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Abstract 12 
Slip along a frictional contact between elastic bodies can be stable or unstable, leading to 13 

stick-slip motion. Frictional slip can also be associated with vibrations. The condition for these 14 
vibrations and their characteristics is relevant to engineering and earth science, but remains 15 
poorly understood. To address this issue, we carry out a linear stability analysis of a spring-and-16 
slider system obeying rate and state friction. We first identify the solution space for the linearized 17 
equation and define the conditions for different slip modes from the real and imaginary parts of 18 
the solution. We then derive asymptotic equations for all boundaries between overdamped stable 19 
sliding, inertial/non-inertial underdamped oscillation, stick-slip, and harmonic vibration. Finally, 20 
we verified the conditions with numerical simulations. Our work provides rigorous criteria 21 
regarding the conditions for the various frictional slip modes and the emergence of vibrations. It 22 
can help design appropriate approaches for suppressing undesired vibrations in mechanical 23 
systems and investigate the mechanisms generating vibrations (tremor) associated with fault slip 24 
in nature.  25 

 26 

Highlights 27 
 Conditions for vibration during frictional slip are explained. 28 
 Vibrations during frictional slip can be inertial or non-inertial. 29 
 The transition criteria between the mode of frictional sliding with vibration are explicited. 30 
 The criteria are verified with numerical solutions. 31 
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1. Introduction  35 
Sliding along a solid contact is governed by friction and can be stable or unstable, leading 36 

to stick-slip [Rabinowicz, 1956], depending on the friction parameters, which govern the strength 37 
drop during slip, and elastic properties, which govern unloading during slip [Rice and Ruina, 38 
1983]. Stick-slip is commonly observed at a slow loading rate for various materials, including 39 
rocks [Brace and Byerlee, 1966], plastic [Ben-David et al., 2010], rosin [Smith and Woodhouse, 40 
2000], paper [Heslot et al., 1994], and articular joints [Lee et al., 2013]. It has also long been 41 
recognized that frictional slip can be associated with high-frequency harmonic vibration 42 
[Brockely and Ko, 1970]. Vibrations are commonly observed in rapidly slipping systems 43 
[Brockley and Ko, 1970; Ibrahim, 1994], for example, vehicle brake systems (brake squeal) [e.g., 44 
Kinkaid et al., 2003] or musical instruments [Smith and Woodhouse, 2000]. 45 

Until recently, the stick-slip and inertial vibration have been mostly independently 46 
investigated or often not distinguished due to the distinct circumstances for their emergence. For 47 
instance, geoscientists have been exclusively interested in the stick-slip phenomenon due to the 48 
extremely low tectonic loading rate (order of ~10-9 m/s), which favors stick-slips (i.e., 49 
earthquakes [Brace and Byerlee, 1966]) rather than vibration. Conversely, inertial vibrations are 50 
of interest for rapidly slipping mechanical systems since it causes damage to the sliding material 51 
[Ibrahim, 1994]. However, tremor signals observed in natural volcanic [Chouet, 1996; Dmitrieva 52 
et al., 2013] and non-volcanic systems [Obara 2002; Shelly et al., 2007] can be explained by 53 
friction-induced vibrations [Im et al., 2019; Im and Avouac, 2021]. Similarly, friction-induced 54 
vibrations in mechanical systems can be explained with the frictional framework commonly used 55 
to explain earthquakes [Cabboi et al., 2016]. In both cases, the emergence of vibrations is 56 
explained by rate and state friction (RSF).  57 

