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Knitting interloops one-dimensional yarns into three-
dimensional fabrics that exhibit behaviour beyond
their constitutive materials. How extensibility and
anisotropy emerge from the hierarchical organisation
of yarns into knitted fabrics has long been unresolved.
We seek to unravel the mechanical roles of tensile
mechanics, assembly and dynamics arising from
the yarn level on fabric nonlinearity by developing
a yarn-based dynamical model. This physically
validated model captures the mechanical response of
knitted fabrics, analogous to flexible metamaterials
and biological fiber networks due to geometric
nonlinearity within such hierarchical systems. Fabric
anisotropy originates from observed yarn–yarn
rearrangements during alignment dynamics and is
topology-dependent. This yarn-based model also
provides a design space of knitted fabrics to embed
functionalities by varying geometric configuration and
material property in instructed procedures compatible
to machine manufacturing. Our hierarchical approach
to build up a knitted fabrics computationally
modernizes an ancient craft and represents a first step
towards mechanical programmability of knitted fabrics
in wide engineering applications.
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1. Introduction
Knitted fabrics are hierarchical structures that build up from yarns at the microscale, to stitch
pattern structures at the mesoscale, and finally to three-dimensional fabrics at the macroscale.
With yarns being the primary building blocks to dominate the physics and design of fabrics, the
separation of these two scales (i.e., yarn-level and fabric-level) at the structural level not only
causes a range of interesting physical phenomena [1,2] to arise, but also provides a huge design
space for functionalities in knitted fabrics beyond what their constitutive materials can achieve [3],
echoing a wide range of research interests to design functional materials. Knitted fabrics, analogous
to some architected [4–7] and bio-inspired materials [8–11], represent nonbiological examples of
a nonlinear elastic response characterised by a “J-shape” curve, as the fabric transitions from
bending energy dominant region to stretching energy dominant region under uniaxial tension.
The presence of mesoscale stitch patterns enables the fabric to take on substantial tensile stress
elastically. This behaviour is attributed to the low strains on individual yarn segments and the
dynamics of yarn alignment with external load, which offer geometric degrees of freedom. The
distinctively compliant behaviour of knitted fabrics makes them stand out as excellent scaffolds for
wearable devices [12–17] and soft robotic actuators [18,19], where large deformation and flexible
morphing without material damage is desired. The anisotropy at the fabric mesoscale has been
exploited to fine tune actuation of such devices [20–22], where carefully selected structures can be
spatially varied across the fabric, such that the fabric can shape morph to comply with complex
geometries. Multifunctional knitted fabrics can be created through embedding functional yarns
into conventional knit structures, to further enlarge the design space of knitted fabrics to morphing
structures [23,24] and to serve as light and touch sensors [25], pressure sensors [26], electronic
interfaces [27] and electronic skins [28] in an exciting new domain of smart materials to mimic and
embed intelligence.

Currently, intuition-led strategies remain the primary approach to design devices made of
knitted fabrics. This paradigm poses limitations on exploring the design space due to high
machinery costs, training costs and material waste. A generalisation of these application-driven
designs for yarn geometries, fabric structures and material variations has not yet been established.
Early theoretical work on knitted structures started from defining the characteristic unit cells to
represent stitch patterns and predominantly assumed homogeneity due to periodicity of unit cells.
Starting from a three-dimensional parameterisation of the jersey knit pattern [29] to curvature
augmented model [30], followed by energy minimisation model [31], most geometric models
of knitted fabrics are constructed through superposition of cosine and sine curves due to the
smoothness and periodicity of these shape functions. With the development of spline basis
functions, we can discretise yarns with sufficient accuracy and such yarn-based models [32–37]
have key advantages compared to coarse-grained models [38–41] and homogenised models [42–46],
due to their capability to (i) capture mechanical behavior originating from first principles via yarn
dynamics, (ii) provide quantitative measurements of geometric nonlinearity arising across scales,
and (iii) vary the spatial distribution of stitch patterns and material properties of yarns to form
targeted 2D and 3D configurations, all while not constraining the extensibility of individual yarn
segments affinely.

To begin, we adopt a yarn-based model with cubic spline basis functions [33] that was originally
applied in computer graphics to animate cloth in a qualitatively realistic manner. We extend this
model to provide physical insights into macroscopic inhomogeneity, anisotropy and cross-scale
mechanisms. We investigate the mechanical responses of representative weft-knitted samples at
compatible scale to machine knitted experimental samples that are systematically characterised.
Our numerical approach is implemented through fully dynamic formulation of the governing
equation of motion at yarn level, integrated explicitly with a high-order adaptive scheme. A key
aspect of our numerical procedure is the introduction of relaxation stage similar to experimental
procedure [47] before the application of external tensile forces, to account for residual stress that
is inherent in the knit fabrication process. This inherent residual stress has been experimentally
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investigated by the textile community as one of the dimensional properties of knitted fabrics [48–50]
and poses a typical challenge in generating accurate reference state of knitted fabric, if obtained
purely from geometric description of its structure. After initialisation, we apply uniaxial tensile
loads quasi-statically to stretch the fabric samples in simulation, up to strain thresholds compatible
with experimental set-up post initial cycles. Our designed experimental procedure is compatible
with bias-extension tests typically conducted to characterise textiles [51]. Though experimental
validation is carried out on limited sets of weft-knitted samples, our selection of stitch pattern
each represents a different topological group [52] that can be further explored in a more systematic
approach.

Leveraging parameterisation at the yarn level, we can quantitatively investigate cross-scale
mechanisms contributing to nonlinear elasticity and anisotropy of knitted fabrics. Since we treat
the dynamics at a continuous yarn as the governing mechanics, allowing for the prediction of
local, spatial evolution of bending and stretching energy, we can explain mechanical responses of
representative stitch patterns by statistical measurements of yarn dynamics. As we can directly
compute measurements of energy, deformation and alignment with regard to each yarn segment,
we can predict micromechanical hot spots.

Another main aspect of the present work is to propose design of functional and composite
textiles in an instructed manner compatible to manufacturing procedure, allowing our model to
be adapted for systematic digital generation of knitted configurations for targeted mechanical
responses. Guided by gained physical insights, we can purposely design 2D and 3D configurations
that possess localised mechanical responses through spatial distribution of stitch structures
and material properties. The direct applications of mechanically programmed knitted fabrics
in responsive structures, wearables and soft robotics are emphasised in this work. Though
demonstrated design examples focus on one length scale, our model can also be deployed to
various length scales and other fibrous networks.

