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ABSTRACT

In orchards, tree-level localization of robots is critical for smart
agriculture applications like precision disease management and tar-
geted nutrient dispensing. However, prior solutions cannot provide
adequate accuracy. We develop our system, a fingerprinting-based
localization system that can provide tree-level accuracy with only
one LoRa gateway. We extract channel state information (CSI) mea-
sured over eight channels as the fingerprint. To avoid labor-intensive
site surveys for building and updating the fingerprint database, we
design a CSI Generative Model (CGM) that learns the relationship
between CSIs and their corresponding locations. The CGM is fine-
tuned using CSIs from static LoRa sensor nodes to build and update
the fingerprint database. Extensive experiments in two orchards vali-
date our system’s effectiveness in achieving tree-level localization
with minimal overhead and enhancing robot navigation accuracy.
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1 INTRODUCTION

In modern orchards, robots have become indispensable for execut-
ing precision agriculture practices, such as pruning, harvesting, and
spraying [1, 2]. These robots are tasked with focusing on individ-
ual trees for specific operations. For instance, conducting proactive
health assessments on individual trees facilitates timely interven-
tions that can prevent the spread of diseases [3]. To perform these
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functions, robots require the capability to accurately identify each
tree and navigate within orchards. Considering the spacing between
two adjacent trees is typically 4.9 m [4], achieving tree-level identifi-
cation necessitates localization accuracy finer than 4.9 m.

While tree-level localization is readily achievable in urban envi-
ronments [5, 6], achieving tree-level localization in orchards presents
significant challenges. Traditional methods for robot localization,
such as wheel encoders [7], SLAM (Simultaneous Localization and
Mapping)[8], and GPS (Global Positioning System)/INS (Inertial
Navigation System)[9], fall short in accurately identifying individual
trees. Specifically, wheel encoders are prone to slipping in muddy
conditions, compromising their reliability [10]. The SLAM sys-
tems face difficulties with variable lighting conditions, obstructions,
high infrastructure costs, high power requirements, and uneven ter-
rain [11, 12]. The GPS/INS systems, known for their robustness,
low cost, and energy efficiency, rely on GPS to provide precise
positioning that compensates for the inherent drift in inertial sen-
sors [9, 13]. However, GPS accuracy is notably compromised in
orchards due to signal obstruction by tree canopies [9, 14]. Our ex-
periments conducted in a pistachio orchard demonstrated an average
GPS localization error of 7.9 m, which led to a navigation accuracy
of 9.1 m using the state-of-the-art GPS/INS algorithm [9]. Conse-
quently, such level of accuracy renders traditional robot navigation
methods impractical in orchard environments.

Recent advancements in precision agriculture have seen the de-
ployment of long-range, low-power LoRa networks [15, 16] in or-
chards for many applications such as smart irrigation [17, 18] and
pest monitoring [19, 20]. This work explores the innovative use of
existing LoRa infrastructure to enable robot localization in orchards.
By equipping a robot with a LoRa node, it transmits packets to a
nearby LoRa gateway. This gateway then estimates the robot’s loca-
tion based on these packets and relays the calculated position back
to the robot. Moreover, by integrating LoRa-based localization with
inertial navigation systems, we can improve navigation accuracy.

Several algorithms for LoRa localization have been proposed [21-
24]. However, their application in orchards faces challenges: 1)
These algorithms require the reception of the same packet by mul-
tiple gateways for effective localization. In contrast to urban envi-
ronments, LoRa gateways in orchards are deployed more sparsely,
aimed at covering large areas at minimal costs. Consequently, at
most locations, the signal from a sensor node is likely to be received
by only a single gateway. 2) They assume Line-of-sight (LoS) signal
paths between nodes and gateways. In orchards, however, gateways
are mounted on high poles for broad coverage and nodes are installed
under canopies for environmental measurements. LoS paths barely
exist due to the blockage of tree canopies.
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Figure 1: The workflow of OrchLoc. The combination of pre-training and fine-tuning stages is termed the turbo-training scheme.

This paper introduces OrchLoc, a novel fingerprinting-based
LoRa localization system in orchards using a single LoRa gateway.
We propose a new fingerprint for LoRa localization, i.e., Channel
State Information (CSI), which is extracted from both the ampli-
tude and phase spectrum of signals received across eight channels
by a dual-antenna gateway. Distinct from Wi-Fi CSI fingerprinting
methods that separately utilize amplitude [25] or phase [26, 27] for
localization, we devise a location classifier with complex-valued
Fully-Connected (FC) blocks to process CSI measurements. Experi-
mental results reveal that our location classifier enhances amplitude-
only and phase-only methods in precision, with improvements of
20.3% and 46.7%, respectively.

However, OrchLoc encounters two challenges: the labor-intensive
site surveys in large orchards and the need for periodic updates to
counteract fingerprint aging. This paper highlights two key obser-
vations enabling efficient database construction and updates with
minimal overhead: /) Media Homogeneity: Existing sensor nodes
deployed across orchards for precision agriculture are utilized to peri-
odically provide CSI fingerprints from their stationary locations. The
challenge arises in updating fingerprints for locations without sensor
nodes. Although distinct CSI patterns emerge across various loca-
tions, LoRa signals only traverse through three media: air, foliage,
and ground. Experiments show that shadowing effects from these
media are consistent across all locations. This consistency means
shadowing effects learned from locations with sensor nodes can be
applied to refresh fingerprints at locations lacking sensor nodes. 2)
Spatial Homogeneity: Modern orchards feature uniformly shaped
trees and systematic layouts, allowing for the even distribution of
LoRa gateways to ensure comprehensive coverage. This uniformity
permits the division of an orchard into distinct gateway coverage
areas, each with a consistent tree layout. Each gateway is responsi-
ble for maintaining its own fingerprint database. Our experimental
findings reveal a high similarity in CSI fingerprints across these
various areas. This similarity supports the practicality of utilizing
the database from one area to inform the databases of other areas.

Inspired by recent advancements in generative models [28], we
introduce a CSI Generative Model (CGM) designed to synthesize
CSI fingerprints based on location IDs. As depicted in Figure 1,
the CGM is central to our proposed turbo-training scheme, which
facilitates the construction and updating of fingerprint databases in
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orchards. Initially, the CGM is pre-trained with fingerprints from a
reference area, selected for its Spatial Homogeneity—a characteris-
tic ensuring the representativeness of other areas. Subsequently, this
pre-trained CGM undergoes fine-tuning with data from sensor nodes
deployed in a new target area. This fine-tuning phase is crucial for
capturing local environmental features, significantly improving the
model’s adaptability to the specific conditions of the new area. We
conceptualize the CGM as a "CSI propagation model", leveraging
the Media Homogeneity to assert that the fine-tuned CGM can gen-
erate CSI data for locations devoid of sensor nodes. Through this
process, we can continuously refresh the classifier with generated
data, thereby circumventing the reliance on labor-intensive manual
measurements for data collection.

Our CGM, featuring a location-aware diffusion model (LoDM),
can generate CSI for each location. It contains a complex-valued U-
Net framework [29] and attention layers [30, 31] to effectively learn
the latent relationship between CSI data and location IDs. However,
feeding raw CSI data and location IDs directly into the LoDM could
constrain its modeling capabilities. This limitation arises because lo-
cation IDs do not provide detailed location-specific information, and
the utilization of low-dimensional CSI vectors could lead to overfit-
ting. To mitigate this issue, the CGM integrates specialized CSI and
location representers. A complex-valued auto-encoder-based CSI
representer converts the data into high-dimensional vectors, effec-
tively extracting latent features. The location representer computes
the proportions of foliage, air, and ground within the First Fresnel
Zone (FFZ). Combined with the communication distance and direc-
tion, our representer yields the FFZ vector. This vector offers a more
detailed, physically-informed, and comprehensive representation of
location compared to mere location IDs.

