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Abstract

Most scientific publications follow the familiar recipe of (i) obtain data, (ii) fit a model, and (iii) comment on the scientific

relevance of the effects of particular covariates in that model. This approach, however, ignores the fact that there may

exist a multitude of similarly-accurate models in which the implied effects of individual covariates may be vastly different.

This problem of finding an entire collection of plausible models has also received relatively little attention in the statistics

community, with nearly all of the proposed methodologies being narrowly tailored to a particular model class and/or requiring

an exhaustive search over all possible models, making them largely infeasible in the current big data era. This work develops

the idea of forward stability and proposes a novel, computationally-efficient approach to finding collections of accurate models

we refer to as model path selection (MPS). MPS builds up a plausible model collection via a forward selection approach

and is entirely agnostic to the model class and loss function employed. The resulting model collection can be displayed in a

simple and intuitive graphical fashion, easily allowing practitioners to visualize whether some covariates can be swapped for

others with minimal loss.

Keywords Stability selection · Ranking and selection · Rashomon effect

1 Introduction

Despite the rapid acceleration into the modern data sci-

ence era, many practitioners remain tethered to a classical

approach to data analyses. In regression problems, such an

approach can be broadly characterized by the following steps:

(i) obtain data, (ii) choose a model class, often based largely

on tradition or personal preference and with no or only mini-

mal heuristic justification, (iii) use the data and an algorithmic

selection method to obtain the empirically optimal model

within that class, and (iv) devote the remaining discussion

to the broader scientific implications of the particular model

selected, paying particular attention to the specific covariates

that are selected without properly accounting for the vari-

ance introduced by the selection procedure. Specifically, the

ubiquity of large datasets has encouraged the use of model

selection while largely failing to recognize that those same

selection methods could potentially produce a very different
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model if applied to a new dataset sampled from the same

underlying process.

More formally, given data Z1, . . . , Zn ∼ FZ in the form

of ordered pairs Z = (X , Y ) consisting of covariates X =
(X1, . . . , X p) and a response Y , we commonly imagine a

generic regression relationship of the form Y = f (X)+ε. To

perform the regression, one often begins with a finite collec-

tion of models M = { f̂m : m = 1, . . . , M}. This discrete set

can serve to enforce some kind of regularization such as the

number of steps in forward selection or the amount of shrink-

age in penalized techniques like the lasso. Model selection

procedures are designed to select the f̂m ∈ M that provides a

good approximation to f , where quality of the estimates can

be measured via some loss function L( f̂m(X), Y ) or pre-

dictive risk R( f̂m) = E(L( f̂m(X), Y ) | f̂m). Research on

model selection has traditionally focused heavily on assess-

ing consistency and establishing conditions under which it

can be guaranteed that the estimated tuning parameter(s) cor-

responding to the chosen f̂m converges to their true or optimal

values [see e.g. Zhao and Yu (2006); Bach (2008); Zhang

(2009) or Fan and Lv (2010) for a thorough overview].

Such a selection process, however, says nothing about

the stability or optimal-uniqueness of the particular (single)

model ultimately selected. Although it is quite common in
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applied scientific publications to provide measures of uncer-

tainty (e.g. confidence interval or an estimate of the standard

error) whenever reporting point estimates, it is surprisingly

rare that algorithmically selected models come with analo-

gous measures (e.g. a collection of plausible models M∗ ⊆
M). While confidence intervals for coefficient estimates may

be available for some parametric models, readers are still

left to wonder, for example, whether some of the selected

covariates could be substituted for others not selected with-

out a significant drop in risk or, more generally, if the entire

procedure were repeated on a new sample, how different a

model overall may be selected. Such questions are partic-

ularly important in high-dimensional settings and/or when

complexity restrictions (e.g. the number of covariates in a

model) are enforced for practical purposes. In recent years,

several efforts have been made to devise means of widen-

ing confidence regions resulting from parametric models to

account for the extra variability introduced by model selec-

tion; see for example Kuchibhotla et al. (2020) and references

within.

The fact that in any given data modeling context there

may exist many near-optimal models was a point stressed

by Leo Breiman in his 2001 “Two Cultures” essay (Breiman

2001) where he refers to the phenomenon as the “Rashomon

Effect.” In the last several years, the idea of Rashomon or

uncertainty sets has emerged as a way of formally refer-

ring to sets of models with errors that are within some

small ε of that of the empirically optimal model. Within the

recent Rashomon literature are methods for decision making

(Tulabandhula and Rudin 2013, 2014), identifying ranges of

variable importance within a model class (Fisher et al. 2019),

and measuring model class simplicity (Semenova and Rudin

2019).

1.1 Model set selection

While a number of interesting analyses can be carried out

once a set of similarly-accurate models is identified, finding

an efficient means of obtaining these model sets has proven

more of a challenge. Jiang et al. (2008) proposed a “fence”

method to weed out poor-performing models from M in

hopes of obtaining some reduced set M∗ that contains the

optimal model with high probability. Hansen et al. (2011)

followed a similar regime, focusing primarily on linear mod-

eling and proposing a sequential elimination strategy. Ferrari

and Yang (2015) extended these ideas to potentially high-

dimensional settings where p can grow with n whenever

additional screening methods are available. Nevo and Ritov

(2017) also explored the high-dimensional linear regression

setting and proposed a random search procedure utilizing

simulated annealing. Li et al. (2018) developed the notion

of “model confidence bounds” for linear models chosen via

penalized likelihood selection methods whereby a sequence

of nested models is obtained in hopes that the true model

lies in between the smallest and largest such models. Lei

(2020) developed a procedure for quantifying the uncer-

tainty associated with models selected via sample-splitting

and cross-validation, providing some means of determining

M∗ without insisting on overly strong conditions on the data

and models.

Despite these impressive efforts, there remain a substan-

tial number of key shortcomings. With the exception of Lei

(2020), these procedures are generally specific to a par-

ticular modeling framework—often linear regression—and

their validity and theoretical properties depend heavily on

that particular model class assumed. Additionally, as pointed

out in Li et al. (2018), earlier procedures lack any explicit

means of restricting the model structure and thus models

in the selected set M∗ needn’t be related in any way and

thus could potentially consist of completely disjoint sets of

covariates. These procedures also rely heavily on exhaus-

tive search or backward elimination-type procedures, making

them computationally daunting and potentially infeasible in

high-dimensional settings without a valid variable screening

tool (Lei 2020; Jiang et al. 2008). Finally, as pointed out in Lei

(2020), without a priori size or complexity restrictions, the

procedures in Hansen et al. (2011), Ferrari and Yang (2015),

and Jiang et al. (2008) will always produce a set of models

M∗ that contains the fully saturated model with all available

covariates.

Our work here proposes a novel procedure for producing

plausible model sets in a computationally efficient manner

while remaining entirely agnostic to the particular models

and loss functions employed. Indeed, our model path selec-

tion (MPS) tool should be seen as a wrapper that can be

applied to any user-specified model and loss function. Instead

of sequentially eliminating models, MPS builds up a plau-

sible model set M∗ in a manner akin to forward selection.

Specifically, MPS is a branching form of forward selection

that instead of picking a single variable in each iteration, can

select multiple variables and thereby create multiple branches

that are continued along recursively. In this way, our work

characterizes the variability of forward selection by show-

ing numerous paths it could have taken. The final output

is a collection of similarly predictive models that can be

displayed in a tree diagram that makes clear which covari-

ates can be swapped for others without a substantial drop

in accuracy. When few paths are discovered, practitioners

may take additional confidence in the potential importance

of the included covariates while the appearance of numer-

ous paths should discourage the over-emphasis of particular

covariates that appear in only a small fraction of the models.

Note that because MPS is both model agnostic and rooted in

forward selection, unlike some of the more restrictive and/or

computationally intensive methods described above, there is

no general guarantee that the collection of models produced
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will necessarily contain the best overall model with high

probability. However, in the simulations and real-data appli-

cations provided in later sections, we repeatedly demonstrate

that our MPS procedure is capable of generating relatively

small collections of models, a surprising number of which

have better out-of-sample accuracy than the single models

identified via traditional tools like lasso and forward selec-

tion.