Rate and state friction (RSF) is a phenomenological law established based on laboratory 58 
observations, which includes velocity-dependent effects (“rate” effect) and history of sliding 59 
surface effect (“state” effect) [e.g., Marone 1998]. It was initially developed to explain rock 60 
friction [Dieterich 1979] and recognized later on to apply to various solid contact such as glass, 61 
metal, wood, plastic, and paper [Dieterich and Kilgore, 1994; Heslot et al., 1994], as well as 62 
nanoscale contacts [Tian et al., 2018]. RSF must result from the mechanisms governing 63 
deformation at the scale of the asperities where the two bodies are in contact [e.g., Molinari and 64 
Perfettini, 2019]. The RSF formalism seems to apply widely, although these mechanisms 65 
probably vary depending on the material and condition (pressure, temperature, fluid content). 66 
RSF has been widely used in geoscience to explain fault slip and earthquakes [e.g., Tse and Rice, 67 
1986; Scholz, 1998; Lapusta et al., 2000]. The RSF was also recognized as a relevant formalism 68 
in the tribology community [Vakis et al., 2018]. Initially, the RSF explains stick-slip phenomena 69 
[Rice and Tse 1986; Baumberger and Caroli, 2006]. Recently, the RSF formalism has been 70 
adopted to study mechanical vibrations as well [Cabboi et al., 2016; Im et al., 2019]. Viesca 71 
[2016] noted the existence of non-inertial vibrations in a one dimensional interface with RSF.  72 

The transition from stable to unstable sliding within RSF is well explained by the 73 
linearization of spring slider system [Rice and Ruina, 1983] and one dimensional interface [Rice 74 
et al., 2001; Viesca, 2016]. Vibrations can actually emerge in both slip modes [Im and Avouac, 75 
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2021]. The emergence of vibration apparently depends on inertia and the system stiffness [Im et 76 
al., 2019; Im and Avouac, 2021], but the dependence on both of these factors was not explicated 77 
in these previous studies.  78 

Here, we carry out a linear stability analysis to characterize how vibrations emerge during 79 
slip governed by rate and state friction. We first describe the linearization of the equations 80 
describing the force balance and rate and state friction. Then we derive the criteria for transition 81 
between stick-slip to inertial vibration and critical damping point, where inertial vibration starts 82 
to appear in a stable sliding regime. Finally, the analytic expressions for stability transition and 83 
vibration emergence are verified via numerical solutions.  84 

2. Stability and Vibration Emergence 85 
We consider a simple spring-slider system. The stability of the spring-slider system with 86 

rate and state friction has been analyzed in previous studies [Rice and Ruina, 1983; Baumberger 87 
and Caroli, 2006]. This section reviews the rate and state friction law and presents a linear 88 
stability analysis expanded to account for vibrations.  89 

2.1. Rate and state friction law and stability transition 90 

In the rate and state frictional framework, friction is dependent on sliding velocity and 91 
frictional state [Dieterich 1979; Marone 1998]. The most common form of RSF writes 92 
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    , (1) 93 
where V is velocity, θ is state variable, µ0 is a reference friction coefficient at reference velocity 94 
V0, Dc is a critical slip distance, and a and b are empirical constants, generally positive, 95 
describing the magnitude of the direct and evolution effects, respectively. Adopting a regularized 96 
form of RSF [Rice and Ben-Zion, 1996; Lapusta et al., 2000] to avoid the singularity at V=0 97 
would make no difference to the study presented here. 98 

The evolution of the state variable (θ) is commonly described by either the ‘aging law’ 99 
[Dieterich 1979],  100 
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 (2) 101 
or the ‘slip law’ [Ruina 1983].  102 
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For both evolution laws, θss=Dc/V yields steady-state friction with µss=µ0+(a-b)ln(V/V0). Given 104 
that the first-order expansion of -xln(x) ≈ 1-x near x=1, the two evolution laws behave similarly 105 
for a small velocity perturbation near steady-state (Vθ/Dc~1), indicating that the linearized 106 
equation near the steady-state for both evolution laws are also identical. The two equations 107 
diverge when the system is far from steady-state. The state variable evolves at a non-zero 108 
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velocity in the slip law, while the aging law implies maximum healing in a static system (V=0; 109 
b>0 implies a logarithmic increase of friction with time).  110 

The equation of motion of the spring-slider system at constant loading velocity V0 is, 111 

 
0( )K V tM 


 


 

