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In recent years, the focus has been on enhancing user comfort in commercial buildings while cutting energy
costs. Efforts have mainly centered on improving HVAC systems, the central control system. However, it’s
evident that HVAC alone can’t ensure occupant comfort. Lighting, blinds, and windows, often overlooked,
also impact energy use and comfort. This paper introduces a holistic approach to managing the delicate
balance between energy efficiency and occupant comfort in commercial buildings. We present OCTOPUS, a
system employing a deep reinforcement learning (DRL) framework using data-driven techniques to optimize
control sequences for all building subsystems, including HVAC, lighting, blinds, and windows. OCTOPUS’s
DRL architecture features a unique reward function facilitating the exploration of tradeoffs between
energy usage and user comfort, effectively addressing the high-dimensional control problem resulting from
interactions among these four building subsystems. To meet data training requirements, we emphasize the
importance of calibrated simulations that closely replicate target-building operational conditions. We train
OCTOPUS using 10-year weather data and a calibrated building model in the EnergyPlus simulator. Extensive
simulations demonstrate that OCTOPUS achieves substantial energy savings, outperforming state-of-the-art
rule-based and DRL-based methods by 14.26% and 8.1%, respectively, in a LEED Gold Certified building
while maintaining desired human comfort levels.
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1 INTRODUCTION

Energy saving in buildings is crucial for society due to the significant energy consumption
of buildings, accounting for 32% of global energy consumption and 51% of electricity demand
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worldwide [42, 48]. Advanced control strategies for operating HVAC systems have the potential to
improve energy efficiency and human comfort. Especially, in recent years, with the development
of the Internet of Things (IoT) [61, 62] and smart buildings, massive building sensor data are
available for intelligent management [43] and behavior analysis [10]. Rule-based control (RBC)

is a commonly used method to set actuators in heating, ventilation, and air-conditioning

(HVAC) systems, such as temperature and fan speed. However, RBC typically relies on static
thresholds or simple control loops based on the experience of engineers and facility managers,
which may not be optimal and often require adjustments for new buildings during commissioning.
These rules are often updated in an ad-hoc manner, based on feedback from occupants or trial
and error by HVAC engineers during building operation. Consequently, model-based approaches
have emerged to model the thermal dynamics of buildings and implement advanced control algo-
rithms, such as Proportional Integral Derivative (PID) [50] and Model Predictive Control

(MPC) [11], to optimize energy consumption and improve building performance. However, accu-
rately modeling the complex thermal dynamics and accounting for the multitude of influencing
factors in buildings can be challenging, leading to simplified models that can handle the data
requirements for parameter fitting and computational complexity when solving optimization
problems [11]. The intricacies of factors such as weather conditions, occupancy patterns, and
building envelope characteristics make it difficult to create precise models. As a result, simplified
models are often used, which may not fully capture the complexity of real-world building
systems.

To overcome the limitations of model-based methods, alternative model-free approaches
based on reinforcement learning (RL) have been proposed for HVAC control, including Q-
learning [39] and Deep Reinforcement Learning (DRL) [63]. RL allows for the learning of an
optimal control policy through trial-and-error interactions between a control agent and a build-
ing, without explicitly modeling the system dynamics. DRL-based approaches leverage deep neu-
ral networks as control agents, enabling them to handle large state and action spaces in building
control [63]. Recent works [58, 63] have demonstrated that DRL can achieve real-time control for
improving building energy efficiency. However, existing methods have typically focused on single
subsystems within buildings, such as the HVAC system [58] or the heating system [63], while dis-
regarding other subsystems that can impact energy consumption and user comfort from a holistic
perspective.

In recent times, there has been a growing trend towards equipping buildings with automatically-
adjustable windows and blinds. These cutting-edge solutions, such as the intelligent products
offered by GEZE [2], incorporate motor-operated windows and blinds that can be controlled
to optimize natural ventilation strategies. By automatically adjusting the windows and blinds,
buildings can effectively regulate the inflow of fresh air and natural light, reducing the reliance
on mechanical systems for HVAC. Furthermore, researchers [18] have been actively investigating
the potential of joint control strategies that integrate the HVAC system with other building
subsystems, such as blinds [52], lighting [14], and windows [57]. For instance, studies have shown
that enabling window-based natural ventilation can result in significant energy savings for HVAC
systems. According to research findings, the energy consumed by HVAC can be reduced by 17%
to 47% by leveraging window-based natural ventilation strategies [57]. This underscores the
importance of considering the synergies between different building subsystems and adopting
integrated control approaches to achieve optimal energy performance.

In our study, we propose a comprehensive approach that takes into account all available
subsystems within buildings, including HVAC, blinds, windows, and lighting, to achieve specific
building energy efficiency and human comfort goals. Modern buildings are complex systems
comprising multiple interconnected subsystems that work in tandem to ensure human comfort,
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Fig. 1. Four subsystems in a typical building.

Fig. 2. Relationship between four subsystems and three human comfort metrics.

encompassing thermal comfort, visual comfort, and indoor air quality. As illustrated in Figure 1,
various subsystems (HVAC, Blind, Window, and Lighting system) can influence indoor temper-
ature. For instance, the HVAC system plays a crucial role in regulating indoor temperature by
adjusting discharge temperature set points at the Variable Air Volume (VAV) level. Manipu-
lating blind slats provides control over the entry of external sunlight, which can impact indoor
air temperature. Additionally, regulating the window system enables the exchange of indoor and
outdoor air, further influencing indoor temperature. These interconnected subsystems need to
work harmoniously to achieve optimal energy efficiency and comfort.

To achieve more efficient energy management in buildings, our proposed study focuses on the
joint control problem of four subsystems, as depicted in Figure 2. These subsystems play a crucial
role in meeting three human comfort metrics. The energy consumption of a building is influenced
by the interactions among these subsystems, making it challenging to control them jointly. This is
because they may have opposite effects on different human comfort metrics. For instance, opening
a window can improve indoor air quality and save energy consumed by the HVAC system for ven-
tilation. However, it may also result in a reduction of indoor temperature in winter or an increase
in summer. To mitigate the temperature variation caused by an open window, the HVAC system
may need to expend more energy, which could offset the energy savings from natural ventilation.

This paper introduces OCTOPUS, a customized DRL-based control system designed to optimize
energy management in buildings by controlling four subsystems to meet three human comfort
requirements with maximum energy efficiency. OCTOPUS leverages the advantages of DRL-based
control, including adaptability to new buildings, real-time actuation, and handling of large state
spaces. However, there are three main challenges in controlling the four subsystems jointly within
a unified framework.

The first challenge is the high-dimensionality of control actions. With a uniform DRL frame-
work, OCTOPUS needs to decide on control actions for four subsystems simultaneously and
periodically, including HVAC temperature, electric lights brightness, blind slat range, and window
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opening proportion. Each subsystem adds one dimension to the action space, resulting in an
extremely large set of possible action combinations. To address this, a novel neural architecture
is proposed, featuring a shared representation followed by four network branches, one for each
action dimension. Additionally, a state value obtained from the shared representation is added
to the output of the four branches, allowing for independence in each action dimension while
maintaining joint interrelations in the action space.

The second challenge is defining a reward function that captures the trade-offs between en-
ergy consumption and human comfort requirements. To tackle this, the optimization problem is
formulated as a reward function in the DRL framework. The proposed reward function jointly
considers energy consumption, thermal comfort, visual comfort, and indoor air quality, offering
better control and flexibility to meet unique user requirements.

The third challenge is the requirement for a large amount of training data. Model-free ap-
proaches, including RL techniques, require substantial training data, which may not be readily
available from building stakeholders. To overcome this, a calibrated building simulator combined
with weather data is used to generate the necessary training data. OCTOPUS is trained with 10
years of weather data from distinct locations, Merced, CA and Chicago, IL, to ensure adaptability
to different building types and weather profiles. The main contributions of this paper are high-
lighted as follows:

— This work is the first to utilize DRL in a holistic manner to balance the tradeoff between
energy use across four subsystems and three human comforts, as far as our knowledge goes.

— OCTOPUS overcomes the challenges posed by the combined joint control of four subsystems
with a large action space by employing a unique reward function and a new DRL architec-
ture.

— To address the issue of data training requirements, we adopt a simulation strategy for data
generation and put effort into calibrating the simulations to closely match the target building.
This allows our system to generate sufficient data within a finite amount of time.

— Extensive experiments show the effectiveness of OCTOPUS.

