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Abstract

The Euclidean distance geometry (EDG) problem is a crucial machine learning task that appears
in many applications. Utilizing the pairwise Euclidean distance information of a given point set,
EDG reconstructs the configuration of the point system. When only partial distance information
is available, matrix completion techniques can be incorporated to fill in the missing pairwise dis-
tances. In this paper, we propose a novel dual basis Riemannian gradient descent algorithm, coined
RieEDG, for the EDG completion problem. The numerical experiments verify the effectiveness
of the proposed algorithm. In particular, we show that RieEDG can precisely reconstruct various
datasets consisting of 2- and 3-dimensional points by accessing a small fraction of pairwise distance
information.

1. Introduction

Due to the rapid and continually accelerating proliferation of data collection across domains, data
sizes have exploded dramatically. Oftentimes these data are high dimensional or corrupted, posing
a considerable challenge for analysis. Compounding this challenge, these data are often incomplete.
One example where this manifests is in the Euclidean distance geometry (EDG) problem. Given
partial pairwise distance information of a set of n points in R¥, the EDG completion problem is to
reconstruct the configuration of the point system. The applications of this model are numerous, with
appearances of the EDG problem appearing in sensor localization [1, 4], dimensionality reduction
[20], computational chemistry [6, 7, 13, 22], robot kinematics and position analysis [15, 17], and
more recently in visualization of antibody-virus interactions [5]. In these applications, collecting all
pairwise distances is often infeasible or too costly.

To introduce this problem mathematically, let {p;}!" ; C R* be a given k-dimensional dataset,
and denote P := [p1,p2,---,pn]’ € R™** as the matrix where the i-th row is the i-th point
in the dataset. The squared Euclidean distance between the points p; and p; is given by d% j =
Ipi—pjl3 = IIpill3+1/p;lI3—2p! p;. The collection of pairwise distances can be neatly represented
in symmetric matrix form, termed Squared Euclidean Distance Matrix D = [dfj] € R™"—
heretofore referred to as Distance Matrix. In addition to the distance matrix, we can also construct
the Gram Matrix X := PPT € R™ " of the dataset. In this paper we are focusing on the point
configurations centered at the origin, i.e., P71 = 0, and the corresponding centralized Gram matrix
for computational ease. The centralized Gram matrix and distance matrix store the same point
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configuration information, albeit represented differently, and closed-form relationships between D
and X exist. The distance matrix D can be computed from the Gram matrix by D = 1diag(X)? +
diag(X)1? — 2X where diag(-) is an operator that takes the diagonal elements of a matrix and
represents it as a column vector and 1 € R" is a vector of ones. On the other hand, the Gram matrix
X and the configuration matrix P are not unique for a given D since a point configuration can shift
and rotate without changing the relative positions. See Figure 1 for an illustration. However, for
all the configurations that are centered at the same location, the Gram matrix is fixed no matter
how the configuration is rotated. LetJ =T — %11T, where I € R™*"™ is the identity matrix. The
centralized Gram matrix can be computed from the distance matrix by X = —%J DJ. Then, one
of the equivalent point configurations can be computed by P = UA'/2 where X = UAUT7 is
the eigenvalue decomposition. For more theoretical details about the equivalence of the shifted and
rotated configurations, we refer the interested reader to [8, 21].

Assuming P is full rank, i.e., points {p;}7; are not all embedded in some low-dimensional
subspace of R¥, the rank of X is k and the rank of D is at most k 4+ 2. When only partial distance
information is observed in D, the classical approach is to recover the entire distance matrix D with
some off-the-shelf matrix completion algorithms such as [3, 9, 11, 16, 23], then compute X and
P from the recovered D. However, the classical approach ignores the implicit constraints of the
Euclidean distances, e.g., non-negativity and triangle inequality, and thus has sub-optimal sampling
complexity on the pairwise distances. Some recent works [12, 18, 19] show the convex formulation
that enforces the positive semidefinite constraint on the Gram matrix X using a dual basis approach
will implicitly enforce the constraints of the Euclidean distances and achieve optimal sampling com-
plexity. However, those convex algorithms are computationally and/or memory expensive. Hence,
high-efficient non-convex dual basis algorithms are valuable for the EDG completion problem.

d2

Figure 1: The set of 5 points {p1, ..., p5},{q1, ..-,q5} and {ry, .., r5 } have different configurations
but the Euclidean distance matrix is the same for all of them. In other words, these sets
of points are equivalent up to translation and rotation.

