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Abstract—The application of reinforcement learning in
controlling Heating, Ventilation, and Air Conditioning (HVAC)
systems has been extensively researched. Existing studies
primarily focus on Model-Free Reinforcement Learning (MFRL),
which involves trial-and-error interactions with real buildings
to train the agent. However, MFRL encounters a significant
challenge: it requires a large amount of training data to
achieve satisfactory performance. While simulation models have
been used to generate training data and expedite the training
process, they necessitate high-fidelity building models that are
difficult to calibrate. As a result, Model-Based Reinforcement
Learning (MBRL) has been employed for HVAC control.
Although MBRL demonstrates remarkable sample efficiency,
it often falls short in terms of asymptotic control performance,
particularly in achieving substantial energy savings while
ensuring occupants’ thermal comfort. In this study, we conduct
experiments to analyze the limitations of current MBRL-based
HVAC control methods, focusing on model uncertainty and
controller effectiveness. Leveraging the insights gained from
these experiments, we develop MB2C, an innovative MBRL-based
HVAC control system that combines high control performance
with exceptional sample efficiency. MB>C learns the dynamics
of the building by employing an ensemble of environment-
conditioned neural networks and utilizes a novel control method
called Model Predictive Path Integral (MPPI) for HVAC control.
MPPI generates candidate action sequences using an importance
sampling weighted algorithm, which is well-suited for multi-zone
buildings with high state and action dimensions. We evaluate
MB?2C using EnergyPlus simulations in a five-zone office building,
and the results demonstrate that MB2C achieves 8.23% higher
energy savings compared to the state-of-the-art MBRL solution
while maintaining comparable thermal comfort. Moreover, MB>C
significantly reduces the required training data set by an order
of magnitude (10.52x) while delivering performance on par with
MFRL approaches.

Note to Practitioners—Our research addresses a critical
challenge in HVAC control, offering an innovative solution to
enhance the data efficiency of HVAC systems while optimizing
energy usage. Traditional approaches, such as Model-Free
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Reinforcement Learning, often require a large volume of real-
world data. Our primary focus is improving the effectiveness
of HVAC control, a vital aspect of building management that
directly affects energy consumption and occupant well-being.
We introduce MB2C, a Model-Based Reinforcement Learning
system designed to significantly improve energy savings while
maintaining thermal comfort. MB2C achieves remarkable results,
offering exceptional sample efficiency and substantially reducing
the required training data. Our research leverages an ensemble
of environment-conditioned neural networks and employs Model
Predictive Path Integral in HVAC control. While MB2C presents
notable benefits, it also has limitations. Further research and
development are required to optimize its performance across
different building environments and specific use cases. Future
directions should focus on addressing the safety challenges
associated with real-world deployment. Beyond HVAC control,
the principles and methods explored in this research have
potential applications in various automation domains, such as
robotics, industrial automation, and manufacturing processes.

Index Terms— HVAC control, model-based deep reinforcement
learning, model predictive control, energy efficiency, optimal
control.

I. INTRODUCTION

EOPLE spend the majority of their time indoors [2],

making the optimization of indoor environmental quality
through Heating, Ventilation, and Air Conditioning (HVAC)
systems not only a matter of comfort but also of health
and energy efficiency. HVAC control is the process of
regulating these systems to achieve a balance between
occupant comfort and energy usage. The primary control
targets of HVAC systems include maintaining optimal indoor
air quality, ensuring thermal comfort for building occupants
and minimizing energy consumption and operational costs.
In the United States, buildings account for approximately 40%
of total energy consumption, with HVAC systems consuming
about half of this energy [3], [4]. The evolution towards
smart buildings, powered by the Internet of Things (IoT)
[5], [6], has created opportunities for more sophisticated
control strategies [7], [8]. These strategies aim to enhance
energy efficiency and occupant comfort by using sensor data
to intelligently manage HVAC operations [9] and analyze
behavior [10].

In HVAC systems, the widespread adoption of Rule-based
Control (RBC) enables the adjustment of actuators such as
temperature and fan speed [11]. A significant advantage of
RBC is its simplicity, making it easy to comprehend. However,
RBC relies on static thresholds and if-then rules, often
derived from rule-of-thumb guidelines and the knowledge of
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engineers and facility managers. This approach faces two
primary challenges. Firstly, RBC does not scale effectively as
buildings become larger and more complex, necessitating the
addition of numerous rules. Secondly, RBC struggles to handle
incomplete or inaccurate information, which is a common
occurrence in practical building scenarios. It is important to
note that RBC does not offer a guaranteed optimal control
solution.

To address these limitations, extensive research has been
conducted on Model Predictive Control (MPC), which
leverages an analytical building model [12], [13]. In this
approach, an optimization problem is formulated with the
building model and specific constraints, allowing for the
simultaneous optimization of actions and building states
through the use of analytic gradient computation. However,
to achieve fast and scalable optimization, this method-
ology often requires convexification of the cost function
and approximations of building dynamics [14]. Moreover,
accurately capturing the complexities of thermal dynamics
and various influential factors (e.g., building layouts, HVAC
configurations, and occupancy patterns) in analytical energy
models for heterogeneous buildings [15] is a challenging
task. As a result, existing solutions often employ simplified
models to meet the data requirements for parameter fitting
and address computational complexity [12], [13]. For instance,
Gnu-RL [16] adopts a differentiable MPC policy, employing a
simplified linear model to represent the dynamics of a water-
based radiant heating system.

The field of HVAC control has witnessed extensive research
on Reinforcement Learning (RL) techniques [17], [18], [19],
[20]. RL offers adaptability to various environments by
learning control policies through direct interactions with the
environment [21], [22], [23]. Currently, the prevalent approach
relies on Model-Free Reinforcement Learning (MFRL) to
obtain optimal HVAC control policies through trial-and-
error interactions with real-world buildings. However, the
convergence of MFRL requires a substantial number of inter-
actions, with our experiments indicating a need for 500,000
timesteps (equivalent to 5200 days) to achieve desirable
control performance. Although the use of simulated building
models can accelerate the training process, it demands highly
accurate calibration, posing challenges [17], [19]. In recent
years, Model-Based Reinforcement Learning (MBRL) has
been explored for HVAC control, with a focus on achieving
data efficiency [24]. Initially, an HVAC system learns its
dynamics using a neural network trained on historical HVAC
data. Subsequently, an MPC controller, based on the learned
building dynamics model, employs the Random Shooting (RS)
method to determine optimal control actions [24]. In the case
of single-zone HVAC systems, the MBRL-based approach
achieves approximately 10 times faster training compared
to MFRL, while maintaining comparable performance [24].
However, it is important to note that the aforementioned
approach is not suitable for multi-zone HVAC systems, which
are prevalent in commercial buildings [25]. Moreover, MBRL
approaches often lag behind MFRL schemes in terms of
control performance, particularly regarding achieving high
energy savings while ensuring occupants’ thermal comfort.
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This paper presents MB2C, an innovative HVAC control
approach based on Model-Based Reinforcement Learning,
to overcome the limitations observed in existing methods.
MB?2C aims to achieve the combined benefits of MBRL’s data
efficiency and Model-Free Reinforcement Learning’s control
performance. The core objective of MB2C is to optimize
energy savings while meeting occupants’ thermal comfort
requirements. Energy consumption and thermal comfort in a
building’s HVAC system are influenced by various factors,
including the current state of all zones, outdoor weather
conditions, and control actions (e.g., temperature setpoints).
In multi-zone buildings, control actions are represented as
a vector, denoted as A;, encompassing the control actions
for each thermal zone. MBZC identifies the best A, from
all possible action combinations, Ay, for each control cycle.
The selected A ensures that thermal comfort remains within
an acceptable range throughout the control interval, while
minimizing energy consumption. MB2C comprises two main
components: (a) a building dynamics model and (b) an HVAC
control algorithm.

Our approach changes the way we model building dynamics
by using a group of neural networks, each carefully designed
to adapt to different environmental situations. At the heart of
our system is a neural network model built to understand both
the current state of the building and future actions, making
it possible to predict future states accurately. The strength of
this model is greatly increased by our new weighted ensemble
learning algorithm, which combines the outputs of different
building dynamics models. This algorithm uses a dynamic
weighting process, carefully adjusting how much each model
affects the overall prediction based on how accurate it is.
This method helps us deal with the challenges of model
uncertainties, ensuring predictions that are both reliable and
strong.

Moreover, we introduce an environment-conditioned neural
network architecture, a strategic innovation that categorizes
state variables into those that are modifiable by control actions,
such as the temperatures within different zones, and those that
are inherently influenced by external environmental factors,
such as the outdoor temperature. This critical difference
underscores the understanding that environmental conditions
are beyond the scope of direct control actions. By integrating
this architecture, our model achieves an unprecedented level
of detail in depicting the complex dynamics between the
building’s operational state, the executed control actions, and
the surrounding environmental conditions. This integration
significantly boosts the accuracy and efficacy of our predictive
models and HVAC control strategies, paving the way
for optimized energy efficiency and improved occupant
comfort.

The benefits of our proposed approach extend far beyond
enhanced predictive accuracy. By differentiating between
controllable and uncontrollable variables, our model enables
more strategic, informed decisions in HVAC control, leading to
significant improvements in energy conservation and occupant
satisfaction. The adaptive learning capability introduced by
our dynamic weighting mechanism allows for continuous
refinement and improvement of the system, ensuring it remains
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effective under evolving conditions and insights. Additionally,
the environment-conditioned architecture ensures that our
model is finely attuned to real-world conditions, facilitating a
more intelligent, responsive approach to building environment
management.

To tackle the challenge of control optimization within
our proposed building dynamics model, we utilize a highly
adaptable strategy known as the shooting method. This
technique involves generating stochastic action trajectories
over a defined future timeline [26]. Each action trajectory
represents a planned sequence of actions for forthcoming
time-steps. During the evaluation phase, we analyze every
sequence over a set number of time-steps, denoted as H,
yet we strategically execute only the initial action at the
next time-step. This selective execution ensures that our
model remains both proactive and responsive to immediate
operational demands. In some MBRL-based HVAC control
solutions [24], the RS method has traditionally been employed,
where potential actions are randomly selected according to
a uniform distribution. Despite its simplicity, RS often falls
short in identifying the most effective action trajectory, mainly
because the randomness does not guarantee coverage of the
optimal path. To overcome this critical drawback, we have
integrated the MPPI control method into our framework.
Renowned for its efficacy in robotics [27], MPPI excels
by computing an optimal control action through a noise-
weighted average of sampled action trajectories, a process that
meticulously fine-tunes both the initial control input and the
variance of the sampling distribution to pinpoint the optimal
action.

By tailoring the MPPI method specifically for HVAC control
within an MBRL setup, and by optimizing parameter settings,
we significantly improve the precision and efficiency of our
control strategies. This customization allows us to leverage
MPPT’s strengths—such as its ability to navigate complex,
dynamic environments and its robustness against uncertainty—
in the context of building climate control. The result is a
control optimization solution that not only meets but exceeds
traditional performance benchmarks, ensuring energy-efficient
operation while maintaining optimal environmental conditions.

