget, A∗ stands
for both AS and AE, and w = CLF/CHF is the cost ratio between the two fidelities. Then,
it holds

Var
[
Q̂MFMC,A∗

B

]
< Var

[
Q̂MFMC

B
]
,

where both the estimators are computed assuming a total computational budget B and
solving the optimal allocation problem.
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Proof. Using equation (2.3) we have

Var
[
Q̂MFMC

B
]

= Var
[
Q̂MC

B
] (√

1 − ρ2 +
√
wρ2

)
=

Var
[
QHF(ξHF)

]

B

(√
1 − ρ2 +

√
wρ2

)
.

(3.11)
Moreover, since the computational budget C = ηB is spent for building the modified
estimators, we then employ equation (2.3) with budget B − C, and obtain

Var
[
Q̂MFMC,A∗

B

]
= Var

[
Q̂MC

B−C

] (√
1 − ρ2

A∗ +
√
wρ2

A∗

)

=
Var

[
QHF(ξHF)

]

B − C

(√
1 − ρ2

A∗ +
√
wρ2

A∗

)

=
Var

[
QHF(ξHF)

]

B(1 − η)

(√
1 − ρ2

A∗ +
√
wρ2

A∗

)
.

(3.12)

Finally, combining equations (3.11) and (3.12) gives the desired result.

The previous result shows the condition under which we get a benefit in using our approaches.
In particular, as long as the correlation increases significantly and the cost for building the
modified estimators is sufficiently small compared to the total computational budget, it is
better to apply our methodologies rather than using standard multifidelity Monte Carlo.
This is true especially for all computationally expensive models that appear in concrete
applications, such as the cardiovascular simulations in Section 4.3.

3.4 A theoretical example

The goal of this section is to give a better understanding of the methodologies introduced
in the previous sections, by considering a simple example where every computation can be
performed analytically. Let the high-fidelity and low-fidelity models QHF, QLF : R2 → R be
the functions

QHF(x, y) = x+ y and QLF(x, y) =
x

2
+ 2y,

and let the distributions of the input values be µHF = µLF = µ = U([−1, 1]2). First, notice
that the two models have zero mean and consequently their Pearson correlation coefficient
is

ρ =
E

[
(X + Y )

(
X
2

+ 2Y
)]

√
E[(X + Y )2]E

[(
X
2

+ 2Y
)2
 =

5√
34

≃ 0.86.

We now apply our approaches to modify the low-fidelity model and thus increase the
correlation coefficient. Let us first consider the method presented in Section 3.1. The nor-
malizing flow, which transforms the uniform distribution µ into a standard two-dimensional
Gaussian N (0, I2), and its inverse are given by

T (x, y) =

(√
2 erf−1(x)√
2 erf−1(y)


and T −1(x, y) =


erf

(
x√
2

)

erf
(

y√
2

)

 ,
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Figure 2: Correlation (top) and difference (bottom) between HF model and original LF
model (left), LF models given by the methods based on active subspaces (center) and
autoencoders (right).

which is equal for both the high-fidelity and low-fidelity models. We then obtain the
modified models Q̃HF, Q̃LF : R2 → R

Q̃HF(x, y) = QHF(T −1(x, y)) = erf

(
x√
2

)
+ erf

(
y√
2

)
,

Q̃LF(x, y) = QLF(T −1(x, y)) =
1

2
erf

(
x√
2

)
+ 2 erf

(
y√
2

)
,

whose input distribution is the standard Gaussian, and which give the matrices

CHF = E

[
∇Q̃HF(X,Y )∇Q̃HF(X,Y )⊤

]
=

2

π
E




 e−X2

e− X
2

+Y
2

2

e− X
2

+Y
2

2 e−Y 2




 =

(
2

π
√

3

1
π

1
π

2

π
√

3


,

and

CLF = E

[
∇Q̃LF(X,Y )∇Q̃LF(X,Y )⊤

]
=

2

π
E






1
4
e−X2

e− X
2

+Y
2

2

e− X
2

+Y
2

2 4e−Y 2




 =

(
1

2π
√

3

1
π

1
π

8

π
√

3


.

The corresponding one-dimensional active subspaces are

WHF
A =

1√
2

(
1

1


and WLF

A =
1√

273 + 15
√

273




2
√

6

15+
√

273√
2


 ,

and are used in the definition of the new low-fidelity model

QLF
AS(x, y) = QLF(T −1(WLF

A (WHF
A )⊤T (x, y))),
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We remark that the autoencoders which give an exact representation of the functions are
not unique, for example we could rescale the encoders by a constant c > 0 and compute
the decoders accordingly, without affecting the final correlation. We now have to find
a normalizing flow from the latent space of each model to a standard one-dimensional
Gaussian N (0, 1). From the encoders EHF and ELF, we deduce that the distributions of
the latent spaces of the high-fidelity and low-fidelity models are

νHF = T ri(−2, 0,+2) and νLF = T rap
(

−5

2
,−3

2
,+

3

2
,+

5

2

)
,

where T ri and T rap stand for triangular and trapezoidal distribution, respectively. Hence,
following [16], the normalizing flows are given by