More broadly, the textiles that we consider can be viewed part of the broader class of mechanical
metamaterials [53] and programmable materials [54], which have attracted much attention recently
for their ability to access new functionality such as high strength to weight ratios [5] or negative
Poisson’s ratio [55]. Many of the same research questions, such as in fabrication [56,57], as well as
exploration [58,59] and optimization [60–62] of the design space, can potentially be extended to
the textiles that we consider.

This paper is organised as follows: we first summarise theoretical background of the geometric
model and the mechanical model; in addition to providing validated numerical results and
motivating examples for applications, we demonstrate that structural properties, such as varying
topological description of fabric patterns and varying spatial distribution of fabric patterns can
effectively adjust the mechanical behaviours of knitted fabrics, not necessarily modifying the
material properties in results; moreover, we detail the development and implementation of
computational model, the material selection and characterisation in following sections.

2. Theoretical background

(a) Discretisation of the yarn, and initial conditions for the fabric
Our work builds on previous yarn-level simulations in the computer graphics literature by Kaldor
et al. [33]. We implemented a custom code in C++, using OpenMP for multithreading, to perform
the simulations. In this section we provide a mathematical overview of the methods, and then
provide additional technical and computational details in Appendix A.

Our simulation can handle an arbitrary number of individual yarns of diameter d. The centerline
of each yarn is represented by a cubic B-spline with N segments. We denote s∈Ω = [0, N ] to be a
dimensionless coordinate along the yarn, where the N + 1 control points of the spline are located
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at s= 0, 1, 2, . . . , N . The cubic B-spline basis function is given by

B(s) =


2
3 + s2( 12 |s| − 1) if |s|< 1,
1
6 (2− |s|)

3 if 1≤ |s|< 2,

0 otherwise.

(2.1)

A family of basis functions is then given by bk(s) =B(s− k) for k ∈ Z. The yarn is then defined as

y(s, t) =

N+1∑
k=−1

bk(s)qk(t), (2.2)

where qk(t) are time-dependent three-dimensional functions. In Eq. (2.2), the sum must run from
−1 to N + 1 in order to describe all piecewise cubics in C2[0, N ] [63], making for m=N + 3 terms
in total. Hence, the yarn is described by 3m= 3(N + 3) degrees of freedom stored in a vector
q= (q−1,q0, . . . ,qN+1). The velocity of the yarn is given by

v(s, t) = ẏ(s, t) =

N+1∑
k=−1

bk(s)q̇k(t), (2.3)

where a dot represents a derivative with respect to t. The velocity of the yarn is analogously
described by a 3m-component vector q̇. The descriptions in Eqs. (2.2) & (2.3) effectively decouple
the spatial and temporal dependence of the yarn motion. In its rest state, the yarn has equal arc
length l between each pair of control points.

We initialise the spline at t= 0 by specifying an initial parametric curve for its shape. Knitted
fabrics are generated from interlocking loop units that are formed stitch by stitch in the weft
(horizontal) and warp (vertical) directions. Depending on the direction along which a continuous
yarn is fed in, knitted fabrics fall into two categories: weft knits and warp knits. We focus on weft-
knitted fabrics in this work, because of the current interest in leveraging commercially available
weft knitting machines (V-bed knitting machines) to create complex 3D devices.

A typical loop geometry that we employ is [64]

yp(w) =

 λx
(
w + sin(πw)

)
λy cos(

πw
2 )

λz cos(πw)

 (2.4)

where λx, λy, λz are scaling parameters in each dimension that may vary independently to match
target aspect ratio of generated samples. Using the coordinate range w ∈ [wstart, wend] = [−π2 ,

π
2 ] in

Eq. (2.4) yields a single loop as shown in Fig. 2(A). In general, ‖dyp/dw‖will not be constant, so
that the arc length along each parametric curve will not increase at a constant rate in w. Therefore,
to initialize the B-spline formulation, our simulation computes the arc length along the curve as a
function of w,

A(w) =

∫w
wstart

∣∣∣∣dyp

dw

∣∣∣∣ dw, (2.5)

which is evaluated using composite Gaussian quadrature. The rest arc length is computed
as l=A(wend)/N . Using Ridders’ root-finding method, a sequence of values w0 =

wstart, w1, w2, . . . , wN =wend are found such that A(wk) = kl. These set the values of the control
points in the B-spline basis formulation, so that y(k, 0) = yp(wk), giving N + 1 vector equations
in total. In addition, the direction of the spline at s= 0, N is chosen to match the direction of the
parametric curve, giving an additional two vector equations. This gives a total of N + 3 linear
vector equations that can be solved as a linear system to determine the qk(0).
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(b) Dynamics of a yarn
We extend the Lagrangian formulation to describe the dynamics of a single yarn with m control
points as

d

dt

(
∇q̇k

T
)
+∇qkV +∇q̇k

D= 0, (2.6)

where T is the kinetic energy, V is the potential energy and D is the damping term. The kinetic
energy of the yarn is

T (q̇) =
ρl

2

∫
Ω
vTv ds, (2.7)

where ρ is the mass density. By referencing Eq. (2.6), we must evaluate

∇q̇k
T = ρl

∫
Ω
(∇q̇k

vT)v ds. (2.8)

We define the unit mass matrix M ∈Rm×m with components

Mjk =

∫
Ω
bk(s)bj(s) ds, (2.9)

which corresponds to integrating a product of two B-spline basis functions bk and bj . Since
each basis function is non-zero over four intervals, Mjk = 0 if |k − j|> 3, and therefore M is a
banded matrix with three superdiagonals and three subdiagonals. The matrix M remains constant
throughout the simulation and can be precomputed. Therefore Eq. (2.8) becomes

d

dt

(
∇q̇k

T
)
= ρl

N+1∑
k=−1

Mjkq̈j . (2.10)

The potential energy of a yarn includes several terms as

V = V s(q) + V b(q) + V g(q), (2.11)

representing energy due to stretching, bending, and gravity. With the assumption of linear elasticity,
the stretching energy is given by

V s(q) =
EsAl

2

∫
Ω

(‖y′‖
l
− 1
)2
ds, (2.12)

where Es is the tensile stiffness and A= πd2/4 is the yarn cross-sectional area. Here, the prime
superscript represents a partial derivative with respect to s. The elastic energy of the yarn due to
bending is formulated as

V b(q) =
EbIl

2

∫
Ω
κ2ds, (2.13)

where Eb is the bending stiffness, I represents moment of inertia of the yarn cross-section, and the
local curvature κ is defined as

κ=
‖y′ × y′′‖
‖y′‖3

. (2.14)

The gravitational potential energy is

V g(q) = ρl

∫
Ω
yTgds, (2.15)

where g is the gravitational acceleration. By referencing Eq. (2.6), we need to evaluate∇qkV
s(q),

∇qkV
b(q) and∇qkV

g(q). Similar to evaluating Eq. (2.10), part of these complicated integrals can
be precomputed and the rest can be accurately determined using quadrature.
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The damping term in Eq. (2.6) has several components. One component is given by

Diso(q̇) = kg

∫
Ω
vTv ds, (2.16)

which creates a global drag force on the yarns. In the experiments, the knitted samples are primarily
in a regime where the forces are in quasi-static equilibrium, since the yarns have sufficient internal
damping to remove any transient inertial effects. The drag force in Eq. (2.16) serves as a simple
proxy for the internal damping and accomplishes the same goal, ensuring that the inertial effects
are removed.

