

VARIATIONAL CHARACTERIZATION OF MONOTONE NONLINEAR EIGENVECTOR PROBLEMS AND GEOMETRY OF SELF-CONSISTENT-FIELD ITERATION

ZHAOJUN BAI* AND DING LU†

Abstract. This paper concerns a class of monotone eigenvalue problems with eigenvector nonlinearities (mNEPv). The mNEPv is encountered in applications such as the computation of joint numerical radius of matrices, best rank-one approximation of third-order partial-symmetric tensors, and distance to singularity for dissipative Hamiltonian differential-algebraic equations. We first present a variational characterization of the mNEPv. Based on the variational characterization, we provide a geometric interpretation of the self-consistent-field (SCF) iterations for solving the mNEPv, prove the global convergence of SCF, and devise an accelerated SCF. Numerical examples demonstrate theoretical properties and computational efficiency of the SCF and its acceleration.

13 Key words. nonlinear eigenvalue problem, self-consistent field iteration, variational character-
 14 ization, geometry of SCF, convergence analysis

15 **MSC codes.** 65F15, 65H17

16 **1. Introduction.** We consider the following eigenvector-dependent nonlinear ei-
 17 genvalue problem:

$$18 \quad (1.1) \quad H(x) x = \lambda x,$$

19 where $H(x)$ is a Hermitian matrix-valued function of the form

$$20 \quad (1.2) \quad H(x) := \sum_{i=1}^m h_i(x^H A_i x) A_i,$$

and $\{A_i\}$ are n -by- n Hermitian matrices, $\{h_i\}$ are differentiable and non-decreasing functions over \mathbb{R} . The goal is to find a unit-length vector $x \in \mathbb{C}^n$ and a scalar $\lambda \in \mathbb{R}$ satisfying (1.1) and, furthermore, $\lambda (= x^H H(x) x)$ is the largest eigenvalue of $H(x)$. The solution vector x is called an eigenvector of the eigenvalue problem (1.1) and λ is the corresponding eigenvalue. Since $H(\gamma x) \equiv H(x)$ for any $\gamma \in \mathbb{C}$ with $|\gamma| = 1$, if x is an eigenvector, then so is γx .

27 The matrix-valued function $H(x)$ in (1.2) is a linear combination of constant
 28 matrices $\{A_i\}$ with monotonic functions $\{h_i\}$. We say $H(x)$ is of a monotone affine-
 29 linear structure and, for simplicity, call the eigenvalue problem (1.1) a monotone
 30 NEPv, or mNEPv. For the case $m = 1$, the mNEPv simplifies to $h(x^H A x) \cdot A x = \lambda x$,
 31 so its eigenvector x must also be an eigenvector of the Hermitian matrix A , and by
 32 the monotonicity of h , x corresponds to the largest eigenvalue of A .

In Section 2, we will see that the mNEPv (1.1) is intrinsically related to the following maximization problem:

$$35 \quad (1.3) \quad \max_{x \in \mathbb{C}^n, \|x\|=1} \left\{ F(x) := \sum_{i=1}^m \phi_i (x^H A_i x) \right\},$$

*Department of Computer Science, University of California at Davis, Davis, CA (zbai@ucdavis.edu). Supported by NSF DMS-1913364.

[†]Department of Mathematics, University of Kentucky, Lexington, KY (Ding.Lu@uky.edu). Supported by NSF DMS-2110731.

36 where $\{\phi_i\}$ are anti-derivatives of $\{h_i\}$, i.e., $\phi_i'(t) = h_i(t)$, for $i = 1, \dots, m$. Since
 37 $\{h_i\}$ are differentiable and non-decreasing, $\{\phi_i\}$ are twice-differentiable and convex
 38 functions. We call (1.3) an associated maximization of the mNEPv (1.1), or aMax.

39 The mNEPv (1.1) is a class of the eigenvalue problems with eigenvector nonlinearities (NEPv). NEPv have been extensively studied in the Kohn–Sham density functional theory for electronic structure calculations [42] and the Gross–Pitaevskii eigenvalue problem, a nonlinear Schrödinger equation to describe the ground states of ultracold bosonic gases [9, 31]. NEPv have also been found in a variety of computational problems in data science, e.g., Fisher’s linear discriminant analysis [47, 66, 67] and its robust version [8], spectral clustering using the graph p -Laplacian [16], core-periphery detection in networks [57], and orthogonal canonical correlation analysis [68].

