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Abstract

Slip along a frictional contact between elastic bodies can be stable or unstable, leading to
stick-slip motion. Frictional slip can also be associated with vibrations. The condition for these
vibrations and their characteristics is relevant to engineering and earth science, but remains
poorly understood. To address this issue, we carry out a linear stability analysis of a spring-and-
slider system obeying rate and state friction. We first identify the solution space for the linearized
equation and define the conditions for different slip modes from the real and imaginary parts of
the solution. We then derive asymptotic equations for all boundaries between overdamped stable
sliding, inertial/non-inertial underdamped oscillation, stick-slip, and harmonic vibration. Finally,
we verified the conditions with numerical simulations. Our work provides rigorous criteria
regarding the conditions for the various frictional slip modes and the emergence of vibrations. It
can help design appropriate approaches for suppressing undesired vibrations in mechanical
systems and investigate the mechanisms generating vibrations (tremor) associated with fault slip
in nature.

Highlights

e Conditions for vibration during frictional slip are explained.

e Vibrations during frictional slip can be inertial or non-inertial.

e The transition criteria between the mode of frictional sliding with vibration are explicited.
e The criteria are verified with numerical solutions.
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1. Introduction

Sliding along a solid contact is governed by friction and can be stable or unstable, leading
to stick-slip [Rabinowicz, 1956], depending on the friction parameters, which govern the strength
drop during slip, and elastic properties, which govern unloading during slip [Rice and Ruina,
1983]. Stick-slip is commonly observed at a slow loading rate for various materials, including
rocks [Brace and Byerlee, 1966], plastic [Ben-David et al., 2010], rosin [Smith and Woodhouse,
2000], paper [Heslot et al., 1994], and articular joints [Lee et al., 2013]. It has also long been
recognized that frictional slip can be associated with high-frequency harmonic vibration
[Brockely and Ko, 1970]. Vibrations are commonly observed in rapidly slipping systems
[Brockley and Ko, 1970; Ibrahim, 1994], for example, vehicle brake systems (brake squeal) [e.g.,
Kinkaid et al., 2003] or musical instruments [ Smith and Woodhouse, 2000].

Until recently, the stick-slip and inertial vibration have been mostly independently
investigated or often not distinguished due to the distinct circumstances for their emergence. For
instance, geoscientists have been exclusively interested in the stick-slip phenomenon due to the
extremely low tectonic loading rate (order of ~10” m/s), which favors stick-slips (i.e.,
earthquakes [Brace and Byerlee, 1966]) rather than vibration. Conversely, inertial vibrations are
of interest for rapidly slipping mechanical systems since it causes damage to the sliding material
[Ibrahim, 1994]. However, tremor signals observed in natural volcanic [Chouet, 1996; Dmitrieva
et al., 2013] and non-volcanic systems [Obara 2002; Shelly et al., 2007] can be explained by
friction-induced vibrations [Im et al., 2019; Im and Avouac, 2021]. Similarly, friction-induced
vibrations in mechanical systems can be explained with the frictional framework commonly used
to explain earthquakes [Cabboi et al., 2016]. In both cases, the emergence of vibrations is
explained by rate and state friction (RSF).

Rate and state friction (RSF) is a phenomenological law established based on laboratory
observations, which includes velocity-dependent effects (“rate” effect) and history of sliding
surface effect (“state” effect) [e.g., Marone 1998]. It was initially developed to explain rock
friction [Dieterich 1979] and recognized later on to apply to various solid contact such as glass,
metal, wood, plastic, and paper [Dieterich and Kilgore, 1994; Heslot et al., 1994], as well as
nanoscale contacts [Tian et al., 2018]. RSF must result from the mechanisms governing
deformation at the scale of the asperities where the two bodies are in contact [e.g., Molinari and
Perfettini, 2019]. The RSF formalism seems to apply widely, although these mechanisms
probably vary depending on the material and condition (pressure, temperature, fluid content).
RSF has been widely used in geoscience to explain fault slip and earthquakes [e.g., Tse and Rice,
1986; Scholz, 1998; Lapusta et al., 2000]. The RSF was also recognized as a relevant formalism
in the tribology community [Vakis et al., 2018]. Initially, the RSF explains stick-slip phenomena
[Rice and Tse 1986; Baumberger and Caroli, 2006]. Recently, the RSF formalism has been
adopted to study mechanical vibrations as well [Cabboi et al., 2016; Im et al., 2019]. Viesca
[2016] noted the existence of non-inertial vibrations in a one dimensional interface with RSF.