Before proceeding, it is worth pausing to distinguish our

goal at hand from others that may appear similar and where

substantially more attention has traditionally been paid. We

do not necessarily assume that the set of predictors can be

partitioned into signal and noise covariates and thus our goal

is not to produce a collection of models such that every fea-

ture in every model would register as statistically significant

if built as a standalone model. Indeed, our focus here is on

the predictive accuracy of the models produced and some

surprising recent research has suggested that noise features—

completely independent of the response—may actually help

improve model accuracy in some noisy data settings (Kobak

et al. 2020; Mentch and Zhou 2022). Along the same lines,

our goal is not necessarily to identify the subset of signals

as is the primary objective with tools like knockoffs (Barber

and Candes 2015; Candes et al. 2018; Barber et al. 2018;

Janson et al. 2016), pseudovariables (Wu et al. 2007; Hu

et al. 2018), or stability selection (SS) (Meinshausen and

Buhlmann 2010; Shah and Samworth 2013). We emphasize

the distinction from SS in particular because our MPS pro-

cedure makes use of similar ideas involving the evaluation

of model or variable selection frequencies across resamples.

Finally, we are not seeking to select a particular model and

adjust variance estimates to account for additional uncer-

tainty as might be done via some form of post-selection

inference (e.g. Berk et al. 2013; Lee et al. 2016; Tibshi-

rani et al. 2016; Taylor and Tibshirani 2018). Instead, our

procedures are designed to capture and display the uncer-

tainty involved in the forward selection process itself and

produce relatively small sets of plausible models as out-

put.

The remainder of this paper is laid out as follows. In

Sect. 2 we provide a high-level motivation for the pro-

posed model path selection framework by building on core

ideas from the stability selection (SS) literature. In partic-

ular, we introduce the idea of forward stability selection

(FSS) as something of a bridge between SS and model path

selection (MPS). Section 3 formalizes the FSS and MPS

ideas, drawing upon classic results from the ranking and

selection literature. Numerous simulations and applications

are provided in Sects. 4 and 5 before concluding with a

discussion in Sect. 6. An R package containing the MPS pro-

cedure and code needed to reproduce our simulations and

real data examples is available at https://github.com/nkissel/

MPS.

2 Background andmotivation

As above, assume we have a dataset Dn consisting of data

Z1, . . . , Zn ∼ FZ in the form of ordered pairs Z = (X , Y )

consisting of covariates X = (X1, . . . , X p) and a response

Y and imagine a generic regression relationship of the form

Y = f (X) + ε. In a variable selection context, one often

further assumes that X can be partitioned into (S, N ), where

S consists of s signal variables and N contains only noise

features, defined as those that are independent of Y , at least

conditional on the covariates in S.

Stability selection (SS) is one popular resampling-based

method for estimating S that was introduced by Meinshausen

and Buhlmann (2010) and has since been refined by Shah and

Samworth (2013). The basic SS procedure operates as fol-

lows. First, B resamples D∗
1, . . . ,D∗

B , each of size � n
2
�, are

drawn without replacement. On each resample D∗
i , a collec-

tion of models { f̂m(D∗
i ) : m = 1, . . . , M} are fit across a

grid of M regularization parameters. Each model generated

on each resample produces a set of selected covariates Ŝi (m).

For each m ∈ {1, . . . , M} we then calculate the frequency of

selection for each covariate across all resamples so that for

each covariate X j , the corresponding selection proportion is

defined as

θ̂ j (m) = 1

B

B
∑

i=1

I{X j ∈ Ŝi (m)}.

To form the final estimated set of signal covariates Ŝstable,

one selects an appropriate tuning parameter value λ0 (or m

in our case) and threshold πthr ∈ [0, 1] so that Ŝstable can

then be defined as the collection of all covariates X j such

that θ̂ j (m) > πthr . Work following the inception of stabil-

ity selection (e.g. Shah and Samworth 2013) has focused

on establishing assumptions under which particular error

controls can be achieved so as to better guide the practical

selection of appropriate choices for πthr and λ0.

At a high level, SS can be thought of as a resampling-

based variable selection procedure that takes a modeling

framework and data as inputs and outputs a set of selected

covariates Ŝstable. Crucially, this setup leaves one with little

ability to directly control the complexity, structure, or size

ŝ of Ŝstable. Especially in the modern era, however, there

exists many situations in which hundreds or thousands of

covariates are available, a substantial proportion of which

may contain some signal, but where, for practical purposes,

users desire a low-dimensional model consisting of only a

handful of variables.

Suppose, for example, a practitioner desires a model with

no more than kmax covariates. The simplest way to accom-

modate this restriction within the SS framework in the event

that kmax < ŝ would be to simply select those kmax covari-
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Fig. 1 (Left) Stability paths from the motivating model in (1). Stability

selection is performed using forward selection. (Right) Histogram of

test set MSEs from all 3-variable models that take one variable from

each signal grouping. The dashed vertical line shows the best 3-variable

model built by including any 3 variables from the first 2 signal groupings

ates with the highest empirical selection proportions. This,

however, says nothing with regard to how uniquely optimal

those particular variables may be relative to the others in

Ŝstable and perhaps even more importantly, there is no rea-

son to expect that the model constructed with those particular

kmax covariates with the highest selection proportion would

be the most predictively accurate kmax -variable model.

As a simple motivating example, consider the regression

function

E[Y |X ] = 3

3
∑

i=1

X i + 2

6
∑

j=4

X j + 1

9
∑

k=7

Xk + 0

18
∑

�=10

X�

(1)

where each of the four groups of covariates are independent

but within the first three signal groups, the covariates have a

high correlation of 0.9. In this example, one might expect that

among the
(

18
3

)

possible 3-variable linear models, the most

accurate 3-variable models would include one covariate from

each signal group: one variable from {X1, X2, X3}, one from

{X4, X5, X6}, and one from {X7, X8, X9}. If, however, we

naively employ stability selection for this purpose, the three

covariates with the highest selection proportions are very

often from the first 2 groupings, as can be seen in the stability

paths displayed on the left-hand side of Fig. 1. Here stability

selection is implemented with forward selection on a dataset

with n = 500 observations and a signal-to-noise ratio (SNR)

of approximately 10, and model performance is measured by

the MSE on a test dataset of 10,000 observations.

As suspected, however, such models are far from the most

accurate 3-variable models available. The right-hand side of

Fig. 1 shows a histogram of MSEs from all 3-variable models

that take one variable from each signal grouping. The dashed

vertical line corresponds to the error of the best 3-variable

model built by including any three variables from only the

first two signal groupings, thereby serving as a lower bound

on the error for any model obtained via this stability selection

approach on this dataset. It is immediately evident looking

at this plot that even the least accurate models formed by

taking one covariate per group perform substantially better

than even the best model obtained via the SS approach.

How else then might we embed the idea of stability within

the context of model selection? Here we focus on the generic

idea of stepwise forward selection whereby covariates enter

the model one at a time and at each step, the covariate selected

is that which minimizes the empirical loss of the result-

ing model. In the original SS formulation, Meinshausen and

Buhlmann (2010) suggested that models built via forward

selection be constructed on each resample to achieve a notion

of stable variable selection. Here, in order to achieve sta-

ble model selection, we advocate for the stability achieved

via resampling to be embedded within the model fitting pro-

cedure itself. More specifically, in the context of forward

selection, suppose that at each step we draw B resamples

and determine the best variable to add based on each resam-

ple. At each step, the end result is a selection proportion for

each remaining covariate and we can simply choose to add

the covariate selected most often across those resamples. We

refer to this idea as forward stability selection.

