L)

Check for
updates

A Low-Density Parity-Check Coding Scheme for LoRa
Networking

KANG YANG, University of California Merced, Merced, United States
WAN DU, University of California Merced, Merced, United States

This article presents a novel system, LLDPC,! which brings Low-Density Parity-Check (LDPC) codes into
Long Range (LoRa) networks to improve Forward Error Correction, a task currently managed by less efficient
Hamming codes. Three challenges in achieving this are addressed: First, Chirp Spread Spectrum (CSS)
modulation used by LoRa produces only hard demodulation outcomes, whereas LDPC decoding requires
Log-Likelihood Ratios (LLR) for each bit. We solve this by developing a CSS-specific LLR extractor. Second,
we improve LDPC decoding efficiency by using symbol-level information to fine-tune LLRs of error-prone
bits. Finally, to minimize the decoding latency caused by the computationally heavy Soft Belief Propagation
(SBP) algorithm typically used in LDPC decoding, we apply graph neural networks to accelerate the process.
Our results show that LLDPC extends default LoRa’s lifetime by 86.7% and reduces SBP algorithm decoding
latency by 58.09x.

CCS Concepts: « Networks — Network protocol design; « Computing methodologies — Neural
networks;

Additional Key Words and Phrases: Wireless Systems, Low-Power Wide-Area Networks, LoRa, Forward Error
Correction, Graph Neural Networks

ACM Reference Format:
Kang Yang and Wan Du. 2024. A Low-Density Parity-Check Coding Scheme for LoRa Networking. ACM
Trans. Sensor Netw. 20, 4, Article 98 (July 2024), 29 pages. https://doi.org/10.1145/3665928

1 INTRODUCTION

The emergence of Low-Power Wide-Area Networks (LPWANSs) has paved the way for
connecting billions of affordable Internet of Things (IoT) devices to facilitate data collection
in diverse applications, such as smart industry and precision agriculture [2-5]. Among various
LPWAN technologies, including Long Range (LoRa) [6, 7] and NB-IoT [8], LoRa stands out due

! This is an extension of the SenSys’22 article [1].

This publication was prepared with the support of a financial assistance award approved by the Economic Development
Administration, Farms Food Future. It was also supported in part by NSF Grant #2239458, #2008837, a UC Merced Fall
2023 Climate Action Seed Competition grant, and a UC Merced Spring 2023 Climate Action Seed Competition grant. Any
opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the
views of the funding agencies.

Authors’ Contact Information: Kang Yang, University of California Merced, Merced, California, United States; e-mail:
kyang73@ucmerced.edu; Wan Du (Corresponding author), University of California Merced, Merced, California, United
States; e-mail: wdu3@ucmerced.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1550-4859/2024/07-ART98

https://doi.org/10.1145/3665928

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0001-8248-4894
HTTPS://ORCID.ORG/0000-0002-2732-6954
https://doi.org/10.1145/3665928
mailto:permissions@acm.org
https://doi.org/10.1145/3665928
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3665928&domain=pdf&date_stamp=2024-07-08

98:2 K. Yang and W. Du

to its operation in unlicensed sub-GHz frequency bands. Utilizing Chirp Spread Spectrum (CSS)
modulation [9], LoRa enables sensor nodes to transmit data at low data rates (a few kbps) across
several miles to gateways. However, during extended-distance transmissions, obstacles along the
signal propagation path can adversely affect the signal-to-noise ratio (SNR) of LoRa packets,
resulting in erroneous bits in the packets received by gateways [10].

In wireless networks, Forward Error Correction (FEC) codes serve to rectify bit errors by
appending additional parity bits prior to each transmission [11]. LoRa utilizes Hamming codes,
which are relatively simple to implement but known for their considerably sub-optimal error
correction capacity [12]. The SemTech LoRa Design Guide quantifies the FEC coding gain under
additive white Gaussian noise conditions [13]. Coding gain refers to the extent to which FEC
codes can diminish the necessary SNR for successful data retrieval. The analysis reveals that
Hamming codes yield only a marginal coding gain (less than 1 dB).

A variety of FEC codes, such as Reed-Solomon (RS) codes, Polar codes, and LDPC codes, have
been extensively employed in contemporary wireless networks [11]. However, Polar and Turbo
codes necessitate specialized hardware circuits for encoding data on the sender side, making them
less suitable for LoRa networks [14, 15]. Additionally, the energy-intensive encoding process of RS
codes, which involves computationally expensive and memory-intensive arithmetic calculations
in Galois Field (GF), renders them unsuitable for LoRa networks as well [16]. In contrast, LDPC
codes excel in error correction capability, even nearing the Shannon rate limit [17, 18]. They
have found applications in 5G New Radio traffic channels [19], satellite communications [20],
and the 802.11 WiFi protocol family [21]. Furthermore, LDPC encoding requires only straight-
forward XOR operations, allowing for implementation on sensor nodes with minimal energy
consumption.

To reconcile the disparity between the limited FEC capacity of existing LoRa networks and the
substantial coding gain offered by LDPC coding, we develop an efficient LDPC coding scheme for
LoRa networks, LLDPC. Toward this end, we address the following three challenges.

Firstly, LDPC coding gain is reliant on its decoding algorithm, i.e., the Soft Belief Propaga-
tion (SBP) algorithm, which necessitates the Log-Likelihood Ratio (LLR) of each received bit
as input. The LLR, a floating number, determines not only the bit value but also the confidence
level associated with that value. Nevertheless, the CSS demodulation, as specified in LoRa, fails to
provide any soft information pertaining to the output binary sequence. In LLDPC, we propose an
innovative LLR extractor that leverages the amplitude spectrum of a symbol to compute the LLR of
each bit within the symbol, where a symbol comprises a sequence of bits. The amplitude spectrum
of a symbol is acquired through CSS demodulation. The LLR of a bit is calculated by comparing
the amplitudes of frequency bins in the amplitude spectrum, where the corresponding bit value is
either 1 or 0.

The second challenge is the low decoding efficiency due to the large LLR of some erroneous
bits. Interference or ambient noise can result in packets containing erroneous bits after demod-
ulation [22, 23]. These erroneous bits, with their large LLRs, can lead to the failure of the SBP
algorithm. To address this issue, we attempt to decrease the LLR of erroneous bits by leveraging
symbol-level information. Our key insight is that while we cannot identify the erroneous bits, it is
relatively easy to identify the erroneous symbols. Erroneous symbols must encompass erroneous
bits. Upon detecting an erroneous symbol, we promptly assign alow LLR to all its bits, significantly
reducing the LLR of the erroneous bit and preventing a negative impact on LDPC coding gain. To
achieve this, we must address two subsequent questions. (1) how to identify erroneous symbols? If
a symbol is demodulated incorrectly, its amplitude spectrum comprises multiple high-amplitude
frequency bins. By extracting a set of features that potentially characterize the correctness of
demodulated symbols from the amplitude spectrum, we train a binary Support Vector Machines

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:3

(SVM) classifier [24]. (2) By lowering the LLR of all bits in an identified erroneous symbol, we also
reduce the LLR of some correctly-demodulated bits. Does this side effect influence the performance
of LDPC coding? Through empirical experiments, we ascertain that it does not adversely affect
LDPC performance.

Thirdly, in accordance with the Long Range Wide Area Network (LoRaWAN) specifica-
tion [25], the gateway is obliged to respond to the LoRa node with an acknowledgment (ACK)
within one second. Nonetheless, the SBP algorithm necessitates an extensive amount of iterative
updating operations, resulting in prolonged decoding latency. Recognizing that the parity-check
matrix of LDPC codes can be converted into Tanner graphs, we seize the opportunity to execute
LDPC decoding using Graph Neural Networks (GNNs). Consequently, we devise a GNN-based
BP model for LDPC decoding [79]. Specifically, we employ GNN models to capture the relation-
ship between original bits and parity-check bits. Experiments on a large-scale synthetic dataset are
conducted to ascertain the optimal number of GNN layers. To train the GNN models end-to-end,
we utilize binary cross-entropy loss.

Finally, we integrate the above LDPC coding scheme into the bit rate adaptation in LoRa net-
works. In LoRa, the bit rate is governed by the Spreading Factor (SF). When faced with a packet
transmission failure, there are two potential ways: increasing the number of FEC parity-check bits
(modifying the Coding Rate) or reducing the bit rate (altering the SF) [26]. To transmit a packet,
we must decide the appropriate FEC Coding Rate (CR) for a given bit rate. To achieve this, we
initially generate an SF-CR-SNR table through offline experimentation. This table documents the
SNR thresholds for various SFs and CRs. The SNR threshold for a specific SF and CR pairing is
derived from the corresponding BER-SNR curve, with a Bit Error Rate (BER) threshold of 1e™.
Based on the predicted channel SNR, we collaboratively search for the smallest SF and CR in the
SF-CR-SNR table to transmit packets.

We implement LLDPC on Universal Software Radio Peripheral (USRP) N210 combined with
a back-end host. The performance of LLDPC is assessed using both a large-scale synthetic dataset
and an in-field testbed. Experimental results reveal that, in comparison to Hamming codes, LLDPC
can augment the node lifetime by as much as 86.7%. Additionally, our GNN-based BP model dimin-
ishes the average decoding latency of the SBP algorithm by a factor of 58.09x.

In summary, this article makes the following contributions:

— LLDPC first integrates LDPC codes into LoRa networks, effectively enhancing the efficiency
of data transmissions.

— We customize LLDPC to tackle a set of challenges, developing an LLR extractor to acquire
the soft information of bits, implementing a symbol-aware LLR enhancement module to
boost the capacity for error bit correction, and incorporating a GNN-based BP algorithm to
decrease the LDPC decoding time.

— Through extensive in-field trials and simulations conducted with a large-scale synthetic
dataset, LLDPC consistently demonstrates superior performance compared to conventional
Hamming codes employed in LoRa networks. Additionally, we assess the robustness of the
system by examining its sensitivity to distinct symbol features and diverse experimental
configurations, thereby ensuring its dependability and versatility.

2 BACKGROUND AND MOTIVATION

This section presents the LoRa physical layer (PHY) and motivating experiments. Then, we
discuss LDPC codes and LLR in the context of M-ary quadrature amplitude modulation
(M-QAM).

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

98:4 K. Yang and W. Du

Payload: 1101 Payload:1101

Channel Encoding Channel Decoding

ll 101100 T
Chirp Spread Spectrum |l
(CSS) Modulation L

Sender

CSS Demodulation

______ 24

Receiver

Fig. 1. The block-level overview of the LoRa PHY.

2.1 LoRaPHY

Figure 1 displays a simplified block diagram of a standard LoRa PHY [27], which includes channel
encoding and modulation [28]. On the transmitter side, given a payload (e.g., “1 1 0 1”), channel
encoding initially conducts a series of encoding procedures to enhance over-the-air resilience,
encompassing FEC encoding, whitening, diagonal interleaving, and gray mapping. LoRa PHY
employs Hamming codes as the default FEC coding scheme [13]. LLDPC aims at substituting
Hamming codes with a more efficient FEC coding scheme in LoRa PHY. Subsequent to the afore-
mentioned operations, CSS modulates the encoded data into multiple symbols. The number of
bits in each symbol is determined by the SF (i.e., 7, 8, 9, and 10), enabling a symbol to represent an
integer between 0 and 257 — 1. A symbol is modulated by adjusting the initial frequency of a base
chirp in increments of BW /257, where BW denotes the channel bandwidth. A base chirp is a sinu-
soidal signal with a frequency that linearly increases from 0 Hz up to the channel bandwidth, e.g.,

250 kHz [13].

On the receiver side, LoRa PHY executes demodulation and decoding. The demodulation process
identifies a symbol’s value by calculating its chirp’s initial frequency. It multiplies the received
signal by a down-chirp, whose frequency linearly decreases over time, and applies a Fast Fourier
Transform (FFT) to the resulting signal. Consequently, the amplitude spectrum of each received
symbol can be acquired. Every index of frequency bin correlates to a potential symbol value. The
index of the frequency bin with the highest amplitude is used to determine the value of a symbol.
The bits from all recognized symbols in a packet are combined into a binary sequence, which is
further processed through Gray demapping, deinterleaving, and dewhitening in order. Ultimately,
the original payload can be retrieved through FEC decoding.