, (4) 112 
where M is mass per unit area (kg/m2), K is a stiffness expressed in units of shear stress (Pa/m), σ 113 
is normal stress, and δ is slider displacement. The system of equations (equation 1, 2 (or 3) and 114 
4) can be linearized around the steady-state velocity V0 with linearized variables δ(t) = δ0+V0t + 115 
Δδ(t) and θ(t) = θss+ Δθ(t), where δ0 is initial slider position at steady state [Baumberger and 116 
Caroli 2006]. The linearized variables yield a system of linear equations  117 
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Equations 5 and 6 can be combined into  120 
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Solutions Δθ (also Δδ) take form est. We get the following characteristic equation (also similarly 122 
presented by Baumberger and Caroli [2006]), 123 
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The solutions of s are complex numbers. The real part of the solution, Re(s), represents the 125 
excitation/attenuation of the motion, and the imaginary part of the solution, Im(s), defines the 126 
angular frequency ω, which is related to the ordinary frequency by f= ω/2π, When Re(s)<0, the 127 
amplitude of the motion attenuates (i.e., stabilizes), and when Re(s)>0, it becomes linearly 128 
unstable.  129 

The stability transition occurs when at least one of the solutions is pure imaginary (i.e., 130 
Re(s)=0 with non-zero Im(s)). This occurs when [Rice and Ruina, 1983], 131 
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Equation 9 shows that the spring-slider system becomes unstable as velocity increases. The 133 
equation defines a critical stiffness, Kc, which can be written at the sum of a quasi-static critical 134 
stiffness 135 
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and dynamic critical stiffness 137 
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. (11) 138 
For the given values of the rate and state friction parameters (a, b, & Dc), Kc,qs is only dependent 139 
on normal stress (σ), and Kc,dyn is only dependent on the kinetic energy (~MV2).  140 

The stability criterion, K=Kc, is presented as a curved line in the space of velocity - 141 
normal stress (white curve in figure 1) [Im and Avouac, 2021]. Equations 10 and 11 show that 142 
there exists a critical normal stress  143 

 ( )
c

c
KD
b a

 
 , (12) 144 

and a critical velocity  145 

 c c
a KV D

b a M



. (13) 146 

The system becomes linearly unstable if either V>Vc or σ> σc. Accordingly, the stability transition 147 
line (figure 1 white curve) has two asymptotes parallel to the y and x axis at V=Vc and σ=σc, 148 
respectively (figure 1).  149 

 150 
Figure 1. Maximum value of imaginary solutions of equation 8 (with parameter a = 0.004, b = 0.006, Dc = 151 
10µm, K = 10MPa/m, and M = 1000kg/m2). The uncolored area (max(Im(s))=0) represents where the 152 
imaginary part of all solutions is zero. The white line represents K=Kc, where stability transition occurs. 153 
The equations of four asymptote lines (black dashed lines) of max(Im(s))=0 are defined in the main text. 154 
The frequency contour is identical for the case of a-b>0 (i.e., intrinsically stable case) but without stability 155 
transition (white line).  156 
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2.2 Emergence of Vibration - Critical damping  157 

The imaginary part of the solution s represents angular frequency. Vibration may emerge 158 
if any of the solutions has a non-zero imaginary part. Since equation 8 is a simple cubic equation, 159 
Im(s) (or angular frequency) can be analytically calculated by the cubic formula at a given 160 
normal stress and velocity. Figure 1 shows the maximum value of the imaginary part of all 161 
solutions s of equation 8. Since imaginary solutions exist as a complex conjugate, max(Im(s))=0 162 
indicates that all solutions have no imaginary part. There are two separate areas where imaginary 163 
parts of all three solutions are zero (figure 1 white area). One of them is within the unstable zone 164 
(high normal stress), and the other is within the stable zone (low normal stress).  165 

Accordingly, the V- σ space can be divided into four different areas based on the sign of 166 
real and imaginary parts of the solution. (i) All solutions are pure negative real (white area with 167 
K>Kc in figure 1). (ii) All solutions are negative real with any non-zero imaginary part (colored 168 
area with K>Kc in figure 1). (iii) Any of the solutions has positive real with all imaginary parts of 169 
the solution being zero (white area with K<Kc). And (iv) Any of the solutions is positive real with 170 
any non-zero imaginary part (colored area with K<Kc). This areal division determines different 171 
modes of slip, such as under-damping, over-damping, stick-slip, and vibration. Since the stability 172 
transition criterion (K=Kc) is already defined (equation 9), we now focus on the boundary of 173 
max(Im(s))=0 (white areas in figure 1) to define the criteria for slip mode change. 174 

