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Abstract

We consider a class of eigenvector-dependent nonlinear eigenvalue problems (NEPv) without
the unitary invariance property. Those NEPv commonly arise as the first-order optimality
conditions of a particular type of optimization problems over the Stiefel manifold, and previously,
special cases have been studied in the literature. Two necessary conditions, a definiteness
condition and a rank-preserving condition, on an eigenbasis matrix of the NEPv that is a global
optimizer of the associated optimization problem are revealed, where the definiteness condition
has been known for the special cases previously investigated. We show that, locally close to
the eigenbasis matrix satisfying both necessary conditions, the NEPv can be reformulated as a
unitarily invariant NEPv, the so-called aligned NEPv, through a basis alignment operation — in
other words, the NEPv is locally unitarily invariantizable. Numerically, the NEPv is naturally
solved by an SCF-type iteration. By exploiting the differentiability of the coefficient matrix of
the aligned NEPv, we establish a closed-form local convergence rate for the SCF-type iteration
and analyze its level-shifted variant. Numerical experiments confirm our theoretical results.
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1 Introduction

Consider the eigenvector-dependent nonlinear eigenvalue problem (NEPv): Find X ∈ Rn×k that
has orthonormal columns (i.e., XTX = Ik) and a square Λ ∈ Rk×k satisfying

H(X)X = XΛ, (1.1)

where H(X) ∈ Rn×n is a symmetric matrix continuously dependent of X. When (1.1) holds, we call
X an eigenbasis matrix and (X,Λ) an eigen-matrix pair of the NEPv. Necessarily, k ≤ n (usually
k � n), and the columns of X form an orthonormal basis of the eigenspace of H(X) evaluated at
X, and the corresponding eigenvalues are the k eigenvalues of Λ = XTH(X)X ∈ Rk×k, which is
necessarily symmetric. Note that Λ may not be diagonal and individual columns of X may not be
some eigenvectors of H(X).
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NEPv (1.1) commonly arises in important real-life applications. The two most prominent
examples are the Kohn-Sham equation in the density functional theory [33, 42] and the Gross-
Pitaevskii equation for the Bose-Einstein condensation [6, 24], both from computational physics
and chemistry. In recent years, NEPv increasingly show up in the fields of data science and machine
learning where various optimization problems with orthogonality constraints need to be solved; see,
e.g., [5, 25, 34, 36, 45, 51, 52, 53, 54, 55].

NEPv is a term coined by the authors of [10], where it refers to a problem (1.1) with H( · )
satisfying the so-called unitary invariance property, by which we mean1

H(XQ) = H(X) for all orthogonal Q ∈ Rk×k. (1.2)

Under condition (1.2), if X solves NEPv (1.1) then so does XQ, and, hence, a solution X is
really a representative of a set of solutions that share the same column space, i.e., a point in the
Grassmannian G n

k (the collection of all k dimensional subspaces in Rn). This unitary invariance
property is possessed by some practical NEPv, such as those from computational physics and
chemistry mentioned above, and it facilitates theoretical analysis. Particularly, it allows us to
investigate the NEPv and related numerical algorithms by the eigenspace perturbation theory of the
symmetric eigenvalue problem [29, 40]. By exploiting unitary invariance, sufficient conditions for the
existence of solutions of NEPv have been established in [10], and estimations of the convergence rate
for the often used self-consistent field (SCF) iteration have been obtained in [4, 31, 46]. With (1.2),
we can also require that the columns of a solution representative X are eigenvectors of H(X) and
Λ is diagonal. Because otherwise we can diagonalize Λ by QTΛQ with an orthogonal Q ∈ Rk×k,
and take (XQ,QTΛQ) to be the new eigen-matrix pair, since H(XQ)XQ = XQ(QTΛQ) by (1.1)
and (1.2).

Although most existing studies of NEPv (1.1) focus on the ones with the unitary invariance
property (1.2), many recent applications also give rise to NEPv without this property. One impor-
tant source of such problems is the multi-view subspace learning (see, e.g., [14, 41, 47, 48, 55, 56]),
where the problems of interest appear in some forms of the trace-ratio maximization over the Stiefel
manifold

On×k := {X ∈ Rn×k : XTX = Ik}, (1.3)

the collection of matrices in Rn×k that have orthonormal columns. For example, in [48] it is
considered

max
X∈On×k

fθ(X) with fθ(X) :=
tr(XTAX +XTD)

[tr(XTBX)]θ
, (1.4)

where θ ∈ [0, 1] is a tunable parameter, A, B ∈ Rn×n are symmetric with B � 0 (positive definite),
and D ∈ Rn×k. Depending on the coefficient matrices and the parameter θ, the optimization (1.4)
includes a wide variety of practical cases, and a few special ones have been playing important roles
in numerical linear algebra, machine learning, and statistics:

• D = 0 and θ = 1 appears in Fisher’s linear discriminant analysis (LDA) [35, 53, 54] in the
setting of supervised machine learning;

• A = 0 and θ = 1/2 shows up in the orthogonal canonical correlation analysis (OCCA) [55];

• B = In or θ = 0 arises in the unbalanced orthogonal Procrustes problem, a fundamental
problem in numerical linear algebra, optimization, and applied statistics [8, 13, 16, 18, 19, 21,
23, 32, 56, 57].

1The term ‘unitary’ is from the setting of complex matrices, and we stick to this name convention in our discussion.
In fact, the results in this paper can be extended to cover the complex case, as we will comment later in Section 8.

2



The optimization problem (1.4) in its general form has been studied in [48], where it is shown
that the first-order optimality condition of (1.4) is equivalent to an NEPv (1.1) with

H(X) =
1

[tr(XTBX)]θ

[
2
(
A− θ tr(XTAX)

tr(XTBX)
·B
)

+
(
DXT +XDT − 2θ

tr(XTD)

tr(XTBX)
·B
)]
. (1.5)

Due to the presences of DXT and XDT, this H(X) does not satisfy the unitary invariance prop-
erty (1.2). Hence, existing analyses and techniques [4, 10] developed for NEPv with property (1.2)
do not directly apply. Especially, the plain SCF iteration does not work for those problems and
needs a redesign. In [48, 55, 56], the authors developed SCF-type iterations to solve their particu-
lar NEPv and established global convergence for the algorithms, which is rather remarkable since
the optimization problems (1.4) are non-convex where global convergence cannot be guaranteed in
general. However, their analyses and proofs are problem-specific and cannot be easily extended to
other cases, and they do not lead to useful quantitative estimates for rates of convergence of their
SCF-type iterations. New convergence theories are needed to better understand and predict the
convergence behaviors of such algorithms.

Contribution. The major goal of this paper is twofold: i) to develop a general theory for analyzing
a class of NEPv (1.1) that violates the unitary invariance property (1.2) while includes the ones
with (1.5) as special cases; ii) to extend the local convergence analysis of [4] to such a class of
NEPv. Our analyses will apply to more general NEPv (1.1) than those such as the ones with (1.5),
but for now and for clarity, let us first summarize our results for the case of NEPv (1.1) with (1.5)
as follows.

• We show that any global optimizer X∗ must be a D-regular eigenbasis matrix, i.e., satisfying

XT
∗ D � 0 and rank(XT

∗ D) = rank(D). (1.6)

The first condition XT
∗ D � 0 is not hard to establish and has been known to [48, 55, 56],

whereas the second condition rank(XT
∗ D) = rank(D) is new and is a critical one for our local

convergence analysis to go through.

• Our analysis is made possible by a novel transformation of the NEPv with (1.5), through
a basis alignment operation, to an equivalent one that does admit the unitary invariance
property and has a differentiable coefficient matrix. The resulting NEPv, which we will call
the aligned NEPv , is well-defined for all X close to a D-regular eigenbasis matrix. Namely,
locally close to a D-regular eigenbasis matrix, the NEPv with (1.5) is unitarily invariantizable.

• We show that the SCF-type iteration for NEPv with (1.5), as developed in [48] and others
in [55, 56], is equivalent to the plain SCF iteration for the aligned NEPv. By extending the
local convergence analysis in [4], we establish a sharp estimation of the rate of convergence
for the SCF-type iteration and build the theoretic foundation for a level-shifting scheme to
fix the potential divergence issue.

Extensive numerical experiments are also provided to demonstrate our theoretical results.

Organization. The rest of this paper is organized as follows. In Section 2, we introduce a
class of NEPv without unitary invariance as the KKT condition for an optimization problem over
the Stiefel manifold. In Section 3, we discuss necessary conditions for an eigenbasis matrix to
be a global maximizer of the optimization problem, where we will introduce the notions of basis
alignment and D-regular eigenbasis matrix. Sections 4 and 5 are devoted to SCF, where we will
propose an SCF-type iteration, establish its connection to the plain SCF for an aligned NEPv that
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is unitarily invariant, and obtain its local convergence rate. Section 6 is on a level-shifting scheme
with a theoretical foundation for fixing the potential divergence issue of the SCF-type iteration.
Numerical experiments are presented in Section 7 and concluding remarks are made in Section 8.

Notation. Rn×m is the set of n-by-m real matrices, and On×k defined in (1.3) is the Stiefel
manifold, where k ≤ n (usually k � n) and Ik is the k × k identity matrix. For a vector or matrix
B ∈ Rm×n, BT stands for its transpose, R(B) for its column space, and N (B) for its null space. The
singular values of B are denoted by σi(B), for i = 1, . . . ,min{m,n}, arranged in the nonincreasing
order: σ1(B) ≥ σ2(B) ≥ · · · ≥ σmin{m,n}(B). ‖B‖ denotes some consistent matrix norm of B such
as the spectral norm and the Frobenius norm. For a square matrix A ∈ Rn×n, tr(A) and ρ(A)
denote, respectively, its trace and spectral radius (i.e., the largest absolute value of the eigenvalues
of A). If A is also symmetric, then its eigenvalues are enumerated from largest to smallest as
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A), and, in particular, λmax(A) := λ1(A) and λmin(X) := λn(A). A � 0
(A � 0) means that A is symmetric and positive semidefinite (definite). Other notations will be
explained at their first appearances.

2 A Class of NEPv Without Unitary Invariance Property

In this section, we introduce a class of NEPv as the first-order optimality condition, also known as
the KKT condition, to a particular optimization problem over the Stiefel manifold.

Throughout this paper, for a scalar function f defined on On×k, its gradient at X = [xij ] as a
matrix variable in Rn×k is denoted as and defined by

∂f(X)

∂X
∈ Rn×k with

[
∂f(X)

∂X

]
ij

:=
∂f(X)

∂xij
. (2.1)

More generally, for a (Fréchet) differentiable function F : Rn×k → Rp×q, its Fréchet derivative at
X ∈ Rn×k along direction Y ∈ Rn×k, denoted as DF (X)[Y ], is defined by

DF (X)[Y ] := lim
t→0

1

t

[
F (X + tY )− F (X)

]
=

d

dt
F (X + tY )

∣∣∣∣
t=0

. (2.2)

We can see that DF (X)[ · ] : Rm×n → Rp×q is a linear operator.
For the gradient in (2.1), we emphasize it being defined at X as a matrix variable in Rn×k,

i.e., all entries of X are treated as independent, although X lives on On×k. The reader should not
confuse it with the notion of gradient over the Stiefel manifold On×k [1, (3.37)].

For ease of presentation, we formally define the notion of unitary invariance of a scalar or
matrix-valued function on Rn×k as follows.

Definition 2.1. A function F : Rn×k → Rp×q is said right unitarily invariant , or unitarily invariant
for short, if

F (XQ) ≡ F (X) for X ∈ Rn×k, Q ∈ Ok×k.

2.1 An Optimization Problem on the Stiefel Manifold

Consider the following maximization problem over the Stiefel manifold On×k:

max
X∈On×k

f(X) with f(X) := φ(X) + ψ(X) · tr(XTD), (2.3)
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where D ∈ Rn×k, φ and ψ are continuously differentiable functions in X ∈ Rn×k and unitarily
invariant. We assume that ψ is a positive2 function, i.e., ψ(X) > 0, for all X ∈ On×k. Problem (2.3)
takes (1.4) as a special case with

φ(X) =
tr(XTAX)

[tr(XTBX)]θ
and ψ(X) =

1

[tr(XTBX)]θ
.

They are unitarily invariant in X because both tr(XTAX) and tr(XTBX) share this property
(recall that matrix traces are invariant under similarity transformations and, in particular, we have
tr(QTMQ) = tr(M) for all M ∈ Rk×k and Q ∈ Ok×k). If D = 0 in (2.3), then the objective function
f becomes unitarily invariant, and (2.3) is a maximization problem over the Grassmannian G n

k .
We will show that the first-order optimality condition, also known as the KKT condition, of the

optimization problem (2.3) can be formulated as an NEPv and any optimizer is an orthonormal
eigenbasis matrix of the NEPv. Further necessary conditions for the eigenbasis matrix to be a
global maximizer will be derived in Section 3.