2 MOTIVATION

In this section, we perform a set of preliminary simulations in EnergyPlus [45] to understand the
relationships between the different subsystems and their impact on human comfort in a building,
as described in Figure 2. This also helps us gain trust that the simulator is functioning correctly,
providing intuitive and understandable results. Our goal is to study the effect of different subsys-
tems on three human comfort metrics. We model a single-floor office building of 100m2 in Merced,
California, equipped with a north-facing single-panel window of 2 m2 and an interior blind. The
simulations are conducted with weather data for the month of October, which represents a shoul-
der season with slightly cold outdoor temperatures but mostly sunny days, resulting in high solar
gain.

Effects of HVAC, Blind, and Window Systems on Thermal Comfort. Figure 3 illustrates
the impact of three subsystems on thermal comfort, evaluated using the Predictive Mean Vote

(PMV) index. A PMV value close to zero indicates optimal thermal comfort, with higher positive
values indicating higher temperatures (hot) and lower negative values indicating lower tempera-
tures (cold). A detailed explanation of PMV values and ranges can be found in Section 3.4.2. The
baseline case (green-solid) represents when all three subsystems are closed, resembling a “fishtank”
model where the only impact on the room is from solar gain during the day through the window.
When only the blind is open (blue-dashed), the PMV value increases from 1.45 to 1.75, indicating a
rise in temperature due to increased solar gain. This effect is most pronounced during the middle
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Fig. 3. Thermal comfort, PMV.

Fig. 4. Visual comfort, Illuminance. Fig. 5. Temperature effect.

of the day when the sun is at its peak. On the other hand, when the window is open (red-dashed-
dot), the PMV value decreases due to the temperature effect, as colder outside air enters the room,
resulting in a cooler and more comfortable temperature. The HVAC system (black-dot) maintains
the PMV value within an acceptable range (-0.5 to +0.5) by regulating the temperature of the air
forced through the room vents. Based on the results in Figure 3, it can be concluded that all three
subsystems have a significant impact on thermal comfort.

Effects of Blind system on Visual Comfort and Temperature. Figure 4 depicts illuminance
measurements near the window area from 5 am to 7 pm with the blind open and natural light
present. Illuminance values of 500-1000 lux or higher are acceptable in most environments. The
graph reveals that, for the majority of the day, illuminance values remain within this range when
the blind is open, emphasizing the positive impact of open blinds in maintaining adequate natural
light levels in the room. In Figure 5, the indoor temperature is compared with the blind open (red-
dashed) versus closed (blue-solid), while the outdoor temperature (green-dash-dot) remains lower
due to the “fish tank” effect and lack of window ventilation or HVAC system operation during the
day. Combining the findings from Figures 4 and 5, it is evident that the blind system can reduce
the energy consumed by the lighting system by utilizing natural light, but it may also increase the
load on the HVAC system for maintaining indoor temperature. However, during colder outdoor
temperatures in winter, sunlight passing through the blind can raise the indoor temperature and
save energy used by the HVAC system.

The simulations are carried out to demonstrate the intricate interactions between subsystems
and their impact on human comfort. Quantifying the complex relationships among different sub-
systems and the three human comfort metrics poses a challenge, providing motivation for our
work.
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Fig. 6. OCTOPUS architecture with four subsystems (including HVAC, lighting, blind and window systems).

3 DESIGN OF OCTOPUS

This section provides a comprehensive description of OCTOPUS’s design, encompassing a system
overview, DRL-based building control, branching dueling Q-Network, and reward function calcu-
lation.

3.1 OCTOPUS Overview

The primary objective of OCTOPUS is to achieve energy-efficient control of four subsystems in a
building while ensuring human comfort. To accomplish this, our goal is to minimize the overall
energy consumption E of the building, which includes energy used by heating/cooling coils, water
pumps, flow fans in the HVAC system, lights, and motors for blinds and windows adjustment. The
energy value E is influenced by the action combination As for the four subsystems, which belongs
to the set of all possible action combinations Aall .

In addition to energy minimization, we aim to maintain human comfort within specific ranges.
This is expressed through the following criteria: Pmin ≤ PMV ≤ Pmax ,Vmin ≤ V ≤ Vmax , and
Imin ≤ I ≤ Imax . The parameter PMV quantifies thermal comfort, V represents visual comfort,
and I measures indoor air quality. The consumed energy E and the human comfort metrics (PMV ,
V , and I ) are determined by the current state of all four subsystems, the outdoor weather and the
action we are about to take. They can be measured in real buildings or calculated in a building
simulator, like EnergyPlus, after the action is executed.

The satisfaction of users’ requirements for human comfort necessitates that the achieved results
fall within an acceptable range. To represent these ranges, we utilize [Pmin , Pmax ] for thermal
comfort, [Vmin ,Vmax ] for visual comfort, and [Imin , Imax ] for indoor air quality. These ranges can
be customized by individual users based on their preferences or established by facility managers
in adherence to building standards. Section 3.4 will provide detailed information on calculating
the aforementioned parameters (E, PMV , V and I ), defining actions As , and setting the ranges for
human comfort (e.g., [Pmin , Pmax ]).

Our objective is to determine the most optimal actionAs from the set of all possible actionsAall

for each action interval (15 minutes in our implementation). The chosen actions should sustain
the three human comfort metrics within their acceptable ranges throughout the entire control
interval while minimizing energy consumption E. To achieve this objective, we have developed
a building control system based on DRL, known as OCTOPUS. Figure 6 provides an overview
of OCTOPUS, which comprises three layers: the building layer, control layer, and user demand
layer. The building layer encompasses either the physical building or a building simulation model,
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Fig. 7. Reinforcement learning framework.

Table 1. The States in OCTOPUS

Name unit Name unit
Outdoor air temperature ◦C Outdoor air relative humidity kg Water/kg Dry Air
Indoor air temperature ◦C Indoor air relative humidity kg Water/kg Dry Air
Diffuse solar radiation W /m2 Direct solar radiation W /m2

Solar incident angle ◦ Heating setpoint of the HVAC system ◦C
Wind direction degree from north Average Predicted Mean Vote (PMV) N/A

Wind speed m/s Cooling setpoint of the HVAC system ◦C
Dimming level of lights % Window open percentage %

Blind open angle ◦ / /

along with components for managing sensor data. It supplies sensor data to the control layer and
executes the control actions generated by the control layer. The user demand layer quantifies the
user’s requirements for the three human comfort metrics, and the respective range for each human
comfort metric is transmitted to the control layer. The control layer then searches for the optimal
control strategy that satisfies the human comfort ranges with the least energy consumption.

3.2 DRL-based Building Control

3.2.1 Basics for DRL and DQN. In a standard RL framework, as shown in Figure 7, an agent
learns an optimal control policy by trying different control actions to the environment. In our par-
ticular scenario, we employ a building simulation model as the environment due to the extensive
data requirements for training the system. Within the framework of DRL, the agent is implemented
as a deep neural network (DNN). The interaction between the agent and the environment can
be expressed as a tuple (St ,At , St+1, Rt+1) for each time step. Here, St represents the state of the en-
vironment at time t , At denotes the control action taken by the agent at time t , St+1 represents the
resulting state of the environment after the agent’s action, and Rt+1 denotes the reward received
by the agent from the environment. The objective of training the DNN agent is to learn an optimal
control policy that maximizes the accumulated reward obtained through different control actions.

3.2.2 State in OCTOPUS. The state serves as the input for the DRL agent during each control
step. In this study, the state is constructed as a stack of current and past observations, represented
as:

S = {obt ,obt−1, . . . ,obt−n} , (1)

Here, t denotes the current time step,n represents the number of historical time steps considered,
and each ob encompasses 15 specific elements shown in Table 1. All these values can be calculated
using the EnergyPlus simulation model. To ensure consistency, min-max normalization is applied
to each item, converting its value to a range between 0 and 1.

3.2.3 Action in OCTOPUS. The action represents how the DRL agent exerts control over the
environment. Given the state, the agent aims to identify the most suitable combinations of actions
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for the HVAC, lighting, blind, and window systems to achieve a balance between energy consump-
tion and the three human comfort metrics. When considering these four subsystems, the action
can be described as:

At = {Ht ,Lt ,Bt ,Wt } , (2)

Here, At corresponds to the action combination of the four subsystems at time t . Ht represents
the temperature set-point of the HVAC system, which can be selected from 66 different values. Lt

denotes the dimming level of the electric lights, while Bt signifies the blind slat angle. The range of
blind slat angles can be adjusted from 0◦ to 180◦. Finally,Wt denotes the window’s open percentage.
In our current implementation, each of these three actuation parameters can be set to 33 values,
striking a balance between control granularity and computational complexity.