Four different asymptotes can be identified at the boundary of max(Im(s))=0 (black 175 
dashed lines in figure 1). The asymptotes can be derived analytically with some endmember 176 
assumptions. First, assuming inertia is negligible, the two horizontal dashed lines parallel to the 177 
σ=σc can be derived. Consider a quasi-static system where M=0. Then equation 8 become 178 

 2 0

0

0
c c

KVa K a bs s
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. (14) 179 

It can be seen that the real part of the solutions of equation 14 vanishes when K=(b-a)σ/Dc (i.e., 180 
M=0 in equation 9), which is equal to the quasi-static critical stiffness. It can also be seen that the 181 
imaginary part of this simple quadratic equation vanishes at 182 

 2( )
cKD

b a
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
 (15) 183 

and  184 

 2( )
cKD

b a
 


. (16) 185 

These two normal stresses define Im(s)=0 boundaries in the quasi-static limit (horizontal dashed 186 
lines in figure 1). Note that the critical normal stress (equation 12) is the geometric mean of 187 
equations 15 and 16, making the distance of normal stress between equations 15 and 12 identical 188 
to the distance between equations 16 and 12 on a logarithmic scale, as shown in figure 1.  189 

The asymptotes of the two diagonal boundaries of max(Im(s)=0) in figure 1 can be 190 
derived by assuming Dc  0 and Dc  ∞. The stability criterion (equation 9, or equation 12&13) 191 
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indicates that the stable zone in figure 1 becomes infinitely small as Dc approaches zero and the 192 
system always becomes unstable. We find that the diagonal asymptote of Im(s)=0 in the unstable 193 
zone (K<Kc) can be driven by this assumption. Substituting Dc=0 into equation 8 yields 194 

 2

0

( ) 0a bMs s K
V


   . (17) 195 

The imaginary part of the solution vanishes at  196 

 02 1V MK
a b 




. (18) 197 

The solution is independent of the sign of a-b. Likewise, Dc  ∞ provides the equation of 198 
diagonal asymptote in the stable zone in figure 1. Equation 8 can then be rewritten 199 

 2

0

0aMs s K
V


   . (19) 200 

Equation 19 is identical to equation 17 except for  ‘a-b’ replacing ‘a’ in the second term of the 201 
equation. The imaginary part of all solutions vanishes at  202 

 02 1V MK
a

 . (20) 203 

Likewise, equation 20 is similar to equation18 but is now independent of b. Equations 18 and 20 204 
are the asymptotes of the two diagonal boundaries of max(Im(s))=0 (figure 1). 205 

It is worth noting that the vibration emergence criteria are independent of a sign of a-b 206 
(equations 15, 16, 18, and 20). Accordingly, even if we change a and b value so that a-b > 0, we 207 
expect identical asymptotes for max(Im(s))=0 boundaries to the a-b < 0 case. However, the 208 
stability transition boundary (equation 9) is dependent on the sign of a-b. Since K is always 209 
positive, there cannot be a stability transition when a-b > 0. Hence if a-b>0, the system is always 210 
linearly stable. 211 

2.3 Frequency 212 

The value of the imaginary part of the solution gives the angular frequency of the 213 
vibration motion. Figure 1 shows that within a wide area, the angular frequency is close to but 214 
not higher than 100 /s (red area in figure 1) at high loading velocity or low normal stress. Given 215 
that our input parameter K = 10 MPa/m and M = 1000 kg/m2, the 100 /s is identical to natural 216 
angular frequency /n K M  . This is consistent with the numerical observation of Im et al. 217 
[2019] that, as loading velocity increases, the vibration frequency rapidly approaches the natural 218 
frequency but doesn’t exceed it.  219 
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 220 
Figure 2. The imaginary part of the solution max(Im(s)) at constant normal stresses. Three normal stresses 221 
are selected: σc (dotted line), 3σc (solid line), and σc/3 (dashed line) (see inset). Inset is an identical plot to 222 
figure 1 with indications of the location of the three normal stresses chosen for the plot. 223 