2.2 From the First-Order Optimality Condition to NEPv

Traditionally, problem (2.3) is viewed as an optimization problem with orthogonality constraints:

max
X∈Rn×k

f(X) s.t. XTX = Ik. (2.4)

We will derive the optimality conditions of (2.4) by the standard method of Lagrange’s multipliers.3

Let us begin with a useful expression for the gradients of unitarily invariant functions.

Lemma 2.1. Let φ : Rn×k → R be a differentiable function that is unitarily invariant. Then there
exists a matrix-valued function Hφ(X) ∈ Rn×n, which is continuous and unitarily invariant in
X ∈ Rn×k, and symmetric, such that the gradient of φ admits

∂φ(X)

∂X
= Hφ(X) ·X (2.5)

for X ∈ Rn×k with orthonormal columns. Furthermore, Hφ can be made differentiable if φ is twice
differentiable. In general, such Hφ(X) is not unique, and one of them is

Hφ(X) =
∂φ(X)

∂X
·XT +X ·

[
∂φ(X)

∂X

]T

−X ·

([
∂φ(X)

∂X

]T

X

)
·XT. (2.6)

Proof. We will show that the matrix in (2.6) satisfies all the requirement. The validity of the
expression (2.5) with (2.6) is a consequence of the following more general fact: Given X ∈ Rn×k
with XTX = Ik, it holds for any matrix C ∈ Rn×k that

C = CXTX = (CXT +XCT −XCT) ·X = (CXT +XCT −XCTXXT) ·X.

Letting C = ∂φ(X)
∂X yields (2.5) with (2.6). It can been seen that Hφ( · ) in (2.6) is continuous and

also differentiable if φ is twice differentiable.

2This condition may be relaxed to that ψ is non-negative, i.e., ψ(X) ≥ 0, and ψ(X) > 0 at the KKT points of
(2.3). But such conditions are hard to verify since the KKT points are in general unknown in the first place.

3Alternatively, we can use the Riemannian gradient of a scalar function over the Stiefel manifold On×k to derive
the KKT condition, as in [48] (see also [1, (3.37)]).
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It remains to show that Hφ in (2.6) is symmetric and unitarily invariant. To that end, we
will first establish the following identities for the derivative of unitarily invariant function φ: For
X ∈ Rn×k, Q ∈ Ok×k, and Y := XQ, we have

∂φ(XQ)

∂Q
= XT∂φ(X)

∂X
Q and

∂φ(Y )

∂Y
=
∂φ(X)

∂X
·Q . (2.7)

These two identities in (2.7) follow directly from the following first-order expansions: Perturbing
Q to Q+ δQ and Y ≡ XQ to Y + δY , we have

φ(X(Q+ δQ)) = φ(X(I + δQ ·QT)Q)

= φ(X +X · δQ ·QT)

= φ(X) + tr

([
∂φ(X)

∂X

]T

X · δQ ·QT

)
+O(‖δQ‖2)

= φ(X) + tr

(
QT

[
∂φ(X)

∂X

]T

X · δQ

)
+O(‖δQ‖2),

and

φ(Y + δY ) = φ((X + δY ·QT)Q)

= φ(X + δY ·QT)

= φ(X) + tr

([
∂φ(X)

∂X

]T

· δY ·QT

)
+O(‖δY ‖2)

= φ(X) + tr

(
QT

[
∂φ(X)

∂X

]T

· δY

)
+O(‖δY ‖2).

Next, we claim that XT ∂φ(X)
∂X is always symmetric, from which the symmetry of Hφ(X) in

(2.6) follows immediately. To verify this claim, we notice that φ(XQ) with a fixed X ∈ Rn×k is a
constant over Q ∈ Ok×k by unitary invariance. Therefore, any Q ∈ Ok×k is an optimal solution to

max
Q∈Rk×k

φ(XQ) s.t. QTQ = Ik,

because the objective function has a constant value. By the method of Lagrange’s multipliers, we
have for any Q ∈ Ok×k, there exists a symmetric multiplier Γ ∈ Rk×k such that ∂L(Q,Γ)

∂Q = 0, where

L(Q,Γ) := φ(XQ)− 1

2
tr
(
[QTQ− Ik] · Γ

)
is the associated Lagrangian function. By the first identity in (2.7), we obtain immediately

∂L(Q,Γ)

∂Q
= XT∂φ(X)

∂X
Q−QΓ = 0.

Letting Q = Ik yields XT · ∂φ(X)
∂X = Γ, which is symmetric, as was to be shown.

Finally, by the second identity in (2.7), it can be verified that Hφ(XQ) = Hφ(X) for Hφ( · )
given by (2.6). Namely, Hφ( · ) is unitarily invariant.

We defer addressing the non-uniqueness of Hφ(X) satisfying (2.5) to Remark 2.1 below.
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Remark 2.1. In general, the choice of continuous and unitarily invariant Hφ(X) to satisfy (2.5)
is not unique. For a particular functions φ, one may select an Hφ that is more convenient and
efficient to work with. For example, for φ(X) = h

(
tr(XTAX)

)
, a composition of a differentiable

function h with a quadratic form of a symmetric matrix A, we have

∂φ(X)

∂X
= 2h′

(
tr(XTAX)

)
·AX,

where h′ is the first-order derivative of h. In this case, we have immediately

∂φ(X)

∂X
= Hφ(X) ·X with Hφ(X) = 2h′

(
tr(XTAX)

)
·A. (2.8)

In comparison, the general formula (2.6) leads to

Hφ(X) = 2h′
(
tr(XTAX)

)
·
[
AXXT +XXTA−X(XTAX)XT

]
,

a much more complicated one than that in (2.8).

By Lemma 2.1, we can write the gradients of unitarily invariant φ and ψ as

∂φ(X)

∂X
= Hφ(X) ·X and

∂ψ(X)

∂X
= Hψ(X) ·X, (2.9)

where Hφ(X) ∈ Rn×n and Hψ(X) ∈ Rn×n are symmetric and unitarily invariant. In what follows,
we assume some forms of Hφ(X) and Hψ(X) have been selected to fulfill (2.9), but we will not
specify which particular ones are used. In fact, our development will work with any choice.

Theorem 2.1. X ∈ On×k is a KKT point of (2.3) if and only if DTX is symmetric and X satisfies
the NEPv

H(X)X = XΛ, (2.10a)

where H(X) is symmetric and given by

H(X) = Hφ(X) + tr(XTD) ·Hψ(X) + ψ(X) · (DXT +XDT). (2.10b)

Proof. We treat (2.3) as a constrained optimization problem subject to XTX = Ik as in (2.4), for
which the Lagrangian function of multipliers is written as

L(X,Γ) := φ(X) + ψ(X) · tr(XTD)− 1

2
tr([XTX − Ik]Γ),

where Γ ∈ Rk×k is a symmetric matrix of multipliers. Then X ∈ On×k is a KKT point of (2.3) if
and only if it satisfies the first-order optimality condition ∂L

∂X = 0 for some symmetric Γ, i.e.,

∂φ(X)

∂X
+ tr(XTD) · ∂ψ(X)

∂X
+ ψ(X) ·D = XΓ,

which, by (2.9), is equivalent to

Hφ(X)X + tr(XTD) ·Hψ(X)X + ψ(X) ·D = XΓ. (2.11)

If X ∈ On×k is a KKT point of (2.3), then (2.11) yields (2.10) with Λ = Γ + ψ(X) · DTX.
Moreover, since Λ ≡ XTH(X)X is symmetric, we have DTX = (Λ− Γ)/ψ(X) is also symmetric.

Conversely, if X ∈ On×k satisfies (2.10) and DTX is symmetric, then we have that (2.11) holds
with a symmetric Γ = Λ− ψ(X) ·DTX. Hence X is a KKT point.
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For the special case of D = 0, the optimization problem (2.3) and NEPv (2.10) become

max
X∈On×k

φ(X) and Hφ(X)X = XΛ, (2.12)

respectively, where both φ and Hφ are unitarily invariant. So, optimizing a unitarily invariant
function on the Stiefel manifold On×k always leads to a unitarily invariant NEPv. For the general
case of D 6= 0, due to the presences of DXT and XTD, the coefficient matrix H( · ) in (2.10b)
is not unitarily invariant any more; see the particular example (1.5), obtained by an application
of Theorem 2.1 to (1.4).

As a first-order optimality condition, Theorem 2.1 does not specify which k eigenvalues of H(X)
correspond to those of Λ for the purpose of solving the underlying optimization problem. For a
local maximizer X of (2.3), the corresponding eigenvalues are typically the k largest ones. This
has been proven for particular optimizations in the form of (2.3) (e.g., in [48, 51, 53, 54, 55, 56]),
and it is also a common practice for handling the NEPv from related optimization problems in
electronic structure calculation (e.g., in [11, 50]), where the eigenvalues are the k smallest ones
because they are about minimization. But there exist cases for which not all of the k eigenvalues
are the extreme ones, and when that happens, numerical difficulties arise. We will come back to
this issue in Section 6.

3 Necessary Conditions for Global Maximizers

Ideally, we should seek those solutions of NEPv (2.10) that are the global maximizers of optimization
problem (2.3). For that purpose, we will first establish two necessary conditions for a global
maximizer of (2.3), beyond its KKT condition given as NEPv (2.10). Specifically, they are

definiteness: XTD � 0, (3.1)

rank-preserving: rank(XTD) = rank(D). (3.2)

The two conditions above will serve as guides to what solutions to NEPv (2.10) we should look for.
The definiteness condition (3.1) has been known and successfully exploited in existing works for a
few special cases of (2.3); see, e.g., [48] and reference therein. In contrast, the rank-preserving con-
dition (3.2) is a new discovery, which is also a crucially missing piece for analyzing the local
convergence of SCF for solving NEPv (2.10). In fact, this new condition makes our systematic
treatment in the rest of this paper possible.

Our main theorem in this section is Theorem 3.1 below, and its proof will be given towards the
end of this section after we fully investigate the definiteness condition (3.1) and the rank-preserving
condition (3.2) separately.

Theorem 3.1. Let X∗ ∈ On×k be a global maximizer of (2.3). Then X∗ satisfies both the
definiteness and rank-preserving conditions, i.e., (3.1) and (3.2) hold with X = X∗.

3.1 Definiteness and Basis Alignment

Let X ∈ On×k be a given approximate solution to optimization problem (2.3). Since the objective
function f(X) is not unitarily invariant, it is possible to find a better approximate solution (in the
sense of a larger objective value) in the form of XQ with Q ∈ Ok×k determined by

max
Q∈Ok×k

f(XQ). (3.3)
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As we will show shortly, the construction of such best XQ has a lot to do with the definiteness
condition (3.1). We will refer to finding the best XQ via (3.3) as the problem of basis alignment
because essentially Q picks up a new orthonormal basis matrix X̃ = XQ for the column space of X.
In fact, any maximizer Q of (3.3) will yield an improved solution X̃ for optimization problem (2.3),
in that f(X̃) ≥ f(X), and usually the inequality is strict unless Q = Ik is a maximizer of (3.3).
This idea can be regarded as seeking a best solution to (2.3) in the orbit {XQ : Q ∈ Ok×k}. For
convenience of discussion, we introduce an alignment function for X ∈ On×k as

[[X]] :=

{
XQ : Q ∈ arg max

Q∈Ok×k

f(XQ)

}
. (3.4)

Note that [[X]] may be multi-valued.
From the definition of f in (2.3), since both φ and ψ are unitarily invariant, we have

f(XQ) = φ(X) + ψ(X) · tr(QTXTD). (3.5)

By assumption ψ(X) > 0, problem (3.3) is therefore equivalent to

max
Q∈Ok×k

tr
(
QT(XTD)

)
. (3.6)

Problem (3.6) is a classical matrix optimization problem, which also arises in, e.g., the orthogonal
Procrustes [20, Section 6.4.1], and it is known to have a closed-form solution via SVD, as shown
in Lemma 3.1, but the latter reveals more structural properties in solution than those traditionally
known. We notice that the ideas for the alignment (3.4) and its solution via (3.6) have occurred in
previous works on special cases of (3.3); see, e.g., [48, 55, 56]. Recently, the authors of [43] viewed
(3.6) as an optimization problem over the orthonormal basis matrices of the given subspace R(X)
and investigated how the optimal basis matrices vary as the subspace varies.

Lemma 3.1 below is essentially [48, Lemma 3.2] but stated differently, and a proof is provided
here for self-containedness and it is also simpler than the one in [48].