We implement MB?C using TensorFlow, a Python-based
open-source machine learning library. The building dynamics
model is constructed using a 3-layer neural network, and the
control algorithm is based on MPPI. To assess the performance
of MB2C, we conduct experiments on a building consisting
of five thermal zones. These experiments involve extensive
simulations using EnergyPlus. Through these simulations,
we evaluate MB?C and compare its performance against
benchmark methods. The results demonstrate that MB2C
surpasses the latest model-based DRL method by achieving an
8.23% reduction in total energy consumption for the building,
all while maintaining optimal thermal comfort. Moreover,
when compared to the model-free DRL approach, MB’C
significantly reduces the training convergence time, achieving
an improvement of 10.52x, which is more than an order of
magnitude.

We summarize the main contributions of this paper as
follows:
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« We provide a thorough examination of the existing
limitations found in both MFRL and MBRL strategies,
highlighting areas where improvements are necessary for
effective HVAC control in multi-zone environments.

« We introduce MB2C, a novel HVAC control system
rooted in MBRL principles, specifically designed for
multi-zone buildings. MB2C stands out by delivering
superior control performance paired with exceptional data
efficiency, setting a new benchmark in the field.

o Through rigorous experimentation, we validate the
superiority of MB2C over existing methods. Our results
demonstrate MB2C’s significant advancements, including
its ability to cut down total energy consumption by 8.23%
compared to the latest model-based DRL methods, while
also ensuring optimal thermal comfort. Additionally,
MB?C markedly reduces the training convergence time,
achieving a more than tenfold improvement over model-
free DRL approaches.

This journal article substantially builds on our prior
conference paper[1], presenting extensive revisions and new
content. Notable improvements include refined discussions in
the introduction and motivation sections and a deeper dive into
the environment-conditioned neural network architecture and
weighted ensemble learning. We have enriched the paper with
detailed figures and tables such as the HVAC system layout
and DRL component summaries, enhancing understanding of
our methodologies and findings. Further, we delve into the
dynamics of energy efficiency, neural network architectures,
ensemble model impacts, and execution overhead analysis,
providing a more comprehensive view of our MB2C system’s
capabilities. This expansion not only demonstrates the depth
of our enhancements but also solidifies our contributions to
advancing multi-zone HVAC control using model-based deep
reinforcement learning.
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II. MOTIVATION

To evaluate the performance of the state-of-the-art MBRL
method[24], we conduct a series of simulations in EnergyPlus
for a multi-zone building with five zones. All system settings
remain consistent with those in [24], with the exception of
the state and action dimensions, which increase due to the
additional zones. Our approach utilizes a deterministic neural
network to model the building dynamics, and we employ a
random shooting method to determine the optimal heating and
cooling setpoints. In addition, we implement Proximal Policy
Optimization (PPO) [28], a simple MFRL-based method, for
comparison purposes and to ensure the proper functioning of
the simulator, yielding intuitive and comprehensible results.

Our primary objective is to examine the impact of a multi-
zone building on existing model-based and model-free DRL
control methods. To assess the level of thermal comfort
achieved, we measured the Predicted Mean Vote (PMV) [29],
which should be maintained within the range of —0.7 to
0.7. The simulations are conducted using weather data for
the month of January, considering a 463 m? building located
in Fresno, CA. The building features windows on all four
facades, while the south- and north-facing glass doors are
shaded by overhangs. In the context of our five-zone building,
the state dimension encompasses 37 variables, including
indoor air temperature, humidity, PMV, energy consumption
for each zone, and relevant outdoor environmental parameters.
Furthermore, the action dimension comprises 10 variables,
representing cooling and heating setpoints for each zone.

A. Experiment Results

Figure 1 illustrates the energy-saving performance of
model-based and model-free DRL control methods based on
50x10* time-steps of training data. The reward represents
the energy-saving performance while maintaining reasonable
thermal comfort, as defined in Section III-B4. We assess
the accumulated reward every 2976 time-steps (equivalent to
one month). The reward for the rule-based method remains
constant since it is unaffected by changing weather data and
building environment, resulting in a linear line.

From Figure 1, it is evident that both the model-based
DRL and PPO methods require 7.5 x 10* and 23.75 x
10* time-steps, respectively, to surpass the performance of
the rule-based method. In terms of convergence time, the
model-based method requires 11.5 x 10* time-steps, while
the PPO method requires 50 x 10* time-steps. The model-
based method proves to be 4.38 times more data-efficient
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than the PPO method. However, in the long run, the model-
free method eventually outperforms the model-based method.
The model-free method follows a trial-and-error approach,
and its performance improves with additional training data.
In contrast, the model-based method in this case fails to
achieve the same level of performance as the model-free
method even with increased training data. The efficiency of the
model-based method [24] diminishes as the state and action
dimension grows, as observed in our 5-zone building with
47 dimensions.

The challenges associated with the high state and action
space lie in the incapacity of the current model to
accurately capture the building dynamics, leading to sub-
optimal selection of heating and cooling setpoints by the
controller. Another contributing factor is the diminishing
effectiveness of the random shooting method as the action
space expands. To gain insights into these issues, we delve
into the details of the existing model-based method, examining
its components from two perspectives: the uncertainty of
the building dynamics model and the efficacy of the control
method.

B. Challenge 1 - Model Uncertainty

Neural network models can exhibit epistemic uncertainty
due to limited data, which hinders their ability to uniquely
capture the underlying system [30], [31], [32], [33]. In MBRL-
based HVAC control systems, the building dynamics model
predicts the next state of the building based on the current
state (e.g., zone temperature) and a control action (e.g.,
temperature set-points for actuators). Even a small bias in the
building dynamics model can have a significant impact on the
controller’s decision [31], [32]. To investigate this uncertainty
in existing building dynamics models, we conducted an
experiment using 8000 historical data points for training and
2000 data points for testing.

Figure 2 illustrates the predicted zone temperature as
a function of the performed action. The x-axis represents
the temperature differential between the supply temperature
(action) and the zone temperature at time ¢, while the y-
axis displays the temperature differential between the zone
temperature after and before actuation. The figure presents the
predicted temperatures from two neural network models and
the ground truth. Both models have the same architecture and
are trained with identical training data but start with different
initialization states. In the middle region of Figure 2, where we
have sufficient data since most actions in the historical data do
not induce sharp state changes, both models accurately predict
the next state. However, when actions aim to cause significant
state changes, we lack sufficient training data, leading to
divergence in the performance of the two models.

C. Challenge 2 - Controller Effectiveness

The RS algorithm generates N independent random action
sequences {a;,...a,+y—1}, where each sequence A; =
{aé...azfl} for i = 1...N has a length of H actions.
Given a reward function r(s,a) that defines the task and
the future state predictions §;,,1 = s, + fy (s},a,) from the
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learned dynamics model fy, the optimal action sequence A;
is selected based on the highest predicted reward: i* =
arg max; R; = arg max; Zi,glil r(Sy,ay). This approach has
demonstrated success in controlling single-zone buildings
using learned models. However, when applied to a five-
zone building, it exhibits several drawbacks. Firstly, it scales
poorly with the dimensions of the planning horizon and
action space. Secondly, it often falls short in achieving high
task performance since a randomly sampled sequence of
actions does not directly result in meaningful behavior. When
considering a five-zone building, the RS approach encounters
challenges due to its limitations. It struggles to handle the
increased complexity associated with larger planning horizons
and action spaces, hampering its scalability. Moreover, the
randomness inherent in selecting action sequences can lead
to suboptimal performance as these random actions may not
align with desired behavior or achieve the desired outcomes.

In Figure 3, we examine the energy consumption and
thermal comfort provided by three HVAC control methods: a
rule-based method, a model-based method, and a model-free
method. To eliminate the influence of model uncertainty on
the model-based method, we utilize the ground-truth states of
the building as the outputs of the building dynamics model,
resulting in perfect future state predictions. From the findings
in Figure 3, we observe that all three methods successfully
meet the required thermal comfort level, as indicated by the
equivalent PMV values (0.48, 0.45, 0.41). However, the model-
based method exhibits a 4.70% higher energy consumption
compared to the model-free method. This disparity can be
attributed to the RS control approach utilized, where the
perfect building dynamics model employed in the model-based
method contributes to this outcome during the experiment.
Also, it is reasonable to say that model-free might work better
in the end, although it needs more iterations to converge,
potentially capturing more straightforward strategies through
direct environmental interactions.

D. Summary

Building upon the aforementioned observations, our primary
objective is to address the limitations associated with model
uncertainty and controller effectiveness. We aim to develop
a methodology that combines the exceptional performance
of model-free methods with the sample and data efficiency
typically exhibited by model-based approaches. By achieving
this, we strive to strike a balance where the resulting method
excels in both performance and efficiency.

III. DESIGN OF MB2C

In this section, we present the design of MB2C, which
encompasses various aspects of multi-zone building control.
Specifically, we outline the model-based DRL approach
employed, the architecture and training specifics of the
building dynamics model, the methodology for online control
action planning, and the in-situ update process of the building
dynamics model.

A. MB2C Overview

Figure 4 illustrates the overall structure of MB2C, a model-
based DRL control approach [32] designed for multi-zone
building HVAC systems. The framework comprises two
essential components: a building dynamics model and a
MPPI-based controller. The building dynamics model is
constructed using an Ensemble of Environment-conditioned
Neural Networks (ENN). It takes into account the current
state of the building HVAC system and a specific control
action as inputs, and generates the predicted next state of the
building HVAC system. By leveraging historical data, we train
the building dynamics model through a supervised learning
process. Equipped with the trained model, our MPPI-based
controller assesses different control actions and determines the
optimal action for the subsequent time step. This approach
ensures compliance with thermal comfort requirements while
minimizing energy consumption.

During deployment in a building, MB2C carries out the
optimal control action by adjusting the relevant actuators
within each control cycle. Simultaneously, we collect building
data traces, which consist of the next HVAC state determined
by the current HVAC state and the executed control action.
By utilizing these newly acquired building traces, we can
periodically update the building dynamics model in-situ to
enhance its accuracy. This update is performed at regular
intervals, such as every week, using a sliding window of
2 months, as the seasonal characteristics of the data change
throughout the year. An iterative training process for updating
the model takes approximately 25.32 minutes to complete on a
laptop equipped with an Intel 4-core i17-6700 CPU and Nvidia
GTX 960M GPU. Importantly, this training process can be
conducted in parallel while the current model continues to
operate in the building, ensuring that the overhead of the
iterative training does not interfere with the real-time usage
of MB?C in practical building applications.

B. Model-Based Deep Reinforcement Learning for
Multi-Zone Building Control

Our work involves an extension of the current MBRL-
based method to address multi-zone building HVAC control,
incorporating the design of crucial components specific to this
domain.

1) Preliminaries for DRL: Reinforcement learning aims
to develop a policy that maximizes the cumulative rewards
over time. At each time step ¢, the controller exists in a
state s, € S, performs an action a; € A, receives a reward
r, = r(s;, a;), and transitions to the next state s,; based
on an unknown dynamics function f : § x A — S. The
primary objective at each time step is to select the action that
maximizes the discounted sum of future rewards, represented
by > 07, v ' ~'r(sy, ay), where y € [0, 1] is a discount factor
that prioritizes immediate rewards. Notably, it is essential to
have knowledge of the underlying reward function r(s;, a;)
used for planning actions under the learned model in order to
perform this policy extraction.