 224 

The emergence of the natural frequency at high loading velocity (V0) and low normal 225 
stress (σ) may be understood by considering Equation 8. If V0∞ then the equation becomes 226 
equivalent to  227 

 
2 0Ms K  . (21) 228 

The solution of this equation is /s i K M  , which yields harmonic vibration at the natural 229 
frequency. Similarly, when the normal stress is very low, σ 0, equation 8 becomes equivalent 230 
to  231 

 

3 20 0 0
c c

MV KVMs s Ks
D D

   

. (22) 232 
This equation also has two pure imaginary solutions /s i K M  . These results show that the 233 
motion approaches harmonic vibration at high velocity or low normal stress. Note that the 234 
frequency is dependent on the mass, and therefore the vibration is inertial. 235 

The blue zone around the transition from stable sliding to stick-slip, which is bounded by 236 
the normal stresses given by equations 15 and 16 (figure 1), shows that, in that domain, 237 
vibrations have a frequency much lower than the natural frequency. The frequency in this area 238 
can be estimated by calculating the frequency at stability transition. Substituting critical stiffness 239 
(equation 9) into equation 8 yield two pure imaginary solutions [Baumberger and Caroli, 2006] 240 
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  . (23) 241 

Equation 23 is the frequency at the stability transition (i.e., along the white line in figure 1 or 242 
figure 2 inset). It shows that the frequency of the solution is linearly dependent on the velocity 243 
and can be very small at a small loading velocity. Figure 2 compares the frequency on three 244 
selected normal stress (green lines in figure 2 inset) and equation 23. Equation 23 corresponds to 245 
the frequency at σ=σc (green dotted line) when low loading rate. In the low-frequency area (blue 246 
area in inset), max(Im(s)) increases with velocity until it reaches its natural frequency. Before it 247 
reaches the natural frequency, the frequency is independent of inertial parameters (i.e., mass or 248 
stiffness), implying that the vibration in the transition between stick-slip to stable sliding (the 249 
low-frequency blue area in figure 1) is non-inertial. 250 

 251 

3. Characteristics of Slip Mode – Comparison to Numerical Solution 252 
The mode of frictional sliding can be characterized based on the stability transition 253 

criterion (K=Kc), the condition for the emergence of a vibration (max(Im(s))>0), and its 254 
frequency (inertial or non-inertial). For example, if the system is stable (K>Kc) with a non-zero 255 
imaginary part of the solution (max(Im(s))>0), one expects stable sliding with attenuating 256 
oscillations. If the system is unstable (K<Kc) with all zero imaginary parts of the solution, one 257 
expects stick-slip rather than an inertial vibration. 258 

Here we show that the slip mode observed in numerical simulations can indeed be 259 
explained with the criteria introduced in the previous sections. We used a numerical solver of a 260 
spring-slider with rate and state friction presented by Im et al. [2017]. All simulations are 261 
conducted with friction parameter and stiffness identical to the values used in the previous 262 
section (a = 0.004, b = 0.006, Dc = 10µm, K = 10MPa/m, and M = 1000kg/m2). Initial velocity is 263 
set at 1/10 of loading velocity to generate velocity perturbations. We used the slip law (equation 264 
3) for state evolution, but as discussed earlier (and also discussed by Im et al. [2019]), the slip 265 
mode transition criteria are identical for the aging law (equation 2) since the linearized equations 266 
are identical for both evolution laws. The negative a-b value (a-b=-0.002) represents the 267 
potentially unstable system. We also investigated an intrinsically stable system, where a-b>0 (a-268 
b=0.002).  269 

