
JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 1

BIRD+: Design of a Lightweight Communication
Compressor for Resource-Constrained Distribution

Learning Platforms
Donglei Wu, Weihao Yang, Xiangyu Zou, Hao Feng, Dingwen Tao, Shiyi Li, Wen Xia and Binxing Fang

Abstract—The Top-K sparsification-based compression frame-
work is extensively explored for reducing communication costs in
distributed learning. However, we have identified several issues
with existing Top-K sparsification-based compression methods,
severely impeding their applicability in resource-constrained plat-
forms: (i) The limited compressibility of the Top-K parameter’s
indexes critically restricts the overall communication compres-
sion ratio; (ii) Several time-consuming compression operations
significantly offset the benefits of communication compression;
(iii) The use of error feedback techniques to maintain model
quality results in a high memory footprint consumption.

To solve these issues, we propose a lightweight tensor-wise
Bi-Random sampling strategy with an expectation invariance
property called BIRD, which achieves higher communication
compression ratios at lower computational overheads while
maintaining a comparable model quality without incurring extra
memory costs. Specifically, BIRD applies a tensor-wise index
sharing mechanism that substantially reduces the proportion of
the index by allowing multiple tensor elements to share a single
index, thus improving the overall compression ratio. Additionally,
BIRD replaces the time-consuming Top-K sorting with a faster
Bi-Random sampling strategy at lower O(N) time complexity
based on the aforementioned index sharing mechanism, signifi-
cantly reducing computational costs of compression; Moreover,
BIRD establishes an expectation invariance property into the
above Bi-Random sampling to ensure an approximate unbiased
representation for the L1-norm of the sampled tensors, effectively
maintaining the model quality without incurring extra memory
costs. We further optimize BIRD to BIRD+ by introducing
the uniform distribution-based sampling and Gamma correction
on the tensor-wise sampling process, achieving a more flexibly
adjustment of the sparsity with better convergence performance.

Experimental evaluations across multiple conventional dis-
tributed learning tasks demonstrate that compared to state-of-

D. Wu, W. Yang, X. Zou, S. Li, W. Xia, B. Fang are with Harbin Institute
of Technology, Shenzhen, Guangdong, China, 518055; Department of New
Networks, Peng Cheng Laboratory, Shenzhen, China, 518055; Guangdong
Provincial Key Laboratory of Novel Security Intelligence Technologies,
Shenzhen, China, 518055.

Hao Feng is with Indiana University, Bloomington, IN, USA, 47405.
Dingwen Tao is with State Key Lab of Processors, Institute of Computing

Technology, Chinese Academy of Sciences, 100190.
E-mail: {donglei.wu, weihao.yang00}@hotmail.com, {zouxiangyu,

lishiyi, xiawen}@hit.edu.cn, haofeng@iu.edu, taodingwen@ict.ac.cn,
fangbx@cae.cn.

The preliminary manuscript has been accepted in ICCD’23. This journal
version includes a more comprehensive design of our proposed approach. The
main improvements include: (1) A novel L∞-norm-based uniform random
sampling that improves the model convergence stability and accuracy up
to 0.88% than the BIRD in the conference version; (2) A controllable γ
correction-based random sampling mechanism is developed to improve the
communication compression ratio and throughput up to 10.75× and 3.35×
than the BIRD in the conference version; (3) Experimental results and analysis
on more conventional distributed learning datasets and models with various
sparsity configurations.

worker 1

old model new model

data
worker 2

old model new model

data
worker N

old model new model

data…
…

③

① ① ①

② ②②

③③

① Model Downloading
② Local Training
③ Model Uplading
④ Model Aggregating

④

Fig. 1. The general workflow of Distributed Learning. The server in the
cloud is served for receiving and aggregating the uploaded models, which are
trained by each client. Numbers denote the order of each procedure in the
training of Distributed Learning.

the-art compression approaches, our proposed BIRD+ achieves
higher communication compression ratios up to 36.2× and higher
computation throughput up to 149.6× while maintaining the
model quality without incurring extra memory costs.

Index Terms—Distributed learning, communication compres-
sion, random sampling, neural network.

I. INTRODUCTION

W ITH the rapid expansion of the size of Deep Neural
Networks (DNN) and the training datasets in the field

of Artificial Intelligence (AI), it has become inefficient to rely
solely on centralized systems for training AI tasks [1], [2],
[3]. Consequently, the deployment of DNNs in a decentralized
environment has become imperative. Distributed learning with
data parallelism has emerged as a prevalent approach to
enhance performance and expedite DNN training by allowing
multiple clients to collaboratively train a model on their local
platforms or devices [4], [5], [6], [7], [8], [9].

In a typical distributed learning with data-parallelism sce-
nario, such as Federated Learning (FL), training involves
a multitude of Edge Devices, including smartphones and
IoT devices, operating under constrained resources such as
limited network bandwidth, computing power, and memory
space [10]. Using the prevalent Parameter Server (PS) architec-
ture as an example, Figure 1 illustrates the primary processes
of distributed learning, broadly outlined in four steps: 1⃝
Clients download the current global model parameters (e.g.,
gradients or model updates) from the central parameter server.
2⃝ Clients independently train the downloaded global model

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 2

on their private datasets in parallel, generating a new local
model. 3⃝ Clients upload their newly trained local models to
the server. 4⃝ The server aggregates the received local model
parameters and generates a new global model, representing
the training result of the current communication round. After
the server sends back the averaged global model to clients,
they initiate the next training round by continuing to train the
received model with their local datasets. The above four steps
are iteratively performed between clients and the server until
the global model converges the training target of distributed
learning.

In contrast to high-end in-cluster network infrastructures
boasting abundant bandwidth, Edge Devices typically depend
on wireless connections characterized by constrained and fluc-
tuating upload speeds, often substantially lower than download
speeds [11], [12]. For instance, the average broadband speed
in the United States was 55.0Mbps for downloads compared
to 18.9Mbps for uploads. Notably, certain internet service
providers exhibit even greater asymmetry, such as Xfinity
with a speed of 125Mbps for downloads versus 15Mbps for
uploads [13]. Meanwhile, the escalating performance of Deep
Neural Networks (DNNs) has led to a rapid expansion in
model size, outpacing the growth of available bandwidth. Con-
sequently, the growing contradiction between expanding model
dimensions and restricted bandwidth highlights the pressing
need for communication compression techniques tailored to
resource-constrained client devices in distributed learning.

To solve this low bandwidth challenge, Top-K Sparsifica-
tion, a widely adopted compression technique is developed to
reduce the communication costs from clients to the server in
distributed learning [14]. Specifically, the client only selects
and uploads a small part of ‘important’ parameters to the
server based on the magnitude of the change before and after
training. Typically, the selected elements are structured as
a pair of <the index, the value>, where ‘value’ and ‘index’
maintain a 1:1 relationship in quantity. The ‘index part’ de-
notes the coordinates of the transmitted parameters, which do
not contribute to enhancing model performance. Conversely,
the ‘value part’ is utilized to update the parameters and plays
a crucial role in enhancing the model.

For achieving a more substantial compression ratio, prior
studies have employed lossy quantization for the ‘value part’
and the lossless coding for the ‘index part’ to further mitigate
communication costs [10], [15], [16], [17]. Typically, the
floating-point ‘value part’ is quantized into lower-bit integers,
while the ‘index part’ is encoded into fewer bits. However,
deploying existing Top-K sparsification-based compression
approaches in large-scale distributed learning with numerous
resource-constrained edge devices introduces three issues (as
depicted in Figure 2): ❶ Low Index Compression Ratio:
Current methods are limited by the compressibility of the
index part,’ which is often lower than the value part’ and
contributes more significantly to overall traffic [10], [18].
This limitation constrains the overall communication com-
pression ratio. ❷ High Compression Computational Cost:
Several computationally intensive compression processes, such
as top-K sparsification sorting and lossless index coding, can
incur substantial time costs, especially when computational

Error-Feedback

Top-K
Sparsification

Comp.

Data
Compression

High Compression
Computing Cost

High Extra
Memory Cost

Low Index
Compression Ratio

Issue

Index value

Issue Issue

Fig. 2. Workflow and issues of traditional Top-K sparsification-based com-
munication compression approaches.

resources like GPU kernels are limited [19]. These overheads
diminish the benefits of communication compression. ❸ High
Extra Memory Cost: Biased compression techniques, such as
Top-K sparsification and 1-bit value quantization, often use er-
ror feedback mechanisms to maintain model quality. However,
these techniques demand significant additional memory foot-
prints to store dropped information, resulting in considerable
extra memory costs [14], [15].

Hence, beyond pursuing a high compression ratio, a solid
communication compression algorithm should also carefully
consider the additional compression overhead and model qual-
ity, especially in the context of resource-constrained client de-
vices. In this paper, we propose a lightweight communication
compression technique BIRD, which tackles the aforemen-
tioned issues of performance and efficiency based on several
observations and techniques, which are outlined below.

For the Low Index Compression Ratio issue, we observe
that multiple elements within a DNN’s tensor maintain a fixed
relative position relationship. Therefore, one tensor index is
enough to determine all element’s positions within this tensor
if this tensor is uploaded to the server. Exploiting this charac-
teristic, we propose a tensor-wise index sharing mechanism,
allowing a single tensor index to be shared among all elements
within this tensor by changing the granularity from element
to tensor. This innovation effectively reduces the index-to-
value proportion from 1:1 to 1:n, resulting in a substantial
enhancement of the overall communication compression ratio.

For the High Compression computational cost issue, we
mitigate the time cost of the sparsification process and I/O by
developing a lightweight Bi-Random sampling strategy, which
replaces the time-consuming element-wise Top-K sorting with
a faster tensor-wise random1 sampling algorithm [22]. Cou-
pled with the previously mentioned tensor-wise index sharing
mechanism, the object of Bi-Random sampling strategy be-
comes tensor, resulting in very few index data left, thus further
diminishing the compression overhead of the index.