In model-based reinforcement learning, we utilize a
dynamics model to predict future states, which guides the

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 27,2024 at 04:11:51 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Model Predictive Path Integral |

Objective:

Action a,

H t+H-1 . (&
A =argmax,m Y07 (5,,a,)

Model Predictive Control (MPC)

i

/ Store executed data

Real/Simulated multi-
zone Building System

Fig. 4. Overall of the proposed building energy control framework.

selection of actions. The learned discrete-time dynamics
function fy(s;, a;), with 6 as the parameter, takes the current
state s; and action a; and estimates the next state at time 7+ Ar.
By solving the optimization problem:
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we identify the action sequence that maximizes the
discounted sum of rewards over H future time steps.
In practice, it is advantageous to solve this optimization
problem at each time step, execute only the first action
from the sequence, and then re-plan at the subsequent time
step using updated state information. This control scheme is
commonly known as MPC and is effective in compensating
for model inaccuracies.

2) State Design: The state serves as the input for the
building dynamics model to make predictions in the next
time step. In our study, we divide the state into two distinct
parts as shown in Table I: (a) the building state (s;;), which
encompasses the state variables that are influenced by our
control actions, and (b) the environment state (e;), which
includes the state variables that remain unaffected by our
control actions.

Building State (s;) The building state vector for the
ith zone encompasses the variables that undergo changes
over time f. It includes the following items: indoor air
temperature, indoor air relative humidity, PMV, heating
energy consumption, and cooling energy consumption. These
variables reflect the dynamic characteristics of the indoor
environment and the energy consumption patterns within the
specific zone.

Environmental State (¢,;) The environment state vector for
the ith zone comprises the variables that undergo changes over
time t. It includes the following items: outdoor air temperature,
outdoor air relative humidity, diffuse solar radiation, direct
solar radiation, solar incident angle, wind speed, wind
direction, and occupancy flag. The occupancy flag serves as
an indicator to determine the presence of individuals in the
ith zone, and it is the only element in the vector that changes
per zone. These variables capture the external conditions and

Historical Data

Fit every T steps

Building Dynamics Models — an Ensemble of
Environment-conditioned Neural Networks

occupancy information that influence the thermal dynamics
and energy performance of the building.

Using our 5-zone building as an illustration, the state
dimension encompasses 37 variables, including both the
building state and environment state variables. To ensure
uniformity and scale in the range of values, we apply min-
max normalization to each item, transforming them into
values within the range of 0 to 1. This normalization process
enables effective comparison and integration of different state
variables, facilitating accurate modeling and control of the
building HVAC system.

3) Action Design: The action vector a,; represents the
variables that the controller utilizes to actively manipulate
the building state s,;. In our multi-zone system, the action
state vector comprises the cooling temperature set-point and
the heating temperature set-point, both measured in degrees
Celsius, for each zone. These set-points determine the desired
temperature range for cooling and heating operations in each
specific zone.

When considering the dynamics of the system at each time
step ¢, the action state vector varies to reflect the changes
in set-points for each zone. The controller aims to find the
most suitable combination of actions a1); for all zones based
on the current state s;; and e; and the chosen actions a;;.
The primary objective is to strike a balance between energy
consumption and thermal comfort metrics.

In the case of our five-zone building, the action dimension
encompasses 10 variables, including the cooling and heating
temperature set-points for each zone. By effectively managing
these variables, the controller can optimize the HVAC system’s
performance to ensure energy efficiency while maintaining a
comfortable indoor environment.

4) Reward Design: The reward function plays a crucial
role in optimizing the parameters that we aim to maximize
when the agent takes an action a; to transition from the
current building state s,; to the next state s¢1y;. To ensure a
comprehensive optimization, both thermal comfort and energy
consumption factors are incorporated into the reward function.
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TABLE I
BUILDING AND ENVIRONMENTAL STATE VARIABLES

Building State Environmental State
Name Unit | Name Unit Name Unit
Indoor air temperature °C Outdoor air temperature °C Solar incident angle  °
Indoor air relative humidity % Outdoor air relative humidity % Wind speed m/s
Cooling energy consumption kWh | Diffuse solar radiation W/m?  Wind direction degree from north
Heating energy consumption kWh | Solar incident angle ° Occupancy flag Oorl
PMV / / / / /
The reward function is defined as follows: Building StateslI
concatenate | | 200 fully 200 fully
N connected ] connected [y 200 fully o
Actona, ™ || Relu Relu connected || Building state
R == (pNorm(IPMV)|) + Norm(E))), ~ (2) diference s,
i=1 Environment I concatenate
. . state e,
Here, E represents the heating and cooling energy '
consumption for each zone. To estimate the comfortable W Inputs [ Network activations [] Outputs Learned parameters — Fixed parameters

temperature range for the “standard” occupant in the current
seasonal conditions, we employ Fanger’s formula for the
Predictive Mean Vote (PMV) [29], as outlined in the ASHRAE
standard 55 [34]. The PMV values within the comfort range
for Class C environments range from +/- 0.7.

The parameter p allows us to balance the relative
importance between energy consumption and thermal comfort.
During occupied periods, we set p to 4 since the range of
human comfort and energy consumption varies compared to
unoccupied periods, where we use p = 0.1. By adjusting p,
we can capture the different priorities and requirements in
terms of thermal comfort and energy efficiency based on the
occupancy status.

The reward function serves as a measure to evaluate
the actions taken, ensuring they meet the thermal comfort
requirements for all occupants in the building. The variable
N represents the total number of zones in the building. In the
subsequent sections, we will simplify the notation by removing
the zone index i to streamline the presentation and analysis.

C. Learning the Building Dynamics

To handle the high-dimensional state and action spaces,
as well as the complex dynamics inherent in a multi-
zone building, we need a parameterization approach for the
building dynamics model. Therefore, we adopt a multi-layer
neural network as our chosen representation for the dynamics
function fg (s¢, a;), with 6 being the parameter set. This neural
network function is designed to provide predictions of the
state changes that occur when executing action a, from state
s;, considering a time step duration of Af. Consequently,
the prAedicted next state can be obtained as follows: §,4
st + fo(ss, ar).

When determining the appropriate At value, we need to
strike a balance. Selecting a very small A¢ could result in
minimal state differences, rendering the learning process less
effective. Conversely, if At is set too large, it can complicate
the learning process by introducing greater complexity to

Fig. 5.
model.

Environment-conditioned neural network for our building dynamics

the underlying continuous-time dynamics. Hence, finding an
appropriate At is crucial to achieve meaningful learning and
accurate predictions in the building dynamics model.

1) Environment-Conditioned Neural Network Architecture:
To accurately predict the building dynamics while maintaining
computational efficiency, we introduce a neural network
model fg (s;, a;) that incorporates environment information.
In our approach, we propose a straightforward yet effective
method of including the environment state e; in the model.
Specifically, we define an environment-conditioned dynamics
model fg(s,,a,,e,), which takes into account not only the
current building state s, and action a, but also the current
environment state e¢;. The model architecture is illustrated in
Figure5.

To process the inputs, the building state vector s;, action
vector a,, and environment state vector e, are concatenated
and passed through two hidden layers before reaching the
final output layer. The dimensionality of these vectors was
chosen to accurately reflect the dynamics of a 5-zone
building, resulting in a comprehensive representation that
includes 47 dimensions encompassing environmental con-
ditions, control actions, and zone-specific parameters. This
decision was based on an extensive evaluation of the
model’s ability to capture relevant dynamics while ensuring
computational efficiency. Rather than directly outputting all
the related states (building and environment), we focus on
predicting the building state difference AS,. This approach
reduces the model’s complexity in capturing unnecessary
environmental changes. For the environment state inputs,
such as weather data and occupancy, we use ground truth
values to ensure prediction accuracy[16]. Incorporating this
detailed environmental information allows us to enhance the
model’s predictive accuracy while maintaining computational
traceability.
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Fig. 6. Weighted ensemble learning for our building dynamics model.

The selection of network parameters in Figure 5, including
the number of hidden layers and their sizes, is meticulously
determined through a combination of grid search and empirical
experimentation. This methodical approach allows us to finely
tune the model to balance between capturing the intricate
dynamics of a multi-zone HVAC system and maintaining a
lean computational footprint.

2) Weighted Ensemble Learning: Capturing epistemic
uncertainty in network weights has been recognized as crucial
in model-based reinforcement learning, particularly when
employing high-capacity models that may tend to overfit the
training set and make erroneous extrapolations beyond it,
as demonstrated in previous studies [31], [32]. To address
this challenge, we propose a weighted ensemble learning
algorithm that approximates the posterior distribution p(6|D)
using a collection of M models, each with its own set of
parameters 6;.

In the case of deep models, a straightforward approach is
to initialize each model 6; with a distinct random initialization
Gio and employ different batches of data D; at each training
step. This allows the ensemble to encompass a diverse range
of model configurations, facilitating the exploration of various
uncertainties present in the learning process. By considering
multiple models with different initializations and data subsets,
we aim to capture a more comprehensive representation of the
epistemic uncertainty inherent in the system.

In our approach, we have M environmental-conditioned
models, as depicted in Figure 6. All M models receive the
same input, which includes the building and environment
states and actions. To evaluate the performance of each model,
we calculate the mean squared error (MSE) over the past C
timesteps (4 in our case) for each model compared to the
ground truth for N states using Equation 3. The ensemble
algorithm notation is illustrated in Table II.

C N
MSE =" 3" ¢ | fosij aj) = Forue| 3)

i=1 j=1

Here, we introduce a temporal discount factor ¢ (0.9 in our
case) to assess the importance of past model errors relative to
the current model error. The temporal discount factor ranges
between O and 1, as more recent prediction cases carry greater
weight for the current prediction. After obtaining the M SE for
each model over the past C timesteps, we normalize the M SE
values to a 0-1 scale using the Norm(x) process, defined as
Norm(x) = (x — Xumin)/ (Xmax — Xmin). We then calculate the
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TABLE I
ENSEMBLE PARAMETERS

Description

N number of state

discount factor

the number of ensemble model

weight for Ensembler

current state prediction

¢
M
E number of Ensembler
w
P
C

number of past timesteps

model square error

weight ratio W for all models using Equation4.

1— Norm(MSE;)
W= _— G))
> (1 = Norm(MSE;))
The sum of the weights for all models is equal to 1.
Subsequently, we leverage Equation 5 to predict the next state.

M
s =D Wifs (s, a) 5)
i=1

This dynamic weighting mechanism allows our method
to adaptively adjust the weights when aggregating the M
models (M = 5 in our case) during the prediction process,
ensuring our ensemble is optimally sized to manage the
complexity of a 5-zone building with a total dimensionality of
47, encompassing both state and action spaces. The selection
of this dimensionality and the number of models was guided
by a comprehensive evaluation aimed at achieving a balance
between model complexity and computational efficiency.
This evaluation included analyzing the impact of different
dimension sets on the model’s performance, ensuring that the
chosen configuration offers the most accurate representation
of the building’s dynamics while maintaining computational

traceability.

D. Training the Building Dynamics Model

In this section, we outline the steps involved in prepro-
cessing the training data and training the proposed Ensemble
Neural Network (ENN) model.