2.2 Motivating Experiments

We investigate the Packet Reception Ratio (PRR) and Bit Reception Ratio (BRR) of LoRa
links under two CRs of Hamming codes, i.e., 4/5 and 4/7. For the 4/5 CR, a one-bit parity check is
appended to every four bits, enabling the detection of a single-bit error within the five-bit group,
albeit without correction capabilities. Conversely, the 4/7 CR allows for the correction of one er-
roneous bit within each seven-bit segment through Hamming codes. LoRa nodes, as depicted in
Figure 22, periodically transmit 32-byte packets to the gateway using an SF of 10, a transmission
power of 14 dB, a bandwidth of 125 kHz, and a frequency channel of 904.3 MHz. The duration of
the experiment is set to 2.5 hours. PRR and BRR are evaluated at three-minute intervals.

Figure 2 illustrates the PRR and BRR for LoRa links across two CRs. The observed high BRR in
conjunction with a low PRR suggests that, although a significant portion of packets are corrupted
during transmission, the total number of erroneous bits within these packets remains relatively
low. This phenomenon aligns with findings reported in [12]. Given that Hamming codes with CRs

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:5

100 — — 100 ————__—
;\3 80 ;\? 80
% 60 g 60
) o
3 40 3 40
< \/A\’\//\ e
& 20{ — PRR & 59/ — PRR
—— BRR —— BRR
0 0 10 20 30 40 50 0 0 10 20 30 40 50
Time slot Time slot
(a) Coding rate: 4/5. (b) Coding rate: 4/7.

Fig. 2. PRR and BRR for two different CRs.

Parity check matrix H

121]o]o|+ G
e fo: [

Transmitted bits

ol1]01111]1]

Computed LLR sequence of bits

| channe ol Tio[10l10 10
— DR

Fig. 3. The top illustrates a parity-check matrix and its associated Tanner graph. In #, each row represents
a check node (square) while each column signifies a bit node (circle) in the corresponding graph on the right.
The bottom is an example of the computed six-bit LLR using our LLR extractor.

of 4/5 and 4/7 lack the capability to correct even this modest quantity of errors, we are prompted
to develop a more effective FEC coding scheme for LoRa networks, such as LDPC codes.

2.3 Low-Density Parity-Check Codes

LDPC codes encode a data payload of K bits into a packet of N bits by appending M parity check
bits to the K payload bits, where M = N — K and the CR equals K/N. A sparse parity-check
matrix #€y«n can be generated randomly to obtain an (N, K) LDPC code [17, 29]. The Tanner
graph [30] represents #p«n, as illustrated in Figure 3. Nodes denoted by f; are check nodes,
while those identified by b; are bit nodes. Each row in # signifies a check node constraint, i.e.,
the XOR sum of participating bit nodes equals zero. If h;; = 1, this implies that the bit node (b;)
participates in the constraint of the check node (f;). The matrix #€ is generated offline. The sender
can effortlessly produce the encoded data using simple XOR operations with the matrix #€. Hence,
the LDPC encoding process is computationally light and can be executed on LoRa nodes, such as
the Arduino Uno board [31] in our implementation.

LDPC Decoder. Two primary LDPC decoding algorithms exist: Bit-flipping [32] and SBP
[33]. Bit-flipping operates as a hard-decision decoding algorithm, utilizing a binary bit stream as
input for decoding the data. Conversely, SBP functions as a soft-decision decoding algorithm, ac-
counting for the reliability of received bits by using LLR as input to generate improved estimates.
Soft-decision decoding surpasses hard-decision decoding in performance by 2.5 dB SNR[34].
In Section 6.5, our experiments further demonstrate the limited performance of Bit-flipping.

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

98:6 K. Yang and W. Du

Consequently, this article primarily focuses on SBP. The SBP decoding algorithm can be outlined
as follows [33]:

— Step 0: The First Message from Bit Nodes to Check Nodes. When a packet is received, the LLR of
each bit can be obtained by demodulation. To initialize the decoding process, each bit node
sends its LLR to its connected check nodes.

— Step 1: Updating Messages Sent from Check Nodes to Bit Nodes. After a check node f; receives
the messages from all its connected bits nodes, it calculates the message that will send back
to bit node b; as follows:

ApSf
.) , (1)

Nfi—b; = 2 tanh™ 1_[tanh (
bieN(fi) \ b;

where N (f;) is the set of bit nodes connected to check node f;, and /lbjrﬂfi is equal to LLR(bj’.)
for the first iteration.
— Step 2: Updating Messages Sent from Bit Nodes to Check Nodes. After a bit node b; receives the

messages from all its connected check nodes, it prepares the message that will be sent back
to check node f;,

Ap,—f, = LLR (bj) + Z Nfy—bj» @)
fiem(b;) \ fi
where M (b;) is the set of check nodes connected to bit node b;.
— Step 3: Verifying Termination Condition. Before all bit nodes send the updated messages to
their connected check nodes, they first verify whether the termination conditions are met. To

do so, every bit node b; updates its LLR value 4, according to the messages s, received
from all its connected check nodes,

Mo, =LLR (b)) + > np,. (3)

fiem(b))
Let yp, denote the output of the SBP algorithm. The SBP slices 1, to determine the decoded
output bit yp, ie., if Ay, > 0, then y;, = 1; otherwise, y;,, = 0. We can obtain the binary

sequence y = [Yp,, Ybs---»> Yoy,] The SBP algorithm stops if y - #T = 0 or if the maxi-
mum number of iterations is reached; otherwise, the algorithm starts another iteration from
Step 1.

24 LLRin M-QAM

LLR is essential for the SBP algorithm and can be computed in M-QAM demodulation, a technique
commonly employed in contemporary wireless networks such as WiFi and 5G [35, 36]. The
calculation proceeds as follows:

F (b] =1 | 1‘)
F (b] =0 | r)
where r represents a received symbol and b; refers to the jth bit in the symbol r.

Upon receiving a symbol r, it is depicted as a point on the constellation diagram (I-Q plane),
with the M standard symbols occupying fixed positions. For instance, in Figure 4, the cross symbol
indicates the received symbol, while the other 16 circle symbols represent the standard symbols.
Subsequently, the Euclidean distances between the received symbol r and the M standard symbols

in the constellation diagram are determined. Ultimately, F (b; = 1 | r) is computed as the sum of
the Euclidean distances between the received symbol r and the M /2 standard symbols with the jth

LLR (b;) = log , where 0 < j < log2(M), (4)

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:7

Q
1011 1001 0001 0011
[] [] (@] o
1010 1000 0000 0010
® o, - (@)
~\\x J Pt
I
1110 1000 0100 0110
[] [] (@] o
1111 1101 0101 o111
[] [] (@] o

Fig. 4. The illustration of LLR calculation for 16-QAM.
| #li .
De-chirping \LR Offline training —>
& FFT <« - - - datab Online inference — >
atabase
Received LoRa PHY n!n

1
| _ samples at receiver) A .
| Amplitude spectrum Store Train 1 Decoded bits
A\ 1
LLR Enhanced LLR 91:0.9,0.4, ..., —0.5)
Spectrum-based RN Symbol-aware [EEEEEEEEEEE 07— o1 > GNN-based belief
(IEEETR T — — —> JILEOENTE O — — — — — > 223 0306 .07 propagation

Fig. 5. The overall architecture of LLDPC.

bit equal to 1. Analogously, F (b; = 0 | r) amounts to the sum of the Euclidean distances between
the symbol r and the remaining M/2 standard symbols with the jth bit equal to 0.

Based on Equation (4), LLR can be employed to ascertain bit values, meaning if LLR(b;) > 0,
then b; = 1; otherwise, b; = 0. Additionally, LLR can supply the confidence level for bit b; being
either 1 or 0. A high absolute LLR value indicates that the received symbol is closer to the standard
symbol with the jth bit as 1 or 0.

Challenges in Implementing LDPC in LoRa: Firstly, LoRa utilizes CSS modulation, which
differs from M-QAM modulation. No existing methods can calculate the LLR of received bits during
CSS demodulation. The second challenge involves the low decoding efficiency resulting from large
LLRs of some erroneous bits. These bits may possess large LLRs, leading to the failure of the SBP
algorithm. Moreover, SBP necessitates numerous iterations to achieve effective error correction,
causing extended decoding latencies (5.46 seconds in our Raspberry Pi 3 single-board computer
implementation). However, according to the LoRaWAN specification [25], a gateway must respond
with an ACK to the LoRa node within one second. Although parallel LDPC decoding implemen-
tations exist [37], they demand high-end hardware or quantum computing platforms, rendering
them unsuitable for low-cost, large-scale LoRa networks.

3 DESIGN OF LLDPC

We present the design of LLDPC and its three components: the spectrum-based LLR extractor, the
symbol-aware LLR enhancement module, and the GNN-based belief propagation algorithm.

3.1 Overview

Figure 5 depicts the architecture of LLDPC. Upon receiving a signal from a sensor node, a LoRa
gateway initially acquires the amplitude spectrum of the received symbols through de-chirping

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

98:8 K. Yang and W. Du

.1.0 . 1.0

£ £
s 0.8 G 0.8
© el
Sos6 So6
© @
€04 £
o c 0.4
c jey
0 0.2 o
£ £0.2

0.0

0 20 40 60 80 100 120 0 20 40 60 80 100 120
The index of bin The index of bin
(a) Correctly demodulated symbol. (b) Incorrectly demodulated symbol.

Fig. 6. The amplitude spectrum obtained from CSS demodulation for two symbols at different SNRs.

and FFT operations. Utilizing the spectrum results of each symbol, our LLR extractor calculates
the LLRs for every bit in the symbol (Section 3.2). To optimize SBP decoding efficiency, we fine-
tune the LLR of all bits by employing symbol-level information (Section 3.3). Ultimately, LLDPC
feeds the LLR sequence into the GNN model for LDPC decoding (Section 3.4). The decoding latency
remains low (under 2 seconds), enabling the gateway to transmit an ACK packet to the sensor node
within the LoORaWAN standard’s specified ACK constraint (2 seconds).

Both the SVM model for the symbol-aware LLR enhancement module and the GNN model are
trained offline. We gather training data from a large-scale synthetic dataset created through ex-
periments on the USRP N210 platform. In our experiments, since we record the data payloads
transmitted by the sensor nodes, we use them to label the received packets at the gateway.

3.2 Spectrum-Based LLR Extractor

3.2.1 CSS Demodulation. After conducting de-chirping and FFT, the amplitude spectrum of a
received symbol can be obtained. The index of the frequency bin with the maximum amplitude is
chosen as the symbol’s value. This CSS demodulation process can be regarded as a classification
task, which yields the probability of all frequency bins. By performing the SoftMax operation [38]
on the amplitude spectrum, the probability of each frequency bin can be computed:

exp (Abin,

P(t = biny) = , 5)

ZyE[O, 25F 1] €Xp (Abiny)

where t represents the modulated value of a transmitted symbol, exp denotes the exponential func-
tion, and P (¢ = binx) signifies the probability that the modulated value equals the xth frequency
bin. The Abin, refers to the amplitude of the xth bin.

The index of the frequency bin with the highest probability is selected as the demodulation result.
If the chosen probability (i.e., amplitude) is substantially greater than the others, the classification
result’s confidence is higher, as illustrated in Figure 6(a) for the correctly demodulated symbol.
Conversely, if the highest amplitude in the amplitude spectrum closely resembles the amplitude
of other frequency bins, determining the symbol’s value becomes difficult, as demonstrated in
Figure 6(b). Nonetheless, LoRa CSS demodulation merely picks the frequency bin with the highest
amplitude as the output, disregarding the confidence information.

3.22 LLR Calculation. Each symbol consists of SF bits. Let S+ denotes the set of symbols with
the jth bit equal to 1, and S,/ represents the set of symbols with the Jjth bit equal to 0 (0 < j < SF).
For instance, if SF is 3, then SJr =4, 5,6, 7and S, =0, 1,2, 3. The LLR of the jth bit in a symbol

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:9

can be computed as follows:

Sies; AP maxies; P(t])
J — =~ 10 J —,

Sies, 21D~ Pmaxies, P17
J

LLR (b;) = log (6)

where & (t | 7) denotes the probability that the transmitted symbol’s value is ¢ given the received
signal 7. It is calculated using Equation (5) based on the symbol’s amplitude spectrum. Thus,
Equation (6) specifies that LLR (b;) is the ratio of the sum of probabilities that all symbols in set
S+ concur on b; = 1 to the sum of probabilities that all symbols in set S, concur on b; = 0.

