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VARIATIONAL CHARACTERIZATION OF MONOTONE
NONLINEAR EIGENVECTOR PROBLEMS AND GEOMETRY OF
SELF-CONSISTENT-FIELD ITERATION

ZHAOJUN BAI* AND DING LU

Abstract. This paper concerns a class of monotone eigenvalue problems with eigenvector non-
linearities (mNEPv). The mNEPv is encountered in applications such as the computation of joint
numerical radius of matrices, best rank-one approximation of third-order partial-symmetric tensors,
and distance to singularity for dissipative Hamiltonian differential-algebraic equations. We first
present a variational characterization of the mNEPv. Based on the variational characterization,
we provide a geometric interpretation of the self-consistent-field (SCF) iterations for solving the
mNEPv, prove the global convergence of SCF, and devise an accelerated SCF. Numerical examples
demonstrate theoretical properties and computational efficiency of the SCF and its acceleration.

Key words. nonlinear eigenvalue problem, self-consistent field iteration, variational character-
ization, geometry of SCF, convergence analysis

MSC codes. 65F15, 66H17

1. Introduction. We consider the following eigenvector-dependent nonlinear ei-
genvalue problem:

(1.1) H(x)x = A,

where H(z) is a Hermitian matrix-valued function of the form

m

(1.2) H(z) =Y hi(z" Az) A;,

i=1

and {4;} are n-by-n Hermitian matrices, {h;} are differentiable and non-decreasing
functions over R. The goal is to find a unit-length vector z € C™ and a scalar A € R
satisfying (1.1) and, furthermore, A (= z H(x)z) is the largest eigenvalue of H(x).
The solution vector x is called an eigenvector of the eigenvalue problem (1.1) and A
is the corresponding eigenvalue. Since H(yz) = H(x) for any v € C with |y| = 1, if
x is an eigenvector, then so is yz.

The matrix-valued function H(z) in (1.2) is a linear combination of constant
matrices {A;} with monotonic functions {h;}. We say H(z) is of a monotone affine-
linear structure and, for simplicity, call the eigenvalue problem (1.1) a monotone
NEPv, or mNEPv. For the case m = 1, the mNEPv simplifies to h(zf Az) - Ax = Az,
so its eigenvector x must also be an eigenvector of the Hermitian matrix A, and by
the monotonicity of h, x corresponds to the largest eigenvalue of A.

In Section 2, we will see that the mNEPv (1.1) is intrinsically related to the
following maximization problem:

zeCn,

(1.3) maﬁ};ll:l {F(aj) = i: o3 (xHAZx) },
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2 Z. BAI AND D. LU

where {¢;} are anti-derivatives of {h;}, i.e., ¢;(t) = hy(t), for i = 1,...,m. Since
{h;} are differentiable and non-decreasing, {¢;} are twice-differentiable and convex
functions. We call (1.3) an associated maximization of the mNEPv (1.1), or aMax.

The mNEPv (1.1) is a class of the eigenvalue problems with eigenvector nonlinear-
ities (NEPv). NEPv have been extensively studied in the Kohn—-Sham density func-
tional theory for electronic structure calculations [42] and the Gross—Pitaevskii eigen-
value problem, a nonlinear Schrodinger equation to describe the ground states of ul-
tracold bosonic gases [9, 31]. NEPv have also been found in a variety of computational
problems in data science, e.g., Fisher’s linear discriminant analysis [47, 66, 67] and its
robust version [8], spectral clustering using the graph p-Laplacian [16], core-periphery
detection in networks [57], and orthogonal canonical correlation analysis [68].

Self-Consistent-Field (SCF) iteration is a gateway algorithm to solve NEPv, much
like the power method for solving linear eigenvalue problems. The SCF was introduced
back in the 1950s [54]. Since then, the convergence analysis of the SCF has long been
an active research topic in the study of NEPv; see [7, 17, 18, 40, 55, 59].

Although the underlying structure of the mNEPv (1.1) is commonly found in
NEPv, it has been largely unexploited. In this paper, we will conduct a systematical
study of the mNEPv and exploit its underlying structure. Theoretically, we will reveal
a variational characterization of the mNEPv (1.1) by maximizers of the aMax (1.3).
Using the variational characterization, we will provide a geometric interpretation of
the SCF for solving the mNEPv (1.1), which reveals the global convergence of the
algorithm. We will then prove the global monotonic convergence of the SCF. Finally,
we will present an accelerated SCF by exploiting the underlying structure of H(x)
and demonstrate its efficiency with examples from a variety of applications.

The aMax (1.3) is interesting in its own right and finds numerous applications.
One important source of the problems is a quartic maximization over the Euclidean
ball, where ¢;(t) = t? [46]. In Section 5, we will discuss such quartic maximization
problems arising from the joint numerical radius computation and the rank-one ap-
proximation of partial-symmetric tensors. Another application of the aMax (1.3) is
from computing the distance to singularity for dissipative Hamiltonian differential-
algebraic equation (d{HDAE) systems [43]. The aMax (1.3) also arises in robust opti-
mization with ellipsoid uncertainty; see e.g., [12]. By the intrinsic connection between
the mNEPv and the aMax, we will devise an eigenvalue-based approach for solving
the aMax that can exploit state-of-the-art eigensolvers from numerical linear algebra.

Optimizations of the form (1.3) have been investigated in the literature, but they
are often formulated as the minimization of F(x) over the vector space R™ or C".
Examples of recent studies include the quartic-quadratic optimization with ¢;(t) = 2
or ¢ [29, 65] and the Crawford number computation with ¢;(t) = t* [41]. For these
minimization problems, eigenvalue-based approaches have been developed, which lead
to NEPv H(xz)x = Az with H(z) given by (1.2) and A corresponding to the smallest
eigenvalue of H(x); see [29, 41]. However, as the target eigenvalue is the smallest,
rather than the largest, the solution and analyses of those NEPv differ fundamentally
from that of the mNEPv (1.1). For example, the SCF is no longer globally convergent
for computing the smallest eigenvalue.

The rest of this paper is organized as follows. Section 2 presents a variational
characterization of the mNEPv (1.1) through maximizers of the aMax (1.3). Section 3
provides a geometric interpretation of the SCF and proves its global convergence. Sec-
tion 4 focuses on the practical aspects of the SCF. Section 5 discusses the applications
of the mNEPv (1.1). Numerical experiments are presented in Section 6 and concluding
remarks are provided in Section 7.
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MONOTONE NONLINEAR EIGENVECTOR PROBLEMS 3

We follow standard notation in matrix computations. R™*™ and C™*" are the
sets of m-by-n real and complex matrices, respectively. Re(-) extracts the real part of
a complex matrix or a number. For a matrix (or a vector) X, X7 stands for transpose,
XH for conjugate transpose, and || X|| for the matrix 2-norm. We use Apin(X) and
Amax(X) for the smallest and largest eigenvalues of a Hermitian X. The spectral
radius (i.e., largest absolute value of eigenvalues) of a matrix or linear operator is
denoted by p(-). Standard little-o and big-O notation are used: f(z) = o(g(z))
means that f(z)/g(z) — 0 as z — 0, while f(x) = O(g(x)) means that f(z)/g(x) <c
for some constant ¢ as x — 0. Other notations will be explained as used.

2. Variational characterization. Variational characterizations provide pow-
erful tools to the study of eigenvalue problems, facilitating both theoretical analysis
and numerical computations. A prominent example is the Hermitian linear eigen-
value problem of the form Az = Az, where the Courant-Fischer principle uses opti-
mizers of the Rayleigh quotient zf Az /2" z to form variational characterizations of
the eigenvalues of A; see, e.g., [14]. With this characterization, bounds for eigenval-
ues and interlacing, monotonicity of eigenvalues can be proved quickly. Variational
characterizations have also been developed for eigenvalue-dependent nonlinear eigen-
value problems of the form T'(A)z = 0 [34]. It is also well-known that the NEPv in
Kohn-Sham density functional theory is derived from the minimization of an energy
function in electronic structure calculations; see, e.g., [42, 18]. In this section, we
provide a variational characterization of the mNEPv (1.1) by exploring its relation to
the aMax (1.3).

2.1. Stability of eigenvectors. We start with the following NEPv without
assuming the structure of H(z) and the order of the eigenvalue A:

(2.1) H(z)x =Xz with |z| =1,

where H(x) is Hermitian, differentiable (w.r.t. both real and imaginary parts of ),
and unitarily scaling invariant (i.e., H(yz) = H(z) for any v € C with |y| = 1). Due
to scaling invariance, we can view an eigenvector x of the NEPv (2.1) as an equivalent
class [z] ;= {yx | y € C, |y| =1}, i.e., a point in the Grassmannian Gr(1,C").