1) Data Collection: To collect the training dataset
D(s;, a;, s;1+1), we employ the rule-based controller to execute
actions at each time step. During this execution, we record
the resulting data t, which consists of the state-action pairs
(s0),a(0),s1),al),...,s(T —2),a(T — 2),s(T — 1))),
capturing a sequence of length T'. It is important to note that
these recorded data differ significantly from the data that the
controller will actually execute when planning with the learned
dynamics model and a specific reward function r(s;, a;) (as
discussed in Section III-E). This distinction highlights the
ability of model-based methods to learn from off-policy data,
enabling them to generalize and make accurate predictions
beyond the specific data encountered during training.
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2) Data Preprocessing: To prepare the collected data {7}
for training, we first divide it into training data inputs
(s;,a;) and their corresponding output labels s;y; — s;.
In building HVAC control, the states can encompass various
measurements such as temperature, humidity ratio, and energy
consumption, each with its own range of values. Training a
neural network model using these raw values directly may
result in imbalanced losses, as the weights assigned to different
measurements can vary significantly. To address this issue,
we normalize the data by subtracting the mean value of the
states/actions and dividing by their standard deviation. This
normalization process is represented as x’' = ;’;;, where x
refers to a state or action. By normalizing the data in this way,
we ensure that each input feature contributes proportionately
during training, regardless of its original range.

3) Training the ENN Dynamics Model: The ENN model
is composed of an ensemble of models, each with randomly
initialized parameters 6y, 65, . . ., 0y. To ensure that the models
behave differently on the same dataset D, we use different
batches of data at each training step. The dynamics model
fg (s, a;) is trained using stochastic gradient descent[35],
where the objective is to minimize the Mean Square Error
(MSE) between the predicted delta observation and the ground
truth delta observation. The MSE loss function is defined as
follows:

1 1 5 5
e =52 56w =)= falsadl® (©)

For training the ENN model, we utilize 5-year weather data
from Fresno, CA and Chicago, IL, while using a completely
different one-year dataset for testing. During training, the
ENN model is provided with ground truth information on
future environment states, such as weather and occupancy[16].
We employ the Adam optimizer with a learning rate of 10~
for gradient-based optimization. The batch size for training
is set to 512, and a discount factor y of 0.99 is used.
The training process involves 40 epochs. Each dynamics
model in the ensemble consists of a neural network with
two fully-connected hidden layers of size 200, using the
rectified linear unit (relu) activation function, and a final fully-
connected output layer. The weights and biases are initialized
using the Xavier initialization process. In our experiments,
we use 1000 samples for the MPC controllers (RS, CEM, and
MPPI). The control cycle or timestep is set to 15 minutes,
a commonly used value in traditional HVAC control [36].
Convergence is achieved by 4.75 x 10* time-steps, as explained
in Section IV-Cl1.

E. Online Control Action Planning

In our approach, we employ online planning using MPC
to determine actions based on our model predictions. Given
the building state s, at time 7, the MPC controller utilizes
a prediction horizon H and an action sequence d,,+p =
{a;, ..., a;+p}. The ENN model fg (s¢, a;) provides predictions
for the resulting data s,,.py. At each time step ¢, the
MPC controller selects the first action a, from the sequence
of optimized actions A7 = arg max 4 Z;,J;ijlr(fﬂ,a,r).
To compute the optimal action sequence, we employ the Model
Predictive Path Integral (MPPI) control method [27].

1) Model Predictive Path Integral (MPPI) Controller:
The MPPI control method has demonstrated successful
autonomous control in various applications, including vehicle
control. MPPI utilizes an importance-sampling weighted
algorithm and employs an update rule that efficiently
incorporates a larger number of samples into the distribution
update. As derived by recent research on model-predictive path
integral [27], the update rule for time step #, considering K
predicted trajectories, can be expressed as follows:

. . K
atl =al + Zk:l w(eh)ek @)

Here, o represents the importance-sampling weight for each
trajectory, and € denotes the noise used for exploration. The
action for time step ¢t of the (i 4+ 1)th trajectory is obtained
by adding the action for time step ¢ of the ith trajectory with
the noise-weighted average over the sampled trajectories. This
formulation enables effective trajectory updates and promotes
exploration during control.

As depicted in Algorithm 1, the initial control sequence
is determined by either initializing the input buffer with
zeros or utilizing a secondary controller, such as a rule-
based method, and using its inputs as the initial control
sequence. To begin, we sample H noise values from a normal
distribution. Subsequently, we generate K trajectories for a
finite horizon of length H using Brownian motion. For each
generated trajectory, a cost is computed and stored in the
memory (lines 2-7). This process allows us to evaluate the
performance of different trajectories based on the defined cost
function and retain this information for subsequent steps of
the algorithm.

In model predictive control, the optimization and execution
processes occur simultaneously. Initially, a control sequence is
computed, and the first element of the sequence is executed.
This iterative process continues, with each subsequent iteration
utilizing the un-executed portion of the previous control
sequence as the importance-sampling trajectory. To ensure that
at least one trajectory has non-zero mass, guaranteeing the
presence of a trajectory with the lowest cost, we subtract the
minimum cost among all sampled trajectories from the cost
function (line 9). It is important to note that subtracting a
constant does not affect the location of the minimum.

The second loop calculates the noise-weighted average over
the K sampled trajectories (lines 10-11). This step incorporates
the exploration noise into the trajectory selection process,
allowing for exploration of different control actions. The third
loop computes an optimal input sequence by selecting the
trajectory with the least cost for the finite horizon of length H
(lines 12-13). The top value of the resulting sequence is then
provided as input to the actuators (line 14).

Subsequently, the entire input control sequence is left-
shifted by one position (lines 15-16). To maintain the length
of the buffer, the initial control value a;,;; is appended to the
input control sequence (line 17). Finally, the states are updated
based on the predictions provided by the ENN model, enabling
the model to capture the dynamics of the system and adjust
the control actions accordingly.
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Algorithm 1 MPPI Controller

Input: ENN dynamics model fg (s¢, ar);
K: Number of samples, H: Length of horizon;
(ag, ay, . ..ag—1): Initial control sequence;
A: Control hyper-parameter ;
QOutput: The control sequence a;;+y ;
so < GetStateEstimate() ;
for k = 0,1,...,K -1 do
S < 803
Sample noise ek = {eg, eé, . ~-€];1—1} ~ N(u, o) ;
for r = I,.A..,H do
s¢ < fo(si—1, a1 + Etk_l) ;
Cost(eX) += —reward defined by equation2

N SN T R W N =

b}

8 B« ming[Cost (9] ;

9 1« 34y exp(—1(Cost(") — p)) ;
10 for k = 0,1,...,K -1 do

11 t w (") « %exp(Cost(sk) - B);

12 fort=01,..,H -1 do

13 L af =a, + >0 w(Eh)ek;

14 SendToActuators(ay);

15 fort=0,1,...,H -1 do

16 L a1 = ay;

17 a,_ = Initialize(a;_);

F. Putting It All Together

We provide a summary of the working flow of the Model-
Based Building Control MB2C approach as follows. Initially,
we gather a historical dataset D by employing a rule-based
policy. The model parameters 6,60, ...,0y for the ENN
are randomly initialized. Subsequently, we train the ENN
model using the collected dataset, utilizing Equation6 for
optimization. Finally, we deploy the trained ENN model
alongside our MPPI controller in a real building for HVAC
control.

During each control execution, we start by obtaining the
current state of the building from various sensors, such
as a temperature sensor for zone temperature. Next, the
MPPI controller samples the best action sequence using an
H-horizon approach. The state is then propagated through
the ENN model, solving the optimization problem defined
in Equation 1. Finally, we execute the first action from the
optimal action sequence in the building by appropriately
adjusting the corresponding actuators. This iterative process
enables continuous control and adaptation within the building
system based on the learned dynamics from the ENN model.

During the operation of MB2C in the building, we have
the opportunity to collect building operation data, which
consists of records of control action execution, denoted
as D(s;, a;, 5;+1). This data includes information about the
current state, the control action taken, and the resulting
next state. We incorporate this newly collected data into a
sliding window, which maintains a two-month history of data.
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By doing so, we can adapt to the seasonality patterns present
in the data, particularly weather-related information.

To update the ENN model, we randomly divide the training
dataset into batches. These batches are then fed into the
model, and we update the model weights through forward and
backward propagation, employing techniques such as gradient
descent. This process, known as one epoch training, involves
traversing all the batches of data. We repeat this iterative
training process for multiple epochs, typically 40 epochs
in our current implementation, until the model converges
and achieves the desired level of accuracy. The iterative in-
situ updating process allows us to continuously improve the
accuracy of our building dynamic model by incorporating new
data and adjusting the model parameters. It enables the model
to adapt to the changing dynamics and variations observed in
the building’s operation, leading to enhanced performance and
control accuracy over time.

1V. EVALUATION

In this section, we present a comprehensive set of experi-
ments conducted in EnergyPlus to assess the performance of
MB?2C along with three baseline methods. These experiments
aim to evaluate the effectiveness of MB2C in comparison to
the baselines using a range of performance metrics.

A. Platform Setup

Building Example and its Dynamics Model in Energy-
Plus In this study, we assess the performance of MB2C in a
specific building located in Fresno, California. The building
has a total area of 463 m? and consists of a single floor with
five distinct thermal zones. All four facades of the building
are equipped with windows to facilitate natural lighting and
ventilation. The HVAC system employed in our modeling is a
single duct central cooling HVAC system with terminal reheat,
as illustrated in Figure 7. The system begins with the supply
fan located in the air handler unit (AHU), which is responsible
for delivering conditioned air to the zones. The air supplied by
the fan first passes through a cooling coil, where it is cooled
to the minimum temperature required for each specific zone.

Before entering a zone, the air flows through a variable air
volume (VAV) unit, which regulates and controls the amount of
air directed into the zone. Terminal reheat is achieved through
a heating coil, which increases the temperature of the air
before it is discharged into the zone. Each zone is assigned a
discharge setpoint temperature, and the VAV ensures that the
air is heated to meet this temperature requirement for each
respective zone. To maintain a constant static pressure within
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the zones, a portion of the supplied air is mixed with the
current air within the zone, while the excess air is exhausted
out of the zone. The return air from each zone is then mixed
in the return duct, and some of it may enter the economizer
for further processing.

Since we cannot conduct control experiments in the real
building, we utilize EnergyPlus version 8.6, a powerful
building simulation software, to create a virtual building
model. This allows us to conduct simulations using Typical
Meteorological Year 3 (TMY3) weather data. In our
implementation, we adhere to the default control logic of
EnergyPlus for setting the setpoint of the AHU. Our focus
is specifically on controlling the heating and cooling setpoints
in the VAV boxes. By manipulating these setpoints, we can
effectively regulate the thermal conditions within the simulated
building.

EnergyPlus has emerged as a widely adopted tool for
evaluating HVAC control algorithms [16], [17], [19], [24].
We have chosen EnergyPlus for several reasons. Firstly, due
to practical constraints, we lack access to a physical building
where we can conduct experiments. However, once we
complete the training of the ENN model, MB?C can be readily
deployed in a real building. Secondly, EnergyPlus provides us
with the convenience of generating a substantial amount of
historical training data using a rule-based method. This data is
instrumental in training the ENN model, enabling us to capture
the dynamics of the building system accurately. Moreover,
in order to compare MB>C with model-free DRL approaches,
it is essential to have a sizable training dataset. Model-free
DRL methods typically require a large number of samples to
achieve good performance, as they are not sample efficient.
In our case, we require training data spanning 5200 days
(equivalent to 144 years), which would be impractical to
obtain solely from real buildings. Lastly, EnergyPlus offers
us the flexibility to evaluate the performance of various
control algorithms across different locations, seasons, and
weather profiles. This versatility allows us to gain insights
into the robustness and adaptability of MB2C in different
environmental conditions, further enhancing our understanding
of its effectiveness in real-world scenarios.