For the High Extra Memory Cost issue, we draw in-
spiration from existing stochastic sparsification techniques
that uphold model quality without requiring error feedback,
preserving the unbiased statistical property of the original [23],
[20]. Motivated by this feature, we establish an approximate

1Notice that the ‘random’ doesn’t mean exactly equal probabilities, but can
be guided by the probabilities based on the parameter’s value[20], [14], [21]

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 3

expectation invariance property in the aforementioned Bi-
Random sampling. By maintaining statistical unbiasedness
for the L1-norm of the original tensor, we can achieve a
comparable training quality of distributed learning without
incurring extra memory costs.

Although the above techniques can effectively reduce com-
munication costs at a low computational overhead, BIRD
still has two limitations: (1) the approximate expectation
invariance property leads to an unstable model convergence
(will be introduced in detail in Section V-F). (2) The fully
adaptive sampling algorithm potentially leads to a high com-
munication cost while achieving an unpredictable low sparsity.
To address these limitations, we further optimize BIRD to
BIRD+ by introducing a uniform distribution-based sampling
algorithm with sparsity controllable probability Gamma Corre-
lation strategy. This approach not only achieves a more stable
model convergence performance under a strict expectation
invariance property, but also obtains a higher communication
compression ratio by tuning an appropriate sparsity.

In summary, we propose a lightweight distributed learning
compressor BIRD+, by developing a BI-RanDom sampling
strategy with an expectation invariance property based on a
tensor-wise index sharing mechanism, to address the Low
Index Compression Ratio issue, High Compression Computa-
tional Cost issue, and High Extra Memory Cost issue. BIRD+
achieves high compression ratios with low computational costs
while maintaining model quality without incurring extra mem-
ory costs. Our contributions can be summarized as follows:

• We identify three critical issues in the Top-K
sparsification-based compression workflow: (i) the
overall compression ratio of existing methods is limited
by the low compressibility of the learning-useless index
part; (ii) computationally expensive operations, such as
sorting and index coding, compromising the advantages
of communication compression; (iii) the error feedback
mechanism, essential for maintaining the model training
quality, incurs significant extra memory costs equivalent
to the size of the full model.

• To tackle these issues, we propose a novel dis-
tributed learning compressor, named BIRD+, tailored
for resource-constrained edge devices by: (i) Introducing
a tensor-wise index sharing mechanism to significantly
decrease the index proportion, thereby improving the
overall compression ratio; (ii) Developing a lightweight
Bi-Random sampling strategy based on the index sharing
mechanism, effectively reducing the computational costs
of compression; (iii) Establishing a tensor-wise expec-
tation invariance property within the above Bi-Random
sampling strategy for the sampled tensors, maintaining
the model quality without incurring extra memory cost.

• We evaluated the performances of BIRD+ and con-
ducted comparisons with different state-of-the-art dis-
tributed learning compression approaches across mul-
tiple mainstream tasks for three aspects: compression
ratio, computational efficiency, and model quality. Ex-
perimental results demonstrate that (i) BIRD+ achieves
a higher overall communication compression ratio up to
32.6×; (ii) significantly reducing time complexity from

O(NlogK) to O(N), resulting in a higher computation
throughput up to 149.6×; (iii) effectively maintaining
model quality without incurring extra memory costs.

II. BACKGROUND AND RELATED WORKS

In the era of Artificial Intelligence and Big Data, the
exponential growth of datasets and model parameters has
promoted the development of distributed learning frameworks
for training modern Deep Neural Networks (DNNs), which
distribute computational tasks across various devices to en-
hance training efficiency. However, challenges arise due to the
substantial number of clients, restricted uplink network band-
width in client devices, and the expanding model size, causing
the communication problem as a bottleneck in the practical
resource-constrained distributed learning environment, such as
smartphones and IoT devices.

To reduce the communication cost of distributed learning,
the Federated Averaging (FedAvg) [24] algorithm emerges as
a solution, which lowers the communication frequency by
shifting bandwidth-intensive processes to local computation.
Building upon FedAvg, additional techniques such as sparsi-
fication, quantization, and encoding are exploited to further
compress the size of transmitted data (e.g., the model weight
updates or the gradients) between the parameter server and the
clients.

Quantization-based approaches: These strategies alleviate
communication overhead by encoding uploaded parameters
into fewer bits. Typically, Seide et al. [25] introduce the 1-
bit quantization technique, where each 32-bit floating-point
parameter in a neural network is condensed into 1-bit, cap-
turing its sign. It is then decoded using the sign and mean
value of the neural network’s parameters. To maintain the
model accuracy and convergence rate, quantization errors
accumulate and are compensated to the encoding in the next
round. Wen et al. [23] proposed a statistic-based stochastic
algorithm, called TernGrad, to encode the transmitted floating-
point gradients with two bits, while a theoretically-guaranteed
convergence is proven. Alistarh et al. [21] extended the
statistic-based quantization method by smoothly balancing the
trade-off between communication bandwidth and convergence.
Although quantization-based approaches achieve a maximum
compression ratio of around 32×, sparsification-based com-
munication compression techniques are proposed to further
enhance compression ratios.

Sparsification-based approaches: Top-K sparsification is
a prevalent technique in mitigating communication overhead
in distributed learning by transmitting only a fraction of the
gradients or parameter updates with the largest magnitude to
the server [17], [16]. To ensure model quality, the unselected
parameters, termed residuals, accumulate locally and are rein-
troduced in the subsequent round. Specifically, the residual
model has the same size as the full model (e.g., about 100MB
for Resnet50[26]), will be stored in the memory and added
back into the next round in an element-wise manner. The
selected elements are structured as <the index, the value>,
which can be compressed through quantization and encoding
techniques to further reduce communication costs. For in-

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 4

0 0.5 1 1.5 2 2.5 3

STD

SBC

SKC

DR

SMT

Communication
Sparsification
Index comp.
Value comp.
Model computing

2975.6

32

2.5

75.9

13.1

1.3 1.8 1.6

26.1

2.5 1.9 3.1

1

10

100

1000

10000

SMT SBC DR SKC

Value compression
Index compression
Overall compression

(a) Compression ratios of index, value, and overall (b) The breakdown of time costs per round (c) Effects of error feedback of test accuracy

V
al

id
at

io
n

ac
cu

ra
cy

C
om

pr
es

si
on

 ra
tio

Training round Time cost (s)

0

0.2

0.4

0.6

0.8

1

0 10 20 30

SKC

SKC_EF

0

0.2

0.4

0.6

0.8

1

0 10 20 30

SMT

SMT_EF
0

0.2

0.4

0.6

0.8

1

0 10 20 30

SBC

SBC_EF

0

0.2

0.4

0.6

0.8

1

0 10 20 30

DR

DR_EF

Fig. 3. The key observations with experimental validation on different Top-K sparsification-based the-state-of-the-art compressors.

stance, DGC [16] utilizes Top-K sparsification to reduce gradi-
ent size and employs run-length coding to compress the traffic
of sparse gradient indices. Additionally, DGC incorporates
momentum correction, local gradient clipping, momentum
factor masking, and warm-up training to address accuracy loss
and staleness problems caused by reduced communication.
Moreover, Chen et al. [27] present the Adaptive Residual
Gradient Compression scheme, dynamically tuning the com-
pression ratio by deciding the maintained length of residual
gradients through sparsification. However, we notice that the
communication cost of the index, the computational cost of
some compression processes, and the memory cost of residuals
impede the deployment of these Top-K sparsification-based
compression methods in typical distributed learning scenarios
involving numerous resource-constrained devices.

Recent developments in distributed learning introduce
stochastic sparsification-based communication compression al-
gorithms to reduce gradient communication costs [20], [14],
[28]. These algorithms establish a positive relationship be-
tween the probability of an element being randomly sampled
and its magnitude. In these approaches, a scaling factor is
applied to the sampled components to align the expectation
of the compressed model with the raw model. Unselected
elements are dropped by setting them to zero. Crucially,
as unbiased compression algorithms, these methods require
no additional error feedback to maintain model convergence,
thereby avoiding extra memory overhead. Leveraging this
unbiased property, we propose a tensor-wise random sampling
algorithm characterized by an expectation invariance property,
achieving a lightweight communication compression without
incurring additional memory costs.

Hybrid approaches: Quantization and sparsification, being
two orthogonal methods, are often synergistically combined
with a lossless encoding scheme to comprehensively compress
communication costs in distributed learning. For example, Sat-
tler et al. [10] introduced Sparse Binary Compression (SBC), a
communication-efficient distributed learning framework. SBC
combines Top-k sparsification, quantization, and encoding. It
employs Top-k sparsification by setting all weight updates,
except the top k with the highest magnitude, to zero. The
sparse weight updates are then quantized to binary, and the
index of non-zero elements is encoded using optimal Golomb
encoding[29], achieving an additional 1.9× compression ratio.
Strom et al. [30] combined sparsification and 1-bit quantization

techniques to compress Fully Connected (FC) layers. Golomb
coding is also employed on the index part to further enhance
compression. Similarly, Dryden et al. [31] fused sparsification
and quantization, introducing a percentage threshold in sparsi-
fication and using the mean value of the selected parameters as
the quantized result. Tsuzuku et al. [32] proposed a variance-
based sparsification algorithm to compress gradients in dis-
tributed learning. Additionally, this approach further applies
4-bit quantization and Golomb encoding to improve the overall
communication compression ratio. Recently, SKC [18] utilized
the sketching technique with bucket quantization to obtain a
high value compression ratio and applied the prefix technique
to compress the index. DR [33] employs a novel value-fitting
algorithm to reduce value costs, and a bloom filter is used to
compress the index.

In summary, prevalent communication compression ap-
proaches in distributed learning often integrate three orthog-
onal techniques: sparsification, quantization, and encoding.
Sparsification is used to reduce the number of uploaded
elements, quantization is used to further compress the cost
of the ‘value’ part, and lossless encoding is used to minimize
the cost of the ‘index’ part. In this paper, we propose multiple
lightweight techniques to achieve a considerable communica-
tion compression ratio more efficiently.

