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Abstract

Induced seismicity observed during Enhanced Geothermal Stimulation (EGS) at
Otaniemi, Finland is modelled using both statistical and physical approaches. The phys-
ical model produces simulations closest to the observations when assuming rate-and-state
friction for shear failure with diffusivity matching the pressure build-up at the well-head
at onset of injections. Rate-and-state friction implies a time dependent earthquake nu-
cleation process which is found to be essential in reproducing the spatial pattern of seis-
micity. This implies that permeability inferred from the expansion of the seismicity trig-
gering front (Shapiro, 1997) can be biased. We suggest a heuristic method to account
for this bias that is independent of the earthquake magnitude detection threshold. Our
modelling suggests that the Omori law decay during injection shut-ins results mainly from
stress relaxation by pore pressure diffusion. During successive stimulations, seismicity
should only be induced where the previous maximum of Coulomb stress changes is ex-
ceeded. This effect, commonly referred to as the Kaiser effect, is not clearly visible in
the data from Otaniemi. The different injection locations at the various stimulation stages
may have resulted in sufficiently different effective stress distributions that the effect was
muted. We describe a statistical model whereby seismicity rate is estimated from con-
volution of the injection history with a kernel which approximates earthquake trigger-
ing by fluid diffusion. The statistical method has superior computational efficiency to
the physical model and fits the observations as well as the physical model. This approach
is applicable provided the Kaiser effect is not strong, as was the case in Otaniemi.

Plain Language Summary

Around 60,000 earthquakes are recorded during a span of 50 days where large vol-

umes of water were injected underground for the stimulation of a geothermal well at Otaniemi,

near Helsinki, Finland. We compare the observations with numerical simulations to an-
alyze the physical processes that have driven these earthquakes. A model based on physics
finds that it is important to use a friction law that includes friction’s dependence on slip-
rate and state variables to match the observations. In particular, the model allows re-
lating the spatio-temporal evolution of seismicity with fluid pressure diffusion in the sub-
surface. An empirical statistical model is also developed using the recorded catalogue.

The statistical model is shown to perform well in the particular case of the Otaniemi stim-
ulations. The models provide insight into the physical processes that govern induced seis-
micity. The models presented in this study could help safer operations or the design of
mitigation and optimization strategies that may help improve the efficiency of geother-
mal energy extraction.

1 Introduction

It has long been known that injection of fluids in the subsurface can induce seis-
micity (e.g., Healy et al., 1968; Raleigh et al., 1976; Aki et al., 1982). This issue has been
put in the spotlight in recent years due to spikes of induced seismicity in regions with
previously low levels of risk from earthquakes (Elsworth et al., 2016). While induced seis-
micity has been linked primarily to hydraulic fracturing for natural gas or ‘fracking’, it
is also a concern in the context of geothermal energy production (Gaucher et al., 2015;
Majer et al., 2007; Zang et al., 2014) and potentially carbon sequestration (Villarasa &
Carrera, 2015; White & Foxall, 2016; Zoback & Gorelick, 2012). A better understand-
ing of injection-induced seismicity is therefore of great relevance to international efforts
in limiting or offsetting emissions of CO9 (Bertani, 2012; Sander, 2011; Tester et al., 2006).

Induced seismicity is of particular relevance to geothermal energy production. Con-
trolled hydraulic stimulation could unlock the vast geothermal resources that could be
drawn from deep crustal reservoirs with no natural hydrothermal activity. Hydraulic stim-
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ulation is used to enhance the heat exchange between the circulating fluids and the reser-
voir by creating or reactivating fractures which are hydraulically conductive. Induced
seismicity is an undesirable by-product of this process, and a number of such Enhanced
Geothermal Systems (EGS) has been stopped due to earthquakes felt by local residents.
(Haring et al., 2008; Kwiaketk et al., 2019; Schultz et al., 2020). The development of En-
hanced Geothermal Systems (EGS) would therefore benefit from better methods to fore-
cast injection-induced seismicity.

In this study, we address this issue using a seismological dataset acquired by the
Finnish company St1 Deep Heat Ltd. during an EGS operation at the Aalto University’s
Otaniemi campus near Helsinki (Hillers et al., 2020; Kwiatek et al, 2019; Leonhardt et
al., 2021). A large catalogue produced with Machine Learning techniques (Ross et al.,
2018a, 2018b) revealed that the time evolution of seismicity can be predicted well based
on a simple convolution model (Avouac et al., 2020). An enhanced catalogue was also
recently produced by Leonhardt et al. (2021). Building on this previous work, we present
and assess physical and statistical models to forecast the spatio-temporal evolution of
seismicity induced by the Otaniemi EGS stimulation.

2 Injection-Induced Seismicity: Mechanisms And Forecasting Meth-
ods

Induced seismicity can result from either a stress or strength change on a fracture
or fault. The effect of injection is generally assessed by considering pore pressure diffu-
sion in the medium and the consequent decrease in the effective normal stress as accord-
ing to Terzaghi’s principle (Skempton, 1984). This first-order description of the stress
state has been effective in explaining various aspects of induced seismicity, including the
/1 evolution of the seismicity front (Shapiro et al., 1997, 2006) and general spatiotem-
poral patterns of induced seismicity (Elmar & Shapiro, 2002; Shapiro et al., 1999, 2002)
as early as the pioneering study at the Rangely oil field (Raleigh et al., 1976). An ad-
ditional step in the description of stress changes due to a fluid injection is the theory of
poroelasticity which describes the coupling between fluid flow and deformation of the
solid skeleton. Poroelasticity has been shown to play a role in triggering earthquakes in
addition to pore pressure evolution (Segall, 1989; Segall et al. 1994; Segall & Lu, 2015),
particularly outside the characteristic pore pressure diffusion length (Goebel & Brod-
sky, 2018; Zbinden et al., 2020). Although the magnitude of stress changes from poroe-
lasticity is estimated to account for typically only about a tenth of that from pore pres-
sure diffusion (Zhai & Shirazei, 2018), its consideration is often required for complete
explanations of the observed seismicity in space and time.

A fluid injection can result in ‘hydrofractures’ (Mode-I opening fractures) or shear
fractures (Mode-IT or Mode-IIT). Induced earthquakes generally result from shear fail-
ure. While linear elastic fracture mechanics is commonly employed in modeling the growth
of cracks in Mode-I and the consequent stress changes, modeling shear failure requires
an appropriate friction law. One kind of models is based on the Mohr-Coulomb failure
criterion in which slip occurs once the ratio of the shear stress to the normal stress on
a fault reaches a pre-defined threshold, the static friction coefficient, and drops to the
dynamic friction coefficient either at the immediate onset of slip or gradually with fault
slip. However, there is ample evidence from laboratory studies and natural observations
that the initiation of slip involves in fact a gradual decrease of friction associated with
asesimic slip, often referred to as the nucleation process. Such an evolution of friction
is commonly described using the rate-and-state friction law derived from frictional slid-
ing experiments in the laboratory (Ampuero & Rubin, 2008; Dieterich, 1994; Dieterich
& Linker, 1992; Marone, 1998; Ruina, 1983).

The non-instantaneous nucleation process implied by rate-and-state friction can
explain a number of phenomenological observations such as the Omori decay of seismic-
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ity rate during aftershocks (Dieterich, 1994) or the low sensitivity of seismicity to solid-
earth tides (e.g., Beeler and Lockner, 2003). The rate-and-state formalism has also shown
success in explaining the relationship between stress and seismicity rate due to diking
(e.g., Toda et al., 2002) and aseismic slip (e.g., Segall et al., 2006). In the context of in-
duced seismicity, rate-and-state friction has been applied to explain certain non-linear
features such as the time lag between induced seismicity and stress perturbations (e.g.,
Dempsey and Riffaut 2019; Candela et al. 2019; Norbeck & Rubinstein 2018; Richter et
al. 2020). It is important to note that, in principle, the activation of a fault by a pore
pressure increase doesn’t necessarily imply seismic slip (e.g., Guglielmi et al., 2015). In
fact, there is observational evidence that injection-induced fault slip is mostly condition-
ally stable (Bourouis & Bernard, 2007; Calo et al., 2011; Guglielmi et al., 2015; Good-
fellow et al., 2015; Scotti & Cornet, 1994), as is expected from the nucleation model based
on rate-and-state friction and that seismicity is in fact occurring outside the zones of high
pore pressure (Cappa et al., 2019; De Barros et al., 2018; Wei et al., 2015).

More specifically with regards to hydraulic stimulation of geothermal wells, impor-
tant questions arise regarding the differences between the Mohr-Coulomb and rate-and-
state friction-based models considering the rapid stressing rate that is common in such
operations. Mohr-Coulomb models coupled with linear slip weakening can result in re-
alistic simulations of seismic ruptures while accounting for the nucleation process (Olsen
et al, 1997). This is not the case for single-degree-of-freedom spring-slider systems of-
ten employed for modelling induced seismicity. The commonly used model of Dieterich
(1994) based on rate-and-state friction can converge to models based on the Mohr-Coulomb
criterion at the rapid equilibrium limit. It is also possible that rate-and-state effects on
nucleation may be significant at the relatively short timescale of intense injection cycles
during stimulation.