MB?>C System Components The MB2C system, as illus-
trated in Figure 4, consists of two primary components:
the building dynamics model ENN and the MPPI controller.
Additionally, we incorporate a data storage mechanism to
collect and update building operation data for in-situ model
refinement. All three components are implemented using
TensorFlow, a widely-used open-source machine learning
library in Python. To establish a connection between
EnergyPlus and MB2C, we utilize the building control virtual
testbed (BCVTB) [37]. BCVTB facilitates the interaction and
communication between EnergyPlus and our MB2C system.
During each control cycle, we execute the control action by
setting the temperature to a specific set point for each zone
within our EnergyPlus building model.

B. Experiment Setting

The parameter settings for MB2C are presented in Table III.
The control timestep for HVAC control is set to 15 minutes,

TABLE III
PARAMETER SETTINGS IN MB2C
Batch Size 512
Time Step for Control 15min
Train/Validation Split Ratio 80%/20%
Discount Factor ~y 0.99
Learning Rate 0.001
Number of Hidden Layers 2
Number of Neurons for Each Layer 200
Number of Data Samples 1000
Length of Horizon 20

which is a commonly used interval in classic building
control[36],[38]. Although using shorter timesteps can
potentially improve the accuracy of building dynamics models,
it is important to consider the practical limitations of HVAC
equipment. According to EnergyPlus documentation, control
periods shorter than 10-15 minutes can cause physical damage
to equipment such as heat pumps[36].

For training the ENN model, we utilize weather data from
two different cities: Fresno, CA and Chicago, IL. These
cities were chosen due to their distinct weather characteristics.
Fresno experiences intense solar radiation and significant
temperature variations, while Chicago is classified as having
a hot-summer humid continental climate with four distinct
seasons.

To evaluate the performance of MB?C, we compare it
against three baseline methods. All four control approaches
are executed using the same weather data for simulation,
ensuring a fair comparison of their performance in controlling
the building’s HVAC system.

1) Rule-based Method: We implement a rule-based method
to generate training data and for comparison evaluation. This
rule-based method follows our current campus building control
policy. In this approach, we assign different zone temperature
set-points, with each zone having separate heating and cooling
set-points. During the warm-up stage, the heating set-point is
set to 70°F, and the cooling set-point is set to 74°F. To ensure
a comfortable range of temperature control, the cooling set-
point is limited to a range of 72°F to 80°F, while the heating
set-point is limited to a range of 65°F to 72°F. These limits
help maintain a suitable indoor temperature within the building
while allowing for energy-efficient operation.

2) Model-free DRL: We implement Proximal Policy Opti-
mization (PPO)[28]as MF-RL based method for multi-zone
control. One advantage of PPO is its stability and robustness
to both hyperparameters and network architectures [28].
Moreover, PPO has shown superior performance compared
to other policy gradient algorithms such as Natural Policy
Gradients (NPG) [39] and Trust Region Policy Optimization
(TRPO) [40].

3) Model-based DRL with RS: In the conventional model-
based approach, we utilize a deterministic neural network
to capture the building dynamics, allowing us to model the
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Fig. 8. MB2C Achieves both Data-Efficiency and High Performance.

system’s behavior accurately. Additionally, we employ the RS
method to determine optimal heating and cooling setpoints.
This combination of the neural network for building dynamics
modeling and the RS method for setpoint selection has been
proven effective in previous research [24] for single-zone
HVAC control.

Both the Model-free DRL and Model-based DRL with RS
methods share the same state, action, and reward definitions as
the MB2C approach. This ensures consistency in the control
framework across these different algorithms. By maintaining
the same state representation, action space, and reward
structure, we enable fair comparisons and evaluations of their
performance in controlling the HVAC system in the building.

C. Experiment Results

We evaluate and compare MB2C with the aforementioned
baselines using a comprehensive set of performance metrics.
These metrics encompass convergence analysis, energy
efficiency, and thermal comfort. Additionally, we conduct
an in-depth analysis of MB?C’s performance, examining
factors such as daily energy consumption for each zone, the
effectiveness of its key components, and the impact of its
parameter settings.

1) Convergence Analysis: We begin by examining the data
efficiency of MB?C and the other three baselines. In this
analysis, we do not confine MB2C to a sliding window of two
months, as the MFRL method requires a substantial amount
of training data. Figure 8 illustrates the accumulated reward
for each control method over multiple episodes during the
training process. Each episode corresponds to one month of
data, equivalent to 2976 time-steps. The reward function is
calculated at each time-step, and the reward shown in Figure 8
represents the cumulative reward for one episode, i.e., the
sum of rewards over 2976 time-steps. The results depicted
in Figure 8 demonstrate that the episode reward increases
and eventually stabilizes as the number of training episodes
increases. When the episode reward plateaus, it indicates that
further improvements to the learned control policy are unlikely,
signifying convergence of the training process.

As depicted in Figure 8, MB?C outperforms the rule-based
method after approximately 1.75 x 10* time-steps. At this
stage, the ENN model is trained using offline historical
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data and deployed in real buildings, leveraging the MPPI
controller for exploration to further enhance its performance.
On the other hand, the model-based DRL and model-free
DRL methods require 7.5 x 10* and 23.75 x 10* time-steps,
respectively, to surpass the rule-based method. MB2C achieves
4.28x and 13.57x greater data efficiency compared to the
model-based DRL and model-free DRL methods, respectively.

In terms of convergence time, MB2C converges faster than
both the model-based DRL and model-free DRL methods.
MB?2C achieves convergence at 4.75 x 10* time-steps, while
the model-based DRL method requires 11.5 x 10* time-
steps, and the model-free DRL method requires 50 x 10*
time-steps. Therefore, MB2C demonstrates 2.4x and 10.52x
greater data efficiency than the model-based DRL and model-
free DRL methods, respectively, while achieving comparable
performance to the model-free DRL method.

2) Energy Efficiency: FigureQillustrates the energy
consumption outcomes of the four control methods. The
findings indicate that, on average, MB2C achieves energy
savings of 10.65% and 8.23% compared to the rule-based
method and model-based DRL, respectively. In comparison to
the model-free DRL method, MB2C demonstrates comparable
performance in terms of energy consumption. These energy
savings are attributed to MB2C’s accurate modeling of
complex building dynamics and its ability to identify optimal
heating and cooling setpoints, resulting in more efficient
HVAC operation.

The energy consumption varies across different seasons and
cities, indicating the influence of weather conditions on HVAC
usage. In Fresno, the building consumes 4770.04 kWh in July,
which is 33.39% more energy compared to January when it
consumes 3576.07 kWh. This discrepancy can be attributed
to the outdoor air temperature range. In July, the range at
Fresno is 15°C to 42°C, necessitating continuous cooling
during daylight hours to maintain thermal comfort. Conversely,
in January, the range is —1°C to 18°C, allowing for energy
savings by utilizing outside air within the optimal range of
thermal comfort.

In Chicago, the building consumes 4300.47 kWh in January,
which is 6.86% more energy compared to July. The colder
weather in January, with an outdoor air temperature range
of -20°C to 15°C, leads to higher heating requirements and
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Fig. 10. Daily energy consumption for five zones.

thus increased energy consumption. In July, both Merced and
Chicago experience a similar outdoor air temperature range
of 15°C to 42°C and 15°C to 40°C, respectively. However,
the energy consumption in Fresno is 18.53% higher than in
Chicago. This difference can be attributed to the average day
and night temperature variations. Fresno experiences larger
fluctuations between day and night temperatures compared to
Chicago, resulting in increased energy demand for maintaining
thermal comfort throughout the day.

3) Thermal Comfort: TableIVprovides the average PMV
values for all five zones in January and July, considering the
weather data from Fresno and Chicago. It is observed that
all four control methods effectively maintain the PMV values
within the desired range of —0.7 to 0.7 for the majority of
the time. The model-based method exhibits a slightly higher
average violation rate of 1.97% compared to the other three
methods. This is primarily due to the controller’s exploration
of random actions, which can occasionally result in suboptimal
thermal comfort conditions. On the other hand, MB2C achieves
a notably low average violation rate by capitalizing on the
enhanced accuracy of the ENN model and the improved
effectiveness of the MPPI controller.

4) Neural Network Architecture: To investigate the impact
of different neural network architectures on energy consump-
tion and thermal comfort, we conduct experiments using July
weather data from Fresno. Four neural networks were tested,
each with a different number of hidden layers: 1, 2, 3, and
4. The results of these experiments, presented in Table V,
demonstrate the energy consumption and thermal comfort
achieved by MB2C with each neural network configuration.

Analyzing the experimental outcomes, we observe that
neural networks with more hidden layers generally provided
better thermal comfort, as indicated by results closer to O on
the thermal comfort scale. However, this improvement in
comfort comes at the cost of higher energy consumption.
The underlying reason is that MB2C aims to strike a
balance between energy consumption and thermal comfort,
recognizing that increased energy usage can enhance people’s
perceived comfort.

Considering these findings, we select a neural network with
2 hidden layers for MB2C. This choice is motivated by its
ability to minimize energy consumption while still meeting
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Fig. 11. ENN dynamics model loss.

the requirement for thermal comfort. By striking a suitable
compromise between energy efficiency and comfort, MBC
demonstrates optimal performance with this neural network
configuration.

5) Effect of Ensemble Model Size: We conduct a series of
experiments to evaluate the impact of different ensemble sizes
on energy consumption and thermal comfort. Utilizing July
weather data from Fresno, we test ensemble configurations
with 3, 4, 5, and 6 models to determine the optimal balance
between energy efficiency and thermal comfort. The results,
detailed in TableVI, illustrate the performance variations
across different ensemble sizes. The analysis reveals that
increasing the number of ensemble models initially leads
to improvements in both energy consumption and thermal
comfort. Specifically, transitioning from 3 to 5 models,
we observe a noticeable enhancement in thermal comfort
metrics with a concurrent reduction in energy consumption.
This improvement plateaus beyond five models, as evidenced
by the minimal changes when moving to 6 models. The
decision to employ 5 models in our weighted ensemble is thus
underpinned by their collective ability to achieve significant
reductions in energy use while optimizing for thermal comfort.
This ensemble size offers the best compromise between
computational efficiency and the model’s predictive accuracy
and control capabilities.

6) ENN Dynamics Model Loss: Figurellillustrates the
loss curves of our ENN model used for predicting building
dynamics in an HVAC control system. The x-axis represents
the number of training epochs, while the y-axis shows the
loss value, typically reflecting the mean squared error between
the model’s predictions and the actual data. Two curves
are depicted: one for the training loss and another for the
validation loss. As the number of epochs increases, both curves
exhibit a downward trend, indicating that the model is learning
and improving its predictive accuracy over time. The training
loss curve shows a consistent decrease, suggesting the model’s
increasing fit to the training data. The validation loss curve
decreases alongside the training loss, which points to the
model’s generalization capabilities.