III. KEY OBSERVATIONS AND MOTIVATIONS

In this section, we elucidate our key observations and
motivations through the following approaches: (1) Training
VGG16 [34] on CIFAR10 [35] in the distributed learning
context with 10 clients and 1 server2. (2) Implementing the
compression of locally trained model updates by utilizing four
state-of-the-art Top-K sparsification-based compressors.

(i) In traditional Top-K sparsification, the selected
parameters within the DNN model are structured as
<the value, the index> pair with the 1:1 quantitative rela-
tionship. We notice that 1⃝ the overall compression ratio
per parameter (crz) is constrained by either the compression
ratio of the index (cri) or the value (crv). Assuming a fixed

2The communication module is built on the collective communication of
torch.distributed v.1.10.2 package, utilizing the Gloo backend under the 1
Gbps network bandwidth.

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 5

Step1 Layers Splitting Step2 Tensor-wise Bi-Random Sampling

Sign(Values)

Step3 Tensors Compression

LZMA(Index)

1. compressed index
2. binary value

3. Scaler S

Tensor set T

Layer 1
Layer 2

Model Parameters Updates

Client N

Layer 3

Client 1

Client 2

Client 3

Client 4

BIRD+: A Lightweight Compressor for Communication-Efficient Distributed Learning Using Tensor-wise Bi-Random Sampling

Server

BIRD+

original
model

updates

CNN filter convolution kernel

weight matrix wight vector

Splitting the raw DNN
layer into tensors T

Calculating the 1st

sampling probability

Calculating the
scaler S1 for the P1

Monte Carlo
simulation sampling

Random sampling with
uniform distribution

Determining the 2nd

sampling number

Calculating the 2nd

guided probability

Calculating the final
scaler S for the

remaining tensor

Gamma correction

Tensor set U

Tensor set V
Uploaded

File

Sampled tensors in V
<Index1, Values1>
<Index2, Values2>

Fig. 4. The workflow of the distributed learning system with our proposed communication compression algorithm, BIRD+, involves three steps: (1) Layer
Splitting, (2) Bi-Random Sampling, and (3) Tensors Compression.

compression ratio of α on both sides, the limitation on the
overall compression ratio can be derived as follows:

lim
crv→∞

crz =
1

0.5
cri

+ 0.5
crv

= 2α with cri = α (1)

Eq. 1 states that restricting either index or value compression
will confine the overall compression ratio, adhering to Can-
nikin’s law. 2⃝ The index part accounts for a considerable
portion of communication costs in most sparsification-based
compression methods [16], [10], [18]. As depicted in Figure 3
(a), while the value can be compressed to a low-precision
lossy version with a high compression ratio of 16×-32×, the
index undergoes only lossless compression with a restricted
compression ratio of 2×-3× to ensure precise matching of the
value. Consequently, the overall compression ratio is generally
limited to no more than twice that of the index, aligning
with Eq. 1. Evidently, allocating a substantial portion of
communication costs to transmit learning-useless coordinate
information (i.e., the index part) is impractical.

The aforementioned findings prompt us to reduce the 1:1
proportion relationship between the index and value to a more
advantageous 1:n by regarding the tensor as a fundamental
sparse object for each layer, as opposed to a traditional
individual element of a flattened DNN vector (element-wise
→ tensor-wise). In detail, we initially partition each layer into
tensors following specific rules, with each tensor containing
multiple parameters. Subsequently, we identify several ‘im-
portant’ tensors for further compression and upload. In this
approach, one index is shared across all parameters in a
tensor, leading to a significant reduction in the communication
costs associated with the index part and an enhancement in the
overall compression ratio.

(ii) The primary objective of communication compression
is to accelerate the distributed learning process. However, due
to the inherent limitations in computing power on edge de-
vices (such as insufficient GPU kernels), certain compression
operations incur significant time costs [19], [22]. Figure 3 (b)
illustrates the average time breakdown per training iteration
during distributed training. Experimental results indicate that
while model compression results in reduced communication

time in distributed learning, the runtime of several resource-
intensive compression processes (e.g., sparsification and index
compression) can counterbalance the benefits derived from the
decreased communication time. In some instances, communi-
cation compression may even extend the overall duration of
the standard distributed training (STD) process, implying a
negative communication compression gain.

This observation impels us to substitute the conventional yet
costly element-wise Top-K sparsification with an innovative
tensor-wise random sampling approach. To be specific, the
parameters selection process (i.e., sparsification) is performed
by randomly sampling tensors, with the sampling probability
of each tensor being proportional to its magnitude. In doing so,
the time complexity of sparsification is reduced from typical
O(Nlogk) to O(N) [22]. Moreover, since the object of our
random sampling strategy is tensor, both the overheads of data
access and the subsequent index compression are diminished.

(iii) Top-K sparsification is a biased lossy compression tech-
nique. To maintain the accuracy of the compressed model in
Top-K sparsification, an Error Feedback (EF) mechanism [14]
is introduced to locally accumulate the unselected elements
(referred to as residuals) and add them back in the subsequent
round. Figure 3 (c) illustrates that the different state-of-the-
art Top-K methods exhibit varying degrees of test accuracy
degradation (3.28%-5.55%) without EF, underscoring the cru-
cial role of EF in maintaining model quality. Nevertheless,
the Error Feedback mechanism necessitates additional memory
space equivalent to the full model (∼61MB), posing con-
straints on scalability for edge devices with limited memory
resources, such as smartphones and IoT devices.

Motivated by unbiased stochastic sparsification tech-
niques [23], [20], which achieve considerable convergence
rates without the need for EF by maintaining the ex-
pectation invariance of sampled elements, we establish an
expectation invariance property for the sampled tensors in the
aforementioned tensor-wise random sampling. Specifically, we
preserve the unbiasedness of the tensor’s L1-norm by calcu-
lating a scaler S based on the sampling probability, which
is used to represent the magnitude of the sampled tensors

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 6

during the recovery stage on the server. Consequently, the
model quality is maintained without relying on the EF to store
the extra residuals in the client’s memory.

IV. DESIGN AND IMPLEMENTATION

A. Overview

In this paper, we propose BIRD+, a lightweight com-
munication compression algorithm designed to reduce the
communication cost of clients in distributed learning. Figure 4
illustrates the three key steps involved in BIRD+:

1) Layer Splitting (1) Splitting each layer of the model
into multiple tensors. (2) Calculating the L1-norm and
L∞-norm for each tensor, which are used to guide
BIRD+ to randomly sample the uploaded tensors.

2) Tensor-wise Bi-Random Sampling. (1) Conducting the
first randomly sampling tensors for each layer based
on their L1-norm. (2) Conducting a second random
sampling on the remaining tensor under a uniform
distribution guided by their L∞-norm. (3) Calculating
a scaler S for each layer, which is used to recover
an unbiased representation of the original full-precise
model on the server side.

3) Tensors Compression. (1) Quantizing the values of the
elements in the sampled tensors to binary based on the
signs. (2) Encoding the index of the sampled tensors
with fewer bits using the LZMA lossless compressor.

Subsequent subsections will delve into a comprehensive
introduction of each step in BIRD+.

B. Layer Splitting

Motivated by the 1st and the 2nd key observations, we
introduce a tensor-wise index sharing mechanism, treating the
tensor as a fundamental sparsification object to achieve two
primary objectives: (i) reducing the index costs by sharing
an index among all elements of a tensor and (ii) lowering
the computational costs of data I/O and subsequent index
compression. Given that in existing DNNs, (1) parameters
between neighboring layers are commonly organized in the
shape of #Input × #Output, and (2) parameters in the front
layer are often employed as a monolith for feature extraction,
we propose to split the tensor of each DNNs layer based on
the following rules:

• 4-D layer: For the typical filter in the convolutional layer
with four dimensions < N,W,H,C >, we consider
a 2-D convolution kernel with W × H elements as a
fundamental operated tensor, resulting in a total of C×N
tensors in this convolutional layer. In this scenario, W×H
elements within one tensor share one index.

• 2-D layer: For the typical weight matrix with two di-
mensions < I,O > of a fully connected matrix or Q, K,
V matrices of a transformer structure, each column of a
matrix with I elements is considered as a fundamental
operated tensor, yielding a total of O tensors. Similarly,
these I elements share one index within this tensor.

• 1-D layer: For the typical bias or BN layer, each element
is associated with a specific 2-D convolution kernel or

weights matrix’s vector from the front layer. Therefore,
1-D Tensors are not split and will be selected if the
corresponding attached tensor is sampled.

By performing layer-by-layer splitting of the DNN model, the
elements of the DNN tensor are grouped into ‘chunks’ for
subsequent random sampling and compression.

C. Element-Wise Random Sampling

The 2nd and the 3rd observations indicate that the Top-K
sparsification-based compression techniques with error feed-
back not only result in non-negligible computational costs but
also incur extra memory costs for the dropped parameters
(i.e., residual accumulation). To address these issues, we
propose a more efficient Bi-Random sampling strategy with
an expectation invariance property based on the above tensor-
wise index sharing mechanism to replace the traditional Top-K
sparsification technique. To facilitate a better understanding of
our methodology, let’s first take a close look at the Element-
Wise random sampling process.