(c) Yarn–yarn interactions
The contact forces between two yarns (or between two different sections of the same yarn) are
critically important for simulating the knitted fabric. Without loss of generality, let s and s̃ be
coordinates ranging from 0 to 1 over two spline segments i and j with a contact. The energy
contribution is given by

V con
i,j = l2

∫1
0

∫1
0
f

(
‖yi(s̃)− yj(s)‖

d

)
ds ds̃, (2.17)

where yi and yj are the spline positions on the two segments, and

f(δ) =

{
k(δ − 1)2 if 0≤ δ < 1,

0 if δ≥ 1,
(2.18)

where k is a spring constant to represent contact repulsive stiffness. In addition a damping term
can be incorporated, with the form

Dfri
i,j = l2

∫1
0

∫1
0

(
kdt‖∆vij‖2 − (kdt − kdn)(n̂T

ij∆vij)
2
)
ds ds̃, (2.19)

which approximates the effect of frictional sliding as inter-yarn slip [65]. Here ∆vij is the relative
velocity and n̂ij is a normal vector in the collision direction. The constants kdt and where kdn set
the size of the effect in the tangential and normal directions, respectively.

Unlike the integrals considered in the previous section, it is difficult to evaluate the integrals in
Eqs. (2.17) & (2.19) efficiently and accurately. Since the integrands are non-smooth, and are only
non-zero in localised patches in the (s, s̃) space, Gaussian quadrature will often give imprecise
results. Because of this, we replace each integral with sum over n discrete values {s1, s2, . . . , sn}
and {s̃1, s̃2, . . . , s̃n} so that

V con
i,j = l2

n∑
α=1

n∑
β=1

f

(
‖yi(sα)− yj(s

′
β)‖

dcon

)
, (2.20)

where sα = (2α− 1)/n and s̃β = (2β − 1)/n. This is equivalent to modeling contact between a
discrete set of spheres, evenly distributed along each spline segment. Similarly, Eq. (2.19) is replaced
with

Dfri
i,j = l2

n∑
α=1

n∑
β=1

(
kdt‖∆vαβ‖2 − (kdt − kdn)(n̂T

αβ∆vαβ)
2
)
, (2.21)

where ∆vαβ = vi(sα)− vj(s̃β) and n̂αβ is a normal vector pointing in the direction of yi(sα)−
yj(sβ). The diameter dcon of the contact spheres is chosen to be slightly larger than the yarn
diameter d, so that the envelope made by the spheres more precisely matches the profile of the
yarn—see Appendix A(c) for more information.

To detect the adjacent spheres efficiently, the spheres are binned into an equally-spaced
rectangular grid that covers all of the yarns in the simulation. For a given sphere, finding adjacent
spheres is performed by iterating over all spheres in nearby grid boxes, resulting in a constant,
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O(1) computation time per sphere. Even with this optimisation, we typically find that detecting
and computing the contact forces is the most computationally expensive step of our simulations.

(d) Loop topology and fabric pattern
A typical V-bed knitting machine consists of front and back beds with arrays of needles. A carriage
traverses these beds, actuating the knitting needles with cams. Concurrently, yarn carriers (moved
by the carriage in our case) feed yarns to be caught by needles to form stitches. Stitches formed on
the front bed resemble “knit” stitches, while those on the back bed are akin to “purl” stitches in
hand knitting. Based on these two basic manufacturing instructions, “knit” and “purl,” we can
define a set of four representative weft-knit structures as shown in Fig. 1 (A) jersey (all knits or
purls), (B) garter 1 by 1 (knits and purls alternating every row only), (C) rib 1 by 1 (knits and purls
alternating every column only) and (D) seed 1 by 1 (knits and purls alternating every row and
column).

Figure 1. Illustration of basic weft-knitted fabric patterns composed of two by two contacts with varying topology (each

contact can either be purl (P) or knit (K)): (A) jersey, (B) garter 1 by 1, (C) rib 1 by 1 and (D) seed 1 by 1.

To be consistent with the manufacturing process [66], we propose a simple pipeline to assemble
full-scale weft knitted fabrics. Fig. 2 illustrates the process of creating a geometric model for
jersey, the simplest weft knitted fabric, since the topology of all contacts within the fabric is
consistent. After generating a loop unit along the standardised parametric function, we assemble
a row of loops by assigning the end positions of the row along the x axis (fabric weft direction),
similar to how rows of stitches are formed along horizontal needle beds on the V-bed knitting
machine. Secondly, we translate each row along the y axis (fabric warp direction) with assigned
distance from the central axis of the pattern. Note that modifications to the geometric model are
required to adjust for spacing between alternating rows and/or columns in order to create more
complex configurations beyond the jersey. We proposed using an additional sinusoidal function to
parameterise the z direction (fabric thickness direction) in Eq. (2.4), in order to alternate wavelength
and apply a phase shift to accommodate for varying topology [52]. In addition, we specify smooth
spiral curves adopting a generalised helicoid surface [67,68] equivalent to extra yarns used to cast
on and bind off the fabric at the top and bottom boundaries in manufacturing, in order to prevent
fabric from unravelling upon free boundary conditions. These spiral curves can be described by

ys(w) =


λx,sp(0.25w)

λy,sp sin
(
γπ(w + d)

)
λz,sp

(
1− cos(0.5π(w + d))

 , (2.22)
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Figure 2. The assembly of a representative weft-knitted fabric (jersey). (A) At the microscale: a loop discretised with

evenly spaced control points along fixed cubic basis functions. (B) At the mesoscale: each row of yarn formed along fabric

weft and translated along fabric warp based on the topological description of representative structure (We present jersey

as an example here and the same assembly process is generalised for other patterns, such as garter, rib and seed). (C)

At the macroscale: a fabric with ends of each row connected and additional spiral yarns attached to the bottom (“casting

on” in textile terminology) and top boundary (“binding off” in textile terminology) to prevent fabric from unravelling.

where λx,sp, λy,sp and λz,sp being scaling factors carefully selected to produce tight spirals in
order to minimise boundary effects, γ = 0.5 for patterns with no variation in contact topology with
respect to alternating columns (jersey and garter), γ = 0.25 for patterns with variation in contact
topology with alternating columns (rib and seed) and d being the assigned translation distance
between rows and it should not exceed the upper bound in order to ensure all rows are attached in
initial configuration. At last, we connect all loose ends of yarns through an interpolation scheme to
form a complete fabric solely composed of one continuous yarn.

