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Abstract

Most scientific publications follow the familiar recipe of (i) obtain data, (ii) fit a model, and (iii) comment on the scientific
relevance of the effects of particular covariates in that model. This approach, however, ignores the fact that there may
exist a multitude of similarly-accurate models in which the implied effects of individual covariates may be vastly different.
This problem of finding an entire collection of plausible models has also received relatively little attention in the statistics
community, with nearly all of the proposed methodologies being narrowly tailored to a particular model class and/or requiring
an exhaustive search over all possible models, making them largely infeasible in the current big data era. This work develops
the idea of forward stability and proposes a novel, computationally-efficient approach to finding collections of accurate models
we refer to as model path selection (MPS). MPS builds up a plausible model collection via a forward selection approach
and is entirely agnostic to the model class and loss function employed. The resulting model collection can be displayed in a
simple and intuitive graphical fashion, easily allowing practitioners to visualize whether some covariates can be swapped for

others with minimal loss.

Keywords Stability selection - Ranking and selection - Rashomon effect

1 Introduction

Despite the rapid acceleration into the modern data sci-
ence era, many practitioners remain tethered to a classical
approach to data analyses. In regression problems, such an
approach can be broadly characterized by the following steps:
(i) obtain data, (ii) choose a model class, often based largely
on tradition or personal preference and with no or only mini-
mal heuristic justification, (iii) use the data and an algorithmic
selection method to obtain the empirically optimal model
within that class, and (iv) devote the remaining discussion
to the broader scientific implications of the particular model
selected, paying particular attention to the specific covariates
that are selected without properly accounting for the vari-
ance introduced by the selection procedure. Specifically, the
ubiquity of large datasets has encouraged the use of model
selection while largely failing to recognize that those same
selection methods could potentially produce a very different
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model if applied to a new dataset sampled from the same
underlying process.

More formally, given data Zy, ..., Z, ~ Fz in the form
of ordered pairs Z = (X, Y) consisting of covariates X =
(X1,...,Xp) and a response Y, we commonly imagine a
generic regression relationship of the form Y = f(X)+e¢.To
perform the regression, one often begins with a finite collec-
tion of models M = {fm :m=1,..., M}. This discrete set
can serve to enforce some kind of regularization such as the
number of steps in forward selection or the amount of shrink-
age in penalized techniques like the lasso. Model selection
procedures are designed to select the fm € M that provides a
good approximation to f, where quality of the estimates can
be measured via some loss function £( fm (X),Y) or pre-
dictive risk R(fy) = E(L(fm(X),Y)| fm). Research on
model selection has traditionally focused heavily on assess-
ing consistency and establishing conditions under which it
can be guaranteed that the estimated tuning parameter(s) cor-
responding to the chosen fm converges to their true or optimal
values [see e.g. Zhao and Yu (2006); Bach (2008); Zhang
(2009) or Fan and Lv (2010) for a thorough overview].

Such a selection process, however, says nothing about
the stability or optimal-uniqueness of the particular (single)
model ultimately selected. Although it is quite common in
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applied scientific publications to provide measures of uncer-
tainty (e.g. confidence interval or an estimate of the standard
error) whenever reporting point estimates, it is surprisingly
rare that algorithmically selected models come with analo-
gous measures (e.g. a collection of plausible models M* C
M). While confidence intervals for coefficient estimates may
be available for some parametric models, readers are still
left to wonder, for example, whether some of the selected
covariates could be substituted for others not selected with-
out a significant drop in risk or, more generally, if the entire
procedure were repeated on a new sample, how different a
model overall may be selected. Such questions are partic-
ularly important in high-dimensional settings and/or when
complexity restrictions (e.g. the number of covariates in a
model) are enforced for practical purposes. In recent years,
several efforts have been made to devise means of widen-
ing confidence regions resulting from parametric models to
account for the extra variability introduced by model selec-
tion; see for example Kuchibhotla et al. (2020) and references
within.

The fact that in any given data modeling context there
may exist many near-optimal models was a point stressed
by Leo Breiman in his 2001 “Two Cultures” essay (Breiman
2001) where he refers to the phenomenon as the “Rashomon
Effect.” In the last several years, the idea of Rashomon or
uncertainty sets has emerged as a way of formally refer-
ring to sets of models with errors that are within some
small € of that of the empirically optimal model. Within the
recent Rashomon literature are methods for decision making
(Tulabandhula and Rudin 2013, 2014), identifying ranges of
variable importance within a model class (Fisher et al. 2019),
and measuring model class simplicity (Semenova and Rudin
2019).

1.1 Model set selection

While a number of interesting analyses can be carried out
once a set of similarly-accurate models is identified, finding
an efficient means of obtaining these model sets has proven
more of a challenge. Jiang et al. (2008) proposed a “fence”
method to weed out poor-performing models from M in
hopes of obtaining some reduced set M* that contains the
optimal model with high probability. Hansen et al. (2011)
followed a similar regime, focusing primarily on linear mod-
eling and proposing a sequential elimination strategy. Ferrari
and Yang (2015) extended these ideas to potentially high-
dimensional settings where p can grow with n whenever
additional screening methods are available. Nevo and Ritov
(2017) also explored the high-dimensional linear regression
setting and proposed a random search procedure utilizing
simulated annealing. Li et al. (2018) developed the notion
of “model confidence bounds” for linear models chosen via
penalized likelihood selection methods whereby a sequence
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of nested models is obtained in hopes that the true model
lies in between the smallest and largest such models. Lei
(2020) developed a procedure for quantifying the uncer-
tainty associated with models selected via sample-splitting
and cross-validation, providing some means of determining
M* without insisting on overly strong conditions on the data
and models.

Despite these impressive efforts, there remain a substan-
tial number of key shortcomings. With the exception of Lei
(2020), these procedures are generally specific to a par-
ticular modeling framework—often linear regression—and
their validity and theoretical properties depend heavily on
that particular model class assumed. Additionally, as pointed
out in Li et al. (2018), earlier procedures lack any explicit
means of restricting the model structure and thus models
in the selected set M™ needn’t be related in any way and
thus could potentially consist of completely disjoint sets of
covariates. These procedures also rely heavily on exhaus-
tive search or backward elimination-type procedures, making
them computationally daunting and potentially infeasible in
high-dimensional settings without a valid variable screening
tool (Lei 2020; Jiang et al. 2008). Finally, as pointed outin Lei
(2020), without a priori size or complexity restrictions, the
procedures in Hansen et al. (2011), Ferrari and Yang (2015),
and Jiang et al. (2008) will always produce a set of models
M* that contains the fully saturated model with all available
covariates.

Our work here proposes a novel procedure for producing
plausible model sets in a computationally efficient manner
while remaining entirely agnostic to the particular models
and loss functions employed. Indeed, our model path selec-
tion (MPS) tool should be seen as a wrapper that can be
applied to any user-specified model and loss function. Instead
of sequentially eliminating models, MPS builds up a plau-
sible model set M* in a manner akin to forward selection.
Specifically, MPS is a branching form of forward selection
that instead of picking a single variable in each iteration, can
select multiple variables and thereby create multiple branches
that are continued along recursively. In this way, our work
characterizes the variability of forward selection by show-
ing numerous paths it could have taken. The final output
is a collection of similarly predictive models that can be
displayed in a tree diagram that makes clear which covari-
ates can be swapped for others without a substantial drop
in accuracy. When few paths are discovered, practitioners
may take additional confidence in the potential importance
of the included covariates while the appearance of numer-
ous paths should discourage the over-emphasis of particular
covariates that appear in only a small fraction of the models.
Note that because MPS is both model agnostic and rooted in
forward selection, unlike some of the more restrictive and/or
computationally intensive methods described above, there is
no general guarantee that the collection of models produced



Statistics and Computing (2024) 34:82

Page3of28 82

will necessarily contain the best overall model with high
probability. However, in the simulations and real-data appli-
cations provided in later sections, we repeatedly demonstrate
that our MPS procedure is capable of generating relatively
small collections of models, a surprising number of which
have better out-of-sample accuracy than the single models
identified via traditional tools like lasso and forward selec-
tion.