Element-wise random sampling-based sparsification tech-
niques have been studied for achieving low-precision pro-
cessing with a provable guarantee of convergence [23], [20],
[21]. Formally, given a floating point vector g ∈ Rd, the i-th
component gi is calculated as:

g̃i =
gi
pi
× bi with

{
P (bi = 1|gi) = pi
P (bi = 0|gi) = 1− pi

(2)

where the binary vector b ∈ {0, 1}d indicates whether the i-
th element will be sampled: bi = 1 with probability pi and
bi = 0 with probability 1 − pi. The sampling probability is
defined as pi = |gi|

max(|g|) . Practically, the sampling process
could be efficiently achieved using the insight of Monte Carlo
simulation. As illustrated in Figure 5, the value of bi could
be determined by comparing the pi with a pseudo-random
floating-point number of the uniform distribution. Intuitively,
the larger the magnitude of the parameter, the more likely
it is to be selected. As a result, the sampled elements (i.e.,
bi ̸= 0) are formed as:

g̃i \ 0 =
gi
pi

= gi ×
max(|g|)
|gi|

= max(|g|)× sign(gi) (3)

Eq. 3 suggests that elements of the raw vector g are randomly
transformed to 0 or ±max(|g|) with unbiased estimation as:

E[g̃i] = pi ×
gi
pi

× 1 + (1− pi)× 0 = gi (4)

The theory proves that unbiased random sparsification can
efficiently compress the DNNs vector without significant
degradation in model accuracy [23], [20], [21]. In contrast
to the Top-K sparsification-based method, random sampling
has a lower O(N) time complexity without incurring extra
memory costs. Leveraging this characteristic, we propose a
Bi-Random sampling strategy with an expectation invariance
property based on the tensor-wise index sharing mechanism,
as detailed in the next subsection.

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 7

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7

0.65

0.04

0.31

0.76

0.14

0.84

0.21

0.41

0.77
0.62

0.11

0.82

0.03

0.31

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Uniform Distribution Sampling Probability

0 1 x

f(x)
1

0.5
0

0.5

Sa
m

pl
in

g
Pr

ob
ab

ili
ty

Uniform Distribution
Monte Carlo simulation sampling

Index of vector g
g

max(|g|)p =i
i

1
0

f(x)= 0 x 1
other

Input
vector g

g =g *(U(0,1)<p)ii i
~

Sparse
vector g~

g7

g6

g5

g4

g3

g2

g1

g7

g6

g5

g4

g3

g2

g1

 U(0,1)
Sampling

Fig. 5. A general example of Monte Carlo simulation sampling process.

D. Tensor-Wise Bi-Random Sampling

As introduced in sections I and II, the unbiased stochastic
sparsification techniques derive a sparse model by assigning
higher probabilities to elements with larger magnitudes during
the sampling process. To maintain model training quality
without accumulating the un-sampled elements (i.e., residual
model), the sampled elements are multiplied by a scalar S ,
ensuring the unbiased expectation of the model. Inspired by
this feature, we introduce a Bi-Random sampling strategy.

1) L1-norm based random sampling: After splitting the
model parameters into tensors, the magnitude of each tensor
ti can be measured using its L1-norm, and tensors can be
randomly sampled based on their L1-norm layer-by-layer. To
maintain the model’s convergence rate, we establish an expec-
tation invariance property by ensuring that the expectation of
the L1-norm for the sampled layer remains unchanged.

Specifically, assuming that a full precise floating-point layer
is divided into K tensors: T = {t1, · · · , tK}, the probability
of selecting the i-th tensor ti is given by p1i = ||ti||1

max(||T||1) ,
where || · ||1 returns the L1-norm of the tensor. To maintain
the model convergence rate, we aim to preserve the unchanged
expectation for the L1-norm of the layer as follows:

t1i = sign(ti)× bi︸ ︷︷ ︸
sampled ti

× max(||T||1)
m︸ ︷︷ ︸

scaler S1

(5)

where sign(·) returns all signs of all elements in a tensor
(e.g., from < − 0.05, 0.24,−0.38> to < − 1, 1,−1>), and
the binary value bi ∈ {0, 1} indicates whether tensor ti
will be sampled. In practice, the element value of bi could
be efficiently obtained by Monte Carlo simulation. The term
S1 = max(||T||1)

m represents the magnitude of the elements in
the non-zero tensor being sampled, which is used to recover
the trainable floating-point tensors in the server. t1i denotes the
i-th tensor with m elements (e.g., a sampled 3×3 convolution
kernel has m = 9). Eq. 5 ensures a full precise floating-
point tensor ti of a split layer will be randomly quantized to
zero or its signs while preserving the expectation of the L1-
norm unchanged for ti (known as the expectation invariance
property) because:

E||t1i ||1 = ||sign(ti)×
max(||T||1)

m
× 1||1 × p1i + (1− p1i)× 0

= ||sign(ti)||1 ×
max(||T||1)

m
× ||ti||1

max(||(T)||1)

= m× max(||T||1)
m

× ||ti||1
max(||(T)||1)

= ||ti||1
(6)

To facilitate the understanding of the above sampling pro-
cess, a specific use case of the above sampling process is
provided. Assuming that we have obtained five 1-dimension
vectors [1,-1], [-2,2], [3,-3], [-4,4], [5,5] in a 2-dimension
layer after the layer splitting. Our sampling algorithm first
calculates their L1-norm by summing the absolute value of
each element. The computing results are [2, 4, 6, 8, 10].
Then we compute a probability vector with elements of [0,1]
by dividing all L1-norm values by the maximum. Thus the
resulting vector is [2/10, 4/10, 6/10, 8/10, 10/10]. Each element
of this probability vector represents the sampling probability
of the corresponding vector, and the sampled vector can be
efficiently obtained by Monte Carlo simulation.

In summary, the aforementioned L1-norm based random
sampling aims to randomly sample tensors with larger L1-
norm values at a higher probability while preserving an
unchanged expectation of the L1-norm (i.e., Eq. 5 and Eq. 6).
This design allows us to achieve model sparsification at a
low computational cost while maintaining the model training
quality without incurring extra memory costs for the residuals.

2) Uniform distribution-based random sampling: Accord-
ing to the aforementioned L1-norm based random sampling
described in Eq. 5, the set of sampled non-zero tensors
(denoted by U =

{
t11, · · · , t1|U |

}
) is likely to have a large

L1-norm. However, we observe that the sampling ratio
generated by the aforementioned adaptive L1-norm based
random sampling process is not adequately low, indicating
limitations in the achieved overall communication com-
pression ratios. To address this problem, we propose a second
sampling stage to sample the remaining non-zero tensor set
U again for further reducing the tensor sampling ratio and
improving the overall communication compression ratio.

Motivated by the conventional Top-K sparsification algo-
rithm [18], [10], [16], which prioritizes elements with the
largest magnitude, a naive solution is to utilize the L∞-norm,
reflecting the maximum magnitude of a tensor, to measure the
importance of the tensors in U. Consequently, the remaining
tensors in U with larger L∞-norm are more likely to be
selected. Similar to the first L1-norm based sampling, this
‘guided probability’ of the j-th tensor t1j in U is defined

as p∞j =
||t1j ||∞

max(||U||∞) . By using the Monte Carlo simulation
again, we can obtain the K sampled tensors (as BIRD do).

Obviously, the second L∞-norm based sampling introduces
changes to the expectation of L1-norm of V. However, since
the elements’ value of the tensor in U have been quantized
to the signs (i.e., ±1) after the first stage’s L1-norm based
sampling, we cannot utilize the same strategy (i.e., Eq. 5)
used to calculate the scalar S1 in this stage to preserve the
expectation invariance property. To approximately ensure the
expectation of the L1-norm of V remains consistent with U,
an naive solution is to scale the magnitudes of sampled tensors
again by multiplying S1 with a factor |U|

|V| , where |·| denotes the
number of tensors. In doing so, the resulting scaler is defined
as S = S1 × |U|

|V| .
Although the communication compression ratio can be

improved by further sampling these K tensors, there are two
limitations in the above second sampling process: (1) the strict

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 8

Fig. 6. A general example of Bi-Random Sampling process in BIRD+.

expectation invariance cannot be built on these tensors sampled
under the L∞-norm, this leads to the convergence performance
might be degraded by elements with very large magnitude.
(2) The fully adaptive sampling process potentially leads to a
high communication cost as appearing an unpredictable low
sparsity. In the following, we propose a uniform distribution-
based sampling algorithm with controllable sparsity in the
second sampling stage to address these limitations.

To improve the convergence stability of our sampling algo-
rithm, we do not directly consider these K sampled tensors
as the final sampled tensor, but set K as the number of
sampled tensors under a uniform distribution-based sampling
process. In doing so, K tensors will be sampled from U
with an equal sampling probability. More importantly, we
can improve the convergence stability by building a strict
expectation invariance property in this uniform distribution-
based sampling using the above scale method. Specifically, to
ensure the expectation of the L1-norm of V remains consistent
with U, the magnitudes of sampled tensors will be amplified by
multiplying S1 with a factor |U|

|V| , where |·| denotes the number

of tensors. Thus the final scaler is defined as S = S1 × |U|
|V| .

Such that the expectation of tensor’s L1-norm in the scaled V
can be derived as:

E(|| t1j ×
|V|
|U|︸ ︷︷ ︸

E||t∞j ||1

||1 ×
|U|
|V|

) = E||t1j ||1
(7)

Eq. 7 suggests that the L1-norm of the final sampled and
scaled tensors remain unchanged. Different from traditional
Top-K sparsification, our proposed Bi-Random sampling strat-
egy, involving two random sampling stages (as illustrated
in Figure 6), is a lightweight and unbiased communication
compression algorithm.

To more flexibly control the sparsity, we introduce a Gamma
Correlation [36] on the p∞j to achieve various compression
levels. Specifically, the sampling probability of the second
L∞-based random sampling is calculated as pγj = (p∞j)γ . The
hyper-parameter γ is used to control the sparsity. Note that the
definition of sparsity is d−s

d , where s and d are the number of
sampled parameters and parameters in the entire model. Higher
sparsity (i.e., increasing compression ratio) can be achieved by
setting γ < 1, and lower sparsity (i.e., decreasing compression

Algorithm 1: The tensor-wise Bi-Random sampling.
Input: The set of full precise floating-point tensors T of

each DNN layer.
Output: The sampled tensors V and scaler S of each layer.
begin

for ti ∈ T, i = 0, 1, 2, . . . do
p1i ←− ||ti||1

max(||T||1)
;

P1 ←−
{
p10, p

1
1, ..., p

1
|T |

}
;

U ←− T⊙ (rand(0, 1) < P1) \ 0;
S1 = max(||T||1)

m
;

for t1j ∈ U, j = 0, 1, 2, . . . do
p∞j ←−

||t1j ||∞
max(||U||∞)

;
pγj ←− GammaCorrection(p∞j);

Pγ ←−
{
pγ0 , p

γ
1 , ..., p

γ
|U|

}
;

K ←− |U⊙ (rand(0, 1) < Pγ) \ 0|;
Index ←− UniformSampling(0, K-1);
V ←− U[Index];
S = S1 × |U|

|V| ;
return V, S

ratio) can be achieved by setting γ > 1. Consequently,
Gamma Correction enables a more flexible and controllable
sparsity and communication compression. Note that Gamma
Correction applied in this second sampling stage does not
compromise the expectation invariance property as |U| and
|V| will also change accordingly.