The transition from stable to unstable sliding within RSF is well explained by the
linearization of spring slider system [Rice and Ruina, 1983] and one dimensional interface [Rice
et al., 2001; Viesca, 2016]. Vibrations can actually emerge in both slip modes [Im and Avouac,
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2021]. The emergence of vibration apparently depends on inertia and the system stiffness [Im et
al., 2019; Im and Avouac, 2021], but the dependence on both of these factors was not explicated
in these previous studies.

Here, we carry out a linear stability analysis to characterize how vibrations emerge during
slip governed by rate and state friction. We first describe the linearization of the equations
describing the force balance and rate and state friction. Then we derive the criteria for transition
between stick-slip to inertial vibration and critical damping point, where inertial vibration starts
to appear in a stable sliding regime. Finally, the analytic expressions for stability transition and
vibration emergence are verified via numerical solutions.

2. Stability and Vibration Emergence

We consider a simple spring-slider system. The stability of the spring-slider system with
rate and state friction has been analyzed in previous studies [Rice and Ruina, 1983; Baumberger
and Caroli, 2006]. This section reviews the rate and state friction law and presents a linear
stability analysis expanded to account for vibrations.

2.1. Rate and state friction law and stability transition

In the rate and state frictional framework, friction is dependent on sliding velocity and
frictional state [Dieterich 1979; Marone 1998]. The most common form of RSF writes

M=, +aln 14 +bIn %0
Vo Be (1)

where V' is velocity, 6 is state variable, uo is a reference friction coefficient at reference velocity
Vo, Dc 1s a critical slip distance, and a and b are empirical constants, generally positive,
describing the magnitude of the direct and evolution effects, respectively. Adopting a regularized
form of RSF [Rice and Ben-Zion, 1996; Lapusta et al., 2000] to avoid the singularity at J'=0
would make no difference to the study presented here.

The evolution of the state variable (0) is commonly described by either the ‘aging law’
[Dieterich 1979],

o _, 1o
dt D, 2)
or the ‘slip law’ [Ruina 1983].

a __ve, ve
d D, \D

For both evolution laws, 8s=D./V yields steady-state friction with ug=uo+(a-b)In(V/Vy). Given
that the first-order expansion of -xIn(x) = 1-x near x=1, the two evolution laws behave similarly
for a small velocity perturbation near steady-state (V6/D.~1), indicating that the linearized
equation near the steady-state for both evolution laws are also identical. The two equations
diverge when the system is far from steady-state. The state variable evolves at a non-zero

3)
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velocity in the slip law, while the aging law implies maximum healing in a static system (V=0;,
b>0 implies a logarithmic increase of friction with time).

The equation of motion of the spring-slider system at constant loading velocity V9 is,

Mé _K(¢-9) L
o o @

where M is mass per unit area (kg/m?), K is a stiffness expressed in units of shear stress (Pa/m), &
is normal stress, and ¢ is slider displacement. The system of equations (equation 1, 2 (or 3) and
4) can be linearized around the steady-state velocity ¥y with linearized variables d(¢) = dp+ Vot +
A0(t) and O(¢) = G55+ A0(t), where dy is initial slider position at steady state [Baumberger and

Caroli 2006]. The linearized variables yield a system of linear equations

MAS KAS AS . V,A0
——+——+a—+b =0
o o v, D, ’ (5)
Aé:-%Ae—ViAs
c 0 . (6)

Equations 5 and 6 can be combined into

%Aé# £+MV0 AO + £+a—b A9+KV° AO=0
o vV, oD oc D oD.

c c

(7

Solutions 46 (also 40) take form e*. We get the following characteristic equation (also similarly
presented by Baumberger and Caroli [2006]),

— + =+ §TH| —+ s+ =0
o V, oD, o D oD.