SHF(z) =
√

2 erf−1(UHF(z)) and SLF(z) =
√

2 erf−1(ULF(z)),

where

UHF(z) =





1
4
(2 + z)2 − 1, −2 ≤ z ≤ 0,

1 − 1
4
(2 − z)2, 0 ≤ z ≤ 2,

ULF(z) =





1
4

(
5
2

+ z
)2

− 1, −5
2

≤ z ≤ −3
2
,

z
2
, −3

2
≤ z ≤ 3

2
,

1 − 1
4

(
5
2

− z
)2
, 3

2
≤ z ≤ 5

2
,

These transformations are used in the definition of the new low-fidelity model

QLF
AE(x, y) = QLF(DLF((SLF)−1(SHF(EHF(x, y))))),

which yields an improved correlation

ρAE =
Cov(QHF(X,Y ),QLF

AE(X,Y ))√
Var[QHF(X,Y )]Var[QLF

AE(X,Y )]
≃ 0.99 > ρAS > ρ.

The correlation coefficient is computed numerically employing 108 samples from the
distribution µ, in the same way we did for the method based on active subspaces. In
Fig. 2 we plot the correlation between the high-fidelity model and both the original and
the new low-fidelity models, together with their difference. We notice that employing a
nonlinear transformation results in a larger correlation coefficient, i.e., ρAE > ρAS, which
cannot be obtained by means of a linear transformation, and a better approximation of the
high-fidelity model, since the differnce is closer to zero. These plots also show that active
subspaces introduce a small truncation error, which is not produced by the autoencoder, as
seen in Fig. 3. Moreover, in Fig. 4 we plot the dominant subspaces obtained by employing
our methodologies. We observe that the two approaches find the same subspace for the
high-fidelity model, while they provide different subspaces for the low-fidelity one. The
latter is therefore responsible for the better correlation between the models. Finally, still
in Fig. 4 we compare standard Monte Carlo (MC) and multifidelity Monte Carlo (MFMC)
with our two approaches (MFMC AS) and (MFMC AE). We assume a ratio between
the costs of the models equal to CLF = 0.01CHF to mirror cost differences in realistic
applications, and we then set a budget of 100 HF simulations and 20000 LF simulations,
which is equivalent to the cost of 300 HF simulations. We observe that both our methods
outperform standard techniques, and, in particular, the methodology with the autoencoder
achieves a smaller variance with respect to the active subspace due to a larger correlation
between the high-fidelity and the reduced low-fidelity models.
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Remark 3.5. Notice that equation (2.3) still holds true for the estimators in (3.5) and (3.9).
Therefore, if we manage to increase the correlation between the high-fidelity and low-fidelity
models, then we also improve the variance of the resulting estimators. For the active
subspace technique, and in general for linear approaches, it is reasonable to assume that if
we align the important directions of different models, then their correlation should be larger
along those directions than in the original space. The intuition for this approach is provided
in previous literature [12, 45]; specifically, in [45, Proposition 4.4], it is shown how the
re-arrangement of the variables leads to an increased correlation in the linear case. Beyond
the intuition or the quantitative analysis presented in [45] under simplifying assumptions,
we also note this idea has been adopted successfully on non-trivial aerospace applications
with high-dimensional inputs, see, e.g., [11, 13]. On the other hand, even if we do not
have any theoretical guarantee that nonlinear lower-dimensional manifolds can increase
the correlation, we expect them to behave similarly if mapped appropriately. In this work,
we consider autoencoders as a nonlinear extension to linear dimensionality reduction, and
the following numerical experiments highlight the possibility to improve the performance
of multifidelity Monte Carlo estimators whenever a nonlinear manifold provides a more
parsimonious representation than a linear subspace for the input-to-output map in at least
one of the models. Moreover, we can always verify whether the new correlation, which
can be estimated through a pilot sample as demonstrated in the paper, is larger than the
original correlation. If this does not hold, then we can employ standard multifidelity Monte
Carlo estimators, so that we can guarantee no reduction in performance apart from the
negligible cost increase (compared to the models’ evaluations) of the dimension reduction
and normalizing flows steps. We finally note that one could train the autoencoders for
both the high-fidelity and low-fidelity models simultaneously, and including a term in the
loss function that maximizes the resulting correlation.

4 Numerical experiments

In this section we demonstrate the advantages of our approaches through a series of
test cases. We first consider analytic functions which allow us to explore the properties
of the methods, and then focus on a reaction-diffusion equation. Finally, we consider
cardiovascular simulations as an example of a computationally expensive model with
concrete applications and for which only a small amount of data can be available. We note
that the dashed lines representing the “true” mean in the following plots is given by the
average of the Monte Carlo estimator.

