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Shear-thinning viscosity is a non-Newtonian behaviour that active particles often
encounter in biological fluids such as blood and mucus. The fundamental question of
how this ubiquitous non-Newtonian rheology affects the propulsion of active particles
has attracted substantial interest. In particular, spherical Janus particles driven by
self-diffusiophoresis, a major physico-chemical propulsion mechanism of synthetic active
particles, were shown to always swim slower in a shear-thinning fluid than in a Newtonian
fluid. In this work, we move beyond the spherical limit to examine the effect of particle
eccentricity on self-diffusiophoretic propulsion in a shear-thinning fluid. We use a
combination of asymptotic analysis and numerical simulations to show that shear-thinning
rheology can enhance self-diffusiophoretic propulsion of a spheroidal particle, in stark
contrast to previous findings for the spherical case. A systematic characterization of
the dependence of the propulsion speed on the particle’s active surface coverage has
also uncovered an intriguing feature associated with the propulsion speeds of a pair
of complementarily coated particles not previously reported. Symmetry arguments are
presented to elucidate how this new feature emerges as a combined effect of anisotropy of
the spheroidal geometry and nonlinearity in fluid rheology.

Key words: complex fluids, low-Reynolds-number flows

1. Introduction

Due to their small sizes, swimming microorganisms such as bacteria and spermatozoa
live in a low-Reynolds-number world, where viscous forces dominate inertial forces. They
use a variety of strategies to overcome the challenge of generating self-propulsion at low
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Reynolds number (Purcell 1977). Extensive studies have elucidated the hydrodynamics
of these biological propulsion mechanisms and shed light on their profound roles in
various biological processes (Fauci & Dillon 2006; Lauga & Powers 2009). In recent
decades, there are also growing interests in developing synthetic active particles that
can self-propel like living microorganisms for biomedical and microfluidic applications,
including self-assembly (Schwarz-Linek et al. 2012; Wensink et al. 2014), drug delivery
(Gao & Wang 2014) and motion-based microsensing (Kagan et al. 2009). Some synthetic
active particle designs are inspired by biological systems, such as artificial helical
propellers (Ghosh & Fischer 2009; Zhang et al. 2009), which mimic the helical structure
of bacterial flagella (Lauga 2016). Other novel designs exploit different physical or
physico-chemical mechanisms to achieve self-propulsion (Schweitzer & Farmer 2003;
Bechinger et al. 2016; Patteson, Gopinath & Arratia 2016; Moran & Posner 2017).

In particular, a major class of synthetic active particles converts chemical energy into
motility by asymmetric chemical reactions on the particle surface. A variety of novel
synthetic active colloids has been developed (Buttinoni et al. 2012; Patifio et al. 2018;
Zhou et al. 2018). For instance, microspheres half-coated in platinum, also known as
Janus particles, can self-propel via catalytic decomposition of hydrogen peroxide on the
platinum-coated surface (Howse et al. 2007; Sanchez, Soler & Katuri 2015). While the
exact mechanism underlying the resulting motion is still under debate (Brown & Poon
2014; Ebbens et al. 2014; Eloul et al. 2020), it has been hypothesized that the motion is
diffusiophoretic as a result of the gradients of molecular oxygen produced by the catalytic
decomposition on the half-coated surface (Golestanian, Liverpool & Ajdari 2005, 2007,
Moran & Posner 2017). Since the solute concentration gradient is self-generated, the
motion of these active particles is also referred to as self-diffusiophoresis. To model the
self-diffusiophoretic motion, a common approach is to separate the fluid domain into
outer (the bulk fluid) and inner (the interaction layer) regions, where the short-range
solute—particle interaction is assumed to be confined in the interaction layer (Anderson
1989; Jiilicher & Prost 2009). When the interaction layer is thin relative to particle size,
the phoretic effects can be represented by a distribution of effective slip velocities at the
particle surface, analogous to the squirmer model (Lighthill 1952; Blake 1971; Pedley
2016) proposed for swimming ciliates such as Paramecium and Volvox. While the slip
velocity in the squirmer model is determined by the beating motion of short cilia covering
the cell, the slip velocity of a self-diffusiophoretic particle is proportional to the solute
concentration gradient and phoretic mobility calculated from the interaction potential in
the interaction layer (Anderson 1989; Jiilicher & Prost 2009). As a remark, recent studies
have indicated that the standard self-diffusiophoretic framework described may become
ineffective when the reactive species are charged (Brown et al. 2017; De Corato et al.
2020; Asmolov, Nizkaya & Vinogradova 2022).

Extensive studies have elucidated various interesting features of self-diffusiophoretic
motion in a Newtonian fluid (Moran & Posner 2017). However, most biological fluids such
as blood and mucus display non-Newtonian (complex) rheological behaviours, including
viscoelasticity and shear-thinning viscosity (Hwang, Litt & Forsman 1969; Baskurt
& Meiselman 2003). Since these synthetic active particles will invariably encounter
biological fluids in their biomedical applications, a fundamental question is how different
non-Newtonian rheological behaviours impact the propulsion of these active particles
(Patteson et al. 2016). While many previous theoretical and experimental studies focused
on swimming in viscoelastic fluids (Sznitman & Arratia 2014; De Corato, Greco &
Maffettone 2015; Elfring & Lauga 2015; Bechinger et al. 2016; Natale er al. 2017;
Saad & Natale 2019; Zottl & Yeomans 2019; Li, Lauga & Ardekani 2021; Spagnolie
& Underhill 2023), recent studies have begun to address the effect of shear-thinning
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viscosity (Montenegro-Johnson, Smith & Loghin 2013; Vélez-Cordero & Lauga 2013;
Gagnon, Keim & Arratia 2014; Li & Ardekani 2015; Park er al. 2016; Gémez et al.
2017). A shear-thinning fluid loses its viscosity with applied shear due to changes in its
microstructure. Such a non-Newtonian behaviour was found to impact the propulsion of
various low-Reynolds-number swimmers in qualitatively different manners (Datt et al.
2015, 2017; Demir et al. 2020; Qu & Breuer 2020; Qin et al. 2021; van Gogh et al.
2022). In particular, Datt er al. (2015) considered a general spherical squirmer model in
a shear-thinning fluid, and demonstrated how shear-thinning rheology can both enhance
and hinder its propulsion, depending on specific details of the slip velocity. Interestingly,
in a later study (Datt et al. 2017), spherical self-diffusiophoretic particles were found to
always swim slower in a shear-thinning fluid than in a Newtonian fluid for any level of
active surface coverage. This also prompts the question of to what extent the conclusion of
hindered swimming continues to hold for non-spherical self-diffusiophoretic particles.