The solutions of s are complex numbers. The real part of the solution, Re(s), represents the
excitation/attenuation of the motion, and the imaginary part of the solution, Im(s), defines the
angular frequency o, which is related to the ordinary frequency by /= w/2n, When Re(s)<0, the
amplitude of the motion attenuates (i.e., stabilizes), and when Re(s)>0, it becomes linearly
unstable.

c

®)

The stability transition occurs when at least one of the solutions is pure imaginary (i.e.,
Re(s)=0 with non-zero Im(s)). This occurs when [Rice and Ruina, 1983],

(b—a)o

MV?
1+ —2

K=K, =
oaD,

‘ : (€))
Equation 9 shows that the spring-slider system becomes unstable as velocity increases. The
equation defines a critical stiffness, K¢, which can be written at the sum of a quasi-static critical

stiffhess
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b (10)
and dynamic critical stiffness
(b-a) MV}’
o= D7
¢ (1D

For the given values of the rate and state friction parameters (a, b, & D.), K 4s 1s only dependent
on normal stress (), and K4 is only dependent on the kinetic energy (~MV?).

The stability criterion, K=K, is presented as a curved line in the space of velocity -
normal stress (white curve in figure 1) [Im and Avouac, 2021]. Equations 10 and 11 show that
there exists a critical normal stress

KD

C

o, =
(b—a)’ (12)

V=D /ﬁ\/% (13)

The system becomes linearly unstable if either V>V, or > o.. Accordingly, the stability transition
line (figure 1 white curve) has two asymptotes parallel to the y and x axis at V=V, and o=0v,
respectively (figure 1).

and a critical velocity

7
10 max(Im(s))=0
108

Eqg. 15

(el - K<K_(Eq.9) | cq
ARE)

10° N3

Normal Stress (Pa)

max(Im(s))=0, '

102

max(Im(s)) (angular frequency)

10°® 10° 10+ 103 102 101
Loading Velocity (m/s)

Figure 1. Maximum value of imaginary solutions of equation 8 (with parameter a = 0.004, b = 0.006, D, =
10um, K = 10MPa/m, and M = 1000kg/m?). The uncolored area (max(Im(s))=0) represents where the
imaginary part of all solutions is zero. The white line represents K=K, where stability transition occurs.
The equations of four asymptote lines (black dashed lines) of max(Im(s))=0 are defined in the main text.
The frequency contour is identical for the case of a-b>0 (i.e., intrinsically stable case) but without stability
transition (white line).
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2.2 Emergence of Vibration - Critical damping

The imaginary part of the solution s represents angular frequency. Vibration may emerge
if any of the solutions has a non-zero imaginary part. Since equation 8 is a simple cubic equation,
Im(s) (or angular frequency) can be analytically calculated by the cubic formula at a given
normal stress and velocity. Figure 1 shows the maximum value of the imaginary part of all
solutions s of equation 8. Since imaginary solutions exist as a complex conjugate, max(Im(s))=0
indicates that all solutions have no imaginary part. There are two separate areas where imaginary
parts of all three solutions are zero (figure 1 white area). One of them is within the unstable zone
(high normal stress), and the other is within the stable zone (low normal stress).

Accordingly, the V- ¢ space can be divided into four different areas based on the sign of
real and imaginary parts of the solution. (i) All solutions are pure negative real (white area with
K>K. in figure 1). (i1) All solutions are negative real with any non-zero imaginary part (colored
area with K>K_ in figure 1). (iii) Any of the solutions has positive real with all imaginary parts of
the solution being zero (white area with K<K.). And (iv) Any of the solutions is positive real with
any non-zero imaginary part (colored area with K<K.). This areal division determines different
modes of slip, such as under-damping, over-damping, stick-slip, and vibration. Since the stability
transition criterion (K=K_) is already defined (equation 9), we now focus on the boundary of
max(Im(s))=0 (white areas in figure 1) to define the criteria for slip mode change.