We collected CSI fingerprint database across seven rounds over
four weeks in one area, and gathered CSI data in ten areas across two
pistachio orchards. The experimental results show that our turbo-
training scheme consistently maintained average precision and recall
at 96.3% and 97.6%, respectively, over the four weeks. For the ten
areas, OrchLoc achieved an average precision and recall of 89.6%
and 91.8%, with a localization error of just 1.2 m. Furthermore,
substituting GPS with OrchLoc for robotic navigation in orchards,
employing the Neural-KF navigation algorithm [9], resulted in a
reduction of navigation errors by 61.3%.
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In summary, this paper makes the following contributions:

e We develop OrchLoc, an in-orchard fingerprinting-based lo-
calization system that achieves tree-level localization accu-
racy with a single LoRa gateway.

e We design CSI-based fingerprint and devise a complex-valued
FC block as a classifier for location estimation.

e Based on two observations in orchards, a turbo-training scheme
is developed, coupled with CGM, to enable efficient database
construction and updating.

o To generate high-quality CSI fingerprints, we customize CGM
by integrating a location-aware diffusion model, a CSI repre-
senter, and a FFZ-based location representer.

e Extensive experiments demonstrate the localization accuracy
and utility for robot navigation in orchards.

2 MOTIVATION

This work aims to provide tree identification and robot navigation
in orchards. A critical question is the impact of GPS accuracy on
the navigation performance of GPS/INS systems in orchards. Utiliz-
ing the public dataset [9], we simulate a robot’s movement across
farm terrains, covering a total trajectory length of 2.0 km. The ro-
bot is equipped with a Bosch BNOO055 INS unit [32] for capturing
inertial data. Meanwhile, an OptiTrack 13W-P MoCa system [33]
records the robot’s initial positioning and continuous velocity to
establish trajectory groundtruth. To mirror GPS accuracy in orchard
scenarios—averaging 7.9 m as detailed in Section 7.4—we introduce
Gaussian noise with a mean of 7.9 m and a standard deviation of 1.0
into the real coordinates. We test two methods that merge GPS and
INS data to correct the drift of INS sensors, i.e., Extended Kalman
Filter (EKF) [13] and Neural-KF [9].

Figure 2 reveals that navigation errors—measured as the average
root-mean-square error (RMSE) between the predicted and actual
location trajectories—decrease to 11.6 m with EKF and 9.1 m with
Neural-KF. These substantial errors stem from the reliance on GPS
for accurate position corrections to counteract INS sensor drift. In
environments like orchards where GPS accuracy is significantly
diminished, the system’s capacity to amend INS drift is severely
compromised, resulting in considerable navigation errors. Given that
typical tree spacing of 4.9 m in orchards, these levels of error are
impractical for autonomous robot navigation. This paper introduces
an innovative approach that leverages an alternative to GPS for
sensor drift correction, aiming to enhance localization accuracy in
GPS-challenged environments.

3 LOCALIZATION USING ORCHLOC

We first introduce the CSI for LoRa signal, then devise a location
classifier that integrates complex-valued FC blocks to process the
complex-valued data, enabling CSI fingerprint-based localization.

3.1 CSI Fingerprint

3.1.1 Extracting CSlI for LoRa. To extract stable CSI data for
LoRa, we incorporate several operations: de-chirping, Fast Fourier
Transform (FFT), preamble calibration, phase rotation compensation
for amplitude calculation, and utilization of the phase difference
between two antennas for phase estimation. Upon the reception
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Figure 2: The robot navigation accuracy in orchards.

of a packet, the CSI (a complex number representing channel fre-
quency response) is obtained by comparing the amplitude and phase
spectrum of the packet preambles to those of a standard up-chirp.
Preambles are well-calibrated as [34-36], serving as a reliable basis
for the following calculation.

Amplitude: The process begins with de-chirping and applying
FFT to the preambles, expressed as Y (f) = F[r(t)], where a peak
is identifiable at the first frequency bin. The amplitude of CSI is
determined by the ratio of the peak height of the received preamble to
that of the standard up-chirp. To counteract the impact of FFT phase
rotation on peak height estimation, phase rotation at frequencies
f and f — BW is compensated. This is achieved by optimizing the
summation of Y (f) -/ and Y( f—BW) over ¢ € [0, 2x], facilitating
an accurate estimation of the peak height.

Phase: We first calculate the phase of the peak from two antennas.
Then, the phase difference between the two antennas is derived to
obtain more stable phase data over time [34, 37].

These operations not only ensure the extraction of stable CSI
data but also minimize the potential interference impact from other
wireless systems operating within the same unlicensed frequency
band. Notably, we do not account for cell edge interference from
adjacent gateways, as in the US, adjacent LoRa gateways are config-
ured to operate on different frequency channels [38]. This regulation
prevents signal interference between neighboring gateways.

CSI Fingerprint xo: Unlike Wi-Fi, where a packet occupies
multiple channels, a LoRa packet is sent on only one channel each
time. Given a gateway operating across eight channels, nodes are
instructed to transmit eight packets, with each on a separate channel.
Thus, a fingerprint xo is obtained with a dimension of 2 x 8, capturing
the frequency response across eight channels for both antennas.

Database: CSI fingerprints are collected at all M = 64 locations
within a gateway coverage area. At each location, 160 packets are
collected. Each set of eight consecutive packets across the eight
channels forms a CSI vector, yielding 20 CSI vectors per location.
We also employ a common data augmentation technique [39] to pro-
duce 80 additional CSI vectors at each location by adding Gaussian
noise to the initial 20 CSI vectors. This noise was sampled from a
zero-mean Gaussian distribution. The standard deviation for each
dimension was set according to the standard deviation calculated
from the collected 20 CSI vectors.

3.1.2 Spatial Resolution. We employ the MUSIC algorithm [40]
and t-SNE [41] to illustrate the spatial resolution of CSI from physi-
cal and representation learning perspectives.

The MUSIC algorithm is used on the LoRa signal samples from
two antennas to assess the signal strength at various angles. Repeated
across eight channels, this yields spatial spectra for each location.
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Figure 3: Spatial spectra of two Figure 4: Representation of lo-
adjacent locations in an area. cations in an area using t-SNE.

Figure 3 shows distinct spatial spectra for two neighboring locations,
indicating different signal arrival angles at the gateway. This differ-
ence confirms the ability to distinguish two adjacent locations in
orchards using LoRa signals.

Furthermore, Figure 4 presents the results obtained by applying
t-SNE to the CSI fingerprints from all locations. Markers of different
colors or shapes represent distinct locations. The CSI data from the
same locations display a clustering effect, confirming the spatial
resolution of CSI fingerprints.

3.2 Complex-Valued Location Classifier

It is intuitive to flatten the CSI vector into a one-dimensional real-
valued vector. Then, traditional matching methods, such as the K-
Nearest Neighbors (KNN), can be applied for location classifica-
tion. However, the direct flattening might diminish the spatial or
structural features inherent to the CSI vector, and compromise the
inter-relations among vector elements. In contrast, we introduce the
complex-valued FC block to effectively integrate both amplitude
and phase information, thereby enhancing localization accuracy.

