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Abstract

The recent deep learning revolution has created an enormous opportunity for accelerating
compute capabilities in the context of physics-based simulations. Here, we propose EikoNet, a
deep learning approach to solving the Eikonal equation, which characterizes the first-arrival-
time field in heterogeneous 3D velocity structures. Our grid-free approach allows for rapid
determination of the travel time between any two points within a continuous 3D domain. These
travel time solutions are allowed to violate the differential equation—which casts the problem
as one of optimization—with the goal of finding network parameters that minimize the degree
to which the equation is violated. In doing so, the method exploits the differentiability of
neural networks to calculate the spatial gradients analytically, meaning the network can be
trained on its own without ever needing solutions from a finite difference algorithm. EikoNet is
rigorously tested on several velocity models and sampling methods to demonstrate robustness
and versatility. Training and inference are highly parallelized, making the approach well-suited
for GPUs. EikoNet has low memory overhead, and further avoids the need for travel-time lookup
tables. The developed approach has important applications to earthquake hypocenter inversion,
ray multi-pathing, and tomographic modeling, as well as to other fields beyond seismology where
ray tracing is essential.

1 Introduction

Three-dimensional ray tracing is a fundamental component of modern seismology, having direct
applications to earthquake hypocenter inversions [6], seismic tomography [24], and earthquake source
properties [2]. These derived products further form the basis for many downstream seismological
applications. The Eikonal Equation is a well-known nonlinear partial differential Equation that
characterizes the first-arrival-time field for a given source location in a 3D medium [13]. The
Eikonal formulation can be solved with several finite difference algorithms [22],[14],[16], with varying
computational demands and stabilities to the solutions.

Recent advances in deep learning have shown to be extremely promising in the context of
physics-based simulations [5, 25]. This technology has started to be applied to geophysics as well,
for example, to predict the acoustic wave response of a medium given a velocity model as input [?],
forecast the next time step of a wavefield conditional on its history [?], and accelerate viscoelastic
simulations [3]. However, these techniques rely on inputs from pre-computed physics based models,
which could themselves contain modeling-based artifacts and input bias. Instead, we wish to learn the
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underlying physics by incorporating the formulations into the neural network architecture and loss
function. These physics-based procedures [18, 23, 15, 1, 11] take advantage of the backpropagation
procedure to compute the gradient of the neural network output relative to the input terms. Such
physics-informed neural networks [18, 15] are mesh independent, giving a continuous function output
related to the inputs. These techniques have been used to learn the parametrization for formulations
of the Burgers, Schrodinger, and Navier-Stokes Equations, with comparisons made to the numerical
derivatives [18].

In this paper, we propose EikoNet, an approach to solving the factored Eikonal Equation directly
with deep neural networks. EikoNet can learn the travel-time between any two points in a truly
continuous 3D medium, avoiding the use of grids. We leverage the differentiability of neural networks
to analytically compute the spatial gradients of the travel-time field, and train the network to
minimize the difference between the true and predicted velocity model for the factored Eikonal
formulation. EikoNet is massively parallelized and therefore well-suited for GPUs, has low memory
overhead, and avoids the need for travel-time lookup tables. Additionally, EikoNet has several novel
advantages that are not currently offered with conventional finite differencing schemes.

2 Eikonal Formulation

The Eikonal Equation is a nonlinear first-order partial differential Equation representing a high-
frequency approximation to the propagation of waves in heterogeneous media [13]. The formulation
takes the general form;

‖∇Ts→r‖2 =
1

V (~xr)
2 = S (~xr)

2 (1)

where ‖ · ‖2 is the Euclidean Norm, Ts→r is the travel-time through the medium from a source
location s to a receiver location r, Vr is the velocity of the medium at the receiver location, Sr is the
slowness of the medium at the receiver location, and ∇r the gradient at the reciever location.