Four different asymptotes can be identified at the boundary of max(Im(s))=0 (black
dashed lines in figure 1). The asymptotes can be derived analytically with some endmember
assumptions. First, assuming inertia is negligible, the two horizontal dashed lines parallel to the
o=0o. can be derived. Consider a quasi-static system where A/=0. Then equation 8 become

a , (K a-b KV,
—8 4+ —+ s+ =0, (14)
V, c D oD,

c
It can be seen that the real part of the solutions of equation 14 vanishes when K=(b-a)o/D. (i.e.,
M=0 in equation 9), which is equal to the quasi-static critical stiffness. It can also be seen that the
imaginary part of this simple quadratic equation vanishes at

KD

7y "

and

az—KDc 16
o ay (10

These two normal stresses define Im(s)=0 boundaries in the quasi-static limit (horizontal dashed
lines in figure 1). Note that the critical normal stress (equation 12) is the geometric mean of
equations 15 and 16, making the distance of normal stress between equations 15 and 12 identical
to the distance between equations 16 and 12 on a logarithmic scale, as shown in figure 1.

The asymptotes of the two diagonal boundaries of max(Im(s)=0) in figure 1 can be
derived by assuming D. = 0 and D. = . The stability criterion (equation 9, or equation 12&13)

6
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indicates that the stable zone in figure 1 becomes infinitely small as D. approaches zero and the
system always becomes unstable. We find that the diagonal asymptote of Im(s)=0 in the unstable
zone (K<K.) can be driven by this assumption. Substituting D=0 into equation 8§ yields

-b
Ms2+us+l<=0, (17)
0
The imaginary part of the solution vanishes at

WK _,

=1. 18
|a - b| o (18)
The solution is independent of the sign of a-b. Likewise, D. = o provides the equation of
diagonal asymptote in the stable zone in figure 1. Equation 8 can then be rewritten
ac
Ms* +—s+K=0 (19)

0
Equation 19 is identical to equation 17 except for ‘a-b’ replacing ‘a’ in the second term of the
equation. The imaginary part of all solutions vanishes at

WMK _

ao
Likewise, equation 20 is similar to equation18 but is now independent of . Equations 18 and 20
are the asymptotes of the two diagonal boundaries of max(Im(s))=0 (figure 1).

(20)

It is worth noting that the vibration emergence criteria are independent of a sign of a-b
(equations 15, 16, 18, and 20). Accordingly, even if we change a and b value so that a-b > 0, we
expect identical asymptotes for max(Im(s))=0 boundaries to the a-b < 0 case. However, the
stability transition boundary (equation 9) is dependent on the sign of a-b. Since K is always
positive, there cannot be a stability transition when a-b > 0. Hence if a-b>0, the system is always
linearly stable.

2.3 Frequency

The value of the imaginary part of the solution gives the angular frequency of the
vibration motion. Figure 1 shows that within a wide area, the angular frequency is close to but
not higher than 100 /s (red area in figure 1) at high loading velocity or low normal stress. Given
that our input parameter K = 10 MPa/m and M = 1000 kg/m?, the 100 /s is identical to natural

angular frequency @, =+ K /M . This is consistent with the numerical observation of Im et al.

[2019] that, as loading velocity increases, the vibration frequency rapidly approaches the natural
frequency but doesn’t exceed it.
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Figure 2. The imaginary part of the solution max(Im(s)) at constant normal stresses. Three normal stresses
are selected: o. (dotted line), 3o, (solid line), and o./3 (dashed line) (see inset). Inset is an identical plot to
figure 1 with indications of the location of the three normal stresses chosen for the plot.