3.1 Potentially unstable system (a-b<0) 270 

In the potentially unstable system (a-b<0), the steady-state friction (or resistance) 271 
decreases as velocity increases, enabling unstable sliding. The previous section shows that 272 
frictional sliding becomes unstable at high normal stress or high velocity (equation 9). We 273 
showed that the solution of the linearized equation of the potentially unstable system could be 274 
divided into four different areas with the combinations of the real and imaginary parts of the 275 
solutions (figure 1). On top of this, we can add an approximate boundary line (figure 3 dashed 276 
line), which separates the high-frequency zone (red area in figure1) and the low-frequency zone 277 
(blue area in figure 1). Then the V-σ space is divided into 6 different zones corresponding to 278 
different regimes (figure 3a). We carried out systematic simulations to check the consistency 279 
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with the analytical boundaries derived from our stability analysis and chose some case examples 280 
to illustrate the behavior observed in each domain (figure 3b-g). Figure 3a shows the peak 281 
velocity of spring-slider simulations in the potentially unstable system (a=0.004, b=0.006, Dc=10 282 
µm) over a 5-order of magnitude range of normal stress and loading velocity. The results are 283 
consistent with the stability criteria (equation 9; blue line in figure 3a). All simulations with 284 
K<Kc show unstable sliding (colored circles), and all simulation results with K>Kc show stable 285 
sliding (empty circles). The peak velocity is low near the stability criteria (blue line) and 286 
increases as the normal stress and loading velocity increase. 287 

 288 
Figure 3. Comparison of the results from the stability analysis (the boundaries of the different domains are 289 
reported from figure 1) with numerical simulations of the spring-slider system with the slip evolution law 290 
(circles) with varying loading velocity (x-axis) and normal stress (y-axis). Simulations are conducted with 291 
parameters identical to those used to generate figure 1 (a = 0.004, b = 0.006, Dc = 10µm, K = 10MPa/m, 292 
and M = 1000kg/m2). Initial velocity is set at 1/10 of each loading velocity. (a): Peak velocity (color of 293 
circles) of unstable slip at the periodic motion. The gray circles represent stable slip. The black circles 294 
correspond to the particular cases shown in (b-g). Colored empty circles in the stable zone denote the cases 295 
shown in figure 4. (b-g): Shear stress changes vs. time of the selected cases (loading rate and normal stress 296 
are represented in panel a).  297 

 298 

Individual cases (figure 3b-g) show distinct characteristics of sliding motions at each 299 
regime depending on the stability transition (K<Kc or K>Kc) and the frequency (max(Im(s))=0, 300 
<<ωn, or ≈ωn, where ωn is natural angular frequency). 301 

1. Unstable (K<Kc) and max(Im(s))=0. Figure 3b is in this category and shows unstable sliding. 302 
(slip mode: stick-slip) 303 

2. Unstable (K<Kc) and 0<max(Im(s))<<ωn. Figure 3c is in this category and also shows stick-304 
slip instability. (slip mode: stick-slip) 305 

3. Stable (K>Kc) and 0<max(Im(s))<<ωn. Figure 3d is in this category and show low-frequency 306 
(non-inertial) attenuating vibration. (slip mode: non-inertial underdamped oscillation) 307 
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4. Unstable (K<Kc) and max(Im(s))≈ωn. Figure 3e is in this category and shows harmonic 308 
vibration at the natural frequency. (slip mode: harmonic vibration) 309 

5. Stable (K>Kc) and max(Im(s))=0. Figure 3f is in this category and shows stable sliding 310 
without oscillation (slip mode: overdamped stable slip) 311 

6. Stable (K>Kc) and max(Im(s)) ≈ωn. Figure 3g is in this category and show natural frequency 312 
(inertial) attenuating vibration (slip mode: inertial underdamped oscillation) 313 

The frequency of inertial harmonic vibrations (case 4&6 or figure 3e&g) corresponds to the 314 
natural frequency of the system (ωn=100 /s, period 0.0625s). The vibration frequency is limited 315 
to the natural frequency, as shown in figure 1. The two stick-slip cases (cases 1&2 or figure 316 
3b&c) are similar, although the slip events are smaller and more frequent in the case with the 317 
lower normal stress, as expected from the lower stress drop. 318 

 319 
Figure 4. Slip velocity of selected numerical simulations at normal stress 103.25MPa (panel a) and 102.75MPa 320 
(panel b). The normal stress and loading rate of each case are shown as colored circles in figure 3a with the 321 
same color as in the figure. The velocity is normalized by the loading rate.  322 