Remark 4.1. For all the neural networks appearing in the pipelines, after normalizing
the input and output values in the interval [−1, 1], we perform a hyperparameter tuning
for the number of layers, number of neurons per layer, learning rate, and exponential
scheduler step. In particular, we tune the hyperparamters which appear in the autoencoder,
the surrogate models, and the normalizing flows. The hyperparameters are optimized
sequentially employing the Optuna optimization framework [1] monitoring the validation
loss (20% of the dataset). In particular, we initially find the best parameters for the
surrogate models, if necessary, and then use these parameters in the training process for
the autoencoder. Then, once we have selected the best parameters for the autoencoder,
we employ these values to compute the latent space from which we learn the normalizing
flows and their corresponding hyperparameters. In the following numerical experiments, we
constrain the number of layers in ¶1, . . . , 4♢, the number of neurons per layer in ¶1, . . . , 16♢,
the learning rate in [10−4, 10−2], and the exponential scheduler step in [0.999, 0.9999].
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Analytic NF Analytic NF Spline NF Spline NF
Actual model Surrogate model Actual model Surrogate model

Figure 5: Comparison between our method based on active subspaces (MFMC AS) with
standard (multifidelity) Monte Carlo (MC and MFMC), for the case of analytic functions.
The normalizing flow can be either exact (Analytic NF) or estimated using splines (Spline
NF), and the gradient to compute the active subspace can be either obtained with the
analytic gradient (Actual model) or through a surrogate model given by a neural network
(Surrogate model). Top: Pearson correlation coefficients for 100 different repetitions.
Bottom: approximated distributions of the estimators using 100 samples

Moreover, we train all the neural networks for 5000 epochs with the Adam optimizer [20],
and we perform 100 independent repetitions of the entire procedure in order to illustrate
its overall variability. The major computational cost for obtaining the networks is given by
the hyperparameter tuning, which is however done as a preliminary step, before performing
the multifidelity uncertainty propagation pipeline. We also notice that, as highlighted in
Section 3.3, the cost for training all the networks in the pipelines is negligible with respect
to the cost of high-fidelity and low-fidelity simulations, in particular for computationally
expensive models, and therefore we do not include this cost in the comparison between our
approaches and standard (multifidelity) Monte Carlo estimators.

4.1 Analytic functions

Inspired by [12], we consider the following functions as high-fidelity and low-fidelity models

QHF(x, y) = e0.7x+0.3y + 0.15 sin(2πx) and QLF(x, y) = e0.01x+0.99y + 0.15 sin(3πy),

with input distributions µHF = µLF = µ = U([−1, 1]2), and we aim to estimate

E[QHF(x, y)] =
25

21

(
e7/10 − e−7/10

) (
e3/10 − e−3/10

)
.

We assume a cost of our low-fidelity model equal to CLF = 0.01CHF (w = 0.01) to mirror cost
differences in realistic applications. We notice that in this case gradients and normalizing
flow needed for the method presented in Section 3.1 can be computed analytically, and are
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Figure 6: Comparison between our method based on active subspaces (MFMC AS) with
standard (multifidelity) Monte Carlo (MC and MFMC), varying the number of data points,
for the case of analytic functions. The normalizing flow is estimated using splines, and the
gradient to compute the active subspace is obtained through a surrogate model given by a
neural network.

given by

∇QHF(x, y) =

(
0.7e0.7x+0.3y + 0.3π cos(2πx)

0.3 exp0.7x+0.3y


,

∇QLF(x, y) =

(
0.01e0.01x+0.99y

0.99 exp0.01x+0.99y + + 0.45π cos(3πy)


,

(4.1)

and

T HF(x, y) = T LF(x, y) = T (x, y) =

(√
2 erf−1(x)√
2 erf−1(y)


. (4.2)

In this section we study the properties of our methodologies and see how they perform on
simple examples. We compute the mean value and the standard deviation of the estimator
of the quantity of interest employing standard (multifidelity) Monte Carlo estimators and
our techniques, and then we plot the approximated Gaussian distributions of the estimators
constructed from the approximated mean and variance. In order to take into account all
the variance of the methods, we first get a pilot sample from the distributions of the input
parameters, which we employ to get the best hyperparameters for the networks as outlined
in Remark 4.1, and to train them. Then, we compute the optimal allocation using the pilot
sample and setting a computational budget of 300 high-fidelity simulations, and finally we
discard the pilot sample and draw new samples from which we obtain the multifidelity
estimation with a one-dimensional shared subspace. This procedure is repeated 100 times.

Let us now focus on the method in Section 3.1. In Fig. 5 we consider four different cases,
setting the size of the pilot sample equal to 100. In the first column we leverage the fact that
we know the exact gradient of the functions (4.1) and the exact normalizing flow from the
input distributions (4.2), and we plot the results in the ideal setting where we can employ
them. In the second and third columns, we add one level of complexity at a time, by first
computing the gradients through surrogate models based on fully connected neural networks,
and then by training a spline-based normalizing flow. Finally, in the last column we consider
the most general case, where we do not have any a priori knowledge of the gradients and
the normalizing flow, which is actually employed in concrete applications. Both from the
correlation values and the variances of the output distributions, we observe that in all
four cases our approach outperforms standard (multifidelity) Monte Carlo techniques. In
particular, we notice that the presence of the surrogate model seems not to affect the
final results, and this is due to the fact that the functions representing the high-fidelity
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Model as encoder Model as encoder Classic AE Classic AE
Actual model Surrogate model Actual model Surrogate model

Figure 7: Comparison between our method based on autoencoders (MFMC AE) with
standard (multifidelity) Monte Carlo (MC and MFMC), for the case of analytic functions.
The encoder can be either fixed (Model as encoder) or computed (Classic AE), and for the
training of the autoencoder we can use either the function (Actual model) or a surrogate
model given by a neural network (Surrogate model). Top: Pearson correlation coefficients
for 100 different repetitions. Bottom: approximated distributions of the estimators using
100 samples.