Before proceeding, it is worth pausing to distinguish our
goal at hand from others that may appear similar and where
substantially more attention has traditionally been paid. We
do not necessarily assume that the set of predictors can be
partitioned into signal and noise covariates and thus our goal
is not to produce a collection of models such that every fea-
ture in every model would register as statistically significant
if built as a standalone model. Indeed, our focus here is on
the predictive accuracy of the models produced and some
surprising recent research has suggested that noise features—
completely independent of the response—may actually help
improve model accuracy in some noisy data settings (Kobak
et al. 2020; Mentch and Zhou 2022). Along the same lines,
our goal is not necessarily to identify the subset of signals
as is the primary objective with tools like knockoffs (Barber
and Candes 2015; Candes et al. 2018; Barber et al. 2018;
Janson et al. 2016), pseudovariables (Wu et al. 2007; Hu
et al. 2018), or stability selection (SS) (Meinshausen and
Buhlmann 2010; Shah and Samworth 2013). We emphasize
the distinction from SS in particular because our MPS pro-
cedure makes use of similar ideas involving the evaluation
of model or variable selection frequencies across resamples.
Finally, we are not seeking to select a particular model and
adjust variance estimates to account for additional uncer-
tainty as might be done via some form of post-selection
inference (e.g. Berk et al. 2013; Lee et al. 2016; Tibshi-
rani et al. 2016; Taylor and Tibshirani 2018). Instead, our
procedures are designed to capture and display the uncer-
tainty involved in the forward selection process itself and
produce relatively small sets of plausible models as out-
put.

The remainder of this paper is laid out as follows. In
Sect.2 we provide a high-level motivation for the pro-
posed model path selection framework by building on core
ideas from the stability selection (SS) literature. In partic-
ular, we introduce the idea of forward stability selection
(FSS) as something of a bridge between SS and model path
selection (MPS). Section3 formalizes the FSS and MPS
ideas, drawing upon classic results from the ranking and
selection literature. Numerous simulations and applications
are provided in Sects.4 and 5 before concluding with a
discussion in Sect. 6. An R package containing the MPS pro-
cedure and code needed to reproduce our simulations and
real data examples is available at https://github.com/nkissel/
MPS.

2 Background and motivation

As above, assume we have a dataset D,, consisting of data
Z1,...,Zy, ~ Fz in the form of ordered pairs Z = (X, Y)
consisting of covariates X = (X1, ..., X)) and a response
Y and imagine a generic regression relationship of the form
Y = f(X) + €. In a variable selection context, one often
further assumes that X can be partitioned into (S, N), where
S consists of s signal variables and N contains only noise
features, defined as those that are independent of Y, at least
conditional on the covariates in S.

Stability selection (SS) is one popular resampling-based
method for estimating S that was introduced by Meinshausen
and Buhlmann (2010) and has since been refined by Shah and
Samworth (2013). The basic SS procedure operates as fol-
lows. First, B resamples D7, ..., Dy, each of size L%J, are
drawn without replacement. On each resample D}, a collec-
tion of models {fm(D;k) :m = 1,..., M} are fit across a
grid of M regularization parameters. Each model generated
on each resample produces a set of selected covariates S‘i (m).
Foreachm € {1, ..., M} we then calculate the frequency of
selection for each covariate across all resamples so that for
each covariate X ;, the corresponding selection proportion is
defined as

. = .
6j(m) = — > IX; € S (m)).

i=1

To form the final estimated set of signal covariates Sstabl e
one selects an appropriate tuning parameter value Ao (or m
in our case) and threshold 7, € [0, 1] so that gstable can
then be defined as the collection of all covariates X ; such
that j(m) > mp,. Work following the inception of stabil-
ity selection (e.g. Shah and Samworth 2013) has focused
on establishing assumptions under which particular error
controls can be achieved so as to better guide the practical
selection of appropriate choices for m;p, and Ag.

At a high level, SS can be thought of as a resampling-
based variable selection procedure that takes a modeling
framework and data as inputs and outputs a set of selected
covariates S37able. Crucially, this setup leaves one with little
ability to directly control the complexity, structure, or size
§ of Sstable, Especially in the modern era, however, there
exists many situations in which hundreds or thousands of
covariates are available, a substantial proportion of which
may contain some signal, but where, for practical purposes,
users desire a low-dimensional model consisting of only a
handful of variables.

Suppose, for example, a practitioner desires a model with
no more than k., covariates. The simplest way to accom-
modate this restriction within the SS framework in the event
that k0 < § would be to simply select those k4, covari-
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Fig.1 (Left) Stability paths from the motivating model in (1). Stability
selection is performed using forward selection. (Right) Histogram of
test set MSEs from all 3-variable models that take one variable from

ates with the highest empirical selection proportions. This,
however, says nothing with regard to how uniquely optimal
those particular variables may be relative to the others in
Sstable anqg perhaps even more importantly, there is no rea-
son to expect that the model constructed with those particular
kmax covariates with the highest selection proportion would
be the most predictively accurate k4 -variable model.

As a simple motivating example, consider the regression
function

3 6 9 18
E[YIX]=3) Xi +2) X;+ 1) X, +0)> X,
j=4 k=17

i=1 =10
(H

where each of the four groups of covariates are independent
but within the first three signal groups, the covariates have a
high correlation of 0.9. In this example, one might expect that
among the (]38) possible 3-variable linear models, the most
accurate 3-variable models would include one covariate from
each signal group: one variable from {X1, X», X3}, one from
{X4, X5, X¢}, and one from {X7, Xg, Xo}. If, however, we
naively employ stability selection for this purpose, the three
covariates with the highest selection proportions are very
often from the first 2 groupings, as can be seen in the stability
paths displayed on the left-hand side of Fig. 1. Here stability
selection is implemented with forward selection on a dataset
with n = 500 observations and a signal-to-noise ratio (SNR)
of approximately 10, and model performance is measured by
the MSE on a test dataset of 10,000 observations.

As suspected, however, such models are far from the most
accurate 3-variable models available. The right-hand side of
Fig. 1 shows a histogram of MSEs from all 3-variable models
that take one variable from each signal grouping. The dashed
vertical line corresponds to the error of the best 3-variable
model built by including any three variables from only the
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each signal grouping. The dashed vertical line shows the best 3-variable
model built by including any 3 variables from the first 2 signal groupings

first two signal groupings, thereby serving as a lower bound
on the error for any model obtained via this stability selection
approach on this dataset. It is immediately evident looking
at this plot that even the least accurate models formed by
taking one covariate per group perform substantially better
than even the best model obtained via the SS approach.