(e) Mechanics-centered simulation framework
After generating knitted fabrics from previously described geometric model, we performed
material characterisation tests to calibrate physical parameters relevant to the simulation
summarised in Table 1. We then apply loading through tethered springs at a sufficiently low
loading rate that is critically damped to ensure numerical stability and convergence—see Appendix
A for more details.

3. Results

(a) Effect of pre-tension on validation
Experimental evidence shows that despite specifying the same number of stitches along both warp
and weft directions, the samples made from same materials but varying stitch patterns often consist
of varying dimensions [48–50]. In addition to slight variation in unit stitch length due to limitations

Table 1. Calibration of physical parameters relevant to the simulation of knitted fabrics.

Symbol Parameter SI in measurements SI in simulation tests
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ mass per unit length 0.077 g/m 7.7× 10−4 g/cm

l unit length per stitch 7.23mm 0.723 cm

r yarn radius 524µm 0.0524 cm

A yarn cross-sectional area A= πr2 8.63× 10−3 cm2

I yarn moment of inertia I = πr4/4 5.92× 10−6 cm4

Es yarn tensile stiffness 79.0MPa 7.9× 108 g/cm s2

Eb yarn bending stiffness 0.249MPa 2.49× 104 g/cm s2

kg global drag constant N.A. 1× 106 g/s

k contact repulsive stiffness N.A. 1× 109 g/cm s2

kdt damping constant for tangential frictional force N.A. 1× 109 g/cm2 s

kdn damping constant for normal frictional force N.A. 1× 109 g/cm2 s
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in manufacturing, one key factor for this variability is the internal response of stitch patterns to
pre-tension during manufacturing. Typically, yarns are prestressed to be straight and tight when
they are fed into the carriers and taken down from the knitting machine. Hence, it is crucial to
capture an accurate reference state configuration of knitted fabric under certain pre-tension, in
order to provide a meaningful comparison between numerical test and experimental test. Since it is
hard to obtain the manufacturing yarn tension a priori, it is hard to establish a relationship between
the number of stitches and the fabric tightness analytically. Similar to experimental attempts by
Eltahan et al. [69] and Martinez et al. [47] to find this relationship empirically through regression,
we propose to simulate the process of fabrics being prestressed and then relaxed, then calibrate
the amount of pre-tension. After the sample is constructed, an initial simulation is performed to
reduce the internal rest length of the yarn, so that its configuration becomes tighter—see Appendix
A(d) for more information.

Though the numbers of stitches used in numerical tests (13 along warp and 12 along weft) are
different to those used in experimental tests (41 along warp and 40 along weft), we compare the
dimensionless parameters, aspect ratio of fabric and unit arclength of yarn segment, to benchmark
numerically obtained configurations in the reference state against manufactured samples. In
addition, we calibrate relaxation stage duration by letting the numerical samples to relax in absence
of external stress until the side boundaries are curvature-neutral from the untethered boundaries,
as shown in Fig. 3. By doing so, we were able to obtain close to ground-truth configurations of all
four basic weft-knitted fabrics in their reference states.

Figure 3. Deformation profiles from simulation (top) and experiment (bottom) at 0% strain and 80% strain respectively

for (A) garter 1 by 1 when subjected to uniaxial tension along warp direction, (B) rib 1 by 1 when subjected to uniaxial

tension along warp direction, (C) garter 1 by 1 when subjected to uniaxial tension along weft direction, (D) rib 1 by 1 when

subjected to uniaxial tension along weft direction. Note that free ends of the fabrics with the same pattern and loading

condition are marked with the same curves to provide a visual comparison between simulation and experiment on the

deformation profiles.
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(b) The fundamental mechanical behaviour of knitted fabrics

Figure 4. Stress–strain responses measured from simulation (solid lines) and experiment (dashed lines representing

averaged responses with shaded area representing standard deviation among all measured samples), and simulation

snapshots at 20% strain and 80% strain for four weft-knitted fabrics (A) jersey, (B) rib 1 by 1, (C) seed 1 by 1 and (D)

garter 1 by 1, when subjected to uniaxial tension along the warp direction.

The influence of geometric flexibility of fabric pattern on the fundamental mechanical response of
knitted fabrics is well captured by our numerical tests and highlighted in Fig. 4 and Fig. 5, which
show applied uniaxial tensile stress σ against strain ε in warp and weft directions respectively and
the corresponding measurements validated by experimental tests. To equalise the difference in
the numbers of stitches nw used in numerically generated fabrics versus those used in machine
fabricated samples, we define effective tensile stress as σ= F

nw
. In addition, to offset variation

across varying stitch patterns in fabric dimension SR along the face formed with yarn diameter
2r, where the load is applied on, the effective tensile stress is further adjusted to σ= F

nw2rSR
. On

the other hand, to equalise fabric dimension LR along loading direction in the reference state,
we define tensile strain ε= LD−LR

LR
· 100% to account for normalised extension LD − LR. We see

good alignment between experiment and simulation, in terms of capturing the overall “J-shape”
curves and the relative rigidity and extensibility of four knitted fabrics.