Notation. Lowercase and uppercase boldface letters (e.g., v.and M) denote column vectors and

matrices, respectively. Blackboard-bold letters (e.g., S) denote spaces. || - |2 and || - || denote the

lo-norm and Frobenius norm, respectively. (-,-) denotes the trace inner product. The 1 denotes

a vector whose entries are all 1. Given a matrix A, a; denotes its i-th column, opax(A) and

Omin(A) denote the largest and smallest non-zero singular values of A. {e;} and {E; ;} represent

the standard basis of vector and matrix spaces, respectively. EVD;(A) denotes the rank-k truncated

eigenvalue decomposition of a symmetric matrix A.

2. Preliminaries

In this section, we provide a brief summary of the dual basis for EDG developed in [18]. More
preliminaries about the Riemannian matrix completion algorithm [23] are provided in the appendix.
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In the EDG problem, we observe some entries of a squared distance matrix D, and wish to recover
the underlying Gram matrix X. The relationship between X and D is X;; + X, ; — 2X; ; = D, ;.
Given D, X is only unique up to translations and rotations, so it is assumed that X1 = 0. We are
especially interested in the case when X is low rank, which frequently occurs in practice.

To handle this, the authors in [18] formulated the EDG problem as matrix recovery with respect
to the operator basis Wo, = Eq; 0y + Eay.a0 — Eay s — Eas,ar for a = (a1, a2) and o1 < ag,
which spans the dimension L = @ linear subspace S = {X € R"»"|X = X7, X .1 = 0}.
This basis was chosen because it reconstructs the measurements D; ; via inner products (X, wy; ;).
Unfortunately, this basis is not orthogonal, so a biorthogonal dual basis was introduced: given
{wa}L_,, define the matrix H as H, s = (w4, wWg); the set of matrices vo = PP H;}BW,@»
then forms a dual basis to {wq} satisfying (v ,Wg) = 04, g. In the dual basis expansion, X =
Y o(X, Wa)Vq, so the EDG problem becomes the recovery of a low-rank matrix X of rank k&
given a few of its expansion coefficients. The difficulty with a dual basis approach can be finding
an explicit form for v,. In the case of the EDG problem, the form of v, is known [14].

3. A Non-Convex Approach for EDG Completion

In this section, we propose a new algorithm for the EDG completion problem. The main goal
is fusing non-orthogonal matrix completion [18] for the EDG problem with a Riemannian-based
gradient descent approach [2, 10, 23]. Our algorithm is based on the sampling operator defined as:

L
RQ:XES—>E2<X,WQ>VQ, (1)
ac)

where Q C [L], |©2] = m. In the prior work, the goal was to construct a Riemannian-based non-
convex algorithm for directly observed entries. In the EDG problem, we want to complete the Gram
matrix X through entries of the distance matrix D. By analogy to [23], we can now define the
following objective function using the operator R Ra:
minimize (X — M, R{Ro(X — M))
Xest (2)
subject to rank(X) = k,

where R§Rq, is defined as:

* L2
RoRa: X eSS — 3 Z (X, Wa)(Va, vg)Wg, 3)
,BeQ

and ST = SN {X € R™" | X = 0} is the set of positive semidefinite matrices centered at the
origin. For the EDG problem, the rank constraint corresponds to the dataset dimension. Note that in
the setting where all the distance measurements are available, the sampling operator is the identity
operator, up to a scaling factor. Consequently, the sampling operator defined in equation (3) can
be viewed as an approximation of the identity operator on set .S, given the partial measurements
(X, Wa)qeq and {Vatacq, up to a scaling factor. It could be surmised that a more natural and
alternative substitute is Rq. Nevertheless, utilizing R, is not feasible since the optimization based
on it would necessitate knowledge of (M, V), cq-information that is not accessible. This arises
from the fact that, in the EDG problem, the inputs only consist of the scalars {(M, wq) }w,eq- In
the following theorem, we establish a direct relationship between Rq and Pq. This relationship
will be utilized later to construct a computationally tractable representation of R Raq.
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Theorem 3.1 Let P = [p1,pa...,pn]’ € R™ ¥ denote the given set of points and consider any

subset Q € [L). For X = PPT and D = [d?j] where dlgj = |lpi — p;l3, it follows that

L 1
Ra(X) = e iJPQ(D)J, “)

where Po(D) = 32, heq (D, Eij)E;i; + (D, E;;)E;;).

The proof is deferred to the Appendix. This problem equivalence allows us to instead study com-
pletion using R, instead of completion using Pq, and leads us into the definition of our proposed
algorithm. Following the procedure laid out in Section A, we define the following algorithm to
solve the partial EDG problem.

Algorithm 1: R, Ro Riemannian Gradient Descent for EDG Completion (RieEDG)
Input: Po(D): the observed distance information, &: the dimension of the points and 7: the
step size.
X = EVDx(RER(X)) = UgAgUE
For:=0,1...
Gl = 6RQ(X — Xl);
W, =X +nPr,(Gy);
Xi41 = EVD,(Wy);
End
Output: X,

In what follows, we provide the per-iteration computational complexities of each steps.
Computation of gradient: The gradient term requires computing efficiently R5 R (Y ). Let T'(X)
denote the map from a Gram matrix to a squared distance matrix. Some calculation yields that,

* L2 1 *

oRa(Y) = 5 T" (PaIPa(T(Y))J)),
where T is the adjoint operator of T". The total complexity of computing R R is O(|€2]). The
proof of this form of R Rq is deferred to the appendix.
Gradient descent and eigenvalue decomposition: Using the technique introduced in [23], W,
does not need to be directly computed; rather we only compute quantities relevant to the next step
of truncated eigenvalue decomposition. The main steps are: (a) forming two intermediate matrices
that costs O(|Q2|k), (b) computing QR factorizations of the two n x k matrices that costs O(nk?)
and (c) rank-k truncated eigenvalue decomposition of (2k x 2k) matrix, which costs O(k?).

4. Numerical Results

To test these algorithms, various 2- and 3-dimensional datasets were used and are referred to in
Table 1 with their corresponding number of datapoints. The objective of RieEDG is to recover the
full set of points P up to orthogonal transformation from a subset of entries of D chosen using a
Bernoulli sampling model, where each entry has a probability  of being selected for v € [0, 1],
with an expected L entries chosen. RieEDG outputs the Gram matrix X = PP’ from which P
can be recovered. The comparison referenced in Tables 1 and 2 are the relative error between the
recovered matrix X, and the ground truth matrix X in Frobenius norm. Each run was terminated
at either 500 iterations or a relative difference between iterates of 1077,
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average time to achieve recovery at a 5% sampling rate.

Table 1: Relative recovery error || X — X, ey | r/[| X between the recovered Gram matrix and the
true Gram matrix averaged over 10 trials using RieEDG. The 5% timing is the measured

Dataser i 5% 3% 2% 1% | 5% Timing (sec)
Sphere (3D, n — 1002) 6.2¢-07 | 1.2¢-06 | 9.52¢-03 | 1.08 4.62
U.S. Cities (2D, nn = 2920) | 5.90e-07 | 1.613-03 | 0.0168 | 0.0796 135
Cow (3D, n = 2601) 5.58¢-07 | 8.62¢-06 | 1.50e-06 | 0.0095 674
Swiss Roll (3D, n = 2048) | 5.04e-07 | 8.84e-07 | 1.14e-06 | 0.0604 30.9

average time to achieve recovery at a 5% sampling rate.