The value of travel-time is computed by minimizing the misfit of a travel-time field that satisfies
the user imposed velocity model, with the additional boundary condition that the travel-time at the
source location equals zero, Ts→s = 0. Solutions to Equation 1 have a strong singularity at the source
location [21], leading to numerical errors close to the source. To mitigate such singularity effects,
a factored formulation is often used, with solutions representing the travel-time deviation from a
homogeneous medium with V = 1 [21]. The factored travel-time form can then be represented by:

Ts→r = T0 · τs→r (2)

where T0 = ‖ ~xr − ~xs‖, representing the distance function from the source location, and τ the deviation
of the travel-time field from a model travel-time with homogeneous unity velocity. Substituting the
formulation of Equation 2 into Equation 1 and expanding using the chain rule, then the velocity can
be represented by;

V ( ~xr) =

[
T 2
0 ‖∇

r
τs→r‖2 + 2τs→r ( ~xr − ~xs) · ∇

r
τs→r + τ2s→r

]− 1
2

. (3)

The partial differential terms in Equation 3 are typically solved using a finite-difference approach
and will be discussed in Section 4
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3 Methods

3.1 Network architecture and training

Our approach to solving the Eikonal Equation trains a deep neural network, fθ, to predict the
deviation of the travel-time field, τ , between an input pair of source-receiver coordinates, ~x = [ ~xr, ~xs].
The deviation of the travel-time field is then represented by,

τ = fθ(~x), (4)

with the corresponding travel-time between source and receiver location represented by Equation 2
(Figure 1.1.).

If τ was known, a neural network could be trained for a catalog source-receiver pairs. However,
τ itself is unknown, being the solution to the Equation that we want to solve. Instead, only the
velocity model and a differential Equation specifying how τ relates to V are known, but this can be
used to train the neural network. Thus, we cast the problem as one where we aim to accurately
predict the local velocity, assuming that the output of fθ is indeed τ ; and use this value to compute
V from Equation 3, defining this predicted velocity as V̂ . Here, we exploit the differentiability of
deep neural networks to analytically determine the spatial gradient of Equation 4 with respect to ~xr.

Solving the factored Eikonal Equation is therefore reduced to training a neural network with
supervision on the velocity model, by iteratively updating the parameters θ to minimize some loss
function. Once trained, the Eikonal Equation is no longer needed, as fθ outputs τ directly (Figure
1.2). In the process, the details of the velocity model will be encoded in the network, requiring the
network to be re-trained if the velocity model is to be changed. The model architecture used in this
study is a feed-forward network consisting of a series of residual blocks with fully-connected layers
[8] followed by nonlinear units (Figure 1.2). We apply ReLu activation function as the nonlinear
unit to all hidden layers [12].

The neural network learns the travel time between any source receiver pair and must contain an
adequate sampling from across the 3D medium. The input features are organized into a vector of six
components,

~x = [Xs, Ys, Zs, Xr, Yr, Zr] , (5)

where X, Y , Z are the Cartesian coordinates of the source or receiver. The features are paired with
the seismic velocity at the receiver location,

y = V (Xr, Yr, Zr) (6)

A training dataset therefore consists of many (~x, y) samples, taken from across the 3D volume (Figure
1.3). We discuss how these datasets are constructed in the following section.

The misfit between the predicted V̂ , as determined from Equation 3, and observed, V , velocities
are then minimised using a mean-squared error loss function,

L = ‖V − V̂ ‖2. (7)

We use the Adam optimization algorithm for training with a learning rate of 5× 10−5[10] (Figure
1.4). The batch and dataset size are set to 752 and 106 respectively, with their variability discussed
further in Section 6.2. The dataset is sepearted into training and validation data, with the validation
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dataset at 10% of the total size. An addition test dataset is created representing 104 source reciever
pairs which are blind to the user prior to loss calculation.

Once trained the network can be applied to a series of user defined source-receiver pairs to
determine the travel-time and predicted velocity, as shown in Figure 1.5.

3.2 Building a training dataset

Our approach builds a training dataset by randomly sampling source-receiver points from the
continuous 3D medium and labeling each with the velocity at the receiver location. Since the velocity
model is gridded, we use linear interpolation to map these values to a continuous domain. In this
study, we explore three different methods for sampling the velocity model.

3.2.1 Random Variable Length

The dataset is composed of a series of source locations selected randomly across the model space.
Once selected , the receiver locations are selected at a random distance away from the source location
along a random vector. This method inherently allows the source-receivers pairs to have a distance
distribution that is uniform across the model space.

3.2.2 Random Locations

The dataset could also be composed of a series of randomly selected source and receiver locations,
this allows for a more random distribution of points across the model space but inherently has a
non-uniform distributions of distances between source-receiver points as expressed by the Bertrand
Paradox.