The formulation of such a procedure begs an interesting

question, however. Suppose that at any given step in the pro-

cedure, k > 1 covariates are selected quite frequently and in

particular, none of those k appear to be selected significantly

less often than the other top performers. In such cases, rather

than select only the one covariate with the empirically largest

selection proportion, our model path selection (MPS) proce-

dure, formalized in the following section, involves creating a

new model path for each of these k covariates and continuing

the model-building procedure for each, stopping when some

kmax number of covariates is reached in each model path. In
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this way, MPS generates a collection of models rather than

only a single one, while remaining entirely agnostic to the

particular model class and loss function desired.

3 Methods

Considering the generic regression framework Y = f (X) +
ε, model set selection (MSS) procedures seek to identify the

best estimators of f among a finite set of candidate mod-

els M = { f̂m : m = 1, . . . , M}. As recently discussed in

Lei (2020), the MSS objective can be posed as a hypothesis

testing problem with

H0,m : Q( f̂m) ≤ Q( f̂m′) for all m′ 
= m

H1,m : Q( f̂m) > Q( f̂m′) for some m′ 
= m (2)

where Q( f̂m) = E[L( f̂m(X), Y )| f̂m] denotes the predictive

risk with respect to a loss function L. In this setup, failing to

reject H0,m means that we do not have evidence that any other

candidate model in M generates more accurate predictions

than f̂m , and as a result, the model f̂m is added to the selected

set M∗ = { f̂m : fail to reject H0,m} ⊆ M.

Formulated in this way, it becomes apparent why MSS

methods generally tend to require an exhaustive search over

the entire set of candidate models and as a result, are com-

putationally expensive. Indeed, this MSS setup is exactly

analogous to best subset selection in the traditional model

selection paradigm. In those settings, however, there are

a multitude of alternative selection strategies that perform

searches that are more greedy in lieu of exhaustive searches

in order to reduce computational cost. Specifically, consider

a generic forward stepwise regression which, at each step,

selects the covariate that minimizes the error of the model

given the covariates already selected. Stepwise methods ter-

minate when some pre-specified stopping criterion is met, of

which there are many possibilities. Here, for simplicity, we

focus our attention on the simplest variant that stops once

a pre-specified number of covariates d are selected. Greedy

selection allows one to quickly find an accurate d-covariate

model by selectively searching over
∑d

j=1(p− j +1) models

rather than all possible
(

p
d

)

d-covariate models. For scenar-

ios with large p and 1 < d < p, the computational gains of

forward selection procedures can be immense. The goal of

our model path selection (MPS) routine is thus to provide an

analogous, computationally efficient alternative to exhaus-

tive search MSS procedures that still takes into account the

uncertainty in the selection process by identifying an entire

subset of accurate models M∗ ⊆ M.

Before jumping into the procedure, we will first explicitly

define nested models, as they are vital to forward selection

and MPS.

Algorithm 1: (Generalized) Model path selection (MPS)

Select desired model size (number of covariates) d;

Define M
∗
0 as a set only containing the null model;

for i ← 1 to d do

for f̂m in M
∗
i−1 do

Define Mi (m) as the set of all i-variable models that nest

f̂m ;

Perform model set selection (MSS) on Mi (m) and call

the result M
∗
i (m);

Set M
∗
i =

⋃

f̂m∈M
∗
i−1

M
∗
i (m)

Set M
∗ = M

∗
d ;

Definition 1 (Nested model) Let Ŝ(m) be the set of covariate

indices used to fit f̂m , meaning without loss of generality that

if f̂m(x1, . . . , x p) = f̂m(x1, . . . , xi , x ′
i+1, . . . , x ′

p) for any

(x1, . . . , x p) and (x1, . . . , xi , x ′
i+1, . . . , x ′

p) then Ŝ(m) =
{1, . . . , i}. We say f̂m′ nests f̂m if Ŝ(m) ⊂ Ŝ(m′).

As in traditional forward selection, the generic MPS pro-

cedure begins by comparing all p univariate models, which

we denote by M1. We then perform MSS on M1 to generate

the subset of the most accurate 1-variable models, denoted

by M∗
1. Then, for each model f̂m ∈ M∗

1, let M2(m) denote

the set of all 2-covariate models nesting f̂m and perform

MSS on this set to generate M∗
2(m). We can then define

M∗
2 =

⋃

f̂m∈M∗
1
M∗

2(m) as the set containing all of the most

accurate 2-covariate models that nest one of the 1-variable

models in M∗
1. More generally, let M j (m) represent all

j-variable models that nest some f̂m ∈ M∗
j−1 for some

j ≤ d. MSS is then performed yielding the selected set

M∗
j (m) ⊆ M j (m) and we define

M
∗
j =

⋃

f̂m∈M∗
j−1

M
∗
j (m).

when j = d, the procedure terminates and the final selected

set M∗ is set equal to M∗
d . This MPS procedure is summa-

rized in Algorithm 1.

Note that the MPS procedure defined in Algorithm 1 is

intentionally given in a generalized form. In particular, so

long as the variable selection is carried out in a forward fash-

ion, any MSS procedure can be employed to determine the

selected covariates at each step. The output of the MPS pro-

cedure is thus not only a collection of predictively accurate

models, but a collection that, by construction, is structurally

similar in the sense that all models belong to the same class

and many often contain some similar features. Because of

this, the models selected can be easily displayed in a natural

tree-like branching fashion, which makes the output imme-

diately and naturally interpretable. Much more discussion

along these lines is provided in Sect. 3.2; readers are invited
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to look ahead to this future subsection and inspect Fig. 3 to

see example output.

3.1 Stabilized selection

As just noted above, MPS can be carried out with any form of

MSS one desires. Note, however, that MPS insists on a kind

of stepwise MSS. That is, along each model path, at each

step j , we perform a constrained version of MSS where the

collection of models identified must include the j −1 covari-

ates selected previously in that path. Thus, in essence, we are

seeking only to identify the subset of remaining covariates

most helpful to be added to the model already containing

those j − 1. Thus, as alluded to in Sect. 2, we now propose a

new kind of MSS building on the idea of stability and more

specifically tailored for this type of situation.

Consider a particular model f̂( j−1) ∈ M∗
j−1 that, without

loss of generality, contains the first j − 1 covariates so that

we may write X j− = {X1, . . . , X j−1} as the set of covari-

ates already selected and X j+ = {X j , . . . , X p} as the set of

covariates available to be added. Given our original dataset

Dn , at the j th step in the procedure, there must exist some

(at least one) covariate in X j+ that minimizes the loss of the

resulting model when added. Recall, however, that the entire

motivation for MSS procedures and the fundamental idea of

model stability is that given a different dataset, a different

model may appear empirically optimal. Thus, by exactly the

same reasoning, if we had obtained a different dataset, a dif-

ferent covariate may appear optimal at step j .

To account for this uncertainty in the selection pro-

cess, suppose we draw B resamples of the original dataset

D∗
1, . . . ,D∗

B and obtain the empirically optimal covariate to

be added relative to each resample. For each resample, define

the count variable for the kth covariate Ck,i to be equal to 1

if Xk is selected on the i th resample and equal to 0 other-

wise. (In the event that multiple covariates provide equally

optimal improvement, each can be assigned a count of 1,

or alternatively, one covariate from that group may be cho-

sen uniformly at random.) We can then define the empirical

selection proportion

θ̂k = 1

B

B
∑

i=1

Ck,i

to measure the frequency with which Xk was selected and do

the same for all remaining covariates.

Formulated in this fashion, we can simplify the generic

MSS task—rather than select every model not significantly

worse than any other, at each step in MPS, we need only

select all covariates not selected significantly less often than

any other. Thus, in our MPS context, at each step j , the

hypotheses in (2) can be rewritten as

H
( j)

0,k : θk ≥ θq for all Xq ∈ X j+

H
( j)
1,k : θk < θq for some Xq ∈ X j+. (3)

Failing to reject H
( j)

0,k means that we do not have sufficient

evidence to conclude that Xk is not one of the most selected

covariates. As a result, the model containing Xk along with

the previously selected j −1 covariates is added to the selec-

tion set M∗
j at step j .