According to Equation (2), the total number of possible actions in the action space amounts
to 2,371,842 (66 × 33 × 33 × 33). Existing DRL architectures like Deep Q-Network (DQN) [58]
and Asynchronous Advantage Actor-Critic (A3C) [63] are not efficient for our problem since
the large number of actions necessitates explicit representation within the agent’s DNN network.
This would significantly increase the number of DNN parameters to be learned, consequently
extending the training time [53]. To address this challenge, we employ a novel neural architecture
that incorporates a shared representation followed by four network branches, with each branch
dedicated to one action dimension.

3.2.4 Reward Function in OCTOPUS. The reward function provides an immediate evaluation
of the control effects for each action taken under a specific state. It takes into account both hu-
man comfort and energy consumption. To define the reward function, a common approach is to
utilize the Lagrangian Multiplier function [30], which converts the constrained formulation into
an unconstrained one. The reward function is expressed as:

R = −[ρ1Norm(E) + ρ2Norm(Tc ) + ρ3Norm(Vc ) + ρ4Norm(Ic )], (3)

In this equation, ρ1, ρ2, ρ3 and ρ4 represent the Lagrangian multipliers. E represents energy con-
sumption, Tc represents thermal comfort, Vc represents visual comfort, and Ic represents indoor
air quality. Norm(x) denotes the normalization process, defined as Norm(x) = (x - xmin )/(xmax

- xmin ), which transforms energy and the three human comfort metrics onto the same scale. The
reward function combines the objective of minimizing energy consumption with the goal of satis-
fying the constraints related to human comfort.

The reward function comprises four components. Firstly, there is a penalty for the energy
consumption of the HVAC and lighting system. Secondly, there is a penalty associated with
the occupants’ thermal discomfort. Thirdly, there is a penalty linked to the occupants’ visual
discomfort. Finally, there is a penalty connected to the occupants’ indoor air condition dis-
comfort. Specifically, the reward decreases when the HVAC system consumes more energy
or when the occupants experience discomfort concerning the building’s thermal, visual, and
indoor air conditions. Further details on how to define and formulate energy consumption E,
thermal comfort Tc , visual comfort Vc , and indoor air condition Ic are explained in Section 3.4.
To address constraints, we may consider the integration of safe deep reinforcement learning
[15], which more effectively manages these diverse aspects. This approach, focusing explicitly
on thermal, visual, and air quality constraints, is earmarked for exploration in our future
work.

3.3 Branching Dueling Q-Network

To address the challenge of high-dimensional actions discussed in Section 3.2.3, OCTOPUS employs
a novel neural architecture called Branching Dueling Q-Network (BDQ). BDQ is a branching
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Fig. 8. The specific action branching network implemented for the proposed BDQ agent.

variation of the dueling Double Deep Q-Network (DDQN). It features a shared decision module
followed by multiple network branches, each dedicated to a specific action dimension. This archi-
tecture enables robust scalability to environments with high-dimensional action spaces and has
shown superior performance compared to the Deep Deterministic Policy Gradient (DDPG)

algorithm, even in the most demanding tasks [51].
In our implementation, we utilize a simulated building model developed in EnergyPlus as

the training and validation environment. The BDQ-based agent interacts with the EnergyPlus
model, processing the state, which includes building and weather parameters, at each control
step. Subsequently, it generates a combined action set for the four subsystems involved in the
control process. This approach allows us to effectively handle the complexities of the high-
dimensional action problem and achieve optimal control performance in the simulated building
environment.

Figure 8 illustrates the action branching network employed by the BDQ agent. Upon receiving
a state input, the shared decision module calculates a latent representation, which is utilized for
both the state value computation and the output of the network’s advantages dimension (as shown
in Figure 8) for each branch corresponding to an action dimension. The state value and factorized
advantages are then combined through a specialized aggregation layer to produce the Q-values for
each action dimension. These Q-values are subsequently utilized to generate a joint-action tuple.
The fully connected neural layers’ weights are represented by the gray trapezoids, and the figure
also depicts the size of each layer (i.e., the number of units).

Training Process: The training process for the BDQ-based control agent is described in
Algorithm 1. To start, we initialize a neural networkQ with random weights θ , and create another
neural network Q− with the same architecture. The outer “for” loop determines the number of
training episodes, while the inner “for” loop handles control at each control time step within
an episode. Throughout the training, the most recent transition tuples (St , At , St+1, Rt+1) are
stored in the replay memory Λ which is used to generate a mini-batch of samples for training the
neural network. The variable At stores the control action from the previous step, and St and St+1

represent the building state in the previous and current control time steps, respectively. At the
beginning of each time slot t, the four actions are updated, and the current state St+1 is obtained.
In line 7, the immediate reward Rt+1 is calculated using Equation 3. Training mini-batches are
constructed by randomly selecting transition tuples from the memory.

We compute the target vector and update the weights of the neural network Q using an Adam
optimizer at each control step t . For an action dimension d ∈ 1, . . .N with n discrete actions, the
Q-value of a branch for a state s ∈ S and an action ad ∈ Ad is determined by the common state
valueV (s) (the output of the shared representation layer in Figure 8) and the corresponding action
advantage Ad (s,ad ) of each branch (the output of each advantage dimension in Figure 8). This

ACM Trans. Sensor Netw., Vol. 20, No. 3, Article 70. Publication date: May 2024.



70:10 X. Ding et al.

ALGORITHM 1: The Training Process of Our BDQ-Based Agent

Input: The range of human comfort metrics and maximum acceptable energy consumption
Output: A trained DRL agent

1 Initialize BDQ’s prediction Q with random weights θ ;

2 Initialize BDQ’s target Q− with weight θ− = θ ;

3 for episode =0, 1, . . . , M do

4 Obtain the initial state St and At randomly;

5 for control time step t = 0,1, . . . , T do

6 Update Ht ,Lt ,Bt ,Wt by the control action, At ;

7 Calculate reward Rt+1 by Equation (3);

8 Obtain current state observation St+1;

9 Store (St , At , St+1, Rt+1) in reply memory Λ;

10 Draw mini-batch sample transitions from Λ;

11 Calculate the target vector and update weights in neural network Q ;

12 Update target network Q−
d
(s,ad ) using Equation (5);

13 Perform greedy descent iteratively to tune BDQ by Equation (6).

relationship is expressed as:

Qd (s,ad ) = V (s) +
(
Ad (s,ad ) −

1
n

∑
a
′

d
∈Ad

Ad

(
s,a

′

d

))
. (4)

The target networkQ− is updated with the latest weights of the networkQ every c control time
steps, where c is set to 50 in our current implementation. Q− is used to calculate the target value
for the next c control steps. We denote yd as the maximum accumulated reward achievable in the
next c steps. It is computed recursively using temporal-difference (TD) targets:

yd = R + γ 1
N

∑
d Q

−
d

(
s
′
, arg max

a
′

d
⊆Ad

Qd

(
s
′
,a

′

d

))
, (5)

Here, Q−
d

represents the branch d of the target network Q−, R is the reward function result, and γ
is the discount factor. At the end of the inner “for” loop, we compute the following loss function
every c control steps:

L = E(s,a,r,s′ ) ∼ D
[∑

d (yd −Qd (s,ad ))
2
]
, (6)

Here, D denotes a (prioritized) experience replay buffer, and a represents the joint-action tuple
(a1,a2, . . . ,aN ). The loss function L should decrease as more training episodes are conducted.

3.4 Reward Calculation

In this section, we provide an overview of how we calculate the reward function in Equation (3),
which encompasses energy cost E, thermal comfort T , visual comfort V , and indoor air condition
I .

3.4.1 Energy Consumption. The energy consumption of a building consists of the heating coil
power Ph , cooling coil power Pc , fan power Pf from the HVAC system, and electric light power
Pl from the lighting system. The reward function for energy consumption E during a time slot is
calculated as:

E = (Ph + Pc + Pf + Pl ) (7)

The heating and cooling coils are responsible for regulating the air temperature in the building,
while the fan is responsible for distributing the heated or cooled air to the different zones. The
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Table 2. PMV Constants

Parameter Value Units
Metabolic Rate 70 W /m2

Clothing Level 0.5 clo

electric lights are used for general illumination within the zones. These energy components are
calculated using the EnergyPlus simulator during both training and evaluation. In our current
implementation, we neglect the power consumed by water pumps and motors used for adjusting
blinds and windows. This omission is justified by their relatively small contribution compared to
the power consumption of the HVAC and lighting systems, and their impact can be safely ignored
(accounting for less than 1% of the total energy consumption).