Lemma 3.1 ([48]). Let the singular value decomposition (SVD) of XTD ∈ Rk×k be

XTD = UΣV T ≡
[ ` k−`

U1 U2

]
×

[ ` k−`

` Σ1

k−` 0

]
×

[
` V T

1

k−` V T
2

]
, (3.7)

where ` = rank(XTD) and Σ1 = diag(σ1, σ2, . . . , σ`) � 0. Then,

(a) Q ∈ Ok×k is a global maximizer of (3.3) if and only if

Q = U

[
I`

Ω

]
V T, (3.8)

where Ω ∈ O(n−`)×(n−`) is arbitrary;

(b) Q ∈ Ok×k takes the form of (3.8) if and only if QT(XTD) � 0.

Proof. For item (a), it follows from SVD (3.7) that

tr
(
QT[XTD]

)
= tr

(
Q̃T

[
Σ1

0

])
=
∑̀
i=1

σi · Q̃ii ≤
∑̀
i=1

σi, (3.9)
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where Q̃ = UTQV is orthogonal and Q̃ii is the ith diagonal entry of Q̃. The last equation in (3.9) is
due to |Q̃ii| ≤ 1 for all i. Clearly, the right hand side achieves the maximum

∑`
i=1 σi if and only if

Q̃ii = 1 for 1 ≤ i ≤ `. Therefore, the optimal Q̃ =

[
I`

Ω

]
, where Ω ∈ O(n−`)×(n−`). Substituting

it back to Q = UQ̃V T, we obtain (3.8).
For item (b), it can be verified that QT(XTD) � 0 for Q given by (3.8). Conversely, if Q ∈ Ok×k

satisfies QT(XTD) � 0, then

tr
(
QT(XTD)

)
=
∑̀
i=1

σi
(
QT(XTD)

)
=
∑̀
i=1

σi
(
XTD

)
=
∑̀
i=1

σi,

where the first equality is because of the eigenvalues of QT(XTD) are the same as its singular
values. By (3.9), Q is a global maximizer of (3.6) and must take the form of (3.8) by item (a).

The results in Lemma 3.1 can alternatively be interpreted using the polar decomposition of
XTD, as done traditionally for the solution of the Procrustes problem. The polar decomposition
of XTD refers to

XTD = QM with Q ∈ Ok×k and M � 0. (3.10)

The polar factors Q and M in (3.10) can be expressed as Q in (3.8) and M = V ΣV T, via SVD (3.7).
IfXTD is non-singular, then the polar decomposition (3.10) is unique, and thus the orthogonal polar
factor Q = UV T is also uniquely defined (i.e., independent of any inherent freedom in SVD (3.7));
see, e.g., [7, p.220], [22, Chapter 8], and also [27, 28, 29, 30]. Otherwise, when XTD is singular,
orthogonal polar factor Q is non-unique, and Lemma 3.1 reveals the inherent structure of optimal
Q with the form of (3.8). The structure of this solution form is crucial in our subsequent analysis.

By Lemma 3.1, any orthogonal polar factor Q in (3.10) is a maximizer of (3.6), and vice versa.
Moreover,

max
Q∈Ok×k

tr
(
QT(XTD)

)
= tr (M) . (3.11)

The following results are direct consequences of Lemma 3.1.

Corollary 3.1. Given X ∈ On×k, let the SVD of XTD be given by (3.7) with ` = rank(XTD),
and define [[X]] as in (3.4).

(a) We have

[[X]] =

{
XQ : Q ∈ arg max

Q∈Ok×k

tr
(
QT(XTD)

)}
(3.12a)

=

{
XQ : Q = U

[
I`

Ω

]
V T, Ω ∈ O(k−`)×(k−`)

}
. (3.12b)

Thus, [[X]] = {X (UV T)} contains just one element if ` = k, but if ` < k then [[X]] contains
infinitely many elements.

(b) X̃ ∈ [[X]] if and only if X̃ = XQ for some Q ∈ Ok×k such that X̃TD � 0.

(c) X ∈ [[X]] if and only if XTD � 0.

(d) [[X]] = [[XQ]] for any Q ∈ Ok×k.

(e) DTXa = DTXb and XaD
TX = XbD

TX for any two elements Xa, Xb ∈ [[X]].
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Proof. For item (a), equation (3.12a) follows from the equivalency between optimization prob-
lems (3.3) and (3.6), while equation (3.12b) just restates Lemma 3.1(a). That [[X]] has just one
element when ` = k is a consequence of the uniqueness of the corresponding polar decomposi-
tion (2.12) [29]. Item (b) restates Lemma 3.1(b), which then leads to item (c). For item (d), we
notice that [[X]] consists of all orthonormal basis matrices of the subspace R(X), at which f achieves
its maximum in the orbit {XQ : Q ∈ Ok×k}. Since R(X) = R(XQ), we have [[X]] = [[XQ]]. Fi-
nally, the equations in item (e) can be verified by the general expression for Q in (3.8).

3.2 Rank-preserving

We now establish several equivalent statements to rank-preserving condition (3.2).

Theorem 3.2. Let X ∈ On×k and H( · ) be as in (2.10b). The following statements are equivalent.

(a) X satisfies rank-preserving condition (3.2), i.e., rank(XTD) = rank(D).

(b) DV2 = 0, where V2, a basis matrix of the null space N (XTD), is from SVD (3.7).

(c) DXT
a = DXT

b for all Xa, Xb ∈ [[X]].

(d) H(Xa) = H(Xb) for all Xa, Xb ∈ [[X]].

(e) H(Xa)X = H(Xb)X for all Xa, Xb ∈ [[X]].

Proof. (a) ⇔ (b): Apply the rank-nullity theorem to D and XTD, respectively, to get

rank(D) + dim(N (D)) = k = rank(XTD) + dim(N (XTD)).

Hence, rank(D) = rank(XTD) if and only if dim(N (D)) = dim(N (XTD)). The latter, since
N (D) ⊂ N (XTD), holds if and only if N (XTD) ⊂ N (D), which is equivalent to DV2 = 0 with V2

from SVD (3.7).
(b) ⇔ (c): It follows from (3.8) that there are Qa and Qb taking the form of (3.8) such that

Xa = XQa = X(U1V
T

1 + U2ΩaV
T

2 ), Xb = XQb = X(U1V
T

1 + U2ΩbV
T

2 ), (3.13)

for some Ωa,Ωb ∈ O(k−`)×(k−`). If DV2 = 0, then

DXT
a = DV1U

T
1 X

T = DXT
b ,

which establishes item (c). Conversely, if item (c) holds, then by taking two particular Xa and Xb

from (3.13) with Ωa = Ik−` and Ωb = −Ik−`, we have

0 = DXT
a −DXT

b = 2 ·DV2U
T
2 X

T.

Post-multiplication by XU2 yields DV2 = 0, as expected.
(c) ⇒ (d): Recall the definition of H( · ) in (2.10b):

H(X) = Hφ(X) + tr(XTD) ·Hψ(X) + ψ(X) · (DXT +XDT),

where Hφ, Hψ, and ψ(X) > 0 are all unitarily invariant. For Xa = XQa and Xb = XQb,

H(Xa) = Hφ(X) + tr(XT
a D) ·Hψ(X) + ψ(X) · (DXT

a +XaD
T), (3.14a)

H(Xb) = Hφ(X) + tr(XT
b D) ·Hψ(X) + ψ(X) · (DXT

b +XbD
T). (3.14b)
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By the assumption of item (c): DXT
a = DXT

b , we get XaD
T = XbD

T by taking transpose, and

tr(XT
a D) = tr(DXT

a ) = tr(DXT
b ) = tr(XT

b D),

immediately implying H(Xa) = H(Xb) by (3.14).
(d) ⇒ (e): This holds trivially.
(e) ⇒ (c): It follows from (3.14) and Corollary 3.1(e) that

0 = H(Xa)X −H(Xb)X = ψ(X) · (DXT
a X −DXT

b X).

Since ψ(X) > 0, we conclude DXT
a X = DXT

b X and thus D(XT
a X)XT = D(XT

b X)XT. Plug in
Xa = XQa and Xb = XQb to get DXT

a = DXT
b . The proof is completed.

3.3 Proof of Theorem 3.1

Now we are ready to prove our main Theorem 3.1 of the section.

Proof of Theorem 3.1. Let X̃ ∈ [[X∗]]. It follows from (3.4) that

f(X∗) ≤ f(X̃) ≤ max
X∈On×k

f(X) = f(X∗), (3.15)

where the equality is by the global maximality of f at X∗. So all equalities in (3.15) must hold,
and thus we have

X∗ ∈ [[X∗]] and X̃ ∈ arg max
X∈On×k

f(X), (3.16)

recalling the definition in (3.4). By X∗ ∈ [[X∗]] and Corollary 3.1(c), we have XT
∗ D � 0.

It remains to show rank(XT
∗ D) = rank(D). Equivalently, we will prove the statement in The-

orem 3.2(e) for X = X∗. We first recall (3.16) that any X̃ ∈ [[X∗]] is a global maximizer of (2.3)
and, therefore, an eigenbasis matrix of NEPv (2.10):

H(X̃)X̃ = X̃Λ̃ with Λ̃ = X̃TH(X̃)X̃.

Since X̃ = X∗Q for some Q ∈ Ok×k, we have

H(X̃)X∗ = X∗QΛ̃QT = X∗ · (XT
∗ H(X̃)X∗).

Hence, for any two Xa, Xb ∈ [[X∗]],

H(Xa)X∗ = X∗ ·
(
XT
∗ H(Xa)X∗

)
= X∗ ·

(
XT
∗ H(Xb)X∗

)
= H(Xb)X∗,

where for obtaining the second equality, we have used XT
∗ H(Xa)X∗ = XT

∗ H(Xb)X∗, which can be
verified straightforwardly with the help of (3.14) and Corollary 3.1(e) with X = X∗.

By now it is clear that, as far as the global maximality of optimization problem (2.3) is con-
cerned, we should at least seek a solution X to NEPv (2.10) such that both definiteness condition
(3.1) and rank-preserving condition (3.2) are satisfied (although such X is not guaranteed to be
a global maximizer). Our developments in the rest of this paper focus on finding such a solution.
Notice that, although the two conditions are consequences of studying optimization problem (2.3),
they are really about the two matrices X ∈ On×k and D ∈ Rn×k only. Given the importance of
both conditions (3.1) and (3.2) on X, we hence introduce the notion of D-regularity for the solution
of NEPv (2.10).
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Definition 3.1. An eigenbasis matrix X ∈ On×k of NEPv (2.10) is called D-regular if it satisfies
both definiteness condition (3.1) and rank-preserving condition (3.2).

In the case of rank-deficient D, a D-regular eigenbasis matrix X of NEPv (2.10) will have
infinitely many equivalent solutions given by X̃ = XQ with Q of form (3.8), i.e., X̃ ∈ [[X]] is an
arbitrary alignment: Clearly, X̃ so defined satisfies both conditions (3.1) and (3.2), and we also have
H(X) = H(X̃), due to the rank-preserving condition and Theorem 3.2(d), and so H(X̃)X̃ = X̃Λ̃
with Λ̃ = QTΛQ. Since any alignment X̃ ∈ [[X]] is still a D-regular eigenbasis matrix, we view
them as equivalent solutions.

4 SCF Iteration

The self-consistent field (SCF) iteration is one of the most general and widely used methods for
solving NEPv [10]. The term SCF comes from the community of computational physics and chem-
istry in solving the Kohn-Sham equation in the density functional theory [33, 42], and it has since
been widely adopted to refer to similar ideas for solving any general NEPv (1.1). In this section,
we propose an SCF-type iteration for NEPv (2.10), with the purpose of solving optimization prob-
lem (2.3) over the Stiefel manifold On×k in mind. The SCF-type iteration is essentially due to
[48, 55, 56], where special cases of (2.3) were considered.

From the perspective of the underlying optimization problem (2.3), at each step, our SCF-type
iteration seeks a new approximate solution of NEPv (2.10) that fulfills definiteness condition (3.1)
and meanwhile increases the objective value. It is rather easy to make XT

i D � 0 for each iterate
Xi by alignment, but monotonically increasing the objective value is highly nontrivial. Inspired by
the special cases in [48, 55, 56], where using the eigenspace of H(Xi) associated with its k largest
eigenvalues as Xi+1 can always increase the objective value, and also for the sake of explaining our
convergence analysis, we will state our SCF-type iteration using the top eigenspace. But we also
caution that such an approach may not always increase the objective value in general; when that
happens, the so-called level-shifting can often be applied, and we will return to this in Section 6.