How else then might we embed the idea of stability within
the context of model selection? Here we focus on the generic
idea of stepwise forward selection whereby covariates enter
the model one at a time and at each step, the covariate selected
is that which minimizes the empirical loss of the result-
ing model. In the original SS formulation, Meinshausen and
Buhlmann (2010) suggested that models built via forward
selection be constructed on each resample to achieve a notion
of stable variable selection. Here, in order to achieve sta-
ble model selection, we advocate for the stability achieved
via resampling to be embedded within the model fitting pro-
cedure itself. More specifically, in the context of forward
selection, suppose that at each step we draw B resamples
and determine the best variable to add based on each resam-
ple. At each step, the end result is a selection proportion for
each remaining covariate and we can simply choose to add
the covariate selected most often across those resamples. We
refer to this idea as forward stability selection.

The formulation of such a procedure begs an interesting
question, however. Suppose that at any given step in the pro-
cedure, k > 1 covariates are selected quite frequently and in
particular, none of those k appear to be selected significantly
less often than the other top performers. In such cases, rather
than select only the one covariate with the empirically largest
selection proportion, our model path selection (MPS) proce-
dure, formalized in the following section, involves creating a
new model path for each of these k covariates and continuing
the model-building procedure for each, stopping when some
kmax number of covariates is reached in each model path. In
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this way, MPS generates a collection of models rather than
only a single one, while remaining entirely agnostic to the
particular model class and loss function desired.

3 Methods

Considering the generic regression framework ¥ = f(X) +
€, model set selection (MSS) procedures seek to identify the
best estimators of f among a finite set of candidate mod-
els M = {fm :m = 1,..., M}. As recently discussed in
Lei (2020), the MSS objective can be posed as a hypothesis
testing problem with

Hom: Q(fm) < Q(f) forall m' # m
Him: Q(fm) > Q(f) for some m’ # m )

where Q( fm) =E[L( fm(X ), Y)| fm] denotes the predictive
risk with respect to a loss function L. In this setup, failing to
reject Hy , means that we do not have evidence that any other
candidate model in M generates more accurate predictions
than fm , and as a result, the model fm is added to the selected
set M* = {fm : fail to reject Hy n} € M.

Formulated in this way, it becomes apparent why MSS
methods generally tend to require an exhaustive search over
the entire set of candidate models and as a result, are com-
putationally expensive. Indeed, this MSS setup is exactly
analogous to best subset selection in the traditional model
selection paradigm. In those settings, however, there are
a multitude of alternative selection strategies that perform
searches that are more greedy in lieu of exhaustive searches
in order to reduce computational cost. Specifically, consider
a generic forward stepwise regression which, at each step,
selects the covariate that minimizes the error of the model
given the covariates already selected. Stepwise methods ter-
minate when some pre-specified stopping criterion is met, of
which there are many possibilities. Here, for simplicity, we
focus our attention on the simplest variant that stops once
a pre-specified number of covariates d are selected. Greedy
selection allows one to quickly find an accurate d-covariate
model by selectively searching over Z?:l (p—Jj—+1) models
rather than all possible (5) d-covariate models. For scenar-
ios with large p and 1 < d < p, the computational gains of
forward selection procedures can be immense. The goal of
our model path selection (MPS) routine is thus to provide an
analogous, computationally efficient alternative to exhaus-
tive search MSS procedures that still takes into account the
uncertainty in the selection process by identifying an entire
subset of accurate models M* C M.

Before jumping into the procedure, we will first explicitly
define nested models, as they are vital to forward selection
and MPS.

Algorithm 1: (Generalized) Model path selection (MPS)

Select desired model size (number of covariates) d;

Define M as a set only containing the null model;

fori < 1tod do

for f,, in M* | do

Qeﬁne M, (m) as the set of all i-variable models that nest
Sms
Perform model set selection (MSS) on M; (m) and call
the result M (m);

Set M;k = U_meM,*,l Mj‘(m)
Set M* = M

Definition 1 (Nested model) Let S’(m) be the set of covariate
indices used to fit fm, meaning without loss of generality that
if fn(xr, ... xp) = fu(xr,... X, X[, ... x}) for any
(x1,...,xp) and (xl,...,x,',xlfﬂ,...,x;,) then S’(m) =
{1,...,i}. We say fm/ nests fm if S(m) c S(m).

As in traditional forward selection, the generic MPS pro-
cedure begins by comparing all p univariate models, which
we denote by M. We then perform MSS on M to generate
the subset of the most accurate 1-variable models, denoted
by M. Then, for each model fm € M7, let My(m) denote
the set of all 2-covariate models nesting fm and perform
MSS on this set to generate M3 (m). We can then define
M = UmeMT M (m) as the set containing all of the most
accurate 2-covariate models that nest one of the 1-variable
models in M7. More generally, let M ;(m) represent all
Jj-variable models that nest some f:n € Mj_ | for some
j < d. MSS is then performed yielding the selected set
/\/ljf(m) € M (m) and we define

fmeMi_,

when j = d, the procedure terminates and the final selected
set M* is set equal to M. This MPS procedure is summa-
rized in Algorithm 1.

Note that the MPS procedure defined in Algorithm 1 is
intentionally given in a generalized form. In particular, so
long as the variable selection is carried out in a forward fash-
ion, any MSS procedure can be employed to determine the
selected covariates at each step. The output of the MPS pro-
cedure is thus not only a collection of predictively accurate
models, but a collection that, by construction, is structurally
similar in the sense that all models belong to the same class
and many often contain some similar features. Because of
this, the models selected can be easily displayed in a natural
tree-like branching fashion, which makes the output imme-
diately and naturally interpretable. Much more discussion
along these lines is provided in Sect. 3.2; readers are invited
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to look ahead to this future subsection and inspect Fig.3 to
see example output.

3.1 Stabilized selection

As just noted above, MPS can be carried out with any form of
MSS one desires. Note, however, that MPS insists on a kind
of stepwise MSS. That is, along each model path, at each
step j, we perform a constrained version of MSS where the
collection of models identified must include the j — 1 covari-
ates selected previously in that path. Thus, in essence, we are
seeking only to identify the subset of remaining covariates
most helpful to be added to the model already containing
those j — 1. Thus, as alluded to in Sect. 2, we now propose a
new kind of MSS building on the idea of stability and more
specifically tailored for this type of situation.

Consider a particular model f( j—1 € Mj_l that, without
loss of generality, contains the first j — 1 covariates so that
we may write X ;_ = {Xy,..., X;_1} as the set of covari-
ates already selected and X ;1 = {X, ..., X} as the set of
covariates available to be added. Given our original dataset
D,, at the jth step in the procedure, there must exist some
(at least one) covariate in X ;; that minimizes the loss of the
resulting model when added. Recall, however, that the entire
motivation for MSS procedures and the fundamental idea of
model stability is that given a different dataset, a different
model may appear empirically optimal. Thus, by exactly the
same reasoning, if we had obtained a different dataset, a dif-
ferent covariate may appear optimal at step j.

To account for this uncertainty in the selection pro-
cess, suppose we draw B resamples of the original dataset
Dy, ..., D} and obtain the empirically optimal covariate to
be added relative to each resample. For each resample, define
the count variable for the kth covariate Cy ; to be equal to 1
if Xy is selected on the ith resample and equal to O other-
wise. (In the event that multiple covariates provide equally
optimal improvement, each can be assigned a count of 1,
or alternatively, one covariate from that group may be cho-
sen uniformly at random.) We can then define the empirical
selection proportion

O
ekZEZCk,i

i=1

to measure the frequency with which X was selected and do
the same for all remaining covariates.