Table 2: Relative recovery error || X — X,ev||7/||X]| F between the recovered Gram matrix and
the true Gram matrix averaged over 10 trials using [18]. The 5% timing is the measured

Dataset " 5% 3% 2% 1% 5% Timing (sec)
Sphere (3D, n = 1002) 4.3e-04 | 0.0013 | 0.0026 0.62 541
U.S. Cities 2D, n = 2920) | 4.4e-04 | 6.7¢-04 | 7.6e-04 | 0.0016 41.0
Cow (3D, n = 2601) 2.9e-04 | 3.5¢-04 | 4.7e-04 | 0.0010 26.6
Swiss Roll (3D, n = 2048) | 5.3e-04 | 6.4e-04 | 7.6e-04 | 0.0041 21.1

The strong reconstruction properties of RieEDG indicate its viability for use as a tool for the
EDG problem. The transition from effective reconstruction to poor reconstruction at around 2% is
indicative of the probabilistic nature of reconstruction, as some trials were successful and others
performed very poorly, but with increasing dataset size this problem is mitigated. This indicates
effective scaling of RieEDG for large datasets in the small sampling rate regime. When compared
to the algorithm developed in [18], RieEDG largely provides a higher degree of accuracy while
giving speedups for smaller datasets, particularly in the high sampling regime. It is noticeably
slower for larger datasets and is outperformed in the small sample regime, indicating better scaling
and transition properties for [18]. Work is currently being done to better understand how to initialize
RieEDG to improve low-sampling recovery.

5. Conclusion and Future Directions

In this project we constructed an efficient non-convex algorithm for the Euclidean distance geom-
etry problem via fusing a Riemannian gradient descent-based approach with a dual basis approach
to provide a more natural constraint set for the optimization routine. RieEDG demonstrates strong
reconstruction properties on par with existing methods, and is based on strong theoretical foun-
dations. Future work is predominately dedicated towards fully proving theoretical guarantees for
convergence, as well as considering optimal ways to initialize the algorithm.

Acknowledgments
This work is partially supported by NSF DMS 2208392 and NSF DMS 2304489.



RIEMANNIAN OPTIMIZATION FOR EUCLIDEAN DISTANCE GEOMETRY

References

[1]

(2]

(3]

[4]

[10]

[11]

[12]

[13]

[14]

Pratik Biswas, Tzu-Chen Lian, Ta-Chung Wang, and Yinyu Ye. Semidefinite programming
based algorithms for sensor network localization. ACM Transactions on Sensor Networks
(TOSN), 2(2):188-220, 2006.

HanQin Cai, Jian-Feng Cai, and Ke Wei. Accelerated alternating projections for robust prin-
cipal component analysis. Journal of Machine Learning Research, 20(1):685-717, 2019.

Emmanuel J Candes and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717-772, 2009.

Yichuan Ding, Nathan Krislock, Jiawei Qian, and Henry Wolkowicz. Sensor network lo-
calization, euclidean distance matrix completions, and graph realization. Optimization and
Engineering, 11(1):45-66, 2010.

Tal Einav, Yuehaw Khoo, and Amit Singer. Quantitatively visualizing bipartite datasets. Phys-
ical Review X, 13(2):021002, 2023.

Xingyuan Fang and Kim-Chuan Toh. Using a distributed sdp approach to solve simulated
protein molecular conformation problems. In Distance Geometry, pages 351-376. Springer,
2013.

W Glunt, TL Hayden, and M Raydan. Molecular conformations from distance matrices. Jour-
nal of Computational Chemistry, 14(1):114-120, 1993.