 323 

Defining the critical damping criterion, where the transition between overdamped and 324 
underdamped slip occurs, is important. It would define the optimal conditions to suppress 325 
undesired vibrations in a mechanical system. Figure 3a shows that the critical damping points can 326 
be defined by equations 16 and 20. Equation 16 is a normal-stress-dependent critical damping 327 
point and is the boundary between overdamped stable slip and non-inertial underdamped 328 
oscillation. Conversely, equation 20 defines the velocity-dependent critical damping point and 329 
the boundary between overdamped slip and high-frequency inertial vibration. The high-330 
frequency vibration might merit specific attention since, in mechanical systems, it can cause 331 
damage on the sliding surface [Ibrahim, 1994] and because the underdamped inertial vibration 332 
has been recently suggested as a potential mechanism for the generation of geologic tremor [Im 333 
and Avouac, 2021].  334 

Figure 4 shows selected simulation results across the velocity-dependent critical damping 335 
point. Both plots demonstrate that the high-frequency inertial vibration emerges when loading 336 
velocity is larger than the value defined by equation 20. In figure 4a&b, purple and green cases 337 
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are in the overdamping area (figure 3a) and show no vibration motion. The blue cases, where the 338 
velocity is right above a critical damping point (figure 3a), present a subtle short-duration peak 339 
before stabilization. When the loading velocities are sufficiently larger than the critical damping 340 
point (e.g., red and black cases in figure 4), the simulations show attenuating harmonic 341 
vibrations. These observations confirm that equation 20 defines the critical damping point that 342 
determines the emergence of inertial vibration.  343 

Im et al. [2019] already identified the transition between stick-slip and harmonic 344 
vibration, but the analysis presented in that study was incomplete and not backed by the stability 345 
analysis presented in this study. Figures 1&3 imply that the transition may occur at the condition 346 
expressed by equation 18. To test this, we normalized all peak velocities in figure 3a by the peak 347 
velocities at 10-5.5 m/s of each normal stress case (figure 5a). This normalization reveals that the 348 
minimum peak velocity at given normal stress indeed occurs where equation 18 is satisfied (red 349 
dashed line figure 5a). This behavior is clearer if the x-axis is zeroed at the loading velocity 350 
given by equation 18 (figure 5b). In the RSF governed motion, as the loading rate increases, peak 351 
velocity decreases in the stick-slip domain [e.g., Vidale et al., 1994] but increases in the vibration 352 
domain [Im et al., 2019]. Hence, the transition between stick-slip and inertial vibration occurs at 353 
the minimum peak velocity, which corresponds to the condition expressed by equation 18 (figure 354 
5). 355 

 356 
Figure 5. Peak velocity normalized by the peak velocity at Vl=10-5.5m/s. (a): All normalized peak velocity. 357 
Colored horizontal lines represent the case shown in panel b. The red dashed line denotes equation 18. (b). 358 
Normalized peak velocity vs. loading velocity adjusted by equation 18. Zero at the x-axis represents the 359 
loading velocity at equation 18. Colors denote different normal stress cases shown as a horizontal line in 360 
panel a.  361 

 362 

 363 

 364 
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3.2 Intrinsically stable system (a-b>0).  365 

An intrinsically stable system is defined by a-b>0. In this case, Kc<0 (equation 9), and 366 
accordingly, unstable sliding (i.e., K<Kc) is not allowed since spring coefficient K is always 367 
positive. So, all simulations yield stable slip regardless of normal stress and velocity. Hence, the 368 
stability transition (K=Kc line) does not appear in the velocity-normal stress space (figure 6a). 369 
However, the boundaries for max(Im(s))=0 (or the vibration emergence) are still defined since 370 
their defining equations (equations 15, 16, 18, and 20) are independent of the sign of a-b. Hence, 371 
the boundary asymptotes of max(Im(s))=0 in figure 6a is identical to that of figure 3a but without 372 
a stability transition line (figure 6a).  373 