Swimmers with non-spherical shapes are commonly found in both nature and
engineered systems. For instance, ciliates such as Paramecium and Tetrahymena have
approximately prolate spheroidal body shapes. Keller & Wu (1977) considered a
spheroidal squirmer model, which was extended by later studies to probe the effect of
geometrical shape upon ciliary locomotion (Ishimoto & Gaffney 2013; Theers et al. 2016;
Poehnl, Popescu & Uspal 2020). Furthermore, synthetic active particles of non-spherical
shapes, including prolate spheroids and general slender bodies, were also fabricated and
studied experimentally and theoretically (Champion & Mitragotri 2006; Champion, Katare
& Mitragotri 2007; Glotzer & Solomon 2007; Shemi & Solomon 2018; Yariv 2019; Poehnl
et al. 2020; Poehnl & Uspal 2021; Katsamba et al. 2022; Zhu & Zhu 2023). In particular,
Poehnl et al. (2020) analysed the self-diffusiophoretic motion of spheroidal particles in
a Newtonian fluid. However, much less is known about these spheroidal active particles
in non-Newtonian fluids. A recent study has suggested that shear-thinning rheology can
indeed enhance the propulsion of a squirming spheroid (van Gogh et al. 2022). However, it
remains unclear whether or not a spheroidal self-diffusiophoretic particle can swim faster
in a shear-thinning fluid than in a Newtonian fluid, which was shown to be impossible for
the spherical case (Datt ef al. 2017). In this work, we fill in this knowledge gap by analysing
the self-diffusiophoretic motion of a spheroidal particle in a shear-thinning fluid. We
use asymptotic analysis and numerical simulations to reveal how shear-thinning viscosity
impacts the propulsion speed of a prolate spheroidal self-diffusiophoretic particle with
different eccentricities and levels of active surface coverage. Our results have uncovered
some propulsion behaviours not observed in the spherical case, and we present symmetry
considerations to help elucidate the emergence of these new features as a combined effect
of particle anisotropy and nonlinear fluid rheology.

2. Problem formulation
2.1. Geometrical set-up

We examine a prolate spheroidal particle characterized by a major axis a, and a minor
axis b, as illustrated in figure 1. The prolate spheroidal coordinates (7, ¢, ¢), where T €
[1,00), ¢ € [—1,1] and ¢ € [0, 27), are employed in this work. The prolate spheroidal
coordinates can be related to the cylindrical coordinates (7, z, ¢) as

r=aVE—11- z=gee, 2.1a,b)
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Figure 1. Geometric configuration of a spheroidal Janus particle. The model is presented in prolate spheroidal
coordinates (7, ¢, ¢). The coordinate grid is indicated by dashed lines, and the basis vectors are denoted e; and
e;. The active cap of the particle, depicted in grey, spans from { = —1 to gy. The rest of the surface is inert.

where 2 = x? 4+ y%, and ¢f = ~/a*> — b%. The surface of the spheroidal particle is given by

Z2 72

a2 p
which translates to r = by/1 — ¢2 and z = a¢. Comparing with (2.1a,b), the spheroidal
particle surface can be simply represented by

T=19=1/e, (2.3)

=1, (2.2)

where e = cr/a is the eccentricity. The basis vectors in the prolate spheroidal coordinates,
represented as (e, e;, ep), are related to the basis vectors in cylindrical coordinates,
denoted (e, e;, ), in the following manner:

ﬁ crg CFT

e, e=———e+-——e (2.4a,b)

T
e+ I h; 7

T T,

The metric coefficients for the prolate spheroidal coordinates are given by

N /1—2_@-2 G, /T2_§2 _ 5 5
_T, h;—ﬁ, hd)—Cf\/T —1\/1—§ . (Z.SG—C)

On the surface of the prolate spheroidal particle, the unit normal vector pointing outwards
is given by n = e, and the unit tangent vector pointing upwards is given by ¢ = e, as
illustrated in figure 1.

hx

2.2. Governing equations and boundary conditions

We treat the problem within the continuum framework of self-diffusiophoretic propulsion
(Golestanian et al. 2007; Michelin & Lauga 2014), where the particle interacts with
a solute species of local concentration C. Here, we consider an axisymmetric Janus
spheroidal particle with chemically active and inert compartments, with the polar position
Lo specifying the active surface coverage as illustrated in figure 1. On the active portion of
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the particle surface (t = 19, { < {p), we assume that the solute is emitted/absorbed with
a fixed flux characterized by the activity A:

Dn-VC=-A, (2.6)

where D is the diffusivity, A > 0 corresponds to solute emission, and A < 0 corresponds to
the solute absorption. The activity becomes zero (A = 0) on the inert portion of the particle
surface (t = 19, ¢ > o). Under the assumption of a thin interaction layer (Golestanian
et al. 2005, 2007; Michelin & Lauga 2014; Datt et al. 2017), the effective slip velocity at
the surface of the particle,

us =MU — nn) - VC, 2.7)

is proportional to the tangential concentration gradients and the phoretic mobility M
determined by the interaction potential profile (Anderson 1989; Michelin & Lauga 2014).
In general, when the interactions are attractive, M < 0 and the slip velocity is opposite
to the concentration gradients; when the interactions are repulsive, M > 0 and the slip
velocity is along the concentration gradients. In this work, we present results for the
case where M > 0 and A > 0 without loss of generality. By symmetry and linearity, a
flipping of the sign of M or A only inverts the direction of swimming velocity in the
results presented below.

In the bulk fluid, the solute concentration is governed by an advection—diffusion
equation

% +u-VC=DVC, (2.8)

where u is the velocity of the flow, and the solute concentration in the far field is denoted by
Coo- In the inertialess regime, the flow generated by the phoretic slip velocity is governed
by the momentum and continuity equations, respectively, as

V.o =0, V.u=0, (2.9a,b)

where 0 = —pI + T, p is the pressure, I is the identity tensor, and T is the deviatoric
stress tensor. The boundary condition for the velocity field on the particle surface in the
laboratory frame is given by

u(t =1) =us(¢) + U, (2.10)

where u; is the phoretic slip velocity given by (2.7), and U = Ue; is the unknown
propulsion velocity, which occurs in the z-direction by axisymmetry. The flow decays to
zero in the far field, u(t — oo) = 0. The system of equations is closed by enforcing the
force-free condition on the particle,

/n-adS:O, (2.11)
s

where S denotes the particle surface.

2.3. Shear-thinning rheology

To probe the effect of shear-thinning rheology on the self-diffusiophoretic motion, we
consider here the Carreau constitutive model (Bird, Armstrong & Hassager 1987), which
has been shown to be effective in capturing the shear-thinning viscosity of different
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biological fluids (Vélez-Cordero & Lauga 2013). In the Carreau model, the deviatoric
stress is given by

T = [ioo + (10 — Hoo) (1 + 52%p : )7 D2, (2.12)

where 1o and p, represent, respectively, the viscosities when the shear rate is zero and
infinite, 1/ characterizes the critical shear rate at which the non-Newtonian behaviour
becomes significant, and y = Vu + (Vu)T is the strain rate tensor. For low and high shear
rates (relative to the critical shear rate), the fluid tends to behave as a Newtonian fluid with
viscosity, respectively, (o and (. In the intermediate regime, the fluid displays a power
fluid behaviour, with the index n < 1 characterizing the degree of shear-thinning.

2.4. Non-dimensionalization

We non-dimensionalize the problem by scaling lengths with a, velocities with MA/D,
stresses with uoMA/Da, and the solute concentration with Aa/D. Hereafter, we consider
only dimensionless quantities and use the same symbols as their dimensional counterparts
for convenience.

We denote the solute concentration relative to the far-field solute concentration as ¢ =
C — Co, which satisfies the dimensionless advection—diffusion equation,

3
Pe <a_j fu- Vc> = V2. (2.13)

Here, the Péclet number Pe = MAa/D? characterizes the relative importance of advective
to diffusive transport of the solute. We assume that the diffusivity is high enough and
neglect the alteration in solute distribution caused by the flow from phoretic effects, and
that the solute concentration becomes harmonic,

VZe=0. (2.14)

The dimensionless boundary condition on the active portion of the particle surface
(t =10, ¢ < {p) is given by
n-Vec=-1, (2.15)

whereas that on the inert portion (t = tp, ¢ > {p) is simply
n-Ve=0. (2.16)
The relative solute concentration decays to zero at infinity:
c(t — o0) =0. 2.17)

Given that the solute concentration is decoupled, the governing equations for the fluid
align with those presented in (2.9a,b). The Carreau constitutive equation is rendered
dimensionless as

T=y+(-p-1+1A+1c?y:p)=D2p, (2.18)

where 8 = oo/ Lo 1S the viscosity ratio, and Cu = AMA /aD is the Carreau number, which
compares the characteristic shear rate MA /aD to the critical shear rate 1/A1.
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In the laboratory frame, the dimensionless boundary condition for the velocity field
on the particle surface is given by u(t = t9) = uy; + Ue,, where the slip velocity in
dimensionless form reads

={ —nn)- Ve, (2.19)

and the flow decays to zero in the far field, u(t — oo) = 0. In the following calculations,
we determine the unknown propulsion speed U of the spheroidal self-diffusiophoretic
particle in a shear-thinning fluid.

3. Asymptotic analysis and numerical simulations
3.1. Asymptotic analysis
The solute concentration can be obtained by solving the Laplace equation (2.14) with

boundary conditions (2.15)—(2.17) in the prolate spheroidal coordinates. An analytical
solution in form of a series is given by (Popescu et al. 2010)

c(1,8) =Y pn Qu(®) Pu(0), 3.1)

n=0

where P,(¢) and Q,(t) are, respectively, the Legendre functions of the first and second
kinds. As T > 7y > 1, the Legendre functions of the second kind vanish when 7 — oo,
satisfying the far-field boundary condition for the relative concentration, (2.17). By
substituting the solution (3.1) into the boundary conditions at the particle surface,
(2.15)—(2.16), and employing the orthogonality of the Legendre functions, the coefficients
0n in the series solution are determined as

2 1 %o
mmxw=—"; : /‘J 2P0 (32)
0, (1) 10,/75 — 1

By employing the solution (3.1) in (2.19), the resulting phoretic slip velocity at the particle
surface, us(¢) = uye, is given by

o Pa©)
us(¢) = 70 ZB \/_2 (3.3)
5 — ¢
where the phoretic modes are given by
By, = —pa(70, C0) On(70), (3.4)

and P is the associated Legendre function with order 1.