A hysteresis effect, often referred to as the Kaiser effect, is also commonly observed
in induced seismicity. The Kaiser effect refers to the observation when a material sub-
mitted to a series of loading cycles of increasing amplitude fails gradually, further fail-
ure generally occurs at a stress level exceeding the maximum stress reached in previous
cycles. This effect explains the observation that acoustic emissions during rock failure
stop if the stress decreases and do not resume until the medium is loaded to its previ-
ous maximum (Lavrov, 2003). How a nucleation source “remembers” its loading history
has proven to be essential in reproducing various observations in induced seismicity, such
as time delays of the seismicity rate in response to perturbations of the injection rate
and regions of seismic quiescence behind triggering fronts (Baisch et al., 2006, 2010; Dempsey
& Riffault, 2019).

Numerous physical models have been developed to incorporate stress changes, pore-
pressure changes and failure mechanisms in a single framework (Gaucher et al., 2015;
Grigoli et al., 2017). A notable example of physical models that accounts for rate-and-
state friction in particular, is presented by Segall & Lu (2015), where changes in stresses
by fluid injections into an infinite poro-elastic medium were used as input to the model
of Dieterich (1994), relating seismicity and stress rates among a population of nucleation
sources. Although the framework was originally used to investigate poroelastic effects
during shut-in and to address the common observation that maximum magnitude events
often occur after injections cease (Grigoli et al., 2018; Héring et al., 2008), it can be used
more generally to study induced seismicity in response to various injection scenarios (e.g.,
Zhai & Shirzaei, 2018). Finite-fault and fracture network models accounting for rate-and-
state friction have also been developed (Almakari et al., 2019; Dublanchet, 2018; Larochelle
et al., 2021; McClure & Horne, 2011) to examine rupture properties and the effect of het-
erogeneous fault properties on the seismicity rate. Numerous factors make it difficult,
however, to resort to such models in practice, such as the high computational cost of solvers
and poor resolution of pre-existing heterogeneities in the sub-surface - in particular, the
distribution of stress and strength - with a level of detail that cannot be constrained with
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observation. Some representations of heterogeneities are essential in reproducing well-
established statistical properties of earthquakes (Zoller et al., 2005; Dempsey et al., 2016)
such as the Gutenberg-Richter law which describes the magnitude-frequency distribu-
tion of earthquakes (Gutenberg & Richter, 1956).

Due to the complexity of stress-based models along with the difficulty to calibrate
the model parameters, a number of studies have alternatively explored data-driven sta-
tistical modeling. Such models often hinge on the Gutenberg-Richter law (Gutenberg
& Richter, 1956) and the assumption that earthquakes follow a Poisson process. Addi-
tionally, they often model earthquake triggering as a cascading process based on the Omori
law (Utsu, 2002) which fits commonly observed patterns of the decay of seismicity rate
during aftershock sequences. A popular example is the epidemic type aftershock model
(ETAS) (e.g., Ogata, 1988), which represents the total seismicity as a linear superpo-
sition of homogeneous Poisson processes, to represent mainshock and aftershock sequences
(e.g., Bachmann et al., 2011; Lei et al., 2008; Mena et al., 2013). Such models have the
advantage of resulting in very realistic synthetic catalogs since they incorporate statis-
tical properties directly derived from observations. However, statistical approaches are
in principle less transportable from one reservoir to another as they lack explicit con-
nections to the mechanical and hydro-geological properties of the medium. The devel-
opment of hybrid models that account for the complex network of physical mechanisms
while being generalizable and applicable to various injection sites and scenarios is there-
fore an active area of research (Gaucher et al., 2015).

3 Data Presentation And Analysis

The seismic catalogue analyzed in this study comes from a geothermal well stim-
ulation project operated by St1 Deep Heat Ltd. near the campus of Aalto University in
Otaniemi, Finland and is compiled by Leonhardt et al. (2021). The injection well (OTN-
3 in Figure 1) was drilled to a depth of 6.1 km into Precambrian crystalline (gneiss and
granite) rocks. Approximately 18,000m? of water was injected over the course of 49 days
from June 4th to July 22nd in 2018. The injection history was divided into five succes-
sive stages moving upward from the bottom of the well (Figure 1). Pumping parame-
ters of the injection such as the injection rate and well-head pressure were tuned as part
of a Traffic Light System (TLS), the details of which are presented in Ader et al. (2020)
and Kwiatek et al. (2019). The stimulation consisted of numerous cycles of injections
and pauses of varying duration. The injection history also included periods of bleed-off’s
where injection was stopped and backflow out of the well was allowed.

The stimulations were monitored with surface and borehole seismometers provid-
ing excellent detection and location of the induced earthquakes (Hillers et al., 2020; Kwiatek
et al., 2019). Namely, the monitoring network consisted of a seismometer array at 2.20-
2.65km depth in a separate well (OTN-2), located around 400 m from OTN-3, in addi-
tion to a 12-station network installed in 0.3-1.15 km deep wells (Figure 1). The catalogue
consists of 61,150 events in total (Figure 2) and 1986 relocated events with spatial un-
certainty of £52m (Figure 3). The magnitude of completeness is estimated to be M, =
-1.1.

A few salient features of the observed seismicity guide our modeling. First, the seis-
micity rate has a positive correlation to the injection rate in time, accompanied by fi-
nite periods over which it increases and decreases in response to injections and shut-ins,
respectively. We indeed note that the seismicity rate reaches a similar magnitude for in-
jections far apart in time but equal in the flow rate. Second, the decay pattern in the
seismicity rate, R, during injection pauses is well-matched by the Omori law

Ry

R(t) = Tt/



208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

where t is time, ¢, is the time it takes for the seismicity rate to halve, and Ry is the seis-
micity rate at the onset of decay. A fit to one of the injection pause periods is shown in
Figure 4. Note that the more general ‘modified Omori law’ (Utsu, 2002) allows a 1/t?
decay of seismicity rate; here the p-value is close to 1. The close match to the Omori law
is consistent with observations of the decay rate in induced seismicity following shut-ins
reported in a number of previous studies (Almakari et al., 2019; Bachmann et al. 2011,
2012; Langenbruch & Shapiro, 2010). Lastly, the relocated catalogue (Figure 3) shows

a rather diffuse distribution of seismicity, suggesting that the injection stimulated frac-
tures were distributed within a relatively large volume (~ 1km®) around the open sec-
tions of the well by diffusion of pore pressure.

The exact origin of Omori law decay remains poorly understood; it could be due
to the finite nucleation process governed by rate-and-state friction (Dieterich, 1994) or
by instantaneous nucleation and postseismic creep that predict a p-value of approximately
1 (Perfettini and Avouac, 2004). This process was suggested to have occurred during a
10 MPa stimulation of a geothermal well at ~ 3km depth at Soultz-sous-Forét (Bourouis
and Bernard, 2007). Similarly, stress relaxation by pore pressure diffusion (Nur & Booker,
1972) predicts a seismicity decay also closely resembling the Omori law with a p-value
typically between 1 and 2 (Langenbruch & Shapiro, 2010; Miller, 2020). Studying the
properties of the Omori-like decay provides a valuable opportunity to re-examine its me-
chanical origins and the physical mechanisms that drive induced seismicity.

4 Linear Transfer Function and Convolution Model

The direct relationship between the injection and observed seismicity rate suggests
that it may be represented by a linear transfer function of the injection history (Avouac
et al., 2020). To quantify this relationship, we use the algorithm of Marsan & Lengline
(2008) which was originally designed to determine the kernels characterizing how earth-
quakes trigger other earthquakes. The algorithm estimates weights as a function of dis-
tance and time which, after normalization, represent the probability that any earthquake
was triggered by any previous earthquake. We adapted the algorithm here to determine
the weight relating earthquakes to injections as the source of trigger. As justified later
on, secondary triggering is ignored (i.e., aftershocks of triggered events are ignored). We
assume that the observed seismicity rate density, A(z,t), or the number of earthquakes
in unit time can be modelled by a linear superposition of the influence from all previ-
ous injections such that

At = 2o+ 3 M), (2)

t;<t

where \g is the uniform background rate density, and \;(¢) represents the rate density

at time ¢ incurred by injection i. A non-linear behaviour may in reality arise from the
possible coupling between fluid pressure and permeability, and from the seismicity model.
Rate-and-state friction and the Kaiser effect are indeed sources of non-linearity, as we
discuss in greater detail below.