To facilitate the understanding of the above sampling pro-
cess, we continue to discuss a specific use case based on
the earlier case. Specifically, assuming that we have obtained
two 1-dimension vectors [3,-3], [-5,5] after the above L1-
norm based random sampling. Our algorithm samples again
from the remaining 3 vectors [2,-1], [-2,2], [-4,4]. To obtain
the sampling numbers, BIRD+ first perform the L∞-norm-
based random sampling, which has the almost same steps as
the L1-norm based random sampling, except for replacing
the computation of the L1-norm with L∞-norm. Assuming
that we obtain two vectors from this L∞-norm-based random
sampling, we don’t directly select these two vectors as the
final sampled vector but randomly sample two vectors from
[2,-1], [-2,2], [-4,4] under the uniform distribution.

In summary, the aforementioned L∞-norm-based random
sampling is proposed to sample tensors again from set U
because we notice that the L1-norm based random sampling
retains too many tensors, resulting in a low compression ratio.
However, through L1-norm based sampling, the first indicator
L1-norm is no longer applicable since the remaining tensor’s
L1-norm has been quantized to the same value (i.e., ±1)
by Eq. 5. To achieve a more flexible and effective sampling
from the remaining tensors, we first adaptively obtain the
sampling number K from the remaining tensors guided by
their L∞-norm. Then, we randomly sample K tensors from
the remaining tensors under the uniform distribution with the
magnitude scaling method. Finally, we leverage a Gamma
Correction strategy on the second sampling stage to achieve
the controllable sparsity and compression ratio.

It is worth noting that our proposed tensor-wise sampling

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 9

C
om

pr
es

si
on

 ra
tio

R
un

ni
ng

 ti
m

e
(s

)

(a) Evaluations of index compression ratio
SparsitySparsity

(b) Evaluations of index compression time

Fig. 7. Evaluations of compression ratio and runtime(s) of different lossless
compressors under the various sparsity levels.

(a) The time costs of random sampling (b) The time costs of I/O
Size of Each Tensor Size of Each Tensor

Ti
m

e
(s

)

Ti
m

e
(s

)

Fig. 8. The time costs of (a) sampling operation and (b) I/O under the different
tensor’s size.

approach reduces the communication costs of index data at
the costs of increasing the risk of sampling some small
parameters while sampling more large parameters obtains
better training performance, as mentioned in many element-
wise Top-K sparsification approach. To maintain the model
training quality, our proposed Bird+ minimizes the negative
effects of sampling small parameters by (1) Sampling the
tensor with large L1-norm at a high probability, suggesting
that elements of the sampled tensors have large absolute values
at a high probability. (2) Building a tensor-wise expectation
invariance property within the sampling algorithm, and the
expectation invariance property has been proven to be effective
in maintaining model training quality. The detailed Bi-Random
sampling processes of BIRD+ are summarized in the pseudo-
code of Algorithm 1.

E. Tensors Compression

1) Value quantization: According to Eq. 5, the remaining
tensors have been quantized to their signs layer-by-layer (i.e.,
1-bit per element) through the aforementioned Bi-Random
sampling processes. For each layer, a scaler S is calculated
to represent the magnitude of the quantized tensors, which is
used to recover the floating-point model in the server.

2) Index coding: Generally, the integer indices of the
sampled tensors are highly redundant, thus we can further
reduce their size by using a lossless compression technique. To
achieve efficient compression for the index part, we evaluated
the compression ratio and runtime of three typical lossless
compression schemes: Zstd, Gzip, and LZMA, under various
sparsity. Experimental results in Figure 7 suggest that (i)
LZMA has a significant advantage in compression ratio over
Zstd and Gzip. (ii) The compression times of LZMA are
negligible when the volume of compressed data is not sig-
nificant (i.e., under a low sparsity). Considering that the index
sharing mechanism of BIRD+ can greatly reduce the number

of indexes, indicating that the compressed data is limited, thus
LZMA is the appropriate lossless compressor for BIRD+ to
further provide an additional 3×-5× index compression ratio.

Through the Tensor-wise Bi-Random Sampling and com-
pression, the final uploaded data of each layer are (i) the
signs of the sampled tensors, each with multiple integer binary
elements ∈ {−1,+1}; (ii) The compressed integer indices of
corresponding tensors; (iii) A floating-point scaler S .

F. Complexity Discussion

Given a DNN with N parameters, the time complexities
of BIRD+’s three key steps, Layer Splitting, Bi-Random
Sampling, and Tensors Compression are analyzed below:

1) Layer Splitting: Assuming a layer is split into k tensors,
the L1-Norm and L∞-norm of each tensor will be
calculated. The total time complexity is O(k+N +N).

2) Bi-Random Sampling: L1-Norm sampling and L∞-norm
sampling are two sequential random sampling processes.
L1-Norm sampling selects tensors from the total k
tensors with a time complexity of O(k). Assuming s
tensors are randomly sampled, L∞-norm-based uniform
sampling further samples from the remaining s tensors,
resulting in time complexity of O(s).

3) Tensors Compression: since the scaler S has been calcu-
lated in the previous L1-norm-based sampling, we only
need to calculate signs for the remaining m tensors with
time complexity of O(d ∗m), where d is the number of
elements in the sampled tensors.

Considering that s < k < N and d ∗ m < N , the overall
time complexity of the above three steps can be simplified to
O(N). Furthermore, compared with the conventional element-
wise sparsification-based method, the lightweight advantage of
BIRD+ can be analyzed from the following two aspects.

1) The advantage of tensor-wise operation: Assuming that
the operation objects in BIRD+ are k tensors with total e
elements in a split layer. Obviously, the number of tensors
is much smaller than the number of elements in a layer.
Therefore, operating on tensors instead of elements not only
reduces the time complexity from O(e) to O(k) but also
lowers the I/O overheads of selected parameters.

To validate the above analysis, we conducted the following
experiment: (1) we construct two vectors va and vb with the
same size of ten million floating-point numbers. (2) We split
vb into multiple chunks. (3) Element-wise random sampling
is performed on va and tensor-wise random sampling is per-
formed on vb, respectively. (4) By sampling the same number
of elements, we evaluate the time costs of the sampling process
and I/O for the two sampling strategies. Figure 8 suggests that
both the time costs of (a) the sampling process and (b) I/O in
the tensor-wise random sampling are significantly lower than
in element-wise random sampling. Additionally, the larger the
block split, the lower the time costs.

2) The advantage of random sampling: the sorting-based
Top-K algorithm is employed by many sparsification-based
compressors. The time complexity of the popular sorting algo-
rithm, which selects k maximum elements, is O(Nlogk) [22],
where N is the total number of parameters in the DNNs. In

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 10

1

10

100

1000

10000

sp=0.01 sp=0.05 sp=0.1

SBC SKC
DR SMT
BIRD+

1

10

100

1000

10000

sp=0.01 sp=0.05 sp=0.1

SBC SKC
DR SMT
BIRD+

1

10

100

1000

10000

sp=0.01 sp=0.05 sp=0.1

SBC SKC
DR SMT
BIRD+

1

10

100

1000

10000

sp=0.01 sp=0.05 sp=0.1

SBC SKC
DR SMT
BIRD+

(a) VGG (b) ViT (c) GPT (d) Bert

C
om

pr
es

si
on

 ra
tio

C
om

pr
es

si
on

 ra
tio

C
om

pr
es

si
on

 ra
tio

C
om

pr
es

si
on

 ra
tio

Fig. 9. Compression performance comparisons among different compression methods under the multiple sparsity levels.

1

10

100

1000

10000

SBC SKC DR SMT BIRD+

Index CR
Value CR
Overall CR

1

10

100

1000

10000

SBC SKC DR SMT BIRD+

Index CR
Value CR
Overall CR

1

10

100

1000

SBC SKC DR SMT BIRD+

Index CR Value CR
Overall CR

1

10

100

1000

SBC SKC DR SMT BIRD+

Index CR
Value CR
Overall CR

C
om

pr
es

si
on

 ra
tio

(a) VGG

C
om

pr
es

si
on

 ra
tio

C
om

pr
es

si
on

 ra
tio

C
om

pr
es

si
on

 ra
tio

(b) ViT (c) GPT (d) Bert

Fig. 10. The average index compression ratio (Index CR), value compression ratio (Value CR), and overall compression ratio (Overall CR) per selected
parameter among different compression methods.

contrast, BIRD+ employs a random sampling mechanism by
using the Monte Carlo simulation, resulting in a lower time
complexity of O(N).