7) Daily Energy Consumption for Five Zones: We conduct
an analysis of the daily energy consumption of MB2C in July
for five zones in Fresno. Figure 10 illustrates the heating and
cooling energy recorded for each zone on a daily basis. The
top five hollow line symbols represent the trend of cooling
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TABLE IV
THERMAL COMFORT STATISTICAL RESULTS FOR RULE-BASED, MODEL-BASED, MODEL-FREE AND MB2C SCHEMES
. . Rule-based method | Model-based method | Model-free based method MB?C
Location | Comfort Metric
January July January July January July January July
Mean -0.36 -0.20 -0.32 -0.19 -0.11 -0.03 -0.04 0.13
Fresno PMV Std 0.26 0.36 0.31 0.34 0.15 0.18 0.11 0.14
Violation rate | 1.22% 1.51% 2.12% 1.71% 0 0.14% 0.40% | 0.58%
Mean -0.17 -0.30 -0.26 -0.18 -0.25 0.07 -0.23 0.05
Chicago | PMV Std 0.23 0.33 0.24 0.31 0.17 0.19 0.07 0.20
Violation rate | 1.20% 2.04% 1.9% 2.13% 0.95% 0 046% | 1.23%
6000
TABLE V w7 Rule_Based
EFFECT OF DIFFERENT NETWORK ARCHITECTURE 5500 ON..MB.ONN.RS....
<z == MB_ENN_RS
Number of Energy Consumption | Thermal Comfort \E, 5000 = m:ﬁmﬁi’!l ------
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Number of Energy Consumption | Thermal Comfort Fig. 12. Performance decomposition.
Ensemble Models (kWh) (PMV)
3 4915 0.21
4 4911 0.17 (MB_ENN_MPPI). In addition, we compare these approaches
5 4820 015 with the rule-based method and an existing model-based DRL
: method (MB_DNN_RS).
6 4819 0.16 In the MB_ENN_CEM version, we employ the Cross-

energy for the respective zones, while the bottom five solid
lines indicate the trend of heating energy. It is worth noting that
the third zone exhibits higher energy consumption compared
to the other zones. This disparity arises because the third zone
is south-oriented, resulting in more direct sunlight exposure
throughout the day.

Additionally, we observe that both heating and cooling
are required on certain days due to significant temperature
variations between day and night. During daylight hours,
with an average outdoor temperature of 38°C, more energy
is needed for cooling purposes. Conversely, during nighttime
hours, with an average outdoor temperature of 15°C, some
heating is necessary to maintain thermal comfort, particularly
as our simulations encompass an office-like environment
where students occasionally work at night. These findings
highlight the dynamic nature of energy requirements in
response to changing external conditions and the specific
characteristics of each zone within the building.

8) Performance Decomposition: We implement three vari-
ations of MB2?C, each employing a different control method:
RS (MB_ENN_RS), CEM (MB_ENN_CEM), and MPPI

entropy method (CEM) [41] as the controller. Initially, it starts
with the RS method and performs multiple iterations m €
{0...M} of action sampling at each time step. The top J
highest-scoring action sequences from each iteration are used
to update and refine the mean and variance of the sampling
distribution for the next iteration. After M iterations, the
optimal heating and cooling actions are determined as the
resulting mean of the action distribution.

Figure 12 showcases the energy consumption of the four
methods across two different months and two different
locations (Fresno and Chicago). Note that all the evaluated
methods maintained thermal comfort within the —0.7 to
0.7 PMV comfort range. Comparing the results with the
rule-based method, MB_DNN_RS only achieves a modest
energy savings of 2.42%. However, when we replace the
building dynamics model in MB_DNN_RS with the proposed
model MB_ENN_RS, an additional 3.34% energy savings can
be achieved, highlighting the effectiveness of the proposed
model. Furthermore, by replacing the RS method with the
CEM method and the MPPI method, both using the proposed
model, we observe energy savings of 2.39% and 4.89%,
respectively. These findings underscore the efficiency of the
MPPI controller in maximizing energy savings.
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Fig. 13. Samples of MPPI controller.

9) Parameter Setting: MB?C relies on two critical param-
eters that can significantly impact its performance.

a) The number of samples in the MPPI algorithm:
Figure13provides a detailed analysis of the MPPI controller’s
performance as the number of sample trajectories is varied.
To assess the impact of different trajectory numbers (10, 30,
100, 500, 1000, 2000, 5000, 10000), we conduct multiple runs
of the MPPI controller using the ground truth model. Each
configuration is repeated 10 times, allowing us to calculate the
mean and standard reward for each trajectory count. From the
results depicted in Figure 13, we observe a distinct pattern:
the reward increases rapidly as the number of trajectories
grows until reaching approximately 1000 trajectories (power of
3 in the figure). Beyond this point, the reward improvement
becomes more gradual, suggesting that the MPPI algorithm
has converged. This finding indicates that 1000 trajectories
are sufficient to achieve near-optimal performance in terms of
reward.

In addition to evaluating reward, we also examine the
latency associated with selecting an action under different
trajectory counts. It becomes evident that the latency increases
exponentially as the number of trajectories increases. This
observation highlights the trade-off between computational
efficiency and performance. Taking into account the trade-off
between achieving the best reward and minimizing latency,
we determine that 1000 trajectories strike an optimal balance.
This choice ensures a substantial reward improvement while
keeping the computational burden manageable.

b) The length of horizon in the MPC process: The
horizon parameter in Algorithm 1 refers to the number of steps
to look ahead in the MPC process. To assess the impact of
different horizon lengths H on the performance of the MPPI
Controller, we conduct experiments and analyze the results.
Figure 14 provides an overview of the reward achieved by the
MPPI Controller for different horizon lengths. As the horizon
length increases, we observe a corresponding increase in the
reward, reaching its highest value when the horizon length is
20. However, as we further increase the horizon length beyond
20, the reward starts to decrease.

This pattern can be explained by the trade-off between
considering future dynamics and the accumulation of pre-
diction errors. With a small horizon, the controller tends to
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Fig. 14. Horizon of MPPI controller.
TABLE VII
EXECUTION OVERHEAD
Model Action Total
Inference | Selectction | Latency
Rule-based Method N/A N/A 0.44ms
Model-based DRL 71.76ms 21.41ms 93.17ms
Model-free DRL N/A N/A 2.54 ms
MB2C 294.72ms 38.46ms 333.18ms

make more immediate and greedy actions, overlooking the
potential impact of future dynamics. On the other hand, a large
horizon may result in worse actions due to the accumulation of
prediction errors as the horizon becomes longer. Considering
both the prediction errors and action performance, as well as
the desire for short latency, we choose a horizon length of 20.
This selection strikes a balance between accounting for future
dynamics and minimizing the negative effects of prediction
errors, ultimately leading to improved action performance and
overall reward.

10) Execution Overhead: TableVIIprovides a comparison
of the execution latency for different HVAC control methods
during a single timestep. The latency of the model-
based method and MB?C encompasses two components:
the prediction latency of the building dynamics model
and the action selection latency incurred by the controller.
In contrast, the rule-based method and model-free method
have significantly smaller latencies since they do not involve
a dynamics model or controller.

For MB2C, the latency of the model (ENN model) is
294.72ms, while the latency of the controller is 38.46ms.
Both values are higher compared to the existing model-based
method. The increased latency in MB2C can be attributed to
two main factors. Firstly, the ENN model requires additional
time to evaluate prediction results and calculate the weights
of the models within the ensemble learning framework for
building dynamics modeling. Secondly, the MPPI controller
needs to compute noise-related weights and evaluate various
action sequences.

However, despite the higher latency, it is important to note
that MB2C is still capable of generating an executable control
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action within one second. This is a significant achievement,
particularly when considering that the typical control cycle
is set to 15 minutes. Therefore, MB2C effectively meets the
requirement of generating control actions promptly, allowing
for efficient HVAC control in real-time scenarios.

V. RELATED WORK

There are a number of approaches to solve HVAC energy
optimization problems in the literature, including model
predictive control [12], [13], [42], [43], Model-free RL for
HVAC control [17], [19], [20], [44], [45], [46], Model-based
DRL for HVAC control [24] and Multi-agent DRL for HVAC
control [47], [48], [49].

A. MPC for HVAC Control

MPC is an iterative approach that solves an optimal
control problem by considering a receding time horizon.
In the context of HVAC control, previous research has
proposed various MPC frameworks aimed at minimizing
energy consumption while ensuring occupant comfort. For
instance, [12] introduces an MPC approach specifically
designed for HVAC control, focusing on energy minimization
and comfort constraints. More recently, a novel MPC
framework called OFFICE [13] has been developed, which
addresses the trade-off between energy cost and occupant
comfort in building management. OFFICE employs a gray-
box approach, utilizing a parametrized first-principles model,
where the model parameters are dynamically learned and
updated over time. Building on existing MPC frameworks for
HVAC control, the work [42] introduces an economic model
predictive control (EMPC) approach that optimizes energy
consumption and indoor comfort through a lattice piecewise
linear approximation for the PMV index.

In contrast, our approach adopts a black-box methodology,
where a neural network learns the complex relationships
between system inputs and outputs from scratch. Furthermore,
the MPC controller employed in our method differs from
OFFICE. While OFFICE employs an interior-point method
based on a differentiable function to determine the optimal
solution, we utilize an MPPI controller. The MPPI controller
incorporates sample noise as an exploration mechanism around
default values, enabling it to search for the best optimization
solution.

B. Model-free DRL for HVAC Control

Reinforcement Learning has been applied to many
areas [50], [51], [52], [53], [54], [55], e.g., smart city [52],
mobile application usage prediction [55], autonomous ground
vehicle (AGV) parking [54], sensor configuration [50] and
obstacle avoidance [53].

MFRL techniques have emerged as promising approaches
for achieving optimal HVAC controls. These schemes involve
the agent actively interacting with the environment and
learning the policy through extensive trial and error. For
instance, RL has been effectively utilized to determine
thermostat set-points that strike a balance between occupant
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comfort and energy efficiency [20]. Furthermore, a DRL-based
control method is successfully implemented and deployed in
a real-life office building, specifically for managing radiant
heating systems [19]. The research has also explored a compre-
hensive building control framework that encompasses HVAC,
lighting, window opening, and blind inclination, employing
the branching dueling Q-network (BDQ) algorithm [17],
[56]. However, despite these advancements, the practical
application of RL in HVAC control faces challenges related
to sample complexity. This complexity arises from the
substantial training time required to develop control strategies,
particularly when dealing with tasks characterized by a large
state-action space. Le et al. [57] introduce a DRL-based
control method for air free-cooled data centers in tropical
regions. Vazquez-Canteli et al. [58] focus on developing
a multi-agent RL implementation to optimize load shaping
in grid-interactive connected buildings. Zhang et al. [19]
successfully implement and deploy a DRL-based control
method specifically for radiant heating systems in a real-life
office building. Gao et al. [45] propose an approach based on
deep deterministic policy gradients (DDPGs) to learn thermal
comfort control policies. While these studies significantly
enhance HVAC control performance, it is important to note
that they predominantly concentrate on improving the HVAC
subsystem alone. On the other hand, Gnu-RL [16] takes a
different direction by utilizing a differentiable MPC policy,
which incorporates domain knowledge related to planning
and system dynamics. This unique approach makes Gnu-RL
both data-efficient and interpretable. However, it is worth
mentioning that Gnu-RL assumes the local linearization
of water-based radiant heating system dynamics, and its
effectiveness may not extend to more complex problems, such
as the one addressed in our study.