It’s worth pausing to stress a few points. First, in the

interest of clarification, note that at each step j in the MPS

procedure, this identification of a subset of suitable covari-

ates must be carried out for each model in M∗
j−1 obtained to

that point. Furthermore, we stress that while the reformula-

tion of the problem above is intuitively convenient, obtaining

such a subset remains quite a nontrivial problem. Depending

on the data, model, and loss function employed, there may be

many equally suitable covariates, none of which have a high

selection frequency. Rather, both the maximum selection pro-

portion and the number of covariates without a significantly

lower selection proportion are unknown for each model at

each step. For help in solving this problem, we turn to a clas-

sical set of literature on the problem of ranking and selection.

3.1.1 Ranking and selection

As just outlined, the procedure described above involves gen-

erating B resamples of the original data for each model at

each step of the MPS procedure and determining the sub-

set of covariates selected most often across those resamples.

Imagine now an idealized setting in which rather than resam-

pling, those datasets D∗
1, . . . ,D∗

B are instead independently

generated datasets of size n sampled directly from the pop-

ulation. In this scenario, the selection of a single covariate

based on each dataset could equivalently be thought of as a

multinomial sample of size 1. That is, we can think of this pro-

cess as producing B multinomial samples, each of the form

Wi = (0, . . . , 0, 1, 0, . . . 0) where the entry at index k is set

to 1 whenever Xk is selected on the i th dataset and all remain-

ing entries are set to 0. In addition to B, this multinomial

distribution is thus parameterized by the true selection prob-

abilities (θ j , . . . , θp) whenever X j , . . . , X p are assumed to

be the remaining covariates available at step j . This problem

of selecting a subset of covariates can thus be transformed

into the problem of identifying the most probable categories

in a multinomial. We can therefore leverage the multinomial

dependence between all θi to generate a covariate selec-

tion tool, rather than explicitly considering the collection of

hypotheses in (3).

Though first applied to ranking normal populations, the

ranking and selection literature quickly moved to the rank-

ing and selection of multinomial parameters from the same

population (Bechhofer et al. 1959; Kesten and Morse 1959),
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focusing primarily on exactly this problem—identifying the

most probable multinomial event(s) (Bechhofer et al. 1959;

Alam 1971; Gupta and Nagel 1967). Several of those meth-

ods proposed are immediately applicable to the selection

problem described above (Gupta and Nagel 1967; Pancha-

pakesan 1971).

While much of the early literature focused on bounding

the probability that the event with the largest empirical count

corresponded to the most probable event, the methods devel-

oped in Gupta and Nagel (1967) are the first to our knowledge

that identify a set of multinomial cells in such a way that

bounds the probability that the most probable event(s) are

contained in the selected set. Various other papers have fol-

lowed suit, creating their own subset selection procedures

or further refining existing methods (Panchapakesan 1971;

Chen 1986; Bechhoffer and Chen 1988; Chen 1989).

In order to obtain such a probabilistic bound we utilize the

following decision rule defined in Panchapakesan (1971). For

procedure R with integer parameters r and D,

R: Continually sample from multinomial � until one cell

reaches a frequency of r , then stop sampling and select all

cells with frequencies at least r − D.

Within this framework, it has been proven that the probabil-

ity of making a correct selection—denoted P(C | r , D)—for

any multinomial, is bounded by the probability of making

a correct selection when the true multinomial distribution

has uniform probability parameters; that is, θm = 1
M

for all

m = 1, . . . , M in a multinomial with M possible outcomes

(Chen 1986; Liu and Lin 1991; Panchapakesan 2006).

Note that this selection procedure deviates slightly from

the fashion in which the covariate subset selection problem

was discussed above. In particular, we specify the maximal

cell count r rather than the total number of new datasets

B. The total number of new datasets needed is, however,

still bounded above by M(r − 1) + 1 whenever there are

M covariates still available to be selected. Note also that in

applying the decision rule R, the choice of D and r can be

user-specified so as to induce a particular lower bound on

the probability P∗. Of course, in our context, we wish to

find the smallest possible set for which we have a minimal

user-specified probabilistic bound P∗. We therefore specify

a desired maximal cell count r and minimum probability P∗

and solve for the smallest D for which P(C | r , D) ≥ P∗ can

be guaranteed to hold. This task can be easily accomplished

via simulation; see Algorithm 2.

3.1.2 Resampling

In practice, certainly it is not reasonable to expect to have

B newly and independently generated datasets from the

population available at each step in the MPS procedure,

but we can approximate this process by resampling from

Algorithm 2: Finding D via Simulation

Input: Maximal cell count r , Minimum desired probability P∗,

Number of simulations nsim, Number of multinomial outcomes

M

Result: Smallest allowable value of D

for h ← 1 to nsim do

Set x
(h)
m ← 0 for all m ∈ {1, . . . , M};

while maxm(x
(h)
m ) < r − D do

Take sample from uniform multinomial �( 1
M

, . . . , 1
M

);

Record the sampled cell’s index as i ;

Set x
(h)
i = x

(h)
i + 1;

Across all h, find the smallest value of D for which

#(x
(h)
1 ≥ r − D) ≥ �nsim ∗ P∗�;

Note: x
(h)
1 is chosen WLOG–any fixed subscript can be used;

the original dataset Dn . In deciding between bootstrapping

and subsampling, note that by seeking to identify the most

probable covariates to include, we are dealing with a discrete-

valued parameter, which is known to be a common source

of bootstrap failure (Bickel et al. 1997; Davison and Hink-

ley 1999). On the other hand, in order for subsampling

to work asymptotically, we need only to subsample at a

rate of o(n) and that a standardized version of our statis-

tic converges to a non-degenerate distribution (Politis et al.

1999).

As a simple demonstration of the shortcomings of the

bootstrap in this context, consider the simple additive model

Y = X1 + X2 +ε where the covariates and noise are all inde-

pendent and each is sampled in an iid fashion from a standard

normal distribution. Suppose further that our complete set of

candidate models M contains only the two univariate linear

models.

In this simple scenario, it’s clear that we should expect

each model to be selected equally often—since the covari-

ates are independent, from the same distribution, and have the

same relationship to the response. For any given dataset, the

univariate model selected is simply that with the covariate

that appears (by random chance) to be more strongly cor-

related with Y . Thus, averaging across datasets, we should

expect that the proportion of times each model is selected to

be roughly 0.5.

Figure 2 looks at the distribution of these selection pro-

portions whenever those datasets are resampled from a single

original sample via either bootstrapping or subsampling. We

generate datasets with n = 100, 1000, and 10,000 observa-

tions, generate B = 500 resamples of each, and calculate

the proportion of times across those resamples that X1 is

selected as the more important covariate. The entire proce-

dure is repeated 1000 times at each sample size to generate

distributions of these selection proportions at the three dif-

ferent sample sizes. When subsampling at a rate of
√

n, these

distributions behave as expected—each is centered at approx-
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Fig. 2 Selection proportion distribution of X1 when bootstrapping versus subsampling on the order of
√

n

Algorithm 3: Model path selection (MPS)

Select desired model class, loss L, and size (number of

covariates) d;

Select maximum cell count r and minimum probability P∗;

Define M
∗
0 as a set only containing the null model;

for i ← 1 to d do

for f̂m in M
∗
i−1 do

Denote the remaining covariates by X[1], ..., X[p−i+1];
Set Ck = 0 for k = 1, ..., p − i + 1;

while maxk(Ck) < r do

Generate subsample D
∗ of size

√
n;

Select optimal covariate X[k∗] that minimizes L on

D
∗;

Set Ck∗ = Ck∗ + 1;

Run Algorithm 2 with r and P∗ to obtain minimum value

D;

for k ← 1 to p − i + 1 do

Let f̂m,[k] denote the model that includes X[k] and the

covariates in f̂m ;

If Ck > r − D, include f̂m,[k] in M
∗
i (m);

Set M
∗
i =

⋃

f̂m∈M
∗
i−1

M
∗
i (m)

Set M
∗ = M

∗
d ;

imately 0.5 with higher concentration for larger n. With

bootstrapping, however, each distribution is nearly identical

across all n with a noticeably larger variance. In implement-

ing the model set selection procedure via the ranking and

selection approach outlined above, we thus recommend that

the resampling for each model at each step be carried out via

subsampling at a rate slower than n.