Let z, be an eigenvector of the NEPv (2.1) and the corresponding A, be the p-th
largest eigenvalue of H(z,.). Assume A, is a simple eigenvalue. Then [z,] can be
interpreted as a solution to the fixed-point equation over Gr(1,C"):

(2.2) [z] = TI([]),

where the mapping IT : Gr(1,C") — Gr(1,C") is defined by I([z]) := [u(z)] and
u(x) is an (arbitrary) unit eigenvector for the p-th largest eigenvalue of H(z). The
attractiveness of the fixed point [z,] for the mapping IT in (2.2) can be determined
by the spectral radius of a related linear operator, as established in [7]. To introduce
this linear operator, we first denote the eigenvalue decomposition of H(z,) as

(2.3) H(z.) [v. Xoi] = [z Xid] P* A*J ’

where [x* X*ﬂ € C™" is unitary and A, € RO=Dx(=1) 5 5 diagonal matrix.
We then define an R-linear operator!

(2.4) L:C 1 - Cr ' with L£(2) = D7'XE (DH(2,)[ X.12]) 2,

LL: C™ — C™ is called R-linear if £(ax + By) = aL(x) + BL(y) for all o, 8 € R and =,y € C™.

This manuscript is for review purposes only.
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4 Z. BAI AND D. LU

where D, = A\ 1,1 — A, is diagonal and non-singular since A, is a simple eigenvalue,
and DH (z)[d] is the derivative of H at x along the direction of d:

(2.5) DH(2)[d] = lm TE+ad) = H(@)

a€R, a—0 [0

Let p(L) be the spectral radius of L (i.e., the largest absolute value of the eigenvalues).
Then by [7, Thm. 4.2], we know that if p(£) < 1, then [z,] is an attractive fixed point
of the mapping II (2.2); If p(£) > 1, then [z,] is a repulsive fixed point; If p(L£) = 1,
then no immediate conclusion can be drawn for the attractiveness of [z,]. It is worth
noting that although the theorem [7, Thm. 4.2] is stated for the case A. = A, being
the smallest eigenvalue of H(z.), the result holds for a general p-th eigenvalue.
Returning to the mNEPv (1.1), in the following lemma, we can show that the
operator £ in (2.4) is both self-adjoint and positive semi-definite. Consequently, the
conditions p(L£) < 1 or p(£) < 1 can be characterized using the definiteness of a
characteristic function. To facilitate the analysis, we denote the vector space C*~!

over the field of real numbers R as C"~(R) and introduce an inner product over
C"1(R) as

(2.6) (y,2)p :=Re(y"Dz),
where D is a given Hermitian positive definite matrix of size n — 1.

LEMMA 2.1. Let x, € C™ be an eigenvector of the mNEPv (1.1) with a simple
eigenvalue Ay. Then the R-linear operator L in (2.4) is self-adjoint and positive semi-
definite over C"~1(R) in the inner product (2.6) with D, = \.I,,_1 — A, . Moreover,
(a) p(L) < 1 if and only if p(d;x.) <0 for alld #0 and dz, = 0;

(b) p(L) <1 if and only if o(d;x.) <0 for alld # 0 and d¥z, = 0.
Here, p(d;x) is a quadratic function in d € C" and is parameterized by x, as

2.7) o(d;z,) = d¥ (H(x*) (T H(z))z.) I)d+2 > (el Agw)- (Re(d” Agz))

Proof. To show that L is self-adjoint and positive semi-definite, we first derive
from the definition (1.2) of H(x) that the directional derivative (2.5) is given by

DH (z)[d] = 2§:Re(xHAid) R Az - A

Therefore, the R-linear operator £ in (2.4) takes the form of

m
(2.8) L(z) =2D;*" Z Re(z A; X, 2) - bl(z Asz,) - XE Az,

i=1
Since A, is a simple largest eigenvalue, D, = A I,_1 — A, is a diagonal and positive
definite matrix. A quick verification shows

® )

(L(y),z)p, =2)_ hi(el Aiw.) - Re(@ A X1 2) - Re(a A X 1y) = (y, L(2) )p

i=1

i.e., L is self-adjoint w.r.t. the inner product (-, -)p, over C"~}(R). Letting y = 2, we
can also show L is positive semi-definite:

(2.9) (L(2),2)p, = 22 Rz Ajx,) - Re(zH A; X, 1 2)? >0,
i=1

This manuscript is for review purposes only.
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where we used the assumption that h; is non-decreasing (so h} is non-negative).
Now by the variational principle for the eigenvalues of self-adjoint operators (see,
e.g., [63, Chap 1]), the spectral radius

(2.10) P(L) = Amax(L) = max W.

Let d = X, | z. Then we have
(2.11) (z,2)p, = 28 NIp1 — Ayi )z = d¥ (2P H(z)2y - T, — H(x,))d,
where we used the identities A\, = 2% H(z,)x, and H(7,)X., = X.1 A, . Therefore,

p(ﬁ)_].:ma,}(<£(z)’z>D*_<2’Z>D* — A M’
2£0 (2,2)p, 2£0, d=X. 1z (2,2 )p.

where ¢ is from (2.7), and we used (2.9) for (L(z),z)p, and (2.11) for (z,z)p,.
Consequently, p(£) < 1 (or p(£) < 1) if and only if ¢(d;z.) < 0 (or p(d;z.) < 0)
for all d = X,| z with z # 0. Since [X,,x.] is unitary, a vector d = X, z for some
z # 0 if and only if d”z, = 0 with d # 0. Results in items (a) and (b) follow. O

By the standard notion of stability of fixed points of a mapping in the fixed-
point analysis, see, e.g., [2, 13], we can classify the stability of the eigenvectors of the
mNEPv (1.1) using the spectral radius p(£) and, alternatively, the characterization
function ¢ in Lemma 2.1.

DEFINITION 2.2. Let z,. € C" be an eigenvector of the mNEPv (1.1) and ¢ be as
defined in (2.7). Then z, is a stable eigenvector if o(d;x.) < 0 for all d # 0 and
d¥z, = 0, and x. is a weakly stable eigenvector if ¢(d;z.) < 0 for all d # 0 and
d"x, = 0. Otherwise, , is called a non-stable eigenvector.

Note that Definition 2.2 does not explicitly require A\.(H (z.)) is a simple ei-
genvalue, as the characteristic function ¢ (2.7) is still well-defined for non-simple
eigenvalues. In addition, we note that for a stable eigenvector x., the correspond-
ing A, must be a simple eigenvalue of H(x,). Otherwise, there would exist another
eigenvector T of \x = Apax(H (z4)) orthogonal to z.. By letting d =  and recalling
R} (t) > 0, we derive from (2.7) that ¢(d;z,) > 0, which contradicts the condition for
a stable eigenvector that ¢(d;x,) < 0 for all d # 0 and diz, =0.

2.2. Characterization of mNEPv via aMax. The following theorem pro-
vides a variational characterization of the mNEPv (1.1) through the aMax (1.3). Be-
fore stating the theorem, let us recall a standard optimization concept (see, e.g., [48,
Sec. 2.1]): a unit vector x is called a local mazimizer of the aMax (1.3) if there exists
€ > 0s.t.

(2.12) F(z)>F < vt d

> for all d € C" with d”z =0 and ||d|| < ¢,
[l +d|

and x is a strict local mazimizer if the inequality for F' in (2.12) holds strictly.

THEOREM 2.3. Let x € C™ be a unit vector.

(a) If x is a stable eigenvector of the mNEPv (1.1), then x is a strict local mazimizer
of the aMaz (1.3).

(b) If x is a local maximizer of the aMax (1.3), then x is a weakly stable eigenvector
of the mNEPv (1.1).

This manuscript is for review purposes only.
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6 Z. BAI AND D. LU

Proof. Let 2 = (x + d)/||z + d||. Then, we have 27 A;2 = 2 Az + 6;, for
i=1,2,...,m, where

(2.13) 8; =2 Re(d" Ajz) + d" (4; — (2" Az)I) d+ O(||d||?).
Hence, by (1.3), the i-th term of F (Z) satisfies
¢i (T AT) = ¢i(9i(x) + 6i) = ¢ilgi(x)) + hilgi()) - 6 + %hé(gi(ff)) 67 +0(57),

where g;(z) := 2 A;z. Summing over all ¢; from i = 1 to m, we obtain

> ostae) + o)) 0+ 3 ) 0+ ol

=1

F(x)+2Re(d? H(x)z) + d" (H(x) — s(z)I)d

+2Zh’ 0:(x)) - (Re(d" A;z))* + o(||d]?)
(2.14) =F(x)+2 Re(dHH(x)x) + @(d;z) + ol ||d||?),

where the second equality is by (2.13) and s(z) := 2 H(x)x.
For item (a): We need to show the inequality (2.12) holds strictly. By the NEPv
H(z)z = Az and the orthogonality dfz = 0, we have d H(z)x = 0. So (2.14) implies

(2.15) F (%) = F(z) + ¢(d;2) + o([[d]|).

Since the stability of = (Definition 2.2) implies ¢(d;z) < 0 and we can drop o(]|d||?)
(which is negligible to ¢(d;z) = O(||d||?)), (2.15) leads to F(x) > F (Z) as ||d| — 0.

For item (b): Let d be sufficiently tiny and dfx = 0. It follows from the local
maximality (2.12) and the expansion (2.14) that

(2.16) 0> F (%) — F(x) =2 Re(d?H(x)z) + o(d;z) + o(||d||?).