3.4.2 Human Comfort. we establish and explain the measurement of three key human comfort
metrics (Thermal Comfort, Visual Comfort and Indoor Air Quality)

Thermal Comfort: In our study, the measurement of thermal comfort is determined by the PMV

(Predicted Mean Vote) index, calculated using Fanger’s equation [23]. The PMV index predicts
the average thermal sensation vote on a standardized scale for a large group of individuals. It has
been widely adopted and is recommended by organizations such as the American Society of

Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) [29] and the Interna-

tional Organization for Standardization (ISO) [22].
The PMV scale assigns numerical values to thermal sensations, ranging from -3 (cold) to +3

(hot), with 0 indicating a neutral thermal sensation. ASHRAE’s thermal comfort index categorizes
these sensations as coding values. To ensure optimal thermal comfort, the ISO 7730 standard rec-
ommends maintaining the PMV at level 0 with a tolerance of 0.5 [22]. We calculate the reward
function for thermal comfort Tc during each time slot using the following formula:

Tc =

{
0, PMV ≤ P
|PMV − P |, PMV > |P |

(8)

Here, P represents the threshold value for the PMV, defining the acceptable range of thermal
comfort. If the PMV value falls within the range of [−P , P], no penalty is incurred. However, if the
PMV value exceeds this range, a penalty is imposed to reflect occupants’ dissatisfaction with the
building’s thermal conditions.

Thermal comfort is influenced by several factors, which can be classified into personal factors
and environmental factors. Personal factors include metabolic rate and clothing level, while envi-
ronmental factors encompass air temperature, mean radiant temperature, air speed, and humidity.
The PMV considers these factors to provide an accurate assessment of thermal comfort. The values
for the PMV personal and environmental factors are obtained in real-time from the EnergyPlus
simulation model and are shown in Table 2. EnergyPlus uses a node model, representing spaces
with a single temperature, ideal for simulations where intra-zone temperature variations are min-
imal and not critical.

Visual Comfort: Visual comfort in buildings is a critical aspect that considers the appropriate
amount of lighting to avoid discomfort caused by insufficient or excessive light levels, including
glare. In our study, we utilize the illuminance range as a major metric to assess visual comfort [46].
The illuminance encompasses both natural daylight and electrical lighting sources, making the
blind system and lighting system significant subsystems that can influence visual comfort. To quan-
tify visual comfort, we calculate the reward function Vc during each time slot using the following
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formulation:

Vc =

⎧⎪⎪⎨⎪⎪⎩
ML − F , F < ML

0, ML ≤ F ≤ MH

−MH , F > MH

(9)

Here, F represents the illuminance value, andML andMH denote the lower and upper thresholds,
respectively, defining the acceptable range of illuminance. When the illuminance value falls within
the range [ML , MH ], occupants experience visual comfort, and no penalty is incurred. However, if
the illuminance value exceeds this range or falls below it, penalties are applied to reflect occupants’
dissatisfaction with the building’s illuminance condition.

Indoor Air Quality: Carbon dioxide (CO2) concentration serves as an indicator of indoor air

quality (IAQ) in buildings, representing the presence of pollutants introduced by the building
occupants [21]. While there are other sources of pollution like NOx, Total Volatile Organic

Compounds (TVOC), and respirable particles, in this study, we focus on CO2 concentration as
a proxy for IAQ. Efficient ventilation plays a vital role in maintaining satisfactory IAQ within
buildings [3]. In our context, ventilation primarily occurs through the HVAC system and window
system. To assess indoor air quality, we calculate the reward function Ic during each time slot
using the following formulation:

Ic =

⎧⎪⎪⎨⎪⎪⎩
AL −C, C < AL

0, AL ≤ C ≤ AH

C −AH , C > AH

(10)

Here, C represents the carbon dioxide concentration value, and AL and AH denote the lower
and upper thresholds, respectively, defining the acceptable range for CO2 concentration. When
the CO2 concentration falls within the range [AL , AH ], occupants experience comfort in terms of
indoor air quality, and no penalty is applied. However, if the CO2 concentration exceeds this range
or falls below it, penalties are incurred to reflect occupants’ dissatisfaction with the building’s
indoor air quality. It is important to note that while CO2 concentration is utilized as a proxy for
IAQ in this study, other pollutants and factors contributing to air quality can also be considered
in future research to provide a more comprehensive assessment of IAQ.

4 IMPLEMENTATION OF OCTOPUS

This section provides a comprehensive overview of the implementation of OCTOPUS, covering
various aspects such as platform setup, HVAC modeling and calibration, and OCTOPUS training.
Each component is explained in detail below.

4.1 Platform Setup

The conceptual flow diagram of our building simulation and control platform is depicted in
Figure 9. The building model, representing a LEED Gold Certified Building on our university
campus, is created using SketchUp [1]. OpenStudio is utilized to incorporate the HVAC, lighting,
blind, and window systems into the building and its zones. For implementing the control scheme,
OCTOPUS, we employ TensorFlow, an open-source machine learning library for Python.

To enable co-simulation across different models, we utilize the Building Control Virtual Test

Bed (BCVTB), which is a Ptolemy II platform [59]. This allows us to integrate the control of
various elements such as zone temperature set points, blinds, lighting, and window schedules
within EnergyPlus for our building, along with the corresponding weather data. OCTOPUS itself
is modeled using EnergyPlus version 8.6 [45].
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Fig. 9. Workflow of OCTOPUS.

To train OCTOPUS effectively, we employ 10-year weather data from two different cities: Merced,
CA, and Chicago, IL. These cities are selected due to their distinctive weather characteristics.
Merced experiences high solar radiation and significant temperature variations, while Chicago
is classified as hot-summer humid continental with four distinct seasons. In our training process,
we define an “episode” as one iteration of the inner loop in Algorithm 1. By training OCTOPUS us-
ing this approach and considering diverse weather conditions, we aim to enhance its adaptability
and performance in different environmental settings.

4.2 Rule Based Method

We implement a rule-based method based on our current campus building control policy. This pol-
icy is initially established during the commissioning phase by a mechanical engineering company
and is further optimized by experienced HVAC engineers during the LEED certification process.

The control policy incorporates several key elements. Firstly, we assign different zone tempera-
ture setpoints, with each zone having separate heating and cooling setpoints. During the warm-up
stage, the heating setpoint is set to 70◦F, and the cooling setpoint is set to 74◦F. However, we impose
limits on these setpoints to ensure energy efficiency and occupant comfort. The cooling setpoint
is constrained within the range of 72◦F to 80◦F, while the heating setpoint is limited between 65◦F
and 72◦F. Secondly, we enforce control restrictions and actuator limits to maintain system stability
and prevent extreme adjustments. Specifically, the heating setpoint should not exceed the cooling
setpoint minus 1◦F. When adjustments are made, both the existing heating and cooling setpoints
are shifted by the same amount unless they reach their respective limits. Thirdly, our control sys-
tem consists of two separate control loops: the Cooling Loop and the Heating Loop. These loops
operate continuously to regulate the space temperature and maintain it at the desired setpoint.

By implementing this rule-based approach, which incorporates predefined control policies and
constraints, we aim to ensure efficient and effective building temperature control while adhering
to the established guidelines and standards.

4.3 HVAC System Description

The HVAC system we modeled is a single duct central cooling HVAC system with terminal reheat,
as illustrated in Figure 10. The process starts at the supply fan, located in the air handler unit

(AHU), which is responsible for supplying air to the zones. The air from the supply fan first passes
through a cooling coil, where it is cooled to the minimum temperature required for the specific
zone.
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Fig. 10. HVAC single duct VAV terminal reheat layout.

Before the air enters a zone, it passes through a variable air volume (VAV) unit, which controls
and adjusts the amount of air flowing into the zone. The VAV unit ensures that the air volume
is regulated based on the specific needs of each zone. Terminal reheat is employed to raise the
temperature of the air before it is discharged into the zone. This is achieved through a heating coil,
which increases the temperature of the air to match the desired discharge setpoint temperature for
each zone. Inside the zone, the supplied air is mixed with the existing air, creating a well-mixed
environment. To maintain a constant static pressure, a portion of the air is exhausted from the
zone. The return air from each zone is mixed in the return duct, and some of it may be directed to
an economizer, depending on the system configuration.