Our SCF-type iteration for NEPv (2.10) can be described as follows: Starting from an initial
guessX0 ∈ On×k, generate sequentially X1, X2, . . . , all in On×k, by solving the symmetric eigenvalue
problems

H(Xi)X̃i+1 = X̃i+1Λ̃i+1 for i = 0, 1, 2, . . . , (4.1)

where X̃i+1 ∈ On×k is an orthonormal eigenbasis matrix of H(Xi) associated with its k largest
eigenvalues. Here, the eigenbasis matrix X̃i+1 may not automatically satisfy definiteness condi-
tion (3.1). Since we are interested in D-regular eigenbasis matrices satisfying (3.1), we can align
X̃i+1 after solving (4.1) to

Xi+1 ∈ [[X̃i+1]], (4.2)

namely, Xi+1 is taken from [[X̃i+1]] (and hence XT
i+1D � 0), which can be obtained by the SVD

(or polar decomposition) of X̃T
i+1D, recalling (3.8). We therefore arrive at an SCF-type iteration

summarized in Algorithm 4.1, which is essentially from [48, 55, 56] as mentioned.
In Algorithm 4.1, we assume that the initial basis matrix satisfies XT

0 D � 0; otherwise, it can
be aligned, i.e., X0 ∈ [[X0]] as in (4.2). We have also left out the stopping criterion for the SCF-
loop. As inspired by the common practice for linear eigenvalue problems [2, 3, 17], we introduce
the normalized residual norm to gauge the accuracy of an approximate solution X of NEPv (2.10):

NRes(X) :=
‖H(X)X −X[XTH(X)X]‖

‖H(X)‖
, (4.3)
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Algorithm 4.1 An SCF-type iteration for NEPv (2.10)

Input: X0 ∈ On×k such that XT
0 D � 0;

Output: a solution to NEPv (2.10) for the purpose of solving optimization problem (2.3).
1: for i = 0, 1, 2, . . . until convergence do
2: solve the symmetric eigenproblem H(Xi)X̃i+1 = X̃i+1Λ̃i+1, where X̃i+1 ∈ On×k contains the

eigenvectors for the k largest eigenvalues of H(Xi);
3: align X̃i+1 to get Xi+1 ∈ [[X̃i+1]];
4: end for
5: return the last Xi as a solution to NEPv (2.10).

where ‖ · ‖ is some matrix norm that is convenient to evaluate, e.g., the matrix 1-norm (the
maximum column sum in absolute value) or Frobenius norm (the square root of the sum of squares
of all elements). Given a tolerance tol, a small number, the SCF-loop is considered converged if
NRes(Xi) ≤ tol.

For a unitarily invariant NEPv, alignment (4.2) becomes unnecessary. For such NEPv, the local
convergence behavior of the plain SCF, i.e., (4.1) with Xi+1 = X̃i+1, has been extensively studied,
and various improvements for SCF have been developed; see, e.g., [4, 10, 12, 31, 39, 46, 49]. In
particular, the recent work [4] established a sharp estimation for the local convergence rate of SCF,
and it also provided a theoretical guarantee for the effectiveness of a level-shifting technique to fix
the potential divergence issue of SCF.

For Algorithm 4.1, due to the non-unitary invariance of H(X) and the extra alignment step in
line 3, most existing analysis and techniques for the plain SCF do not apply directly. Although
several recent works [48, 55, 56] proved the convergence of such algorithms for their respective
special cases, their analyses are specialized and do not apply to general NEPv (2.10), nor do they
produce sharp estimation of convergence rate. New techniques are needed to better understand the
convergence (or divergence) of Algorithm 4.1.

5 Local Convergence Analysis

We will start by showing that, locally near a D-regular solution of NEPv (2.10), the SCF-type
iteration in Algorithm 4.1 is the plain SCF for an equivalent NEPv that is unitarily invariant. By
this connection, we can conveniently perform its local convergence analysis along the line of [4].
In particular, a closed-form local convergence rate of Algorithm 4.1 will be established, and a
theoretical foundation for a level-shifted variant of SCF will be built.

5.1 Aligned NEPv

To begin with, denote by On×k
D

the set of X ∈ On×k satisfying rank-preserving condition (3.2):

On×k
D

:= {X ∈ On×k : rank(XTD) = rank(D)}. (5.1)

Given X ∈ On×k
D

, the matrix H(X̃) will not change as X̃ varies in [[X]], due to Theorem 3.2(d),

and so H([[X]]) := H(X̃) for X̃ ∈ [[X]] is well-defined. We hence introduce

G(X) := H([[X]]) for X ∈ On×k
D

, (5.2)

and call G the aligned function of H in (2.10b). Accordingly, we introduce the aligned NEPv of
NEPv (2.10) as

G(X)X = XΛ for X ∈ On×k
D

. (5.3)
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By Corollary 3.1(d), the aligned function G in (5.2) is unitarily invariant, i.e.,

G(XQ) = G(X) for X ∈ On×k
D

and Q ∈ Ok×k, (5.4)

that is, the aligned NEPv (5.3) is an unitarily invariant NEPv.
We emphasize that both the aligned matrix-valued function G in (5.2) and the aligned NEPv

(5.3) have their domain of existence On×k
D

. Luckily, the domain On×k
D

is a relative open set on the
Stiefel manifold, because rank-preserving condition (3.2) always hold under small perturbations, as
shown in Lemma 5.1 below.

Lemma 5.1. Let Y ∈ On×k
D

. For X ∈ On×k, if R(X) is sufficiently close to R(Y ), then X ∈ On×k
D

.

Proof. The sufficient closeness of R(X) to R(Y ) implies that there exists Q ∈ Ok×k such that
‖XQ − Y ‖ is sufficiently small. The condition rank(Y TD) = rank(D) implies that Y TD has
exactly ` = rank(D) nonzero singular values. Notice

QTXTD = Y TD + (XQ− Y )TD,

where the second term on the right-hand side is in the order of ‖XQ − Y ‖, which can be made
as small as needed by letting R(X) be sufficiently close to R(Y ). Because the singular values of
a matrix are continuous with respect to matrix entries [40, 29], QTXTD has at least ` nonzero
singular values, implying rank(QTXTD) ≥ `. On the other hand, rank(QTXTD) = rank(XTD) ≤
rank(D) = `. Hence, we conclude rank(XTD) = rank(D), as was to be shown.

Let X ∈ On×k
D

. The canonical polar decomposition of XTD [22, Chapter 8] refers to

XTD = QoM, (5.5a)

where, in terms of SVD (3.7),

Qo = U1V
T

1 and M = V1Σ1V
T

1 . (5.5b)

By definition, XTD is factorized as the product of a partial isometry Qo (i.e., ‖Qox‖ = ‖x‖ for all
x ∈ R(QT

o ) where ‖ · ‖ is the Euclidian vector norm) and a symmetric positive semi-definite M .
Note that Qo ∈ Rk×k is not necessarily orthogonal, as in contrast to an orthogonal factor of polar
decomposition (3.10). The canonical polar factors Qo and M in (5.5b) are uniquely defined (i.e.,
independent of any freedom in the SVD; see, e.g., [7, p.220], [22, Chapter 8], and [27, 28, 29, 30]).

Over domain On×k
D

, G(X) also admits an expression in terms of the canonical polar factors of
XTD, with which we can conveniently show the differentiability of G(X) and obtain its derivative.

Lemma 5.2. Let X ∈ On×k
D

and G(X) be defined by (5.3), and let XTD have the canonical polar
decomposition in (5.5). Then we have

G(X) = Hφ(X) +Gψ(X), (5.6a)

where
Gψ(X) := tr(M) ·Hψ(X) + ψ(X) ·

(
DQT

oX
T +XQoD

T
)
, (5.6b)

and Hφ(X) and Hψ(X) are from (2.9).
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Proof. For any X̃ ∈ [[X]], it follows from the expression (3.14) of H that

H(X̃) = Hφ(X) + tr(X̃TD) ·Hψ(X) + ψ(X) · (DX̃T + X̃DT). (5.7)

Recall SVD (3.7). By rank(XTD) = rank(D) and Theorem 3.2(b), we have DV2 = 0, which implies

DX̃T = D
(
V1U

T
1 + V2ΩTUT

2

)
XT = D · (V1U

T
1 ) ·XT = D ·QT

o ·XT, (5.8)

where the first equality is by the expression of [[X]] in (3.12), and the last equality is because of the
expressions in (5.5b). Also, X̃TD ≡ M , independent of which X̃ ∈ [[X]]. So (5.7) leads directly to
H(X̃) = Hφ(X) +Gψ(X), which does not change as X̃ varies in [[X]]. This proves (5.6).

The next theorem makes it precise in what sense the original NEPv (2.10) and its aligned
NEPv (5.3) are equivalent.

Theorem 5.1. Let X ∈ On×k satisfy rank-preserving condition (3.2), i.e., X ∈ On×k
D

.

(a) If X is a D-regular solution to NEPv (2.10), then X is a solution to the aligned NEPv (5.3).

(b) If X is a solution to the aligned NEPv (5.3), then any alignment X̃ ∈ [[X]] is a D-regular so-
lution to NEPv (2.10).

Proof. Consider item (a). That X is D-regular implies X ∈ On×k
D

and X ∈ [[X]] and hence
G(X) = H([[X]]) = H(X). Together with H(X)X = XΛ, we conclude G(X)X = XΛ, proving
item (a).

Now turn to item (b). By the definition of G in (5.2), G(X) = H([[X]]) = H(X̃) for any
X̃ ∈ [[X]]. Recalling (3.12) that X̃ = XQ for some Q ∈ Ok×k, we have

G(X)X = XΛ ⇒ H(X̃) · X̃ = X̃ · Λ̃,

where Λ̃ = QTΛQ. Namely, X̃ ∈ On×k is a solution to NEPv (2.10). Moreover, Corollary 3.1(b)
implies X̃TD � 0, and so X̃ is also D-regular.

The aligned NEPv (5.3) is defined through (5.2) and NEPv (2.10). Alternatively, this new
NEPv can be directly derived from the first-order optimality condition of a different maximization
problem equivalent to (2.3); see our discussions in Appendix B. This alternative interpretation will
become useful when it comes to justify the sufficient condition for the convergence of level-shifted
SCF later in Section 6.

5.2 Differentiability for Aligned NEPv

In this subsection, we will show that G(X) for the aligned NEPv (5.3) is differentiable in X ∈ Rn×k,
at X in domain On×k

D
defined in (5.1), and establish closed-form expressions to various derivatives

for the purpose of analyzing the local convergence of the plain SCF on the aligned NEPv. This will
in turn allow us to derive a sharp estimate for the rate of convergence of our SCF-type iteration in
Algorithm 4.1 for NEPv (2.10). By the expression of G(X) in (5.6), it is sufficient to consider the
differentiability of the canonical polar factors Qo and M of XTD with respect to X ∈ Rn×k.

We begin with an alternative formula for the canonical polar factors of XTD for X ∈ On×k
D

.
Let rD := rank(D) and factorize D as

D = D1P
T, (5.9)

where D1 ∈ Rn×rD has full column rank and P ∈ Ok×r
D . For X ∈ On×k

D
, we have

rank(XTD1) = rank(XTD) = rank(D) ≡ rD , (5.10)

and, hence, XTD1 ∈ Rk×rD has full column rank.
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Lemma 5.3. Let D be factorized as in (5.9), X ∈ On×k
D

, and the polar decomposition of XTD1 ∈
Rk×rD be

XTD1 = Q1M1. (5.11)

(a) The canonical polar decomposition of XTD is given by XTD = QoM , where

Qo = Q1P
T and M = PM1P

T. (5.12)

(b) Both Qo and M are Fréchet differentiable with respect to X ∈ Rn×k, and their Fréchet deriva-
tives along direction E ∈ Rn×k are given by

DM(X)[E] = PLPT, DQo(X)[E] =
(
ETDP −QoPL

)
M−1

1 PT, (5.13)

respectively, where L is the solution to the Lyapunov equation

M1L+ LM1 = DT
1 (XET + EXT )D1. (5.14)

(c) It holds that
tr ( DM(X)[E] ) = tr

(
QoD

TE
)
. (5.15)

Proof. For item (a), observe that Qo in (5.12) is a partial isometry (i.e., ‖Qox‖ = ‖x‖ for all
x ∈ R(QT

o )) and M � 0. By (5.9), (5.11), and (5.12), we get

QoM = Q1M1P
T = XTD1P

T = XTD,

yielding the canonical polar decomposition of XTD, since the canonical polar decomposition is
always unique (see, e.g., [7, p.220] and [22, Chapter 8]).