Therefore, the leading first-order term must vanish, that is, Re(d? H(z)z) = 0 for all
d with dz = 0. This implies that H(z)z and x have common null spaces, i.e.,

(2.17) H(z)x = Azx, for some scalar .

To show that z is a weakly stable eigenvector (Definition 2.2), we still need to
prove that (i) A in (2.17) is the largest eigenvalue of H(z), and (ii) ¢(d;z) < 0 for
all d with df2z = 0. Condition (ii) follows from (2.16), by noticing that the first
term on the right side vanishes due to (2.17) and that o(||d||?) is negligible to the
quadratic function ¢(d;x) as ||d|| — 0. Condition (ii), in turn, also implies A is
the largest eigenvalue of H(z). Otherwise, there is a A > A with H(2)Z = AZ and
#Hz = 0. Recall (2.7) that p(d;z) > df (H(z) — (z7 H(z)x)I)d. Let d = 7 and we
have p(d;z) > A — A > 0, contradicting o(d;z) < 0. |

Results from Theorem 2.3 can be regarded as second-order sufficient and necessary
conditions for the aMax (1.3). They are stated in a way to highlight the connections
between the local maximizers of the aMax and the stable eigenvectors of the mNEPv,
which benefits the analysis of the SCF to be discussed in Section 3. We note that the
objective function F'(x) of the aMax is not holomorphic (i.e. complex differentiable in

This manuscript is for review purposes only.
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MONOTONE NONLINEAR EIGENVECTOR PROBLEMS 7

x € C™). Therefore, second-order KKT conditions (see, e.g., [48, Sec. 12.5]) are not

immediately applicable. Note that turning the problem to a real variable optimization

(in the real and imaginary parts of x € C") and then applying the KKT condition

will not lead to Theorem 2.3, since there would be no strict local maximizers for the

real problem due to the unitary invariance of F(z).

To end this section, let us discuss three immediate implications of the variational

characterization in Theorem 2.3.

(1) Given the intrinsic connection between the mNEPv (1.1) and the aMax (1.3),
stable and weakly stable eigenvectors of the NEPv are of particular interest. Since
the aMax always has a global (hence local) maximizer, Theorem 2.3(b) guarantees
the existence of weakly stable eigenvectors. Although such eigenvectors may not
be unique and may correspond to local but non-global maximizers of the aMax
(see Example 6.1), the connection to the aMax greatly facilitates the design and
analysis of algorithms for the mNEPv (1.1), such as a geometric interpretation of
the SCF in Section 3.

(2) Theorem 2.3 is a generalization of the well-known variational characterization
of Hermitian eigenvalue problem. Consider the case of the mNEPv (1.1) with
m=1and hy(t) =1, ie., Ajz = Ax. Let A > Ay > --- > A, be the eigenvalues of
Ay with eigenvectors [z, g, ..., x,]. Since any non-zero d orthogonal to [z] can
be written as d = asxs + -+ + anzy, for some {a;} 5, the function ¢ defined
in (2.7) becomes ¢(d;x) = d(A; — AXI)d = Y., a? (\i — A). Hence, p(d;z) is
non-positive, and strictly negative if A is simple. Then Theorem 2.3 can be para-
phrased to the well-known variational characterization of Hermitian eigenvalue
problems: Eigenvectors of the largest eigenvalue of A; are global maximizers of
(xH Ayz) /(2P z); If the largest eigenvalue is simple, then its eigenvector (up to
scaling) is the only maximizer; see, e.g., [1, Sec.4.6.2].

(3) If the matrices {A4;} of the mNEPv (1.1) are real symmetric, then H(z) is real
symmetric and the eigenvectors of the mNEPv are all real vectors (up to a unitary
scaling). Theorem 2.3(b) implies that the global maximum of the aMax (1.3) is
always achieved at a real vector x € R", namely,

(2.18) rech B, T = ey, Fl@).

The two maximizations above are fundamentally different in nature. The identity
holds only due to the specific formulation of F', as demonstrated by Theorem 2.3.
We highlight the identity (2.18) because many practical optimization problems
come in the form of the right-hand side with z € R™. We can nevertheless view
such a problem as an aMax (1.3) with € C™. This allows us to develop a
unified treatment for both real and complex variables, which is highly beneficial,
as shown in the case of numerical radius computation in Subsection 5.1.

3. Geometry and global convergence of the SCF. Much like the power
method for solving linear eigenvalue problems, self-consistent-field (SCF) iteration is
a gateway method for NEPv; see [42, 17] and references therein. For the mNEPv (1.1),
the SCF starts from an initial unit vector xg € C™ and generates a sequence of approx-
imate eigenvectors x1, s ..., via sequentially solving the linear eigenvalue problems

(3.1) H(xp)rpy1 = Mey1 Try1, for k=0,1,...,

where A1 is the largest eigenvalue of H(xp) and zgy1 is a unit eigenvector. In
the following, we first present a geometric interpretation of the SCF (3.1), and then
provide a proof of the global convergence of SCF based on the geometric observation.

This manuscript is for review purposes only.
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8 Z. BAI AND D. LU

3.1. Geometry of the SCF. In Subsection 2.2, we have discussed the varia-
tional characterization of the mNEPv (1.1) via the aMax (1.3). Now consider the
change of variables

(3.2) y=yg(x) with g(z):= [xHAlx, R xHAmx]T € R™.

The aMax (1.3) is then recast as an optimization over the joint numerical range

yeEW(A)

(3.3) ma {90 = 3 ou(u(i) )
i=1

where y(4) is the i-th entry of y, and W(A) C R™ is a (first) joint numerical range of
an m-tuple A := (A, ..., A,,) of Hermitian matrices Ay, ..., A,, defined as

(3.4) W) = {yeR" |y=g(x), zeC™, o] =1}.

By definition, W (.A) is the range of the vector-valued function g over the unit sphere
{zx € C" | ||z|]| = 1}. Since g is a continuous and bounded function, W(A) is a
connected and bounded subset of R™. Moreover, it is known that the set of W (A) is
convex in cases such as m = 1,2 for any matrix size n, m = 3 for n > 3 [3, 4], and
other cases under proper conditions [36].

Before we proceed, let us first revisit the notion of supporting hyperplane for a
general bounded and closed subset 2 of R™. To this end, we can define a hyperplane

(3.5) Pyi={yeR" |v7(y—y,) =0},
where v is a given non-zero vector in R™ and y, satisfies

(3.6) Yo € argmax v’ y.
yeN

The hyperplane P, contains in one of its half-space the entire €2, and it also passes
through at least one point in 2, because

(3.7) (i) vy <oTy, forallyeQ and (ii) y, € Q.

We will refer to P, as a supporting hyperplanes of £ with an outer normal vector v
(pointing outward from 2) and a supporting point y,. Supporting hyperplanes are
commonly used for studying convex sets; see, e.g., [15, Sec. 2.5].

Finding the global optimizer in (3.6) for a general set €2 is hard. Fortunately,
if the set Q@ = W (A), then the following lemma shows that the supporting point y,
in (3.6) can be obtained by solving a Hermitian eigenvalue problem.

LEMMA 3.1. Let v € R™ be a nonzero vector. Then

(3.8) Yy € argmax v’y if and only if vy, = g(x,),
yeEW (A)

where x, 1s an eigenvector for the largest eigenvalue A, of the Hermitian matrix

(3.9) Hy =Y (i) Aj,

i=1

and v(i) is the i-th entry of v.

This manuscript is for review purposes only.
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Proof. Observe that

(3.10) vl g(x) = Z(mHAix) (i) = 2 Hyz.
i=1

The maximization from (3.8) leads to

max v’y = max v’ g(z) = max 2" Hyo = 2 H,z, = v"g(z,),
YyEW (A) llzll=1 llzll=1

where the second and the last equalities are due to (3.10), and the third equality is by
the eigenvalue maximization principle of Hermitian matrices, namely, the maximizer
of 2 H,x is achieved at any eigenvector x, of the largest eigenvalue of H,. ]

Lemma 3.1 suggests a close relation between the SCF (3.1) and the search for
supporting points of W(A). Such relation is called a geometric interpretation of the
SCF and is formally stated in the following theorem.

THEOREM 3.2. Let {1} be a sequence of unit vectors generated by the SCF (3.1),
and yi = g(xy), where g is defined in (3.2). Then it holds

(3.11) yry1 € argmax Vo (yy)"y.
yEW (A)

Therefore, geometrically,

(3.12)  ygy1 is a supporting point of W(A) for the outer normal vector Ve (yp).
Proof. The coeflicient matrix H(x) by (1.2) is an H, matrix in Lemma 3.1:

(3.13) H(xy) = Hy, with vy = Vé(yr) and yr = g(xx) € W(A).

Hence, the k-th SCF iteration (3.1) is to solve the eigenproblem H,, Tp+1 = Ak+1Tk+1-
It follows from Lemma 3.1 that yi1+1 = g(zr+1) is a solution of (3.8) for vy = Ve (yi).
Therefore, y.11 is a supporting point of W (.A) for the outer normal direction V¢ (y;).0

By Theorem 3.2, the SCF iteration (3.1) can be visualized as searching the so-
lution of the mNEPv (1.1) on the boundary of the joint numerical range W (A).
Moreover, at a solution z, of the mNEPv (1.1), the geometric interpretation (3.12)
is equivalent to the following geometric first-order optimality condition for the con-
strained optimization (3.3):

(3.14) Vé(y.) is an outer normal vector of W(A) at ys,

where y. = g(x,). These concepts are illustrated by the example below.