3.2.3 Weighted Sampling

In complex velocity contrasting models the training procedure could quickly learn areas of simple
velocity variations, we act to improve the training speed of this procedure by allowing dynamic
resampling of the training source-receiver pairs for values of greatest misfit. For the first epoch of
training we minimise the misfit between the actual and predicted velocity estimates using a L2-norm,
but also determine a importance weight parameter, w, for each training sample defined by:

w =

∣∣∣V̂ − V ∣∣∣
V

. (8)

where V̂ is the neural-network predicted velocity value and V is the actual imposed velocity model.
The weight value is high for the samples with the greatest relative misfit. For subsequent training
epochs training samples are selected based on the weight value normalized by the maximum weight
in the training dataset. To mitigate stagnation in the extremes of the weight distribution we project
the weights between a user defined minimum and maximum, represented by [min,max] = [0.1, 0.9].
This bound was chosen to mitigate the undersampling of regions with low misfit and oversampling
of regions that could contain singularities.
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3.3 Model verification

The accuracy of the solution to the Eikonal Equation is given directly by the loss, which quantifies
the degree to which the solution violates the PDE in a least squares sense. Thus, after training
is finished, we can predict the travel time to all points desired within the 3D medium and use
Equation 1 to calculate the learned velocity model. Comparing the learned velocity model to the
actual velocity model provides a visual and rigorous quantitative approach to understanding the
accuracy of the solution (Figure 1.5).

4 Baselines

The Fast Marching Method (FMM) is a grid based numerical scheme to determine the solution to
the Eikonal Equation [19]. The FMM uses a finite difference approach to track the evolution of the
minimum travel-time using a advancing interface scheme [16]. This solution returns the minimum
travel-time from any source location to a receiver node in a user-defined mesh or regular grid. This
formulation relies on a solution to the Eikonal formulation without singularities and therefore can fail
if sharp velocities or under sampling. Typically to mitigate these effects a smoothed velocity model is
supplied with adequate receiver node sampling to reconcile any velocity contrasts. As this procedure
computes the travel-time from a source location to a series of receiver locations this procedure can
be repeated for a number of source locations, with the computational cost and memory/storage
requirements increasing with the number of source and receiver locations.

Throughout this study we utilize the python fast marching method toolkit scikit-fmm (https:
//pythonhosted.org/scikit-fmm/) to formulate the travel-time from a source location on a receiver
geometry at 0.1km grid spacing in the X,Y, Z dimensions.

5 Velocity Model Experiments

Outlined are a series of experiments designed to demonstrate the versatility of our approach for
learning travel time fields in complex 3D velocity models. We consider four different velocity models
and examine the performance of the trained network. Each network is trained with a batch size
of 752, using a dataset with 106 randomly located source-receiver pairs. The effects of dynamic
sampling and weighting are discussed further in Section 6.

5.1 Homogeneous Velocity

The first model we consider is a homogeneous 3D velocity structure with a value of 5km/s (Figure
2.1). For demonstration purposes, a source is placed at [X,Y, Z] = [10, 10, 1], with both X − Z and
X −Y slices of the travel time field shown. At each receiver point, we plot the learned velocity using
Equation 1, and use this to determine the percent error. For comparison, we also show the FMM
solution calculated on a grid of receivers with 0.1km grid spacing in the X,Y and Z dimensions.
The training loss goes to zero after 110 training epochs, showing that the network has learned the
travel time field perfectly.
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Figure 1: Overview of processing workflow. (1) Summary of Eikonal and factored Eikonal Equations
for Ts→r and Vr. (2) Neural network architecture composed of fully-connected layers and residual
blocks. Each residual block is composed of 3 fully-connected layers with 512 neurons. ReLu
activations are applied on all hidden layers. (3) Sampling of source-receiver pairs across the 3D
volume to build the training dataset. (4) Network training through the minimization of loss function
relating predicted and observed velocity values. (5) Inspection of neural network outputs by passing
user defined source receiver pairs. 6



5.2 Graded Velocity

Next, we consider a velocity model that increases linearly with depth. The model increases from
3km/s at the surface, to 7km/s at 20km depth. Comparison with the conventional finite-difference
scheme shows good agreement, with a maximum difference between imposed and recovered velocity
model of 0.18km/s.