Complex-Valued FC Block: It consists of two real-valued neu-
rons, each processing the real and imaginary parts of input, denoted
by u and v, respectively. If input data is represented asc=u+1i- v,
the weight matrix as w = wy + i - Wy, and the bias as b = by +i - by,
then the output of the block is given by ¢’ = u’ + i - v’. Here,
u =oc(Re(w-c+b)) and v = 6 (Im (w - c+b)), where o is the
nonlinear activation function such as Rectified Linear Unit (ReLU).

Our classifier consists of two complex-valued FC blocks and two
real-valued FC layers, each followed by a ReLU function. To bridge
complex-valued FC blocks and FC layers, the absolute value of
outputs from the second complex-valued block is computed as the
input for the first FC layer. Features from the second FC layer are
then directed into the third FC layer, equipped with M neurons and
a softmax activation function.

3.3 Performance and Challenges

Over four weeks, we conducted seven rounds (r1 to r7) of CSI
measurement in an area with M = 64 locations. In each round,
we collect a fingerprint database for all locations, resulting in seven
distinct databases corresponding to different times: r1 (first day AM),
r2 (first day PM), r3 (second day), r4 (third day), r5 (tenth day),
r6 (seventeenth day), and r7 (twenty-fourth day). The fingerprint
measurement process needed around four hours in each round. The
environmental parameters observed in each data collection round
are documented in Table 1. The CSI fingerprint database from the
first round (r1) was divided into training and testing setsina 7 : 3
ratio. The location classifier, trained solely with the r1 training set,

307

Kang Yang, Yuning Chen, and Wan Du

1.0 1.0 T
Sos _““R}\I 08
506 0.6
c I8
204 0.4
'2 0.2 -F-+ Precision 0.2 frmmee 1: W/o updating
& °| = Recall ! “.“" —— 2: W/ updating
0.0 r1 r2 r3 r4 15 r6 r7 0.0 0 7 14 21 28 35

Data collection round RSSI estimation error (dB)

Figure 5: The accuracy over Figure 6: Updating by a subset
the seven rounds. of locations.

underwent evaluation using the databases from rounds r1 to r7,
notably without being retrained with databases from rounds r2 to r7.

Figure 5 illustrates the consistently high accuracy of our classifier
across the first five data collection rounds (r1 — r5), with the average
precision and recall stabilizing no lower than 89.8% and 91.1%,
respectively. This stability is attributed to three principal factors:
First, the integration of techniques that are proposed in Section 3.1.1,
including de-chirping, FFT, phase rotation compensation for ampli-
tude calculation, and the phase difference of two antennas for phase
calculation, enhances the stability of CSI data [34, 37]. Second, the
environmental conditions throughout this period were relatively sta-
ble, as evidenced by the data in Table 1. Specifically, the analysis
of this environmental data reveals a average temperature increase
of 3.1°C from round r1 to rounds r2 through r5, suggesting that the
fingerprint database remains robust when temperature fluctuations
are kept below this threshold. Moreover, orchards usually experience
minimal external disturbances such as human activity or vehicular
traffic, which further contributes to the stability observed.

Aging Problem: Figure 5 also presents a noticeable decline
in the classifier’s accuracy from round r6, with precision and re-
call dropping to 56.8% and 66.5%, respectively. This downturn is
primarily ascribed to a significant shift in the distribution of finger-
prints, prompted by the altered environmental dynamics at rounds
r6 and r7 compared to those in round r1. In particular, Table 1 high-
lights a substantial temperature increase of 10.5°C from round r1
to rounds r6 and r7. This variance highlights the need for periodic
refreshing of CSI fingerprints when temperature changes surpass the
3.1°C mark, underlining the importance of regular updates to the
fingerprint database to preserve the accuracy of the classifier.

Vast Orchard: In a 100-acre orchard with row and column spac-
ing of 6.7 m and 4.9 m, and LoRa communication range of 120 m,
the orchard is divided into 29 areas, each with 19 X 26 trees (loca-
tions) [4]. Allocating three minutes per location for data collection,
the total survey time amounts to 29.8 days. The requirement for data-
base refreshment further complicates the process, rendering such
site surveys infeasible.

3.4 Key Observations

‘We pinpoint two key observations in orchards that aid in reducing
labor for building and updating database.

3.4.1 Media Homogeneity. A experiment focusing on Received
Signal Strength Indicator (RSSI) estimation was conducted to ex-
plain this concept. The Log-Normal Shadowing model (Log) [4, 42]
is employed to estimate the RSSI of the received signals. The model
uses Path Loss Exponent (PLE) to represent environmental impacts
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Table 1: Statistics of environmental dynamics observed across
seven data collection rounds over a four-week period.

Date Humidity (%) Temp (°C) Wind (m/s)
Ist day AM (rl) 39.0+38.5 26.7 £ 2.6 2.1+0.1
Ist day PM (12) 34.3+3.5 31.0£0.9 1.9+0.3
2nd day PM (13) 42.3+3.1 299+04 2.1+0.4
3rd day PM (r14) 43.7+1.5 27.8 £1.5 2.1+£0.3
10th day PM (15) 56.3 +18.6 31.2+5.8 0.8+0.4
17th day PM (r6) 39.3 +11.5 36.8 £ 2.7 1.0+£0.2
24th day PM (17) 24.7 +3.5 35.5+0.7 2.0+0.0

on signal. In orchards, signals traverse three media: air, foliage, and
ground. Therefore, PLE is decomposed into three components [4]:

€]

where Pair, Pfoliage> a0d Pgroyng are proportions of air, foliage,
and ground among signal transmission path. The «, f, and y are
the intrinsic PLE for signals propagating through air, foliage, and
ground. We collected RSSI data at four locations in an orchard across
four weeks. Data from the first week were used to fit the values of «,
B, and y. Log was then evaluated over the next three weeks in two
cases: 1) without updating «, 5, and y; 2) updating «, f3, and y using
data from only one location.

Figure 6 shows the estimation error for both cases. The error in
case 2 significantly reduced from 13.9 to 5.7 dB across all locations,
compared to case 1. This is due to orchards’ media homogeneity,
where all locations share the same «, f3, and y values. Thus, updating
Log with data from just one location effectively improves accuracy
across others. Hence, in orchards, updating models with data from a
subset of locations enhances accuracy across others.

PLE = Pajr X a + Ppojigge X b+ Pyround XY

3.4.2 Spatial Homogeneity. An orchard is divided into multiple
areas, each covered by a gateway and maintaining a similar tree
layout. Each gateway holds its own database for its coverage area.
The similarity of CSI databases across areas, owing to tree layout
uniformity, is spatial homogeneity.

To confirm this assertion, we analyze the spatial spectra of iden-
tical location IDs within two areas, using the PSNR (Peak Signal-
to-Noise Ratio) to quantify their similarity. Higher PSNR values
indicate greater similarity [43]. As illustrated in Figure 7, PSNR for
the same location IDs across two areas reaches as high as 25.1 dB,
suggesting high spectral similarities. Moreover, Figure 8 presents
PSNR of spatial spectra for corresponding location IDs across six
areas, revealing that 86.7% of the spectra have a PSNR above 20
dB. Similar spatial spectra imply similar CSI, as both reflect signals
undergoing similar environmental impact. This confirms that various
areas within an orchard exhibit similar CSI fingerprints.

4 WORKFLOW OF ORCHLOC

Figure 1 presents the workflow of OrchLoc, designed for efficient
database building and updating in orchards, consisting of three
stages: pre-training, fine-tuning, and inference.