and low-fidelity models can be easily approximated by fully connected neural networks.
We also note a slight increase in the variance when we replace the exact normalizing flow
with its spline-based approximations, which, nevertheless, does not deteriorates the final
output. Moreover, in Fig. 6 we compare the results varying the size of the pilot sample for
the general case where we do not use the analytic gradients or the normalizing flow. We
observe that the final variance of the estimator increases only when a significantly small
pilot sample is drawn, meaning that in this case the estimator is not strongly sensitive
to the number of data, and that it is not necessary to find the exact active subspace to
achieve variance reduction, as long as the approximated important direction is not highly
different from the real one.

We repeat similar experiments for the method in Section 3.2 with RealNVP as normalizing
flow. In Fig. 7 we set the sample size equal to 100, and we consider four different cases. In
the first two columns we fix the encoder to be the actual model as described in Section 3.2.1,
while in the last two columns we study the general methodology where the autoencoder
is trained using the available data. In both cases we use either the model itself or a
surrogate model based on fully connected neural networks to compute the encoder or
train the autoencoder, respectively. Similarly to the other approach, we observe that our
technique is able to improve standard (multifidelity) Monte Carlo estimators, and that
the presence of the surrogate model does not seem to affect the final results. Moreover,
we do not notice a significant difference between the standard autoencoder approach and
the one where the encoder is equal to the model. In Fig. 8 we also compare the results
varying the size of the pilot sample for the last case where the autoencoder is trained using
the surrogate model. We notice that the variance of the estimator is smaller when the
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Figure 8: Comparison between our method based on autoencoders (MFMC AE) with
standard (multifidelity) Monte Carlo (MC and MFMC), varying the number of data points,
for the case of analytic functions. The autoencoder is trained using a surrogate model
given by a neural network

Figure 9: Correlation between HF model and original LF model (left), LF models given
by the methods based on active subspaces (center) and autoencoders (right), for the case
of analytic functions.

number of data in the pilot sample is larger, i.e., if we have enough information to find
the nonlinear subspace where the models vary the most. Finally, in Fig. 9 we show for a
particular sample how the correlation increases from the original low-fidelity model to the
new reduced low-fidelity models obtained applying our methodologies. It is interesting
to notice that the autoencoder seems to introduce a nonnegligible bias, compared to the
active subspace. Nevertheless, this is not important for the performance of the algorithm
that only depends on the correlation between the models. We finally remark that, in order
for the method with the autoencoder to be able to have a better performance with respect
to the method with active subspaces, a larger number of data or a more complex problem
is necessary, as we will see in the next examples.

4.2 Reaction-diffusion equation

In this section we work with a more complex example taken from the PDEBench repository
[41], which has applications in real-world problems, i.e., biological pattern formation [43].
In particular, we consider the two-dimensional reaction-diffusion equation

∂u(t, x, y)

∂t
= Du

∂2u(t, x, y)

∂x2
+Du

∂2u(t, x, y)

∂y2
+Ru(u(t, x, y), v(t, x, y)),

∂v(t, x, y)

∂t
= Dv

∂2v(t, x, y)

∂x2
+Dv

∂2v(t, x, y)

∂y2
+Rv(u(t, x, y), v(t, x, y)),

(4.3)
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which yields a cost ratio of w = 0.1. Moreover, in the low-fidelity model we replace the
diffusion coefficients Du and Dv by their average value, i.e., D̄ = (Du +Dv)/2. The input
parameters for the high-fidelity model are the diffusion coefficients Du, Dv and the reaction
coefficient k, while for the low-fidelity model we have D̄ and k, and therefore we are in the
framework where the two models have a dissimilar parameterization. In Fig. 10 we plot the
solutions u and v of equations (4.3) for both the high-fidelity and low-fidelity models, setting
the parameters Du = 10−3, Dv = 5 ·10−3, k = 10−3, and D̄ = 3 ·10−3. The input probability
distribution for the forward uncertainty propagation study is such that k is independent
of Du and Dv, k ∼ U([0.5 · 10−3, 1.5 · 10−3]), and Du, Dv are uniformly distributed in
the triangle with vertices ¶(0.25 · 10−3, 4 · 10−3), (1.75 · 10−3, 5 · 10−3), (1 · 10−3, 6 · 10−3)♢.
We remark that this is an example of correlated random inputs, since Du and Dv in the
high-fidelity model are uniformly distributed on a triangular support, leading to correlated
parameters. The distribution of D̄ is then obtained accordingly. One of the challenges
when working with dependent inputs relates to the difficulty of enforcing that the new
low-fidelity samples generated by the pipeline are defined over the same support as the
original low-fidelity inputs. To overcome this problem, we assume the low-fidelity model
to be defined even outside the original support of input parameters, and we are currently
investigating how to lift such assumption.

Similarly to the previous section, we compare our methods with standard (multifidelity)
Monte Carlo techniques, by computing the mean value and the standard deviation of the
estimators based on 100 samples, and plotting the corresponding Gaussian distribution.
In the variance of the final distribution, we take into account all the possible sources
of uncertainties, i.e., sampling from the input distribution and hyperparameter tuning.
The optimal allocation is computed assuming a computational budget of 100 high-fidelity
simulations.