Uniaxial tensile tests along the warp direction demonstrate distinct two-stage regions of
deformation to failure for all fabrics. Firstly, the jersey fabric, having consistent loop contacts
throughout the fabric and hence possessing the simplest geometry, behaved most rigidly among
the four fabrics studied during the first stage characterised by low linear stiffness (regime 1) at the
magnitude of 0.1MPa up to 30% strain. Previous experimental studies reported observation of
geometry reconfiguration as yarns slide through loop contacts and straighten to align more towards
applied tensile load [22], and our study provides quantitative evidence for such yarn dynamics
that are summarised in Sec. 3(c). After this reconfiguration, the jersey fabric transitioned to a stage
where the stiffness monotonically increased by up to 10 times (regime 2), during which stretching of
individual yarns become prominent. Statistical measurements are discussed in Sec. 3(c). Secondly,
among the four fabric studied, we observe the garter fabric to be the softest and most stretchable
in the initial regime when deformed in the warp direction. This fabric first undergoes a nearly
linear region with the lowest slope (regime 1) at the magnitude of 0.01MPa up to a transitional
strain magnitude of 60%. This regime is followed by yarn stretching (regime 2) at a distinctively
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Figure 5. Stress–strain responses measured from simulation (solid lines) and experiment (dashed lines representing

averaged responses with shaded area representing standard deviation among all measured samples), and simulation

snapshots at 20% strain and 80% strain for four weft-knitted fabrics (A) jersey, (B) rib 1 by 1, (C) seed 1 by 1 and (D)

garter 1 by 1, when subjected to uniaxial tension along the weft direction.

higher slope at the magnitude of 1MPa, which continues up to a peak strain approaching 90%. In
contrast, the rib fabric was initially the most rigid and least extensible structure (excluding jersey).
This fabric first underwent yarn alignment with an initial slope almost two times higher than that
for the garter fabric (regime 1), and with a range only up to 40% strain, quickly followed by yarn
stretching (regime 2) characterised by a much higher slope in the data up to failure at only 60%

strain. In addition, the seed fabric sustained the former loading stage (regime 1) with stiffness
similar to that of the rib fabric up to 50% strain, and transitioned to the latter loading stage (regime
2) with stiffness reaching the asymptotic magnitude of 1MPa.

We observe similar transition behaviour upon uniaxial loading along weft direction, as all
fabrics are initially soft and stretchable, followed by strain hardening as geometric flexibility from
the mesoscale patterns are exhausted. However, the relative rigidity and extensibility of fabrics are
now different. Though the jersey fabric is again the most rigid and undertook strain-hardening
the soonest at 30% strain during loading regime 1, the relative variation in stiffness among the
four fabrics during this loading regime is negligible. The rib fabric, previously representative of
rigid behaviour under tension along warp direction, now becomes the initially softest and most
stretchable under tension along weft direction, as it first undergoes yarn alignment of a (regime 1)
at almost negligible magnitude up to more than 100% strain, followed by yarn stretching (regime
2) at a noticeably higher slope at the magnitude of 0.1MPa in the data up to failure strain more
than 150%. Conversely, the garter fabric under tension along weft direction is the most rigid and
least extensible in the initial regime (excluding jersey), as it first underwent yarn alignment with a
slope almost two times higher than that for the rib fabric (regime 1), and only had a comparably
small range up to 50% strain. This regime is succeeded by yarn stretching (regime 2), exhibiting a
markedly higher slope nearing 1MPa and leading to failure at nearly 100% strain. In addition, the
seed fabric undertook mechanical behaviour close to that of the garter fabric.

It is well accepted that the precise matching between reduced-order constitutive models and
experimental tests on knitted fabric is challenging [35,37,41,44,45,64]. Though our model recovers
the general two-stage nonlinear elastic behaviour and the relative responses among the four basic
weft-knitted fabrics well, we notice the limitations, particularly when capturing the behaviour
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when fabrics transition between regimes. There are multiple reasons for these discrepancies, such
as our treatment of the yarn as a solid elastic tube, which may not precisely capture the spun
fibers in the acrylic yarn. In addition, we assume a linear stretching force response in the yarn,
which may not be accurate at high strains, as acrylic yarn typically softens at high strains as
characterised in Appendix B(d). We further discuss this limitation in Sec. 3(c), where we collect
statistical measurements of individual yarn segment stretch for all studied fabrics and loading
conditions.

(c) Mechanical role of yarn dynamics on fabric extensibility and anisotropy
To probe into how yarn rearrangements influence the macroscopic extensibility of knitted fabrics,
we measured the projection of individual yarn segments on to the loading direction of warp in
Fig. 6 and of weft in Fig. 7. With an angular increment (bin size) of 5 degrees, we tracked the
overall evolution of yarn segments as they aligned closer with the applied load as tensile strain
increased from 0% to 120%. This quantitative evidence compliments experimental observation
of reorientation of yarn segments to exploit geometric degrees of freedom within the connected
network. Such geometric rearrangement of yarn segments rather than material stretching of yarn
segments contributes to the compliant behaviour during the initial stage of fabric mechanical
response. Statistical distributions of yarn segment stretch in Figs. 8 & 9 further support the yarn
reorientation mechanism during the initial loading on fabrics, as distribution peaks remain within
the range for negligible segment stretch while fabrics are stretched until transitions occur. It is
worth noting that even as fabrics transition to higher strain ranges (near or exceeding 100%) and
the most stretched segments approach 20%, these segments account for less than 20% of all yarn
segments. Therefore, it is reasonable to assume linear elasticity for the majority of yarn segments
as an averaged one-time calibration of the stretching stiffness for preliminary study. However, this
places challenges in addressing fabric behaviour between regimes, as inhomogeneous mechanical
field of segment stretch contributes to the transition.

Previously, we also observed anisotropy from knitted fabrics, which is topology-dependent.
Considering garter and rib as representative examples, we establish the former has a softer
mechanical response and sustains a higher elastic strain range when subjected to tension along
fabric warp direction, while the latter behaves in a stiffer manner within a lower elastic strain
range when responding to tension along fabric weft direction. To probe into the influence of fabric
structure on anisotropy, we begin by examining their geometric configurations in the reference
state, considering yarn segment angles in Figs. 6 & 7. The garter fabric initially has less than
10% of yarn segments aligning with the warp direction within a difference of 10 degrees, but
has more than 20% similarly close yarn alignment with the weft direction. In comparison, the
rib fabric has more than 20% of yarn segments closely aligned with the warp direction in the
reference state, and only less than 15% yarn segments aligned with the weft direction at this
stage. The lower initial frequency of alignment with the loading direction provides more geometric
degrees of freedom for the yarn segments reorient themselves to manifest applied stress within the
hierarchical system, making the fabric more compliant under this “unaligned” loading direction
than the orthogonal direction. Moreover, as observed in Figs. 8 & 9, for a fabric to demonstrate
softer and more compliant behavior under a fixed loading condition, the shift of its peak yarn
segment stretch distribution towards a higher stretch range occurs more slowly.
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Figure 6. Rose diagram measuring the alignment of yarn segments with respect to the loading direction for all samples:

(A) jersey, (B) garter 1 by 1, (C) rib 1 by 1 and (D) seed 1 by 1, under uniaxial tension along warp direction.

Figure 7. Rose diagram measuring the alignment of yarn segments with respect to the loading direction for all samples:

(A) jersey, (B) garter 1 by 1, (C) rib 1 by 1 and (D) seed 1 by 1, under uniaxial tension along weft direction.
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Figure 8. Histogram measuring the distributions of yarn segment stretch for all samples: (A) jersey, (B) garter 1 by 1, (C)

rib 1 by 1 and (D) seed 1 by 1, under uniaxial tension along warp direction.