J. C. Gower. Properties of euclidean and non-euclidean distance matrices. Linear Algebra and
its Applications, 67:81-97, 6 1985. ISSN 0024-3795. doi: 10.1016/0024-3795(85)90187-9.

David Gross. Recovering low-rank matrices from few coefficients in any basis. Information
Theory, IEEE Transactions on, 57(3):1548-1566, 2011.

Keaton Hamm, Mohamed Meskini, and HanQin Cai. Riemannian CUR decompositions for
robust principal component analysis. In Topological, Algebraic and Geometric Learning Work-
shops 2022, pages 152-160. PMLR, 2022.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using
alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory
of computing, pages 665-674, 2013.

Rongjie Lai and Jia Li. Solving partial differential equations on manifolds from incomplete
interpoint distance. SIAM Journal on Scientific Computing, 39(5):A2231-A2256, 2017.

Leo Liberti, Carlile Lavor, and Nelson Maculan. A branch-and-prune algorithm for the molec-
ular distance geometry problem. International Transactions in Operational Research, 15(1):
1-17, 2008.

Samuel Lichtenberg and Abiy Tasissa. A dual basis approach to multidimensional scaling:
spectral analysis and graph regularity, 2023.



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

RIEMANNIAN OPTIMIZATION FOR EUCLIDEAN DISTANCE GEOMETRY

Josep M Porta, Nicolds Rojas, and Federico Thomas. Distance geometry in active structures.
Mechatronics for Cultural Heritage and Civil Engineering, pages 115-136, 2018.

Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471-501, 2010.

Nicolas Rojas. Distance-based formulations for the position analysis of kinematic chains. PhD
thesis, Universitat Politecnica de Catalunya, 2012.

Abiy Tasissa and Rongjie Lai. Exact reconstruction of euclidean distance geometry problem
using low-rank matrix completion. IEEE Transactions on Information Theory, 65(5):3124—
3144, 2018.

Abiy Tasissa and Rongjie Lai. Low-rank matrix completion in a general non-orthogonal basis.
Linear Algebra and its Applications, 625:81-112, 2021.

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319-2323, 2000.

Warren S Torgerson. Multidimensional scaling: 1. theory and method. Psychometrika, 17(4):
401-419, 1952.

Michael W Trosset. Applications of multidimensional scaling to molecular conformation,
1997.

Ke Wei, Jian-Feng Cai, Tony F. Chan, and Shingyu Leung. Guarantees of Riemannian op-
timization for low rank matrix completion. Inverse Problems and Imaging, 14(2):233-265,
2020. ISSN 1930-8337. doi: 10.3934/ipi.2020011.



RIEMANNIAN OPTIMIZATION FOR EUCLIDEAN DISTANCE GEOMETRY

Appendix A. Riemannian Matrix Completion
In [23], the authors propose the following non-convex objective function for matrix completion:
minimize (X — M, Po(X —M))
XeRan (5)
subject to rank(X) = k,

for some fixed rank k& and where

Po: X eR™™ — Y (X, B )Ei;. (6)
(4,5)€Q

The work in [23] employs a Riemannian-based gradient descent scheme to solve this problem, with
strong guarantees that the true matrix M is recovered with high probability given a good initializa-
tion. More specifically, the algorithm in [23] is a projected gradient descent algorithm, where the
estimates are updated in the Riemannian gradient descent direction of the objective described in (5)
followed by a retraction mapping onto the manifold of rank-%k matrices via rank-k truncated singular
value decomposition (SVD).

More mathematically, let X; = UlEZVlT be the estimate at the [-th iteration of the algorithm
and let T; be the tangent space of the rank k£ manifold centered at X;. Explicitly, T; has the form
T, = {UY + ZV;‘F 1Y € RF*n Z ¢ R™**}. To update to X, the gradient descent step is
taken on the tangent space with the step size a; followed by SVD truncation step. The updates have
the following form

X1 = SVDi(X; + mPr, Pa(X — X)), @)

where SVD;, denotes the rank-£ truncated SVD. The step size 7; is optimally determined using exact
line search.