The numerical results are displayed in Fig. 11 for both one-dimensional and two-dimensional
shared spaces. We observe that our method based on active subspaces (MFMC AS) is not
able to reduce the variance of the estimator. This implies either that a linear transformation
is not enough to capture the directions where the models vary the most, or that the surrogate
models are not sufficiently accurate to provide a good approximation of the gradient of the
models, and consequently of the active subspaces. Alternative techniques could be explored
to compute gradients, such as ridge regression [17] or adaptive basis [42]. Nevertheless, we
do not consider these approaches here since the approximation of the gradient is not the
main focus of this work. On the other hand, our technique based on autoencoders, and
therefore nonlinear transformations, outperforms all the other approaches and provides
a significant variance reduction while increasing the correlation between the high-fidelity
and low-fidelity models. Moreover, we notice that in this case a one-dimensional shared
space yields better results than a two-dimensional subspace. Future work will focus on
how to determine the optimal dimensionality of the reduced space. This problem is more
challenging for the method based on autoencoders because we do not have an order of
importance provided by the eigenvalues as in the active subspace technique.

4.3 Cardiovascular simulation

We now consider a real application for which we have a limited data availability. We
focus on cardiovascular blood flow simulations of coronary artery disease. In Fig. 12 we
show the anatomic model together with the prescribed flow boundary condition at the
aortic inlet and the intramyocardial pressures specified at the coronary outlets [19]. The
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0D 1D

Same QOI

Method NHF NLF

MFMC 103 25721
MFMC AE 103 44371

Method NHF NLF

MFMC 101 1870
MFMC AE 99 3246

Different QOI

Method NHF NLF

MFMC 104 7133
MFMC AE 103 19297

Method NHF NLF

MFMC 103 741
MFMC AE 97 4044

Table 2: Optimal allocation for the multifidelity estimators for the cardiovascular simula-
tions. The quantity measured by the low-fidelity model, both 0D (left) and 1D (right), is
either the same (top) or different (bottom) from the quantity of interest computed by the
3D high-fidelity model.

0D 1D

Same QOI

Method Mean Interval

MC 8.332 ±0.142
MFMC 8.410 ±0.079

MFMC AE 8.381 ±0.057

Method Mean Interval

MC 8.332 ±0.142
MFMC 8.332 ±0.114

MFMC AE 8.390 ±0.089

Different QOI

Method Mean Interval

MC 8.332 ±0.142
MFMC 8.331 ±0.136

MFMC AE 8.435 ±0.101

Method Mean Interval

MC 8.332 ±0.142
MFMC 8.339 ±0.139

MFMC AE 8.418 ±0.079

Table 3: Values of the estimators (in Barye) together with their 90 % confidence interval
for the cardiovascular simulations. The quantity measured by the low-fidelity model, both
0D (left) and 1D (right), is either the same (top) or different (bottom) from the quantity
of interest computed by the 3D high-fidelity model.

particular, we then extract the minimum aortic outlet flow (F A in Fig. 13) as quantity
of interest for the 1D and 0D simulations, which is readily available. In Fig. 14 we show
the boxplots of the two quantities under consideration in this study. We observe that the
aortic outlet flow can be better approximated by low-fidelity models compared to the wall
shear stress.

We remark that, given the small number of simulations for 7-dimensional data, the standard
active subspace approach introduced in this work does not provide better results than
standard (multifidelity) Monte Carlo estimators. We therefore focus here on the particular
choice of autoencoder described in Section 3.2.1, which only requires training a fully
connected neural network surrogate for the 3D simulations, and two one-dimensional
normalizing flows. The optimal allocation problems are solved assuming a computational
budget of 104 simulations, in order to be able to compare the results with the standard
Monte Carlo approach, and the resulting number of high-fidelity and low-fidelity simulations
are rounded to the closest integer and given in Table 2. In Fig. 15 we show the results
for the case when the quantity of interest computed by the low-fidelity model is the same
quantity computed by the high-fidelity model, and in Fig. 16 when it is different. Moreover,
in Table 3 we give the values with a 90 % confidence interval of the realizations of the
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Figure 15: Comparison between MFMC AE with standard (multifidelity) Monte Carlo
(MC and MFMC) for the cardiovascular simulations, where the quantity estimated by the
high-fidelity and low-fidelity model is the same (minimum wall shear stress in the right
coronary artery with a stenosis). Top: 0D low-fidelity model. Bottom: 1D low-fidelity
model. Left: correlation between high-fidelity (3D) and low-fidelity data employing MFMC
and MFMC AE. Right: estimated density distribution for the quantity of interest.

estimators. The intervals are obtained by multiplying the standard deviation given by
equation (2.3) by

