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Optimizing Irrigation Efficiency using Deep Reinforcement
Learning in the Field
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Agricultural irrigation is a significant contributor to freshwater consumption. However, the current irrigation
systems used in the field are not efficient. They rely mainly on soil moisture sensors and the experience of
growers but do not account for future soil moisture loss. Predicting soil moisture loss is challenging because it
is influenced by numerous factors, including soil texture, weather conditions, and plant characteristics. This
article proposes a solution to improve irrigation efficiency, which is called DRLIC (deep reinforcement learn-
ing for irrigation control). DRLIC is a sophisticated irrigation system that uses deep reinforcement learning
(DRL) to optimize its performance. The system employs a neural network, known as the DRL control agent,
which learns an optimal control policy that considers both the current soil moisture measurement and the
future soil moisture loss. We introduce an irrigation reward function that enables our control agent to learn
from previous experiences. However, there may be instances in which the output of our DRL control agent
is unsafe, such as irrigating too much or too little. To avoid damaging the health of the plants, we implement
a safety mechanism that employs a soil moisture predictor to estimate the performance of each action. If the
predicted outcome is deemed unsafe, we perform a relatively conservative action instead. To demonstrate the
real-world application of our approach, we develop an irrigation system that comprises sprinklers, sensing
and control nodes, and a wireless network. We evaluate the performance of DRLIC by deploying it in a testbed
consisting of six almond trees. During a 15-day in-field experiment, we compare the water consumption of
DRLIC with a widely used irrigation scheme. Our results indicate that DRLIC outperforms the traditional
irrigation method by achieving water savings of up to 9.52%.
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1 INTRODUCTION

Agriculture is a major contributor to the consumption of ground and surface water in the United
States, with estimates suggesting that it accounts for approximately 80% of the nation’s wa-
ter use and over 90% in many Western states.! Specifically, California’s almond acreage in 2019
was estimated at 1,530,000 acres, and almond irrigation alone is estimated to consume roughly
195.26 billion gallons of water annually [24, 42]. Given the current drought affecting many West-
ern states, it is critical to improve irrigation efficiency to conserve our limited freshwater reserves.
This study focuses on enhancing the irrigation efficiency of almond orchards.

The primary objective of agricultural irrigation is to maintain the health of trees and maximize
crop production. Achieving this goal requires maintaining the soil moisture of the trees within a
specific range, typically between the Field Capacity (FC) level and the Management Allowable
Depletion (MAD) level. If the soil moisture falls below the MAD level, almond trees may experi-
ence discoloration or even die. Conversely, if the soil moisture exceeds the FC level, it can lead to
reduced oxygen movement in the soil, negatively impacting the tree’s ability to absorb water and
nutrients. Both FC and MAD levels are dependent on the soil type and plant species. Therefore, to
determine the appropriate FC and MAD levels for a specific orchard, it is essential to identify the
soil type and refer to a manual that outlines the corresponding FC and MAD levels for that soil
type [41].

To ensure that the soil moisture remains within the MAD and FC range, the sprinklers must
be activated every day or every few days, depending on the soil moisture level. Given the high
evaporation rate in California, daily irrigation is recommended by the Almond Board of California
[41] and is used in many existing irrigation systems [18, 25]. In most micro-sprinkler irrigation
systems, irrigation is performed at night to reduce water loss due to evaporation, which can be
as high as 14% to 19% during the day [53]. The irrigation control problem involves determining
the appropriate amount of water to be applied to each sprinkler to ensure that the soil moisture
remains within the MAD and FC range until the next irrigation cycle. This decision is based on
the current soil moisture level and the predicted soil moisture loss for the following day, which
is influenced by factors such as soil type, local weather conditions, and plant properties (e.g., root
length and leaf number). The objective of irrigation is to provide trees with an appropriate amount
of water such that the soil moisture remains above the MAD level until the next irrigation cycle.

Developing optimal irrigation control strategies requires accurate soil moisture loss prediction
models. Traditional Model Predictive Control (MPC) methods can be utilized for optimal irriga-
tion control if such a prediction model exists, but the accuracy of the model can have a significant
impact on the performance of these methods [15, 37]. Obtaining an accurate soil moisture pre-
diction model for an almond orchard is challenging, as soil moisture is influenced by multiple
factors, including soil type, topography, ambient temperature, humidity, solar radiation intensity,
and plant transpiration [50]. Additionally, customized soil moisture models must be developed
for each orchard, limiting the scalability of MPC-based approaches. These two limitations have
prevented the use of MPC-based methods in orchards.

Orchard irrigation systems currently employ two primary control methods: evapotranspiration
(ET)-based and sensor-based approaches. The ET-based method relies on estimating ET, which
accounts for soil moisture loss due to various weather factors such as wind, temperature, humid-
ity, and solar irradiance. These weather parameters are measured by weather stations, with local
ET values being publicly available [4] and updated hourly. ET-based irrigation controllers utilize
the ET values since the previous irrigation cycle to determine when to activate sprinklers and
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compensate for soil moisture depletion. However, this approach fails to consider the anticipated
soil moisture loss for the following day before the subsequent irrigation cycle. Consequently, ET-
based irrigation may result in either under-irrigation or over-irrigation if the soil moisture loss of
the preceding day differs from that expected for the next day. To mitigate this issue, ET-based meth-
ods usually incorporate a safety margin of water [56], leading to over-irrigation in most instances
[23, 25].

By utilizing precise soil moisture sensors, irrigation controllers have the capability to respond di-
rectly to the current soil moisture levels [25]. These controllers typically operate on a “rule-based”
approach, in which they supply a specific amount of water when a deficiency in soil moisture is
detected. However, the parameters governing the timing and quantity of irrigation are generally
fine-tuned by growers based on their experience. Unfortunately, sensor-based irrigation often lacks
the ability to systematically consider future weather conditions, such as rainfall and wind, for the
following day. This absence of predictive capability regarding water loss hinders the effectiveness
of sensor-based irrigation systems.

In order to address the limitations of the existing irrigation schemes mentioned above, we de-
velop DRLIC(deep reinforcement learning for irrigation control), a practical irrigation system
based on Deep Reinforcement Learning (DRL). DRLIC is capable of autonomously acquiring
an optimal irrigation control policy by exploring various control actions. Within the DRLIC frame-
work, a control agent carefully observes the environmental state and selects an action based on a
predefined control policy. Upon implementing the chosen action, the environment transitions to
a subsequent state, and the agent receives a reward associated with its action. The primary objec-
tive of the learning process is to maximize the anticipated cumulative discounted reward. DRLIC
employs a neural network as the control agent, utilizing it to learn and establish the control policy.
The neural network effectively maps “raw” observations to the irrigation decision for the subse-
quent day. The state includes relevant weather information, such as ET and precipitation, for both
the current day and the following day.

To minimize water consumption in irrigation while simultaneously safeguarding the health of
the trees, we design a reward function that accounts for three distinct scenarios. If the soil moisture
level surpasses the FC threshold or falls below the MAD threshold, a negative reward is assigned
to the control agent. Conversely, if the soil moisture level remains within the MAD and FC range,
a positive reward is granted, with its magnitude inversely proportional to the amount of water
consumed.

To achieve optimal training results for DRLIC’s control agent, it would be ideal to conduct the
training in a real almond orchard. However, due to the long irrigation interval of 1 day in our
specific case, the control agent would only have the opportunity to explore 365 control actions per
year. This limited exploration would significantly prolong the training process, requiring approx-
imately 384 years to train a control agent that reaches convergence. To overcome this challenge
and expedite the training process, we build a customized soil-water simulator. This simulator is
calibrated using the 2-month soil moisture data collected from 6 almond trees. By utilizing this
simulator, we can generate a sufficient amount of training data for DRLIC using 10-year weather
data.

When deployed as an irrigation controller in the field, the control agent may encounter states
that were not encountered during training, particularly in the case of agents trained in a simulated
environment. In such scenarios, the control agent may make ill-advised decisions that pose risks
to the plants, such as driving the soil moisture level below the MAD threshold or exceeding the FC
threshold. To bridge the gap between the simulated environment and the real orchard, we design
a robust irrigation mechanism. Instead of executing unwise actions generated by DRLIC’s control
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agent, we opt to utilize the ET-based method to generate alternative actions. We then leverage the
soil moisture model from our soil-water simulator to validate the safety of the chosen actions.

In order to assess the effectiveness of DRLIC, we construct an irrigation experimental setup uti-
lizing micro-sprinklers that are presently employed in almond orchards. Two raised beds accom-
modate a total of six almond trees. Every individual tree is equipped with a sensing and control
node, which consists of a micro-sprinkler capable of independent control and a soil moisture mea-
surement system comprising two sensors deployed at varying depths in the soil. Each node has
the capability to transmit its sensing data to our server using IEEE 802.15.4 wireless transmission,
and it can receive irrigation commands from the server.

Our testbed has been successfully deployed in the field, where we have collected soil moisture
data from six sensing and control nodes for over 3 months. Using 2 months of this data, we train our
soil moisture simulator, whereas 2 weeks of data were used to validate its accuracy. Once we train
the control agent of DRLIC, we deploy it in our testbed for 15 days. The results of the experiment
show that DRLIC can reduce water usage by 9.52% compared with the ET-based control method,
without causing any harm to the health of almond trees.

We summarize the main contributions of this article as follows:

—We design DRLIC, an irrigation method that utilizes DRL to save water usage in agriculture.

— A variety of approaches have been proposed to convert DRLIC into a practical irrigation
system, featuring our tailor-made design of DRL states and rewards to optimize irrigation,
a validated soil moisture simulator for expedited DRL training, and a reliable irrigation
module that prioritizes safety.

— We build an irrigation testbed with customized sensing and actuation nodes, and six almond
trees.

—Extensive experiments in our testbed show the effectiveness of DRLIC.