We approximate the sum of probabilities as the highest probability for two reasons. First, when
SF is large (e.g., SF10), each set (S;j and S b,-) contains 512 items. Calculating the probability of each
symbol and the sum of all probabilities in each set is time-consuming. Second, the summation
can be distorted by a single outlier, while the maximization operation is more resilient. This ap-
proximation is also commonly used in existing wireless networks [36]. We conduct experiments
to assess the difference between the sum and max operations. For each packet, we calculate the
LLR using sum and max, respectively. We then measure the absolute difference between the LLR
calculated by sum and max for the corresponding bits. The average difference in LLR is only 0.13,
indicating a negligible impact on LLR calculation.

The LLR can be utilized to identify the values of bits. A positive LLR indicates a bit value of 1,
while a negative LLR signifies a bit value of 0. The experiments in Section 6 reveal that our LLR
extractor produces an identical binary sequence to that of LoRa CSS demodulation. Consequently,
our LLR extractor does not affect the BER of received packets. For instance, if the original bit is 1
but the CSS demodulation produces 0, our LLR extractor will yield a negative LLR. Bit errors occur
due to interference or environmental noise during wireless transmission and will be corrected by
the following FEC decoding.

3.3 Symbol-Aware LLR Enhancement Module

In this section, we first explore the influence of the calculated LLR of erroneous bits on the SBP
algorithm’s efficiency. Subsequently, we introduce a symbol-aware LLR enhancement module that
incorporates symbol-level information to refine the LLR of some bits.

3.3.1 The Decoding Efficiency of SBP and the LLR of Erroneous Bits. Figure 3 illustrates a simple
scenario where all bit LLRs are normalized, and they are assumed to have the maximum absolute
values, i.e., 1.0. There are six transmitted bits. The parity check matrix and its corresponding Tan-
ner graph are also displayed in Figure 3. We assume the second bit is in error, meaning the second
bit is flipped from 1 to 0.

We will now demonstrate how SBP attempts to correct the second bit during the decoding it-
eration. In the first iteration, after bit nodes send their initial LLRs to the connected check nodes,
SBP updates the check node message.

Moty =2tanh ™' [[tanh[05LLR (b))] | =0.198
belo, 2, 51

7
N, =2tanh ™| [] tanh [0.5LLR (b)] | = —0.091
bielo, 3, 4, 5]

This equation is instanced from Equation (1). Both messages are sent to bit node b;. Considering
these two messages and its current LLR, bit node b; updates its LLR to —0.893 using Equation (3).

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

98:10 K. Yang and W. Du

1.0 10
I' 2 B Original LLR
0.8 ! o 81 mEm Modified LLR
! @
06{ | 6
w Y [8
S ! 3
0.4 1 g 4
! o}
0.2 ,' == Incorrect bits E 2
1 —— Correct bits §
0.0 0
00 02 04 06 08 1.0 1 3 5 7 9
The absolute value of LLR Pre-decoding BER (%)
Fig. 7. LLR for correct and erroneous bits w/o Fig. 8. Post-decoding BER by SBP using original
symbol-level info. and enhanced LLRs.

After this iteration, the LLR of the second bit decreases from —1.0 to —0.893. Despite running
1,000 iterations, this value eventually converges to —0.77, which means the second bit remains 0.
Therefore, the SBP algorithm is unable to correct this erroneous bit, even with numerous iterations,
due to its large absolute LLR value.

From this example, it is evident that the SBP’s efficiency is impacted by the large LLR of erro-
neous bits. We further examine the extent of the large absolute LLR values for erroneous bits by
plotting the CDF of the absolute LLR values for correct and erroneous bits based on a synthetic
dataset collected in Section 6. Figure 7 reveals that the absolute LLR values of erroneous bits can
reach up to 0.32, which negatively affects the SBP’s efficiency.

At the same time, we investigate the decoding efficiency of SBP when the initial LLR of the
second bit is manually adjusted from —1.0 to —0.1. SBP follows the same update process, and we
discover that after two iterations, the LLR of the second bit changes from —0.1 to 0.007, allowing
SBP to successfully correct errors. By reducing the absolute LLR value of erroneous bits, we can
enhance the error correction efficiency of SBP.

In order to further validate the aforementioned observation, we conduct a simulation experi-
ment. The LLRs of all bits are generated randomly based on their bit values; for instance, if a bit
value is 1, its LLR will be a positive floating-point number. Erroneous bits are introduced with a
specific pre-decoding BER. We use the term “pre-decoding BER” to denote the BER before LDPC
decoding and “post-decoding BER” for the BER after LDPC decoding. Figure 8 demonstrates that
when the absolute LLR value is similar to that of correct bits, SBP is unable to correct erroneous
bits, even if the BER is low (depicted by the gray bar). Conversely, by adjusting the absolute LLR
value of erroneous bits to a smaller floating-point number, SBP exhibits enhanced error correction
capabilities (indicated by the black bar).

However, identifying erroneous bits presents a considerable challenge. Fortunately, we can in-
directly detect erroneous bits by examining symbol-level information. When a bit is incorrect, the
symbol containing that bit must be demodulated erroneously. If we can predict that a symbol has
been demodulated incorrectly, we can assign a low LLR to all bits within that symbol. Hence, these
erroneous bits will possess a lower LLR, significantly enhancing the decoding efficiency of SBP.

3.3.2 Erroneous Symbol Detection. We propose symbol features to classify the correctness of
symbols using an SVM model.

Feature. To discover meaningful features related to symbol correctness, we examine the
distribution of the amplitude spectrum. Figure 6 reveals that when a symbol is demodulated
incorrectly, the spectrum consists of multiple high-amplitude frequency bins relative to the
highest-amplitude bin. We quantify these high-amplitude bins by calculating the amplitude ratio
between the highest amplitude and their respective amplitudes. Specifically, frequency bins are
sorted by their amplitudes, and we compute the amplitude ratios of the top-& high-amplitude bins

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:11

o~ o~
#
&) 8 %
3 3
=1 =1
© ©
L] L] a
w w
]‘ e Incorrect symbols e Incorrect symbols
a Correct symbols a Correct symbols
Feature #1 Feature #1
(a) When SF=7. (b) When SF=10

Fig. 9. The representation visualization with t-SNE for our proposed symbol features when SF = 7/10.

1.0 _6
§ B Original LLR
0.8 4 EE Enhanced LLR
@4
E 0.6 g
0.4 S
7 ——— g2
021 i == w/o symbol info. °
= w symbol info. §
0.0 0.0 0.1 0.2 0.3 0 0 1 3 5 7 9
The absolute value of LLR The false negative ratio (%)
Fig. 10. Absolute LLRs for error bits w/o and w/ Fig. 11. Impact of enhanced LLRs for correct bits
symbol-level info. with different FNR.

relative to the highest-amplitude bin. These ratios form a feature vector of length &. Empirically,
we set & as five in our experiments.

To assess the effectiveness of the proposed features, we utilize the t-distributed Stochastic
Neighbor Embedding (t-SNE) [39] technique for visualization. As depicted in Figure 9, symbols
display a strong clustering effect for SF7 or SF10. Therefore, our proposed features can be employed
for binary symbol classification, predicting whether symbols are demodulated correctly or not.

Classifier. To achieve this objective, we employ an SVM classifier [24] with a radial basis
function (RBF) kernel for symbol classification. As demonstrated in Section 6.5, our SVM model
can predict symbol correctness with a false negative ratio of 4.2% and a false positive ratio of
0.3%. We opt against deep learning-based approaches for erroneous symbol detection due to the
low dimensionality of our features. Deep learning methods are typically designed to handle high-
dimensional input features [40]. In contrast, tree-based methods excel when working with diverse
data types, such as continuous and discrete features.

3.3.3 The Calculation of Enhanced LLR. After classifying symbol correctness, we augment the
LLR of bits associated with symbols predicted as incorrectly demodulated. We multiply the proba-
bility of a symbol being correctly demodulated by the original LLR of bits, a probability obtained
from the SVM classifier. This reduces the absolute LLR value of erroneous bits. Figure 10 displays
the CDF of absolute LLR before and after integrating symbol-level information, indicating a reduc-
tion in the absolute LLR values of erroneous bits.

Simultaneously, we also decrease the absolute LLR values of some correct bits. Does this compro-
mise the performance of the SBP algorithm? We conduct a simulation similar to that in Figure 8,
with the difference being that we not only reduce the absolute LLR value of erroneous bits but
also randomly reduce the absolute value of correct bits with varying false positive ratios (FNR).
Figure 11 reveals that the reduced LLRs of correct bits have minimal impact on SBP decoding per-
formance. The reasoning behind this is that lowering LLR for correct bits does not adversely affect

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

98:12 K. Yang and W. Du

K layers
1
[| by
9 o
>~ E‘)
= (1) (1) &
© 2 2 S
o —> z z o
-+ — — -
- Q Q -
. o < < o
LLRs of all bit nodes = o T s
° -
=}

Fig. 12. The architecture of the GNN-based BP algorithm.

SBP updating. However, by assigning a small LLR to erroneous bits, their significant influence on
SBP can be substantially mitigated.

3.4 GNN-Based Belief Propagation Algorithm

The GNN-based model has proven effective in handling graph-structured data, capturing pairwise
dependencies between variables, and propagating information throughout the graph [41]. More-
over, the GNN model generalizes to capture higher-order constraints between bit nodes and check
nodes on factor graphs, while also parameterizing the SBP algorithm [41]. Motivated by these
recent advances in GNNs, we employ the GNN model for efficient LDPC decoding on Tanner
graphs.

Figure 12 illustrates the architecture of GNN-based belief propagation. The Tanner graph and
enhanced LLRs of each bit are fed to the feature extraction module. This module extracts five
matrices that serve as input to the GNN layers. These GNN layers can learn high-order constraints
among nodes and parameterize the SBP algorithm. Finally, a classifier layer is used to obtain the
final bit values.

Feature Extraction. This module is responsible for generating node features and edge features.
Node features consist of two types: bit node features and check node features. The initial LLR of the
bit nodes is employed as the bit node feature. For check node features, we concatenate the features
of all connected bit nodes as the check node feature. Edge features are acquired by concatenating
the bit node feature and check node feature if an edge exists between the bit node and check
node. Thus, we generate two matrices: the bit node matrix and the check node matrix. The bit
node matrix indicates the check nodes each bit node is connected to, while the check node matrix
specifies the bit nodes each check node is linked to. These two matrices represent the structure of
the Tanner graph.

GNN Layer. The GNN layer updates the bit node features based on node features, edge features,
and graph structure.

Vp, = Z Q (epi—>bj) Q, (fpiavbj)’ 8)
pieM(b;)
where Q; maps edge features ep; — b; to a weight matrix, and Q> maps check node feature fp;
and bit node feature vb; to a feature vector, as illustrated in Figure 13. An updated bit node feature
vy, can then be generated through matrix multiplication and summation operations.

In this layer, the number of GNN layers K must be chosen. We conduct experiments to
empirically determine the value of K. We randomly select 75% of the dataset to train GNN models
with varying GNN layers on a local PC offline. The remaining 25% of the dataset is used to test
the post-decoding BER of the GNN layer, while decoding latency is measured on both a local PC
and a single-board computer (Raspberry Pi 3). Table 1 demonstrates the effect of K on decoding

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:13

Edge feature Factor node Bit node
€pi—b; feature f,,, feature U,
node feature v},
LeakyReLU LeakyRelLU J
1

=B | s |

[| A

Fig. 13. The architecture of the GNN layer.

Table 1. Effect of the Number of Layers K on the Post-Decoding BER
and Decoding Latency with SNRs in the Range of [-30,—5] dB

of layers K 5 8 12
BER (%) 23.09 +£21.83 23.06 £21.76 23.02 + 21.05
Latency (s) 0.009/0.207 0.021/0.434 0.054/1.404

The latency is measured from two platforms, i.e., PC/Raspberry Pi 3.

performance. It can be observed that the choice of K has a substantial impact on decoding latency,
but less on decoding accuracy. To achieve a satisfactory performance and acceptable decoding
latency, we set the number of layers K to 8.