√
10 since due to the Chebyshev’s inequality we have

P(♣Q̂− E[Q(ξ)] ≤
√

10σ) ≥ 0.9,

where Q̂ stands for any estimator and σ for its standard deviation. In both cases we first
notice that the correlations of the new reduced low-fidelity models increase, and this implies
a reduction in the variance of the estimators. The probability distributions in the last
columns are indeed Gaussian distributions with mean given by the value of the estimator
and variance computed from equation (2.3). We remark that the difference in estimation
between multifidelity estimators with respect to standard Monte Carlo observed in the last
column does not correspond to any bias. In fact, we just compute a single realization of
the estimators and give a visual representation of these values, which are also reported
in Table 3. In particular, these plots have to be interpreted differently from the similar
plots in the previous sections. All the estimators are indeed asymptotically unbiased since
we did not modify the high-fidelity model in their definition, and, if we could repeat the
experiments multiple times, the average of the estimated values would give the exact mean
of the quantity of interest, i.e., the minimum wall shear stress in the coronary artery with
the stenosis. We finally notice that in Fig. 16 the fact that the quantities of interest of the
low-fidelity and high-fidelity models are different does not affect the final results.

29



Figure 16: Comparison between MFMC AE with standard (multifidelity) Monte Carlo
(MC and MFMC) for the cardiovascular simulations, where the quantity estimated by the
high-fidelity and low-fidelity model is different (minimum wall shear stress in the right
coronary artery with a stenosis for the high-fidelity model and minimum aortic outlet flow
for the low-fidelity model). Top: 0D low-fidelity model. Bottom: 1D low-fidelity model.
Left: correlation between high-fidelity (3D) and low-fidelity data employing MFMC and
MFMC AE. Right: estimated density distribution for the quantity of interest.

5 Conclusions

In this work we proposed two different methodologies to improve multifidelity estimators
for uncertainty propagation. In particular, we achieved variance reduction of the standard
multifidelity Monte Carlo estimator by modifying the low-fidelity model in order to increase
the correlation with the high-fidelity model. Our approaches rely on a shared space where
the models vary the most and the parameters are distributed according to a standard
Gaussian. We constructed the shared space through either linear or nonlinear dimensionality
reduction techniques, namely active subspaces and autoencoders. We demonstrated by
means of numerical experiments that, given sufficient data, the latter are able to find
nonlinear transformations which allow us to further decrease the variance of the estimator
with respect to linear transformations. Moreover, we employed normalizing flows to map
different probability distributions into the same distribution, i.e., a standard Gaussian, and
therefore generate a shared space. Our techniques not only permit getting an estimator with
reduced variance, but also increase the range of applicability of multifidelity estimators. In
particular, we allow for models with dissimilar parameterization, meaning that the number
and type of input parameters between the high-fidelity and low-fidelity models and their
distributions can be different. This implies that these approaches can also be applied to
models which measure different quantities of interest which are not directly related, as long
as the high-fidelity and the modified low-fidelity models are well correlated, as we showed
in the challenging numerical examples involving cardiovascular simulations. A limitation
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of our approach is that a large amount of data might be necessary to train the surrogate
models, find the lower-dimensional subspaces, and build the normalizing flows. However,
as we showed in Figs. 6 and 8 where we varied the number of data points, even if the best
lower-dimensional manifolds are not correctly identified, we still have an improvement in
terms of variance with respect to standard multifidelity Monte Carlo estimators. In other
words, through the examples in the paper, we numerically show that the number of samples
needed to build an accurate surrogate is typically much larger than those needed to build
a surrogate for the sole purpose of identifying a shared space leading to a smaller variance
than multifidelity Monte Carlo. The sensitivity analysis with respect to the number of
samples also shows that, as expected, the variance of the resulting estimators decreases
with a larger amount of data. Moreover, the construction of an accurate surrogate model
could be lifted in the linear dimension reduction case by adopting strategies like adaptive
basis (see, e.g., [45]) or it could be directly learned on the latent space together with the
autoencoder. We leave this latter approach, which we expect to require a significantly
smaller amount of data due to the reduced dimension, for future work. Another interesting
extension of the current method is to train the autoencoders of both the high-fidelity and
low-fidelity models together, and include a term in the loss function that maximizes the
resulting correlation and therefore improves the variance of the estimators. Finally, we are
also interested in studying a method to automatically find the optimal reduced dimension
of the shared space, which is fundamental for applications with high-dimensional input
parameters.

Acknowledgements

This work is supported by NSF CAREER award #1942662 (DES), NSF CDS&E award
#2104831 (DES), NSF award #2105345 (ALM), and NIH grant #5R01HL141712 (ALM,
KM). This work used computational resources from the Stanford Research Computing
Center (SRCC). Sandia National Laboratories is a multi-mission laboratory managed
and operated by National Technology & Engineering Solutions of Sandia, LLC (NTESS),
a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration (DOE/NNSA) under contract DE-
NA0003525. This written work is authored by an employee of NTESS. The employee, not
NTESS, owns the right, title and interest in and to the written work and is responsible for
its contents. Any subjective views or opinions that might be expressed in the written work
do not necessarily represent the views of the U.S. Government. The publisher acknowledges
that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this written work or allow others to do so,
for U.S. Government purposes. The DOE will provide public access to results of federally
sponsored research in accordance with the DOE Public Access Plan. The authors thank
Boris Kramer for insightful suggestions about Section 3.3.

References

[1] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, Optuna: A next-
generation hyperparameter optimization framework, 2019.