We perform an asymptotic analysis in the weakly non-Newtonian regime where the
deviation of the viscosity ratio from unity, € = 1 — 8, is small. We expand the physical
quantities in powers of € as

{u7 J.,’O-’p’ T’ U} = {u()v }’0» GOapO’ TO? UO} +6{u19 j’]ao—lap]’ T]? U]} +O(€2)
3.5)

The zeroth-order problem corresponds to the Newtonian problem, where o9 = —pol + p
and yo = Vug + (Vug)T. For boundary conditions, we have uo(t = 19) = Upe; + use;
on the particle surface, and ug(t — oo) = 0 in the far field, where u; is given in (3.3).
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The flow field up and propulsion speed Uy of this zeroth-order Newtonian problem were
obtained in previous works (Leshansky et al. 2007; Popescu et al. 2010; Lauga & Michelin
2016; Poehnl et al. 2020), which we summarize in Appendix A.

We consider the first-order non-Newtonian correction to the Newtonian problem. To the
order of €, the flow satisfies

V.o0,=0, (3.6)
V.eu =0, (3.7)

where 01 = —p1I + T, and the stress tensor is 71 = y; + A, with
A=[—1+(1+5C?po:p) " Dy, (3.8)

For boundary conditions, we have the first correction to the Newtonian propulsion velocity,
ui(t = 19) = U1 = Uje, on the particle surface, and u1(t — o0) = 0 in the far field. To
obtain the propulsion speed Uj, we bypass detailed calculations of the flow via a reciprocal
theorem approach (Lauga 2014). By considering an auxiliary Stokes flow due to a prolate

spheroid of the same geometry translating at a velocity U, where the velocity & and stress
o fields satisfy V - 6 = 0 and V - & = 0, one can form the relation

u-(V-oy)=u -(V-6)=0. (3.9

By integrating the relation over the fluid volume V exterior to the particle surface S and
applying the divergence theorem, one can obtain

/n-&-uldS—/n-aloitdS=/61 :VﬁdV—f&:deV. (3.10)
S N 1% 1%

We note that due to the force-free condition at O(e), f g+ 01dS =0, the second integral
on the left-hand side of (3.10) is given by [¢n -0 - 2dS = (fyn-0dS)- U = 0. Upon
substituting the constitutive equations for 6 and o1, and applying the boundary condition
u; = U; on §, (3.10) simplifies to

F.U = / A:Vidy, (3.11)
1%

where F = fsn .0dS= —STC‘L'O_][(‘EOZ + Dcoth™' 79 — r()]_leZ is the drag on the
translating prolate spheroid in the auxiliary problem. Therefore, the first-order correction
to the phoretic speed is given in terms of a volume integral in prolate spheroidal
coordinates as

2 -1 1

54+ Dceoth ™' t9g—19 [ N

Uy = _®m+D 3 0 0/ / (A: Vi) (t? — 2 de dr, (3.12)
47:0 T0 —1

which can be evaluated with quadrature.

3.2. Numerical simulation

To extend the results beyond the weakly non-Newtonian regime considered in the
asymptotic analysis in § 3.1, we develop numerical simulations based on the finite
element method using the partial differential equation (PDE) module of the commercial
package COMSOL to perform fully coupled simulations of the momentum and continuity
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equations (2.9a,b) with the Carreau—Yasuda constitutive equation (2.18), and the
solute transport equation (2.14). We use an axisymmetric computational domain with
dimensionless radius 500 to simulate the self-propulsion of the Janus particle in an
unbounded fluid. A sufficiently large domain size is important to guarantee accuracy
due to the slow spatial decay of flows at low Reynolds numbers. The Janus particle
is modelled as a half-spheroid whose major axis coincides with the axis of symmetry.
The simulations are performed in a reference frame that is co-moving with the particle,
and the far-field velocity is equal to the negative swimming velocity determined by the
force-free condition (2.11). The computational domain is discretized by approximately
100000-127 000 triangular elements, and the mesh is locally refined near the particle
to properly resolve the spatial variation of the viscosity. Taylor—Hood and quadratic
Lagrange elements are adopted to discretize the flow field (u, p) and the concentration
field c, respectively. It is important to note that, theoretically, there exists a discontinuous
alteration in surface activity between the active and inert compartments of the Janus
particle. However, when modelled numerically, this abrupt transition can cause significant
numerical errors, particularly at lower Cu values. To alleviate the numerical errors, we
introduce a minor smoothing transition, dependent on the mesh size, to the surface activity
in the vicinity of the discontinuity.

In addition to comparing with the asymptotic results in this work, we have validated
our numerical implementation against previous results for a spherical Janus particle in a
shear-thinning fluid (Datt et al. 2017) and a spheroidal Janus particle in a Newtonian fluid
(Popescu et al. 2010); see Appendix B for more details.