The kernel A(At) (referred to as the bare rates) that defines \;(¢) is found through
an iterative process: First, we begin with an initial guess for A(At) and compute the trig-
gering weights between injection ¢ and event j, w; ; = a;A(t;—t;) and the background
weight wo ; = a; Ao where o is a normalization coefficient to satisfy that Zf;g W =
1. Here, w; ; = 0if t; > t; (earthquakes cannot be triggered by future injections). Sec-
ondly, A(At) is updated as follows

AAL) = ﬁ Z wj 5, (3)

ijEA



254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

where A is the set of pairs such that |t;—t;| < dt, and N is the number of total earth-
quakes. Thus, 6t becomes the discretization parameter of the algorithm. The two main
assumptions of the model are linearity of the rate density that allows superposition of
A; and the existence of a mean-field response to injections that is independent of event
magnitude or injection volume. Demonstration of the algorithm on a simple synthetic
catalogue and its sensitivity to discretization parameters are illustrated in the Supple-
mentary Text S1.

Injections are divided into individual cycles by binning them into regular 10-minute
intervals. The result reveals a time decay proportional to 1/t (Figure 5). This is con-
sistent with the observed Omori law decay following shut-ins and also with the period
of build-up in seismicity at the beginning of injections. It is also possible to use this ap-
proach to estimate spatial kernels. The results are not presented here as we found the
size of the dataset and the quality of the locations to be insufficient to get well constrained
kernels.

The observation that the response to step-like decrease of injection rate leads to
a 1/t Omori law decay can be used to estimate a Green’s function, g(t) (Avouac et al.,
2020). Since the derivative of a step function is a Dirac delta function, g(¢) can be found
by simply differentiating the Omori law in time

d< Ry > Ro/t.

90 =-5 T+t/t,) ~ (L+t/t,)? )

The predicted seismicity rate can then obtained from a simple convolution

o0

R(t) = u(t) * g(t) = / u(r)g(t - 7) dr, (5)

— 00

where R and u are the seismicity and injection rate, respectively. Bleed-off’s are imple-
mented as negative injection rates (likewise to all forthcoming models in this study). To
construct the kernel for the specific case of Otaniemi, ¢, is chosen by fitting the Omori
law to the last of the injection pauses of durations significantly longer than the average
injection cycle (about 20 hours). Then, Ry is determined so as to yield a total number
of events equal to the number of earthquakes in the catalog. t, and Ry are found to be
24.1 hours and 208.9 events per hour, respectively. Although Avouac et al. (2020) re-
ported that the data suggests a systematic increase of ¢, during the stimulation likely
due to the increasing volume of the domain of increased pore pressure, we use a constant
value of ¢, as the resulting difference to the fit is minor.

The model result is displayed with the observed catalogue in Figure 6a. It follows
remarkably well the observed seismicity rate variations; bulk of the observed seismicity
is included within the 95% confidence interval, calculated by assuming events are gov-
erned by an non-homogeneous Poisson process following the modelled seismicity rate.
The model also closely matches the decay rate during injection pauses and the build-up
rate at the onset of injection cycles.

To quantify the goodness of fit, we use both the Kolmogorov-Smirnov test (Massey,
1951) and the Poisson log-likelihood (Dempsey & Suckale, 2017). The Kolmogorov-Smirnov
test returns the KS-statistic, which is the maximum difference between the cumulative
distribution functions given by the prediction and the observation. The Poisson log-likelihood
is the appropriate metric if earthquakes are assumed to result from a Poisson process,
even if inhomogeneous in the case the rate varies in time and space. So the metric is valid
as long as secondary aftershocks can be ignored. This assumption is tested by analyz-
ing the distribution of interevent distances in space and time using the method of Za-
liapin and Ben-Zion (2013). The result is shown in Supplementary Figure S4, which dis-
plays a uni-modal distribution instead of the bi-modal distribution that would be expected
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in case of clustering due to aftershock sequences. This is consistent with the analysis by
Kwiatek et al. (2019) which shows that aftershocks account for no more than 10% of the
events in their seismicity catalogue and the observation that aftershock sequences are
rarely observed in seismicity induced by hydraulic stimulations (e.g., Baisch & Harjes,
2003). One advantage of the Poisson log-likelihood and the Kolmogorov-Smirnov test

is also that the metrics don’t require binning of the point process (Dempsey & Suckale,
2017). Binning is used in the figures only for convenience to represent the data. The log-
likelihood function is given by

n

LLK(&)ilogR(G;tj) / R(0;t)dt, (6)

t
0

where 0 is the set of model parameters and ¢; is the occurrence time of event j = {1,2,...,n}.

We report the KS-statistic here, preferred to the log-likelihood which is sensitive to the
choice of units for R, but we see good qualitative agreement between the two measures
as summarized in Table 2. The KS-statistic for the convolution model returns 0.036. The
quality of the fit is impressive considering the simplicity of the model — which involves
only two parameters. It also contradicts the premise that various non-linear mechanisms
driving induced seismicity, such as the non-linearity of rate-and-state friction, the Kaiser
effect, and changes in permeability due to high pore pressure and the development of hy-
draulic fractures, should result in a nonlinear response overall. It may be that non-linear
effects in Otaniemi are in fact small despite the relatively large stress variations induced
by hydraulic stimulation, the possibility of which we explore with our physical models
later on and in the supplementary materials.

5 Physical Modeling

We now present a physical model based on stress evolution from pore pressure dif-
fusion and poroelasticity along with shear failure criterion following rate-and-state fric-
tion. The medium is treated to be infinite, homogeneous and isotropic. Neglecting the
effect of the free surface is justified by the relatively large depth of the injections com-
pared to the dimensions of the seismicity cloud (Figure 3). The induced stresses can then
be calculated using the analytical solutions for a point source from Rudnicki (1986)

q n 1
= f —
p(r:t) A poT Kirye o C(2€>’ (7)

_ (J(Au - /\)ﬂ
AT poCrruera( Ay + 2p)

Oij (’/‘, t) =

o ktrue (>\u - )\)()‘ + 2/“’)
7 a2\ +2u)

Ctrue =
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where p and o;; are the pore pressure and stress tensor, and r and ¢ the distance from
injection source and time, respectively; A\, = 2uv,, /(1-2v,,) is the undrained Lamé pa-
rameter and the drained Lamé parameter without the subscript u; ¢ is the hydraulic dif-
fusivity which depends on permeability, k and viscosity, 1. Here we add the subscript
”true” to k and c to distinguish between the true and apparent values of the diffusiv-
ity, the notions of which are explored in greater detail by our following analysis. We as-
sume the point source is a good approximation of the injections in Otaniemi given the
length of the stimulated wells relative to the size of the total stimulated volume. The
model is nearly identical to that introduced by Segall & Lu (2015). Poroelastic proper-
ties which lack constraints from the field, along with a fixed fault-orientation are cho-
sen as those in Segall & Lu (2015) to represent a general case. Ambient normal stress
of 155 MPa is approximated using the average depth of the injection. All fixed param-
eters and their dimensions are listed in Table 1.

Stress changes become the input to the ODE formulation of Dieterich (1994), to
solve for seismicity rate in space and time. The alternative integral formulation of Heimis-
son & Segall (2018) is used here as it is more tractable numerically for injection scenar-
ios such as in Otaniemi that consist of abrupt onsets and shut-ins of injections

T o)
mo 14 [SK) dt

o=0—0p,

where 73, is the background seismicity rate, 7, the background stressing rate, a the rate-
and-state friction parameter, o the normal stress, oy and 7 the initial effective normal
and shear stress, and @ and 7 the applied effective normal and shear stress, respectively.
Synthetic catalogues are produced by sampling events from a non-homogeneous Pois-
son process using the acceptance-rejection method.

The Kaiser effect is inherent in the formulation of Dieterich (1994) and Heimisson
& Segall (2018). This results from the fact that the nucleation process is delayed if the
stress decreases and resumes once the stress gets back to its previous peak level. The Kaiser
effect is clearly demonstrated if we use the model to compute the response of the seis-
micity rate to a sinusoidal stressing history (Supplementary Figure S5). The different
injection locations must stimulate new volumes of rock and lead to new hydraulic path-
ways. So we might expect the Kaiser effect to be significant within a single stage but to
be less relevant from one stage to the other. The impact of the Kaiser effect may be more
appropriately represented by resetting the stressing history at the onset of each stage.
To this effect, we start a new simulation with the same initial conditions and compound
the results for the final catalogue. This model is hereafter referred to as the rate-and-
state model. Note that the validity of resetting the stress history could be questioned
given that the seismicity clouds during the different stages largely overlap (Figure 3) sug-
gesting overlapping stimulated volumes.