Classifier Layer. Finally, the updated bit node feature v;, is passed to the classifier layer to
determine the bit value, either 0 or 1.

4 MODEL TRAINING FOR LLDPC

In this section, we describe the training details, including the hardware implementation of LoRa
nodes and gateways, and the offline training of LLDPC models. Two models in LLDPC are trained,
namely the SVM model for symbol-aware LLR enhancement (Section 3.3) and the GNN-based
BP module (Section 3.4). LLDPC is implemented on a local computer equipped with an Intel(R)
Core (TM) i9-11900KF @ 3.50 GHz CPU with 16 cores. A graphics processing unit (GPU) card
(NVIDIA GEFORCE RTX 3080 Ti) is employed to accelerate the training process of GNN modules.

Implementation. LoRa nodes are custom-built using the SX1276 Radio [42] on Arduino Uno
host boards [31]. We employ the USRP N210 software-defined radio (SDR) platform to capture
over-the-air LoRa signals, operating on a UBX daughter board at the 904.3 MHz bands. The sam-
pling rate is set to 1 MHz. The captured signal samples are subsequently transmitted to a back-end
host for demodulation using the methods proposed in [43].

Due to hardware constraints, we are unable to disable Hamming codes. As an alternative, on the
sender side, we encode a 32-byte payload data into a 40-byte encoded data using LDPC encoding
(CRis 4/5). The 40 bytes of data are then transmitted to the receiver through modulated symbols
after successive Hamming encoding, whitening, diagonal interleaving, and gray mapping in the
sender’s hardware. Regardless of the LDPC CR, the Hamming codes CR is consistently set to 4/5.

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

98:14 K. Yang and W. Du

For CR of 4/5, every four bits are concatenated with one parity-check bit. With a 4/5 CR, Hamming
codes can detect one erroneous bit but are unable to correct any error in the five bits.

At the receiver side, we use the amplitude spectrum of demodulated symbols to compute the
LLR of all bits, which include the encoded data from LDPC and Hamming codes. Subsequently,
we perform Gray demapping, deinterleaving, and dewhitening sequentially on the calculated LLR.
We discard one parity-check bit and extract only the LLR of the four data bits for every five bits
(Hamming codes’ CR is 4/5). This approach removes the influence of Hamming codes on LDPC
decoding performance. All these operations are implemented using a publicly available GitHub
library [43, 44]. As a result, we obtain the LLR with 40 bytes of data bits encoded by LDPC codes. A
symbol-aware LLR enhancement module enhances these LLRs. Lastly, we execute the GNN-based
BP algorithm to perform LDPC decoding.

Parity Check Matrix. In this article, we employ regular LDPC codes, characterized by a con-
stant number of “1” in each row and column of parity check matrices. We define parity check
matrices of varying dimensions for different CRs. The candidate CRs include 4/5, 4/6, and 4/7.
Given a payload size of 32 bytes, the corresponding dimensions of the parity check matrices are
64 X 320, 128 X 384, and 192 X 448.

Training Data Collection. We gather LoRa I/Q signals using the USRP N210 to create training
datasets. LoRa nodes periodically transmit random packets from five locations within an office
building. We collect 12,000 packets at high SNR (20 dB) with diverse transmission settings,
encompassing 4 SFs (i.e., 7, 8, 9, 10) and 3 CRs (i.e., 4/5, 4/6, 4/7). Utilizing the collected high SNR
packets, we employ data augmentation to generate 3.6 million packets with SNR values ranging
from —35 dB to —5 dB in 0.1 dB increments. To generate new LoRa packets with specific SNR
values, we introduce Gaussian white noises with corresponding amplitudes to the collected 1/Q
samples, a well-established data enhancement technique [45].

Training SVM model. To train the SVM model, we first extract the feature vectors of symbols
from the amplitude spectrum. Through experimentation, we set the feature vector length to 5. The
symbol label can be determined by comparing the demodulated value of the symbol to its actual
value. The SVM models employ the RBF as the kernel. One parameter, C, must be determined
for the RBF kernel. Parameter C balances the misclassification of training examples against the
simplicity of the decision surface. A low C yields a smooth decision surface, while a high C aims
at classifying all training examples accurately. Empirically, C is set to 1.0. Moreover, considering
the imbalanced number of two classes, we designate the field of classWeight="balanced” to
automatically adjust the sample weight in inverse proportion to the number of classes.

Training GNN model. The binary cross-entropy loss &£ for the GNN model is derived from
the predicted LLR of all bit nodes p(c) and ground truths c. The ground truths c are the transmitted
bits known to the LoRa receiver during the training phase. Upon calculating the loss, we propagate
the loss back through the network to update the GNN modules.

Loss(®) = L (¢, p(c)),)

where © represents all the parameters of the GNN-based BP algorithm. We train the GNN model
using the enhanced LLRs and the labels for each bit. We design a GNN model comprising eight
GNN layers. Each layer shares identical Q; and Q, functions, which are realized as a two-layer
Multilayer Perceptron (MLP) network structured as follows: MLP (64) - MLP (4). The first
layer employs a ReLU activation function, while the second layer operates without an activation
function. The model is implemented using PyTorch [46] and trained with the Adam optimizer,
employing an initial learning rate of 0.01. After every 10,000 samples, the learning rate is reduced
by a factor of 0.98. The GNN model parameters are uniformly initialized within the range
[—0.1,0.1]. The batch size is set to 32.

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:15

Table 2. The SNR Threshold (dB) Under Different SFs and
CRs for LLDPC, where the SNR Threshold with CR of 4/4 is
obtained from LoRa Standards [13]

SF CR SNR threshold SF CR SNR threshold
7 4/4 -7.5 9 4/4 -12.5
7 4/5 -8.7 9 4/5 -14.3
7 4/6 -9.4 9 4/6 -15.8
7 4/7 -10.6 9 4/7 -16.5
8 4/4 -10.0 10 4/4 -15.0
8 4/5 -11.2 10 4/5 -16.8
8 4/6 -12.7 10 4/6 -18.3
8 4/7 -14.0 10 4/7 -19.5

5 INTEGRATION OF LLDPC INTO LORAWAN

In the preceding two sections, we have devised our LDPC decoding strategy for the LoRa receiver
side. In this section, we further introduce a mechanism to jointly configure SFs and CRs for LoRa
transmitters, taking into account our LLDPC-based error correction system.

LoRaWAN [25, 47] employs the Adaptive Data Rate (ADR) algorithm [48] to select the ap-
propriate SF for each sender node. Initially, it estimates the link’s SNR by averaging the SNRs
of several recently received packets. Subsequently, it selects the highest data rate with an SNR
threshold lower than the estimated SNR.

The potential CRs include 4/5, 4/6, and 4/7. In LLDPC, LDPC codes with distinct CRs for a single
SF can also offer various SNR thresholds, as demonstrated in Table 2. Consequently, we need to
jointly set SFs and CRs. We establish the SNR threshold corresponding to a BER of 1e7%, as this
BER can achieve a 99.68% packet delivery rate for 40-byte packets.

Upon receiving a packet from a LoRa node, the gateway predicts the SNR for the following trans-
mission by computing the weighted average of the three most recently received packets. Based on
the predicted SNR, we consult Table 2 to identify the candidate SFs and CRs with an SNR threshold
lower than the predicted SNR. The final SF and CR are selected based on the shortest transmission
time, as determined by the LoRa standard [13]. The updated SF and CR are then transmitted back
to the LoRa node. The LoRa node utilizes the most recent SF and CR to transmit the subsequent
packet.

Disabling LDPC Codes. The CR of 4/4 is also incorporated in Table 2. Utilizing LDPC codes
invariably introduces overhead from parity check bits. Hence, we must consider the CR of 4/4. If
the CR is 4/4, LDPC codes will not be employed. For instance, if the predicted SNR exceeds -7.5
dB, we can use SF7 and a CR of 4/4, as the predicted SNR surpasses the SNR threshold of SF7 and
a CR of 4/4, which offers the shortest transmission time among all available configurations. In this
situation, LDPC codes are not necessary.

6 EVALUATION

We perform comprehensive experiments to assess LLDPC’s efficacy on large-scale synthetic
datasets and in-field experimental scenarios.

Evaluation on Synthetic Datasets. The synthetic dataset facilitates the fine-grained manipula-
tion of SNRs. This allows for a thorough evaluation of LLDPC’s performance under a wide array of
conditions, encompassing all possible SFs, CRs, and SNRs. Moreover, it ensures a sufficient quantity
of data for training GNN models. Section 6.2 initially discusses the general performance of LLDPC

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

98:16 K. Yang and W. Du

on the extensive synthetic dataset, followed by an examination of LLDPC’s performance under dis-
tinct experimental configurations in Sections 6.3 and 6.4. Furthermore, we assess the effectiveness
of the proposed components in Section 6.5.

In-Field Experiments. Considering that the synthetic dataset encompasses solely synthetic
Gaussian white noise in indoor settings, we proceed to examine LLDPC in a campus environment.
Thus, in-field experiments serve to evaluate LLDPC’s performance in the presence of additive white
Gaussian noise and additional noise types, such as multipath interference. Section 6.7.1 scrutinizes
the performance of LLDPC at each location in in-field experiments. So far, we have assessed the
performance of LLDPC under separate SFs and CRs. Subsequently, we will analyze LLDPC’s per-
formance when integrated with LoRaWAN. In Section 6.7.2, our system selects SFs and CRs to
accommodate link quality. Lastly, we quantify the overhead of LLDPC in Section 6.8.

6.1 Experimental Setup

6.1.1 Performance Criteria. We utilize three metrics to evaluate the performance of LLDPC.

Bit Error Ratio (BER). This metric indicates the fraction of incorrect bits over the total number
of bits in a packet. The BER is determined individually for each transmitted packet.

Packet Delivery Rate (PDR). It characterizes the proportion of packets transmitted by the
sender compared to the volume of packets received by the gateway.

Lifetime. The node lifetime represents the time span from its initial activation to the depletion of
its battery. This metric evaluates the energy efficiency of LLDPC. The lifetime is computed using
Equation (10), as found in [49-51].

Evatter
Lifetime = Teycle - z

Ecycle ' (10)
where Teycle denotes the duration of a single sensing cycle, such as 10 minutes. Ecyclc is the energy
expended by the LoRa nodes throughout each Teycle. Ebattery = Chattery * Vaom represents the energy
stored in the node’s battery, where Chattery Signifies the battery’s charge in ampere-hours (Ah),
and Viom corresponds to the battery voltage (V). For instance, a LoRa node might be powered by
a pair of AA batteries with a Cpatery of 3,000 mAh and a Vyor, of 1.5V.

Both Teycle and Epattery Temain constant. We proceed to determine Ecycle. The primary sources
of energy consumption are the microcontroller (MCU) and the Radio. The MCU operates in two
modes: active and sleep, while the radio functions in three modes: TX, RX, and sleep. E¢yclc can be
acquired using Equation (11), as described in [51].

Ecycle = [(Tcycle - Tp) . (PM_off + PR_off)] + [Tp ' (Pthx + PM?on)]- (11)

T, refers to the packet transmission time within a single sensing cycle. The active mode lasts for
T, while the sleep mode endures for (Teyele —Tp). Py, rr and Pg, ¢ denote the power consumption
of the MCU and Radio in sleep mode, respectively. Py, , and Pg, indicate the power consumption
of the MCU and Radio in TX mode, respectively. The power consumption of the MCU and Radio
in these two states is provided in [51].

We then need to determine the encoding and transmission duration. We presume the existence
of an optimal Hybrid Automatic Repeat Request (HARQ) mechanism, which retransmits sup-
plementary bits to rectify incorrect bits acquired after FEC decoding. The supplementary trans-
mitted bits’ length is twice that of the erroneous bits. LLDPC yields a lower post-decoding BER,
enabling more reliable communication with significantly fewer re-transmitted bits.