Figure 9. Histogram measuring the distributions of yarn segment stretch for all samples: (A) jersey, (B) garter 1 by 1, (C)

rib 1 by 1 and (D) seed 1 by 1, under uniaxial tension along weft direction.

(d) Demonstration of the design space
Guided by our study on the anisotropy of basic weft-knitted structures in Sec. 3(b), we can
purposefully explore the design space for textile-based devices to deform to desired shapes. First,
we highlight how structural variation in multi-structure knitted fabrics consisting of the same
numbers of stitches along fabric warp and fabric weft leads to a wide range of compliance, when
they are subject to the same tensile load in Fig. 10. Here, both asymmetric primitive (A) and
symmetric primitive (B) utilise the relatively better stretchability of garter over jersey along the
loading direction (fabric warp), leaving more fabric to be distributed along the orthogonal direction
that can provide localised comfortability to the wearer along fabric weft. The former provides
looser fit at the fabric boundary, while the latter provides looser fit at fabric middle region. On the
other hand, asymmetric primitive (C) shows how using a less stretchable structure (rib) along the
loading direction (fabric warp) potentially enhances gripping capability of a device upon actuation,
as fabric quickly curls out of plane along the direction orthogonal to actuation and forms pocketed
region. This can be directly applied as responsive structures to be passively actuated and textiles
to provide custom fit.

In addition, we demonstrate the adaptability of our model to vary material properties at the
yarn level and the generalisability of our model to create 3D configurations, both further opening
up the design space of functional textiles to composites. Fig. 11 shows the deformation processes
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of two 3D primitives made of jersey throughout with (A) having more rigid materials at both ends
and (B) having softer materials at both ends, both subject to bending applied through compressed
tethered boundaries. This is a demonstration of direct application in soft actuators to absorb impact.
Though failure is not included in the scope of this work, we apply a custom colour map in Fig. 11
based on stretching energy of individual yarn segments, to highlight the capability of our model to
investigate micromechanical hot spots due to inhomogeneity inherent across the whole fabric. As
expected, we see the outer side stretches more than the inner side upon bending. Moreover, we
see that the region consisting of more rigid material stretches less than that consisting of softer
material.

4. Conclusion
In summary, we first present the mechanics of knitted fabrics through micromechanical lenses
from yarn dynamics. By defining a dynamic formulation of the governing equation, with simple
yet adaptive constitutive law at each yarn segment, we have developed and implemented a
computational model to efficiently solve for the evolution of such complex system with localised
mechanical fields. Our numerical study complimented by experimental evidence show the
fundamental mechanical response of knitted fabrics, noticeably characterised by J-shape behaviour
analogous to hierarchical biological structures with geometric degrees of freedom arising from the
separation of scales [70–73], echoing the current wider interest in understanding how soft materials
gradually adapt to applied elastic energy. In particular, we include the effect of pre-tension in our
numerical procedure, in order to provide meaningful comparison with experimental measurement.
In addition, we probe into the topology-dependent variation in fabric stiffness, extensibility
and anisotropy by conducting parametric study on a set of representative weft-knitted fabrics.
Supported by statistical measurements of inhomogeneous yarn segment stretch and alignment
that are not feasible from experiments, we provide insights on the remarkable differences among
weft-knitted fabrics from varying topological groups. Last but not least, we demonstrate how to
apply learnt mechanical properties of varying stitch patterns to manipulate the design for targeted
responses and localised compliance. Such multi-structure multi-material configurations in both
2D and 3D, of which the enormous design space can be explored by rapid deployment of our
computational tool. By doing so, we hope to pave the path for systematic design of mechanically
programmable fabrics and textiles beyond what their constitutive materials can achieve through
demonstrations in responsive structures, wearables and soft actuators.

A. Implementation details of the numerical method

(a) Numerical integration and performance
The numerical simulations in this paper are performed using a custom C++ code that uses the
OpenMP library [74] for multithreading. The core of the simulation involves integrating the ODE
system for the position qk and velocity q̇k degrees of freedom described in Eqs. (2.2) & (2.3). This is
solved using the fourth-order adaptive “first same as last” (FSAL) Runge–Kutta method [75]. This
method uses five intermediate stages, where the first four can be used to construct a fourth-order
accurate solution, and the final stage can be used to construct an auxiliary third-order accurate
solution for step size selection. With the FSAL property, the final stage can be re-used as the first
stage of the next step, reducing the total computational work. We implement adaptive step size
selection via the procedures described by Hairer et al. [75], which use a combination of absolute
tolerance Atol and relative tolerance Rtol. Initial step size selection is also performed using the
methods of Hairer et al. [75].

Adaptive integration is beneficial for our simulations, since the appropriate step size varies
greatly over the course of the simulation. In the initial stages, yarn elasticity is the most important
physical effect and large timesteps can be taken. Once contact forces become important, the
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Figure 10. Gallery of knitted fabrics consisting of varying topology and spatial distributions (A) top half: garter 1 by 1,

bottom half: jersey; (B) top quarter: jersey, middle half: garter 1 by 1, bottom quarter: jersey; (C) top half: garter 1 by

1, bottom half: jersey stretched with uniaxial tension along warp direction ranging from 40% to 120% strain. Note that

varying knit structures are colour-coded here.
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Figure 11. Demonstration of actuated 3D composite tubes made of jersey knits (A) 2D projection to show material

distribution: two ends with rigid materials, middle with soft materials bent from 0 to 30degrees; (B) 2D projection to

show material distribution: two ends with soft materials, middle with rigid materials bent from 0 to 30degrees; (C) 3D

views of actuated 3D composite tubes. Note that the colour variation is based on stretching energy per unit arc length, of

which the comparative scale from 0 to 0.08J/cm is shown in attached colour map.



18

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

timestep sizes are substantially reduced. Similar methods have been employed in the simulation
of crumpled sheets [76], which have comparable behavior.

Our simulations output snapshots at equally spaced time intervals. Since the timesteps are
chosen adaptively, the integration time points will generally not align with the output time points.
To solve this issue, we make use of dense output [75] and construct a cubic Hermite interpolant of
the simulation state over each integration time step. Evaluating this interpolant at the output time
point results in a fourth-order accurate approximation of the solution. The snapshots are outputted
as binary files that contain the complete simulation state, which can be post-processed to perform
a variety of analyses.