4. Results and discussion
4.1. Effect of particle eccentricity on self-diffusiophoresis in a shear-thinning fluid

In a Newtonian fluid, the dependence of the self-diffusiophoretic propulsion speed on
the particle geometry and catalyst coverage was examined in detail by previous works
(Popescu et al. 2010; Poehnl ez al. 2020). Here, we investigate how shear-thinning rheology
impacts the propulsion speeds (U) relative to their corresponding Newtonian values (Up).
The special case of a spherical Janus particle was examined by Datt et al. (2017), and
it was shown to always swim slower in a shear-thinning fluid than in a Newtonian fluid
across a wide range of Cu. In figure 2(a), we reproduce these results by setting the
eccentricity to zero (e = 0, black solid line and black circles): the spherical Janus particle
displays reduced propulsion speed (U/Uy < 1) as Cu increases from zero, reaching a local
minimum when Cu is around O(1), before approaching the Newtonian value again when
Cu becomes exceedingly large. We employ the spherical case as a benchmark to probe
the effect of particle geometry by varying the eccentricity from e = 0 to e = 0.99. From
spherical to moderately spheroidal particles (e.g. ¢ = 0.6), the increased eccentricity does
not affect the qualitative features of the speed dependence on Cu.

However, for more slender spheroidal particles (e.g. e = 0.99), our results reveal that
a self-diffusiophoretic particle can also swim faster in a shear-thinning fluid than in
a Newtonian fluid (blue dotted lines and blue upward triangles), which was shown to
be impossible for a spherical particle (black solid line and black circles) (Datt et al.
2017). These new behaviours are predicted by both the asymptotic results from the
reciprocal theorem (lines) and results from numerical simulations (symbols) in the
weakly shear-thinning regime (8 = 0.9), which display excellent agreement, as shown
in figure 2(a). We verify that these new features continue to exist beyond the weakly
non-Newtonian regime by considering a small viscosity ratio (8 = 0.1) in figure 2(b),
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Figure 2. (@) Swimming speed of a spheroidal Janus particle U in a shear-thinning fluid relative to its
corresponding Newtonian value Uy as a function of the Carreau number for different values of eccentricity
e when the shear-thinning effect is weak (8 = 0.9). The asymptotic results in the small € =1 — g limit
(lines) agree well with numerical simulations (symbols). For large eccentricities (e.g. ¢ = 0.9 and 0.99), the
Janus particle can swim faster in a shear-thinning fluid than in a Newtonian fluid. (») Numerical results for
a strong shear-thinning effect (8 = 0.1); the qualitative behaviours remain the same, the speed variations are
substantially larger. In both (a,b), the active coverage of the particle is {y = 0, and the shear-thinning power
law index is n = 0.25.

where we observe the same qualitative behaviours but with greater magnitudes of speed
enhancement and reduction at different Cu.

4.2. Effect of active surface coverage on self-diffusiophoresis in a shear-thinning fluid

We focus in § 4.1 on Janus particles with half active surface coverage ({p = 0), which was
shown to maximize the self-diffusiophoretic propulsion speed of spherical and spheroidal
particles in a Newtonian fluid. Here, we examine whether or not this feature remains
the same when the fluid displays shear-thinning rheology. In figure 3(a), we display the
propulsion speed relative to its Newtonian value as a function of particle eccentricity and
active surface coverage, which varies between {y = —1 (no active surface coverage) and
Zo = 1 (full active surface coverage). It is observed that, regardless of the active surface
coverage, the regime of enhanced propulsion (U/Uy > 1, indicated by the dashed line
in figure 3a) occurs only when the particle eccentricity goes beyond a threshold value
of approximately 0.7. In addition, the enhanced propulsion occurs for a wider range of
active surface coverage with increased particle eccentricity. For instance, among all the
values of active surface coverage examined in figure 3(a), while enhanced propulsion is
observed in only approximately 15 % of the cases when ¢ = 0.8, the percentage increases
to more than 60 % when e = 0.99. Another interesting feature is the asymmetry in
the occurrence of enhanced propulsion with respect to the active surface coverage: the
regime is not symmetrically distributed around ¢, but instead skewed towards the positive
direction of ¢. This observation also suggests that the specific case of half active coverage
(¢o = 0), which was shown to maximize self-diffusiophoretic propulsion in previous
works (Popescu et al. 2010; Datt et al. 2017; Poehnl et al. 2020), may no longer be optimal
for spheroidal particles in shear-thinning fluids.

In addition to propulsion speed, efficiency is another relevant performance measure
of the swimming motion. Recent studies have investigated how the geometrical
shapes of active particles influence their efficiency of swimming in a Newtonian
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Figure 3. (@) Swimming speed of a spheroidal Janus particle in a shear-thinning fluid with different values of
eccentricity e and active coverage ¢o. The dashed line indicates the particles for which the swimming speed
is enhanced by the shear-thinning effect. (b) Relative swimming efficiency of a spheroidal Janus particle with
different values of eccentricity and active coverage. For all data points, Cu = 20000, 8 = 0.1 and n = 0.25.

fluid (Daddi-Moussa-Ider et al. 2021; Guo et al. 2021). Here, we adopt the
widely used definition of swimming efficiency introduced by Lighthill (1975) for
low-Reynolds-number swimmers, n = F - U/P, to characterize the efficiency of
swimming in a shear-thinning fluid. Lighthill’s efficiency compares the power dissipation
of the swimmer, P = [, g0 -udS, with the power required to move a particle with
identical shape at the same swimming velocity U against the drag force F. Our results
show that while speed enhancement occurs only in a specific domain of eccentricity and
active surface coverage (figure 3a), the swimming efficiency in a shear-thinning fluid is
consistently enhanced, 7/no > 1, relative to the corresponding swimming efficiency in
a Newtonian fluid (7o) in the entire domain shown in figure 3(b). Taken together, these
results reveal that self-diffusiophoretic propulsion can be enhanced both speed-wise and
efficiency-wise in a shear-thinning fluid relative to the corresponding case in a Newtonian
fluid.