Formulated in this fashion, we can simplify the generic
MSS task—rather than select every model not significantly
worse than any other, at each step in MPS, we need only
select all covariates not selected significantly less often than
any other. Thus, in our MPS context, at each step j, the
hypotheses in (2) can be rewritten as
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HYJ): 6 > 6, forall X, € X4
Hl(]k) : Ok < 0, forsome X, € X ;. 3)

Failing to reject Hé’jk) means that we do not have sufficient
evidence to conclude that X} is not one of the most selected
covariates. As a result, the model containing X; along with
the previously selected j — 1 covariates is added to the selec-
tion set M7 at step ;.

It’s worth pausing to stress a few points. First, in the
interest of clarification, note that at each step j in the MPS
procedure, this identification of a subset of suitable covari-
ates must be carried out for each model in M;‘._l obtained to
that point. Furthermore, we stress that while the reformula-
tion of the problem above is intuitively convenient, obtaining
such a subset remains quite a nontrivial problem. Depending
on the data, model, and loss function employed, there may be
many equally suitable covariates, none of which have a high
selection frequency. Rather, both the maximum selection pro-
portion and the number of covariates without a significantly
lower selection proportion are unknown for each model at
each step. For help in solving this problem, we turn to a clas-
sical set of literature on the problem of ranking and selection.

3.1.1 Ranking and selection

As just outlined, the procedure described above involves gen-
erating B resamples of the original data for each model at
each step of the MPS procedure and determining the sub-
set of covariates selected most often across those resamples.
Imagine now an idealized setting in which rather than resam-
pling, those datasets D7, ..., D} are instead independently
generated datasets of size n sampled directly from the pop-
ulation. In this scenario, the selection of a single covariate
based on each dataset could equivalently be thought of as a
multinomial sample of size 1. That is, we can think of this pro-
cess as producing B multinomial samples, each of the form
W; =(,...,0,1,0,...0) where the entry at index k is set
to 1 whenever X, is selected on the i th dataset and all remain-
ing entries are set to 0. In addition to B, this multinomial
distribution is thus parameterized by the true selection prob-
abilities (6}, ..., 6,) whenever X, ..., X, are assumed to
be the remaining covariates available at step j. This problem
of selecting a subset of covariates can thus be transformed
into the problem of identifying the most probable categories
in a multinomial. We can therefore leverage the multinomial
dependence between all 6; to generate a covariate selec-
tion tool, rather than explicitly considering the collection of
hypotheses in (3).

Though first applied to ranking normal populations, the
ranking and selection literature quickly moved to the rank-
ing and selection of multinomial parameters from the same
population (Bechhofer et al. 1959; Kesten and Morse 1959),
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focusing primarily on exactly this problem—identifying the
most probable multinomial event(s) (Bechhofer et al. 1959;
Alam 1971; Gupta and Nagel 1967). Several of those meth-
ods proposed are immediately applicable to the selection
problem described above (Gupta and Nagel 1967; Pancha-
pakesan 1971).

While much of the early literature focused on bounding
the probability that the event with the largest empirical count
corresponded to the most probable event, the methods devel-
oped in Gupta and Nagel (1967) are the first to our knowledge
that identify a set of multinomial cells in such a way that
bounds the probability that the most probable event(s) are
contained in the selected set. Various other papers have fol-
lowed suit, creating their own subset selection procedures
or further refining existing methods (Panchapakesan 1971;
Chen 1986; Bechhoffer and Chen 1988; Chen 1989).

In order to obtain such a probabilistic bound we utilize the
following decision rule defined in Panchapakesan (1971). For
procedure R with integer parameters » and D,

R: Continually sample from multinomial ® until one cell
reaches a frequency of r, then stop sampling and select all
cells with frequencies at least r — D.

Within this framework, it has been proven that the probabil-
ity of making a correct selection—denoted P(C | r, D)—for
any multinomial, is bounded by the probability of making
a correct selection when the true multinomial distribution
has uniform probability parameters; that is, 6, = % for all
m = 1,..., M in a multinomial with M possible outcomes
(Chen 1986; Liu and Lin 1991; Panchapakesan 2006).

Note that this selection procedure deviates slightly from
the fashion in which the covariate subset selection problem
was discussed above. In particular, we specify the maximal
cell count r rather than the total number of new datasets
B. The total number of new datasets needed is, however,
still bounded above by M(r — 1) + 1 whenever there are
M covariates still available to be selected. Note also that in
applying the decision rule R, the choice of D and r can be
user-specified so as to induce a particular lower bound on
the probability P*. Of course, in our context, we wish to
find the smallest possible set for which we have a minimal
user-specified probabilistic bound P*. We therefore specify
a desired maximal cell count r and minimum probability P*
and solve for the smallest D for which P(C | r, D) > P* can
be guaranteed to hold. This task can be easily accomplished
via simulation; see Algorithm 2.

3.1.2 Resampling

In practice, certainly it is not reasonable to expect to have
B newly and independently generated datasets from the
population available at each step in the MPS procedure,
but we can approximate this process by resampling from

Algorithm 2: Finding D via Simulation

Input: Maximal cell count , Minimum desired probability P*,
Number of simulations nsim, Number of multinomial outcomes
M
Result: Smallest allowable value of D
for h < 1 to nsim do
Set ;" « Oforallm e {1,..., M);
while max,, (x,(,f’ )) <r—Ddo
Take sample from uniform multinomial @(ﬁ, e, ﬁ);
Record the sampled cell’s index as i;

Set xl.<h) = xl.<h) +1;
Across all &, find the smallest value of D for which
#(xfh> >r — D) > [nsim x P*];

Note: xfh) is chosen WLOG-any fixed subscript can be used;

the original dataset D,,. In deciding between bootstrapping
and subsampling, note that by seeking to identify the most
probable covariates to include, we are dealing with a discrete-
valued parameter, which is known to be a common source
of bootstrap failure (Bickel et al. 1997; Davison and Hink-
ley 1999). On the other hand, in order for subsampling
to work asymptotically, we need only to subsample at a
rate of o(n) and that a standardized version of our statis-
tic converges to a non-degenerate distribution (Politis et al.
1999).

As a simple demonstration of the shortcomings of the
bootstrap in this context, consider the simple additive model
Y = X + X, + € where the covariates and noise are all inde-
pendent and each is sampled in an iid fashion from a standard
normal distribution. Suppose further that our complete set of
candidate models M contains only the two univariate linear
models.

In this simple scenario, it’s clear that we should expect
each model to be selected equally often—since the covari-
ates are independent, from the same distribution, and have the
same relationship to the response. For any given dataset, the
univariate model selected is simply that with the covariate
that appears (by random chance) to be more strongly cor-
related with Y. Thus, averaging across datasets, we should
expect that the proportion of times each model is selected to
be roughly 0.5.

Figure 2 looks at the distribution of these selection pro-
portions whenever those datasets are resampled from a single
original sample via either bootstrapping or subsampling. We
generate datasets with n = 100, 1000, and 10,000 observa-
tions, generate B = 500 resamples of each, and calculate
the proportion of times across those resamples that X is
selected as the more important covariate. The entire proce-
dure is repeated 1000 times at each sample size to generate
distributions of these selection proportions at the three dif-
ferent sample sizes. When subsampling at a rate of 4/, these
distributions behave as expected—each is centered at approx-
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Fig.2 Selection proportion distribution of X when bootstrapping versus subsampling on the order of /n

Algorithm 3: Model path selection (MPS)

Select desired model class, loss £, and size (number of
covariates) d;
Select maximum cell count » and minimum probability P*;
Define M as a set only containing the null model;
fori < 1tod do
for fm in M}, do
Denote the remaining covariates by X[y, ..., X[p—i+1;
SetCy =0fork=1,...,p—i+1;
while max; (Cy) < r do
Generate subsample D* of size \/n;
Select optimal covariate X+] that minimizes £ on
D*,
Set Cp+ = Cp+ + 1;
Run Algorithm 2 with r and P* to obtain minimum value
D;
fork < 1top—i+1do
Let f',n,[k] denote the model that includes X} and the
covariates in fm;

If Cx > r — D, include f'm,[k] in M?(m);

Set M} = UfmeM,f‘,l M (m)
Set M* = M3

imately 0.5 with higher concentration for larger n. With
bootstrapping, however, each distribution is nearly identical
across all n with a noticeably larger variance. In implement-
ing the model set selection procedure via the ranking and
selection approach outlined above, we thus recommend that
the resampling for each model at each step be carried out via
subsampling at a rate slower than n.