5.3 Block Model

The third test conducted is a 3D model containing a central cube embedded within a homogeneous
background (Figure 2.3). The cube has a constant velocity of 7km/s, while the background velocity
is 5km/s. Here, the neural network approach has excellent misfit between the actual and learned
velocity, with only some disagreement close to sharp velocity gradients. The neural-network travel-
time field is similar to that of the finite-difference scheme, with the effects of the sharp velocity
contrast shown in the deflection of the travel-time fronts, demonstrating that the neural network
approach is able to reconcile even difficult cases with sharp velocity changes of 20% of the mean
value.

5.4 Checkerboard Velocity

The final velocity model experiment contains a checkerboard, which we use to demonstrate that the
proposed algorithm is able to reconcile positive and negative velocity anomalies varying spatially
within the domain. This velocity model is implemented using the following Equation:

V p =
1

4

[
sin

(
5π

2
X

)
+ sin

(
5π

2
Y

)
+ sin

(
5π

2
Z

)]
+ 5, (9)

where V p is the velocity at a point. We compare the solution with the finite-difference scheme
and actual velocity model showing that the deep learning approach is able to reconcile the velocity
model with a maximum velocity difference of 0.48km/s.

6 Sampling Experiments

Having demonstrated that deep neural networks can indeed learn to directly solve the Eikonal
Equation, we now examine the effect of the sampling scheme on the learned solution. Here, we
use the block velocity model from the previous section and train separate models using each of the
three sampling techniques described in Section 3.2. We also separately test how the total number of
training samples and batch size affect the performance.

6.1 Sampling Schemes

Figure 3 shows the validation results for each of the three sampling methods. The weighted random
sampling approach achieves the lowest loss of the three sampling methods, yet converges in a similar
number of training epochs. However, the other two methods still perform well, as the differences
in validation loss are relatively small. We expect that the weighted random sampling will be of
increasing importance in very complex 3D models and recommend it for selection of source-receiver
pairs.
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Figure 2: Velocity model experiments with comparison to finite-difference and imposed velocity
models. Left panels represent the X-Z and X-Y slice from the imposed velocity model, overlayed by
the finite-difference expected travel-time. Middle panels represent the X-Z and X-Y slice from the
neural network recovered velocity model and neural-network travel-time. Right panels represent X-Z
and X-Y slice velocity models differences between the imposed and recovered velocity model
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Figure 3: Sampling schemes and their influence on the network performance. Left Column represents
a schematic of the different type of sampling, Middle Column represents the learned velocity model
for each simulation and Right Column represents the misfit between predicted and imposed velocity
model. Bottom Panel represents the training, validation, and testing loss for each of the simulations.
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6.2 Size of training dataset

We investigate how the number of training samples and batch size affect the network performance.
We re-run the simulation with three dataset sizes (104, 105 and 106) and three batch sizes (64, 256
and 752), inspecting the recovery of the final solution and the validation loss for each simulation.
Figure 4i shows the variation of the optimal recovered solution for the different batch and sample
sizes, with columns representing the increasing number of samples and rows the increase batch
size. Figure 4j shows the validation loss for each of the separate simulations with the line colour
corresponding to the panel color.

From Figure 4, it is clear that the number of training samples has a profound influence on
the network performance. The dataset with 106 samples achieves a loss that is about an order of
magnitude lower than the dataset with 104 samples. In addition, through inspection of the recovered
velocity model we can see that the low sample size is unable to reconcile the complex velocity
structure of the sharp velocity contrast of the block model. Therefore, it is crucial that an adequate
number of training samples number be used when constructing the dataset. Future work could
investigate dynamic sampling of the velocity model space to reconcile regions of greatest misfit.

While the batch size is seen to influence the training results early on, the final best loss value is
seen to be insensitive to this hyperparameter (Figure 4). This is important as larger batch sizes are
much more computationally efficient.

7 Discussion and Conclusion

We have demonstrated that deep neural networks can solve the Eikonal Equation to learn the
travel-time field in heterogeneous 3D velocity structures. This procedure has demonstrated consistent
calculations with prior finite-difference approaches for travel-time formulation.