2 IRRIGATION PROBLEM

Soil Water Content Parameters. Soil plays a critical role in the water supply for plants, serving
as a reservoir for their hydration needs. Typically, up to 35% of the space in soil can be filled with
water. Soil water content is a measure of the amount of water present in the soil, often expressed
as a percentage of water by volume (%) or as inches of water per foot of root (in/ft). Soil moisture
sensors are commonly employed to measure the soil water content at a specific location in the
soil. For trees with roots that extend several feet, multiple soil moisture sensors may be utilized
at various depths along the root structure. The root is typically divided into a defined number of
sections, with a soil moisture sensor positioned at the midpoint of each section to enable accurate
monitoring of the plant’s hydration levels.

To calculate the soil water content of a tree, we use the equation V = Zin1 @; * d;j, where M
represents the number of moisture sensors installed at different depths (in our experiments, M is
2). Each ¢; refers to the reading recorded by a specific soil moisture sensor, whereas d; indicates
the depth covered by that sensor. When these soil moisture sensors are employed to measure the
soil water content within a region, they will be placed beneath a typical tree that shares a similar
soil water content with most of the other trees in that area.

To ensure the health of a plant, it is essential to ensure that its roots have access to a sufficient
supply of water. Figure 1 provides an illustration of two critical soil water content levels that are
crucial for plant health [1]. Firstly, the Permanent Wilting Point (PWP) represents the mini-
mum threshold of soil water content below which plants are unable to draw sufficient moisture
from the soil. Prolonged periods of soil moisture levels below the PWP can lead to plant wilting
or death. Secondly, if the soil water content exceeds the FC level, there is an excess of water in the
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Fig. 1. The various levels of the soil water content [1].
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Fig. 2. How plant production (growth) is affected by soil water content [45].

Table 1. Suggested MAD For Different Crops [45]

Crop MAD (%) Crop MAD (%)
Beans 40 Potatoes 30
Blueberries 50 Raspberries 50
Corn 50 Strawberries 50
Alfalfa 55 Sweet Corn 40
Mint 35 Tree Fruit 50

soil, which can lead to water wastage and rotting of the roots over time, ultimately compromising
the plant’s health. Therefore, the goal of irrigation systems is to ensure that the soil water content
remains within the desired range, specifically between the PWP and the FC levels.

The primary objective of irrigation for fruit trees like almonds is to achieve maximum produc-
tion. To achieve this goal, it is crucial to maintain soil moisture content above the MAD level
instead of the PWP level. As shown in Table 1, the MAD level can vary for different types of crops
(e.g., 40% for beans, 50% for fruit trees). Figure 2 illustrates the relationship between soil moisture
content and almond tree production [45]. From Figure 2, it can be observed that the MAD level
for almond trees is the median value (50%) between the FC level and the PWP level. Therefore, To
ensure the optimum production of almond trees, it is crucial to maintain the soil water content
above the threshold of the MAD level.

How to Determine These Parameters in an Orchard. The Available Water-holding Ca-
pacity (AWC) of the soil is defined as the soil water content range between the FC level and the
PWP level. Figure 3 shows that the AWC varies for different soil types [3]. The texture, presence,
and abundance of rock fragments, as well as the depth and layers of soil, can affect the AWC of
the soil. Finer-textured soils, such as loam, have a higher AWC than sandier soils [3]. On the other
hand, soils with more clay, such as clay loam, have a lower AWC than loamy soils [3].
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The tree’s AWC, represented by Vg,,c, can be determined using the equation Ve = 0gyc *
Dfoor- Here, 044y denotes the soil’'s AWC and Dy, refers to the tree’s root depth in feet. Reference
values for the AWC of various soil types, denoted as o4y, can be found in [3]. Similarly, the
PWP level for a given soil type, denoted as V., can be calculated using the equation V., =
@pwp * Dincn- Here, @y, represents the soil moisture content at the wilting point of the specific
soil type, whereas D;,.j, corresponds to the root depth of the plant in inches. Specific values of
@pwp for different soil types can be found in [3]. Using the above parameters (V4 and V,,,,), we
can determine the FC level as Vr, = Vyyye + Vpyp and the MAD level as Vg = @ * Varwe + Vprp.
Here, « is set to 50% for almond trees.

How to Use These Parameters for Irrigation. The primary goal of irrigation is to effectively
manage the soil water content of plants, ensuring that it remains within the desired range defined
by the FC level and the MAD level. To achieve this goal, it is crucial to determine the soil’s AWC
and the permanent wilting point level (V4. and Vj,,,), which depend on the soil type, texture,
and layers. Once we identify the soil type, we can calculate these parameters using the methods
discussed earlier. However, in large orchards with varying soil types and changing parameters, it
is essential to adjust the irrigation system’s setting accordingly.

How Many Valves to Control in an Orchard. In an ideal scenario, achieving optimal irriga-
tion in an orchard necessitates individual control of sprinklers for each tree. This stems from the
fact that the ET rates vary between 0.12 to 0.20 inches among different trees within the orchard
[40]. Furthermore, the soil type exhibits spatial variations within the orchard [41]. For instance, in
a 60-acre California® orchard, there are 10 soil types with clay loam constituting 45.6% to 54.7% and
slopes ranging from 0% to 8%. However, considering the high density of almond trees, with approx-
imately 75 to 125 trees per acre, the deployment of soil moisture sensors under each tree becomes
cost-prohibitive. Thus, orchards are typically divided into multiple irrigation regions based on sim-
ilarities in soil texture. Each irrigation region is equipped with a valve that controls the sprinklers
within that specific region. The irrigation management of a large orchard revolves around control-
ling a significant number of valves. It is important to note that the focus of this article is primarily
on irrigation control rather than field partitioning. One practical approach to partitioning an or-
chard into distinct irrigation regions involves conducting soil sampling across the entire orchard
using an auger. This soil sampling process serves multiple purposes for growers, including tree
density planning and optimizing fertilization strategies.

3 DRLIC System Design

In this section, we provide a comprehensive overview of DRLIC, starting with its fundamental
principles. We approach the irrigation problem by modeling it as a Markov Decision Process,

2S0il Map: https://casoilresource.lawr.ucdavis.edu/gmap/
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Fig. 4. DRLIC system architecture.

allowing us to analyze it within a well-defined framework. We present our innovative approach to
address this challenge, which involves the design of a DRL-based irrigation scheme. In addition,
we introduce a safe irrigation module designed to ensure the protection of the irrigation process.

3.1 Overview

Figure 4 illustrates the comprehensive system architecture of DRLIC, comprising two pivotal
components: (1) a wireless network consisting of sensing and actuation sprinkler nodes and
(2) a cutting-edge DRL-based control algorithm. For almond orchards, we strategically deploy a
sensing and actuation node in each irrigation region. These nodes are equipped with an array of
soil moisture sensors placed at various soil depths. To facilitate data transmission, sensing data
are wirelessly conveyed to the base station through an IEEE 802.15.4 network. The Base Station
gathers data from all DRLIC nodes and transmits them to a local server via Wi-Fi. This collective
dataset of sensing data from DRLIC nodes provides a comprehensive “snapshot” of soil moisture
readings ¢, encompassing the entire orchard.

On the server side, the DRL-based irrigation control agent leverages the soil moisture sensor
readings, ET data, and weather information obtained from local weather stations to make informed
irrigation decisions. It diligently generates optimal irrigation schedules for all DRLIC nodes, with
the overarching goal of minimizing overall irrigation water consumption while ensuring the well-
being of almond trees. Subsequently, the server transmits the generated irrigation schedules A; to
all DRLIC nodes. Upon receiving these commands, each node promptly initiates the opening of its
sprinkler through a latching solenoid equipped with two relays. Further details pertaining to the
implementation specifics of the nodes will be provided in Section 4.

3.2 MDP and DRL for Irrigation

We adopt a daily irrigation scheme wherein irrigation initiates at 11 PM every day to ensure op-
timal water management in the orchard. The controller’s primary objective is to determine the
duration for which each sprinkler should be open during each irrigation cycle. This decision is
crucial to maintain the soil water content within the desired range of MAD and FC by the follow-
ing night. To make informed irrigation decisions, the controller takes into account various factors
that influence the future soil water content. These factors include the current soil water content,
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the volume of water applied during irrigation, the trees’ water absorption capacity, and the soil
water losses caused by factors such as runoff, percolation, and ET.

To model this irrigation problem mathematically, we formulate it as a Markov Decision Pro-
cess (MDP), denoted by the tuple <S, A, T, R>:

— Srepresents a finite set of states that encompasses the sensed moisture levels obtained from
the orchard and the weather data collected from the local weather station.

— A corresponds to a finite set of irrigation actions available for controlling the valves.

— T defines the state transition function T: S X A — S, which determines the soil water con-
tent at the next timestep based on the current soil water content and the chosen irrigation
action.

— Rrepresents the reward function R: $X A — R, which quantifies the performance of a spe-
cific control action in terms of achieving water conservation goals and maintaining optimal
almond tree health.

Given the MDP formulation, our objective is to find an optimal control policy z(s)* : S — A
that maximizes the accumulative reward R over time. However, due to the complex nature of the
state transition function, conventional techniques such as dynamic programming are not suitable
for finding the optimal control policy. Therefore, in this study, we adopt a DRL-based approach to
develop irrigation control algorithms.

Unlike traditional approaches that rely on predefined rules in heuristic algorithms, our DRL-
based approach learns the irrigation policy from observations. By leveraging machine learning
techniques, the irrigation control algorithm becomes adaptive, continually refining its decision-
making process based on real-time data and environmental conditions. This data-driven approach
enables us to optimize water usage and ensure the health and productivity of almond trees in the
orchard.

DRL is a powerful data-driven learning method that has gained widespread recognition and has
been successfully employed in numerous control applications [9, 10, 17, 34, 36, 63]. DRL learns an
optimal control policy by iteratively interacting with the environment, enabling agents to make
informed decisions.