The emergence of the natural frequency at high loading velocity (V) and low normal
stress (o) may be understood by considering Equation 8. If V)= then the equation becomes
equivalent to

MS2+K=O_ 1)

The solution of this equation is s =+ix/K /M , which yields harmonic vibration at the natural
frequency. Similarly, when the normal stress is very low, = 0, equation 8 becomes equivalent
to

Ms3+%s2+l<s+[a/0 =0

¢ D, . (22)
This equation also has two pure imaginary solutions s =+i/K /M . These results show that the

motion approaches harmonic vibration at high velocity or low normal stress. Note that the
frequency is dependent on the mass, and therefore the vibration is inertial.

The blue zone around the transition from stable sliding to stick-slip, which is bounded by
the normal stresses given by equations 15 and 16 (figure 1), shows that, in that domain,
vibrations have a frequency much lower than the natural frequency. The frequency in this area
can be estimated by calculating the frequency at stability transition. Substituting critical stiffness
(equation 9) into equation 8 yield two pure imaginary solutions [Baumberger and Caroli, 2006]
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R Ll (23)
a D

Equation 23 is the frequency at the stability transition (i.e., along the white line in figure 1 or
figure 2 inset). It shows that the frequency of the solution is linearly dependent on the velocity
and can be very small at a small loading velocity. Figure 2 compares the frequency on three
selected normal stress (green lines in figure 2 inset) and equation 23. Equation 23 corresponds to
the frequency at o=o. (green dotted line) when low loading rate. In the low-frequency area (blue
area in inset), max(Im(s)) increases with velocity until it reaches its natural frequency. Before it
reaches the natural frequency, the frequency is independent of inertial parameters (i.e., mass or
stiffness), implying that the vibration in the transition between stick-slip to stable sliding (the
low-frequency blue area in figure 1) is non-inertial.

3. Characteristics of Slip Mode — Comparison to Numerical Solution

The mode of frictional sliding can be characterized based on the stability transition
criterion (K=K_.), the condition for the emergence of a vibration (max(Im(s))>0), and its
frequency (inertial or non-inertial). For example, if the system is stable (K>K.) with a non-zero
imaginary part of the solution (max(Im(s))>0), one expects stable sliding with attenuating
oscillations. If the system is unstable (K<K.) with all zero imaginary parts of the solution, one
expects stick-slip rather than an inertial vibration.

Here we show that the slip mode observed in numerical simulations can indeed be
explained with the criteria introduced in the previous sections. We used a numerical solver of a
spring-slider with rate and state friction presented by Im et al. [2017]. All simulations are
conducted with friction parameter and stiffness identical to the values used in the previous
section (a = 0.004, b = 0.006, D, = 10um, K = 10MPa/m, and M = 1000kg/m?). Initial velocity is
set at 1/10 of loading velocity to generate velocity perturbations. We used the slip law (equation
3) for state evolution, but as discussed earlier (and also discussed by Im et al. [2019]), the slip
mode transition criteria are identical for the aging law (equation 2) since the linearized equations
are identical for both evolution laws. The negative a-b value (a-b=-0.002) represents the
potentially unstable system. We also investigated an intrinsically stable system, where a-b>0 (a-
5=0.002).

3.1 Potentially unstable system (a-b<0)

In the potentially unstable system (a-b<0), the steady-state friction (or resistance)
decreases as velocity increases, enabling unstable sliding. The previous section shows that
frictional sliding becomes unstable at high normal stress or high velocity (equation 9). We
showed that the solution of the linearized equation of the potentially unstable system could be
divided into four different areas with the combinations of the real and imaginary parts of the
solutions (figure 1). On top of this, we can add an approximate boundary line (figure 3 dashed
line), which separates the high-frequency zone (red area in figurel) and the low-frequency zone
(blue area in figure 1). Then the V-o space is divided into 6 different zones corresponding to
different regimes (figure 3a). We carried out systematic simulations to check the consistency