By simulating this single duct central cooling HVAC system with terminal reheat, we can accu-
rately model the airflow, temperature regulation, and energy exchange processes to optimize the
overall performance and comfort of the building.

4.4 HVAC Modeling and Calibration

The purpose of calibration is to fine-tune the building energy model so that it can accurately
replicate the energy consumption patterns observed in the target building. This process involves
adjusting various model parameters to align the simulated energy use results with the measured
values. The building model calibration process, depicted in Figure 11, consists of four steps.

The first step is to collect real weather data for the desired period from a public weather station.
We utilize Dark Sky’s API, a publicly available weather website, to gather accurate weather data
spanning three months. This real weather data is crucial for ensuring the model accurately reflects
the external environmental conditions experienced by the target building.

Next, we replace the default occupancy schedules in the simulation with the actual occupancy
schedules obtained from the target building. ThermoSense [12], a system installed in the target
building on our campus, allows us to collect detailed occupancy data at the zone level. By incor-
porating this fine-grained occupancy information into the simulation using EnergyPlus, we can
evaluate the building’s performance based on precise occupancy patterns.

The third step involves calibrating specific system and control parameters to match those ob-
served in the target building. This calibration process encompasses various considerations, such
as selecting the parameters to be calibrated, defining their ranges, and determining the calibration
steps within those ranges. In our study, we employ an N-factorial design with five parameters,
including infiltration rate, mass flow rate, and heating and cooling setpoints, based on operational
experience. By testing different combinations of these parameters, we identify the configuration
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Fig. 11. Building model calibration process.

Table 3. Model Calibration Parameters

Parameter Range Adoption
Infiltration Rate 0.01m3 ∼ 0.5m3 0.05m3

Window Type Single/Double Pane Single
Window Area 1m2 ∼ 4m2 2m2

Window Thickness 3mm ∼ 6mm 3mm
Fan Efficiency 0.5 ∼ 0.8 0.7

Blind Type Interior/Exterior Blind Interior
Blind Thickness 1mm ∼ 6mm 1mm

that minimizes the calibrated error, ensuring a closer alignment between the simulated and actual
building performance. The calibration parameters, along with their ranges and selected values, are
presented in Table 3.

Below are the equations related to the HVAC Single Duct VAV Terminal Reheat:
1) Window Type, Area, Thickness: The heat transfer through windows involves complex calcu-

lations. The U-factor (thermal transmittance) is typically calculated using the following equation:

Q = U · A · ΔT

where: -Q is the heat transfer, -U is the U-factor, -A is the window area, and - ΔT is the temperature
difference.

2) Fan Efficiency: The fan power consumption (Pfan) can be calculated using the fan efficiency
(ηfan):

Pfan =
Air Flow Rate · Pressure Rise

ηfan

Finally, we compare the calibrated model’s performance with the measured zone temperature
and energy consumption stored in the building database. This allows us to assess the accuracy of
the calibrated model by examining the discrepancies between the simulated and actual data. The
entire calibration process, from model setup to error analysis, typically spans approximately one
month, ensuring a comprehensive and accurate representation of the target building.
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Table 4. Modeling Error after Calibration

MBE CVRMSE
February (hourly temperature) -1.48% 5.32%

March (hourly temperature) -0.26% 4.95%
April (hourly temperature) 1.20% 5.06%
May (hourly temperature) 0.48% 4.38%

February - May (monthly energy) -3.83% 12.33%

Table 5. Parameter Settings in DRL Algorithms

	tc 15 m β1 0.9
Minibatch Size 64 β2 0.999
Learning Rate 10−4 Action Dimension 35040

γ 0.99 Action Space 2.37 ∗ 107

ASHRAE Guideline 14-2002 [28] provides the evaluation criteria for calibrating Building En-

ergy Model (BEM). According to this guideline, both monthly and hourly data can be used for
calibration, and Mean Bias Error (MBE) and Coefficient of Variation of the Root Mean Squared Er-
ror (CVRMSE) are utilized as evaluation metrics. For monthly calibration data, ASHRAE Guideline
14-2002 recommends an MBE of 5% and a CVRMSE of 15% as acceptable thresholds. If hourly cali-
bration data are used, the requirements are slightly relaxed to 10% for MBE and 30% for CVRMSE.
In our study, we employ hourly data to calculate the error metrics for average zone temperature,
while monthly data is utilized for energy error metrics since energy data is typically available on
a monthly basis.

The calibration results for zone temperature and energy consumption are presented in Table 4.
It is evident that with the optimal parameter settings, we achieve less than 2% MBE and less than
6% CVRMSE for zone temperature, indicating a high level of accuracy in temperature prediction.
Although the CVRMSE for monthly heating and cooling energy demand appears relatively
large, both the MBE and CVRMSE values remain within the acceptable range defined by the
guideline. This implies that the model can accurately estimate monthly energy consumption,
despite the slightly higher variability in energy predictions. By meeting these calibration criteria,
our BEM model demonstrates its capability to provide accurate calculations for both average
zone temperature and monthly energy consumption, ensuring the reliability of the model
outputs.

4.5 OCTOPUS Training

OCTOPUS is trained in an offline mode. The 10-year weather data from the two test locations,
Merced, CA, and Chicago, IL, is divided randomly into training and testing sets. Eight years of
weather data are allocated for training the models, while the remaining two years are reserved
for testing and evaluating the model’s performance. The parameter settings used in our DRL algo-
rithms are presented in Table 5.

For the implementation of OCTOPUS, we employ the Adam optimizer [32] for gradient-based
optimization, utilizing a learning rate of 10−4. The agent is trained using a minibatch size of 64 and
a discount factor γ of 0.99, which balances the importance of immediate and future rewards. The
target network is updated every 103 time steps to enhance stability and convergence.

To introduce non-linearity into the network, we utilize the rectified linear activation func-

tion (ReLU) for all hidden layers, while the output layers employ linear activation. The shared
network module consists of two hidden layers with 512 and 256 units, respectively. Additionally,
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each branch in the network includes one hidden layer with 128 units. The weights in the network
are initialized using Xavier initialization [26], while the biases are initialized to zero.

In our training process, we incorporate prioritized replay with a buffer size of 106 and linear
annealing of β , ranging from β0 = 0.4 to 1 over 2 x 106 steps. While the ϵ−greedy policy is com-
monly used with Q-learning, random exploration in physical, continuous-action domains can be
inefficient. To enhance action exploration in our building environment, we sample actions from
a Gaussian distribution with a mean at the greedy actions and a small fixed standard deviation
throughout training to encourage lifelong exploration. During training, we employ a fixed stan-
dard deviation of 0.2, whereas during evaluation, the standard deviation is set to zero. This explo-
ration strategy yielded slightly better performance compared to using an ϵ−greedy policy with a
fixed or linearly annealed exploration probability. Each time (action) slot in our system lasts for
15 minutes. After 1,000 episodes, we achieved convergence of our reward function, as explained
in Section 5.6.

5 EVALUATION

In this section, we conduct a performance comparison between OCTOPUS, the rule-based method,
and the latest DRL-based method.

5.1 Experiment Setting

In this section, we compare the performance of three different control methods: the rule-based
HVAC control, the conventional DRL-based method (referred to as DDQN-HVAC), and OCTO-

PUS, as introduced in Section 4.2. The rule-based method solely controls the HVAC system, while
DDQN-HVAC employs the dueling DQN architecture to control the water-based heating system,
as described in [63]. To ensure a fair comparison, we initialize the lights in all experiments, as the
rule-based method and DDQN-HVAC do not control the light system. OCTOPUS, however, has the
capability to dim the lights if the blind is open during the day, and it may also interact with the
blind and window system.

To evaluate human comfort, we measure three metrics: PMV, illuminance, and carbon dioxide
concentration. The acceptable ranges for these metrics are determined based on building standards
and previous research. Specifically, the PMV comfort range is set from -0.5 to 0.5 [5], the illumi-
nance comfort range is set from 500 to 1000 lux [46], and the carbon dioxide concentration comfort
range is set from 400 to 1000 ppm [3].