Ezample 3.3. Let us consider the mNEPv (1.1) of the form
(3.15) H(z)x =z with H(z)= (27 A1x)- Ay 4 (2 Asz) - Ay,

where Ay and Ay are Hermitian matrices. The mNEPv (3.15) arises from numerical
radius computation and will be further discussed in Subsection 5.1. By Theorem 2.3
and (3.3), the mNEPv (3.15) can be characterized by the optimization problems

(316) max {F(z) = [(2" A12)*+ (27 Ag2)?] )2} = JerBa {o@) = w2},

This manuscript is for review purposes only.
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FiG. 1. (Left) Illustration of Example 3.3 for the first three iterates xo, x1,x2 by the SCF (3.1)
for the mNEPv (3.15): the shaded region is the joint numerical range W (A1, A2); dashed lines
are contours of ¢(y) = ||lyl|?/2 with dashed arrows the gradient directions V¢; solid tangent lines
are ‘supporting hyperplanes’ at y; = g(x;) with solid arrows the normal direction V¢(y;—1); the

mazimizer of (3.16) is marked as *. (Right) Iilustration of Exzample 3.6 for stable eigenvectors,

marked as solid stars *, and non-stable eigenvectors, marked as hollow stars W Close to a non-
stable eigenvector, the gradients V¢ (dashed arrows) point away from the normal vectors (solid

arrow), leading to divergence of the SCF from .

where W (A1, A2) is a joint numerical range of A; and A;. The left plot in Figure 1
depicts the SCF as a search process for solving the mNEPv (3.15) with randomly
generated Hermitian matrices A; and Ay of size 10. Given the initial yo = g(zo),
the SCF first searches in the gradient direction vy = V¢(yp) to obtain a supporting
point y; = g(x1); it then searches in the gradient direction V¢(y;) to obtain the
second supporting point y» = g(z2); and so on. When this process converges to
Y« = g(z,), the gradient V¢ (y.) overlaps the outer normal vector of W(A) at y., i.e.,
the optimality condition (3.14) is achieved.

Another key indication of (3.11) is that the SCF is a successive local linearization
for the optimization (3.3): At iteration k, it approximates ¢(y) by its first-order
expansion

(3.17) Ue(y) = o(yr) + Volye) " (y — i)
and solves the optimization of the linear function over the joint numerical range

3.18 O (y).
(3.18) Jnax k(y)

By dropping the constant terms in £ (y), the maximizers of (3.18) satisfy

argmax (;,(y) = argmax Ve(yx) y.
yEW (A) yEW (A)

Hence, the solution to (3.18) is exactly yr+1 in (3.11), and we have

1 = .
(3.19) Ok (Yrt1) x| U(y)

These observations are helpful to the proof of the global convergence of the SCF as
to be presented in Subsection 3.2.

This manuscript is for review purposes only.
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3.2. Convergence analysis of the SCF. In this section, we show that the SCF
iteration is globally convergent to an eigenvector of the mNEPv (1.1) as indicated by
the visualization of the SCF in Subsection 3.1. Moreover, the converged eigenvector
is typically a stable one and the rate of convergence is at least linear.

We begin with the following theorem on the global convergence of the SCF (3.1).
Here for a sequence of unit vectors {zy}, we call z, an (entry-wise) limit point if

(3.20) r, = lim xy, for some subsequence {zy,} indexed by k1 < ko < ---.
J—00

By the Bolzano—Weierstrass theorem, a bounded sequence in C™ has a convergent
subsequence, so the sequence {zj} of unit vectors has at least one limit point z.,.

THEOREM 3.4. Let {z} be a sequence of unit vectors from the SCF (3.1) for the

mNEPv (1.1), and F(x) be the objective function of the aMax (1.3). Then

(a) F(zry1) > F(xy) fork=0,1,..., with equality holds only if x\ is an eigenvector
of the mNEPv (1.1);

(b) each limit point x. of {xr} must be an eigenvector of the mNEPv (1.1), and it
holds F(x.) > F(xy) for all k > 0.

Proof. For item (a), recall that the linearization ¢y in (3.17) is a lower supporting
function for the convex function ¢, i.e., £ (y) < ¢(y) for y € W(A). Consequently,
(3:21) - Fl@in) = Oynr) = belyesn) = max Lly) = be(yn) = 6lye) = Faw),

y
where the third equality is by (3.19). Moreover, if the equality F(zx11) = F(zk)
holds, then (3.21) implies
3.22 L = max / ,
( ) k(Yr) yEW()il) k(Y)
namely,
yr € argmax (;,(y) = argmax Vo(yi) T y.
yEW (A) yEW (A)
According to Lemma 3.1, y, = g(xx) and xy, is an eigenvector for the largest eigenvalue
of H,, with vy = V¢(yi). Since H,, = H(xy), we have H(x)zr = Azy and A is the
largest eigenvalue, i.e., zj is an eigenvector of the mNEPv (1.1).

For item (b), let {4, } be a subsequence of {x} convergent to x,. The monotonic-
ity from item (a) implies F(x,) > F(zy) for all £ > 0. To show z, is an eigenvector,
we denote by yr, = g(wx,) and y. = g(x.). The linearization of ¢ at y. satisfies

(3.23) C(y) = b)) + Voly)" (y — ys) = Jim £, (y),

where the last equality is due to (3.17), y. = lim; o Yx,, and continuity of ¢ and V¢.
We first show that

(3.24) Vo(y)T(y —y.) <0 for all y € W(A).

Otherwise, there exists a § € W (A) with

(3.25) e:=Vo(y)" (7 —ys) > 0.
By the convergence of Ek]. — £, in (3.23), there exists N > 0 such that for all j > N,
(3.26) 0,5) > 6.G) — </2.
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It then follows from (3.21) (with k = k;) that for all j > N,

€ €

1) > by, > Ay, > L(y) — = = o(y«) + =

S = max () = 6,(5) = GG~ 5 = 0() +

where the last two equations are due to (3.26) and (3.25). The equation above implies
F(xy,41) > F(x.) +£/2, contradicting F'(z.) > F(xy) for all k.

It follows from (3.23) and (3.24) that
(ye) = max £(y) = 6(v-)
Then by the same arguments as for the y; in (3.22), we have x, is an eigenvector of
the mNEPv (1.1). |

In Section 5, we will discuss the mNEPv (1.1) arising from optimization of the
form (1.3), for which the monotonicity of the objective function is highly desirable.
Starting from any xg, the SCF will find an eigenvector x, that has an increased
function value F(z,) > F(xg).

Let’s now consider the local convergence properties of the SCF. Theorem 3.4 guar-
antees that the SCF will converge globally to some eigenvector of the mNEPv (1.1)
from any initial guess zg. In theory, SCF may terminate at a non-stable eigenvector
x4 of the mNEPv, if it exists. In practice, however, convergence to a non-stable eigen-
vector is unlikely to happen, because such eigenvectors are repulsive fixed points of
the mapping II (2.2), as explained in Subsection 2.1. Therefore, the SCF (3.1), which
is a fixed point iteration with IT, will diverge from a non-stable x, when x; is in a
neighborhood of x,. More rigorously, by the local convergence analysis of the SCF
for a general unitarily invariant NEPv (see [7, Theorem 1]), we can draw the local
convergence of the SCF (3.1) for the mNEPv (1.1) as stated in the following theorem.

THEOREM 3.5. Let z, be an eigenvector of the mNEPv (1.1) with a simple eigen-
value A, L be the R-linear operator (2.4) for x., and p(L) be the spectral radius.
(a) If p(£) < 1 (i.e., z. is a stable eigenvector by Definition 2.2), then the SCF (3.1)
is locally convergent to x., with an asymptotic convergence rate bounded by p(L).
(b) If p(L) > 1 (i.e., x. is a non-stable eigenvector by Definition 2.2), then the SCF
is locally divergent from x..

Here we recall that an iterate xj, by the SCF (3.1) is understood as an one-dimensional
subspace spanned by x;. The local convergence and divergence of xj, in Theorem 3.5
is measured by the vector angle Z(z.,z)) := cos™* (|zf ).

Example 3.6. By the geometric interpretation of the SCF from Theorem 3.2, we
can visualize its local convergence behavior revealed in Theorem 3.5. The right plot
in Figure 1 depicts the search directions of the SCF for a numerical radius problem
described in (3.16), with the corresponding mNEPv (3.15). There are four eigenvec-
tors (marked as stars, where the solid and dashed arrows overlap). Two solid stars
are stable eigenvectors (i.e., local maximizers of (3.16)) and two hollow stars are non-
stable eigenvectors (non-maximizers). The reason why the SCF is locally convergent
to stable eigenvectors is now clear: close to a solid star, the search directions V¢(y)
by (3.12) (dashed arrow) brings the next iteration closer to the solid star. In contrast,
close to a hollow star, the search directions lead away from the hollow star. This ob-
servation also justifies the name of non-stable eigenvector, since a slight perturbation
will lead the SCF to diverge from those solutions.