9
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with the analytical boundaries derived from our stability analysis and chose some case examples
to illustrate the behavior observed in each domain (figure 3b-g). Figure 3a shows the peak
velocity of spring-slider simulations in the potentially unstable system (¢=0.004, »5=0.006, D.~10
um) over a 5-order of magnitude range of normal stress and loading velocity. The results are
consistent with the stability criteria (equation 9; blue line in figure 3a). All simulations with
K<K_. show unstable sliding (colored circles), and all simulation results with K>K. show stable
sliding (empty circles). The peak velocity is low near the stability criteria (blue line) and
increases as the normal stress and loading velocity increase.
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Figure 3. Comparison of the results from the stability analysis (the boundaries of the different domains are
reported from figure 1) with numerical simulations of the spring-slider system with the slip evolution law
(circles) with varying loading velocity (x-axis) and normal stress (y-axis). Simulations are conducted with
parameters identical to those used to generate figure 1 (a = 0.004, b = 0.006, D, = 10um, K = 10MPa/m,
and M = 1000kg/m?). Initial velocity is set at 1/10 of each loading velocity. (a): Peak velocity (color of
circles) of unstable slip at the periodic motion. The gray circles represent stable slip. The black circles
correspond to the particular cases shown in (b-g). Colored empty circles in the stable zone denote the cases
shown in figure 4. (b-g): Shear stress changes vs. time of the selected cases (loading rate and normal stress
are represented in panel a).

Individual cases (figure 3b-g) show distinct characteristics of sliding motions at each
regime depending on the stability transition (K<K. or K>K.) and the frequency (max(Im(s))=0,
<<wn, Of =wn, where w, is natural angular frequency).

1. Unstable (K<K.) and max(Im(s))=0. Figure 3b is in this category and shows unstable sliding.
(slip mode: stick-slip)

2. Unstable (K<K.) and O<max(Im(s))<<w,. Figure 3c is in this category and also shows stick-
slip instability. (slip mode: stick-slip)

3. Stable (K>K.) and O<max(Im(s))<<w,. Figure 3d is in this category and show low-frequency
(non-inertial) attenuating vibration. (slip mode: non-inertial underdamped oscillation)

10
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4. Unstable (K<K.) and max(Im(s))~w,. Figure 3e is in this category and shows harmonic
vibration at the natural frequency. (slip mode: harmonic vibration)

5. Stable (K>K.) and max(Im(s))=0. Figure 3f is in this category and shows stable sliding
without oscillation (slip mode: overdamped stable slip)

6. Stable (K>K.) and max(Im(s)) =w,. Figure 3g is in this category and show natural frequency
(inertial) attenuating vibration (slip mode: inertial underdamped oscillation)

The frequency of inertial harmonic vibrations (case 4&6 or figure 3e&g) corresponds to the
natural frequency of the system (w,=100 /s, period 0.0625s). The vibration frequency is limited
to the natural frequency, as shown in figure 1. The two stick-slip cases (cases 1&2 or figure
3b&ec) are similar, although the slip events are smaller and more frequent in the case with the
lower normal stress, as expected from the lower stress drop.

1.6

(@) | | | b)

o
o

o
N

Normalized Velocity (V/V,)

o
N
Normalized Velocity (V/V,)

0

0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1

Time (s) Time (s)
Figure 4. Slip velocity of selected numerical simulations at normal stress 10°**MPa (panel a) and 10*"°MPa
(panel b). The normal stress and loading rate of each case are shown as colored circles in figure 3a with the
same color as in the figure. The velocity is normalized by the loading rate.

Defining the critical damping criterion, where the transition between overdamped and
underdamped slip occurs, 1s important. It would define the optimal conditions to suppress
undesired vibrations in a mechanical system. Figure 3a shows that the critical damping points can
be defined by equations 16 and 20. Equation 16 is a normal-stress-dependent critical damping
point and is the boundary between overdamped stable slip and non-inertial underdamped
oscillation. Conversely, equation 20 defines the velocity-dependent critical damping point and
the boundary between overdamped slip and high-frequency inertial vibration. The high-
frequency vibration might merit specific attention since, in mechanical systems, it can cause
damage on the sliding surface [Ibrahim, 1994] and because the underdamped inertial vibration

has been recently suggested as a potential mechanism for the generation of geologic tremor [Im
and Avouac, 2021].