We use the measured flow rates and pressure to estimate hydraulic diffusivity. An
estimate of the diffusivity that fits the rate of pressure decay during injection pauses is



368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

made by the Horner analysis. Since the analytical solutions of the present model are de-
rived for spherical flow in a 3-D medium, the conventional Horner analysis originally de-
rived for 2-D flow into a vertically confined aquifer (Horne, 1995; Zimmermann, 2018)

is adapted to be consistent with Equations (7) and (8). Details on the adaptation and
fitting process are presented in the Supplementary Text S2. The analysis gives a diffu-
sivity of Chorner = 0.018 m?/s, and a global fit to the entire pressure history using a Gaus-
sian likelihood function gives an effective well radius and ambient pore pressure of 44m
and 43.5MPa, respectively. The model fits the measured pressure history well during the
entire stimulation, especially during the injection pauses (Figure 7a). A fit to the pres-
sure history with diffusivity as a free parameter, however, gives a higher value of ¢, =
0.044 m? /s (subscript ‘bu’ standing for "build-up”) that better matches the rate of pres-
sure build-up at the onset of injection cycles (Figure 7b) with an effective radius and am-
bient pore pressure of 31m and 54.9MPa, respectively. ¢, also over predicts the rate of
pressure decay during injection pauses. While constraints on the effective radius - a mea-
sure of the damage zone surrounding the well that causes pressure drops - are difficult

to quantify, ambient pore pressure in either cases are close to its bounds considering the
temperature-dependence of fluid density at injection depth. When comparing the the-
oretical triggering front derived by Shapiro (1997), i.e. r = |/4mwc st where c;5 is the
diffusivity chosen to draw the triggering front, cporner appears to fit the spatial extent

of near-field events better (Figure 3). We therefore use crorner = Ctrue as a starting point
for the models and refer to its theoretical triggering front as the ‘reference triggering front’.
We revise this assumption later and note that the diffusivity derived from the Horner
analysis fits the pressure drop at shut-ins, as should be the case by design, but doesn’t
match the pressure build-up when injections start again (Figure 7a).

The posterior distribution on the set of parameters associated to the seismicity model
a, T, and 1 is found using the affine invariant Markov chain Monte Carlo (MCMC) En-
semble sampler of Goodman & Weare (2010) maximizing the log-likelihood given by Equa-
tion (6). In order to simplify the sampling process, the sampler computes the posterior
of a and 7, given that 7, - which is a simple multiplicative factor to the normalized seis-
micity rate - is adjusted for each pair of a and 7, to match the total number of observed
events (61,150 events). The sampler conducts 2000 ~ 5000 iterations of 32 walkers with
the chain length made to be longer 50 times the auto-correlation length in order to en-
sure full exploration of the posterior distribution. The prior is assumed to be uniform
for both variables between the range of 10° ~ 1072 and 0.1 kPa/yr. ~ 5 kPa/yr. for
a and 7., respectively, although the shape of the prior is seen to have little effect on the
posterior given the large sample size.

a, 7, and rp of maximum likelihood is found to be 0.0002, 3.05 kPa/yr. and 12.1
events/days, respectively, and the resulting model is shown in Figure 6b. The model fol-
lows the observations quite well in time, with a KS-statistic of 0.029, slightly lower than
the value of 0.036 obtained with the convolution model. The model succeeds in repro-
ducing the main temporal features of the observed catalogue: 1. direct correlation be-
tween the injection and seismicity rate and 2. Omori-law decay during shut-ins. In space,
the fit is much less compelling (Figure 8b). The triggering front lags significantly behind
the reference triggering front with a much smaller mean of the distribution. Yet in both
time and space, resetting of the stress history at each injection stage turns out to be es-
sential in reproducing important features of the observation. The best fit using the model
without resetting of the stress history (a = 0.0001, 7. = 4.89 kPa/year, and r, = 25.9
events/day) as shown in Figure 6¢ has relatively minimal seismicity rate during the sec-
ond half of the injection history due to the Kaiser effect. In space, it is completely de-
void of any seismicity close to the injection well during this period (Figure 8c). Far-field
seismicity much beyond the reference triggering front is largely attributed to background
stressing as poroelastic stress perturbations are small relative to pore pressure changes.
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420 6 Adjusting Model Diffusivity to Spatio-temporal Distribution of Seis-
421 micity

a2 Given that the rate-and-state model fails to match the observations in space as-
23 suming the diffusivity inferred from Horner analysis, we now examine the possible un-
o derestimation of the diffusivity by the Horner analysis. Following the seminal study of
s Shapiro (1997), it has become common practice to infer the diffusivity from fitting r =
a2 \/4mee st to the propagation of the seismicity front, or the triggering front - defined by
a7 the outline of the outermost events of the seismicity cloud extending from the well. How-
228 ever, we note that c.s of the rate-and-state model shows a significant mismatch by a fac-
420 tor of ~3 from ¢yrye = Chorner prescribed in the model (Figure 8b). This discrepancy
430 is due to the role of delayed nucleation represented by ao. As shown by Wenzel (2017),
31 the parameter ao of the rate-and-state model acts as a threshold triggering stress that
32 restricts the extent of the triggering front. The sensitivity of the triggering front to ac
433 is clearly visible in Figure 9 which compares two synthetic catalogues that only differ in
a3 the prescribed values of a. In the scope of the rate-and-state model or stress thresholds
a3 as commonly used in Mohr-Coulomb models, inference of the diffusivity from the appar-
436 ent migration of seismicity requires considerations of both ¢ and a. Additionally, the method
237 of inferring the diffusivity from the triggering front may depend on the earthquake de-
438 tection thresholds. A higher detection threshold may give a more poorly resolved cat-
430 alogue in space that could lead to a different estimation of the triggering front. Further-
440 more, the position of the triggering front can be obscured even more by background seis-
a1 micity and far-field events triggered by poroelastic effects. Fitting the seismicity front
a2 represented by the envelope of the seismicity cloud, places a lot of weight on potentially
w3 biased and not particularly well-defined features.
aaa In consideration of such complications, one would wish for a definition of the seis-
s micity front that is independent of the number of events in the catalogue and robust to
a6 factors of discrepancy between observations and model predictions. We therefore pro-
aa7 pose an approach to infer ¢y from the spatial distribution of the seismicity as opposed
a8 to the triggering front. A simple way is to fit the distribution as a function of distance
449 and time from the point of injection with a known analytical expression. We recall that
450 the half-norm distribution is the solution to the diffusion equation in response to a Dirac
451 point source in a 3-D medium where the standard deviation of the distribution, A(t), is
a2 a function of time such that

2 2
a3 fy(y; At) = A(Q{/% exp (— 2Ay(t)2) , y=>0 (10)
454 This inspires our approach to fit Equation (10) to the rate-and-state model in response
455 to a constant injection scenario. The half-norm distribution indeed turns out to provide
456 a relatively good fit (Figure 10); it matches well the bulk of the distribution but tends
457 to slightly overestimate seismicity rate at larger distances. Indeed, we do not make the
458 claim that the half-norm distribution is the best possible fit and acknowledge there may
459 be other distributions that could better match the rate-and-state model although they
460 are not explored further here. Furthermore, plotting the evolution of A versus time re-
461 veals that it follows closely v/ctruel. We make the assumption that the remaining dis-
162 crepancy can be modelled as a multiplicative factor such that

463 A(t) = \/Chgt = V’Y({l})ctrueta (11)

464 where {l} is a set of non-dimensional parameters. Thus, ¢4 is a measure of the radial
a65 spreading of the seismicity relative to the point of injection (‘hg’ standing for half-Gaussian
466 distribution). In order to apply this method to Otaniemi, we attempt to estimate cpgq
a67 from the relocated catalogue. One disadvantage of the method is that it requires a set
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of relocated events large enough to constrain the evolution of c,, with confidence. As
detailed in the supplementary text S3, we can indirectly estimate from the cumulative
relocated catalogue giving ¢, = 0.011 m?/s (Supplementary Figure S6).

We find the relationship 74 (1) empirically by observing the systematic dependence
of v, on [ as reproduced by the rate-and-state model. We assume [ depends not only on
pore fluid transport properties but also rate-and-state properties such as a. We find to
be relevant the ratio | = ao/py, where p, = MZ% is the characteristic pore pressure
for given injection rate ¢, and L is the size of the computational domain. Higher values
of ac would produce a stronger threshold effect and suppress seismicity migration, the
extent of which would depend on its strength relative to the induced pressure, p,. A se-
ries of single boxcar injections are simulated for a range of ¢ and a. We find a rational
function of ao/p, that fits v;, as shown in Figure 11. Although the reason for the exact
functional form of the relationship is not obvious, the quality of the fit is compelling. The
observed trend is also consistent with the known role of ao: higher values of a suppresses
seismicity at further distances, decreasing cj4 and consequentially 7;. The functional
fit allows new uncertainty estimates of the diffusivity in Otaniemi. Figure 11 shows the
difference between the predicted and true values of diffusivity for a range of cg.ye and
a, given the estimated value of ¢y = 0.011 m?/s and an injection rate, ¢ = 10L/min.
Although this is a much lower injection rate than the average in Otaniemi there are also
significant differences between the idealized boxcar injections used to produce Figure 11
and the much more complex schedule in Otaniemi. One can see that accounting for the
role of delayed nucleation significantly widens the possible range of diffusivity in Otaniemi.
Namely, the functional fit considers equally likely much higher values of ¢y than would
be predicted by the triggering front observed in Otaniemi given sufficient rate-and-state
effects.