V. EXPERIMENTS

A. Experimental Setup

Tasks, Models, and Datasets: Our experimental workloads
cover four mainstream distributed learning tasks of varying
scales: 1⃝ Training VGG16 [34] model with 15.3M parameters
on CIFAR10 [35]. The optimizer is Adam [37] with a learning
rate of 1e-3. 2⃝ Training ViT-based [38] model with 0.91M pa-
rameters on Tiny ImageNet [39]. The optimizer is Adam [37]
with a learning rate of 1e-3. 3⃝ Training GPT-Mini [1] model
with 13.9M parameters on WikiText2 [40]. The optimizer
is Adam with a learning rate of 1e-2. 4⃝ Training Bert-
based [2] model with 67.1M parameters on Glue/MPRC [41].
The optimizer is Adam with a learning rate of 1e-2.
Baseline and Compared methods: In our study, we com-
pared the performance of BIRD+ on the aforementioned
tasks against five other state-of-the-art methods, which are
sparsification-based distributed learning communication com-
pression approaches: SBC [10], SKC [18], DR [33], SMT [15],
and BIRD [42].
Experimental environment: In subsequent subsections, the
experimental evaluations are conducted in a distributed learn-
ing environment comprising 10 clients and 1 server. During
each communication round, clients initially train their local
model for one epoch. Then, clients compress the updates
of their local model using various compressors. Finally, the
compressed model updates are uploaded to the server. The
distributed training targets of VGG, ViT, GPT, and Bert are
85% validation accuracy,51% validation accuracy, 6.0 vali-
dation loss, and 70% validation accuracy, respectively (Note
that these training targets are not aimed at achieving state-
of-the-art model accuracy but are sufficient for evaluating the

effectiveness and superiority among different approaches). The
compression operations of each approach are implemented
using the Numpy v.1.19.1 [43] package in Python and
executed on the xeon gold 6132 CPU. The communica-
tion module is built on the collective communication of
torch.distributed v.1.10.2 [44] package, utilizing
the Gloo backend with 1 Gbps bandwidth.

B. Compression Ratio Under Different Sparsity

The compression ratio is one of the most crucial metrics
for evaluating compression techniques. In this subsection,
we compare the compression ratio of different compression
approaches across four distributed learning tasks. For the
sparsification-based communication compression technique,
sparsity (sp) is a key factor (as defined in IV-D2). Sparsity
reflects the number of elements selected, compressed, and
uploaded by a compression method. The value of sparsity will
influence the final communication compression ratio. Thus,
this subsection evaluates and compares the overall communi-
cation compression ratio under the different sparsity levels for
each compression approach.

Specifically, we set sparsity levels of 0.01, 0.05, and 0.1
for different compression methods by adjusting their hyper-
parameters (e.g. k for Top-K sparsification-based compres-
sors). Figure 9 suggests that (i) the overall compression ratios
improve with the increase of sparsity. (ii) BIRD+ exhibits
significant advantages over other sparsification-based methods
under the different sparsity. Specifically, BIRD+ achieves a
higher overall communication compression ratio of up to
32.6× compared to other compressors. Additionally, the spar-
sity of the adaptive compressor BIRD cannot be adjusted
manually, thus its compression ratio cannot be evaluated under
the different sparsity. In comparison, our proposed BIRD+
can achieve a higher compression ratio than BIRD by set-
ting a lower sparsity (detailed evaluations are provided in
subsection V-G). This controllable property of BIRD+ makes

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 11

1

10

100

1000

10000

sp=0.01 sp=0.05 sp=0.1

SBC SKC
DR SMT
BIRD+

1

10

100

1000

10000

sp=0.01 sp=0.05 sp=0.1

SBC SKC
DR SMT
BIRD+

1

10

100

1000

10000

sp=0.01 sp=0.05 sp=0.1

SBC SKC
DR SMT
BIRD+

1

10

100

1000

10000

sp=0.01 sp=0.05 sp=0.1

SBC SKC
DR SMT
BIRD+

(a) VGG (b) ViT (c) GPT (d) Bert

C
om

pr
es

si
on

 ra
tio

C
om

pr
es

si
on

 ra
tio

C
om

pr
es

si
on

 ra
tio

C
om

pr
es

si
on

 ra
tio

Fig. 11. Compression throughput (MB/s) comparisons among different compression methods under the multiple sparsity levels.

(a) VGG with sparsity of 0.01 (b) ViT with sparsity of 0.01 (c) GPT with sparsity of 0.01 (d) Bert with sparsity of 0.01

(e) VGG with sparsity of 0.05

(i) VGG with sparsity of 0.1

(f) ViT with sparsity of 0.05

(j) ViT with sparsity of 0.1

(g) GPT with sparsity of 0.05

(k) GPT with sparsity of 0.1

(h) Bert with sparsity of 0.05

(l) Bert with sparsity of 0.1

BIRD+

BIRD+

BIRD+

BIRD+

BIRD+

BIRD+

BIRD+

BIRD+

BIRD+

BIRD+

BIRD+

BIRD+

SMT

DR

SKC

SBC

SMT

DR

SKC

SBC

SMT

DR

SKC

SBC

SMT

DR

SKC

SBC

SMT

DR

SKC

SBC

SMT

DR

SKC

SBC

SMT

DR

SKC

SBC

SMT

DR

SKC

SBC

SMT

DR

SKC

SBC

SMT

DR

SKC

SBC

SMT

DR

SKC

SBC

SMT

DR

SKC

SBC

Sparsification
Index Comp.
Value Comp.

Sparsification
Index Comp.
Value Comp.

Sparsification
Index Comp.
Value Comp.

Sparsification
Index Comp.
Value Comp.

Sparsification
Index Comp.
Value Comp.

Sparsification
Index Comp.
Value Comp.

Sparsification
Index Comp.
Value Comp.

Sparsification
Index Comp.
Value Comp.

Sparsification
Index Comp.
Value Comp.

Sparsification
Index Comp.
Value Comp.

Sparsification
Index Comp.
Value Comp.

Sparsification
Index Comp.
Value Comp.

Fig. 12. The average compression times breakdown per distributed training round under the different sparsity levels.

it particularly advantageous for edge devices with limited
network bandwidth and various user preferences.

C. Compression Ratio Breakdown
To further investigate the advantages of BIRD+ in terms of

compression ratio, we evaluate the average compression ratio
breakdown per selected parameters, eliminating the influence
of sparsity. Note that BIRD and BIRD+ have the same perfor-
mance in this case. Figure 10 presents the average index com-
pression ratio, value compression ratio, and the corresponding
overall compression ratio per selected parameter. We observe
that (i) SBC, SKC, and DR achieve a limited compression ratio
ranging from 1.2×-4.1× on the index part by employing a
lossless coding scheme for the massive indexes of all selected
elements. Although SMT improves the index compression
ratio in VGG16 by applying the index sharing technique
to the 2-D convolution kernel of the convolutional neural
network, it fails to address models without a convolutional
structure (e.g., GPT and Bert). In contrast, BIRD+ introduces
a tensor-wise index sharing mechanism, significantly reducing
the proportion of indexes in different models, and then applies
LZMA to a small number of shared indexes of these selected
tensors, resulting in a substantially higher compression ratio

ranging from 39.6×-5078.7× on the index part. (iii) Eq. 1
suggests that achieving high performance in either the index or
value compression alone is insufficient. For example, although
SKC achieves a considerable compression ratio from 29.6×-
5024.5× on the value part, its overall communication compres-
sion ratio is still limited by its poor index compression ratio.
In contrast, BIRD+ attains the highest overall compression
ratio across all tasks with various DNN structures due to the
considerable compression ratio achieved on both the index and
value parts.

D. Throughput Under the Different Sparsity
As introduced in the subsection III, the primary purpose

of the communication compression technique is to enhance
the distributed training efficiency, making computational cost
a crucial aspect of the compression method. This subsection
evaluates and compares the computational costs of different
compression approaches across four distributed learning tasks.

Considering that the numbers of parameters to be com-
pressed vary under different sparsity, the total compression
time will be influenced by the sparsity. Therefore, this subsec-
tion does not directly compare the overall compression times
for each approach but defines a Compression Throughput

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 12

0

20

40

60

80

0 30 60 90 120

SBC SKC
DR SMT
BIRD BIRD+

5.5

6.5

7.5

8.5

9.5

10.5

0 10 20 30 40

SBC SKC
DR SMT
BIRD BIRD+

0.55

0.6

0.65

0.7

0 10 20 30 40 50

SBC SKC
DR SMT
BIRD BIRD+

0

10

20

30

40

50

60

0 30 60 90 120 150

SBC SKC DR
SMT BIRD BIRD+

(a) Training VGG with the same cr=1020

Training round

(c) Training GPT with the same cr=330

Training round

(d) Training Bert with the same cr=140
Training round Training round

(c) Training ViT with the same cr=120

V
al

id
at

io
n

ac
cu

ra
cy

V
al

id
at

io
n

lo
ss

V
al

id
at

io
n

ac
cu

ra
cy

V
al

id
at

io
n

ac
cu

ra
cy

Fig. 13. Model training quality comparisons among different methods under the same communication compression ratio.

(MB/s) to measure the computational costs of each method.
Specifically, the compression throughput is calculated by
α−β
T), where α is the original model size, β is the compressed

model size (i.e., the final communication costs), and T is the
total time costs of the communication compression process.
Compression throughput can effectively connect the compres-
sion ability and computational overheads, thereby reasonably
reflecting the compression efficiency.

The experimental results in Figure 11 suggest that (i) the
compression throughput of each method improves with the
decrease of sparsity. This is because the compression times in-
crease with the increase in data volume. (ii) BIRD+ achieves a
higher compression throughput ranging from 2.98×-149.62×
compared to other compressors. This is because BIRD+ has a
lower compression computational overhead and a higher com-
pression ratio than other methods under the same sparsity. (iii)
Compared with BIRD+ which can achieve a higher sparsity
by adjusting the hyper-parameter Gamma, BIRD adaptively
achieves a relatively high sparsity in each task (0.017, 0.153,
0.097, 0.231 for VGG, ViT, GPT, and Bert, respectively). Thus
BIRD+ has less data that needs to be compressed and the
corresponding compression time.

E. Compression Times Breakdown

To study the advantages of BIRD+ in terms of computa-
tional efficiency, we divide the compression process of each
method into three stages: sparsification, index compression,
and value compression. Then we evaluate the time costs
of each stage for different methods under various sparsity
levels. Note that although BIRD cannot achieve different
sparsity, BIRD and BIRD+ have the same compression times
breakdown under the same sparsity theoretically.