3.1.3 Summarizing the MPS procedure

With the above issues addressed, we can now present a
final summary of our proposed model path selection (MPS)
procedure that involves resampling and making use of
the ranking and selection strategy outlined above to per-
form the model set selection (MSS) for each model at
each step. This MPS procedure is summarized in Algo-
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rithm 3. Note that as discussed in previous sections, if we
desired only a single model output but still wanted to incor-
porate stability into the selection procedure, rather than
performing a MSS at each step, we could instead sim-
ply take B subsamples at each step and keep only that
covariate with the largest empirical selection frequency.The
end result is merely a stabilized form of forward stepwise
selection and we thus refer to it as forward stability selec-
tion.

While this MPS formulation outlined in Algorithm 3 is,
by construction, a specialized form of the generalized MPS
presented at the beginning of Sect.3, this is the form of
MPS that will be utilized in the remainder of the paper
unless otherwise specified. The simulation results presented
in the following section provide strong empirical evidence
that this version of MPS substantially outperforms alter-
native versions in terms of both (i) its computational effi-
ciency and (ii) its ability to select accurate models while
maintaining a relatively small collection of such mod-
els.

Note that as alluded to above, in addition to specify-
ing the model class and loss function, this formulation
also requires the user to specify a maximum cell count
r and a minimum desired probability P*. The r parame-
ter is directly analogous to the number of resamples one
would employ in similar procedures and thus should be
set to some large positive value subject to computational
constraints. The P* parameter, which corresponds to the
probability that the selected set of covariates contains
that with the true maximum selection frequency, can be
thought of as a confidence level. We would generally expect
most users to fix this at a standard default value; for example,
0.90 or 0.95. Note that just as constructing confidence inter-
vals with larger confidence levels results in wider intervals,
higher values of P* mean that more covariates are likely to
be selected at each step, leading to “wider” path outputs with
more models selected.
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Fig.3 Example graphical

output of the MPS procedure | X10
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3.2 Graphical visualization

Due to its branching nature, the path structure output of MPS
can easily be displayed as a collection of trees, wherein each
tree corresponds to a covariate selected in the first step. In
each tree, the depth describes the iteration at which a covari-
ate was selected and sibling nodes represent covariates that
were deemed similarly predictively useful conditional on the
model produced by selecting the covariates in the parent
nodes. As a point of convention, these trees are left-justified,
meaning the leftmost covariate is that with the highest empir-
ical selection proportion and all sibling nodes are given in
descending order of their empirical selection proportions.
Also, the MPS plots provided throughout the paper employ
a condensed visualization in which duplicate models—those
with identical covariates—are shown only once. For exam-
ple, if we have two paths, one that selects X1 then X2 and
another that selects X2 then X1, only the leftmost path is
displayed. This is simply a matter of convention that can
sometimes help to save space and aid in interpretability. The
provided R package allows users to easily turn this feature
off if desired.

A hypothetical example of the graphical output from the
MPS procedure is shown in Fig. 3; readers who wish to see
similar output for real data are invited to look ahead to Fig.7.
In this hypothetical example in Fig.3, we imagine seeking
to find a collection of similarly accurate 3-variable models
given an initial collection of 40 covariates. We see that MPS
identified a total of 10 such models spread across two sep-
arate trees. At step one, two covariates, X10 and X21, were
selected, thereby forming the root nodes of the two trees. At
step two, both X32 and X33 were identified as potentially
optimal covariates to be added to the model next, conditional
on X10 having been added first. Similarly, X24 and X15
were selected in step two of the procedure when added to a
model containing only X21. The pattern then continues for
deeper depths where more covariates are added to the models
identified in previous steps. Note that in settings where large
numbers of paths (models) are produced, a circular (radial)
representation of the output may be more easily displayed.
An example of this alternative graphical style is shown in
Fig. 18 in the appendix.

The fact that the output of the MPS procedure is so imme-
diately and naturally interpretable provides a great deal of
benefits to applied practitioners. For example, even a brief

rX33—|

X38

X21
| |

X24
T

X11

X15
T

X39  X20 X12 X23 X34 X35

glance at the collection of paths produced gives some intu-
ition into the stability of the model selection task, with wider
trees indicating that many accurate models are available. Fur-
ther, the identification of numerous accurate models implies
that emphasis needn’t be placed on any single model pro-
duced via a classical model selection procedure like forward
selection or lasso. A demonstration of this is given on real
datasets in Sect.5. It’s also common in many applications
for researchers to wonder whether, in a given chosen model,
some covariates could be swapped for others with minimal
additional loss. The path-style output of MPS makes such
questions immediately and visually answerable by simply
checking whether such an alternative path exists.

Furthermore, this basic kind of plot shown in Fig.3 can
be easily extended and modified to suit a variety of practical
research constraints. Suppose, for example, each covariate
has an associated price of collection. Researchers could then
apply some sort of color gradient associated with price to
easily display the “cost” of each selected model. A similar
idea could be applied to missing data problems wherein, for
example, researchers might wish to impute some missing
covariate values prior to selecting the models. Those covari-
ates containing imputed values could then be made a different
color in the MPS output.

Finally, while the very construction of the MPS models
suggests that each resulting model should be highly predic-
tive, we caution readers against the interpretation that all
models are equally predictive. By design, the MPS proce-
dure seeks to identify collections of highly accurate models
that reasonably could have been selected given the size of
the data at hand and the underlying relationships within. In
other words, echoing points discussed in previous sections,
MPS is designed to be a computationally efficient procedure
for answering which (and how many) other models might
be reasonable to expect if we had repeated the entire proce-
dure many times by collecting a large number samples and
constructing a model on each. If one’s goal is to identify
only a collection of equally optimal models, one could, for
example, easily apply one of the exhaustive search proce-
dures described in the introduction to only the collection of
models in the MPS output. Note that the number of models
identified via MPS will generally be many orders of mag-
nitude smaller than all original combinations of models of
the specified size, thereby making these exhaustive search
methods far more efficient and practical.
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4 Simulations

We now present a number of simulations to investigate the
performance and computational efficiency of the MPS pro-
cedure outlined above. In order to allow for a robust set of
comparisons, our focus here is on linear regression under the
standard squared-error loss. The particular setups described
below very closely follow those in the recent work by Hastie
et al. (2017) where the authors provide an in-depth compar-
ison of forward selection, best subset selection, lasso, and
relaxed lasso.

We consider data sampled from models of the form ¥ =
XpB+e€ where X ~ N (0, £) and where X is a p x p Toeplitz
matrix with row i and column ; having covariance p/'—/!. The
noise term € ~ N (O, %,BTEﬁI ) is a n-dimensional vector
with v enforcing a desired signal to noise ratio (SNR) and 8
is asparse p-dimensional vector with s non-zero coordinates.