In light of this finding, we test the possibility that cp, = 0.044 m?/s is in fact closer
t0 Ctrye In Otaniemi than cperner as the inconsistency between the triggering front us-
ing cp, = c¢f and the relocated catalogue are borne due to rate-and-state effects. We
test this hypothesis by finding the best fit of the rate-and-state model using cp, = Cirue-
The effective radius and ambient pore pressure are adjusted to 31.1m and 54.9MPa, re-
spectively, to best fit the well pressure measurements. The resulting fit for the seismic-
ity rate in time is shown in Figure 6d, and the corresponding synthetic catalogue in space
is shown in Figure 8d. a, 7, and 7, are found to be 0.00006, 1.29 kPa/yr and 4.7 events/day,
respectively. The fit in time bears no significant improvement from the fit using cporner =
Ctrue, although the KS-statistic is slightly lower at 0.025. The fit in space is much im-
proved with a higher mean of the distribution and cluster of events that encompasses
greater portions of the relocated catalogue. One region the model performs rather poorly
on is capturing the the back-propagation front starting around the 500-hour mark. It’s
possible that the back-propagation fronts, whose occurrence in time would correspond
to the drawdown periods used for the Horner analysis, is still governed by the lower dif-
fusivity cporner- It could be that the back-propagation consists of two separate migra-
tion patterns, based on the observation that the initial portions of the back-propagation
front are predicted quite well by the model (starting at around the 450-hour mark). This
could be due to a propagation of the seismicity governed by different mechanisms than
pore pressure diffusion, such as stress transfer by aseismic slip (Dublanchet & De Bar-
ros, 2021), although it is difficult to constrain the exact mechanism of seismicity migra-
tion given their possibly similar characteristics (r ~ v/1).

The differences between cp,, and cporner may be indications of distinct hydraulic
processes that govern the well-head pressure and the spatial distribution of seismicity.
One could imagine that the well-head pressure is more representative of the diffusivity
of the medium immediately surrounding the well. On the other hand, the spatial dis-
tribution of seismicity may be more dependent on the path of highest hydraulic conduc-
tivity within the entire stimulated volume. The abrupt cessation of seismic activity close
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to the injection well following shut-in could be associated to a decrease in the diffusiv-

ity due to fracture healing, leading to the lower estimate of Cporner. It is also important
to note that the two diffusivities require different values of a, 7., and 7, such that their
independent measurements would provide stricter constraints on cg.... We see that the
higher estimate ¢, inferred from this analysis yields synthetic catalogues in better agree-
ment with the observed seismicity in time and space. We conclude using the triggering
front to infer the diffusivity may yield a significantly biased estimate if the effect of earth-
quake nucleation is ignored.

7 Design of the Spatio-temporal Convolution Kernel

We now use the physical model as a basis to extend the temporal convolution model
to space. We look for a new kernel with spatial dependence such that the convolution
is as follows

oo

R(t,z) = u(t) x g(t,z) = / u(r)g(t — T, x) dr (12)

— 00

The spatial component of the kernel is constructed by using the half-norm distri-
bution, as identified in Section 6, with a shape parameter increasing as /cpqt. Combin-
ing with the Omori law as the temporal component as previously gives the integral of
the kernel

t V2 r? Ry
! ! __ _ .
/_Oo g(r,t') dt’ = V/TCpglt eXp( 20hgt> <1 +t/tr)’ (13)

which is differentiated in time to obtain the response to Dirac forcing

V2 72 ) (2epgt® —epgt(t +t,) +13(t + 1)) Ro

2/mt(cngt)3/2 P ( 2cpgt tr(1+ £)2 19

g(r, t) =

The three parameters of the model are ¢, = 0.011 m?/s, Ry = 213.5 events/hr.,
and t, = 28.5 hours, as estimated from the data. The fit to the temporal evolution of
seismicity is, by design, identical to the fit obtained with the kernel in time introduced
earlier (Figure 6a). The model provides now in addition a good match to the observa-
tions in space, especially with regards to the triggering and back-propagation fronts (Fig-
ure 8a). Overall, the convolution method approximates the physical model and fit the
observations quite well, albeit with a drastically shorter computing time - by at least an
order of magnitude - thanks to the use of the fast Fourier transform (the convolution is
transformed into a simple product in the Fourier domain).

8 Discussion
8.1 Comparisons of Coulomb and Rate-and-State Models

Both rate-and-state and Mohr-Coulomb models are widely used in modelling in-
duced seismicity. The standard Coulomb model assumes a population of faults with a
uniform distribution of initial stress up to the maximum shear stress allowed by static
friction (e.g., Ader et al, 2014). We show in supplement that this simplest version of the
Coulomb model doesn’t fit the observations neither in time nor in space (Text S4 and
Figure S7). A number of studies which have tested the applicability of the Coulomb model
to induced seismicity found it necessary to introduce a stress threshold that needs to be
exceeded for earthquake triggering (e.g., Bourne et al., 2018; Dempsey & Suckale, 2017;
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Dempsey & Riffault, 2019; Langenbruch & Shapiro, 2010; Rothert & Shapiro, 2003). The
physical justification for the inclusion of the threshold, hereafter referred to as Cgp, is

to account for the population of faults activated during the stimulation that were ini-
tially in a relaxed state of stress, not close to failure. In this case, triggering would be
delayed due to their initial strength excess rather than due to the nucleation process. The
explanation is probably relevant in stable tectonic areas (e.g., Bourne et al., 2018; Dempsey
& Suckale, 2017; Dempsey & Riffault, 2019; Langenbruch & Shapiro, 2010). Wenzel (2017)
demonstrates the response of the Dieterich (1994) rate-and-state model, which assumes

a population of faults above steady-state (initially already on their way to failure), can

be approximated with such a threshold Coulomb model due to the tendency of ac to act
as a stress threshold. On the other end, the application of the rate-and-state model to

a population of faults below the steady-state regime also results in introducing a thresh-
old in the rate-and-state model as well (Heimisson et al., 2022), accounting for the pop-
ulation of earthquake sources that are initially far from instability which is assumed neg-
ligible by Dieterich (1994). In this case, the question remains whether C.,, is indeed solely
representing the initial stress state, or rather acting as a proxy variable that also encom-
passes effects of time-dependent nucleation.

To address these questions, we consider a Coulomb model with a stress threshold
representing the initial strength excess on the triggered faults. The Coulomb model is
formulated as follows

r) = [ 1 (stnn) - i) av. (15)
Qe %
W, O NAF2) 1
50 = S o exp (—162), (16)

where V' is the representative volume over which seismicity is recorded, a. is a scaling
factor defined as the change in pore pressure per slip event per unit volume (Nur & Booker,
1972), and f. is the probability density function representing the distribution of thresh-

old triggering pressure needed for the Coulomb stress change to exceed the initial strength
excess. Following the observation that poroelastic stress changes are minimal compared

to pore pressure changes, they are ignored hereafter for simplicity. The derivation of equa-
tion (16), which is the time derivative of equation (7), is given in Appendix A of Segall

& Lu (2015). The integral is restricted to where stress changes are positive, and to ac-
count for the Kaiser effect, the integral is further limited to where the past maximum

pore pressure has been exceeded. Following Bourne et al (2018) and Smith et al. (2022),
we next assume a population of faults with randomly distributed strength excess using

a formulation that has been found to provide a good model of seismicity induced by gas
extraction from the Groningen gas field. Seismicity starts once the Coulomb stress change
exceeds the lowest value of the initial strength distribution. According to the extreme

value theory, the tail of the distribution can be represented by a Generalized Pareto dis-
tribution, leading to an exponential increase of seismicity for a constant loading rate (Bourne
et al., 2018). This general formulation is valid to simulate the onset of seismicity but it
does not allow the transition to a steady state regime where seismicity rate would be pro-
portional to the loading rate. We therefore assume a Gaussian distribution of initial strength
to allow for the transition to steady-state (Smith et al., 2018), and express it in term of

the distribution of threshold pressure

IR SN G VSR
fc(p)—egmep< 2( % ) > (17)

where 6; and 6, are the mean and standard deviation of the distribution, respectively.
The best fitting model is found with respect to 6; and 6> within the range of 0.01 ~ 5
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MPa for both parameters. «. is adjusted to match the total number of events, much like
rp of the rate-and-state model. This model is hereafter referred to as the Coulomb model.