We apply the three control methods to the building model presented in Section 4, simulating
a two-month period (January and July) in two different locations with distinct weather patterns.
Table 6 presents the human comfort results for the three control methods, as well as their energy
consumption. The violation rate is calculated by dividing the time when a human comfort metric
falls outside its acceptable range by the total simulated time. It is important to note that future
work will explore additional quality of service metrics, such as the magnitude and duration of
violations or combinations thereof, to provide a more comprehensive assessment of the control
methods’ performance.

5.2 Human Comfort

Based on the results presented in Table 6, we observe that all three control methods are effective in
maintaining the PMV within the desired range for the majority of the time, as indicated by the low
violation rates. However, OCTOPUS and DDQN-HVAC exhibit slightly higher average PMV vio-
lation rates compared to the rule-based method, with differences of 2.19% and 2.22%, respectively.
This can be attributed to the energy-saving approach employed by the DRL-based methods, which
aim to set the PMV value close to the boundary of the acceptable range. As shown in Table 6, the

ACM Trans. Sensor Netw., Vol. 20, No. 3, Article 70. Publication date: May 2024.



70:18 X. Ding et al.

Table 6. Human Comfort Statistical Results for Rule-Based, DDQN-HVAC and OCTOPUS Schemes

Location Method Metric
PMV

Illuminance
(lux)

CO2 Concentration
(ppm)

Energy Consumption
(kWh)

Jan. July Jan. July Jan. July Jan. July

Merced

Rule-Based
Method

Mean 0.03 -0.25 576.78 646.45 623.61 668.03
1990.99 3583.03Std 0.11 0.13 152.54 157.11 120.64 181.22

Violation 0 2% 0.94% 0 0.3% 3.629%

DDQN-HVAC
[63]

Mean -0.19 0.28 576.78 646.45 625.62 648.01
1859.10 3335.58Std 0.21 0.11 152.54 157.11 122.62 120.57

Violation 2.99% 4.4% 0.94% 0 0 0.2%

OCTOPUS

Mean -0.31 0.27 587.12 569.88 594.77 612.33
1756.24 2941.46Std 0.2 0.10 382.27 75.83 111.59 110.35

Violation 5.7% 2.5% 0.26% 0.2% 1.31% 0.33%

Chicago

Rule-Based
Method

Mean -0.28 -0.15 583.27 637.07 610.26 638.33
3848.61 3309.56Std 0.11 0.02 163.96 151.37 63.94 151.37

Violation 3.09% 0 1.1% 0 0 0

DDQN-HVAC
[63]

Mean -0.32 0.24 583.27 637.07 612.74 649.32
3605.21 3078.67Std 0.08 0.07 163.96 151.37 65.09 90.16

Violation 3.7% 2.9% 1.1 % 0 0 0

OCTOPUS

Mean -0.4 0.29 598.34 544.09 640.31 633.71
3496.54 2722.03Std 0.1 0.11 259.88 55.37 99.85 111.04

Violation 4.2% 1.47% 1.6 % 0 1% 1.31%

average PMV values for OCTOPUS and DDQN-HVAC (-0.36 and -0.26, respectively) are closer to
the range boundary (-0.5) compared to the rule-based method (-0.13).

In terms of visual comfort and indoor air quality, all three control methods demonstrate a mini-
mal violation rate. For illuminance, OCTOPUS and DDQN-HVAC achieve mean illuminance values
of 590.69 lux and 610.89 lux, respectively. OCTOPUS optimizes energy consumption by leveraging
natural light whenever possible. Concerning indoor air quality, the averageCO2 concentration for
OCTOPUS, DDQN-HVAC, and the rule-based method is 620.28 ppm, 633.92 ppm, and 635.06 ppm,
respectively. OCTOPUS actively adjusts both the window system and HVAC system to maintain
the desiredCO2 concentration level. On the other hand, DDQN-HVAC and the rule-based method
rely solely on the HVAC system for control.

Overall, while there are slight differences in performance across the three methods, all of them
achieve satisfactory results in maintaining human comfort and adhering to the predefined comfort
ranges. OCTOPUS showcases its advantage by utilizing natural light and incorporating multiple
control strategies, resulting in effective energy savings without compromising comfort.

5.3 Energy Efficiency

The results presented in Table 6 demonstrate that OCTOPUS achieves significant energy savings
compared to the rule-based control method and DDQN-HVAC, with average energy reductions of
14.26% and 8.1%, respectively. This performance gain is consistent across both cities tested. OCTO-

PUS achieves these energy savings by leveraging the synergies between different subsystems and
optimizing their usage.

Figure 12 illustrates the daily energy consumption of the three methods in January in Merced. In
most days, OCTOPUS consumes less energy than the other two methods. However, it’s important
to note that OCTOPUS is not always the best-performing method, particularly in the first half of
the month. This can be attributed to the fluctuating outdoor temperature, with an average range
of 2◦C to 13◦C during this period. Nevertheless, OCTOPUS demonstrates clear energy savings in

ACM Trans. Sensor Netw., Vol. 20, No. 3, Article 70. Publication date: May 2024.



Exploring Deep Reinforcement Learning for Holistic Smart Building Control 70:19

Fig. 12. Daily energy consumption of control methods.

the second half of the month when the temperature range expands from -1◦C to 18◦C . During this
time, OCTOPUS effectively utilizes external air by opening the windows for natural ventilation.
Comparing the energy savings in July presented in Table 6, OCTOPUS outperforms the rule-based
method and DDQN-HVAC with energy reductions of 17.6% and 11.7%, respectively. In July, the
outdoor temperature ranges from 15◦C to 42◦C in Merced and from 15◦C to 40◦C in Chicago.
Opening the windows when the temperature falls within the acceptable range allows OCTOPUS

to save energy consumed by the HVAC system. However, in January, when both cities experi-
ence cold weather, the windows remain closed most of the time and contribute less to energy
savings.

In summary, OCTOPUS consistently achieves substantial energy savings across different months
and cities, demonstrating its effectiveness in optimizing energy consumption. The system capital-
izes on external factors, such as outdoor temperature and natural ventilation, to further enhance
its energy-saving capabilities.

5.4 Performance Decomposition

To analyze the energy-saving contributions of each subsystem, we implement four versions of
OCTOPUS: OCTOPUS with only the HVAC system (OCTOPUS_HVAC), OCTOPUS with HVAC
system and lighting system (OCTOPUS_HVAC_L), OCTOPUS with HVAC system, lighting sys-
tem, and blind system (OCTOPUS_HVAC_L_B), and OCTOPUS with all four subsystems (OCTO-
PUS_HVAC_L_B_W). Figure 13 illustrates the energy consumption of these versions during differ-
ent months and at different locations (Merced and Chicago).

Compared to the rule-based method, OCTOPUS_HVAC achieves an additional energy saving
of 6.16% by focusing solely on HVAC control. The integration of the lighting system in OCTO-
PUS_HVAC_L results in a further energy saving of 2.73%. Incorporating the blind system in OC-
TOPUS_HVAC_L_B contributes an additional energy saving of 1.93%. Finally, by including the
window system in OCTOPUS_HVAC_L_B_W, an additional 3.44% energy savings is achieved. Each
subsystem demonstrates distinct contributions to energy savings during January and July.

In January, the four subsystems (HVAC, lighting, blinds, and windows) contribute to energy sav-
ings as follows: HVAC - 6.16%, lighting - 2.73%, blinds - 1.93%, and windows - 0%. However, in July,
these contributions change to HVAC - 5.9%, lighting - 3.31%, blinds - 1.99%, and windows - 6.4%.
The window system exhibits the most noticeable difference between the two months, contribut-
ing 6.4% to the total energy savings. This variation is attributed to the operational characteristics
discussed earlier. In January, the windows remain closed most of the time, limiting their potential
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Fig. 13. Performance contribution of each subsystem.

Table 7. Different Parameters for Reward Function in Octopus

Parameter
(ρ1,ρ2, ρ3, ρ4) PMV Illuminance (lux) CO2 Concentration (ppm) Energy (kWh)

Mean Std Mean Std Mean Std
1, 1, 1, 1 −0.36 0.15 587.35 94.52 587.25 101.14 3250.55
5, 1, 1, 1 −0.33 0.16 611.71 131 608.48 175.1 3221.20
10, 1, 1, 1 −0.31 0.16 624.97 189.04 647.77 150.33 3150.62
2, 3, 1, 1 −0.383 0.10 569.88 75.83 636.5 179.46 2941.46
2, 5, 1, 1 −0.481 0.13 689.23 146.66 616.02 177.32 2900.44

for energy savings. Conversely, in July, the utilization of cold outdoor air for cooling purposes
significantly reduces the reliance on the HVAC system.