Due to the Toeplitz structure of X, changing the sparsity
pattern of 8 has a non-trivial impact on the modeling envi-
ronment. We therefore consider a variety of sparsity patterns
in which we alter both the coordinates and magnitudes of the
non-zero entries of S:

e Beta-type I: s non-zero components equal to 1 at approx-
imately equally spaced positions from 1 to p;

e Beta-type 2: s non-zero components equal to 1 in the first
s positions;

e Beta-type 3: s non-zero components equally spaced from
10 to 0.5 in the first s positions.

To carry out these simulations, we begin by fixing a num-
ber of settings including n, p, s, p, v and the beta-type. We
then sample X € R"*” i.i.d. from N (0, X) and € € R” from
N (O, %,BT 2B1) and calculate theresponse Y = X f+¢€. With
the dataset in hand, we fit a variety of models and perform a
number of model set selection (MSS) procedures (described
below), recording the performance of each. We then repeat
the entire procedure 112 times (executed on a cluster with 28
cores and 4 CPUs per core) and record the average perfor-
mance.

Performance is measured through a ratio of the test errors.
To calculate this, we generate a test dataset of size 10,000 in
the same manner as the training data and calculate the error
of each regression estimate obtained. Our metric, the relative
test error, is of the form

I Yest — XrestBlI3
I Yiest — XrestBlI3

RTE(f) =

where ||-]|2 is the L, norm. Note that the provided RTE is
slightly different from that presented in Hastie et al. (2017),
which opts for a ratio of the expected test errors. Impor-
tantly, for MSS methods (in which multiple models are nearly
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always generated), we only report the minimum RTE values
from among the selected model set. That is, only the best per-
forming models are summarized in the RTE figures below.
We take this approach because our primary interest is in deter-
mining how often such methods identify some models that
outperform standard models like lasso and forward selection.

In each simulation setting, we investigate the following
models and model set selection strategies:

e Oracle: OLS is performed on only the s covariates with
non-zero coefficients.

e Stability Selection: Stability selection is performed using
forward selection as proposed in Meinshausen and
Buhlmann (2010). The final s-variable model is chosen
by performing OLS on the s most frequently selected
variables.

e Lasso: A lasso model with a regularization parameter
chosen via a tenfold cross validation on the training
dataset across 100 possible values.

e Forward Selection: Forward stepwise linear regression
where the covariate added at each step is that which
minimizes the resulting squared error of the model. We
continue the process until the model contains s covari-
ates.

e Model Path Selection (MPS): MPS performed to a depth
of s using the resampling and ranking and selection
approach outlined in Algorithm 3.

e Cross-Validation with Confidence (CVC): An exhaustive
search MSS method defined in Lei (2020). CVC uses
cross validation, either k-fold or sample splitting, to form
a MSS set by estimating model risk and assessing the
hypotheses described in (2) at an «a-level of 0.05. We
perform tenfold CVC on all s variable models.

e MPS with CVC (CVC-MPS): MPS performed to a depth
of s using CVC as selection method for each model at
each step. The CVCs performed as part of this procedure
are also tenfold.

CVC was chosen because in addition to being one of the most
recently proposed MSS methods, it is also one of the most
general, imposing no structural restrictions on M, which
makes it easy to integrate within the MPS framework. Note
that all methods are performed so as to include only s-
covariate models, except for lasso which is optimized via
tenfold cross validation as this is far more in line with its
typical use in practice.

We consider three initial setups of (n, p, s, r, P*) where
r and P* represent the maximum cell count and inclusion
probability, respectively, of the MPS procedure defined in
Algorithm 3:

e Setup I: n =100, p = 10, s = 5,r = 200, P* = 0.95;
e Setup2:n =500, p =100, s = 5,r =200, P* = 0.75;
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e Setup 3:n =500, p =100, s = 5,r = 50, P* = 0.50.

In each setting, we consider 5 values for the SNR ranging
from 0.25 to 4 equally spaced on the log scale and autocor-
relation levels p of 0, 0.35, and 0.7.

Figure 4 shows the RTEs of all methods for Setup 1 across
the beta-types, autocorrelation levels, and SNRs. Generally,
the MSS methods (MPS, CVC, and CVC-MPS) outperform
all standard single model selection methods except for some
settings at the largest SNRs where the performances con-
verge. The dominance of MSS methods is not particularly
surprising given that (i) the MSS methods may select mul-
tiple models and (ii) we display only the average minimal
observed RTEs from among the selected model sets. This
result does, however, suggest that in most cases, there are
alternative models that perform at least as well as those identi-
fied by the (single) model selection procedures. These results
do not imply that all models selected by MSS are better, but
rather that much of the time there exists at least one model
with superior performance. (Additional plots provided in the
appendix show the percentage of time this occurs; in most
cases, with the exception of the oracle model, the MSS pro-
cedures are able to find models that are more optimal at least
approximately 80% of the time.) This phenomenon is echoed
by the superior performance of MSS methods over even the
oracle regression in many settings, supporting the idea that
there may be a collection models “close” to the data generat-
ing model. Indeed, these models are so close that by chance
on a given sample, they may outperform a regression on just
the signal variables. This is especially likely to sometimes
occur in low SNR settings when the data contain many cor-
related predictors. The results from Setups 2 and 3 are very
similar; these figures are given in the Appendix. In these
setups, the MSS methods still generally outperform all of the
single model selection methods, though the oracle is often as
good or better than the MSS methods.

The strong performance of the MSS methods however,
practically speaking, remains only part of the story. The fact
that these procedures are able to routinely identify models
that are more accurate than standard model selection methods
is encouraging, but this in and of itself is of little real-world
value if they require selecting a very large number of mod-
els in order to do so. Figure 5 shows the average number of
selected models for each MSS method for each setting in
Fig.4.

The results here are fairly striking. First note from Fig.4
that there is generally a clear differentiation between the
model selection methods and the MSS approaches. Further,
among the MSS methods, CVC and CVC-MPS tend to per-
form slightly better than MPS in terms of finding models that,
on average, have lower minimum RTEs.

A few points are worth stressing here. First, recall that
the goal of CVC is to provide a confidence set for the best-

performing model among those under consideration. In the
context we examine here, this requires CVC to perform an
exhaustive search across all (£) possible models and make
pairwise comparisons between each in order to obtain the
final selected set. The fact that CVC is performing a wider
search than MPS (i.e. more models are under consideration)
with the goal of guaranteeing that the best model appears in
the selected set with high probability helps explain why CVC
not only sometimes finds models with lower minimum RTEs,
but also why so many more models appear in the set selected
by CVC. Indeed, looking at Fig.5, we see that in every low
SNR setting, both CVC and CVC-MPS are selecting nearly
every one of the (150 ) = 252 models available! In contrast,
the MPS approach proposed in earlier sections selects only
between 25 and 50 in those same settings—a more than 80%
decrease. Even at high SNRs, both CVC and CVC-MPS often
select at least double the number of models selected by MPS.
Of course, because CVC employs a hypothesis testing frame-
work, the number of models selected is directly influenced
by the type-1 error rate of the corresponding test; raising the
a-level from the nominal level of 0.05 would result in fewer
models being selected.