3.1.3 Summarizing the MPS procedure

With the above issues addressed, we can now present a

final summary of our proposed model path selection (MPS)

procedure that involves resampling and making use of

the ranking and selection strategy outlined above to per-

form the model set selection (MSS) for each model at

each step. This MPS procedure is summarized in Algo-

rithm 3. Note that as discussed in previous sections, if we

desired only a single model output but still wanted to incor-

porate stability into the selection procedure, rather than

performing a MSS at each step, we could instead sim-

ply take B subsamples at each step and keep only that

covariate with the largest empirical selection frequency.The

end result is merely a stabilized form of forward stepwise

selection and we thus refer to it as forward stability selec-

tion.

While this MPS formulation outlined in Algorithm 3 is,

by construction, a specialized form of the generalized MPS

presented at the beginning of Sect. 3, this is the form of

MPS that will be utilized in the remainder of the paper

unless otherwise specified. The simulation results presented

in the following section provide strong empirical evidence

that this version of MPS substantially outperforms alter-

native versions in terms of both (i) its computational effi-

ciency and (ii) its ability to select accurate models while

maintaining a relatively small collection of such mod-

els.

Note that as alluded to above, in addition to specify-

ing the model class and loss function, this formulation

also requires the user to specify a maximum cell count

r and a minimum desired probability P∗. The r parame-

ter is directly analogous to the number of resamples one

would employ in similar procedures and thus should be

set to some large positive value subject to computational

constraints. The P∗ parameter, which corresponds to the

probability that the selected set of covariates contains

that with the true maximum selection frequency, can be

thought of as a confidence level. We would generally expect

most users to fix this at a standard default value; for example,

0.90 or 0.95. Note that just as constructing confidence inter-

vals with larger confidence levels results in wider intervals,

higher values of P∗ mean that more covariates are likely to

be selected at each step, leading to “wider” path outputs with

more models selected.
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Fig. 3 Example graphical

output of the MPS procedure

3.2 Graphical visualization

Due to its branching nature, the path structure output of MPS

can easily be displayed as a collection of trees, wherein each

tree corresponds to a covariate selected in the first step. In

each tree, the depth describes the iteration at which a covari-

ate was selected and sibling nodes represent covariates that

were deemed similarly predictively useful conditional on the

model produced by selecting the covariates in the parent

nodes. As a point of convention, these trees are left-justified,

meaning the leftmost covariate is that with the highest empir-

ical selection proportion and all sibling nodes are given in

descending order of their empirical selection proportions.

Also, the MPS plots provided throughout the paper employ

a condensed visualization in which duplicate models—those

with identical covariates—are shown only once. For exam-

ple, if we have two paths, one that selects X1 then X2 and

another that selects X2 then X1, only the leftmost path is

displayed. This is simply a matter of convention that can

sometimes help to save space and aid in interpretability. The

provided R package allows users to easily turn this feature

off if desired.

A hypothetical example of the graphical output from the

MPS procedure is shown in Fig. 3; readers who wish to see

similar output for real data are invited to look ahead to Fig. 7.

In this hypothetical example in Fig. 3, we imagine seeking

to find a collection of similarly accurate 3-variable models

given an initial collection of 40 covariates. We see that MPS

identified a total of 10 such models spread across two sep-

arate trees. At step one, two covariates, X10 and X21, were

selected, thereby forming the root nodes of the two trees. At

step two, both X32 and X33 were identified as potentially

optimal covariates to be added to the model next, conditional

on X10 having been added first. Similarly, X24 and X15

were selected in step two of the procedure when added to a

model containing only X21. The pattern then continues for

deeper depths where more covariates are added to the models

identified in previous steps. Note that in settings where large

numbers of paths (models) are produced, a circular (radial)

representation of the output may be more easily displayed.

An example of this alternative graphical style is shown in

Fig. 18 in the appendix.

The fact that the output of the MPS procedure is so imme-

diately and naturally interpretable provides a great deal of

benefits to applied practitioners. For example, even a brief

glance at the collection of paths produced gives some intu-

ition into the stability of the model selection task, with wider

trees indicating that many accurate models are available. Fur-

ther, the identification of numerous accurate models implies

that emphasis needn’t be placed on any single model pro-

duced via a classical model selection procedure like forward

selection or lasso. A demonstration of this is given on real

datasets in Sect. 5. It’s also common in many applications

for researchers to wonder whether, in a given chosen model,

some covariates could be swapped for others with minimal

additional loss. The path-style output of MPS makes such

questions immediately and visually answerable by simply

checking whether such an alternative path exists.

Furthermore, this basic kind of plot shown in Fig. 3 can

be easily extended and modified to suit a variety of practical

research constraints. Suppose, for example, each covariate

has an associated price of collection. Researchers could then

apply some sort of color gradient associated with price to

easily display the “cost” of each selected model. A similar

idea could be applied to missing data problems wherein, for

example, researchers might wish to impute some missing

covariate values prior to selecting the models. Those covari-

ates containing imputed values could then be made a different

color in the MPS output.

Finally, while the very construction of the MPS models

suggests that each resulting model should be highly predic-

tive, we caution readers against the interpretation that all

models are equally predictive. By design, the MPS proce-

dure seeks to identify collections of highly accurate models

that reasonably could have been selected given the size of

the data at hand and the underlying relationships within. In

other words, echoing points discussed in previous sections,

MPS is designed to be a computationally efficient procedure

for answering which (and how many) other models might

be reasonable to expect if we had repeated the entire proce-

dure many times by collecting a large number samples and

constructing a model on each. If one’s goal is to identify

only a collection of equally optimal models, one could, for

example, easily apply one of the exhaustive search proce-

dures described in the introduction to only the collection of

models in the MPS output. Note that the number of models

identified via MPS will generally be many orders of mag-

nitude smaller than all original combinations of models of

the specified size, thereby making these exhaustive search

methods far more efficient and practical.
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4 Simulations

We now present a number of simulations to investigate the

performance and computational efficiency of the MPS pro-

cedure outlined above. In order to allow for a robust set of

comparisons, our focus here is on linear regression under the

standard squared-error loss. The particular setups described

below very closely follow those in the recent work by Hastie

et al. (2017) where the authors provide an in-depth compar-

ison of forward selection, best subset selection, lasso, and

relaxed lasso.

We consider data sampled from models of the form Y =
Xβ +ε where X ∼ N (0, 	) and where 	 is a p× p Toeplitz

matrix with row i and column j having covariance ρ|i− j |. The

noise term ε ∼ N (0, 1
ν
βT 	β I ) is a n-dimensional vector

with ν enforcing a desired signal to noise ratio (SNR) and β

is a sparse p-dimensional vector with s non-zero coordinates.

Due to the Toeplitz structure of 	, changing the sparsity

pattern of β has a non-trivial impact on the modeling envi-

ronment. We therefore consider a variety of sparsity patterns

in which we alter both the coordinates and magnitudes of the

non-zero entries of β:

• Beta-type 1: s non-zero components equal to 1 at approx-

imately equally spaced positions from 1 to p;

• Beta-type 2: s non-zero components equal to 1 in the first

s positions;

• Beta-type 3: s non-zero components equally spaced from

10 to 0.5 in the first s positions.