At each timestep t, the control agent, based on its policy 7, selects an action A; = a given the
current state S; = s:

a ~ mg(als) = P(A;|S; = s;0). (1)

In DRL, the control policy is approximated using a neural network that is parameterized by 6.
When the control agent takes action a, a state transition S;11 = s” occurs according to the system
dynamics fp (Equation (2)), and the agent receives a reward R;1 = 7.

s" ~ fo(s,a) = P(S:41|S: = 5, Ar = a). ()

The objective of DRL is to determine the optimal set of parameters 6* that maximizes the ex-
pected reward:

0" = argmaxE ,, [r]. (3)
0

One advantageous characteristic of DRL is that, due to the Markov property, both the reward
and state transition solely depend on the previous state. Consequently, DRL seeks to discover a
policy 7y that maximizes the expected reward (Equation (3)). By iteratively updating the param-
eters 0 based on observed experiences, the DRL agent progressively learns an effective control
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Fig. 5. Deep reinforcement learning in DRLIC.

policy, which can be specifically tailored for tasks such as irrigation control, enabling efficient and
optimized decision-making.
There are several compelling reasons for employing DRL in irrigation control, as follows.

(1) Data-Driven Optimal Control: DRL offers a powerful approach for learning an opti-
mal irrigation control policy directly from data, eliminating the need for pre-programmed
control rules [20, 21] or explicit assumptions about the soil-water environment.

(2) Utilizing Domain Knowledge: DRL has the ability to leverage domain knowledge in
training the irrigation control agent, which is implemented as a neural network. By incor-
porating domain knowledge into the training process, we can guide the agent’s learning
without relying on labeled data.

(3) Generalization Capability: The neural network used in DRL exhibits strong general-
ization abilities. This is particularly advantageous in irrigation control, as it enables the
control agent to handle dynamically varying weather conditions and ET data. The agent
can learn patterns and correlations from past experiences and apply them to new situa-
tions, improving its adaptability to changing environmental factors.

3.3 Deep Reinforcement Learning in DRLIC

The DRL architecture of DRLIC is summarized in Figure 5. The core component of this architecture
is the DRLIC agent, which derives the irrigation control policy through training a neural network.
The agent receives a comprehensive set of information as input, including the current soil water
content, today’s weather data (such as ET and precipitation), and the predicted weather data for
tomorrow. Leveraging this input, the agent generates the optimal action, determining the appro-
priate amount of water to be irrigated.

Following the agent’s decision, the resulting soil water content is observed and fed back to
the agent the next day at 11 PM. This observed soil water content is then utilized to calculate
a reward, which serves as a feedback signal for the agent’s performance evaluation. The agent
leverages this reward to update the parameters of the neural network, continuously improving its
ability to control irrigation effectively.

In summary, the DRLIC architecture operates in a cyclical process, where the agent receives
input, makes irrigation decisions, observes the outcomes, and updates its neural network param-
eters based on the received reward. This iterative learning process enables the agent to adapt and
optimize its irrigation control policy over time. In the subsequent sections, we will provide further
insights into the design and functionality of each component within the DRLIC framework.

3.3.1 State in DRLIC. State in DRLIC plays a crucial role in our irrigation MDP model, encom-
passing three key aspects: sensed state, weather-related state, and time-related state.

ACM Trans. Sen. Netw., Vol. 20, No. 4, Article 99. Publication date: July 2024.
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Sensed State: The sensed state represents the soil water content measured by DRLIC nodes.
This information is obtained through Equation (6), which incorporates the sensor readings (¢)
obtained from the DRLIC nodes. By monitoring the soil moisture levels, we can effectively assess
the irrigation needs of each irrigation region.

Weather-Related State: The weather-related state is a vector that comprises both current and
predicted weather variables obtained from the local weather station. This vector includes param-
eters such as ET and precipitation (in inches); maximum, average, and minimum temperature (in
degrees Fahrenheit); maximum, average, and minimum humidity (in percentage); average solar
radiation (in Ly/day); average wind speed (in mph); predicted ET using Equation (16) (in inches);
and forecasted precipitation (in inches). By considering these weather variables, we can account
for the dynamic nature of weather conditions in our irrigation control decisions.

Time-Related State: The time-related state focuses on the date and includes information about
the month. Certain aspects of the state can change over time, such as plant water requirements
and the weather-related state mentioned earlier. Plant water requirements vary depending on the
growth stage of the plants, whereas weather conditions exhibit seasonal variations.

3.3.2 Action in DRLIC. The main goal of our irrigation control is to optimize plant health or
maximize production with minimum water consumption. To achieve this, the agent outputs a
vector action that contains the amount of water to irrigate for each irrigation region in an orchard.
This action is typically continuous and can take any value between 0 and the maximum water
capacity of the irrigation system. To ensure that the action is feasible, we clip it to be within this
range. Once we have the irrigation amount, we convert it to the open time duration (td) td; for
each ith micro-sprinkler. The duration is calculated as td; = a;/I, where I is the irrigation rate.
For our testbed, we set I to 0.018 inch/min, which is the rate of the micro-sprinklers we used. The
duration is then rounded up to the nearest multiple of the irrigation interval (15 minutes), which
is the shortest time interval that can be controlled by the irrigation system.

3.3.3  Reward in DRLIC. In order to express our objective of achieving good plant health with
minimum water consumption, we define a reward function that incorporates both factors. As dis-
cussed in Section 2, maintaining the soil water content between the MAD and FC levels is crucial
for maximizing almond tree production. Therefore, we use the deviation of the soil water content
from these levels as a proxy for plant health. Additionally, we consider the control action as a
proxy for water consumption.

To balance the relative importance of plant health and water consumption in the reward func-
tion, we introduce the hyperparameters A and p. These hyperparameters allow us to adjust the
contribution of each factor and fine-tune the trade-off between achieving good plant health and
minimizing water consumption. By carefully selecting the values of A and y, we can emphasize
one factor over the other based on our specific objectives and priorities.

To ensure minimal water consumption without compromising plant health, our reward function
accounts for three scenarios, as depicted in Equation (5). First, when the soil water content (V;) of
the ith irrigation region exceeds the FC (Vy.) level, it signifies that the plants are receiving more
water than necessary. Over-irrigation can adversely affect plant health and result in excessive
water consumption. Thus, in this situation, penalties are imposed on both plant health and water
consumption. Second, when V; falls within the range of V. and V;,44, the plants are deemed to be
in good health. To conserve water, our objective is to maintain V; close to Vj,,44. As a result, the
reward is inversely proportional to the amount of water consumed. Third, when V; is below V44,
the plants experience water stress, severely impacting their health. The extent of this impact is
proportional to the difference between V; and V,;,44.
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Table 2. Parameter Setting in Reward

Parameter | Value || Parameter Value
A 3 a 50 (%)
I 8 Dinch, Dfoor | 23.62 inches, 1.97 (ft)
1is 3 d 11.81 (in)
A5 10 Dpwp 10 (%)
13 1 Cawe 2.4 (in/ft)

By considering these three scenarios, our reward function incorporates the trade-off between
plant health and water consumption, enabling the DRL agent to strike an optimal balance for
efficient irrigation management. Our reward function is defined as follows:

N
R:—ZR,» (4)

Avx (Vi = Vee) + iy + aj, Vi > Vpe
R; = Ha * ai, Vfc>Vi>Vmad (5)
A * (Vmad - Vl) + p3 * aj, Vi < Vinad
M
V=2 g;%d ©)
=
Vinaa = @ * Vaue + prp (7)
Vfc = Vawe + prp (8)
prp = Qpwp * Dinch ©)
Vawe = Oawe * Dfoota (10)

where N represents the number of irrigation regions within a single orchard and a denotes the
amount of water recommended by the RL agent. The parameters o4, and @, are determined
by referencing the guidelines provided by the Almond Board of California [41] and tailored to
our specific soil type in the testbed. Equations (6), (7), (8), (9), and (10) are previously introduced
in Section 2 and outline the calculations for the reward components. These equations capture
the relationship between plant health, water consumption, and the reward values utilized in our
implementation.

In our implementation, the parameters of the reward function are specifically configured based
on the specifications of our testbed, as indicated in Table 2. The values assigned to the parameters
in Equation (5) (A1, pi1, pt2, A3, and p3) are determined through a grid search approach, aiming to
identify the values that yield the most favorable rewards during the training process. A detailed
explanation of the grid search methodology will be provided in Section 5. The parameter values
listed in Table 2 align with the intended design objective of the reward function. Specifically, when
the soil water content V; exceeds the FC (Vy.) level, we impose penalties to account for the impact
on plant health and excessive water consumption (4; = 3, but y; = 8). If V; falls below the V54
threshold, we assign a higher penalty to reflect the adverse effect on plant health (13 = 10, but

H3 = 1).
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3.4 DRLIC Training

3.4.1 Policy Gradient Optimization. Within the DRL framework outlined above, there exists

a range of policy gradient algorithms that can be employed to train the irrigation control agent.

These algorithms are designed to maximize the objective function stated in Equation (3). To accom-

plish this, policy gradient algorithms estimate the policy gradient, which indicates the direction

of policy improvement, and optimize the objective by employing stochastic gradient ascent, as
described in Equation (11).

0 —0+avgEy[r] (11)

In this study, we utilize the Proximal Policy Optimization (PPO) algorithm [48] for training
the irrigation control agent. PPO has demonstrated successful applications in various domains,
including navigation [38] and games [11]. One advantage of PPO is its stability and robustness to
both hyperparameters and network architectures [48]. Moreover, PPO has shown superior perfor-
mance compared to other policy gradient algorithms such as Natural Policy Gradients (NPGs)
[32] and Trust Region Policy Optimization (TRPO) [47]. Additionally, PPO exhibits less bias
when compared with Q-learning [54].

Although PPO has a relatively high sample complexity, requiring a large number of environment
interactions, this concern is mitigated in our case due to the use of a cost-effective simulator, as
explained in detail in Section 3.5. The efficiency of the simulator helps alleviate the potential chal-
lenges associated with the sample complexity of PPO, making it a suitable choice for our irrigation
control problem.

The loss function in Equation (12) captures the objective of PPO by maximizing the expected
cumulative rewards while considering a regularization term. This encourages exploration and pre-
vents the policy from deviating too far from the previous policy during training, promoting sta-
bility and controlled policy updates.