The model fit in time and space are shown in Figure 6e and 8e, respectively, with
6; = 0.66 MPa, 6 = 0.28 MPa, and o, = 14.3 kPa/event - m®. The model fits the ob-
servations well in time, with a KS-statistic of 0.029 but significantly overestimates the
extent of seismicity in space, which was also a main issue with the standard Coulomb
failure mode (Supplementary Figure S7). The model is also less sensitive to rapid vari-
ations of the injection rate compared to the rate-and-state models, with relatively muted
changes in the seismicity rate in-between injection cycles. Such sensitivity is seen to grow
with the time scale of stressing rates; Figure 12 shows the response of the both the Coulomb
and rate-and-state models with the duration of injections and pauses multiplied by fac-
tors of 0.1 and 10 (parameters are fixed to those that produced figures 6d&e). While both
models show more rapid variations of the seismicity rate relative to the injection rate
for longer injection duration, the tendency is significantly greater in the Coulomb model.
For longer injection duration, the models show rather good agreement between each other
although the Coulomb model predicts lower ¢, with increasing time. Similar sensitivi-
ties may be observed with respect to the choice of #;. While both the Coulomb and rate-
and-state models may provide sufficient hindcasting tools for the same observation, the
calibrated models produce very different forecasts for injection scenarios with duration
of injection different from those used for calibration. In addition, they may produce dif-
ferent predictions in space for similar predictions in time. The comparisons suggest that
the stress state with respect to failure and nucleation effects must be modelled separately,
as done for example in the threshold rate-and-state model of Heimisson et al. (2022),
especially for fast injection cycles commonly employed in EGS operations where the ef-
fect of delayed nucleation may not be appropriately represented by the inclusion of a stress
threshold in Coulomb models.

We remark that our modeling allows estimation of the best fitting values of a to
between 0.00006 and 0.0002, which is significantly lower than the values inferred from
laboratory measurements, generally ranging between 0.01 and 0.001 (Marone, 1998). Yet,
the importance of rate-and-state effects in matching the observations in both space and
time suggest that even such low values do not yield, for the injection schedule studied
here, the rate-independent behavior that could be matched with a Coulomb model. The
reconciliation of field-inferred values of ac and laboratory measurements is still paramount
for eventual application of such models towards seismicity forecasting. One possible ex-
planation is that spatial heterogeneities lead to elastic interactions that produce glob-
ally inferred values lower than that in a homogeneous equivalent (Dublanchet et al., 2013).
It is also important to note that the model of Dieterich (1994) is a rather limited rep-
resentation of the full complexity of rate-and-state friction. For example, the model sim-
ulates a population of spring-slider nucleation sources, whose qualitative differences in
their behavior to more realistic finite fault models have been displayed for numerous as-
pects of rupture characteristics. Additionally, the model neglects the effect of variable
effective normal stress on nucleation size, as the number of active nucleation sources re-
mains constant throughout (Alghannam & Juanes, 2020). Further development of the
model with a more holistic representation of rate-and-state friction would prove valu-
able for induced seismicity forecasting.

8.2 Origin of Omori-Law Decay Following Hydraulic Stimulation

The rate-and-state model reveals that the post shut-in Omori-law decay at Otaniemi
depends strongly on the stress relaxation process by pore-fluid diffusion and cannot be
explained solely by nucleation effects. The dependence on both nucleation and stress re-
laxation can be demonstrated by a sensitivity analysis of the relaxation timescale of the
Omori law, t,., to parameters a, the rate-and-state friction parameter and k, the perme-
ability. We find the most direct relationship to be that between the ratios of ¢, and the
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characteristic diffusion time, t. = LTQ, to t, as shown in Figure 13 where ¢, is measured
by fitting the Omori law to shut-ins following single boxcar injections under the rate-
and-state model. Thus, ¢, is more strongly dependent on ¢.. The positive relationship

t, and t. follows the intuitive reasoning that higher diffusivity would result in more rapid
relaxation of induced pressure and consequently a faster decay of the seismicity rate. Our
observations are consistent with the suggestion that the empirical Omori-law would be

a result of stress relaxation by pore pressure diffusion (Almakari et al., 2019; Langen-
bruch & Shapiro, 2010; Miller, 2013). This explanation seems certainly reasonable in the
context of EGS stimulations where pore pressure variations are particularly large.

The dependence on stress relaxation implies that ¢, also depends on injection du-
ration (Figure 13). where the sensitivity analysis is performed with a and k fixed at 0.001
and 1076 m?, respectively, while the injection duration varies between factors of 0.1 to
100 of t.. The plot shows a non-linear relationship between ¢, and the injection dura-
tion, t7, with an initial increase followed by a decrease. The trend exhibits a strong cor-
relation with the seismicity rate at the time of shut-in. For shorter injections, the seis-
micity rate continuously increases prior to shut-in, increasing the time to relax to back-
ground levels. This is until the seismicity rate begins to decrease for continued injection,
as pore pressure reaches steady-state conditions, and further nucleation is suppressed by
the Kaiser effect (Supplementary Figure S5). Consequently, ¢, decreases as well, as it
takes less time to relax the lower seismicity rate. A similar effect arises due to the finite-
ness of the computational domain — the further distances where the seismicity rate would
continue to increase at later times are cut-off. The sensitivity of ¢, to the total injected
volume is consistent with the observation that the Omori law relaxation time at shut-
in increases with time during the EGS stimulation at Otaniemi (Avouac et al., 2020).

8.3 Application of Models to Seismicity Forecasting

The models so far have only been applied in a hindcasting sense such that the data
has been used in its entirety in order to tune the model parameters. We test the abil-
ity of the models to truly forecast induced seismicity in Otaniemi by limiting the range
of the data used for training the models. Forecasts from the best fitting physical model
(rate-and-state model with c¢trye = Cpy, - Figure 6d & 8d) and the spatio-temporal con-
volution model are shown in Figure 14 & 15, respectively. The rate-and-state model is
able to produce a forecast comparable to the hindcast using just the first injection stage
as the training period with a similar value of @ = 0.00005 although with significantly lower
7 = 0.1kPa/year and r, = 0.39 events/day. With the same training period, the convo-
lution model performs rather poorly, largely due to the estimation of ¢, at the end of first
injection stage substantially lower (2.9 hours) than the average value throughout the en-
tire injection schedule. The forecast is significantly improved by including the second in-
jection stage within the training period, which now consists of the Omori decay observed
during the injection pause at around the 450-hour mark that significantly increases the
estimated value of ¢, to 10.4 hours.

It is likely that the rate-and-state model is more robust to the length of the train-
ing period than the convolution model due the fact that ¢ is fixed at ¢y, which matches
the pressure history of Otaniemi in its entirety (Figure 7b). As discussed in Section 8.2,
diffusivity plays a significantly stronger role in governing the rate of Omori decay than
the tuning parameters of the rate-and-state model, namely a and 7,.. Thus, the rate-and-
state model seems suited to perform well in forecasting applications given an accurate
estimation of the diffusivity. Forecasts from the convolution model could also be improved
by accounting for the increase in ¢, with cumulative injected volume as observed in Otaniemi
(Avouac et al., 2021).
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707 8.4 Influence of the Kaiser Effect

708 We have seen that the fit to the temporal evolution of seismicity is improved when
700 the Kaiser effect is reset at each new stimulation stage. Although the clouds of seismic-

710 ity generated during each stimulation stage overlap largely (Figure 3), this reset is jus-

m tified as each new stage implied the stimulation of a new volume near the wellbore. With-
712 out such an adaptation, the seismicity rate is predicted to significantly lower during the
713 second half of the injection history (Figure 6¢) along with large regions of seismic qui-

714 escence near the injection well (Figure 8c). This also implies that the efficacy of the con-
715 volution model - which does not account for the Kaiser effect at all - depends strongly

716 on the apparent absence of the Kaiser effect in Otaniemi.

7 The physical mechanism behind the activation of new volumes is unclear given the
718 diffuse and rather random structure of the relocated catalogue (Figure 3). If this argu-

719 ment is dismissed based on relocation uncertainties, one could pose that a low diffusiv-

720 ity stimulated non-overlapping volumes from one stage to the other. However, such a low
™ diffusivity should manifest in inconsistencies with the observed catalogue in time, for in-
e stance a longer apparent relaxation time during shut-ins. Rather, the need to reset the

3 stressing history for the models to reproduce the observations in Otaniemi more likely

724 implies the creation of new hydraulic pathways due to the fracturing nature of the stim-
725 ulation that activated new nucleation sources (Cladouhos et al., 2016). Such phenomenon
726 would depend on both the physical properties of the injected medium such as its fluid

727 transport properties and fracture toughness, and the injection scenario, especially any

728 spatial variation of the injection location.

729 8.5 Validity of the Convolution Model

730 Our study show that, in the context of the Otaniemi injection schedule, the seis-

731 micity response to injections in time and space can be approximated with a simple con-
73 volution model. This model ignores all the sources of non linearity that may arise from

733 the coupling between fluid flow and deformation, the earthquake nucleation process, the
734 initial strength distribution and Kaiser effect. It is therefore not obvious that this ap-

735 proximation would be applicable to other induced seismicity context or for other injec-

736 tion schedules. We have therefore used our physical model to explore the parameter regimes
737 under which the the linear convolution method is able to match the rate-and-state model.
738 The results are presented in the Supplementary Text S6. We found the success of the

739 convolution model to depend strongly on the impact of the Kaiser effect on the linear-

740 ity of stress evolution for the given injection schedule although it is also seen to be ro-

m bust to non-linear effects from delayed nucleation.