Next, we further examine the asymmetry observed in the enhanced propulsion speed
with respect to the active surface coverage shown in figure 3(a). We display in figure 4(a)
the absolute propulsion speed of spherical and spheroidal particles as functions of
active surface coverage at different values of Cu. In figure 4(a), we observe that the
propulsion speed of a spherical particle is symmetric about the half surface coverage (o),
which maximizes the speed in both Newtonian (Cu = 0) and shear-thinning (Cu > 0)
fluids. In contrast, for a spheroidal particle with e = 0.99 shown in figure 4(b), while
the aforementioned features still hold in the Newtonian limit (Cu = 0, blue downward
triangles), when the fluid is shear-thinning (e.g. Cu = 500, red upward triangles), the
variation of the propulsion becomes asymmetric about g = 0, which no longer maximizes
the self-diffusiophoretic propulsion speed. Instead, the maximum propulsion speed occurs
at a positive active surface coverage ({o > 0) as shown in figure 4(b), depending on
parameters measuring the shear-thinning effect, including 8 and Cu. The emergence of
this novel feature requires the combined presence of both non-Newtonian rheology and
non-spherical geometry, which we attempt to better understand via symmetry arguments
presented in the next subsection.
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Figure 4. Swimming speeds of (a) spherical (e = 0) and (b) spheroidal (e = 0.99) Janus particles as functions
of ¢, with 8 = 0.1. Three fluids are considered: Cu = 0 (blue downward-pointing triangle, Newtonian fluid),
Cu = 500 (red upward-pointing triangle) and Cu = 20 000 (black circle).
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Figure 5. Swimming speeds of (a) a pair of complementarily coated spherical (e = 0) and (b) spheroidal
(e = 0.99) particles in a shear-thinning fluid with active coverage ¢y = +0.5. The complementarily coated
spherical swimmers are propelled with the same speed, while spheroidal swimmers break this symmetry. In
both (a,b), B = 0.1 and n = 0.25.

4.3. Symmetry considerations

To examine the feature of symmetry breaking across the full range of Cu, we compare
the swimming speed of two complementarily coated particles with ¢y = £0.5 for the
spherical (e = 0, figure 5a) and spheroidal (e = 0.99, figure 5b) cases. For spherical
particles, figure 5(a) shows that the swimming speed of a particle with ¢y = —0.5 (blue
triangles) is identical to that with ¢y = 0.5 (black circles) over the entire range of Cu,
despite the latter having a significantly larger active surface coverage. On the contrary,
figure 5(b) demonstrates that the swimming speeds of two complementarily coated
spheroidal particles ({o = %0.5) approach the same value only when Cu is exceedingly
small or large, where the fluid medium becomes effectively Newtonian. At intermediate
values of Cu, the spheroidal particle with o = —0.5 (blue triangles) generally exhibits
a considerably different swimming speed compared with its complementarily coated
counterpart (o = 0.5, black circles) as shown in figure 5(b).
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Figure 6. Schematics illustrating the symmetry considerations for a pair of complementarily coated particles.
The phoretic slip velocity on the surface of a particle with an active coverage ¢o is denoted as us(¢; ¢o), and
the corresponding propulsion speed as U(¢p). The slip velocity on a fully-coated spherical particle is zero
everywhere due to the isotropy. Consequently, the flow induced by the particles with active region +¢o always
shows symmetry, which leads to identical speeds. As the slip velocity on a fully-coated anisotropic particle is
not zero, the flow and the slip velocity do not have the reflection symmetry, and the particle speeds are not the
same in general. However, if the flow is Newtonian, then the speeds are the same due to the linearity.

One may understand the above feature as a combined result of symmetry breaking and
nonlinear rheology, as illustrated in figure 6. We denote the phoretic slip velocity on
the surface of a particle with an active coverage o as us(¢; £o), and the corresponding
propulsion speed as U(gp). We note that in the zero-Pe limit considered here, the linearity
of the Laplace equation allows superposition in the solute concentration problem. Now,
considering a fully coated particle, the phoretic slip velocity can be decomposed into
two complementary cases, us(¢; 1) = ug(¢; —¢o) — us(—¢; o), as shown in figure 6 for
spherical and spheroidal particles. For a fully coated spherical particle, the slip velocity
is zero everywhere on the particle surface due to isotropy, us(¢; 1) = 0. This property
leads to the result u;(¢; —¢o) = us(—¢; Lo), which means that the boundary conditions on
two complementarily coated spherical particles become identical upon a reflection about
z = 0. This result is illustrated in figure 7(a) for the slip velocity of two complementarily
coated spherical particles, which consequently, upon a reflection about z = 0, generate
the same flow field as shown in figure 7(c). The identical propulsion speed of these
complementarily coated particles, U(Zg) = U(—¢o), is therefore a direct result of isotropy
for spherical self-diffusiophoretic particles, regardless of whether the fluid is Newtonian
or non-Newtonian.