The advantage function A,, computed using Equation (13), provides an estimate of the advantage
or relative benefit of selecting a particular action at a given state. It represents the difference be-
tween the expected cumulative rewards obtained by following the current policy and the baseline
value, which is typically the expected value of rewards under the current policy. By utilizing the
advantage function, PPO can effectively estimate the advantages of different actions and update
the policy accordingly to maximize the expected rewards.

Lppo(0) = =K, [min(w (0)A,, clip(w,(0),1 — €,1 + €)A,)] (12)
A = Z }’irt+i (13)

i=0
wt(G) _ ﬂ9(0t|5t) (14)

”Gold(at |st)

In Equation (14), mg(a;|s;) represents the policy that is being updated through the loss func-
tion, whereas 7y, ,(a;[s;) refers to the policy that was used to collect data during interaction with
the environment. Since the data collection policy is different from the policy being updated, it
introduces a distribution shift, which can affect the stability of training.

To address this distribution shift, the importance sampling ratio w,(0) is introduced. This ratio
corrects for the shift by measuring the relative likelihood of actions under the updated policy and
the old policy. However, the ratio of probabilities can sometimes become extremely large, leading to
unstable training. To mitigate this issue, the importance sampling ratio is clipped using a parameter
€. Clipping the ratio prevents it from exceeding a certain threshold and helps maintain stability
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during the policy update process. By controlling the magnitude of the importance sampling ratio,
PPO ensures a balance between exploration and exploitation, leading to more reliable and effective
training.

3.4.2 Data Collection and Preprocessing. On day t, the DRLIC agent observes the current state
s, which represents a particular aspect of the environment, such as the moisture level in the soil.
Based on this state, the agent selects an action a, which determines the amount of water to be
applied. After the action is implemented, the soil-water environment transitions to a new state
st+1 the next day, reflecting the changes caused by the water application. Additionally, the agent
receives a reward r that provides feedback on the quality of the action taken.

To generate training data for our DRLIC agent, we collect data pairs (s, a;, 7+, St+1) by repeatedly
observing the state, taking an action, observing the resulting next state, and receiving a reward.
It is worth noting that to ensure stability during training, we normalize the collected data by
subtracting the mean of the states and actions and dividing by their standard deviation. This nor-
malization process helps to standardize the data and ensure that the agent can learn effectively
across different scales of state and action values.

For our dataset, we utilize 10-year weather data spanning from 2010 to 2020. This extensive
weather data provides a rich and diverse set of environmental conditions that the DRLIC agent
can learn from. By leveraging this dataset during the training process, the agent can acquire a
comprehensive understanding of how different states and actions relate to rewards under various
weather patterns and environmental dynamics.

3.4.3 Training Process. Ideally, the control agent of DRLIC should be trained directly in an al-
mond orchard. However, due to the long control interval of irrigation systems, it would take an
impractical amount of time, approximately 384 years, for a DRL agent to converge through direct
training in a real orchard. To overcome this challenge, we adopt a feasible solution by utilizing a
high-fidelity simulator as a surrogate for the real-world environment.

In the domain of soil-water management, there are currently no readily available high-fidelity
simulators. Hence, we employ a data-driven simulator to accelerate the training process of DRLIC.
As described in Section 3.5, we utilize the soil water content predictor as our surrogate simulator.
This predictor leverages historical weather data spanning 10 years to approximate the soil-water
dynamics. By using this data-driven simulator, the DRLIC agent can “experience” the weather pat-
terns and corresponding soil-water conditions of 10 years within a matter of minutes, significantly
speeding up the training process.

The training procedure of DRLIC is outlined in Algorithm 1. We train the DRLIC agent over 1,000
episodes, with each episode representing a span of 30 days. During each episode, we collect 30 data
pairs (s¢, as, re, sp+1) under different weather conditions. The objective defined in Equation (12) is
optimized through stochastic gradient ascent using Equation (3). The training process continues
until convergence, which is determined by comparing the total reward obtained at the end of
each episode with the previous total. If the current episode’s reward does not change by more
than +3%, we consider the policy to have converged. If the policy does not converge within 100
training iterations (100 episodes), the training is halted.

After the training phase, the well-trained DRLIC agent is ready to be deployed in a real almond
orchard. When faced with a new environment, such as a different orchard, we first collect real-
world irrigation data using existing controllers, such as ET-based control. This data is used to
build a soil water content predictor specific to the new environment, which characterizes the water
balance in the root zone soil. Subsequently, we leverage this soil water content predictor to expedite
the training process for the new orchard. Once trained, the DRLIC agent can be deployed and
employed to optimize irrigation control in the new almond orchard.
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ALGORITHM 1: DRLIC Training Algorithm.
Input: State s, Action a, Reward r,an initialized policy, 7y;
Output: A trained irrigation control agent;
1 fori=0,..., # Episodes do
2 State < Soil-water environment;

3 eold — 0 5
4 fort=0,..., Steps do
5 L ar = mo(se);
St41,Te+1 = env.step(dy);
7 Compute A ;
8 With minibatch of size M;
9 0 — 0 —avVyLppo(0);

Reward r

ET-based
Controller
: Bad Action a Environment
State s [ (Soil-water system)
Safety Condition |
| Detector__Norral

Safe Mechanism

Observe state s

Fig. 6. Reinforcement learning with safe mechanism.

3.5 Safe Mechanism for Irrigation

We propose a safe mechanism that integrates the DRL agent and the ET-based controller into
a tightly coupled closed-loop system. Figure 6 provides a visual representation of the workflow
of this safe mechanism, which comprises several key elements designed to ensure safe irrigation
control. (i) In contrast to a pure DRL framework, we introduce a safety moisture condition detector.
This detector evaluates whether the action suggested by the DRL algorithm is considered safe in
terms of maintaining appropriate soil moisture levels. (ii) If the safety moisture condition detector
deems the DRL algorithm’s action to be safe, the action is forwarded to the DRL agent, which
takes charge of the irrigation control for that particular cycle. (iii) If the action is deemed unsafe
by the detector, an alternative course of action is taken. In such cases, we rely on an ET-based
controller to generate an action for the irrigation control cycle. (iv) The DRLIC agent acts as the
DRL agent for future control cycles, continually learning and refining its decision-making process
based on feedback and environmental conditions. To facilitate the safe mechanism, we introduce
two important components: the soil water content predictor and the safety condition detector.

Soil Water Content Predictor. To enhance the safety of our system and enable early detection
of potentially unsafe actions, we develop a soil water content predictor. This predictor is designed
to forecast the moisture trend following the implementation of an action, enabling us to estimate
the potential impact on soil moisture levels.

Furthermore, we design a safe condition detector that detects the almond health penalty. The
objective is to determine whether the damage metric for an almond tree exceeds a predefined
threshold. If the detector detects that the health penalty is higher than the threshold, it commands
DRLIC to switch from the DRL-based controller to the ET-based controller.
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1 Deep percolation

Fig. 7. Water balance in the root zone soil.

We develop a soil water content predictor that accurately describes the water balance within the
root zone soil. As illustrated in Figure 7, the variations in water storage in the soil are attributed
to both inflows, such as irrigation and precipitation, and outflows, primarily through evapotran-
spiration. This leads us to the following mathematical expression:

Vieri=c1#Vig+co* (A +Pr) +csxEp + b. (15)

Here, V; ;11 represents the predicted moisture level in the root zone for the ith irrigation region
after applying the action determined by the DRL algorithm. E; and P; denote the plants’ evap-
otranspiration and the measured rainfall, respectively, during the time period t. The irrigation
amount for the ith irrigation region is denoted as A; ;. The coefficients cy, ¢;, and cs3 are included
in Equation (15) to account for the proportional relationship assumed between soil moisture level
and runoff as well as water percolation [12, 13, 43]. These coeflicients can be accurately determined
using system identification techniques [16]. It is worth noting that all variables in the equation are
typically expressed in inches.

To calculate the ET, we adopt a simplified calculation model established in [26], represented by
Equation (16):

E, =T, «* RA= TDV? « (T, + 17.8°C) (16)

In Equation (16), I; is a crop-specific parameter [44] and RA stands for extraterrestrial radiation,
which is expressed in the same unit as E;. TD represents the annual average daily temperature
difference, which can be derived from local meteorological data, whereas T; refers to the average
outdoor temperature during the tth time period.

To acquire the weather data, we obtain it from a local weather station. The calculation of ET
is based on the simple model established in [26], which incorporates the parameters mentioned
above to estimate evapotranspiration accurately.

Safety Condition Detector. We utilize the discrepancy between the predicted moisture level
and the lower bound as an indicator to estimate the potential damage to almond trees. As outlined
in Section 2, the lower bound is represented by MAD. To serve as a safety condition detector,
we calculate the sum of differences, Zfil(Vmad — Vi.t+1), where V; ;11 represents the predicted
moisture level for the ¢ timestep from the ith irrigation region, and V,,,,4 denotes the lower bound
for water content. Whenever the safety condition detector detects a hazardous irrigation action,
DRLIC triggers the use of the ET-based controller as a precautionary measure.

Parameter Learning of Our Soil Water Content Predictor. We leverage the designed
testbed to collect the irrigation amount of almond trees over a period of 2 months. Each day, we
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Table 3. Coefficients of Predictor for Each Tree

cl c2 c3 b R? NRMSE
Treel | 0.973 | 0.288 | —0.103 | 0.003 | 0.982 0.062
Tree2 | 0.937 | 0.325 | —0.121 | 0.013 | 0.985 0.071

Fig. 8. Testbed and micro-sprinkler irrigation system.

collect the ET value from a local weather station [4], and the moisture level for each tree is being
collected by the designed DRLIC node. Subsequently, we apply the linear least square method to
estimate the coefficients, which helps us understand the relationship between the moisture level
and the related factors.

To assess the strength of this relationship, we utilize R? as a measure. By examining the results
in Table 3, we can observe that R? is close to 1, indicating a strong correlation between the irriga-
tion practices, ET, precipitation, and soil water content for the trees. This suggests that irrigation,
together with ET and precipitation, plays a key role in determining the moisture level in the soil.