Combining the properties of global and local convergence in Theorems 3.4 and 3.5,
we can summarize the overall convergence of the SCF (3.1) as follows:
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1. Let x4 be an (entry-wise) limit point of {xy} by the SCF. Then x, is an
eigenvector of the mNEPv (1.1); see Theorem 3.4(b).

2. The limit point z, is unlikely a non-stable eigenvector, since the SCF is locally
divergent from non-stable eigenvectors; see Theorem 3.5(b).2 Consequently,
the SCF is expected to converge to (at least) a weakly stable eigenvector .

3. If the limit point x, is a stable eigenvector, then the SCF is at least locally
linearly convergent to z.; see Theorem 3.5(a).

4. SCF in practice. In this section, we will introduce an acceleration technique
and discuss related implementation details of the SCF iteration.

4.1. Accelerated SCF. The iterative process (3.1) is an SCF in its simplest
form, also known as the plain SCF. There are a number of ways to accelerate the
plain SCF, such as the damping scheme [19], level-shifting [64], direct inversion of
iterative subspace (DIIS) with Anderson acceleration [51], and preconditioned fixed-
point iteration [39]. Most of these schemes are designed for solving NEPv from elec-
tronic structure calculations. In this section, we present an acceleration scheme of the
SCF (3.1) for the mNEPv (1.1) based on the inverse iteration.

Inverse iterations are a commonly used technique for solving linear eigenvalue
problems [30] and eigenvalue-dependent nonlinear eigenvalue problems [25]. Moreover,
there is also an inverse iteration available for NEPv in the form

(4.1) H(z/||z]]) -z = Az,

where H(z) is a real symmetric matrix that is differentiable in = € R™ [31].® For nor-
malized z, we have H(z/||z|)) = H(x), so that the mNEPv (1.1) can be equivalently
written to an NEPv (4.1). In the following, we will first revisit the inverse iteration
scheme in [31], and then propose an improved scheme for solving the mNEPv (1.1)
by exploiting its underlying structure.

Let xj, be a unit approximate eigenvector of the NEPv (4.1) and o be a given
shift close to a target eigenvalue. The following inversion step is proposed in [31] to
improve xj:

0

(4.2) Tx = ag (J(xg) — akI)_l xr with J(z):= P

(H (z/]|[)z),
where ay, is a normalization factor. The formula (4.2) can be derived from Newton’s
method applied to the nonlinear equations H(x/||z|)x — Az = 0 and 27z = 1. Tter-
atively applying (4.2) with a fixed shift o has been proven to converge linearly with
a convergence factor proportional to |0 — A.|, whereas using dynamic Rayleigh shifts
o) = x{H (xg)z) is expected to yield quadratic convergence [31]. However, directly
applying the inverse iteration (4.2) may lead to convergence to an eigenvalue that is
not the largest one. Hence, we will only use it as a local acceleration scheme for SCF.
We first note that despite the matrix H(z) of the mNEPv (1.1) is symmetric
when all coefficient matrices Ay, ..., A,, are real symmetric, the corresponding Jaco-
bian J(z) in (4.2) is generally not. Specifically, the Jacobian J(z) is given by

(4.3) J(z) = %(H(w/\\fll)x) = H(x) + 2M (2)C(x) M (2)" P(x),

20ne exceptional but rare case is that some xj, coincides with a non-stable z. and SCF terminates.
3The authors in [31] considered scaling invariant NEPv H(z) - ¢ = Az with H(z) = H(ax) for
all a # 0, and they pointed out such NEPv cover (4.1) as a special case.
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where M(z) = [Ayz, -+, Apz] and C(z) = Diag (R (27 A12) ..., k), (2T Anz)),
and P(z) = I — zz” is a projection matrix. To symmetrize J(z), we introduce

(4.4) Jo(x) := J(2) + z - q(x)" = H(z) + 2 P(2) M (2)C(x) M (z)" P(x),

where ¢(z) = 2P(z)M (2)C(x)M (x)Tx € R™. Since the new matrix J; is a rank-one
modification of J, by the Sherman—Morrison-Woodbury formula [28], we have

(Jo(zy) — o) ap = c- (J(xi) — oul) " ay,
for some constant ¢. Therefore, we can reformulate the inversion step (4.2) to
(4.5) To = o - (Ju(m) — o) g,

where ay normalizes X, to a unit vector, i.e., we can replace J by the symmetric J;.

If the coefficient matrices {A;} are complex Hermitian, then H(z) is not holomor-
phically differentiable, since its diagonal entries are always real and cannot be analytic
functions. Consequently, the (holomorphic) Jacobian of H(z/||z|)z does not exist.
Nevertheless, the matrix Js(x) by (4.4) is well-defined and Hermitian (with transpose
T replaced by conjugate transpose -), so it can still be used for the inversion (4.5).

4.2. Implementation issues. The SCF with an optional acceleration for solv-
ing the mNEPv (1.1) is summarized in Algorithm 4.1. A few remarks on the imple-
mentation detail are in order.

Algorithm 4.1 The SCF with optional acceleration
Input: Starting zo € C™, residual tolerance tol, and acceleration threshold tol,cc.

Output: Approximate eigenpair (Ag,2) of the mNEPv (1.1).
1: for k=1,2,... do

2: H(xp—1)xp = A - ¢ with Ag = Apax(H(2x—1)); % SCF
3:  if res(zy) < tol, then return (\g, zx); % test for convergence
4:  if res(xy) < tolye. then % acceleration if activated
5: compute Ty by (4.5) with the shift o), = zf H (zy)xy,.

6: if F(zy) > F(xy), then update x; = Ty;

7. end if

8: end for

(1) The initial g, in view of the geometry of the SCF discussed in Subsection 3.1,

can be chosen from sampled supporting points of W (.A). To do this, we randomly
choose ¢ search directions v; € R™, for ¢ = 1,...,¢, and then find the supporting
points y,, = g(zy,) of W(A) along each direction. Among x,,, ..., Z,,, we choose
the one with the largest value F'(z,,) as 2. This greedy sampling scheme increases
the chance for the SCF to find the global maximizer of the aMax (1.3).
To compute the supporting points, Lemma 3.1 tells us that z,, is an eigenvector to
the largest eigenvalue of the Hermitian matrix H,, in (3.9). Thus, we need to solve
¢ Hermitian eigenvalue problems to obtain £ supporting points. For efficiency, we
can exploit the fact that H_,,, = —H,,, so we can compute two supporting points
in both directions fwv; by solving a single eigenvalue problem of H,,.

(2) Algorithm 4.1 requires finding the eigenvector corresponding to the largest eigen-
value of the matrix H(z_1) in line 2. Additionally, when we apply acceleration,
we need to solve a linear system with coefficient matrix Js(zx) — o/ in line 5.
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oo

For the mNEPv of small to medium sizes, direct solvers can be applied, such as
QR algorithm for Hermitian eigenproblems and LU factoration for linear systems
(e.g., MATLAB’s eig and backslash, respectively). For large sparse problems,
iterative solvers are applied, such as the Lanczos type methods for Hermitian
eigenproblems (e.g., MATLAB’s eigs), and MINRES and SYMMLQ for linear
systems; see, e.g., [6, 10].

(3) The acceleration with the inverse iteration is expected to work well for z, close

to a solution. A threshold tol,.. is introduced to control the activation of inverse

iteration in line 4. If tol,c.c = 0, Algorithm 4.1 runs the plain SCF. If tol,.. = oo,

Algorithm 4.1 applies acceleration at each step. We observe that the choice of

tol,ee 18 not critical and tol,ec = 0.1 is used in our numerical experiments.

To maintain the monotonicity of F(xy), as in the SCF, the accelerated eigenvector

Ty, is accepted only if F'(z)) > F(xy) in line 6.

To assess the accuracy of iteration k in line 3, we use the relative residual norm
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v (46) res(®) = | H(@)E — (3 H@)3) - 2/ |HE)],

543 where ||H(Z)]| is some convenient to evaluate matrix norm, e.g., the matrix 1-norm
544 as we used in the experiments.

545 5. Applications. The mNEPv (1.1) and the aMax (1.3) can be found in nu-

546 merous applications. In this section, we discuss three of them. The first one is on
547 the quartic maximization over the Euclidean sphere and its application for computing
548 numerical radius. The second is on the best rank-one approximation of third-order
549 partial-symmetric tensors. The third is from the study of the distance to singularity
550 of dHADE systems.