[2] P. Baldi, Autoencoders, unsupervised learning, and deep architectures, in Proceedings
of ICML Workshop on Unsupervised and Transfer Learning, I. Guyon, G. Dror,

31



V. Lemaire, G. Taylor, and D. Silver, eds., vol. 27 of Proceedings of Machine Learning
Research, Bellevue, Washington, USA, 02 Jul 2012, PMLR, pp. 37–49.

[3] G. Bomarito, P. Leser, J. Warner, and W. Leser, On the optimization
of approximate control variates with parametrically defined estimators, Journal of
Computational Physics, 451 (2022), p. 110882.

[4] P. Constantine, Q. Wang, A. Doostan, and G. Iaccarino, A Surrogate
Accelerated Bayesian Inverse Analysis of the HyShot II Flight Data, 4 2011, ch. paper
AIAA-2011-2037.

[5] P. G. Constantine, E. Dow, and Q. Wang, Active subspace methods in theory
and practice: Applications to kriging surfaces, SIAM Journal on Scientific Computing,
36 (2014), pp. A1500–A1524.

[6] M. Croci, K. Willcox, and S. Wright, Multi-output multilevel best linear unbiased
estimators via semidefinite programming, Computer Methods in Applied Mechanics
and Engineering, 413 (2023), p. 116130.

[7] L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density estimation using real NVP,
in International Conference on Learning Representations, 2017.

[8] V. G. Eck, W. P. Donders, J. Sturdy, J. Feinberg, T. Delhaas, L. R.

Hellevik, and W. Huberts, A guide to uncertainty quantification and sensitivity
analysis for cardiovascular applications, International Journal for Numerical Methods
in Biomedical Engineering, 32 (2015).

[9] C. M. Fleeter, G. Geraci, D. E. Schiavazzi, A. M. Kahn, and A. L. Marsden,
Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics,
Computer Methods in Applied Mechanics and Engineering, 365 (2020), p. 113030.

[10] L. Formaggia, F. Nobile, A. Quarteroni, and A. Veneziani, Multiscale mod-
elling of the circulatory system: A preliminary analysis, Computing and Visualization
in Science, 2 (1999), pp. 75–83.

[11] G. Geraci and M. Eldred, Leveraging intrinsic principal directions for multifidelity
uncertainty quantification, SAND2018-10817, (2018).

[12] G. Geraci, M. Eldred, A. Gorodetsky, and J. Jakeman, Leveraging ac-
tive directions for efficient multifidelity uncertainty quantification, in 6th European
Conference on Computational Mechanics (ECCM 6), 2018, pp. 2735–2746.

[13] G. Geraci, M. S. Eldred, A. Gorodetsky, and J. Jakeman, Recent advance-
ments in Multilevel-Multifidelity techniques for forward UQ in the DARPA Sequoia
project.

[14] M. B. Giles, Multi-level monte carlo path simulation, Operations Research, 56 (2008),
pp. 607–617.

[15] A. A. Gorodetsky, G. Geraci, M. S. Eldred, and J. D. Jakeman, A generalized
approximate control variate framework for multifidelity uncertainty quantification, J.
Comput. Phys., 408 (2020), pp. 109257, 29.

[16] G. Granato, Stochastic empirical loading and dilution model (SELDM) version 1.0.0,
03 2013.

32



[17] J. M. Hokanson and P. G. Constantine, Data-driven polynomial ridge approxi-
mation using variable projection, SIAM J. Sci. Comput., 40 (2018), pp. A1566–A1589.

[18] T. J. Hughes and J. Lubliner, On the one-dimensional theory of blood flow in the
larger vessels, Math Biosci, 18 (1973), pp. 161–170.

[19] H. J. Kim, I. E. Vignon-Clementel, J. S. Coogan, C. A. Figueroa, K. E.

Jansen, and C. A. Taylor, Patient-specific modeling of blood flow and pressure in
human coronary arteries, Annals of Biomedical Engineering, 38 (2010), pp. 3195–3209.

[20] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017.

[21] G. A. Klaasen and W. C. Troy, Stationary wave solutions of a system of reaction-
diffusion equations derived from the FitzHugh-Nagumo equations, SIAM J. Appl. Math.,
44 (1984), pp. 96–110.

[22] I. Kobyzev, S. D. Prince, and M. A. Brubaker, Normalizing flows: An intro-
duction and review of current methods, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43 (2021), pp. 3964–3979.

[23] R. R. Lam, O. Zahm, Y. M. Marzouk, and K. E. Willcox, Multifidelity
dimension reduction via active subspaces, SIAM Journal on Scientific Computing, 42
(2020), pp. A929–A956.

[24] Y. Marzouk, T. Moselhy, M. Parno, and A. Spantini, Sampling via Measure
Transport: An Introduction, Springer International Publishing, Cham, 2016, pp. 1–41.

[25] K. Menon, M. O. Khan, Z. A. Sexton, J. Richter, K. Nieman, and A. L.

Marsden, Personalized coronary and myocardial blood flow models incorporating ct
perfusion imaging and synthetic vascular trees, medRxiv, 2023.08.17.23294242 (2023).