For item (b), observe that XTD1 has full column rank. According to Lemma A.1 in the
appendix, the polar factors M1 and Q1 from (5.11) are differentiable in X, and they have derivatives
along direction E ∈ Rn×k given by 4

DM1(X)[E] = L and DQ1(X)[E] = (ETD1 −Q1L) ·M−1
1 , (5.16)

where L satisfies (5.14). Consequently, by (5.12), the canonical polar factors M and Qo (depending
on M1 and Q1) are differentiable in X as well, and their derivatives along direction E ∈ Rn×k are

DM(X)[E] = P ·DM1(X)[E] · PT and DQo(X)[E] = DQ1(X)[E] · PT.

Then by (5.16) we get (5.13).
For item (c), since PTP = Ir

D
, (5.13) implies tr (DM(X)[E]) = tr (L). Post-multiplying both

sides of (5.14) by M−1
1 and then taking trace, we obtain

2 tr(L) = tr
(
DT

1 XE
TD1M

−1
1

)
+ tr

(
DT

1 EX
TD1M

−1
1

)
, (5.17)

where we have used tr(M1LM
−1
1 ) = tr(L). The two terms on the right hand side of (5.17) are

identical because of tr(AM−1
1 ) = tr(M−1

1 A) = tr(ATM−1
1 ) for all A ∈ RrD×rD , where the last

equality is by transposing the argument and MT
1 = M1. So (5.17) leads to

tr(L) = tr
(
DT

1 EX
TD1M

−1
1

)
= tr

(
DT

1 EQ1

)
= tr

(
Q1D

T
1 E
)
,

which yields (5.15) upon noticing Q1D
T
1 = (Q1P

T)(D1P
T)T = QoD

T.

4Notice the fact that, for Z = XTD1 and Y = ETD1, the Fréchet derivative of a differentiable function F (Z)

satisfies DF (Z)[Y ] = DF̃ (X)[E] with F̃ (X) := F (XTD1), as can be verified by straightforward expansions of the
functions.
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Suppose that H(X) in (2.10b) is differentiable at X ∈ Rn×k that has orthonormal columns
(by Lemma 2.1, this always holds if φ and ψ in (2.3) are twice differentiable functions). Then
the differentiability of the canonical polar factors, as in Lemma 5.3, implies that G(X) in (5.6) is
differentiable at any X ∈ On×k

D
, i.e., satisfying rank-preserving condition (3.2). By a straightfor-

ward application of the chain rule of differentiation, we derive from (5.6) the following formula for
assembling and calculating the derivative DG(X)[E].

Corollary 5.1. Let X ∈ On×k
D

and assume φ and ψ in (2.3) are twice differentiable at X. Then,

DG(X)[E] = DHφ(X)[E] + tr(DM(X)[E]) ·Hψ(X)

+ tr(M) ·DHψ(X)[E] + Dψ(X)[E] ·
(
DQT

oX
T +XQoD

T
)

+ ψ(X) ·
(
D ·DQo(X)[E]T ·XT +X ·DQo(X)[E] ·DT

)
+ ψ(X) ·

(
DQT

oE
T + EQoD

T
)
, (5.18)

where DM and DQo are given by (5.13), and Hφ and Hψ are from the expression of H(X) in (2.10).

5.3 Rate of Convergence

We now perform a local convergence analysis of Algorithm 4.1. Recall that the creation of
NEPv (2.10) aims to solve optimization problem (2.3) whose global maximizers are provably
D-regular eigenbasis matrices of the NEPv. Because of this, and as we are performing a local
convergence analysis, we may assume without loss of generality that the initial guess X0 is such
that R(X0) is sufficiently close to R(X∗), where X∗ ∈ On×k is a D-regular solution of NEPv (2.10),
i.e., satisfying both conditions (3.1) and (3.2):

XT
∗ D � 0 and rank(XT

∗ D) = rank(D) =: rD . (5.19)

The key observation of our analysis is that, locally around R(X∗), we can identify the SCF-type
iteration in Algorithm 4.1 as the plain SCF for the aligned NEPv (5.3): each iterative step of the
SCF-type iteration in Algorithm 4.1 satisfy

G(Xi)Xi+1 = Xi+1Λi+1, for i = 0, 1, 2, . . . , (5.20)

where the eigenvalues of Λi+1 ∈ Rk×k are the k largest eigenvalues of G(Xi), provided Xi ∈ On×k
D

,
which ensures that G(Xi) in (5.20) is well-defined by (5.2). The conditions Xi ∈ On×k

D
always

hold if R(X0) is sufficiently close to R(X∗) in the case of convergence; whereas in the case of
divergence, it is still reasonable to assume that, at least for the first few SCF-type iterative steps
of Algorithm 4.1 before R(Xi) deviates too far from R(X∗).

For the plain SCF (5.20), since G(X) is unitarily invariant according to (5.4), we can apply
the existing local convergence results for unitarily invariant NEPv in, e.g., [4, 10]. Our goal in the
following is to establish the local convergence rate of Algorithm 4.1 through the plain SCF (5.20).

First, let G(X∗) have the eigenvalue decomposition

G(X∗) = [X∗, X∗⊥]

[
Λ∗

Λ∗⊥

]
[X∗, X∗⊥]T, (5.21)

where Λ∗ = diag(λ1, . . . , λk), Λ∗⊥ = diag(λk+1, . . . , λn), and λ1 ≥ · · · ≥ λk ≥ λk+1 ≥ · · · ≥ λn. As
in [4, 10], we assume

λk − λk+1 > 0,
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otherwise the eigenspace for the k largest eigenvalues of G(X∗) is not unique [15, 29, 40]. Define

S(X∗) ∈ R(n−k)×k by [S(X∗)]ij = (λj − λk+i)
−1,

and linear operator L : R(n−k)×k → R(n−k)×k by

L (Z) := S(X∗)�
(
XH
∗⊥ ·DG(X∗)[X∗⊥Z] ·X∗

)
, (5.22)

where � is the element-wise multiplication, also known as the matrix Hadamard product, and DG
is given by (5.18).

According to the convergence analysis in [4], the spectral radius ρ(L ) of linear operator L
in (5.22) is the local convergence rate of the plain SCF (5.20) and, hence, that of Algorithm 4.1
as well. A restatement of [4, Theorem 4.2] for the plain SCF (5.20) yields the following theorem
for the local convergence-in-subspace (i.e., the convergence of R(Xi) as i → ∞) of the SCF-type
iteration in Algorithm 4.1.

Theorem 5.2. Let X∗ ∈ On×k be a D-regular solution to NEPv (2.10) such that the corresponding
Λ∗ ≡ XT

∗ H(X∗)X∗ contains the k largest eigenvalues of H(X∗). Assume that

λk(H(X∗)) > λk+1(H(X∗)) (5.23)

and H(X) is differentiable at X∗, and let ρ(L ) be the spectral radius of the linear operator L
defined by (5.22).

(a) If ρ(L ) < 1, then Algorithm 4.1 is locally convergent-in-subspace to X∗, with an asymptotic
average convergence rate bounded by ρ(L ).

(b) If ρ(L ) > 1, then Algorithm 4.1 is locally divergent-in-subspace from X∗.

Convergence-in-subspace, or divergence-in-subspace for that matter, is measured by the canon-
ical angles between subspaces. In the case of Theorem 5.2, it is about

whether Θ(Xi, X∗)→ 0 or Θ(Xi, X∗) 6→ 0 as i→∞,

where Θ(Xi, X∗) denotes the diagonal matrix of the canonical angles between the subspaces R(Xi)
andR(X∗) [4, 10, 40]. So, Theorem 5.2(a) can be interpreted as: Given an initial X0 with sufficiently
small Θ(X0, X∗), for an arbitrarily small ε > 0,

‖Θ(Xi+m, X∗)‖ ≤ c [ρ(L ) + ε]m · ‖Θ(Xi, X∗)‖ as i,m→∞, (5.24)

where c is some constant and ‖ · ‖ is any unitarily invariant matrix norm, such as the 2-norm
and the Frobenius norm. The reader is referred to [4, Section 4] for more discussions on the local
convergence rate of SCF.

We emphasize that the convergence result in Theorem 5.2 holds even if D ∈ Rn×k is rank-
deficient (i.e., rank(D) < k). In the rank-deficient case, according to (3.12), the alignment function
[[X̃i+1]] at line 3 Algorithm 4.1 is multi-valued, and so approximation Xi+1 is not uniquely defined.
However, provided X∗ is a D-regular eigenbasis matrix satisfying the gap condition (5.23), the
sequence of eigenspaces {R(Xi)} by Algorithm 4.1 is unique as each R(Xi) is sufficiently close to
R(X∗), and the rate of local convergence-in-subspace is given by ρ(L ). Later in Section 7, we will
numerically demonstrate the results of Theorem 5.2.
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Algorithm 6.1 A Level-Shifted SCF-type iteration for NEPv (2.10)

Input: X0 ∈ On×k such that XT
0 D � 0, and a level-shift σ;

Output: a solution to NEPv (2.10) for the purpose of solving optimization problem (2.3).
1: for i = 0, 1, . . . until convergence do
2: solve the symmetric eigenproblem [H(Xi) + σXiX

T
i ]X̃i+1 = X̃i+1Λ̃i+1, where X̃i+1 ∈ On×k

contains the eigenvectors for the k largest eigenvalues of H(Xi) + σXiX
T
i ;

3: align X̃i+1 to get Xi+1 ∈ [[X̃i+1]];
4: end for
5: return the last Xi as a solution to NEPv (2.10).

6 Level-Shifted SCF

For NEPv from the special optimization problems (2.3) studied in [48, 55, 56], Algorithm 4.1 is
provably convergent globally from any initial guess. However, for NEPv arising from a general
optimization problem (2.3), the algorithm may diverge (even with very accurate initial guesses), as
we shall demonstrate by numerical examples in Section 7.

When Algorithm 4.1 diverges, we may apply a level-shifting scheme, which has been commonly
adopted to unitarily invariant NEPv for fixing the issue of eigenvalue mispositioning, by which we
mean not all eigenvalues of Λ at optimality are among the largest ones and, as a result, Algorithm 4.1
is inevitably divergent; see, e.g., [5, 38, 44, 50]. The level-shifting technique simply modifies the
matrix-valued function H(X) to H(X)+σXXT, where σ ∈ R is a preselected level-shift. Note that
the addendum σXXT is unitarily invariant. In an obvious way, this scheme can be conveniently
adapted to Algorithm 4.1, by changing H(Xi) at line 2 to H(Xi) + σXiX

T
i . For ease of reference,

we outline the level-shifted variant of Algorithm 4.1 in Algorithm 6.1, where again we may stop
the iteration if NRes(Xi) ≤ tol, as commented earlier for Algorithm 4.1.

Let X∗ be a D-regular solution of NEPv (2.10). Similarly to Algorithm 4.1, we can study the
local convergence of the level-shifted SCF in Algorithm 6.1 to X∗ through the aligned NEPv (5.3).
First, let us level-shift the aligned NEPv (5.3) to

Gσ(X)X = XΛσ with Gσ(X) := G(X) + σXXT. (6.1)

The two NEPv are equivalent in that: (X∗,Λ∗) is a solution to NEPv (5.3) G(X)X = XΛ, if and
only if (X∗,Λσ∗) with Λσ∗ = Λ∗ + σI is a solution to the level-shifted NEPv (6.1). Then, by a
straightforward verification, the sequence of {Xi} from Algorithm 6.1 satisfy

Gσ(Xi)Xi+1 = Xi+1Λσ,i+1 for i = 0, 1, . . . , (6.2)

where the eigenvalues of Λσ,i+1 are the k largest eigenvalues of Gσ(Xi). We have again assumed
Xi ∈ On×k

D
, which holds locally if R(Xi) is close to R(X∗), as in (5.20). We can see that (6.2) is

exactly the plain SCF for the level-shifted NEPv (6.1). By this interpretation, we explain in the
following two major benefits for applying the level-shifted SCF in Algorithm 6.1.