551 5.1. Quartic maximization and numerical radius. A (homogeneous) quar-
552 tic maximization over the Euclidean sphere is of the form

1 — H 2

555 (5.1) L {F(aj) == ; (2 Aiz) }

554 where {A;} are n-by-n Hermitian matrices. The optimization (5.1) is a classical prob-
555 lem in the field of polynomial optimization, although in the literature it is usually
556 formulated in real variables, i.e., x € R™ with symmetric {A;} [27, 46, 70]. In addi-
557 tiom, it also arises in the study of robust optimization with ellipsoid uncertainty [12].
558 Observe that the quartic maximization (5.1) is an aMax (1.3) with {¢;(¢t) = t2/2}.
55

59 Hence the underlying mNEPv (1.1) is of the form

m
560 (5.2) H(z)z=Xr with H(z)=)» (a7 Az)- A,

i=1
561 where the coeflicient functions h;(t) = ¢}(t) = t are differentiable and non-decreasing.
562 The simplest non-trivial example of the quartic optimization (5.1) is when m = 2,

563  which occurs in the well-known problem of computing the numerical radius of a square
564 matrix. The numerical radius of a matrix B € C"*™ is defined as
1/2
565 (5.3) r(B):= max [|¢Bx|=  max ((xHA1x)2 + (scHAgsc)Q) )
z€eCn, ||z||=1 zeCn, ||z||=1
566 where A; = 2(BH + B) and Ay = %(B¥ — B) with « = /=1 are Hermitian matri-
567 ces [28]. An extension of (5.3) is the joint numerical radius of an m-tuple of Hermitian
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matrices A = (A4y,...,A,,) defined as

m 1/2
(5.4) r(A):= mGC{?{ﬁ)z(H:l (Z(xHAz$)2> 7

i=1

see [22]. The (joint) numerical radius plays important roles in numerical analysis. For
examples, the numerical radius of a matrix is applied to quantify the transient effects
of discrete-time dynamical systems and analyze classical iterative methods [5, 56].
The joint numerical radius of a matrix tuple is used for studying the joint behavior
of several operators; see [35] and references therein.

Numerical algorithms for computing the numerical radius of a single matrix have
been extensively studied [26, 44, 45, 58, 62]. To find the global maximizer of (5.3),
many methods adopt the scheme of local optimization followed by global certifica-
tion. Most of those algorithms, however, do not immediately extend to computing
the joint numerical radius with m > 3. A major benefit of the NEPv approach pre-
sented in this paper is to allow fast computation of the local maximizers to accelerate
existing approaches. Moreover, the NEPv approach provides a unified treatment for
matrix tuple A with m matrices and can serve as the basis for future development of
algorithms towards the global solution of r(A) with m > 3.

5.2. Best rank-one approximation of third-order partial-symmetric ten-
sors. Let T € R™ "™X™ he a third-order partial-symmetric tensor, i.e., each slice
A; = T(;,:,1) € R™™™ is symmetric for ¢ = 1,...,m. The problem of the best
rank-one partial-symmetric tensor approximation is defined by the minimization

5.5 i T— - 2
(5.5) U — IT—p-z@z 2%,
ll2l|=1, ] 2[|=1

where ® is the Kronecker product. The solution of (5.5) provides a rank-one partial-
symmetric tensor fi. -z, ®x.®z, that best approximates T in the Frobenius norm ||-|| g
and is also known as a truncated rank-one CP decomposition of T’; see, e.g., [33, 70].

The best rank-one approximation (5.5) are often recast as a quartic maximiza-
tion (5.1); see, e.g., [21, Eq. (6)]. Let z; denote the i-th element of a vector 2. Then

(5.6) IT—p-z@c@2|f=TI%+p* =20 tijnwiz;z,
1,5,k

where the range of indices 17, j, k are omitted in the summation for clarity. Since the
minimum w.r.t. p is achieved at p = Zi’j,k tijkTiT 2k, the best rank-one approxima-
tion (5.5) becomes the maximization

2 2
2
(5.7) max1 ( E tijkxiszk) = HmHaxl ( E Zk ~xTAk:E> = Hm”ax1 (ZL'TAkl’) ,
— z||= z||=
irjik lzl=1 = * g

where the first equality is by A; = T'(:,:,4), and the second equality is due to that the
maximization w.r.t. z is solved at

(5.8) z=a-glx)=a-[zT Az, ... 2T Apx]"

with « being a normalization factor for ||z|| = 1 provided that g(x) # 0. The formula
of z in (5.8) follows from |27 g(x)|? < ||g(=)||? with equality holds if z = g(x)/||g(z)]|-
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Problem (5.7) leads to a quartic maximization (5.1) with real symmetric matrices
{A;} and real variables x € R", i.e., an aMax (1.3) with {¢;(t) = t?/2}. By Theo-
rem 2.3, the optimizer x, is an eigenvector of the mNEPv (5.2) with h;(t) = ¢'(t) =t
and the corresponding eigenvalue is

(5.9) Mo = 2l H(z )z, = Z (fokac*)Q =u.
3

Any other eigenvalue A of (5.2) must satisfy A = 2T H(z)z = Y, (gcTAkx)2 < A,
due to (5.9) and maximization (5.7).

The best rank-one approximation is a fundamental problem in tensor analy-
sis; see [23, 32, 69]. Third-order partial-symmetric tensors are intensively stud-
ied [20, 37, 53, 70] and found in applications such as crystal structure [21, 49] and social
networks (Example 6.4). It is known that tensor rank-one approximation problems
are closely related to tensor eigenvalue problems [53], such as the Z-eigenvalue [52] and
(?-eigenvalue [38] for general supersymmetric tensors and C-eigenvalue for third-order
partial-symmetric tensors [21]. Tensor eigenvalue problems provide first-order opti-
mality conditions for the best rank-one approximation. But those eigenvalue problems
are neither formulated nor studied through the NEPv as presented in this paper. For a
third-order partial-symmetric tensor, its largest C-eigenvalue . and the correspond-
ing C-eigenvectors (., z.) form the best rank-one approximation (5.5) [21]. However,
solving the tensor C-eigenvalue problems, which involve two coupled nonlinear equa-
tions in (u, z, z), are fundamentally different from solving the mNEPv (5.2). Efficient
solutions to the nonlinear equations for the C-eigenvalue are still largely open.

5.3. Distance problem in dHDAE systems. Consider the following dissipa-
tive Hamiltonian differential-algebraic equation (d{HDAE):

du du du
5.10 J—=By+B1—+ -+ Bir—,
(5.10) L o+ Bi 4+ By
where u: R — R” is a state function, j is an integer between 0 and ¢, J = —J7 is
skew symmetric, and B; = 0 are symmetric positive semi-definite for i« = 0,...,/.
0
By convention, ‘fiTZf = u. The dHDAE (5.10) arises in energy based modeling of

dynamical systems [43, 60]. An important special case is with j = 0 and £ = 1, known
as the linear time-invariant dHDAE system [11, 60]. Another one is the second-order
dHDAE (5.10) with j =1 and ¢ = 2 [11, 43].

To analyze the dynamical properties of a dHDAE system, one needs to know
whether the system is close to a singular one. A dHDAE system (5.10) is called
singular if det(P(X)) =0 for all A € C, where

(5.11) P(\) = -MNJ+By+ABy + -+ \'By

is the characteristic matrix polynomial. The distance of a dHDAE system to the
closest singular dHDAE system is measured by the quantity dging(P(\)):

‘ 1/2
(5.12)  duing(P(X) = min {2||Jx||2+2(2||<f—mT>Bix||2+<xTBix>2)} :

llzll=1 =0

see [43, Thm.16]. We can reformulate the optimization (5.12) to an aMax (1.3). First,
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by the skew-symmetry of J and the symmetry of B;, we can write (5.12) as

l
(dsing(P(/\)))2 — min {2 2T (JT N+ Y [207(BI Bi)x — («” Biz)?] }

z€ER™ :
[lll=1 =0
s
(5.13) =-2. max {xTAlx +3 Z(xTAz'JU)2} ;
llll=1 i=2

where 4; = J? — Zf:o B? and A; = B;_o for i = 2,...,{+ 2. Consequently, (5.13)
is of the form of the aMax (1.3):

£+2
(5.14) max {F(m) =l Ay + % Z (xTAix)Q },
=2

z€R™, ||z||=1

with ¢1(t) = t and ¢;(t) = t2/2, for i = 2,...,£ + 2. By Theorem 2.3, a local
maximizer of (5.14) can be found by solving the following mNEPv of the form (1.1):

42
(5.15) H(x)x =Xz with H(z)= A, + Z(a:TAim) A
=2
where hq(t) =1 and h;(t) = ¢, for i = 2,...,¢ + 2, are non-decreasing functions.

Computable upper and lower bounds of the quantity dging (P())) have been stud-
ied in [43, 50], and a recent method using two-level minimization and gradient flow
has been proposed for estimating dging(P(A)) [24]. In comparison, the mNEPv ap-
proach provides an computationally efficient alternative for estimating dging (P())) for
dHDAE systems of any order; see Examples 6.2 and 6.3 in Section 6.

6. Numerical examples. In this section, we present numerical examples of Al-
gorithm 4.1 for solving the mNEPv (1.1) arising from the applications described in Sec-
tion 5. The main purpose of the experiments is to illustrate the convergence behavior
of the SCF (Algorithm 4.1 with tol,.c = 0) and the efficiency of accelerated SCF
(Algorithm 4.1 with tol,ec = 0.1). The error tolerance for both algorithms are set
to tol = 10713, All experiments are carried out in MATLAB and run on a Dell
desktop with Intel i9-9900K CPU@3.6GHZ and 16GB core memory. In the spirit of
reproducible research, we have made available the MATLAB scripts implementing
the algorithms and the data used to generate the numerical results presented in this
paper. They can be accessed at https://github.com/ddinglu/mnepv.