2 9 Conclusion

743 Physical models based on rate-and-state friction and stress changes due to pore-

744 pressure diffusion and poroelasticity can successfully reproduce the seismicity observed

75 during the EGS simulation which were carried out on the Otaniemi campus near Helsinki,
746 Finland. While pore pressure measurements at the well indicate two possible diffusiv-

747 ities that fit either the build-up of pressure or its drawdown, the physical model suggests
748 that the diffusivity of the medium is likely closer to the higher diffusivity fitting the build-
749 up. We find that the effect of time-dependent nucleation is crucial in reconciling the higher
750 diffusivity with the spatio-temporal distribution of triggered seismicity. Namely, the ten-
751 dency of the parameter ac to act proportionally to a triggering threshold significantly

75 affects the apparent diffusivity inferred from the triggering front in Otaniemi. However,

753 the effect of nucleation cannot be approximated well by introducing a stress threshold

75 in the standard Coulomb friction model, at least in the context of rapid variations of in-
755 jection rates common in EGS operations. We remark that there are significant portions
756 of the relocated catalogue that the models do not fully capture in space, such as the back-
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propagation front or far-field seismicity, although a significant portion of the observed
far-field seismicity may have been due to leaks in the well casing. The Omori law decay
observed in Otaniemi is seen to depend strongly on fluid transport properties in the phys-
ical model. Lastly, the physical model indicates that the Kaiser effect is present in Otaniemi,
weakened by the successive variation of injection locations between different stages.

We show that a statistical model whereby the seismicity rate is predicted in time
and space by convolution of a kernel function inspired by Omori law decay with the in-
jection rate can provide a good match to the seismicity observed in Otaniemi. The ex-
istence of such linear convolution kernels is consistent with the identification of system-
atic decay patterns in the rate densities calculated by adaptation of the cascading algo-
rithm of Marsan & Lengline (2008) to induced seismicity. The statistical model is ex-
tended to space by incorporation of a half-norm distribution component to the kernel
mimicking the behavior of the physical model. We find that the validity of the method,
which assumes a linear relationship between the injection history and the induced seis-
micity rate, depends strongly on the presence of the Kaiser effect. The convolution model
would be applicable towards injection schedules that minimize the impact of the Kaiser
effect by decreasing injection durations relative to the local diffusion time or by varia-
tion of injection locations in space.

The physical model presented in this study makes a number of assumptions. One
assumption is that it is appropriate to use Darcy’s Law, which was established for a ho-
mogeneous porous medium, to model the flow in the fractured crystalline bedrock. Al-
though the assumptions largely stem from the lack of data on local heterogeneities or
anisotropy, neglecting presence of vertical or horizontal geological layers may be appro-
priate for Otaniemi where the objective is to fracture a largely crystalline medium. The
model also ignores the effect of pore-pressure change on permeability. This is clearly an
oversimplification as, in the case of fractured flow, the permeability increases substan-
tially with pore pressure (Acosta & Violay, 2019; Cappa et al., 2014; Cornet & Jianmin,
1995; Evans et al., 2005). Common values of in-tact granite under comparable pressure
are documented to be closer to 1072! m? (Brace, Walsh & Frangos, 1968), several or-
ders of magnitude lower than that of the best fitting model (1071 m?). Indeed, there
are indications of changes in the diffusivity from the evolution of the injectivity index,
or the ratio of injection rate to the well-head pressure (Supplementary Figure S10). Pe-
riods of heightened injectivity are well-correlated with periods of high seismicity rates,
likely due to seismicity-induced increase in permeability. Reconciling the full scope of
pressure variations at the well and the spatio-temporal patterns of observed seismicity
would probably require an explicit account for the role of fractures and seismicity on per-
meability. Lastly, stress perturbations due to thermoelasticity can also be significant for
EGS operations where temperature gradients between the injected fluid and surround-
ing medium are large (e.g., Gens et al., 2007; Rutqvist & Oldenburg, 2008; Im et al., 2017).

The modeling methods presented here could be useful in designing EGS operations
or to interpret induced seismicity observations in terms of transport properties within
the stimulated volume. They could additionally serve as a basis for a probabilistic traf-
fic light system (TLS) or be incorporated in a control and optimization framework such
as the one presented by Stefanou (2019). At the moment, TLS are deterministic and based
entirely on the observed maximum magnitude (Ader et al. 2020; Bommer et al. 2006;
Kwiatek et al., 2019; Majer et al. 2007). As such, a red light event can be triggered by
the occurrence of a rare event, with improbably large magnitude, that might not nec-
essarily reflect an increased hazard level. In addition, such TLS don’t provide a way to
anticipate the response to possible mitigation strategies. This is important as many op-
erations have been terminated as the original TLS design proved to be insufficient in pre-
venting "red-light” incurring events (Grigoli et al., 2017; Majer et al. 2007). To allevi-
ate that issue, our forecasting methods could for example be incorporated in ” Adaptive
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809 Traffic Light Systems” (ATLS) (Wiemer et al., 2015), which are based in a real-time as-
810 sessment of probabilistic hazard.

—19—



811

Parameter Variable

Value and Unit

Poroelastic Properties
Shear Modulus o

Drained Poisson's Ratio

Undrained Poisson's Ratio v,
Skempton's Coefficient B
Biot's Coefficient a

Transport Properties

Fluid Viscosity n
Reference Fluid Density Po
Normal Stress o)

Frictional Properties & Fault Orientation
Fault Normal A

Fault Slip

wv>

20 GPa
0.25
0.3

0.75
0.31

0.4 x 103 Pa's
10° kg/m?3
155 MPa

[-0.866, 0, 0.5]
[-0.5, 0,-0.866]

Table 1: Constant Parameters
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manuscript submitted to JGR: Solid FEarth

Figure # Parameters KSstatistic H
Time Space Time
Convolution Model
Chg [M?/s] t, [hours] R, [events/hour]
6a & 7a 0.011 241 208.9 0.040 0.122 176558
Rate-and-State Model

Corue [M?/5] a %, [kPa/year] r, [events/day]
6b & 7b 0.018 0.0002 3.05 12.1 0.029 0.335 173375
6c & 7c 0.018 0.0001 4.89 259 0.090 0.136 165532
6d & 7d 0.044 0.00006 1.29 4.7 0.025 0.110 173429

Coulomb Model with Gaussian Threshold

Cyrue [M?/5] 0, [MPa] 6, [MPa] a, [kPa/event-m3]

6e & 7e 0.044 0.66 0.28 14.3 0.029 0.392 173035

Table 2: Model Parameters

St1
Deep Heat Oy

Geophones

OTN-3 well
Stimulation: 49 days

18,160 m’ injected

Injection interval:

5.5-6.1 km (5 stages) S5

Well-head pressure: N

60-90 MPa sa\33
Injection rate: \81
400-800 liters/min S2

Figure 1: Well-Stimulation Operation in Otaniemi, Finland (Kwiatek et al., 2018): The

observation well (OTN-2) and stimulation well (OTN-3) are indicated by lines extending
into depth at the center of the schematic. Locations of various geophones within the area
are indicated by the yellow triangles. Locations of stimulation stages S1 to S5 vary along
OTN-3. Basic stimulation parameters are shown in the inset.
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Figure 2: Earthquake Catalogue in Otaniemi: The complete catalogue of Leonhardt et
al. (2021) is plotted in dark blue as a histogram. The injection rate history is plotted in
orange. The background colors represent the timing of the individual injection stages.
The seismicity rate shows a strong positive correlation to the injection rate.
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Figure 3: Relocated Catalogue of Leonhardt et al. (2021): 1986 relocated events are in-
dicated as black dots according to their distances from the injection source and time of
occurrence (top). The red curve outlines the theoretical triggering front of Shapiro (1997),
V4mest, with ¢if = Chorner = 0.018 m2/s. It is difficult to assess a level of agreement be-
tween the triggering front and the relocated catalogue given the limited sample size. Yet,
clusters of events far beyond the curve suggest poroelastic triggering. It is also possible
that they are due to leaks in the casing, as evidenced by their locations close to the well
path shown in the vertical section view (bottom-left). In the map (bottom-right) and and
vertical section views, the well is drawn in black with stimulated sections of the well and
occurrence time of events color-coded correspondingly. Mgy, refers to the local Helsinki
magnitude scale. The color-coding reveals little correlation in space between events and
stimulation stages.
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——— Omori decay: t; = 10.4h [10.0h - 10.9h]
102 1 = ~ 95% confidence interval

Seismicity Rate [events/hour]

0 20 40 60 80 100
Time Since Shut-in [hours]