It is worth noting that the ODE system representing the yarn mechanics is not infinitely
differentiable, since the contact forces are discretely switched on and off as yarns move past each
other. Proving that the Runge–Kutta scheme is fourth-order accurate requires that the mathematical
solution has Taylor expansions up to fourth order, which is not true in the case when an integration
timestep passes over a moment when a contact force is switched on or off. Because of this scenario,
it is not possible to guarantee that the results are fourth-order accurate. Nevertheless, we opt to use
the fourth-order scheme since it results in good accuracy and performance overall. Furthermore,
Hairer et al. [75] demonstrate that in practical cases, adaptive-timestep integrators can approach
high-order accuracy even when the ODE system lacks sufficient smoothness, since the integrator
can automatically refine the timestep when passing over a discrete switch in the ODE, minimizing
the additional error incurred.

While our paper focuses on knitted samples comprising of a single long yarn, our code can
general configurations with multiple yarns. Supplemental Information (SI) Fig. 1 demonstrates the
capability of the code to handle braided structures and woven fabrics. A theoretical analysis of
the algorithms shows that the simulations scale linearly with the total yarn segments. In SI Fig. 2
we confirm this behavior for both knitted fabrics and woven fabrics, and also demonstrate good
parallel scaling with multithreading.

(b) Linear system
For a single yarn with N spline segments we write q∈R3(N+3) and q̇∈R3(N+3) to be the vectors
describing the yarn position and velocity, respectively. From Eqs. (2.6) & (2.8) the general equation
of motion for a particular component (qk, q̇k) is given by

d

dt
([M q̇]k) =

(
−∇qkV (q)−∇q̇k

D(q, q̇)
)
, (A 1)

d

dt
(qk) = q̇k (A 2)

where M is a banded matrix whose components are defined by Eq. (2.9). For 2≤ j ≤N − 2, away
from the end points, the components of M are given by

Mjk =



151
315 if k= j,
397
1680 if |k − j|= 1,
1
42 if |k − j|= 2,
1

5040 if |k − j|= 3,

0 otherwise.

(A 3)

Near the end points, the matrix values change, because the B-spline functions are no longer fully
contained within Ω. The values for j < 2 are given in Table 2, and the values for j >N − 2 are
obtained via symmetry. Our code can also handle the case when either the position or direction of
the end point is fixed, which results in adjusting the linear system to incorporate a linear algebraic
constraint.

To solve the ODE system in Eqs. (A 1) & (A 2) it is necessary to solve the linear system Mq= f

where q ∈R(N+3)×3 are entries of q̇ arranged into a matrix, with the x, y, and z components
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k=−1 k= 0 k= 1 k= 2 k= 3 k= 4

j =−1 1/252 43/1680 1/84 1/5040

j = 0 43/1680 151/630 59/280 1/42 1/5040

j = 1 1/84 59/280 599/1260 397/1680 1/42 1/5040

Table 2. Coefficients in the matrix M , defined in Eq. (2.9) arising from the kinetic energy term in the Lagrangian

formulation of the yarn dynamics.

each in one column. f ∈R(N+3)×3 are the corresponding source terms, from the right hand side
of Eq. (A 1). The matrix M remains fixed throughout the simulation, and therefore during the
initialization its LU factorization is precomputed. This accelerates the solution of the linear system
during the simulation. The LAPACK library is used, with the LU factorization being performed
using the dgbtrf routine for a general banded matrix in double-precision floating point arithmetic.
The dgbtrs routine is then used to solve the linear systems during the timesteps.

(c) Contact sphere diameter calculations
As described in Sec. 2(c), yarn–yarn contact forces are handled by introducing n equally spaced
spheres of radius dcon along each spline segment. If dcon = d, then the envelope formed by the
spheres would be smaller than the yarn itself. We therefore systematically choose dcon to better
approximate the yarn shape. Let D= l/(2n) be the distance between successive contact spheres.
Assuming that D is small relative to d, the contact sphere diameter is chosen to be

dcon =
d+

√
d2 + 2

3D
2

2
, (A 4)

which ensures that the average diameter of the envelope of spheres is equal to d. To choose the
number of contact spheres, we define a parameter α corresponding to the maximum allowable
mean square deviation between the contact sphere envelope and the filament diameter, which is
typically set to be several percent. Then the number of contact spheres satisfies

n=

⌈
l

d
√

6(1 + α)α

⌉
, (A 5)

where d·e is the ceiling operator. Since the contact spheres overlap, when considering Eq. (2.17),
it is necessary to screen out the effect of interactions from neighboring spheres along the same
yarn. This is done by defining a screening number nscreen = dβdcon/De where β is a dimensionless
parameter. Terms in the sum of Eq. (2.17) are only considered if the indices of the spheres are
separated by at least nscreen.

(d) Tethering forces and initial sample generation
To perform the uniaxial tension tests, tethering forces are applied to the fabric to fix the
displacement in two end regions. This procedure is similar to the approach used in the immersed
boundary method [77] to simulate fixed walls [78]. Specifically, two regionsD+ andD− are defined,
where typically D± = {(x, y, z)∈R3 : ±y > yfix} for a constant yfix when pulling a sample in the
y direction.

During the simulation initialization, all spline segments that lie fully within D+ and D− are
marked, and the reference position of each quadrature point within each marked segment is
recorded. Using this information, the additional energy contributions

V t± = kt

∫
Ω
ID±(s)‖y(s)− F±(yref(s), t)‖

2ds (A 6)
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are added to Eq. (2.6), where ID±(s) is equal to one in spline segments marked within D±, and
zero otherwise. Here, F± :R3→R3 are time-dependent affine transformations of the reference
position. They can be used to apply the constant pulling velocity in the end regions. The forces
that are measured in the tension tests are computed as the total force applied to the fabric in each
tethered region.

As described in Appendix B(e), the experimental samples created by the knitting machine are
already under substantial tension, meaning that the yarns are much tighter than the examples
shown in Figs. 1 & 2. It is difficult to initialize the simulation in tighter configurations directly,
since any overlaps in the initial state may result in very large initial contact forces. Because of this
challenge, we perform a preliminary simulation to generate the samples for the tension tests. We
initialize the yarn in a loose configuration given by Eq. (2.22), and then make the spline rest length
l a function of time, applying a linear ramping so that

l(t) =

{
l0 − (1− η) tTr

if t < Tr ,

ηl0 if t≥ Tr ,
(A 7)

where l0 is the initial rest length of the yarn, Tr is the duration of the ramping, and η is a
dimensionless ratio chosen to ensure that the final state matches the same compression as the
experimental samples. During this procedure, the two end regions are tethered using the energy
contributions in Eq. (A 6) to prevent the sample from curling. Since the rest length is reduced, the
affine transformations F± are used to apply a commensurable shrinkage to the tethered regions.
The precise amount of shrinkage is determined by comparing to the geometry of the experimental
samples. After this preliminary simulation is performed, the yarn state is saved and then used as
the starting configuration for the tension test simulations.