Note also that despite nearly identical performance in
terms of minimum RTE, in the beta-type 1 (Fig.5 first
column) and O-correlation (Fig.5 top row) settings, CVC-
MPS often selects substantially more models than CVC.
While selecting more models would seem to be an obvi-
ous drawback, we stress that the reduction in model set
size accomplished with CVC comes at the cost of sub-
stantially increased computational effort. Figure8 in the
appendix shows the relative runtimes of these two meth-
ods. Here we see that CVC-MPS takes between % and %
the time of CVC, which is particularly impressive consid-
ering that in some settings both methods perform nearly
identically in terms of both model set size and minimum
RTE. The computational gains of CVC-MPS can thus be
immense, though these gains can sometimes come at the
cost of an increased number of selected models. It should
also be noted that in higher-dimensional settings where the
number of candidate models is large, CVC may be entirely
computationally prohibitive. On the other hand, because
CVC allows users to specify the set of models under con-
sideration, it may be advantageous in settings where, for
example, one can easily define a relatively small grid of
models indexed by tuning parameter values, such as with
the lasso.

To close out our simulations, we turn our attention exclu-
sively to the MPS procedure defined in Algorithm 3 and
examine the impact of different selection rules. Here we
fix n = 500, p = 100, and s = 5 as in Setups 2 and 3
and perform MPS with parameter pairs (r = 200, P* =
0.75), = = 200, P* = 0.50), and (r = 50, P*
0.50).
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Fig.4 Average RTE of each model and model set selection procedure.
The vertical bars represent 1 standard error. For each MPS, CVC, and
CVC-MPS, the values represent the minimum RTEs from among the

Average minimum RTEs and selected model set sizes are
shown in Figs. 13 and 14 in the appendix, respectively. Note
that in these figures, the (r = 50, P* = 0.50) datapoints are
averaged over different datasets from (r = 200, P* = 0.75)
and (r = 200, P* = 0.50). We see that fixing r = 200 and
lowering P* from 0.75 to 0.50 results in a slightly inflated
minimum RTE and a correspondingly small decrease in the
average number of models selected. This should come as
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set of selected models. The shaded region shows the best 30% of mod-
els selected via MPS. Note that CVC and CVC-MPS perform nearly
identically in each setting

no surprise: these probabilities are akin to confidence lev-
els and thus decreasing P* means that fewer covariates are
selected at each step, leading to fewer overall models being
selected. On the other hand, keeping P* = 0.50 and lower-
ing r from 200 to 50 reduced the minimum RTE in several
cases and greatly increased the average number of models
selected—the selection rule for r = 50 is more conserva-
tive than when r = 200. In effect, the value of r operates in
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Fig.5 Number of models selected by each model set selection method

an analogous fashion to the the sample size in a confidence

interval calculation, tightening the width of the interval at

larger values. By lowering the value of r, we obtain consider-
ably more paths—in some cases by more than tenfold—and
despite also lowering P*, maintained similar if not better
RTE results. Of course, the consequence of these better RTE
results come at the cost of increased paths, which can exceed
1500, though it is worth noting that this is still less than
0.002% of the ('2°) = 75,287,520 candidate models avail-

5
able.

5 Real-world data applications

We now demonstrate the value of the MPS procedure on two
popular real-world datasets. The first example illustrates that
even with relatively simple data, MPS can sometimes identify
a large number of similarly-accurate models, many of which
outperform the individual models selected via forward selec-
tion and the lasso. The second example demonstrates that the
number and diversity of optimal models selected depends

heavily on the model class and loss function specified.
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5.1 Diabetes disease progression

We first examine the diabetes dataset provided in Efron et al.
(2004), which was originally provided to demonstrate least-
angle regression (LARS) in a sparse linear regression regime
but more recently has been used to demonstrate the behav-
ior of CVC (Lei 2020). The data describe n = 442 diabetes
patients who have ten baseline measurements recorded: age,
sex, body mass index (bmi), mean arterial pressure (map),
and six blood serum measurements (tc, 1dl, hdl, tch, Itg,
glu), all of which are standardized. In addition, a response
variable measuring diabetes progression one year after base-
lines were recorded is also given. As was done in both
Lei (2020) and Efron et al. (2004), we consider all second
order terms, thus bringing the total number of predictors to
p = 64. We also randomly split the data into a training
and test sets of sizes n = 300 and n = 142, respec-
tively.

In keeping with what is common in applied research
areas, we begin by performing both lasso and forward
selection, both of which are tuned via fivefold cross val-
idation. MPS is also performed using linear models with
squared-error loss where we set an inclusion probability of
P* = 0.95, a maximum cell count of r = 100, and a
depth matching that of the cross-validated forward selec-
tion. The selected model paths are shown in Fig. 18 in the
appendix. In analyzing the selected paths, we see that a
total of 67 models were selected, thus demonstrating that
there indeed are numerous well-performing models—many
of which outperform the individual models selected via both
lasso and forward selection. In fact, of the 67 models iden-
tified 24 (36%) are more accurate on our test set than the
lasso model and 40 (60%) are more accurate than the lin-
ear model obtained via classic forward selection. Figure 6
shows a box plot of the model errors from MPS with the
lasso and forward selection models overlaid for reference. At
the very least, this suggests that models selected via forward
selection or lasso should not be treated as the only well-
performing models, and any discussion about the particular
importance of covariates selected in such models would be
misguided.

Indeed, following this line of thinking, let us now con-
sider a hypothetical setting in which MPS could play a useful
role. Suppose that a researcher is given access to the above
data and wonders whether a relatively simple model could
be constructed to predict disease progression. In particular,
the researcher notices that three of the covariates (age, sex,
and bmi) are non-invasive to collect, a fourth (map) can be
computed from only a blood pressure reading, while the six
remaining features (tc, 1dl, hdl, tch, Itg, glu) are more invasive
to collect, requiring blood to be drawn. It is reasonable then
to wonder whether there exists a well-performing model that
utilizes only those three or four minimally-invasive covari-
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Fig.6 Box plot displaying test errors of models selected via MPS. The
vertical dashed line to the left shows the test error of forward selection;
the vertical dotted line to the right shows the test error of lasso

ates. The researcher can then perform forward selection (or
some other traditional model selection method) to find a well-
performing model with only three or four variables. Using
this data and the same train-test split described above, for-
ward selection will choose the model containing bmi, Itg, and
map as the covariates in a three-variable model and add the
age—sex interaction as the fourth covariate if a four-variable
model is desired. This is where many traditional analyses
would stop—Itg (a covariate requiring blood collection) is
selected in both the three- and four-variable models and thus
the researcher is out of luck. However, MPS allows that
researcher to ask whether there are other small models avail-
able that generate similarly accurate predictions. Figure 18
in the Appendix shows that only one covariate is selected
at each of the first three levels and unfortunately Itg is the
second covariate to enter the model. Thus, in this particular
case, we find no other three- or four-variable models with
high accuracy that do not require blood to be drawn. The
only model to not utilize an invasive covariate is the single-
variable model containing bmi. In theory, the researcher
could compare the predictive accuracy of that one-variable
model to those of the larger models and decide whether its
accuracy was sufficient or whether a more invasive blood
draw would be necessary for accurately predicting disease
progression.

5.2 Breast cancer identification

We now consider a dataset describing cell nuclei images
taken from 699 breast cancer patients (Bennett and Man-
gasarian 1992). The variables present are the clump thickness
(X1), uniformity of cell size (X2), uniformity of cell shape
(X3), marginal adhesion (X4), single epithelial cell size (X5),
bare nuclei (X6), bland chromatic (X7), normal nucleoli
(X8), mitoses (X9). The binary response indicates whether
or not the measured tumor was determined to be malig-
nant.