40 Self-Consistent-Field (SCF) iteration is a gateway algorithm to solve NEPv, much like the power method for solving linear eigenvalue problems. The SCF was introduced
 41 back in the 1950s [54]. Since then, the convergence analysis of the SCF has long been
 42 an active research topic in the study of NEPv; see [7, 17, 18, 40, 55, 59].

43 Although the underlying structure of the mNEPv (1.1) is commonly found in NEPv, it has been largely unexploited. In this paper, we will conduct a systematical
 44 study of the mNEPv and exploit its underlying structure. Theoretically, we will reveal
 45 a variational characterization of the mNEPv (1.1) by maximizers of the aMax (1.3).
 46 Using the variational characterization, we will provide a geometric interpretation of
 47 the SCF for solving the mNEPv (1.1), which reveals the global convergence of the
 48 algorithm. We will then prove the global monotonic convergence of the SCF. Finally,
 49 we will present an accelerated SCF by exploiting the underlying structure of $H(x)$
 50 and demonstrate its efficiency with examples from a variety of applications.

51 The aMax (1.3) is interesting in its own right and finds numerous applications.
 52 One important source of the problems is a quartic maximization over the Euclidean
 53 ball, where $\phi_i(t) = t^2$ [46]. In Section 5, we will discuss such quartic maximization
 54 problems arising from the joint numerical radius computation and the rank-one ap-
 55 proximation of partial-symmetric tensors. Another application of the aMax (1.3) is
 56 from computing the distance to singularity for dissipative Hamiltonian differential-
 57 algebraic equation (dHDAE) systems [43]. The aMax (1.3) also arises in robust opti-
 58 mization with ellipsoid uncertainty; see e.g., [12]. By the intrinsic connection between
 59 the mNEPv and the aMax, we will devise an eigenvalue-based approach for solving
 60 the aMax that can exploit state-of-the-art eigensolvers from numerical linear algebra.

61 Optimizations of the form (1.3) have been investigated in the literature, but they
 62 are often formulated as the *minimization* of $F(x)$ over the vector space \mathbb{R}^n or \mathbb{C}^n .
 63 Examples of recent studies include the quartic-quadratic optimization with $\phi_i(t) = t^2$
 64 or t [29, 65] and the Crawford number computation with $\phi_i(t) = t^2$ [41]. For these
 65 minimization problems, eigenvalue-based approaches have been developed, which lead
 66 to NEPv $H(x)x = \lambda x$ with $H(x)$ given by (1.2) and λ corresponding to the *smallest*
 67 eigenvalue of $H(x)$; see [29, 41]. However, as the target eigenvalue is the smallest,
 68 rather than the largest, the solution and analyses of those NEPv differ fundamentally
 69 from that of the mNEPv (1.1). For example, the SCF is no longer globally convergent
 70 for computing the smallest eigenvalue.

71 The rest of this paper is organized as follows. Section 2 presents a variational
 72 characterization of the mNEPv (1.1) through maximizers of the aMax (1.3). Section 3
 73 provides a geometric interpretation of the SCF and proves its global convergence. Sec-
 74 tion 4 focuses on the practical aspects of the SCF. Section 5 discusses the applications
 75 of the mNEPv (1.1). Numerical experiments are presented in Section 6 and concluding
 76 remarks are provided in Section 7.

We follow standard notation in matrix computations. $\mathbb{R}^{m \times n}$ and $\mathbb{C}^{m \times n}$ are the sets of m -by- n real and complex matrices, respectively. $\text{Re}(\cdot)$ extracts the real part of a complex matrix or a number. For a matrix (or a vector) X , X^T stands for transpose, X^H for conjugate transpose, and $\|X\|$ for the matrix 2-norm. We use $\lambda_{\min}(X)$ and $\lambda_{\max}(X)$ for the smallest and largest eigenvalues of a Hermitian X . The spectral radius (i.e., largest absolute value of eigenvalues) of a matrix or linear operator is denoted by $\rho(\cdot)$. Standard little-o and big-O notation are used: $f(x) = \mathbf{o}(g(x))$ means that $f(x)/g(x) \rightarrow 0$ as $x \rightarrow 0$, while $f(x) = \mathcal{O}(g(x))$ means that $f(x)/g(x) \leq c$ for some constant c as $x \rightarrow 0$. Other notations will be explained as used.