When particle eccentricity is introduced, the anisotropy implies that the slip velocity
of a fully coated spheroidal particle does not vanish everywhere on the surface of
the particle, uy(¢; 1) #0. As illustrated in figure 7(b), the boundary conditions on
two complementarily coated spheroidal particles therefore no longer have the reflection
symmetry about z =0, uy(¢; —¢o) #us(—¢; &o), leading to generally distinct flows
surrounding the spheroidal particles, as shown in figure 7(d). Consequently, unlike
spherical particles, one may expect two complementarily coated spheroidal particles to
have distinct propulsion speeds in general. This conclusion is largely true, as shown in
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Figure 7. The slip velocity and the flow field around the particles with active region ¢p = +0.5, in a
shear-thinning fluid with Cu =1, 8 = 0.1 and n = 0.25. (a,c) The slip velocity and the flow field around
the spherical swimmers have an upside-down symmetry, which does not appear in (b,d), those around the
spheroidal swimmers (e = 0.99).

figure 5(b), except for the special case when the fluid is Newtonian. For a Newtonian
fluid, the linearity of the governing equations allows the superposition of the solutions
associated with the pair of particles with complementary coatings to form the solution
of a particle with full coating (figure 6a), leading to the result U(1) = U(&y) — U(—%p).
Since U(1) = 0 for a fully coated particle, we obtain the conclusion U(p) = U(—¢p) for
a Newtonian fluid, which holds for both spherical and spheroidal particles, despite the
absence of reflection symmetry in their slip velocities. When the fluid is non-Newtonian,
the superposition described above no longer holds, allowing the propulsion speeds of two
complementarily coated spheroidal particles to be different.

To summarize, isotropy in spherical geometry alone guarantees that two complementarily
coated particles propel with identical speeds, regardless of whether the fluid is Newtonian
or not. In parallel, in a Newtonian fluid, the linearity of the problem alone guarantees
the same, regardless of whether the particle is spherical or not. Hence to propel two
complementarily coated particles with different speeds, both isotropy and linearity need
to be broken. The emergence of different speeds for a pair of complementarily coated
spheroidal particles in a shear-thinning fluid reported here therefore serves as a specific
example illustrating this general feature.
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5. Concluding remarks

Shear-thinning viscosity is a non-Newtonian behaviour that active particles often
encounter in biological fluids. The investigation into how this ubiquitous non-Newtonian
rheology impacts the propulsion speed of active particles has garnered considerable
recent interest. In particular, previous studies have demonstrated how shear-thinning
rheology slows down spherical active particles (Datt et al. 2015, 2017). A more recent
investigation (van Gogh et al. 2022) has suggested that by tuning the geometrical shape
of a squirmer, it is possible for a spheroidal squirmer to swim faster in a shear-thinning
fluid than in a Newtonian fluid. In this work, we have extended the analysis by van
Gogh et al. (2022) on the spheroidal squirmer model to self-diffusiophoretic particles, a
major physico-chemical propulsion mechanism of synthetic active particles. Unlike the
squirmer model, where the velocity distribution on the particle surface is prescribed,
the effective slip velocity of a self-diffusiophoretic particle is determined by the solute
concentration gradient and the phoretic mobility. Using asymptotic analysis to probe the
weakly non-Newtonian behaviour, we have demonstrated that shear-thinning viscosity
can indeed enhance self-diffusiophoretic propulsion of spheroidal particles with a large
particle eccentricity in a specific regime of Carreau number. This result is in stark
contrast with spherical self-diffusiophoretic particles, which always swim more slowly
in a shear-thinning fluid (Datt et al. 2017). We have also used numerical simulations to
verify that the new features uncovered by the asymptotic analysis continue to hold beyond
the weakly non-Newtonian regime.

We have also systematically characterized the dependence of the self-diffusiophoretic
propulsion speed on the particle’s active surface coverage in a shear-thinning fluid.
Previous studies showed that a pair of complementarily coated spherical or spheroidal
particles always propel at the same speed in a Newtonian fluid. When the fluid becomes
shear-thinning, the same propulsion speed still occurs when the complementarily coated
particles are spherical in shape. However, we have found distinct propulsion speeds for
two complementarily coated spheroidal particles in a shear-thinning fluid. We have also
presented symmetry arguments to better understand how this new feature emerges as a
combined effect of anisotropy associated with the spheroidal geometry and nonlinearity
associated with the non-Newtonian rheology. Such symmetry breaking might hint at using
anisotropic active particles as a tool for probing microrheology of complex fluids.

We remark on several limitations of the current work, and discuss potential directions
for further investigations. First, we have neglected the effect of solute advection by
considering the zero Pe limit. It remains unclear how the flow modifications due to
shear-thinning rheology influence solute advection and thereby the phoretic propulsion.
In particular, the symmetry considerations presented in § 4.3, which require the linearity
of the Laplace equation, would no longer hold for finite Pe. It would therefore be
interesting to probe how the nonlinearity associated with solute advection affects the
symmetry breaking observed for the propulsion of complementarily coated particles.
Second, we have followed previous work (Datt et al. 2017) to focus on the non-Newtonian
effect in the bulk fluid in this work, neglecting the influence of fluid rheology on the
surface slip of a self-diffusiophoretic particle, which was shown to modify the propulsion
speed of a spherical Janus particle in intriguing manners (Choudhary, Renganathan &
Pushpavanam 2020). In particular, in a weakly shear-thinning fluid, the effect due to
the modified slip velocity could dominate the retardation due to the bulk non-Newtonian
stress, leading to the speed enhancement of a Janus spherical particle. An investigation is
currently underway to extend the analysis beyond the weakly non-Newtonian regime and
examine the effect of particle geometry in this more complex physical scenario, where
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the non-Newtonian effects on both slip and mobility of self-diffusiophoretic particles
are taken into account. We also call for future efforts in developing a comprehensive
physical understanding of the findings reported in this work. Finally, we focus on the
effect of shear-thinning viscosity here, while complex biological fluids also display other
non-Newtonian fluid behaviours, including viscoelasticity. Future work accounting for the
viscoelastic stress and its combined effects with shear-thinning rheology will shed light on
how the geometric shape of self-diffusiophoretic particles should be tuned to maximize
their propulsion in biological fluids.
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Appendix A. Solution to the zeroth-order (Newtonian) problem

Here we summarize the solution to the zeroth-order problem, which corresponds to the
self-diffusiophoretic motion of a spheroidal particle in a Newtonian fluid considered in
previous works (Leshansky er al. 2007; Popescu et al. 2010; Lauga & Michelin 2016;
Poehnl et al. 2020). In particular, we follow the approach by Poehnl ef al. (2020) here to
determine the unknown velocity field uy and propulsion velocity Uy.