To carry out these simulations, we begin by fixing a num-

ber of settings including n, p, s, ρ, ν and the beta-type. We

then sample X ∈ R
n×p i.i.d. from N (0, 	) and ε ∈ R

n from

N (0, 1
ν
βT 	β I ) and calculate the response Y = Xβ+ε. With

the dataset in hand, we fit a variety of models and perform a

number of model set selection (MSS) procedures (described

below), recording the performance of each. We then repeat

the entire procedure 112 times (executed on a cluster with 28

cores and 4 CPUs per core) and record the average perfor-

mance.

Performance is measured through a ratio of the test errors.

To calculate this, we generate a test dataset of size 10,000 in

the same manner as the training data and calculate the error

of each regression estimate obtained. Our metric, the relative

test error, is of the form

RTE(β̂) = ‖Ytest − X test β̂‖2
2

‖Ytest − X testβ‖2
2

where ‖·‖2 is the L2 norm. Note that the provided RTE is

slightly different from that presented in Hastie et al. (2017),

which opts for a ratio of the expected test errors. Impor-

tantly, for MSS methods (in which multiple models are nearly

always generated), we only report the minimum RTE values

from among the selected model set. That is, only the best per-

forming models are summarized in the RTE figures below.

We take this approach because our primary interest is in deter-

mining how often such methods identify some models that

outperform standard models like lasso and forward selection.

In each simulation setting, we investigate the following

models and model set selection strategies:

• Oracle: OLS is performed on only the s covariates with

non-zero coefficients.

• Stability Selection: Stability selection is performed using

forward selection as proposed in Meinshausen and

Buhlmann (2010). The final s-variable model is chosen

by performing OLS on the s most frequently selected

variables.

• Lasso: A lasso model with a regularization parameter

chosen via a tenfold cross validation on the training

dataset across 100 possible values.

• Forward Selection: Forward stepwise linear regression

where the covariate added at each step is that which

minimizes the resulting squared error of the model. We

continue the process until the model contains s covari-

ates.

• Model Path Selection (MPS): MPS performed to a depth

of s using the resampling and ranking and selection

approach outlined in Algorithm 3.

• Cross-Validation with Confidence (CVC): An exhaustive

search MSS method defined in Lei (2020). CVC uses

cross validation, either k-fold or sample splitting, to form

a MSS set by estimating model risk and assessing the

hypotheses described in (2) at an α-level of 0.05. We

perform tenfold CVC on all s variable models.

• MPS with CVC (CVC-MPS): MPS performed to a depth

of s using CVC as selection method for each model at

each step. The CVCs performed as part of this procedure

are also tenfold.

CVC was chosen because in addition to being one of the most

recently proposed MSS methods, it is also one of the most

general, imposing no structural restrictions on M, which

makes it easy to integrate within the MPS framework. Note

that all methods are performed so as to include only s-

covariate models, except for lasso which is optimized via

tenfold cross validation as this is far more in line with its

typical use in practice.

We consider three initial setups of (n, p, s, r , P∗) where

r and P∗ represent the maximum cell count and inclusion

probability, respectively, of the MPS procedure defined in

Algorithm 3:

• Setup 1: n = 100, p = 10, s = 5, r = 200, P∗ = 0.95;

• Setup 2: n = 500, p = 100, s = 5, r = 200, P∗ = 0.75;
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• Setup 3: n = 500, p = 100, s = 5, r = 50, P∗ = 0.50.

In each setting, we consider 5 values for the SNR ranging

from 0.25 to 4 equally spaced on the log scale and autocor-

relation levels ρ of 0, 0.35, and 0.7.

Figure 4 shows the RTEs of all methods for Setup 1 across

the beta-types, autocorrelation levels, and SNRs. Generally,

the MSS methods (MPS, CVC, and CVC-MPS) outperform

all standard single model selection methods except for some

settings at the largest SNRs where the performances con-

verge. The dominance of MSS methods is not particularly

surprising given that (i) the MSS methods may select mul-

tiple models and (ii) we display only the average minimal

observed RTEs from among the selected model sets. This

result does, however, suggest that in most cases, there are

alternative models that perform at least as well as those identi-

fied by the (single) model selection procedures. These results

do not imply that all models selected by MSS are better, but

rather that much of the time there exists at least one model

with superior performance. (Additional plots provided in the

appendix show the percentage of time this occurs; in most

cases, with the exception of the oracle model, the MSS pro-

cedures are able to find models that are more optimal at least

approximately 80% of the time.) This phenomenon is echoed

by the superior performance of MSS methods over even the

oracle regression in many settings, supporting the idea that

there may be a collection models “close” to the data generat-

ing model. Indeed, these models are so close that by chance

on a given sample, they may outperform a regression on just

the signal variables. This is especially likely to sometimes

occur in low SNR settings when the data contain many cor-

related predictors. The results from Setups 2 and 3 are very

similar; these figures are given in the Appendix. In these

setups, the MSS methods still generally outperform all of the

single model selection methods, though the oracle is often as

good or better than the MSS methods.

The strong performance of the MSS methods however,

practically speaking, remains only part of the story. The fact

that these procedures are able to routinely identify models

that are more accurate than standard model selection methods

is encouraging, but this in and of itself is of little real-world

value if they require selecting a very large number of mod-

els in order to do so. Figure 5 shows the average number of

selected models for each MSS method for each setting in

Fig. 4.

The results here are fairly striking. First note from Fig. 4

that there is generally a clear differentiation between the

model selection methods and the MSS approaches. Further,

among the MSS methods, CVC and CVC-MPS tend to per-

form slightly better than MPS in terms of finding models that,

on average, have lower minimum RTEs.

A few points are worth stressing here. First, recall that

the goal of CVC is to provide a confidence set for the best-

performing model among those under consideration. In the

context we examine here, this requires CVC to perform an

exhaustive search across all
(

p
5

)

possible models and make

pairwise comparisons between each in order to obtain the

final selected set. The fact that CVC is performing a wider

search than MPS (i.e. more models are under consideration)

with the goal of guaranteeing that the best model appears in

the selected set with high probability helps explain why CVC

not only sometimes finds models with lower minimum RTEs,

but also why so many more models appear in the set selected

by CVC. Indeed, looking at Fig. 5, we see that in every low

SNR setting, both CVC and CVC-MPS are selecting nearly

every one of the
(

10
5

)

= 252 models available! In contrast,

the MPS approach proposed in earlier sections selects only

between 25 and 50 in those same settings—a more than 80%

decrease. Even at high SNRs, both CVC and CVC-MPS often

select at least double the number of models selected by MPS.

Of course, because CVC employs a hypothesis testing frame-

work, the number of models selected is directly influenced

by the type-1 error rate of the corresponding test; raising the

α-level from the nominal level of 0.05 would result in fewer

models being selected.

Note also that despite nearly identical performance in

terms of minimum RTE, in the beta-type 1 (Fig. 5 first

column) and 0-correlation (Fig. 5 top row) settings, CVC-

MPS often selects substantially more models than CVC.

While selecting more models would seem to be an obvi-

ous drawback, we stress that the reduction in model set

size accomplished with CVC comes at the cost of sub-

stantially increased computational effort. Figure 8 in the

appendix shows the relative runtimes of these two meth-

ods. Here we see that CVC-MPS takes between 1
2

and 1
25

the time of CVC, which is particularly impressive consid-

ering that in some settings both methods perform nearly

identically in terms of both model set size and minimum

RTE. The computational gains of CVC-MPS can thus be

immense, though these gains can sometimes come at the

cost of an increased number of selected models. It should

also be noted that in higher-dimensional settings where the

number of candidate models is large, CVC may be entirely

computationally prohibitive. On the other hand, because

CVC allows users to specify the set of models under con-

sideration, it may be advantageous in settings where, for

example, one can easily define a relatively small grid of

models indexed by tuning parameter values, such as with

the lasso.