2. Variational characterization. Variational characterizations provide powerful tools to the study of eigenvalue problems, facilitating both theoretical analysis and numerical computations. A prominent example is the Hermitian linear eigenvalue problem of the form $Ax = \lambda x$, where the Courant-Fischer principle uses optimizers of the Rayleigh quotient $x^H A x / x^H x$ to form variational characterizations of the eigenvalues of A ; see, e.g., [14]. With this characterization, bounds for eigenvalues and interlacing, monotonicity of eigenvalues can be proved quickly. Variational characterizations have also been developed for eigenvalue-dependent nonlinear eigenvalue problems of the form $T(\lambda)x = 0$ [34]. It is also well-known that the NEPv in Kohn-Sham density functional theory is derived from the minimization of an energy function in electronic structure calculations; see, e.g., [42, 18]. In this section, we provide a variational characterization of the mNEPv (1.1) by exploring its relation to the aMax (1.3).

2.1. Stability of eigenvectors. We start with the following NEPv without assuming the structure of $H(x)$ and the order of the eigenvalue λ :

$$(2.1) \quad H(x)x = \lambda x \quad \text{with} \quad \|x\| = 1,$$

where $H(x)$ is Hermitian, differentiable (w.r.t. both real and imaginary parts of x), and unitarily scaling invariant (i.e., $H(\gamma x) = H(x)$ for any $\gamma \in \mathbb{C}$ with $|\gamma| = 1$). Due to scaling invariance, we can view an eigenvector x of the NEPv (2.1) as an equivalent class $[x] := \{\gamma x \mid \gamma \in \mathbb{C}, |\gamma| = 1\}$, i.e., a point in the Grassmannian $\text{Gr}(1, \mathbb{C}^n)$.

Let x_* be an eigenvector of the NEPv (2.1) and the corresponding λ_* be the p -th largest eigenvalue of $H(x_*)$. Assume λ_* is a simple eigenvalue. Then $[x_*]$ can be interpreted as a solution to the fixed-point equation over $\text{Gr}(1, \mathbb{C}^n)$:

$$(2.2) \quad [x] = \Pi([x]),$$

where the mapping $\Pi : \text{Gr}(1, \mathbb{C}^n) \rightarrow \text{Gr}(1, \mathbb{C}^n)$ is defined by $\Pi([x]) := [u(x)]$ and $u(x)$ is an (arbitrary) unit eigenvector for the p -th largest eigenvalue of $H(x)$. The *attractiveness* of the fixed point $[x_*]$ for the mapping Π in (2.2) can be determined by the spectral radius of a related linear operator, as established in [7]. To introduce this linear operator, we first denote the eigenvalue decomposition of $H(x_*)$ as

$$(2.3) \quad H(x_*) \begin{bmatrix} x_* & X_{*\perp} \end{bmatrix} = \begin{bmatrix} x_* & X_{*\perp} \end{bmatrix} \begin{bmatrix} \lambda_* & \\ & \Lambda_{*\perp} \end{bmatrix},$$

where $[x_* \ X_{*\perp}] \in \mathbb{C}^{n \times n}$ is unitary and $\Lambda_{*\perp} \in \mathbb{R}^{(n-1) \times (n-1)}$ is a diagonal matrix. We then define an \mathbb{R} -linear operator¹

$$(2.4) \quad \mathcal{L} : \mathbb{C}^{n-1} \rightarrow \mathbb{C}^{n-1} \quad \text{with} \quad \mathcal{L}(z) = D_*^{-1} X_{*\perp}^H (\mathbf{D}H(x_*)[X_{*\perp} z]) x_*,$$

¹ $\mathcal{L} : \mathbb{C}^m \rightarrow \mathbb{C}^m$ is called \mathbb{R} -linear if $\mathcal{L}(\alpha x + \beta y) = \alpha \mathcal{L}(x) + \beta \mathcal{L}(y)$ for all $\alpha, \beta \in \mathbb{R}$ and $x, y \in \mathbb{C}^m$.

128 where $D_* = \lambda_* I_{n-1} - \Lambda_{*\perp}$ is diagonal and non-singular since λ_* is a simple eigenvalue,
 129 and $\mathbf{D}H(x)[d]$ is the derivative of H at x along the direction of d :

130 (2.5)
$$\mathbf{D}H(x)[d] := \lim_{\alpha \in \mathbb{R}, \alpha \rightarrow 0} \frac{H(x + \alpha d) - H(x)}{\alpha}.$$

131 Let $\rho(\mathcal{L})$ be the spectral radius of \mathcal{L} (i.e., the largest absolute value of the eigenvalues).
 132 Then by [7, Thm. 4.2], we know that if $\rho(\mathcal{L}) < 1$, then $[x_*]$ is an attractive fixed point
 133 of the mapping Π (2.2); If $\rho(\mathcal{L}) > 1$, then $[x_*]$ is a repulsive fixed point; If $\rho(\mathcal{L}) = 1$,
 134 then no immediate conclusion can be drawn for the attractiveness of $[x_*]$. It is worth
 135 noting that although the theorem [7, Thm. 4.2] is stated for the case $\lambda_* = \lambda_n$ being
 136 the smallest eigenvalue of $H(x_*)$, the result holds for a general p -th eigenvalue.