B. Materials and Experiments

(a) Material selection
Commercially available acrylic spun yarns (16/2 Vybralite Acryclic Yarns, National Spinning
Co. obtained at Peter Patchis Yarns, USA) were selected to create all knitted fabric swatches. We
performed the tensile tests and bending tests on single yarns, in order to benchmark the previously
reported stretching stiffness, and to calibrate the bending stiffness of the selected experimental
material.

(b) Filament diameter
Average effective cross-sectional diameters of the yarn, “filament diameter,” were obtained by
imaging 20mm lengths of yarn at rest using a laser microscope (Olympus OLS4000). We utilized
Adobe Photoshop to compute the projected area of the yarn segment under orthogonal projection,
which we then divided by the fixed yarn length of 20mm to determine the filament diameter. We
repeated this process with three different yarn segments from the same material to ensure accuracy.
The averaged yarn radius, 0.0524 cm, from experimental measurements was used to benchmark
the yarn diameter used in simulation. In addition, we assume a circular and consistent cross section
with this calibrated effective radius from onward for related calculations.

(c) Yarn linear density
We adopt yarn linear density defined as

ρ=
M

l
, (A 1)

which is a standard definition adopted in the textile industry and was characterized from measuring
samples as 0.077 g/m. The equivalent term in simulation is 7.7× 10−4 g/cm. Simulating this
density directly is challenging due to very fast propogation of elastic modes that requires small
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timesteps to resolve. We therefore boost this density be a scaling factor of 109, which effectively
lowers the elastic wave speed by 104.5. This change only affects dynamical behavior of our
simulations and does not strongly alter the measured stress-strain curves that are in a quasi-static
regime.

(d) Characterisation of yarn properties

Figure 12. Tensile test on a single yarn to characterize the stretching stiffness of a single yarn.

Figure 12 illustrates the experimental set up for a tensile test on a single yarn, in order to
measure its stretching stiffness. A tensile test of a single yarn adhered to acrylic boards with instant
adhesive to prevent slippage was performed on at least three different samples, with an initial fixed
gauge length recorded to calculate tensile strain. All samples were tested at a rate of 5mm/min on
a Universal Testing Machine (Instron 5566R), and tensile force F and tensile strain ε were directly
measured during loading processes. The stretching stiffness of a single yarn, defined as

Es =
F

πr2ε
, (A 2)

first underwent a linear stage with 79.0MPa within 5% tensile strain, followed by softening
behaviour. In all simulations, we assumed linear elasticity and calibrated the equivalent stretching
stiffness to be 7.9× 108 g/(cm s2). This assumption was further confirmed by the histograms of the
stretch measurements of individual yarn segments. On average, less than 20% of yarn segments
are stretched by more than 5% even when the fabric samples are stretched by more then 60%.
Figure 13 illustrates the experimental set up for a bending test on a single yarn cantilevered at

Figure 13. Bending test on a cantilevered single yarn to characterize the bending stiffness of a single yarn.
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one end with the free end consisting a horizontal length λ, and drops by a vertical displacement
of δ due to gravity. We assume that gravity of the yarn acts as a distributed load q= πr2ρg and
referring to Chakrabarti et al. [79], the bending stiffness of such soft material can be determined
from sets of fixed λ and measured δ from

Eb =
qλ4

8δI
. (A 3)

For each bending test, we took high resolution photos of the cantilevered yarn segment, with
pixel images on the background. Each pixel grid represents 0.25mm and post processing in Adobe
Photoshop was done to ensure an orthogonal perspective. From a series of bending tests on three
different yarn segments, we calibrated the bending stiffness of the used acrylic spun yarn to
be 0.249MPa and its equivalent parameter in simulation is 2.49× 104 g/(cm s2). Note that the
measured bending stiffness differs from the stretching stiffness by several magnitudes due to
hierarchical structure of the yarn.

Table 1 also involves several other parameter choices. The parameter kg sets the strength of a
global drag that is applied to the sample via Eq. (2.16). SI Figure 3(a) demonstrates that the value
of 1× 106 g/s prevents unfavourable oscillatory behavior, while not having a large effect on the
stress–strain curve. Three other parameters k, kdt, and kdn control details of the contact forces and
frictional forces. SI Figures 3(b–d) demonstrate that the results are insensitive to these parameters
across several orders of magnitude.

(e) Fabrication of knitted fabrics
For reference we summarise the experimental protocol to fabricate and to test the fabric swatches
from Sanchez et al. [22] here. In total, six samples for each knitted structure (jersey, garter 1 by 1,
rib 1 by 1 and seed 1 by 1) were fabricated with the same settings on stitch spacing and machine
tension on a Kniterate V-bed knitting machine (Kniterate, EU), and all consisting of 41 wales
by 40 courses (i.e., number of stitches along the warp and the weft directions respectively). The
“knitout” program was used to convert the Python frontend (specified by McCann et al. [80]) to
Kniterate-specific machine language “kcode”, in order to operate the knitting machine. The stitch
unit arclength of each fabric l was determined by

l=
M

ρNwNc
, (A 4)

from directly measured mass of fabricated sampleM , fixed yarn linear density and number of wales
Nw and number of courses Nc. After fabrication, all samples were left at ambient conditions for 24-
48 hours to enable material relaxation, as responding to residual stresses from the manufacturing
process. Then, the dimensions of all samples were measured and approximated as those of samples
in their reference states.

(f) Uniaxial tensile tests to characterise the knitted fabrics
All knitted fabric samples were cyclically tested using Universal Testing Machines. The initial
gauge lengths were recorded, in order to offset mismatch between previously recorded sample
dimensions and ground-truth sample dimensions in stress-free states on the testing machines.
These samples were pre-cycled to force magnitude of 20N at a fixed rate of 10mm/min during
loading stage and 20mm/min during unloading, followed by two cycles at a rate of 5mm/min

until reaching 15N. This upper bound on force was selected empirically, in order to prevent plastic
deformation of the yarns within the fabric and failure (e.g., unraveling, fracture, detachment from
test fixtures). For our study, we selected the mechanical responses measured after pre-cycling,
as they were robustly repeated through cycles for the same fabric and the same tensile loading
direction. Note that the strain ranges from experiments were smaller than those from numerics
presented in this study, since the former were collected from a particular cycle of the cyclic tests,
intentionally set to avoid sample failure.
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