The purpose of this application is to show the behavior of
MPS under different modeling conditions and demonstrate
how model class heavily impacts the models identified and
the covariates utilized. We apply MPS once with regres-
sion trees and again with logistic regression, both with
squared error loss. Given the complexity of the underly-
ing system, it is conceivable that logistic regression is too
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Fig.7 Path structure for logistic regression (top 2 rows) and regression trees (bottom). MPS produces 79 paths using logistic regression and only

1 path using regression trees

coarse a model to uncover unique meaningful relationships
and it was thus hypothesized that model selection proce-
dures may be more unstable relative to regression trees.
MPS is performed with an inclusion probability of P* =
0.75, maximum cell count of r = 200, and a depth of
3.

The resultant model paths are shown in Fig.7. Here
we observe that logistic regression produces a very large
number of plausible models. In fact, logistic regression
produces 79 models—more than 94% of the (g) = 84
unique 3-variable models available. In shocking contrast,
MPS with regression trees produces only 1 single path,
suggesting that this particular modeling context is very sta-
ble.

6 Discussion

The model path selection (MPS) framework introduced here
provides scientists and practitioners with a computationally-
efficient tool allowing them to graphically visualize the
stability of the modeling process. The procedure itself is
greedy in the sense that models are built up via forward
selection, but that greed is mitigated by the fact that all
plausibly-optimal variables are included as possibilities at
each step. We stress as well that MPS should be seen as
a generic wrapper-style method and in particular, we make
no claims of optimality with respect to the particular imple-
mentation utilized here in which decisions at each step are
made via classical results from the ranking-and-selection
literature. Future work may explore more computationally
advantageous approaches, especially in high-dimensional
settings wherein it may be reasonable to implement a kind
of “screening” or “early stopping” rule that would quickly
eliminate covariates at each step that are unlikely to be cho-

sen in the final set. Note also that each step in the MPS
procedure is readily parallelizable. Thus, when construct-
ing the individual models is computationally burdensome,
such as may be the case with large datasets and/or com-
plex model-building procedures, different machines may
be used to build each model and select the best feature
so that the MPS procedure can run more quickly over-
all.

In contrast with many other procedures, MPS is com-
pletely agnostic to the model and loss function employed
and users may choose to construct models to whatever
depth is desired. Thus, in practice, the model depth could
be constrained for practical purposes or chosen in a data-
dependent fashion, such as by some form of validation or
by stopping once the empirical gain in model accuracy that
could be obtained by adding more variables drops below
some threshold. This flexibility is also potentially of benefit
from a theoretical perspective. It is reasonable, for exam-
ple, to ask how likely it is that the “true” model will be
found via MPS if it is assumed to exist and be discover-
able via forward selection. Such questions, however, depend
entirely on the particular model, loss, and stopping rules
employed.

Along similar lines, it is certainly often the case in prac-
tice that scientists must ultimately choose a single model
to represent the process at hand. Given the promising
results on both simulated and real world data in previ-
ous sections, one may wonder whether the MPS procedure
can be used to identify better models than those pro-
duced via classical model selection methods. Indeed, in
such settings practitioners may consider various strate-
gies like using some form of validation to select the
most optimal model identified via MPS or creating an
ensemble of the top performing models. While approaches
such as these may sometimes prove successful in practice,

@ Springer



82 Page 16 of 28

Statistics and Computing (2024) 34:82

we stress that this is not the goal of the MPS proce-
dure.

Nonetheless, we also stress that the MPS procedure can
still be quite helpful in practical settings, even when a sin-
gle final model must be selected, for at least two reasons.
First, as discussed in Sect.3.2, in many practical settings
there are real-world restrictions on the types of models
that can actually be utilized. Practitioners might need a rel-
atively low-dimensional model, or they may be unable to
utilize certain covariates in a model (e.g. due to privacy
concerns), or certain covariates may be very costly or time-
consuming to collect. In settings like these, it is entirely
reasonable to think that the empirically optimal model may
be unusable for one of the above reasons and thus the prac-
titioner is forced to ask whether there are alternative models
available that suit their needs without a large sacrifice in
accuracy.

Second, we feel strongly that there is inherent value
in understanding the stability of the model selection pro-
cess itself. As discussed in the abstract and introduction
and alluded to throughout the paper, it remains unfortu-
nately common to see scientific publications in which the
“importance” of a particular covariate (or set of covariates)
is argued for merely on the basis of having appeared statisti-
cally significant in a (single) particular model. Although MPS
characterizes the stability of forward selection specifically
rather than for all model selection processes more gener-
ally, the procedure can still be very helpful in addressing the
counterfactual—are there other models with similarly high
accuracy that do not rely on these covariates? If one per-
forms MPS and sees that those covariates appear in nearly
every model (or at least in the most accurate of them),
then the case for their importance becomes stronger. On the
other hand, if MPS reveals many alternative models with
the same (or possibly even higher) accuracy that do not utilize
those covariates, then the argument for their unique impor-
tance is substantially weakened.

It may be apparent to some readers that our MPS pro-
cedure described above is merely one possible form of a
forward selection analogue of MSS. As an alternative, one
could, for example, perform MSS on all j-variable mod-
els that nest all models in M7 _,, rather than performing
a separate MSS for the j-variable models that nest each
m € M;_,. Certainly, this is a valid possible alterna-
tive, though we stress that this kind of approach may still
result in a large number of model comparisons and thus
be computationally overbearing. Under our formulation of
MPS, the intermediary candidate sets are broken up into
numerous smaller sets so to prevent burdensome computa-
tional issues.

Finally, we note that there are a number of minor exten-
sions of the basic MPS procedure that could readily be
employed in practice. If one is interested in groups rather
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than individual covariates, entire groups may be identi-
fied at each step. Similarly, depending on the particular
modeling framework being used, it may be advantageous
to employ an adaptive form of MPS wherein interac-
tions would be allowed in later steps once individual
covariates are selected. Lastly, if one is particularly con-
cerned about ensuring that none of the models selected
via MPS are significantly less accurate than the others,
then as discussed at the end of Sect.3.2, an exhaus-
tive search procedure like CVC could be run on that
final collection of models. Indeed, especially when many
models are produced, it is reasonable to worry about a
kind of propagation of error—perhaps at each step there
isn’t enough evidence to exclude a particular variable,
but there may be evidence at the end of the process
that a model consisting of many of the least-frequently
chosen variables at each step is ultimately suboptimal.
If MPS is seen as constructing model “trees” of sorts,
then applying a CVC-type filter after construction might
be seen as something akin to pruning.
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A Additional simulation results

Here we present a number of additional figures corre-
sponding to simulation results from Sect.4 and a model
path diagram from Sect.5.1. Figure8 shows the ratio of
computational times for CVC-MPS to CVC in Simulation
Setup 1. The results—average minimum RTE and aver-
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age number of models selected—for Setup 2 are given in
Figs.9 and 10, respectively; results for Setup 3 are given
in Figs.11 and 12, respectively. Note that in these latter
two setups, we do not perform CVC or CVC-MPS due
to the increased computational burden. Also, we directly
compare the results of MPS across Setup 2 and Setup 3

(and another version with (r = 200, P* = 0.50)) in
Figs. 13 and 14. Additionally, we provide plots that display
the frequency with which each model selection method out-
performs all models selected via MPS in Fig. 15, Fig. 16, and
Fig. 17. Lastly, Fig. 18 shows the selected model paths of the
MPS performed in Sect.5.1.
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