Figure 4: Omori Law (p=1) Decay During Shut-in: The recorded catalogue in time is
zoomed-in on an interval during which injection has largely stopped (around 450-hour
mark in Figure 2). A Short period prior to shut-in is shown with a sky blue background.
The shut-in period is indicated with a grey background. The decay pattern in seismic-
ity rate during the shut-in is matched well with an Omori decay function (modified
Omor-Utsu law with p=1), plotted in light purple. The dotted lines and shaded areas
in-between indicate the 95% confidence interval of the fit. The fitted value of ¢, and the
bounds of the confidence interval of the fit are indicated in the legend.
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Figure 5: Marsan & Lengline (2008) Rate Densities: Rate densities measuring the weight
of influence from individual injections onto induced events are computed through an adap-
tation of the cascading algorithm from Marsan & Lengline (2008). The densities follow a
1/t type of decay in time, consistent with the Omori-law decay observed during shut-ins
(Figure 4) and suggestive of the possibility for a convolution kernel relating injections to
induced seismicity.
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Figure 6: Model Predictions in Time: Model predictions are plotted in different colored
shading over the observed catalogue in dark blue. The dotted-lines and shaded areas in-
between indicate the 95% confidence interval of the prediction. Posterior distributions

of fitted parameters are shown on the right for applicable models. Rest of the param-
eters are as listed in Table 1. a) Linear convolution of the injection history with ¢, =
24.1 hours and r, = 208.9 events/hr. (b) Rate-and-state model with cirye = Chorner =
0.018m?/s, a = 0.0002, 7, = 3.05 kPa/year and 7, = 12.1 events/day. (c) Rate-and-state
model without resetting of stress history with a = 0.0001, 7. = 4.89 kPa/year and r, =
25.9 events/day performs progressively worse with significant lags during the latter half,
largely due to the Kaiser effect inherent in the rate-and-state model (Figure S5). (d)
Rate-and-state model with c;rye = cpy = 0.044m? /s, a = 0.00006, 7. = 1.29 kPa/year and
rp = 4.7 events/day. (e) Coulomb model with c;rue = cpy = 0.044 m?/s, 0; = 0.66 MPa,
62 = 0.28 MPa, and «. = 14.3 kPa/event - m3. While the global fit to the observations
are comparable to other models, it lacks rapid variations of the seismicity rate in-between
injection cycles compared to the rate-and-state models - evident of qualitative differences
in modelling the stress state relative to failure and delayed nucleation mechanisms. All
models (besides (c)) consistently capture temporal trends of the seismicity rate, such as
the Omori-law decay during shut-ins and build-up periods at the onset of injections, with
the linear convolution model requiring the fewest parameters and lowest computational
cost. Model parameters and goodness-of-fit metrics are summarized in Table 2.
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Figure 7: Well-Pressure Measurements and Modelled Fit: Observed well-pressure and the
modelled fits are plotted in red and blue, respectively. The top fit corresponds to cgrye =
Chorner = 0.018 m? /s, effective well radius, w,, of 44m and ambient pore pressure, pg, of
43.5 MPa while the bottom fit corresponds to ctrye = cpy = 0.044 m? /s, w, = 31m and
po = 54.9 MPa. The posterior distributions of w, and pg for ¢yue = Chorner are shown

on the bottom-left and those for cy,, w, and py are shown on the bottom-right. While
both models provide a good global fit to the data, cporner and cp,, tend to fit better either
the drawdown of pressure during shut-ins or the build-up of pressure at injection onsets,
respectively.
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Figure 8: Model Predictions in Space: The synthetic catalogue is plotted as black dots
in space and time with the relocated catalogue of Leonhardt et al. (2021) superposed as
red dots. The red curve outlines \/4mc: st with c:f = ctrye for each model. Histograms of
the observed event distribution in space is plotted in red along with randomly sampled
distributions of the synthetic catalogues in black. (a) The extension of the convolution
model to space gives a good fit to the observations using the estimate of ¢,y = 0.011
m?/s. (b) The rate-and-state model with cirue = Chorner = 0.018 m? /s underpredicts the
mean distance substantially with an apparent triggering front much closer to the injection
source. (c¢) Rate-and-state model without resetting of stress history with a = 0.0001, 7.
= 4.89 kPa/year and r, = 25.9 events/day shows manifestations of the Kaiser effect from
large regions of seismic quiescence in stress shadows near the injection source. (d) The

fit to space in the rate-and-state model is significantly improved with cprye = cpy = 0.044
m?/s. The rate-and-state models consist of far-field seismic activity, although mostly from
background stressing distributed uniformly in space rather than through a systematic
variation from poroelastic stress perturbations. (e) The Coulomb model with ¢rye = cpy
= 0.044 m? /s significantly overpredicts the distribution of seismicity in space as does the
theoretical triggering front for ¢y = cpy, suggesting that the role of delayed nucleation on
seismicity migration is essential in reproducing the observed spatio-temporal evolution of
seismicity in Otaniemi given the likely diffusivities. Model parameters and goodness-of-fit
metrics are summarized in Table 2.
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Figure 9: Sensitivity of Triggering Front to Delayed Nucleation: Synthetic catalogues for
two parameter sets only differing by a (0.0001 and 0.001 in top and bottom, respectively)
are shown. Lower a, which translates to lower ao, results in a much further extent of the
triggering front, due to the role of delayed nucleation that acts proportionally to a thresh-
old stress for the triggering of events as explained in detail by (Wenzel, 2017). Along with
the reference triggering front in red, an additional |/4mc; ¢t curve is drawn in orange for a
= 0.001, with ¢,y modified by a factor of 0.3 that better matches the apparent triggering
front.
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Figure 10: Evolution of Spatial Distribution of Seismicity for Rate-and-State Model:
Spatial profiles of the seismicity rate are plotted in blue at various times for the rate-and-
state model in response to a single boxcar injection. Half-norm distributions, in green,

are used to fit the model-generated distribution. The line style is alternated between solid
and dashed between each time step for clarity. The half-norm distributions evolve with a
time-dependent shape parameter, A(t), which closely follows /¢yt as shown in the inset
of the top figure.
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Figure 11: Inference of Diffusivity Accounting for Role of Delayed Nucleation on Seis-
micity Migration: An empirical relationship for the multiplicative factor, v, of A(t) =
VYhCiruet is found in terms of the non-dimensional ratio ao/p, (left). The fit can be
used to infer new uncertainty estimates on the diffusivity of the medium given appar-

ent spreading of the radial distribution of the seismicity in Otaniemi, i.e. ¢,y = 0.011
m?/s. Contour plot on the right shows the percent difference between the true diffusivity
and the predicted diffusivity from the functional fit vj,(ac/p,) for a range of a and cipye.
Considerations of the role of delayed nucleation on seismicity migration makes higher dif-
fusivities more likely than previously considering solely the theoretical triggering front of
Shapiro (1997).
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Figure 12: Comparison of Rate-and-State and Coulomb Model For Varying Time Scale of
Injections: The rate-and-state and coulomb models that produced best fitting predictions
of Figure 6d&e, respectively, are compared in their response to the injection scenario of
Otaniemi with injection durations lengthened (top) and shortened (bottom) by 10 times.
The injection rate is shown in light orange. The Coulomb model shows significant dis-
agreement with the rate-and-state model for shorter injections, illustrating the differences
in modelling the stress state with respect to failure and delayed nucleation at shorter time
scales.
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Figure 13: Dependence of Omori Law Decay on Fluid Transport Properties: ¢, of Omori
Law Decay in response to single boxcar injections under the rate-and-state model are
plotted in terms of ¢. and t, (left). t,, shows a stronger dependence on t., or the diffu-
sivity, than on t,. Namely, longer diffusion times result in longer relaxation times of the

seismicity rate. ¢, also shows strong dependence on injection duration, ¢; (right). ¢, first

increases with increasing seismicity rate at time of shut-in, before decreasing as steady-
state stress conditions are reached when the seismicity rate decreases as well due to the

Kaiser effect (Supplementary Figure S5).
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Figure 14: Partial Forecasting of Induced Seismicity by Physical Model: Ability of the
physical model to forecast induced seismicity is tested by limiting the portion of the

data used for model tuning. The rate-and-state model with cipue = o = 0.044 m? /s is
trained using only the first injection stage. The training results in a, 7., and 7, of 0.00005,
0.1kPa/year, and 0.39 events/day. The forecast is comparable to the hindcast of Figure
6d & 8d, with only a marginally higher KS-statistic of 0.040 and lower log-likelihood of

169,076.
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Figure 15: Partial Forecasting of Induced Seismicity by Convolution Model: Ability of
the convolution model to forecast induced seismicity is tested by limiting the portion

of the data used for model tuning. The top two rows compare forecasts using the first
one and two injection stages as training periods where ¢, is estimated to be 2.9 and 10.4
hours, respectively. The forecast using solely the first injection stage as the training pe-
riod significantly underestimates ¢, and underpredicts the seismicity rate for the rest

of the injection history. The forecast using the first two injection stages as the training
period is comparable to the hindcast of Figure 6a & 8a, with only a marginally higher

KS-statistic of 0.047 and lower log-likelihood of 175,430.
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