Furthermore, we employ the normalized root-mean-square error (NRMSE) as a measure of
goodness-of-fit for our predictors. Notably, the NRMSE value is less than 0.1, demonstrating that
our predictor achieves a high level of accuracy in predicting soil water content.

4 TESTBED AND HARDWARE
4.1 Testbed and Microsprinkler Description

In Figure 8, we present our micro-sprinkler irrigation testbed, which is specifically designed for
this study. The micro-sprinkler irrigation system installed in the testbed is identical in terms of
hardware and micro-sprinkler coverage. The dimensions of the testbed measure 290 cm X 160 cm,
and it features a grid arrangement of micro-sprinklers in a 3 X 2 layout, with each micro-sprinkler
positioned 97 cm apart from the next.

For this testbed, we select state-of-the-art micro-sprinklers by Rainbird, specifically the 1/4’
with a 360° pattern. These micro-sprinklers are recognized for their advanced technology in
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Fig. 9. Daily soil moisture readings.

the field of micro-sprinkler irrigation. Within the testbed, we plant a total of six young almond
trees, with three trees allocated to each section. These almond trees have an average height of
2 meters, and their growth and development are closely monitored throughout the study.

To simulate real-world conditions, we have collected soil from a local orchard, representative
of typical loam soil. The soil used in the testbed has a volume of 2.7 m®, and its plant-available
water-holding capacity is measured at 2.4 inches of water per foot.

This meticulously designed micro-sprinkler irrigation testbed provides us with a controlled
environment to conduct accurate and reliable experiments, enabling us to investigate the
effectiveness of different irrigation strategies and their impact on almond tree growth and wa-
ter management.

4.2 DRLIC Node Development.

The DRLIC node, as depicted in Figure 4, is composed of four primary components: sensors, actu-
ator, power supply, and transmission module.

Sensors: The DRLIC node incorporates multiple moisture sensors that are strategically placed at
different depths to accurately monitor soil moisture. These sensors exhibit varying levels of sensi-
tivity and have different soil volume coverage capacities. We install moisture sensors designed for
the 12-inch depth, following the guidelines of the Almond Board Irrigation Improvement Contin-
uum [41]. Since the root zone depth of the almond trees in our testbed is 24 inches, we assign two
moisture sensors to each DRLIC node to ensure comprehensive coverage and precise soil moisture
assessment.

A crucial capability of the DRLIC node is its ability to measure the volumetric water content
(VWQC) in the soil surrounding the almond trees. To achieve this, we have procured high-quality
Decagon EC-5 sensors® known for their research-grade performance and reported accuracy of
+3%. Figure 9 displays the raw sensor readings collected over a day, capturing the dynamic changes
in soil moisture with a high sampling frequency. These sensors report the soil’s dielectric constant,
an electrical property that strongly correlates with the VWC.

To convert the raw sensor readings into meaningful VWC values, we utilize a linear calibra-
tion function provided by the sensor manufacturer shown in Equation (17) for this purpose. The
resulting ¢ values range between 0% and 100%, providing a comprehensive measure of the soil’s
moisture content. It is important to note that the ¢ values of saturated soils typically fall within
the range of 40% to 60%, which may vary depending on the soil type under consideration.

o(m®/m®) = 9.92 % 107 x raw_reading — 0.45 (17)

3Decagon devices. http://www.decagon.com/products/soils/
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Fig. 10. On and off circuit diagram for latching solenoid.

Actuator: The actuator component of the DRLIC node utilizes a latching solenoid equipped
with two relays. Unlike a standard solenoid that requires a constant power supply to enable wa-
ter flow, a latching solenoid offers a more suitable solution for a battery-powered system. This
choice was made to extend the operational lifetime of the DRLIC node. In contrast to the standard
solenoid, which would deplete the power of the 9-volt performance all-purpose alkaline batteries
from Amazon within 8 hours when supplying power to a 12V DC solenoid continuously, the latch-
ing solenoid requires only a brief pulse of positive or negative voltage (25 ms) to open or close,
respectively.

To control the latching solenoid, an H-bridge configuration is commonly employed to generate a
bi-directional current [58]. However, since the ESP32 and latching solenoid have different voltage
requirements, a special design is necessary to accommodate these distinct voltage specifications.
By addressing the voltage requirements of both the ESP32 and the latching solenoid, we ensure
compatibility and efficient operation of the actuator within the DRLIC node.

To effectively control the latching solenoid, we design a circuit diagram that utilizes two relays,
minimizing the overall connection complexity. A relay functions as an electrically operated switch,
facilitating the control of current flow. Figure 10 illustrates the circuit diagram for turning the
latching solenoid on and off. Initially, both relays are in a normally closed (NC) position, ensuring
no current passes through the solenoid (S).

To activate the solenoid, Relay 1 is switched from NC to normally open (NO) for a duration
of 25 ms, generating a positive current pulse that energizes the solenoid. The current path in
Figure 10(a) is as follows: VCC (power source) -> NC; (normally closed contact of Relay 1) ->
COM; (common contact of Relay 1) -> S (solenoid) -> COM, (common contact of Relay 2) -> NO,
(normally open contact of Relay 2) -> GND (ground). This configuration allows the current to flow
through the solenoid, activating it.

Conversely, to turn the solenoid off, Relay 2 is switched from NC to NO for 25 ms, causing the
solenoid to return to the closed position. The current path depicted in Figure 10(b) is as follows:
VCC -> NC; (normally closed contact of Relay 2) -> COM; -> S -> COM; -> NO; (normally
open contact of Relay 1) -> GND. This path interrupts the current flow through the solenoid,
de-energizing it and returning it to the closed state.

To prevent over-irrigation in the event of a power failure, a power supply module is incorporated
into the system, ensuring a continuous and uninterrupted power source for the DRLIC node.

Power Supply: The power supply for the system comprises a 5-V, 1.2-W solar panel for energy
harvesting and a 18650 lithium-ion battery with a capacity of 3.7 V 3000 mAh for energy storage.
To facilitate the charging of the lithium battery, we utilize the TP4056 lithium battery charger
module, which includes built-in circuit protection to prevent battery over-voltage and reverse
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Table 4. Hyperparameters

RL Parameters | Value || General Parameters | Value
Learning_rate 0.01 Iteration 1000
Discount_factor 0.99 Number_neurons 256
Number_layers 2 Clip_parameter 0.3
Minibatches 128 Number_workers 2

polarity connection. This power supply setup effectively powers all the sensors, including 1 ESP32,
2 moisture sensors, 2 relays, and 1 latching solenoid.

By harnessing energy from the solar panel and storing it in the lithium battery, the power supply
module ensures a continuous and reliable power source for the entire system. This capability is
particularly crucial for the actuator module, as it prevents over-irrigation in the event of a power
failure.

Transmission Module: The transmission process in the system consists of two components:
the uplink and the downlink [60, 61]. In the uplink path, the ESP32, a low-cost and low-power
system on a chip (SoC) with built-in Wi-Fi capability, samples the moisture sensor readings
from the field. These readings are then transmitted from the ESP32 to the base station, where they
serve as input for the optimal control algorithm.

In the downlink path, the control command calculated by the DRL agent is sent from the base sta-
tion to all ESP32 modules. This command is responsible for activating or deactivating the solenoids
connected to each ESP32 node. By coordinating the control commands, the downlink communi-
cation enables the precise control of the irrigation system, ensuring efficient water distribution to
the almond trees.

5 IMPLEMENTATION

In this section, we provide a detailed explanation of the implementation of the DRLIC, along with
the process of tuning its hyperparameters.

DRLIC Implementation Details. Our DRLIC system is implemented in Python, utilizing var-
ious open-source frameworks such as Pandas, Scikit-learn, and Numpy. To facilitate the control
scheme for DRLIC, we leverage RLIlib [35], a scalable reinforcement learning framework that sup-
ports TensorFlow, TensorFlow Eager, and PyTorch. RLIib offers extensive customization options
for training the DRLIC system, including target environment modeling, neural network modeling,
action set building and distribution, and optimal policy learning.

For our specific implementation of DRLIC, we gather 10 years of weather data spanning from
2010 to 2020. We divide this dataset into 9 years for training and 1 year for testing purposes. To
optimize the training process, we employ the Adam optimizer with a learning rate set to 0.01 for
gradient-based optimization. Additionally, the discount factor is set to 0.99 to account for future re-
wards. The neural network model utilized in DRLIC consists of two hidden layers, each comprising
256 neurons. The detailed hyperparameters are shown in Table 4.

The DRLIC agent is trained and executed on a local server with a 64-bit quad-core Intel Core
i5-7400 CPU operating at 3.00 GHz. The server is running Ubuntu 18.04 as the operating system.
These specifications ensure the computational resources necessary for efficient training and de-
ployment of DRLIC.

Training Details and Tuning Hyperparameters. The performance of the DRLIC agent re-
lies heavily on the values chosen for its hyperparameters. However, finding the ideal values that
guarantee improved total reward for the system is not a straightforward task. To enhance the per-
formance of the DRLIC agent and optimize its hyperparameters, we utilize a tuning approach. This
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approach involves optimizing parameters such as A, j (associated with rewards and penalties) and
learning rates.

Specifically, we employ a grid search approach, which enables us to define a range of values
for each hyperparameter to be considered. The grid search process systematically constructs and
evaluates the model using every possible combination of hyperparameters. To assess each learned
model, we utilize cross-validation. This tuning approach enables us to identify the best hyperpa-
rameter configuration for the DRLIC agent, ensuring optimal performance of the DRLIC system.

6 EVALUATION

In this section, we assess the performance of the DRLIC system in real-world conditions. The evalu-
ation involves a 15-day field trial of the DRLIC system, in which we closely observe its functionality
and effectiveness. This real-world evaluation provides valuable insights into how well the DRLIC
system performs in practical scenarios.

6.1 Experiment Setting

6.1.1 Baseline Strategy:. We evaluate the performance of DRLIC by comparing it to two state-
of-the-art irrigation control schemes that will be introduced in Section 7. These baseline strategies
serve as benchmarks to assess the effectiveness and superiority of the DRLIC system. The baseline
irrigation systems and DRLIC system operate on a daily schedule.