We do not account for the energy consumption associated with awaiting ACKs (in the RX state).
According to the LoRaWAN specification, LoRa nodes must receive an ACK within the first or
second reception window before transmitting the subsequent packet. These windows are activated

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:17

10° 107
101 107! wﬁ.’ﬂ’\
. P N
. & 102 & 102) G102 “Y
—¥- Hamming FA @ y @ _“
1073/ -4- LLDPC Y 103 103 Q\ 103 Y
LLDPC-SBP : Y : A
" : . : }
10 -30 -25 -20 -15 -10 -5 10 4-30 -25 -20 -15 -10 -5 10 A-3O -25 -20 -{5 -10 -5 10 4-30 -25 -20 -15 -10 -5
SNR (dB) SNR (dB) SNR (dB) SNR (dB)
(a) BER vs. SNR, SF7. (b) BER vs. SNR, SF8. (c) BER vs. SNR, SF9. (d) BER vs. SNR, SF10.
Fig. 14. The BER curves of three decoding methods for different SFs (CR: 4/6).
s Ty Pagesdd 3 S
7 ‘ 2 T ? vy g1
go tr g iy 82 L g
E) i E HH E i 210
w4 : v 4! @ H o
£ ¥ Hamming 7 £2 ¥ £, Hi 'gos
£2) .4- worc ’i £ : £ 4 £
ol e, RIS— p— R p—
-30 5 -20 -15 -10 -5 -30 -25 -20 -15 -10 -5 -30 -25 -20 -15 -10 -5 -30 -25 -20 -15 -10 -5
SNR (dB) SNR (dB) SNR (dB) SNR (dB)

(a) Lifetime vs. SNR, SF7. (b) Lifetime vs. SNR, SF8. (c) Lifetime vs. SNR, SF9. (d) Lifetime vs. SNR, SF10.

Fig. 15. The lifetime curves of three decoding methods for different SFs (CR: 4/6).

o

10° s
100 il T "”hy —
0 By o 5
g 75 0 10 $a
2 i % 102 X s
3 5.0 2
—%. Hamming b £ —¥. Hamming '7 @ —¥. Hamming ” E5] == Hamming
1073 -4- LLDPC .Y g 2.5{ -4+ LLDPC } 1073{ -4- LLDPC : & | -4- LDPC :
LLDPC-SBP ‘ ool LLDPC-SBP. ..o LLDPC-SBP | \ = ol LLDPC-SBP ,
-4 h . Vevveyveeeyvveve v —4 : veey
10 -30 -25 -20 -15 -10 -5 -30 -25 -20 -15 -10 -5 10 -30 -25 -20 -15 -10 -5 -30 -25 -20 -15 -10 -5
SNR (dB) SNR (dB) SNR (dB) SNR (dB)

(a) BER vs. SNR, CR4/5. (b) Lifetime vs. SNR, CR4/5. (c) BER vs. SNR, CR4/7. (d) Lifetime vs. SNR, CR4/7.

Fig. 16. The BER and lifetime curves of three decoding methods for different CRs when SF7.

at 1 s and 2 s delays following the conclusion of the uplink. Hence, regardless of whether LLDPC
or Hamming codes are employed, the LoRa nodes’ MCU must wait for the same duration with
equivalent power consumption. Both systems expend the same energy while awaiting ACKs.

6.1.2 Benchmarks. We compare the performance of LLDPC with the following two baselines.

Hamming [25]. Hamming codes serve as the standard FEC codes for LoRa. LoRa employs k/n
Hamming codes with k = 4 and n € 5,6,7, 8, where k signifies the data word length and n repre-
sents the codeword length. Hamming codes have a restricted capacity for detecting and rectifying
erroneous bits [12, 52]. The 4/5 and 4/6 CRs can solely identify one bit error, while the 4/7 and
4/8 CRs can amend a single incorrect bit per codeword.

LLDPC-SBP. We also execute the SBP algorithm for LDPC decoding, as introduced in Section 2.3.
We set the maximum iteration count of LLDPC-SBP at 10,000.

6.2 Overall Performance
We assess the efficacy of LLDPC under various LoRa configurations, encompassing 4 SFs (i.e., SF7,
SF8, SF9, and SF10) and 3 CRs (i.e., 4/5, 4/6, and 4/7). The SNR threshold is defined as the SNR
corresponding to a BER of 1e™* on the BER-SNR curve, as this BER can attain a PDR of 99.68%
with a 40-byte packet size. The outcomes are presented in Figures 14-16.

BER. Figure 14 illustrates the BER performance of distinct SFs for SNR values within the range
of [-30, —5] dB, employing a CR of 4/6. LLDPC consistently achieves a lower BER than Hamming

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

98:18 K. Yang and W. Du

1000 4. famming ',2;;'2‘:‘:’ 1007 g Hamming V,]
0.75| *#- LLOPC 0, 0.75] 4+ LLDPC i
LLDPC-SBP HY Lopc-sep | ¢ |
& 0.50 B & 0.50 ¢4
= i = B
0.25 ¢ J 0.25 I
0.00 '*3'I'i'i':'I'i'i':'ﬁ‘i‘i':':'ﬁ'i".‘.' 0.00 { Yottty
30 25 20 -15 -0 -5 30 25 20 -15 -10 -5
SNR (dB) SNR (dB)
(a) PDR vs. SNR, SF7. (b) PDR vs. SNR, SF8.

Fig. 17. The PDR performance evaluation under two SFs when CR = 4/6.

codes from SF7 to SF10 for all SNR levels. The SNR threshold of LLDPC at a given SF nearly matches
that of Hamming codes at a higher SF. For instance, by comparing Figure 14(a) with Figure 14(b),
the SNR threshold of LLDPC at SF7 approaches that of Hamming codes at SF8. In particular, LLDPC
reduces the SNR threshold by 2.6, 2.3, 2.3, and 2.2 dB from SF7 to SF10 relative to Hamming codes.
LLDPC-SBP exhibits the lowest BERs, attributable to the SBP algorithm’s employment for LDPC
decoding, which involves numerous iterations to rectify incorrect bits. However, this comes at
the expense of increased decoding latency. LLDPC balances BER and decoding latency by imple-
menting the GNN-based BP algorithm. If applications can accommodate a more lenient decoding
latency requirement, such as when ACKs are unnecessary, our system can switch to LLDPC-SBP
for improved BER performance.

Lifetime. We also examine the lifetime of LLDPC across diverse LoRa settings and SNR levels,
as depicted in Figure 15. LLDPC demonstrates a superior lifetime compared to Hamming codes,
yielding a consistent lifetime gain. Relative to Hamming codes, LLDPC prolongs the median battery
life by 51.2%, 31.2%, 13.9%, and 21.2% from SF7 to SF10. Moreover, Figure 15(d) reveals that SF10
offers a lifetime of less than two years, considerably shorter than SF7, as SF10 employs longer
symbol duration than SF7.

CR. We alter the CRs to scrutinize the impact of distinct CRs on the performance of LLDPC.
Figure 16 demonstrates that with increasing CR, the SNR threshold decreases, signifying an en-
hancement in error correction capability. Figure 16(c) unveils that the SNR threshold for Hamming
codes with a CR of 4/7 also experiences a reduction compared to CRs of 4/5 and 4/6. This occurs
because Hamming codes with a CR of 4/7 can rectify one erroneous bit for every 7-bit codeword.

Packet Delivery Ratio (PDR). We further explore PDR for various SFs at SNR levels spanning
[-30,—5] dB using a CR of 4/6. For a specific SNR, the PDR is calculated as the proportion of ac-
curately decoded packets to the total number of packets transmitted at that SNR. As observed in
Figure 17, irrespective of the SFs or SNRs, LLDPC consistently delivers the highest PDR, corrobo-
rating the findings derived from the BER-SNR curves in Figure 14.

6.3 Performance Under Different Settings

The aforementioned experimental results substantiate the efficacy of LLDPC. Then, we exam-
ine whether the performance of LLDPC is influenced by the parity check matrix and payload
length.

6.3.1 Parity Check Matrix. Employing distinct seeds allows us to obtain varying parity check
matrices for a specific CR, signifying the altered positions of 1 in rows and columns. We modify
the parity check matrix to investigate the potential impact of different matrices on LLDPC’s per-
formance. We randomly generate three parity check matrices utilizing three seeds, with SF set
to 7 and CR at 4/6. It is important to note that retraining GNN models is necessary for different
matrices. Figure 18(a) illustrates that all seeds produce identical BER-SNR curves. This confirms
that parity check matrices generated from various seeds do not alter LLDPC’s performance.

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:19

10°

-1
10 h'.
é 1072 \.‘ wi 1072 1
seed #1 \ -¥. payload = 24
10-3] - seed #2 . 10-3] -@- payload =32 }
- % seed #3 ; payload = 48 :’;:
1074 1 10-4 \
30 -25 -20 -15 -10 -5 30 25 -20 -15 -10 -5
SNR (dB) SNR (dB)
(a) Parity check matrices. (b) Payload length.

Fig. 18. The performance of LLDPC under different settings.

1.00

0.75
]
2050 102 - Node \(
@ Time s
0.25 1073 Location 1:
<o LLDPC i
0.00 - - 10—
Node Time Location LLDPC -30 -25 -20 -15 -10 -5
Dataset SNR (dB)
(a) SVM model. (b) GNN model.

Fig. 19. The cross-domain transfer ability analysis.

6.3.2 Payload Length. Considering that distinct payload sizes yield parity check matrices with
differing dimensions, we adjust the payload size to evaluate LLDPC’s performance. We modify
the payload size to 24, 32, and 48 bytes. The SF is set to 8, and the CR is 4/5. The corresponding
dimensions of the parity check matrix are 48 X 240, 64 X 320, and 96 X 480, respectively. Retraining
GNN models is required for different payload sizes due to the changes in the parity check matrix.
Figure 18(b) demonstrates that payload size has no impact on the BER-SNR curves.

6.4 Scalability of LLDPC

The SVM and GNN models employed in LLDPC necessitate prior training, and we aim at assessing
the sensitivity of these models to the training data.

We partition the dataset described in Section 4 into multiple subsets based on distinct scenarios,
such as LoRa node, location, and time. One subset is utilized to generate synthetic training data,
while the remaining subsets are used to evaluate the performance of our SVM and GNN models.
For instance, we derive a synthetic subset at 11:00 AM from node A in room R1 for training the
SVM and GNN models, and subsequently test the trained model on three separate datasets. The
first dataset comprises data collected at 11:00 AM from Node B in Room R1 (denoted as “Node”),
the second dataset includes packets sent from Node A in Room R1 at varying times (labeled as
“Time”), and the third dataset is obtained from Node A in Room R2 at 11:00 AM (designated as
“Location”).

Figure 19 presents the results, indicating that the SVM model achieves consistent AUC (Area
under the Receiver Operating Characteristic Curve) across the three subsets. The BER-SNR curves
of LLDPC, when utilizing the other three datasets, exhibit overlapping patterns. This outcome is
attributable to our models being trained with a diverse range of SNRs in a fine-grained manner.
As SNR is employed to quantify channel quality, our SVM and GNN models remain unaffected by
variations in node, time, and location.

6.5 Performance Analysis of LLDPC Components

In this section, we assess the efficacy of the two components proposed in LLDPC.

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

98:20 K. Yang and W. Du

10° -
- =¥- Bit-flipping
10-1 '& 6] -4+ LLDPC
) g :
A ¢ 2 H
w1072 ¥ 04 :
A £ :
10-3{ . Bitfipping ¢ \ 22 "
-4 LLDPC : Y - oY
104 . (R iiiiadiiii
-30 -25 -20 -15 -10 -5 30 -25 -20 -15 -10 -5
SNR (dB) SNR (dB)
(a) BER. (b) Lifetime.

Fig. 20. Performance comparisons between LLDPC and bit-flipping algorithm (SF8, CR4/6).

Table 3. Confusion Matrix for SVM Model when SF = 7

Prediction

Correct chirp Incorrect chirp

Label Correct chi.rp _ 4.2%
Incorrect chirp 0.3% _

Table 4. Confusion Matrix for SVM Model when SF = 10

Prediction results

Correct chirp Incorrect chirp

Label Correct chirp _ 5.1%

Incorrect chirp 1.0%

6.5.1 Spectrum-Based LLR Extractor. To validate the performance of the LLR extractor, we ex-
amine the disparity between the outputs of LoRa CSS demodulation and our LLR extractor. Specif-
ically, as discussed in Section 2.3, a positive or negative LLR value can be employed to ascertain
whether a bit is 1 or 0. If the two methods yield differing values at the same bit position, the dis-
crepancy is incremented by 1. We analyze the differences across millions of packets for various
configurations (e.g., SFs and CRs) at distinct SNR levels. Our observations reveal that the difference
consistently remains zero, irrespective of the SFs, CRs, or SNRs. This outcome implies that the LLR
extractor does not introduce additional erroneous bits but supplies supplementary information, i.e.,
the confidence of bits.