Ezample 6.1. In Subsection 5.1, we have discussed that the computation of the
numerical radius of a matrix B € C"*™ is related to mNEPv (3.15) and the variational
characterization (3.16) with Hermitian A; = (B + B)/2 and Ay = (B — B) -4/2.
For numerical experiment, let us consider the following matrix

06 -02 -19 -03 06 25 —-0.2 25
-01 -03 —-13 -—-1.2 23 —-26 04 1.3
(6.1) B= -20 —-16 -21 1.3 t 0.0 06 —-04 1.2
-0.1 -16 15 =01 20 14 1.0 -23

The corresponding numerical range W (A1, As) is depicted in Figure 2 as the shaded
region. We sampled 100 different starting vectors zy to run the SCF, where each
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F1G. 2. Left: Numerical range W (A1, A2) of the matriz in (6.1). A represents the solution
for the mNEPv and e the starting g(xo) of the SCF; The e are colored according to the solution
they have computed (blue is for solution I, red for II, and green for III); The dashed are contours
of ¢(y) = ||lyl|?/2; see (3.16). Right: Number of SCF iterations (‘o’) and accelerated SCF (‘x’) for
different zo parameterized by 0 € [0,27) as in (6.2).

yo = g(xo) is a supporting point of W(A;, As), depicted in Figure 2 as dots on the
boundary of W(A;, A3). By the discussion on the implementation of Algorithm 4.1,
such initial zy are obtained from the eigenvectors z, of the matrix H, for sampled
directions v € R? (see Lemma 3.1 and Subsection 4.2). Since a unit direction v € R?
can be represented by polar coordinates as v = [cos 6, sin 0] with § € [0,27). The
initials zo are set as

(6.2) To =1z, withv = [cosf,sind]’,

using 100 equally distant § between 0 and 2. The sampled g(z() are well distributed
on the boundary of W (A, As), as shown in Figure 2.

For 100 runs of the SCF, three different solutions are found. In Figure 2, they
are labeled respectively with I, II, III, in descending order of their objective values
of (3.16). The initial g(z¢) on the boundary of W (A1, A3) are colored the same if SCF
will converge to the same solution, which, hence, reveals the region of convergence for
SCF. The numbers of SCF iterations with each xg are reported in Figure 2. For the
SCF, the iteration numbers vary for different solution, whereas the accelerated SCF
are almost independent of the choice of the initial zy with only a moderate increase
on the boundary of two convergence regions.

The left plot of Figure 3 depicts the convergence history of the objective func-
tion F'(xy) for four different starting vectors z, corresponding to the equally distant
0 € {0, 7/2, , 3w /2} from Figure 2. As expected the SCF demonstrates monotonic
convergence. The right plot in Figure 3 shows the relative residual norms of xj as
defined in (4.6). We can see that the SCF quickly enters the region of linear con-
vergence in all cases (in about 3 iterations). The acceleration takes full advantage of
the rapid initial convergence and speeds up the SCF significantly. We note that in
this example the matrices A; and A, are complex Hermitian, for which the inverse
iteration (4.5) with Rayleigh shift oy is not guaranteed quadratically convergent.

Ezample 6.2. In this example, we consider the mNEPv (5.15) arising from the
distance problem of dHDAE systems described in Subsection 5.3. The characteristic
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Fic. 3. Left: Convergence history of F(xy) by SCF (‘o’) and accelerated SCF (‘x’), where

each colored curve is a run with a particular xo from 4 different starting vectors. Right: Relative
residual norms (4.6) of the mNEPuv.

704 polynomial of a linear dHDAE system is given by

705 (6.3) P(A\):=—-J+ R+ \E,

706 where J = —J7 is a skew symmetric, and E and R are symmetric positive definite
707

matrices. As discussed in Subsection 5.3, the computation of distance to singularity
708 dsing(P(A)) leads to the optimization (5.13) and the associated mNEPv (5.15), where

138 3
709 (6.4) F(x) =aT Az + 3 ;(xTAix)Q and H(z)=A;+ ;(xTAix) “A;,
710 and Ay =J? — E? —R? Ay =F and A3 = R.

For experiments, the matrices {.J, R, E} of order 30 are generated randomly.*
Similar to Example 6.1, the initial 2y of the SCF are computed from supporting points
of the joint numerical range W (A, Az, A3) C R? along several sampled directions
v € R3. Recall that a unit v € R3 can be represented by spherical coordinates as

715 (6.5) v = [sinncosf, sinnsinf, cosn]? with 5 € [0,2) and 0 € [0,27).

We hence construct an equispaced grid of 20-by-40 points of (1,6) € [0,x] x [0, 27],
yielding 800 supporting points of W (A, A2, A3). They are depicted in Figure 4,
together with the approximate joint numerical range they generate.®

From all 800 initial xy, the SCF converge to the same solution, as marked in Fig-
ure 4. This solution appears to be the global optimizer of (5.13), as visually verified
by the level-surface of the objective function ¢(y) for the corresponding optimization
over the joint numerical range (3.3). From the numbers of iterations reported in Fig-
ure 4, we can see that both SCF and accelerated SCF converge rapidly to the solution.
The numbers of SCF iterations are not sensitive to the choice of xy. Figure 5 depicts

S © o

wW N

SRR R R R s e e

NN NN N = e e

=

4For J: X=randn(n); X = X-X’; X = X/norm(X). For F and R: X=randn(n); X = orth(X); X =
X*diag(rand(n,1)+1.6E-6)*X’.

5Plot generated by MATLAB functions trisurf and boundary using the 800 supporting points.
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Fic. 4. Left: Computed numerical range W (A1, A2, Az) based on 800 sample supporting points
on the boundary (nodes of the mesh); W represents the solution for the mNEPuv, o the starting g(xo),
and ‘o’ the first few supporting points g(xy) by SCF; The smaller mesh that crosses ¥ s part of
the level-surface ¢(y) = ¢(y«) for ¢(y) = y(1) + (y(2)%2 +y(3)?)/2 at the solution y. = g(Z+). Right:

0 € [0,27) and n € [0,7) as in (6.5).

05 |

F(xy)

Fic. 5. Left: Convergence history of F(xy) by SCF (‘o’) and accelerated SCF (‘x’), where
each colored curve is a run with a particular xo from 6 different starting vectors. Right: Relative

residual norms (4.6) of the mNEPuv.

the convergence history of F(zj) and the relative residual norms by the SCF from
six different starting vectors xy (sampled supporting points of W(A;, Az, As) along
the three coordinate axes). We observe that the SCF converges monotonically to the
same solution, regardless of the starting vector used. The accelerated SCF greatly
reduces the number of iterations and shows a quadratic convergence rate.

In general, a computed Z, may not be a global maximizer of the aMax (5.13).

res(zy)

100
R
\‘\Q 8
jc)
PEIEI S
XX Q
x 6
trg X \@
W9 g
gt " A,
ol Q
1070 e [®)
(O}
! Q
o o
Y ©)
w \“
10718} i,

But we have at least an upper bound of the distance:

(6.6)

If the initial vector z of the SCF is especially set to be the eigenvector corresponding

deing(P(VN) = (= 2+ max F(2))"* < (-2 F(&.))

llzll=1
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to the largest eigenvalue of Ay, then we have

1/2 1/2

(6.7) (=2-F@))* < (=2 Flao)""? <6p = (= 2 Anax(A1)) %,
where the first inequality is by the monotonicity of the SCF (see Theorem 3.4) and the
second inequality is by the definition of F(z) (6.4). The quantity dy; was introduced
in [43] and used as an estimation of dgne(P(A)). By the inequalities (6.6) and (6.7),
the SCF always produces a sharper upper bound of dging(P(A)). In this example, the
SCF provides a sharper estimation /—2 - F((Z,) & 0.5989, as opposed to dp; =~ 0.6923.
An alternative computable upper bound to the quantity d»; has been recently pro-
posed in [50], which involves an optimization of sum of Rayleigh quotients, but it does
not ensure a better estimation than 0y [50, Thm. 3.7 and Eg. 3]. In another related
work [24], the authors considered an approach to estimate the distance dsing (P())),
based on the observation that the distance is the smallest root of a monotonically
decreasing function w. A root-finding method such as the bisection can be applied.
The difficulty there lies in the evaluation of the function w. For a given e, evaluating
w(e) can be very expensive as it requires an optimization by a gradient flow method,
which involves repeated solution of Hermitian eigenvalue problems of size n.

Example 6.3. In this example, we consider a quadratic dHDAE system with the
characteristic polynomial

P(\) = —AG + K + AD + \*M,

where G = —G7 is skew symmetric, and M, D and K are symmetric positive definite.
By Subsection 5.3, the computation of distance to singularity dsing(P())) leads to the
optimization (5.13) and the mNEPv (5.15) with

4 4
1
F(z)=2T Az + 3 Z(J:TAim)Q and H(z)=A;+ Z(a:TAiz) <A,

=2 =2

where Ay =G? —M? -D? - K? Ay=M, A; =D, and A4, = K.