ET-Based Irrigation Control [41]. To implement an ET-based controller, we rely on data from
a local weather station to obtain the ET loss for the previous day. This information allows us to
estimate the amount of water that needs to be replenished in the soil. To compensate for this loss,
we utilize the sprinkler’s irrigation rate, which is provided by its dataset. By combining the ET
loss and the sprinkler’s irrigation rate, we calculate the duration for which the irrigation system
should be activated to adequately replenish the water in the soil. This approach ensures that the
irrigation is aligned with the water needs of the plants based on the local weather conditions.

Sensor-Based Irrigation Control [25]. The sensor-based controller employs two specific
thresholds to determine the irrigation needs based on the soil water content. The first threshold is
set at 4.96 inches, which is 10% higher than the MAD level. This threshold ensures that irrigation
is initiated before the soil experiences a significant water deficit, preventing under-irrigation prior
to the wetting front reaching the depth of the sensor.

The second threshold is set at 6.97 inches, which is 5% below the FC level. This threshold allows
for some storage capacity for rainfall and prevents over-irrigation. The careful selection of these
thresholds is based on a thorough understanding of the soil environment in our specific testbed. By
setting these thresholds appropriately, we can effectively manage irrigation to maintain optimal
soil moisture levels for the health and growth of the plants.

6.1.2  Performance Metrics. In our evaluation, we assess the performance of the DRLIC system
and compare it to two baseline systems using two key performance metrics.

Quality of Service. The first metric we consider is the quality of service, which focuses on the
irrigation system’s ability to maintain soil moisture above the MAD threshold consistently across
all measured locations. While the irrigation system may not have control over factors such as solar
exposure and soil nutrients, it directly influences soil moisture levels. Ensuring that the system
maintains moisture above the MAD threshold guarantees healthy plant growth and prevents any
production loss. In this article, we refer to this as the quality of service metric for the irrigation
system.

Water Consumption. The second metric we evaluate is water consumption. Since we have di-
rect control over the activation times of each micro-sprinkler and each utilizes a water supply, we
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Fig. 11. Daily soil water content of different irrigation methods (15 days).

can monitor the amount of water consumed by all three systems at any given time. Minimizing wa-
ter consumption while satisfying the quality of service constraints is crucial for achieving efficient
irrigation practices. Therefore, water consumption is another important metric we consider.

6.1.3 Experiments in our Testbed. In order to assess the performance of the DRLIC system, we
conduct a real-world deployment validation study focusing on plant health and water consumption
over a 15-day period. The study is conducted using a testbed consisting of six almond trees, as
depicted in Figure 9.

To evaluate the DRLIC system alongside the baseline control schemes, we allocate the upper,
middle, and lower two trees separately for irrigation by DRLIC, sensor-based control, and ET-
based control. As there is no runoff between the trees in our testbed, we ensure the independent
operation of the three irrigation systems. Each micro-sprinkler is controlled by a dedicated DRLIC
node, allowing us to vary only the schedules sent to the nodes while keeping the other aspects
consistent among the three systems.

6.2 Experiment Results

6.2.1 Quality of Service. The primary objective of installing irrigation systems is to ensure the
health of almond trees without incurring any production loss. Figures 11(a), 11(b), and 11(c) illus-
trate the daily soil water content in the field for the ET-based control, sensor-based control, and
DRLIC systems, respectively. The black horizontal line represents the MAD level below which the
tree health is impacted.

Upon examining the figures, we observe that both DRLIC and the ET-based system effectively
maintain the soil water content above the MAD threshold throughout the 15-day deployment,
meeting the requirements for almond tree health. However, the trees irrigated by the sensor-based
method experience periods of under-irrigation lasting 18 hours for four days (days 1, 4, 7, and 9)
as the soil water content falls below the MAD level. This occurs because the moisture level of the
previous day is close to but not reaching the MAD, causing the sensor-based method to refrain
from irrigation despite the soil moisture trending towards under-irrigation. In contrast, the DRLIC
system dynamically adjusts irrigation based on learned models of soil water dynamics, effectively
maintaining the soil water content close to the MAD level.

At the start of the experiment, all three irrigation systems had sufficient water content. Notably,
in the ET-based control system (Figure 11(a)), the soil water contents of the two trees were signifi-
cantly above the FC threshold. This highlights the limitations of ET-based control and underscores
the core contribution of our work. The irrigated regions do not receive moisture uniformly, and in
most cases, the ET-based controller applies more water than necessary for optimal plant growth.

Overall, the evaluation demonstrates that the DRLIC system effectively manages irrigation by
adapting to the specific water requirements of almond trees, maintaining soil moisture levels near
the MAD threshold and outperforming both the sensor-based and ET-based control strategies.
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6.2.2  Water Consumption. When considering the adoption of a new almond irrigation con-
trol system, one of the primary concerns is its efficiency. The system’s ability to provide a re-
turn on investment based on increased efficiency often plays a significant role in its acceptance.
Furthermore, the environmental benefits associated with reduced freshwater consumption are ev-
ident and contribute to the promotion and adoption of such systems.

In our experimental setup, each micro-sprinkler’s water source is regulated to the industry stan-
dard pressure of 30 psi. Each micro-sprinkler has a predefined water distribution rate per unit
time, as outlined in the almond irrigation manual [41]. By precisely tracking the activation of each
micro-sprinkler by the system, we can accurately determine the amount of water consumed.

Figure 12 illustrates the daily irrigation amounts for two trees controlled by the ET-based,
sensor-based, and DRLIC systems during a 15-day deployment experiment. From the figure, we
observe that DRLIC achieves water savings of approximately 9.52% and 3.79% on average com-
pared with the ET-based and sensor-based control, respectively, over the 15-day period. The ET-
based control method employs centralized control to irrigate all almond trees without considering
their specific needs. In contrast, the sensor-based control method conserves water by monitoring
moisture levels and irrigating when the moisture falls below the MAD threshold. However, the
specific thresholds used in the sensor-based control are site specific and may not be optimal. In
contrast, the DRLIC system can learn and adapt to the optimal irrigation control by interacting
with the local weather and soil water dynamics.

In summary, the evaluation demonstrates that DRLIC offers improved water efficiency com-
pared with both the ET-based and sensor-based control methods. By optimizing irrigation based
on learned models, DRLIC achieves significant water savings while meeting the specific water
requirements of almond trees. These findings underscore the potential economic benefits and en-
vironmental advantages associated with adopting the DRLIC system for almond irrigation.

6.3 Simulation Results

In this section, we present the simulation results of DRLIC and two baseline systems for an entire
growing season. By evaluating their performance over a more extended period, we gain a compre-
hensive understanding of their effectiveness and suitability for long-term irrigation control.

6.3.1 Quality of Service. Figure 13 depicts the daily soil water content for the ET-based control,
sensor-based control, and DRLIC during the simulation. The MAD level is indicated by the black
horizontal line, representing the threshold for maintaining almond health. Remarkably, all four
control methods effectively sustain the soil water content above the MAD level, ensuring the well-
being of the almond trees.
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Notably, on specific dates such as March 2, March 5, and March 24, as well as May 16 and May
18, all control systems demonstrate identical soil water content across all trees. This alignment can
be attributed to substantial rainfall events during those days, which saturated the soil and reached
FC.

When comparing DRLIC against the ET-based control strategy, as shown in Figure 13(a), we ob-
serve that the soil water content for the two trees under the DRLIC system differs significantly and
consistently exceeds the MAD level. In contrast, the sensor-based control maintains two distinct
moisture levels, initiating irrigation when reaching the lower level and stopping irrigation at the
higher level. However, even with careful calibration of these thresholds for each tree, Figure 13(b)
reveals 43 instances in which the soil water content slightly falls below the MAD level, potentially
affecting almond production.

Overall, both DRLICy;ap and the DRLIC system (Figure 13(c)) successfully ensure uniform ir-
rigation for both trees throughout the growing season, effectively maintaining their health and
minimizing the risk of under-irrigation.

6.3.2  Water Consumption. Figure 14 illustrates the monthly water consumption of the ET-based
system, sensor-based system, and DRLIC system from March to October. It is evident that the DR-
LIC system consistently consumes less water than the ET-based and sensor-based systems through-
out each month. Furthermore, the irrigation amounts for all systems exhibit an initial increase
followed by a decrease. This pattern can be attributed to two factors.

Firstly, as the spring rains cease and the weather becomes hotter, the demand for irrigation
increases. Secondly, almond trees undergo distinct stages in their annual lifecycle, including win-
ter dormancy, the vibrant bloom in March, growth throughout spring, and nut development dur-
ing summer. The year concludes with the harvest period spanning from mid-August to October.
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Consequently, water consumption tends to be higher in the summer months compared with other
seasons.

Overall, the DRLIC system demonstrates water-saving benefits, achieving a 10.21% and 3.93% re-
duction in water usage compared with the ET-based system and sensor-based system, respectively,
over the entire growing season. Considering that California’s 2019 almond acreage was estimated
at 1,530,000 acres, with almond irrigation consuming approximately 195.26 billion gallons per year,
the implementation of the DRLIC system could potentially save 19.94 and 7.67 billion gallons of
water annually compared with the ET-based system and sensor-based system, respectively[24].
This significant water conservation potential further highlights the environmental advantages of
adopting the DRLIC system.

6.4 Effect of Our Safe Irrigation Mechanism

During the 15-day deployment, we observe that on two occasions (Days 2 and 14 in Figure 11(c)),
the DRLIC system triggered the ET-control method. This observation is further supported by
Figure 12, where the water consumption of the ET method and DRLIC on those two days are
identical. To understand the reason behind this behavior, we examine the weather data and dis-
cover that the wind speeds on Days 2 and 14 were 7.2 and 11.9 mph, respectively, significantly
higher than the average wind speed of 2.8 mph during the other 13 days.