Figure 20 juxtaposes LLDPC with the Bit-flipping algorithm, a hard-decision decoding technique.
LLDPC can achieve BER and lifetime improvements of 32.1% and 29.2%, respectively. This is be-
cause LLR is capable of providing more information than a deterministic 1 or 0.

6.5.2 Symbol-Aware LLR Enhancement. Initially, we present confusion matrices to substantiate
the efficacy of our proposed symbol features and SVM models. Subsequently, to determine the per-
formance gain of symbol-aware LLR enhancement, we conduct LDPC decoding with and without
this enhancement using a trained GNN model.

Results. Tables 3 and 4 display confusion matrices for SF7 and SF10 at various SNR levels. We
observe that the false positive ratio is low, i.e., 0.3%, while the false negative ratio is higher than
the false positive ratio. This occurs because incorrect symbols possess distinct features from the
correct ones, but some correct symbols exhibit features similar to those of incorrect ones.

Next, we employ the LLR without and with symbol-level information to execute LDPC decoding
with trained GNN models. As illustrated in Figure 21, the enhanced LLR can reduce the median BER

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:21

10°
,33

107! ©
22

51072 "

£
T1

1073 LLDPC w/o symbol info _% LLDPC w/o symbol info

—— LLDPC = | =~ LopPC
1074 1 Olyvvvvvvvvvyvrr
-30 -25 -20 -15 -10 -5 -30 -25 -20 -15 -10 -5
SNR (dB) SNR (dB)
(a) BER. (b) Lifetime.

Fig. 21. LLDPC with and without symbol-level information when SF8 and CR4/7.

Table 5. Effect of the Length of the Symbol Feature &

§ 2 3 5 7 10 20 30
AUC 0.71 0.83 0.97 0.95 0.93 090 0091

by 27.3% at the SNR range of [-30, —5] dB. Thus, it increases the median lifetime by 47.7%. These
findings further demonstrate the effectiveness of our symbol-aware LLR enhancement module.

6.6 Parameter Settings

We examine the dimension of the symbol feature & in LLDPC, utilized for SVM classification in
Section 3.3. Table 5 presents the AUC of SVM models when varying the dimension of the symbol
feature from 1 to 30. We observe that the AUC achieves its maximum value at & = 5. When &
is equal to 2 or 3, the AUC is low, as the feature dimension is insufficient to provide adequate
information for symbol classification. However, the feature may introduce noise when the dimen-
sion is large (i.e., greater than 5). Therefore, a dimension of & = 5 is recommended for practical
applications.

6.7 Campus-Scale Testbed Experiments

In-Field Experiment Design. The synthetic dataset employed in the previous evaluation section
contains only additive white Gaussian noise. However, real packets are subject to other types of
noise, such as multipath interference. Furthermore, since LoRa utilizes an unlicensed spectrum, co-
location of multiple networks sharing the same sub-GHz unlicensed band is inevitable, resulting
in cross-technology interference. To assess LLDPC with real datasets, we deploy LoRa nodes in
various locations, encompassing diverse land cover types (e.g., ponds, trees, and buildings).

We adjust the SFs and CRs according to the link quality. During the real data collection, we
also record the SNRs of the received packets to reflect the actual link quality. Consequently, we
can simulate LoRa links with SNR variations based on the recorded SNRs. The link adaptation is
performed on this simulated link.

Testbed. For the in-field experiments, we deploy LoRa nodes at ten locations, as illustrated in
Figure 22. Location #0 is the closest, and location #8 is the farthest. The SF settings at the ten
locations are as follows: SF7 is selected at locations #0, #1, and #2; SF8 at locations #3 and #4; SF9
at locations #5 and #9; and SF10 at locations #6, #7, and #8. Each LoRa node transmits 150 packets
with a 10-second interval. The payload size is 32 bytes, and the CR is 4/5, resulting in a packet size
of 40 bytes. Nodes are equipped with a 3,000 mAh power bank.

6.7.1 Performance on the Real Dataset. We calculate BER and lifetime for each LoRa node.
Results. Figure 23 presents the BER and lifetime of Hamming codes, LLDPC, and LLDPC-SBP.
On average, LLDPC significantly outperforms the Hamming codes in terms of BER and lifetime.

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

98:22 K. Yang and W. Du

a
a o s |
B A
E
a H g g
n n

2070m

Fig. 22. The illustration of our in-field testbed and the topology of the LoRa nodes and the receiver.

5 Hamming
4| == LLDPC -8
_"| mm LiDPC-SBP s
23 26
g, Ea
ki
o Lo Ly L e 1D AINAREFE N
0123456789 012345672829
Location # Location #
(a) BER. (b) Lifetime.

Fig. 23. BER and lifetime performance at ten different locations on a campus-scale testbed.

Specifically, LLDPC can reduce the average BER of Hamming codes across ten nodes by 50.8% and
extend the average lifetime by 19.3%.

In Figure 23(a), LLDPC exhibits a lower BER than Hamming codes at all locations. For instance,
at location #6, LLDPC reduces the BER by 54.5% to 2.63%, while LLDPC-SBP further decreases the
BER by 48.8% to 1.19%. Despite its proximity to the receiver, location #6 has a higher BER with
Hamming codes due to low SNR levels caused by trees and buildings obstructing the signal. We
also estimate the lifetime of LoRa nodes at each location. Figure 23(b) reveals that LLDPC can
extend the lifetime from 3.38 to 5.25 years, while the maximum lifetime reaches 9.08 years with
LLDPC-SBP at location #0. In comparison to Hamming codes, LLDPC significantly reduces the BER
and extends the lifetime with a CR of 4/5.

As we increase CR (e.g., 4/6), the performance gains of LLDPC become more pronounced than
those at a CR of 4/5. This is because the 4/6 Hamming codes are unable to correct any erroneous
bits and only add overhead. In contrast, LLDPC offers a more robust error correction capability.

6.7.2 Integration of LLDPC into LoRaWAN. We employ simulated links to jointly configure SFs
and CRs. In particular, we use the GitHub library [53] to generate LoRa packets with specific SF and
CR as determined by the mechanism introduced in Section 5. This library is commonly used for
generating LoRa packets in current research [45]. Packets are then transmitted over additive white
Gaussian noise channels [54] with an SNR obtained from the collected SNRs. We utilize the three
most recently received packets to predict the SNR for the next transmission. In practice, packets
are sent with a low-duty cycle, e.g., 10 minutes. Since nodes send packets at 10-second intervals,
we can receive 60 packets per 10 minutes. Therefore, to implement a 10-minute duty cycle, we use
the first, 61st, and 121st packets to predict the SNR of the 181st transmission, and so on. We run
LoRaWAN and LLDPC, respectively.

Results. Figure 24(a) displays the lifetime of LoRaWAN and LLDPC. We observe that LLDPC
can extend the lifetime of nodes by 86.7% on average, compared to LoRaWAN. The reasons for
this are twofold. Figure 24(c) demonstrates that the link quality varies dynamically from -4 dB to
-15 dB, leading to inaccurate SNR prediction. Nevertheless, LLDPC offers a high error correction

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:23

-4 10
10 ° —— Groundtruth —— LoRaWAN
I3 3 =61 LA il Prediction o | LLDPC
[:} i uw
] _) 5 G o9
E g 3 s 3 i
= 6 <2 - I i
[) o o« =1
£, & & -10 o8
] 1 £
=2 12 i
0 e 7 L
LoRaWAN LLBPC LoRaWAN LLBPC 0 10 20 30 40 50 60 0 10 20 30 40 50 60
of transmissions # of transmissions
(a) Lifetime. (b) BER. (c) The prediction of SNR. (d) The selected SFs.

Fig. 24. Joint selection of SF and CR for link adaption.

Table 6. Time Consumption (unit: s) of GNN-Based BP, Soft BP,
and LLDPC to Decode One Packet for Different CRs on
PC/Raspberry Pi 3

CR =4/5 CR =4/6 CR = 4/7

Soft BP 0.86/2.51 1.76/3.27 2.95/5.46
GNN-based BP 0.021/0.434 0.026/0.628 0.068/1.502
LLDPC 0.043/0.548 0.054/0.749 0.097/1.871

Note that GPU is disabled while performing LDPC decoding.

capability to handle imprecise SNR prediction. As shown in Figure 24(b), LLDPC achieves a BER
reduction of 97.1% compared to LoRaWAN. Secondly, Figure 24(d) indicates that for the same link
quality, LLDPC tends to use smaller SFs than LoRaWAN. In comparison to the standard LoRa PHY,
LLDPC can achieve lower SNR thresholds with the same SF and CR. Consequently, for a given SNR,
LLDPC can attain the same BER with smaller SF and CR, significantly extending the node lifetime.

6.8 Storage Overhead and Running Time

In LLDPC, it is necessary to consider the overhead of two components, i.e., gateways and nodes.

6.8.1 Gateways. We execute our SVM and GNN models on both a local PC and a single-board
computer, Raspberry Pi 3. The evaluation focuses on storage overhead and running time of our
models. Running time, which measures the time required to decode one packet, is determined
by executing the process thousands of times and calculating the average. Since the gateway is
powered by the grid, we do not consider its energy consumption.

Results. The storage overheads of the SVM and GNN models are 15.7, 16.3, and 16.8 MB for
CRs of 4/5, 4/6, and 4/7. We can observe that the model size increases with larger CRs. This
is attributable to a larger CR resulting in a larger packet size, necessitating a larger model and
additional parameters to manage inputs.

In accordance with the LoRaWAN specification, LoRa nodes must receive an ACK within the
first or second receiving window before transmitting the next packet transmission. These two win-
dows open with a delay of 1 s and 2 s following the end of the uplink. Considering this constraint,
Table 6 further presents the running time of the SBP algorithm, GNN-based BP, and the entire
system. Similar to storage overhead, running time increases with CRs. Our GNN-based BP algo-
rithm demonstrates a 58.09% reduction in average decoding latency compared to Soft BP. We also
measure the total elapsed time of LLDPC, encompassing the spectrum-based LLR extractor, the
symbol-aware LLR enhancement module, and the GNN model. With a high-performance comput-
ing computer, it takes under 100 ms. On the Raspberry Pi 3, the time consumed is approximately
1.056 s with a deviation of 0.582 s. For CRs of 4/5 and 4/6, the entire running time is less than 1s,
allowing the gateway to transmit ACKs within the LoRa node’s first receiving window. LLDPC

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

98:24 K. Yang and W. Du

Table 7. Storage and Energy Consumption of LLDPC on LoRa
Nodes for MCU and Radio, where Energy is Calculated for Each
Packet with a 32-Byte Payload and SF is Set to 7

CR=4/5 CR=4/6 CR=4/7

Storage (KB) 5.0 6.3 11.0
Energy of MCU (m]J) 0.9 1.5 2.4
Energy of Radio (mJ) 480.7 619.8 771.1

requires more than 1s when CR is 4/7, so we send ACKs during the second receiving window with
a two-second time limit.

6.8.2 LoRa Nodes. In LLDPC, the overhead of nodes stems from two aspects: storing the parity
check matrix and generating encoded bits. Distinct parity check matrices are required for different
CRs. By incorporating an SD card module on the Arduino board, parity check matrices with CRs of
4/5, 4/6,and 4/7 can be stored on the Arduino board. To generate encoded bits, the parity check ma-
trix stored on SD card module is read row by row, followed by XOR operations to encode the data.

Results. Table 7 presents storage overheads of parity check matrices under varying CRs. It is
evident that matrix size increases with higher CRs, as a larger CR entails a greater number of rows.

Energy consumption associated with LDPC encoding and transmission is also depicted in
Table 7. As CRs rise, energy consumption experiences an increase. During the encoding process,
the MCU is active with a power of 23.48 mW [51], resulting in an energy consumption of 0.9
mJ (23.48mW X 42.5ms) when CR is set to 4/5. This demonstrates that for a node with a battery
capacity of 3,000 mAh and a voltage of 1.5 V, the encoding process accounts for merely 0.6E-5%
of the energy. Such energy consumption is virtually negligible compared to that expended during
the transmission process.