In the pre-training stage, we select one area as the reference area,
collecting CSI fingerprints from all locations within the reference
area to build an initial database. This database pre-trains the CGM,
which integrates a location-aware diffusion model with CSI and
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FFZ-based location representers, enabling the generation of CSI
fingerprints for different locations.

The fine-tuning stage is essential for either building or updating
the database for an area. Building: Fingerprints from locations with
static sensor nodes are used to fine-tune the pre-trained CGM, adapt-
ing it to local variations of the area. The refined CGM generates
fingerprints for locations without sensors, which are then combined
with data from sensor-equipped locations to form a complete data-
base. This database are used to train the area-specific complex-valued
location classifier. Updating: The distinction lies in fine-tuning the
existing area-specific CGM instead of the initial pre-trained CGM.

During the inference stage, the trained classifier determines the
robot’s location based on its current CSI measurement.

The pre-training and fine-tuning stages, termed as turbo-training,
leverages two observations made in orchards. First, using fingerprints
from all locations in a reference area exploits spatial homogeneity,
as this area’s database characteristics mirror those of other areas.
Second, the success of the fine-tuning across all locations is due to
Media Homogeneity. Although CGM model is more complex than
the Log model, its parameters essentially are akin to Log’s «, f, and
y. These parameters represent the media’s shadowing effect on the
signal’s RSSI or CSI in orchards. Thus, fine-tuned parameters of
either Log or CGM are applicable across all locations.

5 CSI GENERATIVE MODEL

Figure 1 also outlines three components of the CSI generative model
(CGM). The location-aware diffusion model (LoDM), receiving
input from CSI and location representers, learns the relationship
between CSI fingerprints and location IDs. The CSI representer
employs an complex-valued autoencoder: the encoder ¢ transforms
low-dimensional CSI into a high-order signal vector zg, while the
decoder ¥ reconstructs the raw CSI X from the signal vector zg
generated by the LoDM. For the location representer, the location
ID is converted to an FFZ vector y via FFZ modeling, which is then
processed by an FFZ encoder I' into a high-order link vector ¢.

Pairs of CSI fingerprints and their corresponding location IDs are
fed into CGM for training. To generate CSI fingerprints, the location
ID and Gaussian noise, mirroring the shape of a CSI fingerprint, are
input into the well-trained CGM.

5.1 CSI Representer

Raw CSI inevitably contains measurement noise, which stems from
factors like fluctuating atmospheric conditions. Directly using this
noisy data can lead the LoDM to incorrectly interpret these tran-
sient disturbances as genuine features. Moreover, relying on a low-
dimensional CSI vector might result in overfitting [44—46], where
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the model becomes excessively tailored to specific patterns. This
specialization can curb model’s performance on new CSI data. To
this end, we develop a complex-valued autoencoder to derive high-
dimensional CSI representations.

The encoder @ is comprised of three complex-valued FC blocks.
Following each block, an ReLU function is applied to introduce
non-linearity, thereby enabling the encoder to effectively capture
higher-order representations within the CSI data. The dimension of
each layer successively doubles that of the preceding one. Parallel
to the encoder structure, the decoder ¥ is made up of three complex-
valued FC blocks. It reconstructs the raw CSI data from the encoded
representation. Starting with the high-dimensional size, each FC
block in the decoder reduces the dimension by half, culminating in
the reconstruction of the raw CSI vector Xg.

After obtaining the reconstructed CSI vector X from the decoder
¥, we compute the Ly loss, given by £, (x0,Xo) = [|x0 — i0||§, to
train the complex-valued autoencoder.

5.2 Location Representer

The location representer incorporates FFZ modeling and an FFZ
encoder to learn the location representation.

5.2.1 FFZ Modeling. The CSI vector is labeled with a location
ID ranging from 1 to M, typically represented as a one-hot vector of
length M, with a single bit set to 1 for the specific ID. However, one-
hot encoding presents limitations, such as reduced training efficiency
and lack of physical location context for guiding the LoDM in
learning CSI-location relationships. To this end, FFZ modeling is
devised. It transforms a location ID into a 7-element FFZ vector y
that encapsulates physical factors influencing signal transmission.

The FFZ represents a 3D ellipsoid region concentrating most of
the signal’s energy, with focal points aligned to the 3D coordinates
of the node and gateway. In orchards, the FFZ contains three media
(air, foliage, and ground), each reporting distinct shadowing effects
on the signal. Thus, we calculate the proportions of three media to
profile the signal path.

A 3D orchard representation is created using a Cartesian coor-
dinate system, with x and y axes along and across orchard rows,
and z axis pointing upwards, originating at the gateway’s position
on the ground. Uniform tree spacing in orchards determines tree
positions on x and y axes. Trees are modeled as cylinders (trunks)
and ellipsoids (crowns), only requiring measurements of height and
canopy width. Consistent growth patterns of trees across the same
orchard allow for modeling based on a single representative tree,
thus enabling a 3D representation of the orchard.

Utilizing the 3D coordinates of the FFZ’s focal points and its
mathematical formulation [42], the 3D FFZ is represented within the
established coordinate system. Numerous sampling points within
the 3D FFZ are then evaluated for interactions with air, trees, or
ground. The proportion of each medium is calculated by comparing
the number of sampling points interacting with each medium to the
total within the 3D FFZ.

Furthermore, acknowledging the impact of both distance and
direction between node and gateway on the received signal, the
normalized distance and 3D direction are incorporated. This yields a
7-dimensional FFZ vector y.
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5.2.2 FFZ Encoder. The FFZ vector y captures factors affecting
the CSI vector, providing the LoDM with physical location informa-
tion to understand the CSI-location relationship. However, due to
uniform orchard layouts, identical FFZ vectors are generated for the
same location ID across different areas, limiting new area adaptation
for the LoDM. To overcome this, the FFZ encoder I transforms the
FFZ vector y into the link vector {. Comprising multiple real-valued
FC layers with ReLU activation, it is co-trained with the LoDM.
Therefore, refining the FFZ Encoder while fine-tuning the LoDM to
new areas allows it to adjust to subtle local environmental variations.

5.3 Location-Aware Diffusion Model

We develop the LoDM for generating CSI across various locations,
inspired by the denoising diffusion probabilistic model (DDPM) [28],

5.3.1 Overview. Figure 9 depicts the architecture of LoDM, which
consists of two Markov chains: forward and reverse. In the forward
chain, unlike DDPM that introduces noise to raw data, we use sig-
nal vectors z¢ (high-order representations of raw CSI vector xg) to
produce a sequence of noisy signal vectors z;. This is achieved by
incrementally adding Gaussian noise to zy at each time step £, which
ranges from 1to T.

In the reverse chain, the critical task is to accurately subtract noise
from the noisy signal vector via the denoise module. Considering
location effects on the signal, the module inputs both the noisy signal
vector z; and the link vector { to estimate noise in z; at each time
step t. Attention layers are incorporated to fuse the signal and link
vectors, enhancing the noise estimation process. Subtracting this
estimated noise from noisy vector z; produces z;—_1, the input for the
next denoise step ¢ — 1. This iterative process progresses from T to
1, ultimately recovering the initial signal vector Zg.

The generation of a new single vector requires two inputs: a link
vector ¢ and a random noisy vector z7, sampled from a Gaussian dis-
tribution. This is followed by employing ancestral sampling through
the reverse Markov chain.