Figure 4 shows selected simulation results across the velocity-dependent critical damping
point. Both plots demonstrate that the high-frequency inertial vibration emerges when loading
velocity is larger than the value defined by equation 20. In figure 4a&b, purple and green cases
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are in the overdamping area (figure 3a) and show no vibration motion. The blue cases, where the
velocity is right above a critical damping point (figure 3a), present a subtle short-duration peak
before stabilization. When the loading velocities are sufficiently larger than the critical damping
point (e.g., red and black cases in figure 4), the simulations show attenuating harmonic
vibrations. These observations confirm that equation 20 defines the critical damping point that
determines the emergence of inertial vibration.

Im et al. [2019] already identified the transition between stick-slip and harmonic
vibration, but the analysis presented in that study was incomplete and not backed by the stability
analysis presented in this study. Figures 1&3 imply that the transition may occur at the condition
expressed by equation 18. To test this, we normalized all peak velocities in figure 3a by the peak
velocities at 10 m/s of each normal stress case (figure 5a). This normalization reveals that the
minimum peak velocity at given normal stress indeed occurs where equation 18 is satisfied (red
dashed line figure 5a). This behavior is clearer if the x-axis is zeroed at the loading velocity
given by equation 18 (figure 5b). In the RSF governed motion, as the loading rate increases, peak
velocity decreases in the stick-slip domain [e.g., Vidale et al., 1994] but increases in the vibration
domain [Im et al., 2019]. Hence, the transition between stick-slip and inertial vibration occurs at
the minimum peak velocity, which corresponds to the condition expressed by equation 18 (figure
5).

1.2

(b)
Log,, Normal
11 Stress (MPa)
7 6 5.5

—_ > 1r Q Q
L = >
o (%]
2 kel
" £ o9t
] 0000000 000000 x
g 51 000 000090000000000 o
= 0000000000 - 08r
= | 1 g
S S
23 g 0.7
E g

06+

05+ \

1
‘ ‘ ‘ ‘ . 04 . ‘ ‘ ‘ ! ‘
-6 -5 -4 -3 2 -1 0 -5 -4 -3 -2 -1 0 1 2
log,, Loading Velocity (m/s) log,o(Loading Velocity) — log,(equation 18) (m/s)

Figure 5. Peak velocity normalized by the peak velocity at /=10>°m/s. (a): All normalized peak velocity.
Colored horizontal lines represent the case shown in panel b. The red dashed line denotes equation 18. (b).
Normalized peak velocity vs. loading velocity adjusted by equation 18. Zero at the x-axis represents the
loading velocity at equation 18. Colors denote different normal stress cases shown as a horizontal line in
panel a.
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3.2 Intrinsically stable system (a-b>(0).

An intrinsically stable system is defined by a-b>0. In this case, K.<0 (equation 9), and
accordingly, unstable sliding (i.e., K<K.) is not allowed since spring coefficient K is always
positive. So, all simulations yield stable slip regardless of normal stress and velocity. Hence, the
stability transition (K=K_ line) does not appear in the velocity-normal stress space (figure 6a).
However, the boundaries for max(Im(s))=0 (or the vibration emergence) are still defined since
their defining equations (equations 15, 16, 18, and 20) are independent of the sign of a-b. Hence,
the boundary asymptotes of max(Im(s))=0 in figure 6a is identical to that of figure 3a but without
a stability transition line (figure 6a).