Overall, the analysis demonstrates the distinct energy-saving contributions of each subsystem
within OCTOPUS. The integration of multiple subsystems progressively enhances energy effi-
ciency, with the window system playing a particularly significant role during months with fa-
vorable outdoor conditions.

5.5 Hyperparameters Setting

The hyperparameters in the reward function (Equation (3)) are carefully tuned to strike a balance
between energy consumption and human comfort. Table 7 presents the performance results of the
trained DRL agents obtained during the hyperparameter tuning experiments. Evaluation metrics
include total energy consumption, as well as the mean and standard deviation of PMV, illuminance,
and carbon dioxide concentration.

Interestingly, the control performance results obtained from different hyperparameters do
not always align with intuitive expectations. One might anticipate that increasing the weight
ρ1 and decreasing ρ2, ρ3 and ρ4 would lead to lower energy consumption while meeting the
requirements for thermal comfort, visual comfort, and indoor air quality. However, the results
presented in Table 7 demonstrate that increasing the weight of energy does not necessarily result
in reduced energy consumption. These counter-intuitive outcomes may arise from the delayed
reward problem, whereby the DRL agents become trapped in local optimal areas during training.

Among the five experiments listed in Table 7, the fourth row stands out by achieving a remark-
able 17.9% reduction in energy consumption while only slightly compromising the three human
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Fig. 14. The convergence of OCTOPUS.

comfort quality metrics in the testing model. This experiment achieves a superior balance be-
tween human comfort and energy consumption. Consequently, the hyperparameters specified in
the fourth row are adopted for the trained agent.

These findings underscore the complexity of optimizing the reward function in DRL-based
HVAC control. The non-linear relationship between the hyperparameters and the control per-
formance necessitates a systematic exploration to identify the most effective configuration. The
selected hyperparameters strike an effective compromise between energy savings and human com-
fort, showcasing the practical value of the trained agent.

5.6 Convergence of OCTOPUS Training

Figure 14 illustrates the accumulated reward of OCTOPUS at each episode during the training
process. In this process, we calculate the reward function at every control time step, which occurs
every 15 minutes. Consequently, one episode corresponds to 2,880 time steps, representing a
month of simulation. The accumulated reward for each episode, depicted as “episode reward” in
Figure 14, is the sum of the rewards obtained over the 2,880 time steps.

The results in Figure 14 indicate that the episode reward increases progressively and eventually
stabilizes as the number of training episodes rises. Once the episode reward reaches a relatively
steady state, it implies that further improvements to the learned control policy are unlikely, sig-
nifying convergence of the training process. Notably, the training reward exhibits fluctuations
between adjacent episodes due to the large number of time steps within each episode (i.e., 2,880).
Because some of these 2,880 time steps are selected randomly using an exploration rate (deter-
mined by a Gaussian distribution with a standard deviation of 0.2), the rewards calculated at these
steps can vary dynamically. During these time steps, the action generated by the agent is not used,
and instead, a random action is chosen to prevent convergence to local minima.

To enhance the stability of the training process, we employ a sliding window of 10 episodes to
smooth the episode reward. By averaging the rewards within this window, the resulting average
reward in Figure 14 demonstrates improved stability during the training phase. This smoothing
technique provides a clearer picture of the training progress by mitigating the effects of temporary
fluctuations in the reward values.

6 RELATED WORK

Conventional control of the HVAC system. Model predictive control (MPC) models have been
developed for HVAC control. It is a planning-based method that solves an optimal control problem
iteratively over a receding time horizon. Some of the advantages of MPC are that it takes into
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consideration future disturbances and that it can handle multiple constraints and objectives, e.g.,
energy consumption and human comfort [11]. However, it can be argued that the main roadblock
preventing the widespread adoption of MPC is its reliance on a model [36, 47]. By some estimates,
modeling can account for up to 75% of the time and resources required for implementing MPC
in practice [49]. Because buildings are highly heterogeneous, a custom model is required for each
thermal zone or building under control.

There are two paradigms for modeling building dynamics: physics-based and statistics-based
[47]. Physics-based models, e.g., EnergyPlus, utilize physical knowledge and material properties
of a building to create detailed representation of the building dynamics. A major shortcoming is
that such models are not control-oriented. Nonetheless, it is not impossible to use such models
for control [8]. For instance, exhaustive search optimization is used to derive control policy for
an EnergyPlus model [64]. Furthermore, a physics-based model requires significant modeling ef-
fort, because they have a large number of free parameters to be specified by engineers (e.g., 2,500
parameters for a medium-sized building [31]); and information required for determining these
parameters are scattered in different design documents [27].

Statistical models assume a parametric model form, which may or may not have physical under-
pinnings, and identify model parameters directly from data. Dinh and Kim [20] propose a hybrid
control that combines MPC and direct imitation learning to reduce energy cost while maintaining
a comfortable indoor temperature. While this approach is potentially scalable, a practical problem
is that the experimental conditions required for accurate identification of building systems fall
outside of normal building operations [4].

Integration of occupant-driven approaches in building control. In recent years, the delicate
balance between energy efficiency and occupant comfort in commercial buildings has been a fo-
cal point in building control strategies. While conventional control methods, such as MPC, have
shown promise, they often face challenges, particularly in the extensive modeling efforts required
for heterogeneous buildings.

The works [9, 34, 35] address key aspects of occupant-building interaction and demand response
optimization in microgrids. Baldi et al. [9] propose a switched self-tuning approach to automate
occupant-building interaction via smart zoning of thermostatic loads, dynamically regulating set
points based on occupancy patterns. Korkas et al. [35] focus on occupancy-based demand response
and thermal comfort optimization in microgrids with renewable energy sources, presenting a novel
control algorithm for integrating energy generation, consumption, and occupant behavior. Addi-
tionally, Korkas et al. [34] contribute to the field by developing a distributed demand manage-

ment system (D-DMS) for grid-connected microgrids, incorporating feedback actions for im-
proved performance under changing conditions.

These papers provide valuable insights into dynamically managing occupant comfort while
optimizing energy efficiency, addressing limitations in conventional control methods. While our
work leverages physics-based and statistical models for building dynamics, the incorporation of
feedback-driven strategies from these studies could offer further enhancements in real-world build-
ing control systems.

Conventional control of multiple subsystems. Blind system should be considered as an inte-
gral part of fenestration system design for commercial and office buildings, in order to balance
daylighting requirements versus the need to reduce solar gains. The impact of glazing area, shad-
ing device properties and shading control on building cooling and lighting demand was calculated
using a coupled lighting and thermal simulation module [52]. The interactions between cooling
and lighting energy use in perimeter spaces were evaluated as a function of window-to-wall ratio
and shading parameters.
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The impacts of window operation on building performance was investigated [57] for different
types of ventilation systems including natural ventilation, mixed-mode ventilation, and conven-
tional VAV systems in a medium-size reference office building. While the results highlighted the
impacts of window operation on energy use and comfort and identified HVAC energy savings with
mixed-mode ventilation during summer for various climates, the control for window opening frac-
tion was estimated by experience and is not salable for different kinds of buildings. Kolokotsa et al.
[33] propose an energy-efficient fuzzy controller that utilizes a genetic algorithm to manage four
subsystems (HVAC, lighting, window, and blind) and ensure optimal human comfort. However, the
drawback lies in the genetic algorithm’s time-consuming nature, taking several minutes to hours
to generate a single control action, making it impractical for real-time implementation in building
control systems.

RL-based control of the HVAC system. As a general artificial intelligence technology, deep
learning [41] and deep reinforcement learning [17] have been applied in many fields, e.g., Internet
of energy [40], unmanned aerial vehicles [56], smart microgrids [38], edge computing [13]. Many
works also apply RL for HVAC control [44]. RL control can be a “model-free”control method, i.e.,
an RL agent has no prior knowledge about the controlled process. RL learns an optimal control
strategy by “trial-and-error”. Therefore, it can be an online learning method that learns an optimal
control strategy during actual building operations. Fazenda et al. [24] investigated the applica-
tion of a reinforcement-learning-based supervisory control approach, which actively learns how
to appropriately schedule thermostat temperature setpoints. However, in HVAC control, online
learning may introduce unstable and poor control actions at the initial stage of the learning. In
addition, it may take a long time (e.g., over 50 days reported in [24]) for an RL agent to converge to
a stable control policy for some cases. Therefore, some studies choose to use an HVAC simulator
to train the RL agent offline [63].