To gain further insights, we conduct simulations of the DRLIC system with and without a
safety mechanism for the entire growing season. These simulations, labeled as Robust-RL and
RL-only, respectively, are depicted in Figures 13(c) and 15, illustrating the daily soil water content.
From the perspective of almond health, the Robust-RL method effectively maintains the health of
the trees, with 0 days below the MAD level. In contrast, the RL-only irrigation method exhibits
21 days below the MAD level. This disparity arises due to the fact that the RL models trained
on past weather data may not perform optimally when faced with test weather data that devi-
ates significantly. While it might be feasible to train a model on changing weather conditions
to obtain a more robust policy, offline training alone cannot account for all potential weather
changes.

However, the RL agent equipped with a safety mechanism in the DRLIC system proves to be
robust against weather variations. The safety condition detector within the system identifies haz-
ardous actions from the RL agent, enabling the ET system to assume control and mitigate any po-
tential risks. This integration of safety mechanisms ensures the DRLIC system’s ability to handle
weather changes effectively and maintain the desired irrigation levels for optimal almond health.
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6.5 Effect of Proposed Reward

In this section, we present the simulation results of DRLIC with different reward functions for the
entire growing season (March 1 to October 31, 246 days).

To balance the objectives of minimizing water consumption while ensuring plant health, we
consider three situations in the reward formulation: (1) when the soil water content (V;) is higher
than the field capacity (V) level, (2) when V; is between V. and the maximum allowable deple-
tion (V;,44), and (3) when V; is lower than V,;,,4. Only in the second situation are the plants in good
health. To evaluate the effectiveness of our reward function, we compare it with a simple reward
(DRLICpap) commonly used in sensor-based methods [25], which only focuses on maintaining
V; above V,,,,4. The reward is defined as R = — Zﬁl A3 % (Vinaga — Vi) + s * ai, V; < Vppaq. This re-
ward function assigns higher penalties to plant health when V; is lower than V,,,4, as lower V;
significantly impacts plant health. The parameters used are the same as in Section 3.3.3.

Figure 16 illustrates the water consumption of DRLIC with our proposed reward (DRLIC) and
the simple reward (DRLIC _MAD). DRLIC saves an additional 2.04% of water compared with DR-
LIC _MAD since the latter does not account for the case in which V; is higher than V,,,4. DR-
LIC considers two additional scenarios by applying different penalties for plant health and water
consumption. In the case of over-irrigation, in which water consumption is excessively high, the
penalty for water consumption is increased relative to plant health. Conversely, in situations in
which the plants are in good health, DRLIC aims to maintain V; close to V,,,4 to achieve water
savings while ensuring plant health.

6.6 DRLIC Policy Convergence

Figure 17 depicts the DRL training process, demonstrating that the policy converges around the
500th training iteration. In our training setup, we define the length of an episode as 30 days. To
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expose the policy to different soil water content conditions and encourage it to avoid depleting
water below the MAD level, we randomly vary the initial soil water content for each tree between
the FC of 7.08 inches and the MAD of 4.72 inches at the start of each episode. Initially, the RL
policy receives a substantial negative reward as it lacks knowledge of a valid sequence of actions
that maximizes the reward. However, as training progresses, the policy gradually learns optimal
actions, leading to convergence at the 500th training iteration. The entire training process, com-
prising 1,000 training iterations, takes approximately 4 hours using a 64-bit quad-core Intel Core
15-7400 CPU operating at 3.00 GHz.

6.7 Energy Consumption of Sensor Nodes

From a wireless sensor network perspective, it is crucial for a system to operate autonomously
for extended periods without requiring user intervention. The same applies to DRLIC nodes, es-
pecially when they are deployed on the ground. To address this, our hardware and software are
meticulously designed to minimize energy consumption.

DRLIC nodes are equipped with a latching solenoid that enables water flow to be controlled
through short power pulses rather than a continuous supply. Additionally, to further conserve
energy, the radio in each node adopts duty cycling, activating for only a 10-second period ev-
ery minute. This higher data frequency is necessary because the base station can send an “oft”
command to DRLIC with minute-level granularity. Among the various peripherals in our devices,
including the two moisture sensors, solenoid, two relays, and radio, significant energy consump-
tion is observed.

To meet these energy demands, we implement an energy-harvesting mechanism that leverages
a 5/6 V 1.2 W solar panel. Figure 18 illustrates the energy consumption of different sensors. Each
moisture sensor sample requires 10 mA of power for 10 ms, while each activation of the latching
solenoid necessitates 380 mA of power for 30 ms. The ESP32 radio consumes 180 mA of power for
50 ms in transmitting mode, and the relay requires 250 mA for 20 ms when switching on or off. To
avoid premature power cutoff, we introduced a safety band of 50% in the timing for both devices,
resulting in 15-ms and 45-ms trigger durations for the sensor and solenoid, respectively. Overall,
the solar-harvesting mechanism adequately meets the daily energy requirements of all the sensors
in the DRLIC nodes.

Figure 19 showcases the energy-charging and energy-discharging process over 2 days. After
discharging during the night, the battery level of the 18650 battery begins to increase at 9:15 am on
May 3. It typically takes 2 hours to fully charge the battery (from 9:15 am to 11:35 am). The battery
remains at 100% charge from 11:35 am to 6:45 pm, during which time the harvested solar energy
fulfills the energy demands of all the sensors in the DRLIC nodes. The battery gradually discharges
from 100% at 6:45 pm on May 3 to 90.7% at 8:45 am on May 4th. This energy-charging and energy-
discharging cycle repeats. On average, the lowest battery level observed is 90%. Throughout the
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Table 5. Micro-sprinkler Node Manufacture Cost

Component Price Component Price
Moisture Sensor x 2 $250.00 ESP32 $6.50
18650 Li-Ion Battery $3.00 Solar Panel $4.30
Latching Solenoid $4.00 Switch Relay x 2 |  $5.00
Waterproof Enclosure | $12.00 | Maintenance Fee | $10.00
Total $294.80

2-week deployment, we discover that even on cloudy days, the battery can still be charged, albeit
requiring an additional hour to reach full capacity.

6.8 Return on Investment

When considering the purchase or upgrade of an irrigation control system, a primary concern is
the return on investment (ROI), which refers to the duration required to save enough money
from water consumption to cover the cost of the new system. To calculate the ROI of the DRLIC
system, we consider the initial investment cost of the DRLIC system and the savings achieved
through reduced water consumption resulting from increased irrigation efficiency.

First, we calculate the cost of developing a single DRLIC node. All the components required for a
DRLIC node can be found in consumer electronics and home improvement stores. The cost of each
component is listed in Table 5. The total cost for a DRLIC sensing and actuation node amounts to
$294.80, with a significant portion of the budget allocated to two high-quality soil moisture sensors
known for their accuracy and long lifespan.

The factors that primarily influence the payback period of our system are the water price and
the volume of water saved by DRLIC. Water prices can vary significantly across different irrigation
districts and over time. For this study, we assume 100% groundwater usage and availability. The
monthly cost of irrigation water for each tree is estimated to be $11.30. Based on our experimental
results, DRLIC can achieve a 9.52% reduction in water expenses per month, equivalent to $1.08.
Considering that almond orchards typically have 100 trees per acre, DRLIC can save $108.00 per
month. Let’s take the example of a 60-acre almond orchard with 10 irrigation regions, where each
region covers six acres. In each irrigation region, DRLIC can save $648.00 per month.

To deploy the DRLIC system, one DRLIC node is needed per irrigation region, with a cost of
$294.80 per node. The existing infrastructure, such as pipelines and micro-sprinklers under each
tree, can be used for the other irrigation components. Hence, the cost of upgrading the existing
irrigation system with our control system amounts to $294.80 for each irrigation region in an
orchard. With our system’s monthly savings of $648.00 per irrigation region, the investment can
be recouped in less than half a month. The DRLIC system can be easily upgraded to control micro-
sprinklers of any type, delivering site-specific actuation for systems at any scale.
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As shown in Table 5, the unit cost of a DRLIC node is dominated by the soil moisture sensor,
which was chosen in our experiments due to its very high accuracy (£3% [5]). As the size of the
system scales up, the initial cost of the system may become impractically high. To scale to very
large systems, then, we must consider the use of significantly cheaper soil moisture sensors at the
price of slightly less accurate measurements [51]. Imaging techniques will help the sensor cost if
they are accurate enough.

7 RELATED WORK

ET-Based Irrigation Control. In order to utilize weather data for irrigation control, various sys-
tems have been developed. These systems recognize the importance of weather as a primary source
or sink of water in irrigated areas. The simplest among these systems employ standard fixed-
schedule irrigation but incorporate a precipitation sensor to override the control and conserve
water during rainfall [29]. However, the industry standard has shifted towards more sophisticated
systems that rely on ET — an estimate of water lost through evaporation and plant transpiration
— to efficiently replace water loss [8, 30].

To mimic the functionality of an ET controller, farmers can query a local weather station [4]
to obtain the previous day’s ET losses, provided in units of surface water height. With this in-
formation, they can use the sprinkler datasheet, which specifies the surface application rate, to
calculate the precise duration for which the irrigation system should be activated to replenish the
previous day’s losses. In a commercial ET controller, this calculated amount represents the actual
irrigation applied. Some providers claim an average reduction of 30% in water consumption using
such systems.

However, despite their effectiveness, ET-based systems are constrained by centralized control,
similar to other industry irrigation systems. Consequently, they are unable to offer site-specific
irrigation, limiting their potential for optimizing system efficiency and achieving precise control
quality. This lack of site specificity hampers their ability to adapt to the unique characteristics and
requirements of individual areas.

Sensor-Based Irrigation Control. Advancements in soil moisture sensing technology have
paved the way for the development of irrigation controllers that respond directly to soil moisture
levels, leading to more accurate and efficient irrigation practices [7, 14, 25, 33]. These controllers
utilize moisture sensors that are installed in the root zone of plants and provide real-time data on
soil moisture to the controller. Based on this information, the controller can dynamically adjust
the pre-programmed watering schedule to ensure optimal irrigation.