Figure 12 illustrates that the time costs of each compres-
sion stage increase with the sparsity, while BIRD+ achieves
the lowest time costs under the different sparsity levels.
Specifically, sparsification times of BIRD+ only require about
0.05×-0.71× of compared methods because (i) the Bi-Random
sampling strategy used in BIRD+ significantly reduces the
time costs compared to the element-wise sorting used in other
Top-K based compressors. (ii) The Tensor-based operation
in BIRD+ incurs a lower I/O cost compared to operating
on a large number of individual elements. Moreover, the
index and value compression time of BIRD+ require 0.001-
0.822× of compared methods because (i) the time costs of

sign-based value quantization in BIRD+ are lower than the
time-consuming sketching technique in SKC and DR; (ii)
Unlike SBC, DR, and SMT, which spend a lot of time (about
60%-80%) on index lossless encoding, BIRD+ incurs almost
negligible overheads in this aspect due to its index sharing
mechanism, which generates only a small number of index
data. Furthermore, the sparsification time of BIRD+ is slightly
higher than BIRD, but the index and value compression time
of BIRD+ is significantly lower than BIRD. This is because
(i) BIRD+ has one more uniform sampling process in the
sparsification process than BIRD; (ii) The index and value of
sampled tensors that need to be compressed in BIRD+ are less
than in BIRD under the lower sparsity. Therefore, BIRD+’s
lightweight nature makes it particularly advantageous for edge
devices with limited computational power, offering a higher
compression performance at a lower computational cost.

F. Evaluation of Model quality

To demonstrate the convergence effectiveness of BIRD+’s
sparsity-controllable tensor-wise random sampling, we com-
pare the model quality of each method under the same commu-
nication compression ratio. Considering that the compression
ratio of the preliminary work BIRD cannot be controlled
by setting sparsity manually, we first run BIRD to obtain
its adaptive compression ratio, and then assign the same
compression ratio to other methods (including BIRD+) to
match that of BIRD by adjusting their hyper-parameters.

Figure 13 illustrates that BIRD+ can achieve a similar
or better convergence rate and accuracy compared to BIRD,
and significantly better than other Top-K sparsification-based
methods. This can be attributed to the fact that (i) under
the limited communication traffic, BIRD and BIRD+ upload
more values to the server, indicating that more ‘important
knowledge’ learned from local data is transmitted to the server
and improves the global model quality. (ii) Similar to the Top-
K sparsification strategy, the Bi-Random sampling strategies in
BIRD and BIRD+ also tend to select the elements with larger
magnitudes in a more coarse-grained. (iii) The expectation
invariance property of the random sampling in BIRD+ can ef-
fectively maintain the model training quality. It is worth noting
that compared with the L∞-norm-based second sampling of
BIRD, the uniform sampling of BIRD+ can effectively avoid
excessive magnitude of sampled elements, thereby achieving a
more stable convergence rate. More importantly, BIRD and

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 13

TABLE I
PERFORMANCE COMPARISONS BETWEEN BIRD AND BIRD+.

Methods Model Quality Compression Ratio Throughput(MB/s)
BIRD BIRD+ BIRD BIRD+ BIRD BIRD+

VGG (Acc↑) 85.75% 85.37% 992.14 1184.65 313.90 315.39
ViT (Acc↑) 50.83% 51.71% 117.31 138.66 125.21 152.61

GPT (Loss↓) 5.92 5.94 261.56 307.74 349.52 375.22
Bert (Acc↑) 70.02% 70.08% 140.53 1510.32 262.87 881.74

BIRD+ achieve the above model training qualities without
requiring extra memory costs to keep the unselected
elements (i.e., the residual model). Therefore, BIRD+ can
effectively utilize the limited bandwidth and memory resources
to obtain a higher model training quality, which is crucial for
bandwidth-constrained edge devices.

G. Comparisons between BIRD and BIRD+

The main differences between the preliminary compressor
BIRD and our proposed BIRD+ are (1) BIRD+ introduces a
controllable γ correction-based mechanism to flexibly balance
the compression ratio and model training quality; (2) BIRD+
improves the convergence stability by developing a more
effective uniform sampling strategy in the second sampling
stage. To demonstrate the advantage of BIRD+, we first assign
the appropriate hyper-parameter γ in BIRD+ to obtain the
maximum communication compression ratio while ensuring
that the model training quality is not significantly lower than
the no compression baseline. Then we compare the model
accuracy, communication compression ratio, and compression
throughput of BIRD and BIRD+ (γ is set to 1.4, 1.75, 1.3, and
8.0 for the tasks of VGG, ViT, GPT, and Bert, respectively).

The experimental results in Table I suggest that (i) BIRD+
can obtain a similar model training quality as BIRD (↑
and ↓ are used to denote the higher is better in accuracy
and the lower is better in Loss). This is because these two
methods have a similar tensor sampling strategy. However,
Figure 13 shows that BIRD+ can achieve a stabler convergence
performance than BIRD. This is because uniform sampling of
BIRD+ can effectively avoid excessive magnitude of the sam-
pled elements, which helps maintain convergence efficiency.
In contrast, the randomness of the training process causes
BIRD to upload several elements with significant magnitude
in the unpredictable training stage, potentially degrading the
convergence stability during the training process. (ii) BIRD+
can improve the communication compression ratio of BIRD
by up to 10.75× by setting a smaller sparsity using the
controllable Gamma Correction mechanism. This advantage
allows users to take full advantage of the limited bandwidth
in resource-constrained devices. (iii) BIRD+ can improve the
overall compression throughput of BIRD by up to 3.35× under
the appropriate hyper-parameter γ. This is because although
BIRD+ involves one more uniform sampling process than
BIRD, the computational overhead of uniform sampling is
not significant when the sampling object is tensor. Therefore,
when the superiority in compression ratio is huge, such as the

results in Bert, BIRD+ can obtain a much higher compression
throughput than BIRD.

VI. CONCLUSION

In this paper, we propose BIRD+, a lightweight distributed
learning communication compression algorithm, which applies
a tenor-wise index sharing mechanism, a Bi-Random sam-
pling strategy, and an expectation invariance property to solve
the Low Index Compression Ratio issue, High Compression
Computing Cost issue, and High Extra Memory Cost issue,
respectively. Experimental results across multiple mainstream
distributed learning tasks demonstrate that compared to the
Top-K sparsification-based state-of-the-art distributed learning
compression methods, BIRD+ achieves higher compression
ratios up to 36.3× at lower time costs while maintaining the
model quality without introducing the extra memory cost.

ACKNOWLEDGMENTS

This work was supported in part by the Major
Key Project of PCL under Grant PCL2022A03, in
part by Shenzhen Science and Technology Program
under Grant RCYX20210609104510007 and Grant
KJZD20230923114610021, in part by Guangdong Provincial
Key Laboratory of Novel Security Intelligence Technologies
under Grant 2022B1212010005, in part by Guangdong
Basic and Applied Basic Research Foundation under Grant
2023A1515110072, in part by the National Natural Science
Foundation of China under Grant Nos. 62032023 and
T2125013, in part by the Innovation Funding of ICT, CAS
under Grant No. E461050. (Corresponding author: Wen Xia).

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, and et al., “Language models are
few-shot learners,” in Proc. NIPS’20, 2020.

[2] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Proc.
NAACL-HLT’19, 2019, pp. 4171–4186.

[3] H. Jin, D. Wu, S. Zhang, X. Zou, S. Jin, D. Tao, Q. Liao, and W. Xia,
“Design of a quantization-based DNN delta compression framework
for model snapshots and federated learning,” IEEE Trans. Parallel
Distributed Syst., vol. 34, no. 3, pp. 923–937, 2023.

[4] M. Duan, D. Liu, X. Chen, and et al., “Astraea: Self-balancing federated
learning for improving classification accuracy of mobile deep learning
applications,” in in Proc. ICCD’19. IEEE, 2019, pp. 246–254.

[5] Z. Lian, J. Cao, Y. Zuo, and et al., “AGQFL: communication-efficient
federated learning via automatic gradient quantization in edge heteroge-
neous systems,” in in proc. ICCD’21. IEEE, 2021, pp. 551–558.

[6] X. Su, Y. Zhou, L. Cui, and J. Liu, “On model transmission strategies
in federated learning with lossy communications,” IEEE Trans. Parallel
Distributed Syst., vol. 34, no. 4, pp. 1173–1185, 2023.

[7] L. Cui, X. Su, Y. Zhou, and Y. Pan, “Slashing communication traffic
in federated learning by transmitting clustered model updates,” IEEE J.
Sel. Areas Commun., vol. 39, no. 8, pp. 2572–2589, 2021.

[8] L. Cui, X. Su, Y. Zhou, and J. Liu, “Optimal rate adaption in federated
learning with compressed communications,” in IEEE INFOCOM 2022
- IEEE Conference on Computer Communications, London, United
Kingdom, May 2-5, 2022. IEEE, 2022, pp. 1459–1468.

[9] D. Wu, W. Yang, H. Jin, X. Zou, W. Xia, and B. Fang, “Fedcomp: A
federated learning compression framework for resource-constrained edge
computing devices,” IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., vol. 43, no. 1, pp. 230–243, 2024.

[10] F. Sattler, S. Wiedemann, K. Müller, and et al., “Sparse binary compres-
sion: Towards distributed deep learning with minimal communication,”
in Proc. IJCNN’19, 2019, pp. 1–8.

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 14

[11] O. Goga and R. Teixeira, “Speed measurements of residential internet
access,” in Proc. PAM’12, ser. Lecture Notes in Computer Science, vol.
7192, 2012, pp. 168–178.

[12] K. Lee, J. Lee, Y. Yi, and et al., “Mobile data offloading: How much
can wifi deliver?” IEEE/ACM Trans. Netw., vol. 21, no. 2, pp. 536–550,
2013.

[13] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[14] S. U. Stich, J. Cordonnier, and M. Jaggi, “Sparsified SGD with memory,”
in Proc. NIPS’18, 2018, pp. 4452–4463.