To close out our simulations, we turn our attention exclu-

sively to the MPS procedure defined in Algorithm 3 and

examine the impact of different selection rules. Here we

fix n = 500, p = 100, and s = 5 as in Setups 2 and 3

and perform MPS with parameter pairs (r = 200, P∗ =
0.75), (r = 200, P∗ = 0.50), and (r = 50, P∗ =
0.50).
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Fig. 4 Average RTE of each model and model set selection procedure.

The vertical bars represent 1 standard error. For each MPS, CVC, and

CVC-MPS, the values represent the minimum RTEs from among the

set of selected models. The shaded region shows the best 30% of mod-

els selected via MPS. Note that CVC and CVC-MPS perform nearly

identically in each setting

Average minimum RTEs and selected model set sizes are

shown in Figs. 13 and 14 in the appendix, respectively. Note

that in these figures, the (r = 50, P∗ = 0.50) datapoints are

averaged over different datasets from (r = 200, P∗ = 0.75)

and (r = 200, P∗ = 0.50). We see that fixing r = 200 and

lowering P∗ from 0.75 to 0.50 results in a slightly inflated

minimum RTE and a correspondingly small decrease in the

average number of models selected. This should come as

no surprise: these probabilities are akin to confidence lev-

els and thus decreasing P∗ means that fewer covariates are

selected at each step, leading to fewer overall models being

selected. On the other hand, keeping P∗ = 0.50 and lower-

ing r from 200 to 50 reduced the minimum RTE in several

cases and greatly increased the average number of models

selected—the selection rule for r = 50 is more conserva-

tive than when r = 200. In effect, the value of r operates in
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Fig. 5 Number of models selected by each model set selection method

an analogous fashion to the the sample size in a confidence

interval calculation, tightening the width of the interval at

larger values. By lowering the value of r , we obtain consider-

ably more paths—in some cases by more than tenfold—and

despite also lowering P∗, maintained similar if not better

RTE results. Of course, the consequence of these better RTE

results come at the cost of increased paths, which can exceed

1500, though it is worth noting that this is still less than

0.002% of the
(

100
5

)

= 75,287,520 candidate models avail-

able.

5 Real-world data applications

We now demonstrate the value of the MPS procedure on two

popular real-world datasets. The first example illustrates that

even with relatively simple data, MPS can sometimes identify

a large number of similarly-accurate models, many of which

outperform the individual models selected via forward selec-

tion and the lasso. The second example demonstrates that the

number and diversity of optimal models selected depends

heavily on the model class and loss function specified.
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5.1 Diabetes disease progression

We first examine the diabetes dataset provided in Efron et al.

(2004), which was originally provided to demonstrate least-

angle regression (LARS) in a sparse linear regression regime

but more recently has been used to demonstrate the behav-

ior of CVC (Lei 2020). The data describe n = 442 diabetes

patients who have ten baseline measurements recorded: age,

sex, body mass index (bmi), mean arterial pressure (map),

and six blood serum measurements (tc, ldl, hdl, tch, ltg,

glu), all of which are standardized. In addition, a response

variable measuring diabetes progression one year after base-

lines were recorded is also given. As was done in both

Lei (2020) and Efron et al. (2004), we consider all second

order terms, thus bringing the total number of predictors to

p = 64. We also randomly split the data into a training

and test sets of sizes n = 300 and n = 142, respec-

tively.

In keeping with what is common in applied research

areas, we begin by performing both lasso and forward

selection, both of which are tuned via fivefold cross val-

idation. MPS is also performed using linear models with

squared-error loss where we set an inclusion probability of

P∗ = 0.95, a maximum cell count of r = 100, and a

depth matching that of the cross-validated forward selec-

tion. The selected model paths are shown in Fig. 18 in the

appendix. In analyzing the selected paths, we see that a

total of 67 models were selected, thus demonstrating that

there indeed are numerous well-performing models—many

of which outperform the individual models selected via both

lasso and forward selection. In fact, of the 67 models iden-

tified 24 (36%) are more accurate on our test set than the

lasso model and 40 (60%) are more accurate than the lin-

ear model obtained via classic forward selection. Figure 6

shows a box plot of the model errors from MPS with the

lasso and forward selection models overlaid for reference. At

the very least, this suggests that models selected via forward

selection or lasso should not be treated as the only well-

performing models, and any discussion about the particular

importance of covariates selected in such models would be

misguided.

Indeed, following this line of thinking, let us now con-

sider a hypothetical setting in which MPS could play a useful

role. Suppose that a researcher is given access to the above

data and wonders whether a relatively simple model could

be constructed to predict disease progression. In particular,

the researcher notices that three of the covariates (age, sex,

and bmi) are non-invasive to collect, a fourth (map) can be

computed from only a blood pressure reading, while the six

remaining features (tc, ldl, hdl, tch, ltg, glu) are more invasive

to collect, requiring blood to be drawn. It is reasonable then

to wonder whether there exists a well-performing model that

utilizes only those three or four minimally-invasive covari-

Fig. 6 Box plot displaying test errors of models selected via MPS. The

vertical dashed line to the left shows the test error of forward selection;

the vertical dotted line to the right shows the test error of lasso

ates. The researcher can then perform forward selection (or

some other traditional model selection method) to find a well-

performing model with only three or four variables. Using

this data and the same train-test split described above, for-

ward selection will choose the model containing bmi, ltg, and

map as the covariates in a three-variable model and add the

age–sex interaction as the fourth covariate if a four-variable

model is desired. This is where many traditional analyses

would stop—ltg (a covariate requiring blood collection) is

selected in both the three- and four-variable models and thus

the researcher is out of luck. However, MPS allows that

researcher to ask whether there are other small models avail-

able that generate similarly accurate predictions. Figure 18

in the Appendix shows that only one covariate is selected

at each of the first three levels and unfortunately ltg is the

second covariate to enter the model. Thus, in this particular

case, we find no other three- or four-variable models with

high accuracy that do not require blood to be drawn. The

only model to not utilize an invasive covariate is the single-

variable model containing bmi. In theory, the researcher

could compare the predictive accuracy of that one-variable

model to those of the larger models and decide whether its

accuracy was sufficient or whether a more invasive blood

draw would be necessary for accurately predicting disease

progression.

5.2 Breast cancer identification

We now consider a dataset describing cell nuclei images

taken from 699 breast cancer patients (Bennett and Man-

gasarian 1992). The variables present are the clump thickness

(X1), uniformity of cell size (X2), uniformity of cell shape

(X3), marginal adhesion (X4), single epithelial cell size (X5),

bare nuclei (X6), bland chromatic (X7), normal nucleoli

(X8), mitoses (X9). The binary response indicates whether

or not the measured tumor was determined to be malig-

nant.

The purpose of this application is to show the behavior of

MPS under different modeling conditions and demonstrate

how model class heavily impacts the models identified and

the covariates utilized. We apply MPS once with regres-

sion trees and again with logistic regression, both with

squared error loss. Given the complexity of the underly-

ing system, it is conceivable that logistic regression is too
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Fig. 7 Path structure for logistic regression (top 2 rows) and regression trees (bottom). MPS produces 79 paths using logistic regression and only

1 path using regression trees

coarse a model to uncover unique meaningful relationships

and it was thus hypothesized that model selection proce-

dures may be more unstable relative to regression trees.

MPS is performed with an inclusion probability of P∗ =
0.75, maximum cell count of r = 200, and a depth of

3.

The resultant model paths are shown in Fig. 7. Here

we observe that logistic regression produces a very large

number of plausible models. In fact, logistic regression

produces 79 models—more than 94% of the
(

9
3

)

= 84

unique 3-variable models available. In shocking contrast,

MPS with regression trees produces only 1 single path,

suggesting that this particular modeling context is very sta-

ble.