In this case, we only selected several cases over the max(Im(s))=0 boundaries to define 374 
the slip characteristics. The map has two max(Im(s))=0 zones at high and low normal stress, as in 375 
the case of a potentially unstable system. Since any combination of normal stress and loading 376 
velocity should produce stable sliding, it is expected that both boundaries for zero imaginary 377 
solution (solid black curves in figure 6a) would be critical damping points. This expectation is 378 
confirmed by velocity curves (figure 6b&d). If the loading velocities are sufficiently larger than 379 
the boundaries, simulations result in an attenuating vibration (black and red curves in figure 380 
6b&d). Otherwise, the simulation results show overdamped oscillation (purple curves in figure 381 
6b&d). In the intrinsically stable system, all the Im(s)>0 boundaries correspond to critical 382 
damping.  383 

Figure 6c shows the transition from non-inertial underdamped oscillation to inertial 384 
underdamped oscillation. The non-inertial underdamped motions (green and blue in figure 6c) 385 
show only a mild pick and trough. However, as loading velocity increases, this motion changes 386 
into underdamped inertial oscillations (red and black curves in figure 6c).  387 

 388 

 389 
Figure 6. (a): Map of slip characteristics in the intrinsically stable system (a-b)>0. We used parameters 390 
identical to those used in the simulations of the potentially unstable system (figure 1-5) but with a=0.006 391 
and b=0.004. In this case, the stability transition does not exist. In the intrinsically stable system, all 392 
simulations show stabilized sliding. The colored circles represent the cases shown in panels (b-d). (b-d): 393 
Normalized velocity curves for the case denoted in panel a.  394 
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4. Summary and Conclusion 395 

 396 
Figure 7. Simplified map of sliding characteristics for (a) potentially unstable system and (b) 397 
intrinsically stable system. 398 

 399 

Our study shows that RSF frictional sliding, whether in the stick-slip or stable sliding 400 
regime, can be associated with vibrations or inertial or non-inertial origin. The different modes of 401 
frictional sliding identified in the study and their conditions are summarized with their 402 
asymptotic approximations shown in Figure 7. In the potentially unstable system (figure 7a), the 403 
V-σ space can be divided into five zones: (i) overdamped stable sliding, (ii) non-inertial 404 
underdamped oscillation, (iii) inertial underdamped oscillation, (iv) stick-slip, and (v) harmonic 405 
vibration. In the intrinsically stable system (figure 7b), the V-σ space can be divided into four 406 
zones: (i) overdamped stable sliding at low normal stress, (ii) non-inertial underdamped 407 
oscillation, (iii) overdamped oscillation at high normal stress, (iv) inertial underdamped 408 
oscillation.  409 

This study confirms that the inertial parameter introduced by Im et al. [2019] 
2

0

c

MV
aD




  410 

yields an insufficient criterion ( 1  ) for underdamped oscillation, as already mentioned in Im 411 
and Avouac [2021]. The linear stability analysis actually leads to a different criterion (equation 412 
20 leads to the condition ). Both criteria imply that the vibration emerges when kinetic energy 413 
(MV2) is high and normal stress and friction parameter ‘a’ is low. However, unlike the criterion, 414 
the criterion derived from equation 20 is independent of Dc but dependent on K.  415 

We show that stick-slip, low-frequency oscillation, and high-frequency vibrations can 416 
result from system elastic response and inertia. The emergence of harmonic vibration from 417 
steady sliding is governed by equation 20, and it controls the unexpected vibrations in various 418 
mechanical systems and can also potentially explain tremors in volcanic and non-volcanic 419 
systems, pending a very low effective normal stress. 420 

Rate and state friction law has been widely adopted in earth science due to its strong 421 
experimental support and applicability to earthquake mechanics [e.g., Scholz, 1998; Rice, 1993; 422 
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Lapusta et al., 2000]. On the other hand, it has received less attention in mechanical engineering, 423 
presumably because it is counter-intuitive that time-dependent healing – a key feature needed to 424 
explain stick-slip motion – would be involved in the generation of vibrations. However, recently, 425 
it has been shown that the rate and state friction law can explain the vibration phenomenon 426 
[Cabboi and Woodhouse; 2018; Im et al., 2019]. Here we present rigorous criteria for vibration 427 
emergence and show that the emergence of vibration depends on all the rate and state parameters 428 
(a, b, Dc), including the parameter b, which quantifies healing. Our work shows that both stick-429 
slip and vibration can be explained by rate and state friction law but are just different responses 430 
from system elasticity and inertia.  431 
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