Eigenvalue repositioning. Previously, for the purpose of solving optimization problem (2.3),
we assumed the desired solutions of the aligned NEPv (5.3) are those with Λ corresponding to
the k largest eigenvalues of G(X). This assumption stems more from past research experiences on
special cases of optimization problem (2.3) [48, 56, 55] than from rigorous mathematical proofs.
For optimization problem (2.3) in its generality, there is indeed no guarantee that Λ has such a
property at optimality; see, e.g., [5] for an example of optimization problem (2.3) with D = 0,
where the target eigenvalue is not an extreme eigenvalue.
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Having that said, we also notice that the assumption above is actually not essential for the
application of SCF iteration, because otherwise we can level-shift NEPv (5.3) to NEPv (6.1). By
the eigendecomposition (5.21), we have

Gσ(X∗) = [X∗, X∗⊥]

[
Λ∗ + σI

Λ∗⊥

]
[X∗, X∗⊥]T. (6.3)

Since Λ∗ and Λ∗⊥ are fixed, each of the k eigenvalues in Λ∗ + σI can be made larger than those in
Λ∗⊥ by choosing σ sufficiently large. Particularly, if

σ > λmax(G(X∗))− λmin(G(X∗)), (6.4)

then the eigenvalues of Λσ∗ = Λ∗+σI always consist of the k largest eigenvalues of Gσ(X∗). In this
case, we can apply the plain SCF (6.2) to the level-shifted NEPv (6.1), using the top k eigenvalues.
A similar idea of using level-shifting to reposition the desired eigenvalues of NEPv has also been
explored in [5].

Convergence of level-shifted SCF. As another important property, level-shifting can also fix
the potential divergence issue of the plain SCF. It is well-known that, under mild assumptions,
the level-shifted SCF is always locally convergent when σ is sufficiently large for unitarily invariant
NEPv; see, e.g., [4, 11]. For Algorithm 6.1, due to its equivalence to the plain level-shifted SCF
in (6.2) for the aligned NEPv, we expect such convergence property to still hold.

We first consider the local convergence rate of Algorithm 6.1. Similarly to L in (5.22), we define
linear operator Lσ : R(n−k)×k → R(n−k)×k for the level-shifted NEPv (6.1) at a D-regular solution
X∗ as

Lσ(Z) := Sσ(X∗)�
(
XH
∗⊥ ·DGσ(X∗)[X∗⊥Z] ·X∗

)
, (6.5)

where Sσ(X∗) ∈ R(n−k)×k is with entries [Sσ(X∗)]ij = (λj − λk+i + σ)−1, recalling the eigen-
decomposition (5.21). It follows from (6.1) that DGσ(X∗)[Y ] ≡ DG(X∗)[Y ] + σ(X∗Y

T + Y XT
∗ ),

and hence
Lσ(Z) = Sσ(X∗)�Q(Z) + Z, (6.6)

where Q : R(n−k)×k → R(n−k)×k is a linear operator given by

Q(Z) = Λ∗⊥Z − ZΛ∗ +XT
⊥∗DG(X∗)[X∗⊥Z]X∗, (6.7)

similarly to [4, Theorem 5.1]. By the convergence analysis in [4], as also discussed in Section 5,
the spectral radius ρ(Lσ) gives the local convergence rate of the plain level-shifted SCF (6.2) and,
thus, that of Algorithm 6.1 as well. To guarantee local convergence of Algorithm 6.1 to X∗, we
hence need ρ(Lσ) < 1.

Let us establish a sufficient condition on σ for ρ(Lσ) < 1 to hold. We observe that the scaling
matrix Sσ(X∗) in (6.6) has positive entries that go to 0 as σ → +∞. Therefore, assuming Q(Z) is
negative definite in the sense that

tr(ZTQ(Z) ) < 0 for all nonzero Z ∈ R(n−k)×k, (6.8)

we will have Lσ(Z) < 1 for sufficiently large σ, noticing that Lσ( · ) approaches the identity operator
as σ →∞. Precisely, under condition (6.8), it will hold

Lσ(Z) < 1 for all σ > σL := −µmin

2
− [λk(G(X∗))− λk+1(G(X∗))] , (6.9)
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where µmin < 0 is the smallest eigenvalue of linear operator Q in (6.7). The result (6.9) is essentially
due to [4, Theorem 5.1], which, although established for NEPv H(X)X = XΛ with Λ being the
smallest eigenvalues of H(X), can be quickly adapted to (5.3) by working with −G(X)X = XΛ.

Finally, the following theorem justifies (6.8) is indeed a mild assumption for aligned NEPv (5.3),
since the operator Q in (6.7) is at least negative semi-definite at a global maximizer X∗ of (2.3).
Its proof is left to Appendix C.

Theorem 6.1. Assume φ and ψ in (2.3) are twice differentiable. Let X∗ ∈ On×k be a global
maximizer of (2.3) and Q be defined in (6.7). Then it holds that

tr(ZTQ(Z) ) ≤ 0 for all nonzero Z ∈ R(n−k)×k. (6.10)

7 Numerical Experiments

In this section, we verify our theoretical results by numerical experiments. We will compare the
observed convergence rate with our theoretical estimate, i.e., the spectral radius for the correspond-
ing L operator in (5.22). The spectral radius ρ(L ) is computed by MATLAB’s built-in function
eigs, and the ‘exact’ solution X∗ is computed by Algorithm 4.1 or, when it fails to converge,
Algorithm 6.1 with a suitable level-shift σ. Our stopping criterion is

NRes(Xi) ≤ tol = 10−13,

where NRes( · ) is the normalized residual (4.3) evaluated at the most recent approximation using the
matrix 1-norm (i.e., the maximum column sum in absolute value) for computational convenience.
We refer to [4] for more details about the computation of ρ(L ). All experiments are carried out in
MATLAB and run on a Dell desktop with an Intel i9-9900K CPU and 16G memory. The MATLAB
scripts implementing the algorithms and the data used to generate the numerical results in this
paper can be accessed at https://github.com/ddinglu/uinepv.

Our testing NEPv arise from two optimization problems in the form of (2.3), both of which are
defined by three matrices A, B ∈ Rn×n and D ∈ Rn×k along with an additional parameter, where
A, B are symmetric and B � 0, and k < n. The first optimization problem is

max
X∈On×k

fα(X) with fα(X) := (1− α) · tr(XTAX)

tr(XTBX)
+ α · tr(XTD)√

tr(XTBX)
, (7.1)

where α ∈ [0, 1] is a parameter, and the second one is (1.4) mentioned earlier at the beginning of
this paper:

max
X∈On×k

fθ(X) with fθ(X) :=
tr(XTAX +XTD)

[tr(XTBX)]θ
, (7.2)

where θ is a parameter. Problem (7.2) has been studied in [48], where Algorithm 4.1 is proved
to be linearly convergent from any initial guess, when θ ∈ {0, 1}, or 0 < θ < 1 and initially
tr(XT

0 AX0 + XT
0 D) ≥ 0, but its theoretical rate of convergence was not investigated. We will fill

this gap and also demonstrate what could happen when θ is outside of the interval [0, 1].
With D = 0 and θ = 1, both problems degenerate to the same one — the trace-ratio opti-

mization problem from the linear discriminant analysis (LDA). For the case, the NEPv approach
has been well studied in [53, 54]. The corresponding NEPv (7.4) is unitarily invariant, and Algo-
rithm 4.1, which coincides with the plain SCF (i.e., line 3 replaced by Xi+1 = X̃i+1), is globally
and locally quadratically convergent to the global optimal solution generically. However, for the
general cases with αD 6= 0 in (7.1) or θ 6= 1 in (7.2), the two optimization problems are different,
and Algorithm 4.1 generally loses quadratic convergence or even possibly diverges (if without the
help from level-shifting) for the associated NEPv, as will be shown in a moment.
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7.1 NEPv from (7.1)

Optimization problem (7.1) is in the form of (2.3) with unitarily invariant functions

φ(X) = (1− α) · tr(XTAX)

tr(XTBX)
and ψ(X) =

α√
tr(XTBX)

. (7.3)

Its KKT condition, by Theorem 2.1, is equivalent to NEPv

Hα(X)X = XΛ, (7.4a)

where the subscript α indicates its dependence on parameter α, and

Hα(X) =
2

tr(XTBX)
((1− α)A− φ(X) ·B)− tr(XTD) · ψ(X)

tr(XTBX)
·B+ψ(X) ·(DXT +XDT), (7.4b)

which is derived, using
∂φ(X)

∂X
= Hφ(X)X with Hφ(X) =

2

tr(XTBX)

[
(1− α) ·A− φ(X) ·B

]
,

∂ψ(X)

∂X
= Hψ(X)X with Hψ(X) =

−ψ(X)

tr(XTBX)
·B.

(7.5)

By varying α ∈ [0, 1], we can construct a variety of NEPv (7.4) for testing. For α = 0, the
initial guess X0 of SCF is set to the eigenvectors of the k largest eigenvalues of the linear problem
Ax = λBx. As α increases from 0 to 1, we use the computed solution from the previous NEPv as
a starting guess for the next one.

For the purpose of calculating the local rate of convergence, we also obtain by straightforward
derivation 

DHφ(X)[E] = −2
tr(XTBE)

tr(XTBX)
·Hφ(X)− 2

tr(XTHφ(X)E)

tr(XTBX)
·B,

DHψ(X)[E] = −3
tr(XTHψ(X)E)

tr(XTBX)
B.

(7.6)

We construct the aligned NEPv (5.3) through alignment and the derivative operator DG through
(5.18), using the derivatives in (7.6) together with DQo and DM from (5.13). The corresponding
linear operator L by (5.22) is then obtained.

Example 7.1. We consider problem (7.1) with D ∈ Rn being a single vector, i.e., k = 1. The
alignment operation at line 3 of Algorithm 4.1 is simply X̃i = ±Xi with ± corresponding to the
sign of XT

i D ∈ R. Letting also n = 3, we randomly generate

A =

 −3.242 −0.450 1.807
−0.450 −1.630 0.790

1.807 0.790 0.226

 , B =

 0.592 1.873 0.175
1.873 6.332 0.617
0.175 0.617 0.488

 , D =

 −9.122
0.421
3.134

 .
In what follows, we examine the convergence of Algorithm 4.1 on NEPv (7.4) as α varies in [0, 1].

Figure 7.1 compares the observed rates of convergence of Algorithm 4.1 with the theoretical
rates ρ(L ), as well as the iterative histories of normalized NEPv residuals, at several values of α.
The left plot shows linear convergence of Algorithm 4.1 at a few sampled α 6= 0 when Algorithm 4.1
actually converges and one α when Algorithm 4.1 does not. The right plot is the curve of spectral
radius ρ(L ) as α varies in [0, 1]. We can see that:

23



0 10 20 30 40 50

10
-10

10
-5

10
0

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 7.1: Algorithm 4.1 on Example 7.1. Left: The iterative history for solving
NEPv (7.4) at a few sampled α (correspondingly marked as • and × on the right plot).
Right: The curve of spectral radius ρ(L ) as a function of parameter α ∈ [0, 1] (based on
200 equally spaced α), and the observed rates of convergence (marked by • and ◦) at a
number of values of α, including those sampled α on the left plot, and ‘×’ indicates that
SCF is divergent.
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Figure 7.2: Algorithm 6.1 on Example 7.1 with α = 0.6 (i.e., α4 in Figure 7.1, at which
Algorithm 4.1 diverges). Left: The iterative history of Algorithm 6.1 (level-shifted SCF)
with a few sampled level-shifts σ (correspondingly marked as • on the right plot). Right:
The curve of spectral radius ρ(Lσ) as a function of the level-shift σ and the observed
rates of convergence at the sampled level-shifts σ. The vertical dashed line corresponds
to the theoretical lower bound σL = 85.83 given by (6.9) (as σ3 in the plots).

• At those α where Algorithm 4.1 converges, the observed rates of convergence and the theo-
retical ones by ρ(L ) match very well. For example,

at α3 = 0.46 : observed rate ≈ 0.894493 · · · , ρ(L ) ≈ 0.894490 · · · ,

matching up to 5 significant decimal digits. We conclude the spectral radius ρ(L ) provides
sharp estimation for the true convergence rates.

• ρ(L ) > 1 approximately for α ∈ [0.49, 0.75], where Algorithm 4.1 indeed diverges numerically;
see, e.g., the convergence behavior for α4 = 0.6 on the left plot. Those ρ(L ) are calculated

24



with solutions X∗ to NEPv (7.4) computed by the level-shifted SCF, Algorithm 6.1, with
σ = 100. It is interesting to notice that Algorithm 4.1 converges for α near 0 and 1 but
diverges in the middle. This can be explained. In fact, optimization problem (7.1) for α = 0
is the same as the one from LDA [53, 54], while for α = 1 it is the OCCA subproblem [55].
For both cases, Algorithm 4.1 provably converges.

• ρ(L )→ 0 as α→ 0, indicating superlinear convergence of the algorithm at α = 0, consistent
with the fact that Algorithm 4.1 is quadratically convergent in such a case [54]. At the other
end α = 1, the spectral radius is a small number ρ(L ) ≈ 0.086, indicating rapid linear
convergence of Algorithm 4.1.