In this case, we only selected several cases over the max(Im(s))=0 boundaries to define
the slip characteristics. The map has two max(Im(s))=0 zones at high and low normal stress, as in
the case of a potentially unstable system. Since any combination of normal stress and loading
velocity should produce stable sliding, it is expected that both boundaries for zero imaginary
solution (solid black curves in figure 6a) would be critical damping points. This expectation is
confirmed by velocity curves (figure 6b&d). If the loading velocities are sufficiently larger than
the boundaries, simulations result in an attenuating vibration (black and red curves in figure
6b&d). Otherwise, the simulation results show overdamped oscillation (purple curves in figure
6b&d). In the intrinsically stable system, all the Im(s)>0 boundaries correspond to critical
damping.

Figure 6¢ shows the transition from non-inertial underdamped oscillation to inertial
underdamped oscillation. The non-inertial underdamped motions (green and blue in figure 6¢)
show only a mild pick and trough. However, as loading velocity increases, this motion changes
into underdamped inertial oscillations (red and black curves in figure 6¢).
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Figure 6. (a): Map of slip characteristics in the intrinsically stable system (a-b)>0. We used parameters
identical to those used in the simulations of the potentially unstable system (figure 1-5) but with a=0.006
and b=0.004. In this case, the stability transition does not exist. In the intrinsically stable system, all
simulations show stabilized sliding. The colored circles represent the cases shown in panels (b-d). (b-d):
Normalized velocity curves for the case denoted in panel a.
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395 4. Summary and Conclusion
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397  Figure 7. Simplified map of sliding characteristics for (a) potentially unstable system and (b)
398 intrinsically stable system.
399

400 Our study shows that RSF frictional sliding, whether in the stick-slip or stable sliding
401  regime, can be associated with vibrations or inertial or non-inertial origin. The different modes of
402  frictional sliding identified in the study and their conditions are summarized with their
403  asymptotic approximations shown in Figure 7. In the potentially unstable system (figure 7a), the
404  V-o space can be divided into five zones: (i) overdamped stable sliding, (ii) non-inertial
405  underdamped oscillation, (iii) inertial underdamped oscillation, (iv) stick-slip, and (v) harmonic
406  vibration. In the intrinsically stable system (figure 7b), the V- space can be divided into four
407  zones: (1) overdamped stable sliding at low normal stress, (i1) non-inertial underdamped
408  oscillation, (ii1) overdamped oscillation at high normal stress, (iv) inertial underdamped
409  oscillation.

: _— : MV
410 This study confirms that the inertial parameter introduced by Im et al. [2019] 77 = =

c

411  yields an insufficient criterion (77 > 1) for underdamped oscillation, as already mentioned in Im

412 and Avouac [2021]. The linear stability analysis actually leads to a different criterion (equation
413 20 leads to the condition ). Both criteria imply that the vibration emerges when kinetic energy
414  (MV?)is high and normal stress and friction parameter ‘a’ is low. However, unlike the criterion,
415  the criterion derived from equation 20 is independent of D. but dependent on K.

416 We show that stick-slip, low-frequency oscillation, and high-frequency vibrations can
417  result from system elastic response and inertia. The emergence of harmonic vibration from
418  steady sliding is governed by equation 20, and it controls the unexpected vibrations in various
419  mechanical systems and can also potentially explain tremors in volcanic and non-volcanic
420  systems, pending a very low effective normal stress.

421 Rate and state friction law has been widely adopted in earth science due to its strong
422  experimental support and applicability to earthquake mechanics [e.g., Scholz, 1998; Rice, 1993;
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Lapusta et al., 2000]. On the other hand, it has received less attention in mechanical engineering,
presumably because it is counter-intuitive that time-dependent healing — a key feature needed to
explain stick-slip motion — would be involved in the generation of vibrations. However, recently,
it has been shown that the rate and state friction law can explain the vibration phenomenon
[Cabboi and Woodhouse; 2018; Im et al., 2019]. Here we present rigorous criteria for vibration
emergence and show that the emergence of vibration depends on all the rate and state parameters
(a, b, D), including the parameter b, which quantifies healing. Our work shows that both stick-
slip and vibration can be explained by rate and state friction law but are just different responses
from system elasticity and inertia.
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