The unknown propulsion velocity Ug can be obtained using the Lorentz reciprocal
theorem (Stone & Samuel 1996; Popescu et al. 2010; Poehnl er al. 2020), by considering
an auxiliary Stokes flow problem (&, 6) of a translating prolate spheroidal particle of the
same geometry along its major axis. Via the reciprocal theorem (Popescu et al. 2010;
Poehnl er al. 2020), an integral relation is obtained as

ﬁ-Uoz—/us-(n-&)ds, (A1)
S

which relates the force on the translating particle in the auxiliary problem F to the
unknown propulsion velocity Uy via a surface integral involving the surface velocity
ug;. By using the known solution to the auxiliary problem (Happel & Brenner 2012)
and simplifying the surface integral in the prolate spheroidal coordinates, the propulsion
velocity Ug = Upe; is obtained in terms of the integral (Popescu et al. 2010; Poehnl et al.
2020):

NI

I

70

Uy = ——/ ug Y= > dr. (A2)
2 )4 [t2 = ¢2
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Upon substituting the slip velocity given by (3.3), one obtains the final expression of the
propulsion speed for N phoretic modes as (Poehnl et al. 2020)

T Pl PL@)
Up= 2 Bn/ ATt nes g, A3
0 D) n:]XO:ddn 1 T02 . é.2 ; ( )

To determine the velocity field, we consider a streamfunction v for the axisymmetric
flow in the co-moving frame

1 dvyo 1 9y

_ , A4
hehy 00 T hihy 0T ad)

up— Up =

where the far field corresponds to a uniform flow given by —Uj. A general solution of
the streamfunction can be expanded in terms of products of the Gegenbauer functions
in the prolate spheroidal coordinates. For a bounded solution satisfying the far-field and
force-free condition, the streamfunction takes the form (Poehnl ef al. 2020)

Yo, 0) =Y gn(t) Gu(2), (AS5)

n=2

with g2(t) = C4 Hy(v) + Dy Ha(v) — 2¢*Uy G2 (7), g3(t) = C3 + Cs Hs(t) + D3 H3(t)
and g,(t) = Cpy2 Hyi2(t) + C Hy—2(t) + Dy Hy(t) for n > 4, where G, and H,, are
the Gegenbauer polynomials of the first and second kinds, respectively. The coefficients
C, and D,, are determined by the tangential slip velocity and the zero normal velocity on
the particle surface. If we consider a slip velocity (3.3) expansion of only N modes and
apply the boundary conditions to the streamfunction expansion (AS) with only N terms
ranging from n = 2 ton = N + 1, then the following system of equations is obtained:
gn(r0) =0, for2<n<N+1, (A6)
0
98l (= D)By_y, for2<n<N+1. (A7)
0T S
These equations can be separated into a system with coefficients that have only even
indices, and a system with coefficients that have only only odd indices, as all the indices
of C, and D, in g, are always the same parity (Poehnl et al. 2020). The odd system of

equations always has one more unknown than equation; a solvable system of equations is
obtained by setting

1, when N is odd
~ _ h — ’ ’ A
Cny3—m =0, wherem {0, when N is even, A9

for N > 2. Upon obtaining the phoretic modes B, using (3.2) and (3.4), and using the
result given by (A3), the system (A6)—(A7) is solved for the coefficients C, and D,, for
the zeroth-order velocity field. Interested readers are referred to previous works for further
details (Popescu et al. 2010; Poehnl et al. 2020).

Appendix B. Validation of numerical simulations

In this appendix, we include results on the validation of our numerical approach against
previously reported findings. First, we follow the numerical implementation described
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Figure 8. Validation of the numerical approach against previously reported results. (a) Comparison of the
numerical results (symbols) on the swimming velocity of a spherical Janus particle as a function of Cu for
different values of active surface coverage ¢y with the asymptotic solution (lines) of the scaled first-order
swimming velocity (U;/Ug) obtained by Datt er al. (2017) in a weakly shear-thinning fluid (8 = 0.99).
(b) Comparison of the numerical results (symbols) on the swimming velocity U of a spheroidal Janus particle
as a function of ¢y for different eccentricities e with the solution (lines) obtained by Popescu et al. (2010) in a
Newtonian fluid. Note that the Janus particles simulated here are coated on the bottom to maintain consistency,
and correspondingly, we set A = —1 and M = 1 in both plots.

in § 3.2 to simulate the self-propulsion of a spherical Janus particle in a shear-thinning
fluid, and compare the numerical results with the asymptotic solution obtained by Datt
et al. (2017) in the weakly nonlinear limit (8 = 0.99). As shown in figure 8(a), the
results display satisfactory agreement for a wide range of Cu for different active surface
coverage o. Second, we assess the capability of our numerical approach for handling
non-spherical geometries by simulating the self-propulsion of spheroidal Janus particles
with different eccentricities in a Newtonian fluid, and compare the numerical results with
the solution obtained by Popescu et al. (2010). As shown in figure 8(b), the results again
agree satisfactorily, validating our numerical implementation.
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