To demonstrate the effectiveness of level-shifting, Figure 7.2 shows the convergence of level-
shifted SCF (Algorithm 6.1) on NEPv (7.4) for α = 0.6 (i.e., α4 in Figure 7.1), at which Algo-
rithm 4.1 diverges. The left plot of Figure 7.2 illustrates the linear convergence of Algorithm 6.1
at various level-shifts σ, where a proper choice of σ can lead to a significant acceleration of con-
vergence for SCF. The right plot shows the spectral radius of Lσ by (6.5) as level-shift σ varies,
where the optimal level-shift σ∗ ≈ 41.88 with the minimal value ρ(Lσ) ≈ 0.239. It is observed that
ρ(Lσ) < 1 for all level-shifts σ & 9.87, but the theoretical lower bound in (6.9) can only guarantee
that ρ(Lσ) < 1 and that Algorithm 6.1 is locally convergent when level-shift σ & σL = 85.83,
greatly overestimating the observed one.
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Figure 7.3: Algorithm 4.1 on Example 7.2. Left: The iterative history for solving
NEPv (7.4) at a few sampled α (correspondingly marked as • and × on the right plot).
Right: the curve of spectral radius ρ(L ) as a function of parameter α ∈ [0, 1] (based on
200 equally spaced α), and the observed rates of convergence (marked by • and ◦) at a
number of values of α, including those sampled α on the left plot, and ‘×’ indicates that
SCF is divergent.

Example 7.2. This is an almost repeat of Example 7.1, with the same testing matrices A and B,
except k = 2 and

D =

 −1.430 2.768
−0.120 −0.630

1.098 2.229

 ∈ R3×2.

Since k = 2, the alignment at line 3 of Algorithm 4.1 does require the SVD (or the polar decomposi-
tion) of XT

i D. Figure 7.3 shows testing results by Algorithm 4.1 for several values of α ∈ [0, 1]. We
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Figure 7.4: Algorithm 6.1 on Example 7.2 with α = 0.5 (i.e., α4 in Figure 7.3, at which
Algorithm 4.1 diverges). Left: The iterative history of Algorithm 6.1 (level-shifted SCF)
with a few sampled level-shifts σ (correspondingly marked as • on the right plot). Right:
the curve of spectral radius ρ(Lσ) as a function of the level-shift σ and the observed
rates of convergence at the sampled level-shifts σ. The vertical dashed line corresponds
to the theoretical lower bound σL = 2.44 given by (6.9) (as σ2 in the plots).

observe a similar performance of the algorithm as in Figure 7.1. We again find that ρ(L ) provides
a sharp estimation for the convergence rates. For example,

at α3 = 0.305 : observed rate ≈ 0.930833 · · · , ρ(L ) ≈ 0.930798 · · · .

From the spectral radius curve as a function of α, it is concluded that Algorithm 4.1 converges
rapidly for α at both ends of the interval [0, 1], but fails to converge for α in the middle (approx-
imately from 0.32 to 0.59), where the spectral radius ρ(L ) > 1 (those ρ(L ) are calculated using
the computed solution X∗ by Algorithm 6.1 with σ = 50). Next, we test the level-shifted SCF,
Algorithm 6.1, on the NEPv with α = 0.5 (i.e., α4 in Figure 7.3), at which Algorithm 4.1 diverges.
As reported in Figure 7.4, the optimal level-shift occurs at σ∗ ≈ 4.57 with the spectral radius
ρ(Lσ) ≈ 0.455. For this NEPv, it is guaranteed that ρ(Lσ) < 1 with any level-shift σ & σL = 2.44
according to the theoretical lower bound (6.9) (as σ2 in both left and right plots).

Example 7.3. We now consider larger n and more general D ∈ Rn×k that is possibly rank-deficient
unlike the previous examples. Set A = tridiag(−1, 2,−1) ∈ Rn×n, a symmetric tridiagonal matrix,
and B = diag(1, 2, . . . , n), and n = 200.

In the first experiment, we consider full-rank D ∈ Rn×k, generated by the MATLAB function
randn(n, k). We test k = 10, 20, 30, 40, and for each k we repeat the experiment as in the previ-
ous examples, i.e., varying parameter α from 0 to 1. The results are summarized in Figure 7.5,
where Algorithm 4.1 is locally convergent for all testing cases. In the left plot, the spectral radius
moves from 0 to close to 1 as α increases, showing that SCF quickly loses superlinear convergence
with a tiny increase of α from 0, and for α ≈ 1, Algorithm 4.1 converges linearly. Overall, the
convergence appears slower than that in Figures 7.1 and 7.2 for the previous examples, and the
convergence rate seems not so sensitive to varying α. The right plot again shows that the spec-
tral radius provides sharp estimation for the convergence rate, justifying our theoretical analysis
in Section 5.

In the second experiment, we consider rank-deficient D ∈ Rn×k with k = 50 fixed, constructed
as D = D1P

T with randomly generated D1 ∈ Rn×rD and P ∈ Rk×rD that has orthonormal columns.
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Figure 7.5: Algorithm 4.1 on Example 7.3 with full-rank D ∈ Rn×k. Left: The curves
of spectral radius ρ(L ) as a function of α ∈ [0, 1] for different k (based on 200 equally
spaced α). Right: The observed rates of convergence of Algorithm 4.1 at a few sampled
α (marked by ◦), zoomed in for rates in [0.85, 1] for readability.
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Figure 7.6: Algorithm 4.1 on Example 7.3 with rank-deficient D ∈ Rn×k with k = 50
and different r

D
≡ rank(D). Left: The curves of spectral radius ρ(L ) as a function of

α ∈ [0, 1] (based on 200 equally spaced α). Right: The observed rates of convergence
of Algorithm 4.1 at sampled α (marked by ◦), zoomed in for rates in [0.6, 1] for readability.

We test rD = 10, 20, 30, 40 and repeat the experiment. From the results in Figure 7.6, the spectral
radius still provides sharp estimation for the convergence rate, justifying the analysis in Section 5
for rank-deficient D.

7.2 NEPv from (7.2)

Optimization problem (7.2) is another example of (2.3), and it has the unitarily invariant functions

φ(X) =
tr(XTAX)

[tr(XTBX)]θ
and ψ(X) =

1

[tr(XTBX)]θ
. (7.7)

By Theorem 2.1, its KKT condition is equivalent to NEPv

Hθ(X)X = XΛ, (7.8a)
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where the subscript θ indicates its dependence on parameter θ, and

Hθ(X) = 2ψ(X) ·
[
A−θ · tr(X

TAX)

tr(XTBX)
·B
]
−2θ

tr(XTD) · ψ(X)

tr(XTBX)
·B+ψ(X) · (DXT +XDT), (7.8b)

which is obtained, using
∂φ(X)

∂X
= Hφ(X)X with Hφ(X) = 2ψ(X) ·

[
A− θ · tr(XTAX)

tr(XTBX)
·B
]
,

∂ψ(X)

∂X
= Hψ(X)X with Hψ(X) = −2θ · ψ(X)

tr(XTBX)
·B.

(7.9)

By varying θ, we construct a variety of NEPv (7.8) for testing.
For the purpose of calculating the local rate of convergence, we also obtain

DHφ(X)[E] = −2θ
tr(XTBE)

tr(XTBX)
·Hφ,1(X)− 2θ

tr(XTHφ(X)E)

tr(XTBX)
·B,

DHψ(X)[E] = −2(θ + 1)
tr(XTHψ(X)E)

tr(XTBX)
B,

(7.10)

where Hφ,1 is Hφ in (7.9) with θ = 1. We can then obtain the corresponding aligned NEPv (5.3)
and linear operator L by (5.22) in the same way as in Section 7.1.
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Figure 7.7: Algorithm 4.1 on Example 7.4. Left: The iterative history for solving
NEPv (7.8) at a few sampled θ (correspondingly marked as • on the right plot). Right:
The curve of spectral radius ρ(L ) as a function of parameter θ ∈ [−0.5, 1.5] (based on
200 equally spaced θ), and the observed rates of convergence (marked by • and ◦) at a
number of values of θ, including those sampled θ on the left plot.

Example 7.4. Consider the random coefficient matrices A,B ∈ Rn×n and D ∈ Rn×k used in Ex-
ample 7.1, where n = 3 and k = 1. We first examine the convergence of Algorithm 4.1 on NEPv
(7.8) as θ varies in [−0.5, 1.5]. In Figure 7.7, we see that Algorithm 4.1 is convergent for all θ ∈ [0, 1],
consistent with the global convergence analysis in [48]. We can also see that the spectral radius
captures the local convergence rate of the algorithm. For example,

at θ4 = 0.1 : observed rate ≈ 0.348738 · · · , ρ(L ) ≈ 0.348739 · · · .
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Figure 7.8: Algorithm 6.1 on Example 7.4 with θ = 0 (i.e., α4 in Figure 7.7, at which
Algorithm 4.1 converges slowest). Left: The iterative history of Algorithm 6.1 (level-
shifted SCF) with a few sampled level-shifts σ (correspondingly marked as • on the right
plot). Right: The curve of spectral radius ρ(Lσ) as a function of level-shift σ and the
observed rates of convergence at the sampled level-shifts σ. The vertical dashed line
corresponds to the theoretical lower bound σL = −6.81 by (6.9) (as σ4 in the plots).
Negative shifts can accelerate SCF for the example.

For this example, Algorithm 4.1 runs faster as θ increases from 0. But such a rapid convergence is
not guaranteed for general NEPv (7.8), especially as θ > 1; see Example 7.5 below.

Next, we consider the level-shifted SCF (Algorithm 6.1) for NEPv (7.8) at θ = 0, at which the
curve of spectral radius in Figure 7.7 peaks. Recall that the NEPv with θ = 0 arises in solving
the unbalanced orthogonal Procrustes problems; see, e.g., [56]. Since Algorithm 4.1 is globally
convergent in this case, there is no need to use level-shifting to fix the divergence issue of SCF.
Nevertheless, the level-shift still helps to speed up the convergence of the algorithm. From the
curve of spectral radius in Figure 7.8, the optimal level-shift is achieved at σ∗ ≈ −8.91 (as σ3

in Figure 7.8), at which ρ(Lσ) ≈ 0.7 × 10−3, indicating significant acceleration to the algorithm.
The theoretical lower bound (6.9) predicts that the level-shifted SCF is locally convergent for any
σ & σL = −6.81 (as σ4 in Figure 7.8), overestimating the observed one.

An interesting observation here is that the optimal level-shift is a negative number. A negative
σ would reduce the gap between the kth and (k+ 1)-st eigenvalues (see (6.3)), and it is remarkable
that here a negative shift can even greatly accelerate SCF. The negative level-shift for SCF has
been briefly mentioned in [4], but its benefits have not been fully understood. Figure 7.8 provides
a concrete example to demonstrate this intriguing behavior of negative level-shifting.

Example 7.5. This example demonstrates the potential divergence issue of Algorithm 4.1 for
NEPv (7.8) with θ > 1. We consider the following randomly generated matrices

A =

 1.145 −0.095 0.514
−0.095 0.838 1.022

0.514 1.022 −1.223

 , B =

 0.582 −0.037 0.025
−0.037 0.183 0.043

0.025 0.043 0.239

 , D =

 0.760 0.258
0.011 0.774
0.180 0.520

 .
Figure 7.9 reports the convergence of Algorithm 4.1 on NEPv (7.8) as θ varies in [0, 6]. From the
curve of spectral radius, it can be seen that Algorithm 4.1 converges for all θ ∈ [0, 1], and the
spectral radius captures very well the observed convergence rates, e.g.,

at θ5 = 4.75 : observed rate ≈ 0.977615 · · · , ρ(L ) ≈ 0.977613 · · · .
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Figure 7.9: Algorithm 4.1 on Example 7.5. Left: The iterative history for solving
NEPv (7.8) at a few sampled θ (correspondingly marked as as • and × on the right
plot). Right: the curve of spectral radius ρ(L ) as a function of parameter θ ∈ [0, 6]
(based on 200 equally spaced θ), and the observed rates of convergence (marked by •
and ◦) at a number of values of θ, including those sampled θ on the left plot, and ‘×’
indicates that SCF is divergent.
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Figure 7.10: Algorithm 6.1 on Example 7.5 with θ = 3.0 (i.e., θ4 in Figure 7.9, at which
Algorithm 4.1 diverges). Left: The iterative history of Algorithm 6.1 (level-shifted SCF)
with a few sampled level-shifts σ (correspondingly marked as • on the right plot). Right:
the curve of spectral radius ρ(Lσ) as a function of level-shift σ and the observed rates
of convergence at the sampled level-shifts σ. The vertical dashed line corresponds to the
theoretical lower bound σL = 10.02 given by (6.9) (as σ2 in the plots).