Finite-difference approaches require computing the travel time field separately for every source
location of interest, without any ability to pass along knowledge about the wavefield or velocity
structure between simulations. The computation cost for the finite-difference approach therefore
increases based on the number of source locations and receiver nodes, with the storage of these
travel-time tables increasing drastically with grid size. The deep learning approach instead is able to
learn from and generalize the knowledge acquired between multiple source locations, as much of the
structure of the problem is highly similar. For example, if two sources are placed very close to each
other, the travel-time field will be generally quite similar between them, and the information learned
from solving the Equation for the first source can be used to more rapidly learn the solution for
the second source. This is not the case for the finite difference algorithms, which have no notion
of context. Implicitly, this means that the neural network is learning the velocity model. The disk
storage size required is equal to the size of the neural network (∼ 90MB) as only the weights of
the network have to be retained. Figure 5 demonstrates a schematic representing the disk storage
required for the finite-difference and machine learning approach.

One of the distinguishing features of EikoNet is that the travel time solutions are valid for any
two points within the 3D continuous domain. This means it is never necessary to store a travel
time grid and interpolate it to achieve the desired result away from the grid nodes. Here, EikoNet
automatically learns an optimized interpolation scheme during the training process, drawing on
context from across the entire dataset.

A second important aspect is that solutions to the Eikonal Equation, as learned by EikoNet,
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Figure 5: Schematic of storage requirements difference between a finite difference scheme and the
neural-network parameters.

are guaranteed to be differentiable back through the network with respect to the source or receiver
locations. This has a variety of important practical applications, such as in locating earthquakes, as
the inverse problem can be formulated as one of gradient descent, by analytically calculating the
gradients of an objective function with respect to the source locations.

The Eikonal Equation is not just used in seismology, but numerous other domains of wave physics
such as optics [7], medical imagery [4] and video-game rendering [9]. It is expected that EikoNet
would be just as suitable in these fields.

The computational cost of predicting the travel-time from a source to receiver location is equal
to the time required to pass across the network. The low computation cost of a forward prediction
means that the neural-network model can be used to significantly increase the computation speed of
typically used ray-based procedures. Our approach is massively parallel and very well suited for
GPUs. Below, we outline several areas that could benefit from this deep learning approach.

7.1 Earthquake Location

In earthquake location theory a series of seismic instruments are used to record the arrival time
of the incoming seismic wave. These instrument arrival times are then inverted using a velocity
model to determine an earthquake location and location uncertainty. In recent years advances in
seismological instrumentation have allowed for the incorporation of Distributed Accoustic Sensing
(DAS), using optical fibres as a series of non-discretized station locations [20]. Current travel-time
finite-difference techniques are not tractable for handling the tens of thousands of virtual receivers
that DAS arrays provide. This would require a large computational cost and disk storage space. In
comparison our machine learning technique has a fixed disk storage space and the computation cost
only that of the forward prediction from the network.

7.2 Ray Multipathing

The Eikonal formulation represents the first arrival between source and receiver locations. However,
in complex velocity models sharp gradients in the velocity structure can produce a multi-pathing
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effect with the energy partitioned between multiple ray paths.[17] acted to mitigate this effect
by employing FMM to track the evolution of the seismic wavefront for a narrow band of nodes,
representing a interface of interest. Once the outgoing wave traverses one of these node locations an
additional simulation is triggered and the combined wavefield used to determine a possible secondary
pathway. The deep learning approach can be adapted to include additional secondary arrivals by
integrating the travel-time along thousands of arbitrary pathways at a small additional computational
cost. Each pathway can be inspected to determine its plausibility of being a secondary arrival,
possible arrival time and corresponding amplitudes.

7.3 Tomographic Modeling

For tomographic inversions which undergo many iterations successively, new travel-time fields must
be computed from scratch for each iteration. Our approach allows for the neural network model
from the previous iteration to be used as the starting point for the next training procedure, which
could rapidly converge to the new velocity model if the perturbations are relatively small. This
would effectively remove ray tracing as a computational burden from this part of the tomography, as
nearly all of the compute time would be spent on the very first tomography iteration.

The computation cost in the training procedure is in learning the complexities of the velocity
model space. If the velocity model is an unknown but the user has some prior knowledge of possible
arrival time differences, then this approach could be updated to do some form of tomographic
inversion. This procedure instead would learn the velocity model to fit some known travel-time
values. We perceive that this addition can be made in the loss function term itself, where an additional
loss term can be used to update the velocity model to try and mitigate known observations. Prior
finite-difference methods would have difficulty with this procedure as the travel-time field would
have to be recalculated for each update to the velocity model.
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