[26] K. Menon, J. Seo, R. Fukazawa, S. Ogawa, A. M. Kahn, J. C. Burns,

and A. L. Marsden, Predictors of myocardial ischemia in patients with kawasaki
disease: Insights from patient-specific simulations of coronary hemodynamics, Journal
of Cardiovascular Translational Research, 16 (2023), p. 1099–1109.

[27] L. W. T. Ng and K. E. Willcox, Multifidelity approaches for optimization under
uncertainty, Internat. J. Numer. Methods Engrg., 100 (2014), pp. 746–772.

[28] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Laksh-

minarayanan, Normalizing flows for probabilistic modeling and inference, J. Mach.
Learn. Res., 22 (2021), pp. Paper No. 57, 64.

[29] B. Peherstorfer, K. Willcox, and M. Gunzburger, Optimal model management
for multifidelity Monte Carlo estimation, SIAM J. Sci. Comput., 38 (2016), pp. A3163–
A3194.

[30] M. R. Pfaller, J. Pham, A. Verma, L. Pegolotti, N. M. Wilson, D. W.

Parker, W. Yang, and A. L. Marsden, Automated generation of 0d and 1d
reduced-order models of patient-specific blood flow, International Journal for Numerical
Methods in Biomedical Engineering, n/a (2022), p. e3639.

[31] A. Quarteroni, S. Ragni, and A. Veneziani, Coupling between lumped and
distributed models for blood flow problems, Comput Vis Sci, 4 (2001), pp. 111–124.

33



[32] F. Regazzoni, M. Salvador, P. Africa, M. Fedele, L. Dedè, and A. Quar-

teroni, A cardiac electromechanical model coupled with a lumped-parameter model for
closed-loop blood circulation, Journal of Computational Physics, 457 (2022), p. 111083.

[33] M. Salvador, F. Regazzoni, L. Dede’, and A. Quarteroni, Fast and robust
parameter estimation with uncertainty quantification for the cardiac function, Computer
Methods and Programs in Biomedicine, 231 (2023), p. 107402.

[34] D. Schaden and E. Ullmann, On multilevel best linear unbiased estimators,
SIAM/ASA Journal on Uncertainty Quantification, 8 (2020), pp. 601–635.

[35] D. Schaden and E. Ullmann, Asymptotic analysis of multilevel best linear unbiased
estimators, SIAM/ASA Journal on Uncertainty Quantification, 9 (2021), pp. 953–978.

[36] J. Seo, C. Fleeter, A. M. Kahn, A. L. Marsden, and D. E. Schiavazzi,
Multifidelity estimators for coronary circulation models under clinically informed
data uncertainty, International Journal for Uncertainty Quantification, 10 (2020),
pp. 449–466.

[37] J. Seo, D. E. Schiavazzi, A. M. Kahn, and A. L. Marsden, The effects of
clinically-derived parametric data uncertainty in patient-specific coronary simulations
with deformable walls, International Journal for Numerical Methods in Biomedical
Engineering, 36 (2020), p. e3351.

[38] A. Spantini, D. Bigoni, and Y. Marzouk, Inference via low-dimensional couplings,
J. Mach. Learn. Res., 19 (2018), p. 2639–2709.

[39] D. A. Steinman and F. Migliavacca, Editorial: Special issue on verification,
validation, and uncertainty quantification of cardiovascular models: Towards effective
VVUQ for translating cardiovascular modelling to clinical utilitys, Cardiovascular
Engineering and Technology, 9 (2018).

[40] V. Stimper, D. Liu, A. Campbell, V. Berenz, L. Ryll, B. Schölkopf, and

J. M. Hernández-Lobato, normflows: A pytorch package for normalizing flows,
Journal of Open Source Software, 8 (2023), p. 5361.

[41] M. Takamoto, T. Praditia, R. Leiteritz, D. MacKinlay, F. Alesiani,

D. Pflüger, and M. Niepert, Pdebench: An extensive benchmark for scientific
machine learning, 2023.

[42] R. Tipireddy and R. Ghanem, Basis adaptation in homogeneous chaos spaces, J.
Comput. Phys., 259 (2014), pp. 304–317.

[43] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London
Ser. B, 237 (1952), pp. 37–72.

[44] Y. Wang, F. Liu, and D. E. Schiavazzi, Variational inference with nofas: Nor-
malizing flow with adaptive surrogate for computationally expensive models, Journal of
Computational Physics, 467 (2022), p. 111454.

[45] X. Zeng, G. Geraci, M. S. Eldred, J. D. Jakeman, A. A. Gorodetsky, and

R. Ghanem, Multifidelity uncertainty quantification with models based on dissimilar
parameters, Comput. Methods Appl. Mech. Engrg., 415 (2023), pp. Paper No. 116205,
36.

34


	Introduction
	Review of current methods
	Multifidelity Monte Carlo estimator
	Active subspaces
	Autoencoders
	Normalizing flows

	Enhancing multifidelity estimator performance
	Coupling MFMC with active subspaces and normalizing flows
	Coupling MFMC with autoencoders and normalizing flows
	A particular choice for the autoencoder

	Computational complexity analysis
	A theoretical example

	Numerical experiments
	Analytic functions
	Reaction-diffusion equation
	Cardiovascular simulation

	Conclusions