There are two main types of soil moisture sensor—based irrigation systems. (1) Suspended cy-
cle irrigation systems: These systems utilize traditional timed controllers and automated watering
schedules with predefined start times and durations. The key difference is that when there is suffi-
cient moisture in the soil, the system will suspend or skip the next scheduled irrigation cycle. This
approach helps prevent overwatering and conserves water resources. (2) Water on-demand irri-
gation: This type of system eliminates the need for programming irrigation durations and focuses
on specifying only the start times for watering. It relies on two soil moisture thresholds — a lower
threshold to initiate watering and an upper threshold to terminate watering [25]. By maintaining
moisture levels between these thresholds, the system ensures efficient irrigation practices.

It is important to note that in the absence of a comprehensive model that accounts for water loss
mechanisms, these moisture thresholds are typically set based on experiential knowledge rather
than optimization techniques.

Model-Based Irrigation Control. In studies [58, 59], researchers develop a mechanistic
partial differential equation (PDE) model to simulate moisture movement in irrigated areas,
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enabling the determination of an optimal watering schedule to maintain appropriate moisture lev-
els. However, this PDE model has limitations, as it is not updated over time and does not account
for future weather predictions. To address these limitations, the same authors further enhance the
control system in subsequent works [56, 57]. In the improved system described in [56, 57], the PDE
model is replaced with an adaptive approach that involves models trained from sensor data. Both
long-term and short-term models are developed to describe the relationship between runoff from
sprinklers and the movement of water through the soil.

It is important to note that the system [56, 57] is specifically designed for turf irrigation and may
not provide significant benefits in shrubbery or tree irrigation. This is because turf soil moisture
is influenced by factors such as water runoff on the soil surface and the overlapping coverage of
sprinklers, which the models in [14, 43] focused on capturing. In the case of tree irrigation, there is
minimal runoff due to the spacing between trees, and the soil moisture model needs to consider the
soil-water relationship at different depths to be effective. Moreover, for almond orchards, which
typically have thousands of trees, it is not feasible to install controllers for each sprinkler due to
the high cost. Instead, our irrigation system operates on a region-based approach, where there are
no sprinkler overlap relationships between different regions.

Additionally, a study [39] demonstrates that the decay of volumetric water content derived from
the long-term model proposed in [14] was faster than what occurs in real-world scenarios. This
discrepancy would result in light and frequent irrigation, which has been found to be inefficient [2].
Thus, there is a need to refine and improve the modeling techniques to better align with the re-
quirements and characteristics of tree irrigation, especially in almond orchards.

DRL-Based Control. DRL has found applications in various domains, including autonomous
mobility-on-demand systems [27, 28], sensor energy management [22], mobile app prediction [49],
and building energy optimization [17, 19]. These applications demonstrate the versatility and ef-
fectiveness of DRL in solving complex problems and optimizing resource allocation in diverse
fields. In particular, DRL techniques have demonstrated the potential optimal irrigation controls.
The authors of [52] proposed an RL-based irrigation control system. The basic idea is to use a re-
inforcement learning algorithm to perform both irrigation planning and control. Two neural net-
works (NNs) are also introduced to predict DSSAT (Decision Support System for Agrotech-
nology Transfer) [31] simulation results. DSSAT is the defacto standard model for crop growth.
One NN inputs irrigation and weather information and predicts total soil water content; the other
NN predicts crop yield given the daily total soil water content for an entire crop season. The pre-
diction of crop yield is then used as the training data to train the RL model. This approach can
achieve relatively precise irrigation and allows full automation of the irrigation process. However,
it is restricted to a small state space and is difficult to scale to large problems. Therefore, accurate
representation of the actual irrigation context is difficult, leading to loss of important information
that is needed for optimizing irrigation decisions. To solve this small state space problem, a DRL-
based irrigation control approach [62] is introduced for optimizing irrigation applications in terms
of net return. This approach determines the amount of irrigation for each zone at each timestep,
taking soil moisture, ET, precipitation probability, and crop growth stage into consideration. Com-
pared with the previous approach using traditional RL, it can handle a much greater state space and
a greater number of irrigation choices. However, this control method is still central-valve control
and thus affects the production performance.

Testbed. Testbeds are widely used to study precision irrigation. There are several existing plat-
forms with features required for irrigation control [6, 46, 55]. The Farmbot is a CNC-style mecha-
nism that consists of a plot for vegetables and a modular set of interchangeable tools [6]. The tools
can execute a variety of tasks, including soil-moisture sensing, RGB imaging, planting, weeding,
and irrigating. The basic assembly kit is priced at USD $2595.00. The authors of [46, 55] presented
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RAPIDMOLT, a modular, open-source testbed that enables real-time, fine-grained data collection
and irrigation actuation. RAPIDMOLT costs USD $600.00 and has floor space of 0.37 m?. The func-
tionality of the platform is evaluated by measuring the correlation between plant growth (Leaf
Area Index) and water stress (Crop Water Stress Index) with irrigation volume. Both of these two
testbeds are used for vegetables, not for trees with much deep soil and large scale.

8 DISCUSSION

System Adaptability and Generalization: The varying soil moisture requirements and root ab-
sorption capacities across different plant types necessitate a robust system capable of adapting to a
wide range of agricultural contexts. Our system demonstrated significant water-saving effective-
ness in almond orchards. This success showcases the potential for DRL in optimizing irrigation
strategies. To extend our model to other crops, the following strategies can be employed.

Model Retraining: To retrain the model for different crops using the framework described in this
article, we may follow these steps.

(1) Data Collection: Collect data specific to the new crop type. This includes soil moisture
levels, irrigation patterns, growth metrics, and environmental conditions. Ensure that the
data collected covers a wide range of scenarios and growth stages for comprehensive
learning.

(2) Preprocessing: Process the collected data to fit the model’s input format. This includes
normalizing values, handling missing data, and segmenting data into training and testing
sets.

(3) Initialization: Initialize the DRL model with the parameters specified in this article. This
setup includes defining the reward function to focus on water conservation and crop yield
optimization for the specific crop.

(4) Training: Feed the new crop data into the model and begin the training process. Monitor
the model’s performance and adjust hyperparameters as necessary to improve learning
efficiency and accuracy.

(5) Evaluation and Tuning: After training, evaluate the model using a separate set of test data.
Assess its performance in terms of water savings and crop yield. Based on the results, fine-
tune the model by adjusting its parameters or architecture.

(6) Deployment and Continuous Learning: Deploy the retrained model in a real-world set-
ting. Continuously collect data from this deployment to facilitate ongoing learning and
improvement of the model.

Transfer Learning: To utilize transfer learning for adapting the DRL model to different crops,
consider the following steps, drawing from the methodology outlined in this article.

(1) Source Model Selection: Select a well-performing model trained on a crop with similar
characteristics or environmental conditions as the target crop. This model serves as the
source from which knowledge will be transferred.

(2) Feature Alignment: Ensure that the features relevant to the source crop are compatible
with the target crop. Adjustments may involve aligning soil types, weather conditions,
and crop physiology parameters.

(3) Transfer and Freeze Layers: Transfer the layers of the source model to the new model
intended for the target crop. Typically, early layers capturing general features are kept
frozen, whereas later layers are fine-tuned to adapt to the specific characteristics of the
target crop.
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(4) Fine-Tuning: With the new crop data, fine-tune the adjustable layers of the model. This
process involves a smaller set of data and focuses on refining the model’s predictions for
the target crop’s specific irrigation needs.

(5) Validation and Performance Assessment: Validate the fine-tuned model on a separate
dataset of the target crop. Evaluate its performance in terms of irrigation efficiency, water
conservation, and crop health, ensuring that the transfer has been successful.

(6) Iterative Improvement: Continuously improve the model through iterative fine-tuning and
validation, adjusting as necessary to ensure optimal performance across different crop

types.

By following these steps and leveraging the base knowledge from a related crop, transfer learn-
ing can effectively adapt the DRL model for diverse agricultural settings, enhancing its utility and
efficiency in optimizing irrigation strategies. We plan to further investigate and elaborate on these
adaptation strategies in future work.

Limited Testing Results of DRLIC: The 15-day period was crucial for demonstrating the proof
of concept and the immediate effects of DRLIC on water efficiency. These results, while prelimi-
nary, are promising indicators of the system’s potential. To enhance the robustness of our findings,
we have explored the integration of historical weather and irrigation data into our analysis. This
strategic inclusion allows us to simulate and assess the performance of the DRLIC under diverse
hypothetical scenarios, including those involving extreme weather conditions. Our dedicated ef-
forts are captured in the newly introduced Section 6.3, Simulation Results. In this section, we
meticulously present the outcomes of DRLIC alongside two baseline systems, scrutinizing their
performance across an entire growing season. This extended evaluation period provides us with
valuable insights, fostering a comprehensive understanding of the effectiveness and suitability of
these systems for long-term irrigation control.

Building upon the above analysis, we recognize the necessity for a more extensive evalua-
tion that spans the entire lifecycle of almond trees. Almonds and the trees that grow them go
through many stages in their annual lifecycle including the stunning bloom in March, “growing up”
through the spring, and “cracking open” in summer. The year finishes with harvest spanning from
mid-August to October, followed by shelling and sizing. Our future work involves extending the
experimental period to cover a full growth cycle of almond trees, commencing from March to Oc-
tober. This holistic approach will enable us to capture a diverse range of environmental conditions
and their nuanced effects on the performance of DRLIC.

9 CONCLUSIONS

We introduce DRLIC, an innovative irrigation system that leverages DRL to generate optimal con-
trol commands based on real-time soil water content, current weather conditions, and weather
forecasts. Our approach encompasses several key techniques, including the customization of DRL
states and rewards for achieving optimal irrigation, the development of a validated soil mois-
ture simulator for efficient DRL training, and the implementation of a reliable irrigation module.
To evaluate the effectiveness of the DRLIC system, we design specialized irrigation nodes and
construct a testbed featuring six almond trees. Through extensive experiments conducted in both
real-world and simulated environments, we demonstrate the remarkable efficiency and perfor-
mance of the DRLIC system.
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