Unlike MPC, simulators with arbitrary high complexity can be directly used to train RL agents
because of its “model-free” nature. Li and Xia [39] employ Q-learning to regulate HVAC control,
while Dalamagkidis et al. [16] introduce a Linear Reinforcement Learning Controller (LRLC)

that utilizes linear function approximation of the state-action value function to achieve thermal
comfort while minimizing energy consumption. However, tabular Q-learning approaches are not
well-suited for problems characterized by a large state space, such as the one involving the four
subsystems. Le et al. [37, 54] propose a control method of air free-cooled data centers in tropics
via DRL. Vazquez-Canteli et al. [55] develop a multi-agent RL implementation for load shaping of
grid-interactive connected buildings. Ding et al. [19] design a model-based RL method for multi-
zone building control. Zhang and Lam [63] implement and deploy a DRL-based control method
for radiant heating systems in a real-life office building. An et al. [6, 7] design a safe MBRL HVAC
control approach that can achieve low human comfort violation with a dynamics model trained
on a small dataset. Gao et al. [25] propose deep deterministic policy gradients (DDPGs)-based
approach for learning the thermal comfort control policy. Although the above works can improve
the performance of HVAC control, they only focus on the HVAC subsystem.

7 DISCUSSION

Deploying in a Real Building. Although we have developed a calibrated simulation model of
a real building on our campus for training and evaluation purposes, we have not yet deployed
OCTOPUS in an actual building due to the lack of access to an automatic blind and window sys-
tem. However, we are actively seeking financial support to collaborate with our facility team for
a potential upgrade that would enable the deployment of OCTOPUS. Our ultimate goal is to de-
ploy OCTOPUS in real buildings, as it has been specifically designed for such applications. For
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a new building, the deployment process involves creating an EnergyPlus model and calibrating
it using real building operation data. Once the OCTOPUS control agent is trained using the cal-
ibrated simulation model and real weather data, it can be deployed in the building for real-time
control. The control agent takes the building’s state as input and generates control actions for the
four subsystems at a predefined action interval (e.g., every 10 minutes). OCTOPUS is capable of
providing real-time control, as a single inference takes only 22 ms. In our future work, we plan to
deploy OCTOPUS in a real building, where it can demonstrate its effectiveness in achieving energy
savings while maintaining human comfort. This practical deployment will allow us to validate the
performance and benefits of OCTOPUS in a real-world setting.

Scalability of OCTOPUS. OCTOPUS is currently designed to operate in a one-zone building con-
figuration with a single HVAC system, lighting zone, blind, and window. However, real-world
buildings, including small homes, typically consist of multiple lighting zones, blinds, and windows,
each requiring individual control actions within a subsystem. Scaling OCTOPUS to handle such
complex building configurations is a challenge we aim to address in our future work. To overcome
the scalability problem, we plan to extend OCTOPUS by increasing the number of BDQ branches.
Each branch will correspond to a subsystem in each zone of the building. By incorporating mul-
tiple branches, OCTOPUS will be able to effectively manage and control various subsystems in a
building with multiple lighting zones, blinds, and windows. Tackling this scalability issue is crucial
to ensure the applicability of OCTOPUS in realistic building environments, where the complexity
and diversity of subsystems necessitate advanced control strategies. Our ongoing research aims
to develop innovative approaches that enable OCTOPUS to handle large-scale building configura-
tions while maintaining its efficiency and effectiveness in achieving energy savings and optimizing
human comfort.

Building Model Calibration. A crucial element of our architecture relies on utilizing a calibrated
building model that closely resembles the target building. This allows us to generate the necessary
training data effectively. It is not trivial to have a building model in the EnergyPlus simulator.
Achieving an accurate calibrated model is indeed a laborious process that involves extensive trial-
and-error experimentation with numerous parameters. Among the vast array of parameters avail-
able in EnergyPlus, we leveraged our expertise and sought guidance from experts to identify the
most critical parameters and determine a reasonable range of values to explore. It took us approx-
imately four weeks to fine-tune the model to an acceptable level. We want to emphasize that this
timeframe reflects the complexity of the calibration process and the dedication required for its
successful completion.

Despite our efforts, there is no universal solution, and challenges may arise, particularly when
dealing with unconventional building architectures or specialized HVAC systems that cannot be
readily replicated in a simulation environment. It is not trivial that this model is well-calibrated.
These unique cases may require additional considerations and careful adaptation of the simulation
model to ensure accurate representation. We acknowledge that achieving a precise calibration can
be demanding and time-consuming, but it is a necessary step to ensure the fidelity and reliability
of our training process.

Furthermore, it is not trivial to have 10-year data to make sure the model is well-calibrated. We
acknowledge the significance of long-term data in validating our calibrated model. In our study, we
recognize the importance of extending our analysis over a 10-year period to ensure the robustness
of our findings. This extended duration allows us to capture variations in building performance
under diverse conditions, contributing to the overall reliability of our approach.

Accepting Users’ Feedback. Certain existing work [60] has introduced a mechanism for users to
provide feedback to the control server. This feedback serves as personalized preferences regarding
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various human comfort metrics and is taken into account during the control decision-making
process. OCTOPUS is designed to readily accommodate user feedback, enabling the training of an
enhanced agent model with a minor modificationadjusting the calculated comfort values in the
reward function based on user feedback. This functionality can be leveraged during the initial
training phase or for subsequent updates once the system is deployed. To illustrate, the OCTOPUS

control agent can undergo incremental training at specific intervals, such as one month. The
newly-trained agent can then be employed for real-time control, incorporating the insights gained
from user feedback. This iterative approach allows OCTOPUS to continuously adapt and improve
its control strategies based on user preferences and evolving comfort requirements. By fostering
this feedback loop, OCTOPUS ensures a more personalized and user-centric control experience in
real-world building environments.

The Markov Property in Smart Building Control The Markov Decision Process (MDP) and
its inherent Markov property serve as the foundational framework for our study in smart building
control. The Markov property, characterized by the independence of future states from past
states, plays a pivotal role in shaping the decision-making dynamics within our DRL model. In
the context of smart building control, the Markov property simplifies complex decision-making
by allowing the DRL agent to focus exclusively on the current state of the environment. This
immediate-state dependency aligns seamlessly with the nature of control decisions in smart
buildings. For instance, when managing HVAC systems or lighting, actions are primarily influ-
enced by real-time sensor data and environmental conditions, rendering the Markov property
a natural fit. By assuming that future states depend only on the present state and action, we
streamline the decision-making process, making it computationally tractable for real-time
applications.

However, it’s important to recognize that this simplification does come with challenges. Building
an accurate Markov model for smart building control requires meticulous calibration, typically
involving extensive experimentation with simulation models like EnergyPlus. Achieving a precise
match between the model and the real-world building dynamics is laborious but crucial for reliable
decision-making. In our future work, we aspire to augment the validation of the Markov property
by incorporating empirical data to support the assumption of state independence.

8 CONCLUSIONS

This paper introduces OCTOPUS, an innovative control system for buildings that leverages deep re-
inforcement learning (DRL) to effectively manage multiple subsystems (e.g., HVAC, lighting, blinds,
windows) while balancing energy consumption and human comfort. Our architecture addresses
several challenges, including handling large action states, designing a unique reward function that
considers both energy efficiency and comfort, and meeting data requirements by utilizing histori-
cal weather data and a calibrated simulator specific to the target building.

To evaluate OCTOPUS, we compare its performance against state-of-the-art approaches. We
benchmarked it against a rule-based control scheme implemented in a LEED Gold-certified build-
ing, as well as a DRL scheme focused on optimized heating from existing literature. The results
demonstrate significant energy savings, with OCTOPUS achieving a remarkable 14.26% and 8.1%
reduction in energy consumption while consistently maintaining, and sometimes even enhancing,
human comfort across temperature, air quality, and lighting aspects. By combining advanced DRL
techniques, a tailored reward function, and comprehensive simulations, OCTOPUS showcases its
effectiveness in optimizing building control operations. It offers a promising solution for enhanc-
ing energy efficiency and occupant comfort in modern buildings, contributing to sustainable and
comfortable living environments.
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