7 RELATED WORK

Error Correction in LoRa Networks. Error correction is extensively employed in wireless net-
works [10, 55-57]. In WiFi and cellular networks, multiple antennas serve to enhance the SNRs
of received signals. Recent LoRa studies [12, 49, 50, 58-60] have adopted this concept. Choir [58]
improves the SNRs of received signals by deploying multiple co-located LoRa nodes. Charm [49]
decodes weak signals by coordinating multiple gateways to detect combined energy peaks in the
spectrum. OPR [12] employs disjoint link layer bit errors received by multiple gateways to identify
and correct erroneous bits using the CRC defined at the MAC layer. Nephalai [59] conveys com-
pressed PHY samples to the cloud and demodulates these samples using sparse approximation.
Furthermore, Chime [50] attempts to circumvent multipath interference by selecting the operat-
ing frequency of LoRa nodes, thereby achieving additional SNR gain for LoRa transmissions. Each
of these systems necessitates multiple pairs of transceivers. In contrast, LLDPC attains supplemen-
tary SNR gain via the proposed GNN-based BP algorithm for LDPC decoding, utilizing only a
single pair of transceivers. Consequently, LLDPC can complement existing work and benefit from
the diversity gain provided by multiple gateways.

Elshabrawy et al.[61] theoretically analyze the advantages of employing Non-Binary Single
Parity-Check Codes. However, the encoding process of these codes demands arithmetic calcula-
tions in GF, which is computationally expensive[16]. In contrast, LLDPC employs binary LDPC
codes, which involve only simple XOR operations. Such operations can be executed at the sensor
node with minimal energy consumption. Additionally, we introduce a novel encoding scheme and
design an architecture based on LDPC codes, along with its implementation.

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:25

LoRa Throughput. FTrack [62] and CurvingLoRa [63] introduce various approaches to address
packet collisions in LoRa [64], consequently enhancing the network’s throughput [64, 65]. LLDPC
focuses on incorporating LDPC codes into LoRa to extend the communication range and optimize
energy efficiency, aligning with research in this area.

Deep Learning-based Wireless Communication. Deep learning-based techniques [66-69]
have been applied to conventional wireless communication systems, such as error correction
codes [70, 71]. Specifically, deep learning-based models [72-74] learn the encoded structure of
signals and decode data bits, including convolutional codes [70] and LDPC codes [71]. However,
existing deep learning-based approaches are unsuitable for LoRa since they necessitate signals
to be above the noise floor. LLDPC employs the amplitude spectrum of symbols obtained from
LoRa CSS demodulation to extract LLRs, enabling it to combat various types of noise and achieve
ultra-low SNR error correction below the noise floor.

For LoRa communication, only a few recent studies have explored deep learning-based ap-
proaches [75, 76]. DeepSense [75] investigates deep learning-enhanced random access in the coex-
istence of LPWAN:S, even below the noise floor (e.g.,—10 dB). DeepLoRa [76] devises a land-cover-
aware path loss model employing bidirectional long short-term memory networks, which reduces
link estimation error by 2X compared to the state-of-the-art. We initially demonstrate that a GNN-
based LDPC decoder can attain lower SNR thresholds than Hamming codes with manageable
computation.

NELoRa [45] introduces a neural-enhanced LoRa demodulation method that leverages the fea-
ture abstraction capability of deep learning to facilitate LoRa demodulation under ultra-low SNR.
LLDPC, on the other hand, focuses on a distinct task, i.e., FEC coding. Both are essential compo-
nents of the LoRa physical layer. LLDPC extracts LLRs from the amplitude spectrum of CSS mod-
ulation using the SoftMax operation (Equation (5)). Our LLR extractor can also utilize the output
of NELoRa to obtain bit LLRs. This is because NELoRa can generate probabilities for all frequency
bins based on its final SoftMax layer. Thus, NELoRa and LLDPC can collaborate for more robust
communication.

GNN-based BP Algorithm. Deep learning-based methods have been proposed for a range of
applications, including wireless networking [45] and smartphone app usage prediction [66, 67].
The belief propagation algorithm involves iterative message passing between bit nodes and factor
nodes on factor graphs. Researchers have been exploring the implementation of message exchange
using GNN models [41, 77]. NEBP [77] develops a GNN model that operates on the factor graph and
exchanges information with the traditional BP algorithm for error correction decoding. However,
this approach remains time-consuming and is therefore unsuitable for LoRaWAN. FGNN [41] ex-
tends GNNs to factor GNNs, enabling the network to capture higher-order dependencies between
bit nodes and factor nodes. Sebastian et al.[78] develop a GNN-based architecture for learning a
generalized message-passing algorithm tailored to the FEC code structure. Differing from these
approaches, LLDPC employs large-scale synthetic LoRa packets to generate the features necessary
for the GNN model. This unique method focuses on the specific requirements of LoRa communi-
cations. Additionally, LLDPC distinguishes itself by empirically selecting the appropriate number
of GNN layers, a critical factor in achieving rapid LDPC decoding. This strategic layer selection,
combined with the specialized use of synthetic LoRa packets, sets LLDPC apart by enhancing its
decoding efficiency and effectiveness, specifically tailored for LoRa communication scenarios.

8 DISCUSSION

This section investigates the practicability of deploying LLDPC on Commercial Off-The-Shelf
(COTS) hardware, detailing the specific modifications or enhancements necessary to support
LLDPC.

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

98:26 K. Yang and W. Du

LoRa Nodes: It is determined that no modifications are required for LoRa nodes to accommo-
date the implementation of LLDPC. The rationale is that the incorporation of LLDPC necessitates
additional memory to archive the predefined parity check matrices for various CRs. Table 7 demon-
strates that the maximal memory requisite is approximately 11.0 KB, which is well within the 32
KB Flash Memory capacity of the Arduino Uno Rev3’s ATmega328P Microcontroller.

LoRa Gateways: Conversely, LoRa gateways need hardware upgrades to support LLDPC. The
crux of these upgrades focuses on augmenting gateways to enable the extraction of LLRs and to im-
plement a GNN-based belief propagation algorithm. These upgrades require improvements to the
demodulation and decoding modules: (1) Demodulation: The modification from merely outputting
integer values to providing LLRs for bits is required. (2) Decoding: The decoding module must be
enhanced to equip the gateway with the capacity to archive predefined parity check matrices and
well-trained GNN models for various CRs. Following the procedures of Gray demapping, deinter-
leaving, and dewhitening, the original bits are reconstructed through LDPC decoding, employing
our GNN-based belief propagation algorithm.

9 CONCLUSION

We introduce LLDPC, an efficient efficient error correction coding scheme for LoRa networks.
LLDPC integrates LDPC codes into LoRa by employing the spectrum-based LLR extractor, a
symbol-aware LLR enhancement module, and a GNN-based belief propagation algorithm. LLDPC
demonstrates exceptional error correction capabilities.

REFERENCES

[1] Kang Yang and Wan Du. 2022. LLDPC: A low-density parity-check coding scheme for LoRa networks. In Proceedings

of the 20th ACM Conference on Embedded Networked Sensor Systems (SenSys’22).

[2] Jothi Prasanna Shanmuga Sundaram, Wan Du, and Zhiwei Zhao. 2019. A survey on LoRa networking: Research prob-

lems, current solutions, and open issues. IEEE Communications Surveys and Tutorials 22, 1 (2019), 371-388.
[3] Kang Yang, Yuning Chen, Xuanren Chen, and Wan Du. 2023. Link quality modeling for LoRa networks in orchards.
In Proceedings of the 22nd ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN’23).

[4] Kang Yang, Yuning Chen, and Wan Du. 2024. OrchLoc: In-orchard localization via a single LoRa gateway and genera-

tive diffusion model-based fingerprinting. In Proceedings of the 22nd ACM International Conference on Mobile Systems,

Applications, and Services (MobiSys’24).

Xianzhong Ding and Wan Du. 2022. DRLIC: Deep reinforcement learning for irrigation control. In Proceedings of the

21st ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN’22).

[6] Zehua Sun, Huangi Yang, Kai Liu, Zhimeng Yin, Zhenjiang Li, and Weitao Xu. 2022. Recent advances in LoRa: A

comprehensive survey. ACM Transactions on Sensor Networks 18, 4 (2022), 1-44.

Qianyi Huang, Zhiqing Luo, Jin Zhang, Wei Wang, and Qian Zhang. 2022. LoRadar: Enabling concurrent radar sensing

and LoRa communication. IEEE Transactions on Mobile Computing 21, 6 (2022), 2045-2057.

Rashmi Sharan Sinha, Yigiao Wei, and Seung-Hoon Hwang. 2017. A survey on LPWA technology: LoRa and NB-IoT.

Ict Express 3, 1 (2017), 14-21.

[9] Dong-Woo Lim and Kyu-Min Kang. 2023. Robust LoRa modulation scheme in the presence of residual carrier fre-
quency offset. IEEE Internet of Things Journal 10, 16 (2023), 14910-14911.

[10] Wan Du, Jansen Christian Liando, Huanle Zhang, and Mo Li. 2015. When pipelines meet fountain: Fast data dissemi-
nation in wireless sensor networks. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems
(SenSys’15).

[11] Ian F. Akyildiz, Tommaso Melodia, and Kaushik R. Chowdury. 2007. Wireless multimedia sensor networks: A survey.
IEEE Wireless Communications 14, 6 (2007), 32—39.

[12] Artur Balanuta, Nuno Pereira, Swarun Kumar, and Anthony Rowe. 2020. A cloud-optimized link layer for low-power
wide-area networks. In Proceedings of the 18th ACM International Conference on Mobile Systems, Applications, and
Services (MobiSys’20).

[13] 2013. SX1272/3/6/7/8: LoRa Modem Design Guide. Retrieved July 2013 from https://www.openhacks.com/
uploadsproductos/loradesignguide_std.pdf

[14] Wei Song, Yifei Shen, Liping Li, Kai Niu, and Chuan Zhang. 2020. A general construction and encoder implementation
of polar codes. IEEE Transactions on Very Large Scale Integration Systems 28, 7 (2020), 1690-1702.

(5

—_

[7

—

8

—

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

https://www.openhacks.com/uploadsproductos/loradesignguide_std.pdf

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:27

[15]

(16
(17
(18

[t RV}

(19]
[20]

[21]

[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]
(30]
(31]
(32]
(33]

(34]
(35]

(36]

[42]

(43]

Claude Berrou, Alain Glavieux, and Punya Thitimajshima. 1993. Near shannon limit error-correcting coding and
decoding: Turbo-codes. In Proceedings of the 1993 IEEE International Conference on Communications (ICC’93).
Stephen B. Wicker and Vijay K. Bhargava. 1999. Reed-Solomon Codes and Their Applications. John Wiley and Sons.
Robert Gallager. 1962. Low-density parity-check codes. IRE Transactions on Information Theory 8, 1 (1962), 21-28.
Claude Elwood Shannon. 2001. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and
Communications Review 5, 1 (2001), 3-55.

2018. 5G; NR; Multiplexing and channel coding. Retrieved July 2018 from https://www.etsi.org/deliver/etsi_ts/138200_
138299/138212/15.02.00_60/ts_138212v150200p.pdf

Alberto Morello and Vittoria Mignone. 2006. DVB-S2: The second generation standard for satellite broad-band ser-
vices. Proceedings of the IEEE 94, 1 (2006), 210-227.

2021. IEEE standard for information technology-telecommunications and information exchange between systems - lo-
cal and metropolitan area networks—specific requirements - part 11: Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications. IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-2016) (2021), 1-4379. DOI : https:
//doi.org/10.1109/IEEESTD.2021.9363693

Andrea Petroni and Mauro Biagi. 2022. Interference mitigation and decoding through gateway diversity in LoRaWAN.
IEEE Transactions on Wireless Communications 21, 11 (2022), 9068-9081.

Orion Afisiadis, Matthieu Cotting, Andreas Burg, and Alexios Balatsoukas-Stimming. 2019. On the error rate of the
LoRa modulation with interference. IEEE Transactions on Wireless Communications 19, 2 (2019), 1292-1304.

Marti A. Hearst, Susan T. Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. 1998. Support vector machines.
IEEE Intelligent Systems and Their Applications 13, 4 (1998), 18-28.