5.3.2 Denoise Module. Figure 10 shows the denoise module,
featuring a deep neural network-based noise predictor. It integrates
a complex-valued U-Net, an embedding layer, and attention layers
to estimate noise in the noisy signal vector z;, given time step ¢ and
link vector {. The module subtracts the estimated noise from z;,
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generating z,_1 for the next step ¢ — 1. Thus, the noise predictor is
central to the module’s function.

Complex-Valued U-Net Backbone: The U-Net backbone [29],
illustrated in Figure 10, features a dual-path design comprising
contracting and expansive segments. This architecture excels in
feature extraction and reconstruction [28], making U-Net well-suited
for generating CSI fingerprints that capture signal variations induced
by environmental conditions in orchards. The contracting path (right
trapezoid) compresses the signal vector for key feature extraction
and global trend identification. Conversely, the expansive path (left
trapezoid) reconstructs this data, focusing on subtle details and
maintaining spatial correlations. This dual architecture captures the
complex dimensions of the signal vector.

In detail, the contracting path features downsampling layers with
1D convolutions (increasing channel count), ReLU activations, resid-
ual layers (dotted line), and complex-valued FC block reducing
dimensions. The expansive path includes upsampling layers with 1D
convolutions (decreasing channel count), ReLU activations, residual
layers, and complex-valued FC block expanding dimensions.

Embedding Layer: The time step t is transformed from an
integer into a vector using Sinusoidal Position Embeddings [30].
This embedding vector is subsequently added to both the input and
intermediate layers of the predictor.

Attention Layer: Our noise predictor integrates the link vector ¢
via an cross-attention layer [30, 31, 47]. This integration enables the
model to focus on location-relevant features, enhancing its capacity
to produce signal vectors for each location. The link vector { is
effectively utilized in both downsampling and upsampling layers of
U-Net via attention layers:

Attention(Q, K, V) = softmax ( 2)

KT
Q ) v
Vd
where Q = Wo - 7; (z;), K = Wi - {, V = Wy - { are computed using
learnable projection matrices Wo, Wk, Wy, and 7; is intermediate
layer of U-Net. The scaling factor Vd maintains stability during the
training process, where d is the feature size.

5.4 Generalizability to Other Environments

While our system theoretically holds the potential for application
across diverse environments, such as wild forests, its generalizability
depends on having an accurate 3D model of the environment for
location representation and the presence of media and spatial homo-
geneity. These factors are crucial for constructing and updating the
fingerprint database. The structured layout of orchards, featuring uni-
formly positioned trees along with media and spatial homogeneity,
significantly facilitates efficient fingerprinting. In contrast, forests
present a more complex scenario with trees varying in placement,
species, age, and shape, posing substantial challenges to the sys-
tem [48]. Such variability complicates the fingerprinting process,
making it more labor-intensive. Future work could explore methods
to adapt OrchLoc to other environments in a lightweight manner.

6 IMPLEMENTATION

Hardware: LoRa nodes are hand-crafted with SX1276 Radio [49]
on the Arduino Uno boards [50]. The bladeRF 2.0 Software De-
fined Radio (SDR) [51] is used to receive LoRa signals. The SDR
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Figure 10: The architecture of the denoise module.

is equipped with two antennas, a common setting for LoRa gate-
ways [52-54], producing two synchronized I and Q streams. The
distance between two antennas is 14.0 cm, less than half the wave-
length of LoRa signal. The SDR is connected to a Raspberry Pi
4. We execute Python scripts on the Raspberry Pi to control the
SDR, enabling it to capture signal samples at a sampling rate of 2
MHz. While acknowledging that dual-antenna configurations are
not standard in commercial LoRa gateways, our choice to use this
setup with SDR is aimed at demonstrating its potential in address-
ing orchard localization challenges. We recognize that commercial
gateways may not adopt this configuration. Our decision to utilize a
gateway with two antennas explore and demonstrate the potential in
addressing in-orchard localization challenges. Collected samples are
processed on a local computer equipped with a CPU that has an In-
tel(R) Core(TM) i9-11900KF @ 3.50 GHz. A NVIDIA GEFORCE
RTX 3080 Ti card is used to accelerate the training process. GPUs
are not required for inference, making OrchLoc compatible with
edge devices employed in agricultural applications.

Training of the Location Classifier: The input layer requires
data in the format X = {x,x;} € R!X2 with the first and second
columns representing the real and imaginary parts of inputs, respec-
tively. Thus, we flatten the 2x 8 CSI vector into a 16-element column
vector (I = 16), and then compute the real and imaginary values for
each element. The output layer’s size is equal to the number of loca-
tions M. We use cross-entropy loss [55] to calculate the loss between
the actual and predicted location IDs.

Training of the CSI Generative Model: The CSI representer
shares the same input as the location classifier. Its encoder generates
the signal vector zg with dimensions 2x128. The location representer,
utilizing FFZ modeling, creates a 7-element FFZ vector y. Then,
the FFZ encoder outputs a link vector ¢ of length 32. To reduce
the risk of overfitting, a dropout layer with a probability of 0.1 is
integrated into both the CSI representer and the FFZ encoder. The
CSI representer is trained using the Adam optimizer, with a batch
size of 256 and a learning rate of 0.001.

For LoDM model, Gaussian noise with a mean of zero and a
variance f; is introduced in the forward process. The variance f;
increases linearly from f; = 10* to it = 0.02, where T is the total
number of time steps in the diffusion process. We set the total number
of time steps T = 1000. Its noise predictor is trained to minimize
the discrepancy between the predicted and actual noise. Training
continues until a specific convergence criterion is satisfied. This can
be either reaching the maximum number of epochs or achieving a
loss lower than a specified threshold. In our implementation, the
maximum epoch is set to 300 and the minimum loss is 0.01. The
chosen hyper-parameters align with those suggested by [28].
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To enhance the noise predictor’s learning, which depends on
signal and link vector pairs, we employ the Ly loss:

Lroom =Ea(xy)ye-No1) [ll€ —€o (z. t TODIZ] 3

where z; is the noisy version of zg = ®(xo) at time step ¢, with T (y)
producing link vector {. Time step t is sampled uniformly from
{1,---, T}, e represents the true added noise in z;, and eg (z4, £, T (y))
is the predicted noise. Noise predictor €y and FFZ encoder I' are
co-optimized using this loss.

7 EVALUATION
7.1 Experimental Setting

Pistachio orchards, an economic crop yielding approximately 1.1
billion pounds in 2021, were selected for our evaluation. Figure 11(a)
showcases a pistachio orchard testbed divided into several areas, with
each area containing M = 64 trees. Among these areas, area A served
as the reference area. In this orchard, the arrangement features trees
spaced 4.9 m apart in columns and 6.6 m between rows, with the
average tree dimensions being 6.1 m in height and 2.3 m in width.

Within each area, LoRa nodes were positioned adjacent to 64
trees, with each node situated 2.0 m to the right of the trees. At
each node location, LoRa nodes transmitted an 8-byte packet to the
gateway. As shown in Figure 11(b), the LoRa nodes and gateway
were installed at heights of 0.45 m and 10.0 m, respectively. The
system was configured with a transmission power of 14 dBm, a
spreading factor of 10, a bandwidth of 125 kHz, and a coding rate of
4/5. The successive eight packets employed eight different channels,
cycling through sending the eight packets with different channels
over 20 times. Consequently, a total of 160 packets were sent from
each node location, yielding 20 CSI vectors per location. We also
employ the data augmentation technique proposed in Section 3.1.1
to produce 80 additional CSI vectors at each location by adding
Gaussian noise to the initial 20 CSI vectors. Thus, a total of 100
samples are collected at each location.