The curve of spectral radius indicates that Algorithm 4.1 fails to converge for θ approximately in the
interval [2.46, 4.59]. For example, at θ = 3.0, the normalized residual NRes(Xi) by Algorithm 4.1
oscillate between two close numbers 0.453 · · · and 0.437 · · · after about 20 iterations.

To find the solution of the NEPv when ρ(L ) > 1, we apply the level-shifted SCF (Algorithm 6.1)
with σ = 40. The effectiveness of level-shifting is also demonstrated in Figure 7.10 for solving NEPv
(7.8) with θ = 3.0 (i.e., θ4 in Figure 7.9), at which Algorithm 4.1 diverges. The optimal level-shift
is σ∗ ≈ 17.21 (as σ3 in the plots) with ρ(Lσ) ≈ 0.282. The theoretical lower bound of the level-shift
σ by (6.9) is σL = 10.02 (as σ2 in the plots).
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Figure 7.11: Algorithm 4.1 on Example 7.6: The curves of spectral radius ρ(L ) as
a function of θ ∈ [−0.5, 1.5] (based on 200 equally spaced θ) and the observed rates
of convergence of Algorithm 4.1 at a few sampled θ (marked by ◦). Left: Full-rank
D ∈ Rn×k. Right: Rank-deficient D ∈ Rn×k with k = 50 and rank r

D
:= rank(D) < k.

Example 7.6. This example examines the convergence of Algorithm 4.1 on NEPv (7.8) for more
general cases of D ∈ Rn×k, as in the previous Example 7.3. We use the same testing matrices
as in Example 7.3. Recall that a set of four full-rank D ∈ Rn×k, with k = 10, 20, 30, 40, and the
other set of four rank-deficient D ∈ Rn×50 with rD := rank(D) = 10, 20, 30, 40, are tested. For each
set of testing matrices we apply Algorithm 4.1 on NEPv (7.8) with θ ∈ [−0.5, 1.5] and generate
the curves of spectral radius ρ(L ) as a function in θ as shown in Figure 7.11. It is observed
that the spectral radius remains less than 1 in all testing cases, and thus Algorithm 4.1 is locally
convergent. The curves of spectral radius demonstrate very different patterns for the full-rank and
rank-deficient cases: They appear to be more sensitive to θ for a rank-deficient D. Despite their
wild oscillations, the curves of spectral radius still match very well with our theoretical convergence
rate at all sampled θ, which further confirms our convergence analysis in Section 5.

8 Concluding Remarks

We investigated a class of NEPv (2.10) as arising from solving optimization problem (2.3) on the
Stiefel manifold:

max
X∈On×k

f(X) with f(X) := φ(X) + ψ(X) · tr(XTD), (2.3)

whose objective function f( · ) is not invariant upon substitution X ← XQ with Q ∈ Ok×k. Conse-
quently, the resulting NEPv does not have the unitary invariance property, unlike those commonly
studied as in [4]. We have shown that any global optimizer X∗ of (2.3) is a D-regular eigenbasis
matrix of NEPv (2.10), i.e., satisfying

XT
∗ D � 0 and rank(XT

∗ D) = rank(D),

and that for any X that has orthonormal columns and is close to X∗, the NEPv can be reformulated
to another NEPv, called the aligned NEPv, that is unitarily invariant. This novel reformulation
essentially reduces the local convergence analysis of the SCF-type iteration in Algorithm 4.1 for
NEPv (2.10) to the case that had been studied in [4] for general unitarily invariant NEPv, once
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some technicalities are taken care of. We established closed-form local convergence rates for Algo-
rithms 4.1 and 6.1 and built a theoretical foundation for the application of a level-shifting scheme.
Our theoretical analysis has been confirmed by extensive numerical experiments.

Throughout this paper, our presentation is restricted to the real number field R. This restriction
is more for simplicity and clarity than the capability of our techniques to deal with a problem similar
to (2.3) but in the complex number field C. In fact, our approach can be extended to handle, more
generally, the following optimization problem on the complex Stiefel manifold:

max
X∈Cn×k, XHX=Ik

f(X) with f(X) := φ(X) + ψ(X) · η(Re( tr(XHD) )), (8.1)

where the superscript h takes the complex conjugate transpose of a matrix, Re( · ) takes the real part
of a complex number, φ and ψ are real-valued functions in X ∈ Cn×k, continuously differentiable
with respect to the real and imaginary parts of X and satisfying the unitary invariance property:

φ(XQ) = φ(X), ψ(XQ) = ψ(X) for X ∈ Cn×k, Q ∈ Ck×k such that QHQ = Ik,

ψ( · ) > 0 is a positive function, and η : R → R is a differentiable and monotonically increasing
function, i.e., η′(t) > 0 for all t ∈ R. Due to that X is a complex matrix variable, we will need
to use Wirtinger derivatives [9, 26] to establish the KKT condition of (8.1) and its corresponding
NEPv. On the other hand, because of the monotonicity in η, we can still apply the same alignment
operation as discussed in Section 3.1 and establish analogous necessary conditions for the global
maximizers of (8.1) as in Theorem 3.1. A complete treatment is left to future work.

A Differentiability and Polar Decomposition

Recall definition (2.2) for the Fréchet derivative of a (Fréchet) differentiable function F : Rm×n →
Rp×q at X along direction Y . In this section, we derive the expressions of the Fréchet derivatives
of the polar factors of a matrix having full column rank.

The polar decomposition of a matrix Z ∈ Rm×p having full column rank, i.e., rank(Z) = p, is
given by

Z = QM, (A.1a)

where Q ∈ Om×p is the orthonormal polar factor and M ∈ Rp×p is the symmetric polar factor that
is also positive definite. The polar factors are unique [22, 29] and differentiable with respect to the
matrix variable Z. In fact, they can be expressed explicitly as

M =
(
ZTZ

)1/2
and Q = Z

(
ZTZ

)−1/2
, (A.1b)

where ( · )1/2 is the positive semi-definite square root of a positive semi-definite matrix. The Fréchet
derivatives of M and Q with respect to Z are detailed in Lemma A.1 below. These results are not
new, but we will provide a quick derivation for self-containedness.

Lemma A.1. Let Z ∈ Rm×p have full column rank. Its polar factors M and Q, as given in (A.1b),
are Fréchet differentiable in Z along direction Y ∈ Rm×p, with their derivatives given by

DM(Z)[Y ] = L and DQ(Z)[Y ] = (Y −QL ) ·M−1, (A.2)

where L ∈ Rm×p is the solution to the Lyapunov equation

M · L+ L ·M = (Y TZ + ZTY ). (A.3)
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Proof. The differentiability of the factors in (A.1b) follows from the differentiability of the matrix
square root function ( · )1/2 [22, Chapter 3]. To obtain closed-form formulas for the derivatives,

let M + δM(t) =
[
(Z + tY )T(Z + tY )

]1/2
where t ∈ R is assumed sufficiently small. Then (M +

δM(t))2 = (Z + tY )T(Z + tY ), expanding which to get

δM(t) ·M +M · δM(t) = t(ZTY + Y TZ) +O(t2).

Hence, δM(t) = tL+O(t2), yielding the first formula in (A.2). Now, it follows from Q+ δQ(t) =
(Z + tY )(M + δM(t))−1 that

δQ(t) = tY M−1 − ZM−1 · δM(t) ·M−1 +O(t2)

= t(YM−1 −Q · L ·M−1) +O(t2),

yielding the second formula in (A.2).

B Aligned NEPv via Bi-level Maximization

We will show that the aligned NEPv (5.3) can also be derived from the KKT condition of another
maximization problem that is equivalent to (2.3), as we mentioned at the end of Section 5.1.
This approach provides a seemingly more direct derivation of the aligned NEPv (5.3) than what is
presented in Section 5.1, but it does not seem to yield rank-preserving condition (3.2) at optimality,
a cornerstone of our local convergence analysis of the SCF-type iteration in Algorithm 4.1 for solving
NEPv (2.10), whose rationale comes from analyzing the formulation of NEPv (2.10).

We can state optimization (2.3) equivalently as

max
X∈On×k,Q∈Ok×k

φ(XQ) + ψ(XQ) · tr(QTXTD), (B.1)

in the sense that any maximizer of one optimization problem will lead to a maximizer of the other.
Due to that φ and ψ are unitary invariant, we can drop Q from the argument of both φ(XQ) and
ψ(XQ), and write (B.1) as a bi-level optimization :

max
X∈On×k

[
φ(X) + ψ(X) ·

(
max

Q∈Ok×k
tr(QTXTD)

)]
, (B.2)

where we have used ψ(X) > 0. Recall that the inner optimization has been considered in Sec-
tion 3.1, and its solution can be given in terms of the polar decomposition (3.10). Consequently,
maximization problem (B.2) is reduced to

max
X∈On×k

g(X) with g(X) := φ(X) + ψ(X) · tr(M), (B.3)

where M � 0 is the positive semidefinite polar factor of XTD = QM in (3.10). The two maximiza-
tion problems (B.3) and (2.3) are clearly equivalent: X∗ is a global maximizer of (B.3) if and only
if any X̃∗ ∈ [[X∗]] is a global maximizer of original (2.3).

To derive the first-order optimality condition of (B.3), we define its Lagrangian function as

L(X,Γ) = φ(X) + ψ(X) · tr(M)− 1

2
tr
(
ΓT[XTX − Ik]

)
, (B.4)
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where the symmetric Γ ∈ Rk×k is the matrix of multipliers. Recall that M depends on X. Under
the rank-preserving condition rank(XTD) = rank(D), M ≡M(X) is differentiable with respect to
X by Lemma 5.3. Then the function γ(X) := tr(M) has its derivative along direction E given by

Dγ(X)[E] = tr (DM(X)[E]) = tr
(
QoD

TE
)

⇒ ∂γ(X)

∂X
= DQT

o .

Hence,

∂L(X,Γ)

∂X
= Hφ(X)X + tr(M) ·Hψ(X)X + ψ(X) ·DQT

o −XΓ (B.5)

= G(X)X −X · Λ(X),

where Λ(X) = ψ(X)QoD
TX + Γ, and we have used (2.9) for the derivatives of φ and ψ, and the

definition of G(X) in (5.6). Finally, the first-order optimality condition ∂L(X,Γ)/∂X = 0 leads to
the aligned NEPv (5.3).

C Proof of Theorem 6.1

We exploit the fact that the global maximizer X∗ of (2.3) is also a global maximizer of (B.3). Let
L be the Lagrangian function for the constrained optimization problem (B.3), as in (B.4). For
X,E ∈ Rn×k, expand the Lagrangian function up to the second order to get

L(X + tE,Γ) = L(X,Γ) + tD1L(X,Γ)[E] + t2
1

2
D2

1L(X,Γ)[E,E] +O(t3)

for t ∈ R sufficiently small, where D1L(·, ·)[·] stands for partial differentiation with respect to the
first matrix argument of L, and D2

1L(X,Γ)(·, ·), a bilinear form, is the partial Hessian operator of L
with respect to the first matrix argument. By the standard second-order optimality condition [37,
Theorem 12.5], any global maximizer X∗ of (B.3) must satisfy

D2
1L(X∗,Γ∗)[E,E] ≤ 0 for all E ∈ Rn×k with ETX∗ = 0, (C.1)

where Γ∗ contains the optimal multipliers associated with X∗. On the other hand, we claim that

D2
1L(X∗,Γ∗)[E,E] = tr(ZTQ(Z) ) for E = X∗⊥Z, (C.2)

where Q(Z) is given as in (6.7). To justify (C.2), we find, by the gradient of L in (B.5), that

D1L(X,Γ)[E] = tr
(
ETG(X)X − ETX · Λ(X)

)
,

where Λ(X) = ψ(X)QoD
TX + Γ. Differentiate it with respect to X to obtain

D2
1L(X,Γ)[E,E] = D1

(
D1L(X,Γ)[E]

)
[E]

= tr
(
ET ·D1G(X)[E] ·X + ETG(X)E − ETX ·DΛ(X)[E]− ETE · Λ(X)

)
.

Noticing for X = X∗ and E = X∗⊥Z, we have

ETX = 0, ETE = ZTZ, ETG(X∗)E = ZTΛ∗⊥Z,

where the last equation follows from (6.3), and by the first-order optimality condition G(X∗)X∗ =
X∗ · Λ(X∗) we have Λ(X∗) = XT

∗ G(X∗)X∗ = Λ∗. Therefore,

D2
1L(X∗,Γ∗)[E,E] = tr

(
ZTXT

∗⊥ ·DG(X∗)[X∗⊥Z] ·X∗ + ZTΛ∗⊥Z − ZTZΛ∗

)
= tr(ZTQ(Z)),

which is (C.2). Finally, (6.10) is a consequence of (C.1) and (C.2).
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