2017. LoRaWANTM 1.1 Specification. Retrieved October 2017 from https://lora-alliance.org/wp-content/uploads/
2020/11/lorawantm_specification_-v1.1.pdf

Shengguang Hong, Fang Yao, Fengyun Zhang, Yulong Ding, and Shuang-Hua Yang. 2023. Reinforcement learning
approach for SF allocation in LoRa network. IEEE Internet of Things Journal 10, 20 (2023), 18259-18272.

Ningning Hou, Xianjin Xia, and Yuanqing Zheng. 2023. Jamming of LoRa PHY and countermeasure. ACM Transactions
on Sensor Networks 19, 4 (2023), 1-27.

Zhengqiang Xu, Shuai Tong, Pengjin Xie, and Jiliang Wang. 2023. From demodulation to decoding: Toward complete
LoRa PHY understanding and implementation. ACM Transactions on Sensor Networks 18, 4 (2023), 1-27.

David J. C. MacKay. 1999. Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information
Theory 45, 2 (1999), 399-431.

R. Tanner. 1981. A recursive approach to low complexity codes. IEEE Transactions on Information Theory 27, 5 (1981),
533-547.

2021. Arduino Uno Rev3. Retrieved from https://store-usa.arduino.cc/products/arduino-un%o-rev3/?selectedStore=us.
Accessed Date: 06/19.

Juntan Zhang and Marc P. C. Fossorier. 2004. A modified weighted bit-flipping decoding of low-density parity-check
codes. IEEE Communications Letters 8, 3 (2004), 165-167.

Jianguang Zhao, Farhad Zarkeshvari, and Amir H. Banihashemi. 2005. On implementation of min-sum algorithm and
its modifications for decoding low-density parity-check (LDPC) codes. IEEE Transactions on Communications 53, 4
(2005), 549-554.

Rolf Johannesson and Kamil Sh Zigangirov. 2015. Fundamentals of Convolutional Coding. John Wiley and Sons.
Eugenio Magistretti, Krishna Kant Chintalapudi, Bozidar Radunovic, and Ramachandran Ramjee. 2011. WiFi-Nano:
Reclaiming WiFi efficiency through 800 ns slots. In Proceedings of the 17th ACM Annual International Conference on
Mobile Computing and Networking (MobiCom’11).

Yong Soo Cho, Jaekwon Kim, Won Y. Yang, and Chung G. Kang. 2010. MIMO-OFDM Wireless Communications with
MATLAB. John Wiley and Sons.

Srikar Kasi and Kyle Jamieson. 2020. Towards quantum belief propagation for LDPC decoding in wireless networks.
In Proceedings of the 26th ACM Annual International Conference on Mobile Computing and Networking (MobiCom’20).
Christopher M. Bishop and Nasser M. Nasrabadi. 2006. Pattern Recognition and Machine Learning. Springer.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning Re-
search 9, 11 (2008), 1-27.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436—444.

Zhen Zhang, Fan Wu, and Wee Sun Lee. 2020. Factor graph neural networks. In Proceedings of the 34th Annual Con-
ference on Neural Information Processing Systems (NeurIPS’20).

2020. Semtech SX1276 datasheet. Retrieved May 2020 from https://www.semtech.com/products/wireless-rf/lora-
transceivers/sx1276

Muhammad Osama Shahid, Millan Philipose, Krishna Chintalapudi, Suman Banerjee, and Bhuvana Krishnaswamy.
2021. Concurrent interference cancellation: Decoding multi-packet collisions in LoRa. In Proceedings of the 2021 ACM
Special Interest Group on Data Communication (SSIGCOMM21).

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/15.02.00_60/ts_138212v150200p.pdf
https://doi.org/10.1109/IEEESTD.2021.9363693
https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm_specification_-v1.1.pdf
https://store-usa.arduino.cc/products/arduino-un%o-rev3/?selectedStore=us
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1276

98:28 K. Yang and W. Du

[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]
[52]

(53]
[54]

[55]
[56]
[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

2021. GR-LoRa. Retrieved 09/17 from https://github.com/rpp0/gr-lora

Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng, Zhichao Cao, Mi Zhang, Qiben Yan, Li Xiao, Jiliang Wang, and
Yunhao Liu. 2021. NELoRa: Towards ultra-low SNR LoRa communication with neural-enhanced demodulation. In
Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems (SenSys’21).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In NIPS-W.

Davide Magrin, Martina Capuzzo, Andrea Zanella, and Michele Zorzi. 2021. A configurable mathematical model for
single-gateway LoRaWAN performance analysis. IEEE Transactions on Wireless Communications 21, 7 (2021), 5049-
5063.

Rui Fernandes, Miguel Luis, and Susana Sargento. 2021. Large-scale LoRa networks: A mode adaptive protocol. IEEE
Internet of Things Journal 8, 17 (2021), 13487-13502.

Adwait Dongare, Revathy Narayanan, Akshay Gadre, Anh Luong, Artur Balanuta, Swarun Kumar, Bob Iannucci, and
Anthony Rowe. 2018. Charm: Exploiting geographical diversity through coherent combining in low-power wide-area
networks. In Proceedings of the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN’18).
Akshay Gadre, Revathy Narayanan, Anh Luong, Anthony Rowe, Bob Iannucci, and Swarun Kumar. 2020. Frequency
configuration for low-power wide-area networks in a heartbeat. In Proceedings of the 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’20).

Jansen C. Liando, Amalinda Gamage, Agustinus W. Tengourtius, and Mo Li. 2019. Known and unknown facts of LoRa:
Experiences from a large-scale measurement study. ACM Transactions on Sensor Networks 15, 2 (2019), 1-35.

David J. C. MacKay and David J. C. Mac Kay. 2003. Information Theory, Inference and Learning Algorithms. Cambridge
University Press.

2022. LoRaPHY. Retrieved January 2022 from https://github.com/jkadbear/LoRaPHY

2022. AWGN Channel in MATLAB. Retrieved January 2022 from https://www.mathworks.com/help/comm/ug/awgn-
channel. html

Aditya Gudipati and Sachin Katti. 2011. Strider: Automatic rate adaptation and collision handling. In Proceedings of
the 2011 ACM Special Interest Group on Data Communication (SSIGCOMM’11).

Binbin Chen, Ziling Zhou, Yuda Zhao, and Haifeng Yu. 2010. Efficient error estimating coding: Feasibility and appli-
cations. In Proceedings of the 2010 ACM Special Interest Group on Data Communication (SIGCOMM’10).

Kang Yang, Miaomiao Liu, and Wan Du. 2024. Rateless-enabled link adaptation for LoRa networking. IEEE/ACM Trans-
actions on Networking (2024), 1-16. DOI : https://doi.org/10.1109/TNET.2024.3392342

Rashad Eletreby, Diana Zhang, Swarun Kumar, and Osman Yagan. 2017. Empowering low-power wide area networks
in urban settings. In Proceedings of the 2017 ACM Special Interest Group on Data Communication (SSIGCOMM’17).

Jun Liu, Weitao Xu, Sanjay Jha, and Wen Hu. 2020. Nephalai: Towards LPWAN C-RAN with physical layer compres-
sion. In Proceedings of the 26th ACM Annual International Conference on Mobile Computing and Networking (Mobi-
Com’20).

Zhiwei Zhao, Weifeng Gao, Wan Du, Geyong Min, Wenliang Mao, and Mukesh Singhal. 2023. Towards energy-fairness
in LoRa networks. IEEE Transactions on Mobile Computing 22, 9 (2023), 5597-5610.

Tallal Elshabrawy and Joerg Robert. 2018. Enhancing LoRa capacity using non-binary single parity check codes. In
Proceedings of the 14th IEEE International Conference on Wireless and Mobile Computing, Networking, and Communica-
tions (WiMob’18).

Xianjin Xia, Yuanqging Zheng, and Tao Gu. 2020. FTrack: Parallel decoding for LoRa transmissions. IEEE/ACM Trans-
actions on Networking 28, 6 (2020), 2573-2586.

Chenning Li, Xiuzhen Guo, Longfei Shangguan, Zhichao Cao, and Kyle Jamieson. 2022. CurvingLoRa to boost LoRa
network throughput via concurrent transmission. In Proceedings of the 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’22).

Amalinda Gamage, Jansen Liando, Chaojie Gu, Rui Tan, Mo Li, and Olivier Seller. 2023. LMAC: Efficient carrier-sense
multiple access for LoRa. ACM Transactions on Sensor Networks 19, 2 (2023), 1-27.

Jorge Ortin, Matteo Cesana, and Alessandro Redondi. 2019. Augmenting LoRaWAN performance with listen before
talk. IEEE Transactions on Wireless Communications 18, 6 (2019), 3113-3128.

Zhihao Shen, Kang Yang, Wan Du, Xi Zhao, and Jianhua Zou. 2019. DeepAPP: A deep reinforcement learning frame-
work for mobile application usage prediction. In Proceedings of the 17th ACM Conference on Embedded Networked
Sensor Systems (SenSys’19).

Zhihao Shen, Kang Yang, Xi Zhao, Jianhua Zou, and Wan Du. 2023. DeepAPP: A deep reinforcement learning frame-
work for mobile application usage prediction. IEEE Transactions on Mobile Computing 22, 2 (2023), 824-840.
Miaomiao Liu, Kang Yang, Yanjie Fu, Dapeng Wu, and Wan Du. 2023. Driving maneuver anomaly detection based on
deep auto-encoder and geographical partitioning. ACM Transactions on Sensor Networks 19, 2 (2023), 1-22.

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

https://github.com/rpp0/gr-lora
https://github.com/jkadbear/LoRaPHY
https://www.mathworks.com/help/comm/ug/awgn-channel.html
https://doi.org/10.1109/TNET.2024.3392342

A Low-Density Parity-Check Coding Scheme for LoRa Networking 98:29

[69] Kang Yang, Xi Zhao, Jianhua Zou, and Wan Du. 2023. ATPP: A mobile app prediction system based on deep marked
temporal point processes. ACM Transactions on Sensor Networks 19, 3 (2023), 1-24.

[70] Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. 2018. Communication
algorithms via deep learning. In 6th International Conference on Learning Representations (ICLR).

[71] Eliya Nachmani, Elad Marciano, Loren Lugosch, Warren J. Gross, David Burshtein, and Yair Be’ery. 2018. Deep learning
methods for improved decoding of linear codes. IEEE Journal of Selected Topics in Signal Processing 12, 1 (2018), 119-
131.

[72] Xianzhong Ding, Wan Du, and Alberto E. Cerpa. 2020. MB2C: Model-based deep reinforcement learning for multi-zone
building control. In Proceedings of the 7th ACM International Conference on Systems for Built Environments (BuildSys’20).

[73] Kang Yang, Xi Zhao, Jianhua Zou, and Wan Du. 2021. ATPP: A mobile app prediction system based on deep marked
temporal point processes. In Proceedings of the 2021 IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS’21).

[74] Xianzhong Ding, Wan Du, and Alberto Cerpa. 2019. Octopus: Deep reinforcement learning for holistic smart building
control. In Proceedings of the 6th ACM International Conference on Systems for Built Environments (BuildSys’19).

[75] Justin Chan, Anran Wang, Arvind Krishnamurthy, and Shyamnath Gollakota. 2019. DeepSense: Enabling carrier sense
in low-power wide area networks using deep learning. arXiv preprint arXiv:1904.10607 (2019).

[76] LiLiu, Yuguang Yao, Zhichao Cao, and Mi Zhang. 2021. DeepLoRa: Learning accurate path loss model for long distance
links in LPWAN. In Proceedings of the 2021 IEEE Conference on Computer Communications (INFOCOM’21).

[77] Victor Garcia Satorras and Max Welling. 2021. Neural enhanced belief propagation on factor graphs. In Proceedings
of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS21).

[78] Sebastian Cammerer, Jakob Hoydis, Faycal Ait Aoudia, and Alexander Keller. 2022. Graph neural networks for channel
decoding. In Proceedings of the 2022 IEEE Global Communications Conference Workshops (GC Wkshps’22).

[79] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S. Yu Philip. 2020. A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems 32, 1 (2020), 4-24.

Received 21 December 2023; revised 20 February 2024; accepted 21 May 2024

ACM Trans. Sensor Netw., Vol. 20, No. 4, Article 98. Publication date: July 2024.