6 Discussion

The model path selection (MPS) framework introduced here

provides scientists and practitioners with a computationally-

efficient tool allowing them to graphically visualize the

stability of the modeling process. The procedure itself is

greedy in the sense that models are built up via forward

selection, but that greed is mitigated by the fact that all

plausibly-optimal variables are included as possibilities at

each step. We stress as well that MPS should be seen as

a generic wrapper-style method and in particular, we make

no claims of optimality with respect to the particular imple-

mentation utilized here in which decisions at each step are

made via classical results from the ranking-and-selection

literature. Future work may explore more computationally

advantageous approaches, especially in high-dimensional

settings wherein it may be reasonable to implement a kind

of “screening” or “early stopping” rule that would quickly

eliminate covariates at each step that are unlikely to be cho-

sen in the final set. Note also that each step in the MPS

procedure is readily parallelizable. Thus, when construct-

ing the individual models is computationally burdensome,

such as may be the case with large datasets and/or com-

plex model-building procedures, different machines may

be used to build each model and select the best feature

so that the MPS procedure can run more quickly over-

all.

In contrast with many other procedures, MPS is com-

pletely agnostic to the model and loss function employed

and users may choose to construct models to whatever

depth is desired. Thus, in practice, the model depth could

be constrained for practical purposes or chosen in a data-

dependent fashion, such as by some form of validation or

by stopping once the empirical gain in model accuracy that

could be obtained by adding more variables drops below

some threshold. This flexibility is also potentially of benefit

from a theoretical perspective. It is reasonable, for exam-

ple, to ask how likely it is that the “true” model will be

found via MPS if it is assumed to exist and be discover-

able via forward selection. Such questions, however, depend

entirely on the particular model, loss, and stopping rules

employed.

Along similar lines, it is certainly often the case in prac-

tice that scientists must ultimately choose a single model

to represent the process at hand. Given the promising

results on both simulated and real world data in previ-

ous sections, one may wonder whether the MPS procedure

can be used to identify better models than those pro-

duced via classical model selection methods. Indeed, in

such settings practitioners may consider various strate-

gies like using some form of validation to select the

most optimal model identified via MPS or creating an

ensemble of the top performing models. While approaches

such as these may sometimes prove successful in practice,

123



82 Page 16 of 28 Statistics and Computing (2024) 34 :82

we stress that this is not the goal of the MPS proce-

dure.

Nonetheless, we also stress that the MPS procedure can

still be quite helpful in practical settings, even when a sin-

gle final model must be selected, for at least two reasons.

First, as discussed in Sect. 3.2, in many practical settings

there are real-world restrictions on the types of models

that can actually be utilized. Practitioners might need a rel-

atively low-dimensional model, or they may be unable to

utilize certain covariates in a model (e.g. due to privacy

concerns), or certain covariates may be very costly or time-

consuming to collect. In settings like these, it is entirely

reasonable to think that the empirically optimal model may

be unusable for one of the above reasons and thus the prac-

titioner is forced to ask whether there are alternative models

available that suit their needs without a large sacrifice in

accuracy.

Second, we feel strongly that there is inherent value

in understanding the stability of the model selection pro-

cess itself. As discussed in the abstract and introduction

and alluded to throughout the paper, it remains unfortu-

nately common to see scientific publications in which the

“importance” of a particular covariate (or set of covariates)

is argued for merely on the basis of having appeared statisti-

cally significant in a (single) particular model. Although MPS

characterizes the stability of forward selection specifically

rather than for all model selection processes more gener-

ally, the procedure can still be very helpful in addressing the

counterfactual—are there other models with similarly high

accuracy that do not rely on these covariates? If one per-

forms MPS and sees that those covariates appear in nearly

every model (or at least in the most accurate of them),

then the case for their importance becomes stronger. On the

other hand, if MPS reveals many alternative models with

the same (or possibly even higher) accuracy that do not utilize

those covariates, then the argument for their unique impor-

tance is substantially weakened.

It may be apparent to some readers that our MPS pro-

cedure described above is merely one possible form of a

forward selection analogue of MSS. As an alternative, one

could, for example, perform MSS on all j-variable mod-

els that nest all models in M∗
j−1, rather than performing

a separate MSS for the j-variable models that nest each

m ∈ M∗
j−1. Certainly, this is a valid possible alterna-

tive, though we stress that this kind of approach may still

result in a large number of model comparisons and thus

be computationally overbearing. Under our formulation of

MPS, the intermediary candidate sets are broken up into

numerous smaller sets so to prevent burdensome computa-

tional issues.

Finally, we note that there are a number of minor exten-

sions of the basic MPS procedure that could readily be

employed in practice. If one is interested in groups rather

than individual covariates, entire groups may be identi-

fied at each step. Similarly, depending on the particular

modeling framework being used, it may be advantageous

to employ an adaptive form of MPS wherein interac-

tions would be allowed in later steps once individual

covariates are selected. Lastly, if one is particularly con-

cerned about ensuring that none of the models selected

via MPS are significantly less accurate than the others,

then as discussed at the end of Sect. 3.2, an exhaus-

tive search procedure like CVC could be run on that

final collection of models. Indeed, especially when many

models are produced, it is reasonable to worry about a

kind of propagation of error—perhaps at each step there

isn’t enough evidence to exclude a particular variable,

but there may be evidence at the end of the process

that a model consisting of many of the least-frequently

chosen variables at each step is ultimately suboptimal.

If MPS is seen as constructing model “trees” of sorts,

then applying a CVC-type filter after construction might

be seen as something akin to pruning.
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A Additional simulation results

Here we present a number of additional figures corre-

sponding to simulation results from Sect. 4 and a model

path diagram from Sect. 5.1. Figure 8 shows the ratio of

computational times for CVC-MPS to CVC in Simulation

Setup 1. The results—average minimum RTE and aver-
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age number of models selected—for Setup 2 are given in

Figs. 9 and 10, respectively; results for Setup 3 are given

in Figs. 11 and 12, respectively. Note that in these latter

two setups, we do not perform CVC or CVC-MPS due

to the increased computational burden. Also, we directly

compare the results of MPS across Setup 2 and Setup 3

(and another version with (r = 200, P∗ = 0.50)) in

Figs. 13 and 14. Additionally, we provide plots that display

the frequency with which each model selection method out-

performs all models selected via MPS in Fig. 15, Fig. 16, and

Fig. 17. Lastly, Fig. 18 shows the selected model paths of the

MPS performed in Sect. 5.1.

Fig. 8 Ratio of average computation time of CVC-MPS to CVC for Simulation Setup 1
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Fig. 9 RTE of each model selection type for Setup 2 (p = 100, r = 200, P∗ = 0.75). The shaded region shows the best 30% of models selected

via MPS
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Fig. 10 Number of paths for MPS in Setup 2 with p = 100, r = 200, P∗ = 0.75
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Fig. 11 RTE of each model selection type for Setup 3 (p = 100, r = 50, P∗ = 0.50). The shaded region shows the best 30% of models selected

via MPS
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Fig. 12 Number of paths for MPS in Setup 3 with p = 100, r = 50, P∗ = 0.50
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Fig. 13 RTE of MPS with differing multinomial cell selection rules. Note: the Beta-type 3 and ρ = 0.7 plot is a missing datapoint, as its computation

time exceeded 6 days
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Fig. 14 Average number of paths of MPS with differing multinomial cell selection rules. Note: the Beta-type 3 and ρ = 0.7 plot is a missing

datapoint, as its computation time exceeded 6 days
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Fig. 15 Proportion of times each model selection method obtains a lower test RTE than all models selected via MPS for Setup 1 (p = 10, r = 200,

P∗ = 0.95)
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Fig. 16 Proportion of times each model selection method obtains a lower test RTE than all models selected via MPS for Setup 2 (p = 100, r = 200,

P∗ = 0.75)
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Fig. 17 Proportion of times each model selection method obtains a lower test RTE than all models selected via MPS for Setup r (p = 100, r = 50,

P∗ = 0.50)
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Fig. 18 Model paths of diabetes dataset plotted radially; there are a

total of 67 paths. At a depth of 7, the number of paths explodes, sug-

gesting that forward selection becomes relatively unstable at models of

that size. In contrast, only a single model is identified in the first three

steps, suggesting significant stability to that point
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