Appendix B. Proof of Theorem 3.1

Proof Given a sample €2 of indices ¢ < j € [n] X [n], assume we have the following sampling
operators on the Gram matrix X and the distance matrix D:

Pa(D)ap = Dayp if (a,b) or (b, a) € £, 0 otherwise
RQ(X) = Z (X, Wa>va-

ac)

We aim to show that Ro(X) = —$JPq(D)J. We will start by expanding the sum for R (X) ata
particular entry (a, b) using the form of the dual basis v; ; from [14]. We have that

Ra(X) =) (X, Wa)Va

a€e)

= Y Dijviy

i<jen

:_% S° Diy (36030, + IC)IG,2)).

i<jen
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Taking the (a, b)-th entry, we get that

Ra(X)],, = |~ 3 Disl@6:03G) +36.036)| =3 3 Diy (usdia t Jugin)
a,b

b
i<jeQ ; i<jeQ

We proceed to examine the J-derived terms. We have that J =1 — %llT, and so, for any a, 7, we
see that J,; = I, ; — % =0, — % Therefore, we have

1
[Ra(X)],,= =5 > Dus <Ja,z‘Jj,b + Jau’kb)
1<jEQ
_ 1 (i~ Ny oy s~ Ly L
——5 % Do - D6 - 1)+ @l - e 1))

:_542 DJ((S(SJ néa_n5i+712+5é5b_n5é_n6b+712>
(515J+5J5b) S Y. Dij— (5Z+5J>

’L<jEQ

+5 Y Diy <5b+53>— > Disl )

1<jEQ

= 75 (PQ(D)a,b - M(PQ(D)(:’ a)) - M(PQ(D)(:’ b)) + ’U(PQ(D))>

=[- %JPQ(D)J}

a,b’

which is as desired. In the above, we had to recognize that our sampling operator only picks (i < j),
but either (a < b) or (b < a) can occur, so we need to check both permutations to compute the
column averages correctly. |

Lemma B.1 Let T be the map that takes Gram matrices to distance matrices, explicitly defined
as T(X) = 1 - diag(X)T + diag(X) - 17 — 2X. Let mtxdiag(-) denote the function that maps
a column vector in R™ into an n X n diagonal matrix, where the diagonal elements correspond
to the entries of the column vector. Then T*(X) = mtxdiag(X1)) + mixdiag(X*1) — 2X and
RERa(X) = Pa(JPa(D)J) — mixdiag(Po(JPo(D)J1) where D = T'(X).

Proof To compute the adjoint, note that
(T(X),Y) = (1diag(X)”,Y) + (diag(X)17,Y) + (X, -2Y).
Next, we consider the first two terms on the right hand side of the above equation.

(1diag(X Z XY = (X, mtxdiag(YT1)> .

(diag(X)1",Y) = > X;;Yi; = (X, mixdiag(Y1)).

]
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Using this, we can see that

T*(Y) = mtxdiag(Y1) + mtxdiag(Y71) — 2Y. ®)
If Y is symmetric, the first two terms are equal. We can use this to derive an explicit form of R (X)
for a symmetric matrix X in terms of 7'. Notice that

(Ra(X),Y) = 2 (IPo(T(X)T,Y) = (T [Pa(IYI)], X)

It follows that R§,(Y) = %T* [Pa(JYJ)]. These results can be combined to better understand the

explicit relationship between R Ra(X) and Po(D), which enables an efficient implementation.
In particular, we have

* L2 * -1

- QLn;T* (PQ (J [;JPQ(D)J} J>> .

Using the fact that J? = J, we obtain

SRa(X) = L—ZT* (PQ <_21JPQ(D)J>>

2m
L? L2 .
=53 (Pa (JPa(D)J)) — Q—QOtxdlag (Po (JPo(D)J)1).
This concludes the proof. -

10
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