7.1.1 Datasets. In all areas, LoRa nodes are located 2.0 m right
from trees. At each location, the node transmitted a packet to the
gateway, cycling through eight channels for eight successive packets,
repeated 20 times. Thus, 160 packets were sent from each location.
Area A in Figure 11 is selected as the reference area.

Temporal Dimension Dataset: CSI fingerprints were collected
in area A seven rounds (r1 to r7) over four weeks.

Spatial Dimension Dataset: We collected CSI data in six areas
(Ato F in Figure 11(a)) of one pistachio orchard and four areas of
another pistachio orchard.

7.1.2 Benchmarks. We use the following benchmarks:

e GPS: We use Google Maps in satellite mode on an IC 5941
GPS radio[56] to identify current location IDs, then compare
them with the actual physical locations.

o RSSI: RSSI data from eight channels are employed to identify
locations via FC layers.

o AMP: Only the amplitude of CSI data is used for location
identification via FC layers.

e PHA: Similarly, we only use the phase of CSI data to identify
locations via FC layers.
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Figure 11: The illustration of the orchard testbed setup.

e KNN: The CSI vector is flattened into a one-dimensional
vector, with KNN applied as the classifier.

7.1.3 Performance Criteria. The location classifier assigns a
CSI vector to a specific location, essentially a classification task.
We evaluate OrchLoc based on average precision and recall, then
translate classification results into localization error.

Precision and recall are calculated for each location: precision as
the ratio of correctly identified instances to all predictions for that
location, and recall as the ratio of correct identifications to the total
instances at that location. These two metrics serve as indicators of
the classifier’s accuracy and reliability in correctly identifying tree
locations. The emphasis on precision and recall can vary depending
on specific applications. For instance, in the case of disease detec-
tion among trees, a high recall is paramount. This ensures that all
potentially diseased trees are flagged for further inspection, priori-
tizing the identification of all cases over the risk of false positives.
Conversely, other applications might demand higher precision to
minimize the risk of false identifications.

Localization error is the Euclidean distance between the actual
and predicted location IDs, taking into account the row and column
spacing. Here, each tree is assigned a unique location ID, with a
location point situated 2.0 m to the right of the tree’s trunk.

7.2 Temporal Dimension Performance

The efficacy of our system may be affected by various environmental
dynamics, which can be classified into three categories [4]: 1) short-
term weather changes, e.g., temperature fluctuations; 2) changes
in foliage density; and 3) long-term changes in foliage shape. Our
temporal dataset encompasses the first two dynamics. Specifically,
weather variation across the seven rounds is detailed in Table 1,
and the rapid growth of pistachio trees in July suggests changes
in foliage density [57]. For each data collection round, CSI data
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Figure 12: The performance in area A from rounds r2 to r7
without and with the turbo-training scheme.

are collected at M = 64 locations, with the data from each location
divided into training and testing parts in a 7 : 3 ratio. Thus, for each
round, the training or testing parts for all locations collectively forms
the round’s training or testing dataset.

In response to these environmental variability, we devised a turbo-
training scheme that autonomously refreshes the fingerprints. First,
a CGM is pre-trained with the round r1 training set, necessitating
manual collection of CSI data at each location. Following this initial
manual measurement, the CGM is fine-tuned using data from sensor
nodes [58] already deployed for other agricultural tasks (e.g., smart
irrigation [59] and pest monitoring). To simulate data from these
locations with sensor nodes, we randomly select training parts from
30% of the locations at each round for fine-tuning the pre-trained
CGM. The refined CGM is capable of generating updated finger-
prints for every location at the subsequent round, thus maintaining
the classifier’s efficacy. The refreshed classifier is then applied to
identify location IDs from the CSI data in each round’s testing set.

As outlined in Table 1, temperature fluctuations are confined to a
3.0°C range over a period of four hours. If a sensor node transmits
its sensing data every 15 minutes, this enables a gateway to collect
16 CSI samples from a single sensor node within four hours. Before
encountering significant temperature changes, our turbo-training
scheme capitalizes on these samples to fine-tune the CGM.

Figure 12 shows that, with turbo-training, our classifier achieves
an average precision of 96.3% and recall of 97.6%, alongside a
localization error of 0.4 m. This demonstrates resilience to tempera-
ture variations up to 10.5°C, significantly surpassing the threshold
of 3.1°C identified in Section 3.3. Thus, turbo-training effectively
manages short-term weather changes and foliage density variations,
eliminating the need for manual CSI fingerprint collection.

Moving forward, if temperature deviations exceed 10.5°C, our
system’s performance may decline. Future endeavors will aim at thor-
oughly evaluating and enhancing our system’s robustness through ex-
tensive experimental studies. Moreover, while rapid pistachio growth
was observed, it did not cover a wide range of foliage changes. Signif-
icant alterations in tree foliage, such as extensive leaf loss impacting
CSI features, could potentially affect our system’s performance ad-
versely. Our system is particularly beneficial in environments with
dense foliage, where thick foliage can significantly obstruct GPS sig-
nals. Conversely, in seasons with sparse foliage, such as late autumn
or winter, simpler GPS/INS systems may provide sufficient navi-
gation accuracy due to unobstructed GPS signal paths [9], thereby
reducing the necessity for our system.
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Figure 13: The localization accuracy in the four areas of the
second pistachio orchard.

Long-Term Foliage Shape Changes: The foliage shape chang-
ing, characterized by trunk and branch growth over years, necessi-
tates an evaluation of its impact on localization accuracy. To this end,
data were collected in a second pistachio orchard exhibiting slightly
distinct characteristics from the first: row and column spacings of
6.6 m and 4.8 m, respectively, and average tree dimensions of 5.8 m
in height and 2.1 m in width. This variance in orchard layout and tree
size provides an ideal context for assessing the adaptability of our
system to long-term environmental changes. Utilizing the pre-trained
CGM from the reference area, we can generate fingerprints for new
areas, whether they are areas covered by another gateway within
the first orchard or entirely different orchards. This adaptability is
enhanced by fine-tuning the pre-trained CGM with packets received
from existing sensor nodes in the new area, tailoring the model to
the local environmental conditions.

CSI data were collected from four areas (B2, C2, D2, and E2) in
the second orchard. For each area, training data from 30% of the
locations were randomly selected to refine their classifiers through
the turbo-training scheme, employing the CGM pre-trained with data
from area A. The performance of these updated classifiers was then
evaluated in their corresponding areas to gauge their adaptability
to variations in foliage structure. It is imperative to note that the
collected data at different areas is only for simulating data from
locations having sensor nodes and for system evaluation purposes.

As depicted in Figure 13, our system demonstrated commendable
performance in the second orchard, achieving recall rates of 79.3%,
71.9%, 72.1%, and 63.1%, and mean localization errors of 2.8, 3.5,
4.1, and 5.3 m across the four areas. Although a performance decre-
ment was observed, likely attributable to the differences between the
orchards, the results remain promising. With an average precision
and recall of 63.8% and 71.6%, respectively—without necessitating
manual data collection—the achieved accuracy surpasses the inter-
tree distance of 6.6 m and the typical GPS error of 7.9 m (as detailed
in Section 7.4). These findings validate our system’s potential to
significantly reduce labor costs for training data collection in new
orchards, underscoring its adaptability to environmental changes.