For numerical experiments, we consider a lumped-parameter mass-spring-damper
system Mu + Du + Ku = f with n point-masses and n spring-damper pairs. The
matrices D and K are interchangeable with DK = K D and are simultaneously diago-
nalizable [61]. We pick a random skew symmetric G to simulate the gyroscopic effect.
The sizes n of the matrices are set ranging from 500 to 3000. For each set of testing
matrices, we run the SCF with 100 different starting vectors zy. Again, those z( are
computed from supporting points of the joint numerical range W (A) C R* along 100
randomly sampled directions v € R*.

Similar to the linear system in Example 6.2, the SCF converge to the same solution
from all 100 different starting vectors. Figure 6 depicts the convergence history of the
SCF and the accelerated SCF for a case of n = 1000, with 8 randomly selected starting
vectors. It shows the same convergence behavior of the SCF and accelerated SCF as
in the previous example. Table 1 summarizes the iteration number and computation
time for the algorithms from all testing cases. We can see that the performance of
both SCF and accelerated SCF are not much affected by the choice of initial vectors.
Both algorithms converge rapidly, and the accelerated SCF speed up to a factor
between 2.5 to 6.2. For comparison, we have included the results by the Riemannian
Trust Region (RTR) method for solving the optimization problem (5.14). We used
the trustregions function provided by Manopt, a MATLAB toolbox available at
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Fic. 6. Left: Convergence history of F(xk) by SCF (‘o’) and accelerated SCF (‘x’), where
each colored curve is a run with a particular xo from 8 different starting vectors (lines overlapped).

Right: Relative residual norms (4.6) of the mNEPv.

https://www.manopt.org/. RTR is considered as a state-of-the-art approach for the
optimization problems with spherical constraints of the form||z| = 1. We observe that
RTR finds the same solution as the proposed NEPv approach, but it takes significantly

more running time.

TABLE 1
Number of iterations and computation time (in seconds) for various problem sizes n. Reported
are average results from 100 runs with different starting vectors, with the largest deviations marked.

n algorithms | F(z4) | iterations | timing
RTR —0.094157045470939 (£7-10717) | 24.2 (£10) 1.63 (£0.47)
500 SCF —0.094157045470939 (£7 - 10~17) | 17.0 (£4.0) 1.18 (£0.34)
accel. SCF | —0.094157045470939 (+7-10~17) | 5.3 (£1.3) 0.34 (£0.14)
RTR —0.095120974693461 (£7 - 10*17) 27.8 (£8.8) 8.98 (£1.33)
1000 SCF —0.095120974693461 (£4 - 10~17) | 21.3 (£3.3) 6.54 (£1.15)
accel. SCF | —0.095120974693461 (+6-10~17) | 4.7 (£1.3) 1.32 (40.48)
RTR —0.090910959613593 (+6 - 10-17) | 27.6 (+£12) | 58.35 (£9.37)
2000 SCF —0.090910959613593 (£4 - 10~17) | 17.0 (+4.0) 4.91 (4+1.58)
accel. SCF | —0.090910959613593 (£6 - 10~17) | 4.8 (£1.8) 1.52 (£0.73)
RTR —0.089186202007536 (£7-10~17) | 28.4 (+11) | 181.65 (+20.6)
3000 SCF —0.089186202007536 (£8-10~17) | 16.9 (£3.9) | 20.51 (+5.33)
accel. SCF | —0.089186202007536 (£7-10~17) | 5.2 (£1.2) 6.39 (+1.93)
Example 6.4. As discussed in Subsection 5.2, the problem of best rank-one

approximation for a partial-symmetric tensor T € R"*™*™ Jeads to a quartic opti-
mization (5.7) and the corresponding mNEPv (5.2), where the coefficient matrices
are A; := T(:,:,4) € R™™™ for ¢ = 1,...,m. For non-negative tensors, the objective
function F(z) = 1>, (;ETAix)z of (5.7) satisfies F(|z|) > F(x), where |- | denotes
componentwise absolute value. Therefore, it is advisable to start the SCF (3.1) with
a non-negative initial zo. Note that if xp > 0 then H(xy) > 0, so by the Perron-
Frobenius theorem [28], the eigenvector xp4; for the largest eigenvalue of H(xy) is
also non-negative. Consequently, the iterates xj by the SCF will remain non-negative.

This manuscript is for review purposes only.


https://www.manopt.org/

792
793

794

24 Z. BAI AND D. LU

We note that for a non-negative tensor 7" and a non-negative initial xg, the
SCF (3.1) is indeed equivalent to the Alternating Least Squares (ALS) algorithm
for finding the best rank-one approximation (5.5). Recall that in Subsection 5.2, the
best rank-one approximation (5.5) is turned into the maximization problem:

(6.8) (zT - g(x))”,

max
llzl|=1, ||z]|=1

where g(z) = [¢T A1z, ..., 2T A,,2]T. Maximizing alternatively with respect to z and
x leads to the alternating iteration:

2
Zp41 = arg max (zT . g(xk)) =ay - 9(zk),

llzll=1
(6.9) ; , . ,
Tpy1 = argmax (2, - g(z))” = argmax (z' - H(zx) - 2)",
=]=1 lzll=1
for k=1,2,..., where a, > 0 is a normalization factor for zj,1. Note that H(zx) > 0

if xx > 0. The maximizer xp11 of (6.9) is the eigenvector corresponding to the largest
eigenvalue of H(xy) by the Perron-Frobenius theorem. Therefore, the iteration (6.9)
coincides with the SCF. The ALS algorithms are commonly used for low-rank approx-
imations in tensor computations [33].

For numerical experiments, we use the following third-order partial-symmetric
tensors: New Orleans tensor  is created from a Facebook network, and has size
63891 x 63891 x 20 with 477778 nonzeros; Princeton tensor © is from a Facebook
‘friendship’ network, and has size 6593 x 6593 x 6 with 70248 nonzeros; Reuters
tensor ® is from a news network based on all stories released by the news agency
Reuters concerning the September 11 attack during the 66 consecutive days beginning
at September 11, 2001, and the size of the tensor T is 13332 x 13332 x 66 with 486894
nonzeros. All three tensors are non-negative and sparse (density ~ 107?), so are the
corresponding coefficient matrices A; = T'(:,:,¢) fori =1,...,m.

In Algorithm 4.1, we use MATLAB eigs for the eigenvalue computation and
minres for solving the linear system in the acceleration (4.5). We use an adaptive
error tolerance Tol = min{1073 res(x;)?} for each call of eigs and minres. We
use 100 randomly generated and non-negative starting vectors xg to run the SCF
(using x0=abs(randn(n,1))). The convergence history is reported in Figure 7. We
observe that from different starting xy, Algorithm 4.1 always converge to the same
solution and the convergence rate appears not affected by the choice of xy. Also,
the accelerated SCF significantly reduces the number of the SCF iterations and has
a quadratic convergence rate. It is noteworthy that the SCF can find the solution in
just about a fraction of a second. This is a surprising result, given the large size of
the Hermitian eigenvalue problem that is solved in each iteration.

7. Concluding remarks. A variational characterization for the mNEPv (1.1) is
revealed. Based on that, we provided a geometric interpretation of the SCF iterations
for solving the mNEPv. The geometry of the SCF illustrates the global monotonic
convergence of the algorithm and leads to a rigorous proof of its global convergence. In
addition, we presented an inverse-iteration based scheme to accelerate the convergence
of the SCF. Numerical examples demonstrated the effectiveness of the accelerated SCF

Sdata available at http://socialnetworks.mpi-sws.org/data-wosn2009.html.
"data available at https://archive.org/details/oxford-2005-facebook-matrix.
8data available at http://vlado.fmf.uni-lj.si/pub/networks/data/CRA /terror.htm.
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Fic. 7. Convergence history of relative residual norms res(xy) (4.6) by the SCF (‘’) and
accelerated SCF (‘x’). FEach colored curve represents a run with a different starting vector from 100
randomly generated xo > 0 (due to curve overlapping, 8 selected curves are reported). The reported
computational time are the average results from the 100 runs, with the largest deviations marked.

for solving the mNEPv arising from different applications. By the intrinsic connection
between the mNEPv (1.1) and the aMax (1.3), we developed an NEPv approach for
solving the aMax. Algorithmically, it allows the use of state-of-the-art eigensolvers
for fast solution

Most results presented in this work can be extended to the case of NEPv (1.1)
with h; being non-decreasing and locally Lipschitz continuous functions. A variational
characterization of such NEPv similar to Theorem 2.3 can be established. The present
work also lays the groundwork for studying a more general class of NEPv in the
form (1.1), where the coefficient of A; is a composite function h;(g(x)) with a given
h; : R™ — R and g(z) as defined in (3.2). Expanding theoretical analysis and
geometric interpretation of the SCF discussed in the present work to such NEPv is a
topic for future study.
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