C. Model-Based DRL for HVAC Control and Complementary
Model-Free Approaches

In an effort to tackle the challenge of sample complexity,
researchers have turned to model-based RL techniques for
HVAC control [24], [59]. In their study, Zhang et al. [24]
put forth an innovative MBRL approach that involves training
a neural network to learn the intricate dynamics of the
system. Subsequently, they incorporate the acquired system
dynamics into an MPC framework, utilizing the rolling
horizon optimization method to execute control actions.
Chen et al. [59] propose a novel learning-based control
strategy, named MBRL-MC, for the HVAC system, which
synthesizes MBRL with MPC [59]. By initially learning a
thermal dynamic model of the zone through supervised learn-
ing, and subsequently designing a NN planning framework
that integrates RL with MPC, this approach diverges from
traditional MBRL methods. It circumvents the compounding
error issue by avoiding the imitation of MPC’s random
shooting outcomes and eschews the bootstrapping technique in
critical network updates for enhanced stability. While MBRL
methods exhibit promising performance in scenarios where
the action and state dimensions are low, such as in single-
zone buildings, they often fall short of achieving the same
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level of performance as model-free methods when applied to
multi-zone buildings with high state and action dimensions.
This discrepancy can be attributed to the inherent challenges in
accurately modeling and capturing the complexities of multi-
zone HVAC systems, which hinders the effectiveness of the
MBRL approach.

Some complementary model-free approaches offer promis-
ing solutions for HVAC control, particularly in complex and
dynamic environments. Michailidis et al.[60] showcase a
proactive control strategy in a high-inertia building, leveraging
simulation-assisted methodologies to optimize energy use
and thermal comfort, demonstrating the effectiveness of
MFRL in environments with complex dynamics. Similarly,
Baldi et al. [61] introduce Parametrized Cognitive Adaptive
Optimization (PCAO) for designing efficient “plug-and-play”
building optimization and control (BOC) systems. PCAO
excels by learning optimal BOC strategies with minimal
human input, showing significant improvements in energy
efficiency and thermal comfort compared to traditional
methods. These studies offer invaluable insights aligned
with our research objectives. The innovative approaches they
propose, particularly in using estimators for reducing data
requirements and increasing iteration efficiency, present a
compelling methodology that complements our study’s focus.

D. Multi-Agent DRL for HVAC Control

To address the challenges posed by unknown thermal
dynamics models and parameter uncertainties, such as
outdoor temperature, electricity price, and the number of
occupants, researchers propose innovative HVAC control
algorithms for multi-zone commercial buildings. In one
approach, presented by [47], they utilize a multi-agent deep
reinforcement learning (MADRL) framework [48] with an
attention mechanism [62]. This approach enables flexible
and scalable coordination among different agents, allowing
for effective control in the presence of complex dynamics.
Another study, conducted by [49], leverages a multi-agent
reinforcement learning algorithm to tackle the optimization
problem of minimizing building HVAC energy consumption
while ensuring comfort constraints are met. This is achieved
through dynamic adjustments of both the building and chiller
set-points. The work [63] introduces a novel occupant-centric
approach to multi-zone HVAC control that leverages MADRL
to intelligently schedule cooling and heating setpoints,
considering stochastic occupant behavior models, such as
dynamic clothing insulation adjustments, metabolic rates, and
occupancy patterns. However, it is important to note that both
approaches, [47] and [49], are based on model-free Multi-
agent DRL, which typically requires a significant amount of
training data spanning several years to achieve satisfactory
results.

VI. DISCUSSION
A. Building Model Calibration

Currently, our evaluation of existing control methods
involves utilizing the five-zone building model available in
EnergyPlus. However, we have not yet calibrated this model

due to the absence of historical operational data for the
specific building. The buildings implemented in EnergyPlus
are based on first principles thermodynamic models, which
should provide a performance similar to that of a real building.
By using the same EnergyPlus building model as a ground
truth, we can fairly compare the performance of different
control methods. It’s important to note that for the evaluation
conducted in our paper, this approach provides a reasonable
and fair comparison for “a particular building.” If the proposed
MBZ2C were to be deployed in a real building, we would need
to first learn the dynamics model using historical data from
an actual building. Once the dynamics model is developed,
we can deploy it in the real building for control purposes. If we
were to conduct simulations to test MB2C prior to real-world
deployment, we would need to create a calibrated EnergyPlus
model that accurately represents the target building [17], [19].
This calibration process ensures that the simulated results align
closely with the behavior and characteristics of the specific
building under consideration.

B. Occupancy and Weather Model

In MB2C, we utilize the ground-truth values of weather and
occupancy for the ENN dynamics model. It is important to
note that MB2C may exhibit a slightly optimistic bias since we
assume perfect prediction for weather and occupancy. While
errors in prediction can impact the controller’s performance,
we believe that the overall deviation from actual results
will not be significant, taking into account the model
prediction errors. There are two reasons for this: Firstly, the
existing occupancy and weather prediction models [64], [65]
demonstrate minimal prediction errors. This indicates a high
level of accuracy in the predictions, further supporting the
reliability of our approach. Secondly, the MPPI controller
generates an optimal trajectory over the planning horizon.
It only considers the first optimal action and recalculates
at each time step based on new observations. This adaptive
approach effectively mitigates the impact of model errors over
time, preventing their compounding effects.

VII. CONCLUSION

This paper presents MB2C, an innovative model-based
DRL HVAC control system designed for multi-zone buildings.
Our approach involves developing a novel building dynamics
model, which consists of an ensemble of multiple neural
network models conditioned on the environment. To perform
HVAC control, we employ a model predictive path integral
control method. In our study, we conduct a comprehensive
performance comparison of MB?C with rule-based methods,
as well as state-of-the-art model-based and model-free DRL
schemes. The results demonstrate that MB?C outperforms
rule-based approaches, achieving energy savings of 10.65%.
Moreover, MB2C demonstrates comparable performance to
state-of-the-art model-based and model-free DRL methods
while ensuring the thermal comfort of occupants, and in some
cases, even improving it. Notably, one significant advantage of
MB?C is its remarkable reduction in the required training set.
By leveraging MB2C, we can achieve a substantial reduction
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in training data, with an order of magnitude decrease of
10.52 times, without compromising performance.

Despite these promising results, we recognize certain
limitations within our study. The assumptions of perfect
prediction for weather and occupancy may not fully capture
the unpredictable nature of real-world conditions. Furthermore,
the scalability of MB2C to various building configurations
and climates remains an area for further exploration. Moving
forward, future research will aim to refine the predictive
accuracy of our model under varying environmental conditions
and explore the integration of stochastic models to better
adapt to real-time changes in occupancy and weather. We also
plan to investigate the application of MB2C across a broader
spectrum of building types and environmental conditions,
further validating its versatility and effectiveness in improving
energy efficiency and occupant comfort. These steps will
contribute to the ongoing development of intelligent HVAC
control systems, pushing the boundaries of what is achievable
in energy conservation and environmental sustainability.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions expressed in this
material are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES

[1] X. Ding, W. Du, and A. E. Cerpa, “MB2C: Model-based deep
reinforcement learning for multi-zone building control,” in Proc.
7th ACM Int. Conf. Syst. Energy-Efficient Buildings, Cities, Transp.,
Nov. 2020, pp. 50-59.

[2] N. Klepeis et al., “The national human activity pattern survey (NHAPS):
A resource for assessing exposure to environmental pollutants,” J.
Exposure Sci. Environ. Epidemiol., vol. 11, pp. 231-252, Jul. 2001.

[3] Z. Xu, Q.-S. Jia, and X. Guan, “Supply demand coordination for building
energy saving: Explore the soft comfort,” IEEE Trans. Autom. Sci. Eng.,
vol. 12, no. 2, pp. 656-665, Apr. 2015.

[4] Q.-S. Jia, H. Wang, Y. Lei, Q. Zhao, and X. Guan, “A decentralized
stay-time based occupant distribution estimation method for buildings,”
IEEE Trans. Autom. Sci. Eng., vol. 12, no. 4, pp. 1482-1491, Oct. 2015.

[5]1 K. Yang, Y. Chen, and W. Du, “OrchLoc: In-orchard localization
via a single LoRa gateway and generative diffusion model-based
fingerprinting,” in Proc. 22nd Annu. Int. Conf. Mobile Syst., Appl.
Services, Jun. 2024, pp. 304-317.

[6] K. Yang, Y. Chen, X. Chen, and W. Du, “Link quality modeling for
LoRa networks in orchards,” in Proc. 22nd Int. Conf. Inf. Process. Sensor
Netw., May 2023, pp. 27-39.

[71 S. Bengea, A. Kelman, F. Borrelli, R. Taylor, and S. Narayanan,
“Model predictive control for mid-size commercial building HVAC:
Implementation, results and energy savings,” in Proc. 2nd Int. Conf.
Building Energy Environ., 2012, pp. 979-986.

[8] W. Goetzler, R. Shandross, J. Young, O. Petritchenko, D. Ringo, and
S. McClive, “Energy savings potential and RD&D opportunities for
commercial building hvac systems,” Navigant Consulting, Burlington,
MA, USA, Tech. Rep. DOE/EE-1703; 7849, 2017.

[9] D. Minoli, K. Sohraby, and B. Occhiogrosso, “IoT considerations,

requirements, and architectures for smart buildings—Energy optimiza-

tion and next-generation building management systems,” IEEE Internet

Things J., vol. 4, no. 1, pp. 269-283, Feb. 2017.

G. Bedi, G. K. Venayagamoorthy, and R. Singh, “Development of

an loT-driven building environment for prediction of electric energy

consumption,” IEEE Internet Things J., vol. 7, no. 6, pp. 4912-4921,

Jun. 2020.

J. Salpakari and P. Lund, “Optimal and rule-based control strategies

for energy flexibility in buildings with PV,” Appl. Energy, vol. 161,

pp. 425-436, Jan. 2016.

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

[34]

[35]

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

A. Beltran and A. E. Cerpa, “Optimal HVAC building control with
occupancy prediction,” in Proc. 1st ACM Conf. Embedded Syst. Energy-
Efficient Buildings, Nov. 2014, pp. 168-171.

D. A. Winkler, A. Yadav, C. Chitu, and A. E. Cerpa, “OFFICE:
Optimization framework for improved comfort & efficiency,” in Proc.
19th ACM/IEEE Int. Conf. Inf. Process. Sensor Netw. (IPSN), Apr. 2020,
pp. 265-276.

N. N. Kota, J. M. House, J. S. Arora, and T. F. Smith, “Optimal control
of HVAC systems using DDP and NLP techniques,” Optim. Control
Appl. Methods, vol. 17, no. 1, pp. 71-78, Jan. 1996.

X. Li, T. Lu, C. J. Kibert, and M. Viljanen, “Modeling and forecasting
energy consumption for heterogeneous buildings using a physical—
statistical approach,” Appl. Energy, vol. 144, pp. 261-275, Apr. 2015.
B. Chen, Z. Cai, and M. Bergés, “Gnu-RL: A practical and scalable
reinforcement learning solution for building HVAC control using a
differentiable MPC policy,” Frontiers Built Environ., vol. 6, pp. 1-18,
Nov. 2020.

X. Ding, W. Du, and A. Cerpa, “OCTOPUS: Deep reinforcement
learning for holistic smart building control,” in Proc. 6th ACM Int.
Conf. Syst. Energy-Efficient Buildings, Cities, Transp., Nov. 2019,
pp- 326-335.

X. Ding, A. Cerpa, and W. Du, “Exploring deep reinforcement learning
for holistic smart building control,” ACM Trans. Sensor Netw., vol. 20,
no. 3, pp. 1-28, May 2024.

Z. Zhang and K. P. Lam, “Practical implementation and evaluation of
deep reinforcement learning control for a radiant heating system,” in
Proc. 5th Conf. Syst. Built Environ. New York, NY, USA: Association
for Computing Machinery, Nov. 2018, pp. 148-157.