7.3 Spatial Dimension Performance

The turbo-training scheme was employed across five new areas
(B, C, D, E, and F) within the first orchard, selecting a random
30% of locations in each for this turbo-training. This facilitated the
development of location classifiers tailored to each specific area,
which were then utilized for testing in these areas.
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Figure 14: The localization accuracy in the five areas of the first
pistachio orchard.

As depicted in Figure 14, our system demonstrated substantial
effectiveness in these new areas. Notably, we attained precision of
95.9%, 93.3%, 93.9%, 89.7%, and 87.1%, along with mean localiza-
tion errors of 0.5, 0.7, 0.8, 1.3, and 2.1 m for areas B, C, D, E, and F
respectively. A discernible trend is the gradual performance decline
correlating with increased distances from area A. This pattern is
likely attributed to shifts in the data distribution resulting from local-
ized environmental variations across different areas when compared
to the reference area A. Additionally, the discrepancies in accuracy
relative to those presented in Figure 12 could stem from both spatial
and temporal diversity—given that the data from these new areas
were collected at different times relative to area A. Incorporating
additional location data for turbo-training could mitigate this.

7.4 Benchmark Study

We assess five baselines on the dataset from area A at round r1. The
RSSI-based, amplitude-based, and phase-based classifiers utilize
three FC layers. The amplitude and phase data are derived from CSI
data, while RSSI is calculated using collected I Q samples. For KNN-
based classifier, the location ID for a CSI vector in the test dataset is
identified by finding the k nearest CSI vectors in the training dataset
via Euclidean distance, and assigning the most common ID among
these neighbors. After a grid search, we selected k = 5.

Currently, smartphones utilize signals from multiple Global Navi-
gation Satellite Systems (GNSS), including GPS, GLONASS, and
Galileo, combining these to provide fused positioning results. De-
spite this integration of several signals, Figure 15 shows that GPS has
the lowest precision and recall, at 18.8% and 9.4% respectively, with
a mean localization error of 7.9 m. It is due to dense tree canopies ob-
structing GPS signals. Instead of correctly pinpointing the location
ID, GPS often identifies neighboring rows or columns.

OrchLoc outperforms RSSI, AMP, and PHA, enhancing precision
by 56.6%, 20.3%, and 46.7%, and recall by 41.9%, 15.4%, and 34.3%,
respectively. The mean localization errors using RSSI, amplitude,
phase, or CSI are 4.6, 2.7, 4.7, and 0.5 m, highlighting CSI’s supe-
riority in location identification. While amplitude alone is limited,
the incorporation of phase information enriches location matching.
Our complex-valued classifier, unlike simple FC layers, effectively
utilizes the full potential of the CSI data, boosting accuracy.

Although a marginal improvement of OrchLoc, compared to
KNN, is observed with a 2.0% increase in precision and a 3.9%
increase in recall, our system outperforms KNN in several aspects.
First, as illustrated in Figure 15(b), our classifier significantly re-
duces the mean localization error from KNN’s 0.99 m to 0.54 m,
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Figure 15: The localization accuracy in area A with six different
location classifier.

translating to a 45.0% improvement. Upon a detailed examination
of all instances of misclassification, we observed that the mean lo-
calization errors for KNN and our system were 7.8 m and 14.6 m,
respectively. Despite these comparable misclassification rates, our
model consistently generates predictions that are closer to the true
positions than those produced by KNN. This advantage is attributed
to our classifier’s complex-valued FC block for analyzing the inter-
action between phase and amplitude within CSI data. In contrast,
KNN’s method of merging amplitude and phase into a single column
vector may obscure spatial or structural characteristics of the CSI
vector, thereby interfering with the precise interpretation of the data.

Second, for robotic navigation, the precision with which our
classifier provides localization information is of utmost importance
for calibrating INS drift. The significant reduction in localization
error facilitated by our system necessitates less time for the EKF to
correct drift, thus enhancing the efficacy of navigational adjustments.
The lower precision and recall of KNN, coupled with its larger
localization errors in misclassification cases, increase the risk of
substantial navigational inaccuracies.

Furthermore, our classifier exhibits a remarkable improvement in
computational efficiency for inference, requiring significantly fewer
floating-point operations per second (FLOPs), specifically 34,816,
compared to KNN’s 6,850,160 FLOPs. This drastic difference in
computational demand can be attributed to the inherent characteris-
tics of the algorithms; KNN, being a lazy learning algorithm, lacks
a training phase and necessitates the comparison of all instances
in the training dataset during inference to identify the most similar
instances. In contrast, our classifier efficiently performs a single
forward computation for inference, thereby streamlining the compu-
tational process and reducing the operational burden.

Finally, it is also critical to emphasize that both KNN and our
classifier benefit from our innovative turbo-training scheme, incor-
porating the CGM for refreshing fingerprints. This approach enables
both algorithms to utilize updated fingerprints, thereby ensuring
accurate and reliable classification results.

7.5 Robot Navigation

To assess the performance of OrchLoc in the context of robot naviga-
tion, we employ the public dataset [9], as outlined in Section 2. This
dataset enables us to simulate a robot’s path through an orchard en-
vironment. The dataset is formatted as a time series, comprising INS
data and corresponding ground truth coordinates for each timestamp.
The simulation process initiates by aligning the robot’s starting posi-
tion with a tree, ensuring the robot’s initial direction of movement
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Figure 16: Comparison of robot navigation performance in an
orchard: GPS vs. OrchLoc computed with INS data.

is parallel to the rows of trees. To incorporate CSI data into each
moment of the simulation, we identify the tree closest to the robot’s
current coordinate and extract all available CSI measurements asso-
ciated with that tree. We randomly select one CSI measurement to
represent the timestamp, mirroring the process of integrating GPS
data. These CSI data points are subsequently fed into OrchLoc to
derive inferred location coordinates. To mimic the real-world sce-
nario where a robot might not align perfectly with a tree’s location,
random noise is introduced to the inferred coordinates.

The integration of INS data with GPS or OrchLoc is achieved
through the state-of-the-art Neural-KF algorithm [9]. Figure 16(a)
illustrates two reconstructed trajectories, highlighting OrchLoc’s
enhanced accuracy in comparison to GPS-based navigation. As de-
picted in Figure 16(b), OrchLoc consistently achieves lower naviga-
tion errors, with an average error of 1.2 m compared to GPS’s 3.1 m.
These findings underscore the potential of OrchLoc to significantly
improve navigation accuracy in environments where GPS signals
are obstructed or unreliable.

It is important to recognize that the higher GPS accuracy observed
in Figure 16 compared to Figure 2 stems from the utilization of dis-
tinct sources of GPS data. In this section, GPS data corresponds
to location IDs, specifically tree locations, which were identified
using Google Maps in satellite mode while navigating within or-
chards. These location IDs are then translated into their respective
physical locations, positioned 2.0 m to the right of the tree’s trunk,
incorporating tree location priors into the GPS data. Conversely, in
Figure 2, the GPS data originates from the public dataset [9], to
which we applied an average error of 7.9 m to realistically simulate
GPS performance in orchard environments.

7.6 Parameter Study

In this section, unless specified otherwise, turbo-training scheme
involves pre-training CGM in area A and fine-tuning it with 30% of
the location data from area B. The accuracy of the trained classifier
is tested on the testing set of area B.