[15] D. Wu, X. Zou, S. Zhang, and et al, “Smartidx: Reducing communication
cost in federated learning by exploiting the cnns structures,” in Proc.
AAAI’22, 2022, pp. 4254–4262.

[16] Y. Lin, S. Han, H. Mao, and et al., “Deep gradient compression:
Reducing the communication bandwidth for distributed training,” in
Proc. ICLR’18, 2018.

[17] Aji and Heafield, “Sparse communication for distributed gradient de-
scent,” in Proc. EMNLP’17, 2017, pp. 440–445.

[18] J. Jiang, F. Fu, T. Yang, and et al., “Skcompress: compressing sparse and
nonuniform gradient in distributed machine learning,” VLDB J., vol. 29,
no. 5, pp. 945–972, 2020.

[19] S. Shi, X. Zhou, S. Song, and et al., “Towards scalable distributed
training of deep learning on public cloud clusters,” in Proc. MLSys’21,
2021.

[20] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification
for communication-efficient distributed optimization,” in Proc. NIPS’18,
2018, pp. 1306–1316.

[21] D. Alistarh, D. Grubic, J. Li, and et al., “QSGD: communication-efficient
SGD via gradient quantization and encoding,” in Proc. NIPS’17, 2017,
pp. 1709–1720.

[22] A. Mandal, H. Jiang, A. Shrivastava, and V. Sarkar, “Topkapi: Parallel
and fast sketches for finding top-k frequent elements,” in Proc. NIPS’18,
2018, pp. 10 921–10 931.

[23] W. Wen, C. Xu, F. Yan, and et al., “Terngrad: Ternary gradients to reduce
communication in distributed deep learning,” in Proc. NIPS’17, 2017,
pp. 1509–1519.

[24] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. AISTATS’17, 20-22 April 2017, Fort Lauderdale, FL,
USA, ser. Proceedings of Machine Learning Research, A. Singh and
X. J. Zhu, Eds., vol. 54, 2017, pp. 1273–1282.

[25] F. Seide, H. Fu, J. Droppo, and et al., “1-bit stochastic gradient descent
and its application to data-parallel distributed training of speech dnns,”
in Proc. INTERSPEECH’15, Singapore, September 2014, 2014.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in in Proc. CVPR’16, Las Vegas, NV, USA, June 27-30,
2016, 2016, pp. 770–778.

[27] C. Chen, J. Choi, D. Brand, and et al., “Adacomp : Adaptive residual
gradient compression for data-parallel distributed training,” in Proc.
AAAI’18, New Orleans, LA, February 2018.

[28] S. P. Karimireddy, Q. Rebjock, S. U. Stich, and et al., “Error feedback
fixes signsgd and other gradient compression schemes,” in in Proc.
ICML’19, 9-15 June 2019, Long Beach, California, USA, vol. 97, 2019,
pp. 3252–3261.

[29] S. W. Golomb, “Run-length encodings,” IEEE Transactions on Informa-
tion Theory, vol. 12, no. 3, pp. 399–401, 1966.

[30] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in in Proc. INTERSPEECH’15, Dresden, Germany,
September, 2015.

[31] N. Dryden, T. Moon, S. Jacobs, and et al., “Communication quantization
for data-parallel training of deep neural networks,” in Proceedings of 2nd
Workshop on MLHPC, Salt Lake City, UT, November 2016.

[32] Y. Tsuzuku, H. Imachi, and T. Akiba, “Variance-based gradient com-
pression for efficient distributed deep learning,” in Proc. ICLR’18,
Vancouver, Canada, April 2018.

[33] H. Xu, K. Kostopoulou, A. Dutta, and et al., “Deepreduce: A sparse-
tensor communication framework for federated deep learning,” in Proc.
NIPS’21, vol. 34, pp. 21 150–21 163, 2021.

[34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR’15, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

[35] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Tech. Rep., 2009.

[36] E. Reinhard, G. Ward, and et al., High Dynamic Range Imaging -
Acquisition, Display, and Image-Based Lighting (2. ed.), 2010.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR’15, 2015.

[38] A. Dosovitskiy, L. Beyer, A. Kolesnikov, and et al., “An image is worth
16x16 words: Transformers for image recognition at scale,” in in Proc.
ICLR’21, Virtual Event, Austria, May 3-7, 2021, 2021.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in in Proc. NIPS’12, Decem-
ber 3-6, 2012, Lake Tahoe, Nevada, United States, 2012, pp. 1106–1114.

[40] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” in Proc. ICLR’17, 2017.

[41] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” in Proc. ICLR’19, 2019.

[42] D. Wu, W. Yang, X. Zou, and et al., “Bird: A lightweight and adap-
tive compressor for communication-efficient distributed learning using
tensor-wise bi-random sampling,” in Proc. ICCD’23, 2023, pp. 605–613.

[43] C. R. Harris, K. J. Millman, S. van der Walt, and et al., “Array
programming with numpy,” Nat., vol. 585, pp. 357–362, 2020.

[44] A. Paszke, S. Gross, F. Massa, and et al., “Pytorch: An imperative style,
high-performance deep learning library,” in Proc. NIPS’19, 2019, pp.
8024–8035.

VII. BIOGRAPHY SECTION

Donglei Wu is currently working toward the Ph.D.
degree majoring in computer science at the Harbin
Institute of Technology, Shenzhen, China. His re-
search interests include Distributed Learning, Neural
Network Compression. He has published several
papers in major journals and international confer-
ences including the TCAD, TPDS, TACO, AAAI
and ICCD.

Weihao Yang is currently working toward the MS
degree majoring in computer science at the Harbin
Institute of Technology, Shenzhen, China. His re-
search interests include Distributed Machine Learn-
ing, Neural Network Compression. He has published
several papers in major journals and international
conferences including the TCAD, TACO, and ICCD.

Xiangyu Zou (Student Member, IEEE) is an asso-
ciate professor at the Harbin Institute of Technology,
Shenzhen, China. His research interests include data
deduplication, storage systems, etc. He has published
several papers in major journals and international
conferences including the TPDS, TOS, Future Gen-
eration Computing Systems, FAST, USENIX ATC,
ICDE, MSST, ICPP, ICCD, AAAI, DAC, cluster,
and HPCC. etc.

JOURNAL OF LATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 2024 15

Hao Feng is a second-year PhD student in Intelli-
gent Systems Engineering at Indiana University. He
received his bachelor’s degree in Computer Science
and Technology from Shandong University in 2022.
His research interests include High-Performance
Computing, parallel computing, and recommender
systems.

Dingwen Tao is a professor at the Institute of Com-
puting Technology, Chinese Academy of Sciences,
where he leads the High-Performance Data Process-
ing Systems Group at the HPC Research Center.
Previously, he served as a tenured associate professor
at Indiana University. He obtained his Ph.D. in
Computer Science from the University of California,
Riverside in 2018, following his B.S. in Mathematics
from the University of Science and Technology of
China in 2013. Dr. Tao has been recognized with
several prestigious awards, including the NSF CA-

REER Award (2023), Amazon Research Award (2022), Meta Research Award
(2022), RD100 Awards Winner (2021), IEEE Computer Society TCHPC Early
Career Researchers Award for Excellence in High Performance Computing
(2020), NSF CRII Award (2020), and IEEE CLUSTER Best Paper Award
(2018). Currently, he serves as an Associate Editor for the IEEE Transactions
on Parallel and Distributed Systems and Parallel Computing Journal. He
has also chaired the IEEE ScalCom-2021, DRBSD workshops, and IWBDR
workshops. Dr. Tao is a Senior Member of both ACM and IEEE.

Shiyi Li received the BS degree in mathematics
from Northwest University, Xi’an, China, in 2009,
and the PhD degree in computer science and tech-
nology from the Huazhong University of Science
and Technology, Wuhan, China, in 2015. He is
currently a research associate with the School of
Computer Science and Technology, Harbin Institute
of Technology, Shenzhen. His research interests in-
clude dependable storage systems and coding theory,
cloud storage, etc. He has published more than 20
papers in prestigious international conferences and

journals, such as the TPDS, TACO, USENIX ATC, ICDE, SRDS, ICPP, ICCD,
etc.

Wen Xia (Member, IEEE) received the PhD degree
in computer science from the Huazhong University
of Science and Technology (HUST), Wuhan, China,
in 2014. He is currently a professor at the School
of Computer Science and Technology, Harbin Insti-
tute of Technology, Shenzhen. His research interests
include data reduction, storage systems, cloud stor-
age, etc. He has published more than 50 papers in
major journals and conferences including the IEEE
Transactions on Parallel and Distributed Systems,
IEEE Transactions on Computers, Proceedings of

the IEEE, USENIX ATC, FAST, DAC, ICDE, AAAI, HotStorage, MSST,
DCC, IPDPS, ICPP, ICCD, etc.

Binxing Fang Binxing Fang received his Ph.D. from
Harbin Institute of Technology, China in 1989. He is
a member of the Chinese Academy of Engineering
and a professor in the School of Harbin Institute
of Technology, Shenzhen, China. He is currently
the chief scientist of the State Key Development
Program of Basic Research of China. His current
interests include big data and information security.

	Introduction
	Background and Related Works
	Key Observations and Motivations
	Design and Implementation
	Overview
	Layer Splitting
	Element-Wise Random Sampling
	Tensor-Wise Bi-Random Sampling
	L1-norm based random sampling
	Uniform distribution-based random sampling

	Tensors Compression
	Value quantization
	Index coding

	Complexity Discussion
	The advantage of tensor-wise operation
	The advantage of random sampling

	Experiments
	Experimental Setup
	Compression Ratio Under Different Sparsity
	Compression Ratio Breakdown
	Throughput Under the Different Sparsity
	Compression Times Breakdown
	Evaluation of Model quality
	Comparisons between BIRD and BIRD+

	Conclusion
	References
	Biography Section
	Biographies
	Donglei Wu
	Weihao Yang
	Xiangyu Zou
	Hao Feng
	Dingwen Tao
	Shiyi Li
	Wen Xia
	Binxing Fang