J. Y. Park and Z. Nagy, “HVACLearn: A reinforcement learning based
occupant-centric control for thermostat set-points,” in Proc. 11th ACM
Int. Conf. Future Energy Syst., Jun. 2020, pp. 434-437.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

Z. An, X. Ding, A. Rathee, and W. Du, “CLUE: Safe model-based
RL HVAC control using epistemic uncertainty estimation,” in Proc.
10th ACM Int. Conf. Syst. Energy-Efficient Buildings, Cities, Transp.,
Nov. 2023, pp. 149-158.

Z. An, X. Ding, and W. Du, “Go beyond black-box policies: Rethinking
the design of learning agent for interpretable and verifiable HVAC
control,” 2024, arXiv:2403.00172.

C. Zhang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna,
“Building HVAC scheduling using reinforcement learning via neural
network based model approximation,” in Proc. 6th ACM Int. Conf. Syst.
Energy-Efficient Build. Cities Transp., 2019, pp. 287-296.

S. Goyal and P. Barooah, “A method for model-reduction of non-linear
thermal dynamics of multi-zone buildings,” Energy Buildings, vol. 47,
pp. 332-340, Apr. 2012.

A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 7559-7566.

G. Williams et al.,, “Information theoretic MPC for model-based
reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2017, pp. 1714-1721.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

P. O. Fanger, “Thermal comfort. analysis and applications in
environmental engineering,” Thermal Comfort. Anal. Appl. Environ.
Eng., May 1970.

B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 1-12.

K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep
reinforcement learning in a handful of trials using probabilistic dynamics
models,” in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp. 1-12.
S. Levine. Model-based Reinforcement Learning. Accessed: Oct. 4,
2020. [Online]. Available: http://rail.eecs.berkeley.edu/deepricourse/

A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Proc. Conf. Robot
Learn., 2020, pp. 1101-1112.

Thermal Environmental Conditions for Human Occupancy, Standard 55-
2004, ASHRAE Inc, 2004.

H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statist., vol. 22, no. 3, pp. 400-407, Sep. 1951.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 27,2024 at 04:11:51 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DING et al.: MULTI-ZONE HVAC CONTROL WITH MODEL-BASED DEEP REINFORCEMENT LEARNING 19
[36] M. Avci, M. Erkoc, A. Rahmani, and S. Asfour, “Model predictive [59] L. Chen, F. Meng, and Y. Zhang, “MBRL-MC: An HVAC control
HVAC load control in buildings using real-time electricity pricing,” approach via combining model-based deep reinforcement learning and
Energy Buildings, vol. 60, pp. 199-209, May 2013. model predictive control,” IEEE Internet Things J., vol. 9, no. 19,

[37] M. Wetter, “Co-simulation of building energy and control systems with pp. 19160-19173, Oct. 2022.
the building controls virtual test bed,” J. Building Perform. Simul., vol. 4, [60] I. T. Michailidis, S. Baldi, M. F. Pichler, E. B. Kosmatopoulos,
no. 3, pp. 185-203, Sep. 2011. and J. R. Santiago, “Proactive control for solar energy exploitation:

[38] Y. Ma, J. Matusko, and F. Borrelli, “Stochastic model predictive control A German high-inertia building case study,” Appl. Energy, vol. 155,
for building HVAC systems: Complexity and conservatism,” IEEE Trans. pp. 409-420, Oct. 2015.

Control Syst. Technol., vol. 23, no. 1, pp. 101-116, Jan. 2015. [61] S. Baldi, I. Michailidis, C. Ravanis, and E. B. Kosmatopoulos, “Model-

[39] S. M. Kakade, “A natural policy gradient,” in Proc. Adv. Neural Inf. based and model-free ‘plug-and-play’ building energy efficient control,”
Process. Syst., vol. 14, 2001, pp. 1-8. Appl. Energy, vol. 154, pp. 829-841, Sep. 2015.

[40] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust  [62] S. Igbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
region policy optimization,” in Proc. 32nd Int. Conf. Mach. Learn., in learning,” in Proc. 36th Int. Conf. Mach. Learn. K. Chaudhuri and
Proceedings of Machine Learning Research, vol. 37, Lille, France, 2015, R. Salakhutdinov, Eds., vol. 97, Jun. 2019, pp. 2961-2970.
pp. 1889-1897. [63] X. Liu, Y. Wu, and H. Wu, “Enhancing HVAC energy management

[41] Z. 1. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer, “The through multi-zone occupant-centric approach: A multi-agent deep
cross-entropy method for optimization,” in Handbook of Statistics. reinforcement learning solution,” Energy Buildings, vol. 303, Jan. 2024,
Amsterdam, The Netherlands: Elsevier, 2013. Art. no. 113770.

[42] H.Li,J. Xu, Q. Zhao, and S. Wang, “Economic model predictive control ~ [64] H. Rajabi, X. Ding, W. Du, and A. Cerpa, “TODOS: Thermal sensOr
in buildings based on piecewise linear approximation of predicted mean data-driven occupancy estimation system for smart buildings,” in Proc.
vote index,” IEEE Trans. Autom. Sci. Eng., pp. 1-12, Jun. 2004. 10th ACM Int. Conf. Syst. Energy-Efficient Buildings, Cities, Transp.,

[43] B. Sun, P. B. Luh, Q.-S. Jia, Z. Jiang, F. Wang, and C. Song, “Building Nov. 2023, pp. 198-207.
energy management: Integrated control of active and passive heating, [65] H. Rajabi, Z. Hu, X. Ding, S. Pan, W. Du, and A. Cerpa,
cooling, lighting, shading, and ventilation systems,” IEEE Trans. Autom. “MODES: Multi-sensor occupancy data-driven estimation system for
Sci. Eng., vol. 10, no. 3, pp. 588-602, Jul. 2013. smart buildings,” in Proc. 13th ACM Int. Conf. Future Energy Syst.,

[44] B. Sun, P. B. Luh, Q.-S. Jia, and B. Yan, “Event-based optimization Jun. 2022, pp. 228-239.
within the Lagrangian relaxation framework for energy savings in HVAC
systems,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 4, pp. 1396-1406,

Oct. 2015.

[45] G. Gao, J. Li, and Y. Wen, “DeepComfort: Energy-efficient thermal
comfort control in buildings via reinforcement learning,” IEEE Internet
Things J., vol. 7, no. 9, pp. 8472-8484, Sep. 2020. Xianzhong Ding received the B.S. degree in

[46] A. H. Hosseinloo, S. Nabi, A. Hosoi, and M. A. Dahleh, “Data-driven computer science from Taishan University in 2014,
control of COVID-19 in buildings: A reinforcement-learning approach,” the M.S. degree in computer science from Shandong
IEEE Trans. Autom. Sci. Eng., pp. 1-9, Sep. 2004. University, China, in 2018, and the Ph.D. degree in

[47] L. Yu et al., “Multi-agent deep reinforcement learning for HVAC control computer science from the University of California,
in commercial buildings,” IEEE Trans. Smart Grid, vol. 12, no. 1, Merced, CA, USA, in 2023. He is currently a Post-
pp. 407419, Jan. 2021. Doctoral Researcher with the Lawrence Berkeley

[48] Z. Ding, T. Huang, and Z. Lu, “Learning individually inferred National Laboratory. His research interests include
communication for multi-agent cooperation,” in Proc. Adv. Neural Inf. cyber-physical systems, resource optimization, and
Process. Syst., vol. 33, 2020, pp. 22069-22079. mobile computing.

[49] S. Nagarathinam, V. Menon, A. Vasan, and A. Sivasubramaniam,

“MARCO-multi-agent reinforcement learning based COntrol of building
HVAC systems,” in Proc. 11th ACM Int. Conf. Future Energy Syst.,
Jun. 2020, pp. 57-67.

[50] F. Fraternali, B. Balaji, Y. Agarwal, and R. K. Gupta, “ACES: Automatic
configuration of energy harvesting sensors with reinforcement learning,” .

ACM Trans. Sensor Netw., vol. 16, no. 4, pp. 1-31, Nov. 2020. Alberto Cerpa (Member, IEEE) received the

[51] M. Liu, X. Ding, and W. Du, “Continuous, real-time object detection Englneermg degreg in electrical engineering ﬁtom
on mobile devices without offloading,” in Proc. IEEE 40th Int. Conf. Buenos Aires Instifute of_Technol_ogy, Ar_gentlp 4,
Distrib. Comput. Syst. (ICDCS), Nov. 2020, pp. 976-986. in 1995, the M.S. degree in electrl({al engineering

. L “ . and the M.S. degree in computer science from the
[52] M. Mohammadi, A. Al-Fugaha, M. Guizani, and J.-S. Oh, “Semisu- . . . . .
. . N . University of Southern California (USC), in 1998
pervised deep reinforcement learning in support of IoT and smart city . .
o, . and 2000, respectively, and the Ph.D. degree in
services,” IEEE Internet Things J., vol. 5, no. 2, pp. 624-635, Apr. 2018. . . . ; .
. 7 . . computer science from the University of California,

[53] K. Wang, C. Mu, Z. Ni, and D. Liu, “Safe reinforcement learning Los Angeles (UCLA), in 2005. He is currently an
and adaptive optimal control with applications to obstacle avoidance AOS e . ? : y a

s . ssociate Professor and the Graduate Group Chair
problem,” IEEE Trans. Autom. Sci. Eng., 2004. R . .
K X X . . of the University of California at Merced, Merced.

(54] ‘l‘i Chai, D Liu, T. I_‘lu’ A Tsovurdos, Y. Xia, and S. Chai, His research interests include wireless sensor networks, embedded networked
Deep leamimg-basedi trajectory planning and control for autonomous systems, cyber-physical systems, computer networks, and operating systems.
ground vehicle parking maneuver,” [EEE Trans. Autom. Sci. Eng.,
pp. 1633-1647, Jun. 2022.

[55] Z. Shen, K. Yang, W. Du, X. Zhao, and J. Zou, “DeepAPP:

A deep reinforcement learning framework for mobile application
usage prediction,” in Proc. 17th Conf. Embedded Netw. Sensor Syst.,
Nov. 2019, pp. 153-165. Wan Du (Member, IEEE) received the B.E.

[56] Y. Lei et al., “A practical deep reinforcement learning framework and M.S. degrees in electrical engineering from
for multivariate occupant-centric control in buildings,” Appl. Energy, Beihang University, China, in 2005 and 2008,
vol. 324, Oct. 2022, Art. no. 119742. respectively, and the Ph.D. degree in electronics

[57] D. V. Le, R. Wang, Y. Liu, R. Tan, Y.-W. Wong, and Y. Wen, “Deep from the University of Lyon (Ecole Centrale de

(58]

reinforcement learning for tropical air free-cooled data center control,”
ACM Trans. Sensor Netw., vol. 17, no. 3, pp. 1-28, Aug. 2021.

J. R. Vazquez-Canteli, G. Henze, and Z. Nagy, “MARLISA: Multi-
agent reinforcement learning with iterative sequential action selection for
load shaping of grid-interactive connected buildings,” in Proc. 7th ACM
Int. Conf. Syst. Energy-Efficient Buildings, Cities, Transp., Nov. 2020,
pp. 170-179.

Lyon), France, in 2011. He was a Research Fellow
with Nanyang Technological University, Singapore,
from 2012 to 2017. He is currently an Assistant
Professor with the University of California at
Merced, Merced. His research interests include the
Internet of Things, distributed networking systems,
and mobile computing.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 27,2024 at 04:11:51 UTC from IEEE Xplore. Restrictions apply.