7.6.1 Ratios of Fine-Tuning Data. We explored varying the fine-
tuning location ratios from 5% to 40%. As Figure 17 illustrates,
performance improves with an increased number of locations for
fine-tuning the CGM. OrchLoc achieves 94.1% precision, 95.9%
recall, and an average localization error of 0.8 m in area B when the
ratio exceeds 30%. However, ratios below 20% yield lower results,
such as only 51.9% precision at a 10% ratio.

OrchLoc’s requirement to deploy LoRa sensor nodes at 30% of
trees complements precision agriculture’s evolving demands [1, 2,
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60]. Future efforts will focus on preserving accuracy while reducing
the number of necessary deployment locations through: 1) Incor-
porating additional data types like satellite imagery; 2) Utilizing
active learning to intelligently select critical deployment sites; 3)
Investigating hybrid models combining supervised and unsupervised
techniques to potentially enhance accuracy with fewer sites.

7.6.2 Position of LoRa Node. Typically, the LoRa node is placed
2.0 m right to each tree during CSI data collection. To evaluate the
impact of node position offset on CSI data distribution, the node
was placed at five different locations around the predetermined spot
for each tree, repeated for six trees. Figure 18 presents the CSI data
visualized via t-SNE [41]. The data exhibit a clear clustering effect,
with data from the same tree clustering together, while those from
different trees are distinct. This indicates that, even though there is a
position offset at each location, the data collected close to each tree
still exhibit a similar distribution.

7.6.3 Number of Sampling Layers in Noise Predictor. The
noise predictor in OrchLoc includes multiple sampling layers within
its contracting and expansive paths. We varied the number of these
layers from 2 to 5 in our experiments. Figure 19 shows that increasing
the number of layers from 2 to 4 enhances precision from 74.2% to
94.1%. Yet, further increasing to 5 layers drops precision to 85.2%.
While fewer layers may not adequately extract latent CSI-location
relationships, too many layers can excessively reduce the vector
length, potentially leading to information loss.

7.7 Overhead of OrchLoc

Sensory LoRa Node: LoRa nodes deployed in orchards for agricul-
tural tasks transmit eight packets across eight channels. Segmenting
sensing data for transmission over individual channels minimizes
additional energy usage. While this increases collision risk, it can be
mitigated through careful scheduling, utilizing the week-long high
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accuracy of the location classifier, and employing efficient MAC
protocols or collision resolution techniques [34, 61-63].

Robot: For a single localization inference, the robot transmits
eight two-byte packets and receives the localization result from the
gateway, a process that consumes 1.4 seconds at SF10 (the lowest
data rate permitted in the US). Given the robot’s velocity of 0.3
m/s [64], typical of agricultural robots, this translates to a movement
of 0.42 m within the 1.4-second interval. As depicted in Figure 18,
such a minor positional shift exerts a negligible impact on CSI
data quality. For robots operating at higher speeds, the strategy of
incorporating periodic 1.4-second pulses for localization purposes
can effectively minimize potential accuracy degradation. Regarding
power consumption, with a power of 0.4 W over a duration of
1.4 s, the energy consumption is 0.56 J per localization inference.
Consequently, OrchLoc is a low-power, sustainable solution well-
suited for agricultural deployments.

8 RELATED WORK

Robot Navigation: GPS/INS combines INS data with GPS data
using a Kalman Filter-based algorithm for robot navigation [9, 14].
For instance, Neural-KF [9] utilizes a neural network [65, 66] to
estimate the robot’s velocity and location from raw inertial data,
then refining these estimates with GPS data via a Kalman filter to
improve navigation accuracy. These algorithms critically rely on the
precision of GPS data to compensate for the INS sensor drift. How-
ever, in orchard environments, the accuracy of GPS data is notably
compromised due to signal blockage by crop canopies, presenting a
considerable challenge [9, 14]. While Real-Time Kinematic (RTK)
GPS offers enhanced localization accuracy, their deployment neces-
sitates significant infrastructure investment, including the installation
of base stations throughout the orchard. Such requirements render
RTK GPS economically impractical for a wide range of agricultural
operations. In contrast, our system seeks to utilize the pre-existing
LoRa network infrastructure within orchards to provide a robust and
cost-effective positional reference for INS sensors.

Localization by LoRa Network: The limited bandwidth of
LoRa, at only 125 kHz [67, 68], poses challenges to directly ap-
plying conventional localization algorithms, which are typically
designed for Wi-Fi, Bluetooth, or cellular networks, due to their re-
liance on higher bandwidths [5, 69, 70]. For instance, cellular-based
localization often requires densely deployed base stations, which
is impractical in agricultural settings where cell tower density is
notably low, thus diminishing accuracy. Moreover, the data transmis-
sion and service fees render them cost-prohibitive for agriculture.

Current research on localizing LoRa nodes predominantly em-
ploys techniques such as Time Difference of Arrival (TDoA) [21, 22],
Angle of Arrival (AoA) [23], or path loss models [24]. For example,
Seirios [23] achieves a median localization error of 4.4 m across
a 6,000 m? area employing AoA-based localization with a dual-
antenna gateway. However, such methods typically necessitate a
minimum of three gateways and rely on the existence of a LoS
signal path from the node to the gateway, conditions that are often
unmet in orchard environments. In contrast, our system introduces
a fingerprinting-based approach to localization in orchards utiliz-
ing a single gateway, circumventing the limitations associated with
multi-gateway setups and direct signal path dependencies.
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Existing LoRa localization works use RSSI as fingerprint [71, 72].
They match RSSI measurements from multiple gateways with a
database to determine a node’s location. However, such methods
presuppose that a packet is received by multiple gateways, a sce-
nario infeasible in orchards. In contrast, OrchLoc enables in-orchard
localization using only one gateway for extracting CSI fingerprints.

CSI-based Fingerprinting in Wi-Fi: CSI-based fingerprinting is
developed in Wi-Fi for indoor localization [25-27]. These methods
utilize either amplitude or phase independently, overlooking the
interconnected information between them. OrchLoc introduces a
complex-valued classifier to effectively learn the latent information
among amplitude and phase of CSI data. Future works may extend to
non-linear chirps to enhance signal heterogeneity [73] and could be
tested for localizing multiple transmitters simultaneously [74—76].

Crowdsourcing has been widely used to gather fingerprints for
WiFi-based indoor localization [77, 78]. For instance, Zee [77] uti-
lizes smartphones’ inertial sensors to map fingerprints onto indoor
maps during users’ routine walks. However, crowdsourcing is im-
practical in orchards, as it requires numerous robots to navigate
within the orchard and accurate tracking of the robots’ trajectories,
both of which are challenging to achieve.

Generative Model for Wireless Signal: Recent studies have em-
ployed generative models for wireless signal modeling [43, 79, 80].
For example, NeRF? [79] segments 3D spaces into many small
voxels for signal strength estimation. However, it is impractical in
large orchards due to the enormous number of voxels required for
processing. WiNeRT [80] computes the received signal based on
environmental meshes, which are unavailable in orchards. Large lan-
guage models reveal strong capability in code generation and serial
understanding [81-83] but fall short in interpreting and generating
wireless signals [43]. This paper customizes diffusion models for
the synthesis of CSI data across various locations.

9 CONCLUSION

We introduce OrchLoc for in-orchard fingerprinting-based localiza-
tion system that achieves tree-level localization accuracy with a
single gateway. We propose CSI-based fingerprint and a complex-
valued location classifier for location estimation. A turbo-training
scheme, powered by the CGM, is devised to efficiently build and up-
date fingerprint database for each area, significantly reducing labor
costs. Extensive experiments validate the efficacy of OrchLoc.
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