137 Returning to the mNEPv (1.1), in the following lemma, we can show that the
 138 operator \mathcal{L} in (2.4) is both self-adjoint and positive semi-definite. Consequently, the
 139 conditions $\rho(\mathcal{L}) < 1$ or $\rho(\mathcal{L}) \leq 1$ can be characterized using the definiteness of a
 140 characteristic function. To facilitate the analysis, we denote the vector space \mathbb{C}^{n-1}
 141 over the field of real numbers \mathbb{R} as $\mathbb{C}^{n-1}(\mathbb{R})$ and introduce an inner product over
 142 $\mathbb{C}^{n-1}(\mathbb{R})$ as

143 (2.6)
$$\langle y, z \rangle_D := \operatorname{Re}(y^H D z),$$

144 where D is a given Hermitian positive definite matrix of size $n - 1$.

145 **LEMMA 2.1.** *Let $x_* \in \mathbb{C}^n$ be an eigenvector of the mNEPv (1.1) with a simple
 146 eigenvalue λ_* . Then the \mathbb{R} -linear operator \mathcal{L} in (2.4) is self-adjoint and positive semi-
 147 definite over $\mathbb{C}^{n-1}(\mathbb{R})$ in the inner product (2.6) with $D_* = \lambda_* I_{n-1} - \Lambda_{*\perp}$. Moreover,*
 148 (a) $\rho(\mathcal{L}) < 1$ if and only if $\varphi(d; x_*) < 0$ for all $d \neq 0$ and $d^H x_* = 0$;
 149 (b) $\rho(\mathcal{L}) \leq 1$ if and only if $\varphi(d; x_*) \leq 0$ for all $d \neq 0$ and $d^H x_* = 0$.
 150 Here, $\varphi(d; x_*)$ is a quadratic function in $d \in \mathbb{C}^n$ and is parameterized by x_* as

151 (2.7)
$$\varphi(d; x_*) := d^H \left(H(x_*) - (x_*^H H(x_*) x_*) I \right) d + 2 \sum_{i=1}^m h'_i(x_*^H A_i x_*) \cdot (\operatorname{Re}(d^H A_i x_*))^2.$$

152 *Proof.* To show that \mathcal{L} is self-adjoint and positive semi-definite, we first derive
 153 from the definition (1.2) of $H(x)$ that the directional derivative (2.5) is given by

154
$$\mathbf{D}H(x)[d] = 2 \sum_{i=1}^m \operatorname{Re}(x^H A_i d) \cdot h'_i(x^H A_i x) \cdot A_i.$$

155 Therefore, the \mathbb{R} -linear operator \mathcal{L} in (2.4) takes the form of

156 (2.8)
$$\mathcal{L}(z) = 2 D_*^{-1} \sum_{i=1}^m \operatorname{Re}(x_*^H A_i X_{*\perp} z) \cdot h'_i(x_*^H A_i x_*) \cdot X_{*\perp}^H A_i x_*.$$

157 Since λ_* is a simple largest eigenvalue, $D_* = \lambda_* I_{n-1} - \Lambda_{*\perp}$ is a diagonal and positive
 158 definite matrix. A quick verification shows

160
$$\langle \mathcal{L}(y), z \rangle_{D_*} = 2 \sum_{i=1}^m h'_i(x_*^H A_i x_*) \cdot \operatorname{Re}(x_*^H A_i X_{*\perp} z) \cdot \operatorname{Re}(x_*^H A_i X_{*\perp} y) = \langle y, \mathcal{L}(z) \rangle_{D_*},$$

161 i.e., \mathcal{L} is self-adjoint w.r.t. the inner product $\langle \cdot, \cdot \rangle_{D_*}$ over $\mathbb{C}^{n-1}(\mathbb{R})$. Letting $y = z$, we
 162 can also show \mathcal{L} is positive semi-definite:

163 (2.9)
$$\langle \mathcal{L}(z), z \rangle_{D_*} = 2 \sum_{i=1}^m h'_i(x_*^H A_i x_*) \cdot \operatorname{Re}(x_*^H A_i X_{*\perp} z)^2 \geq 0,$$

164 where we used the assumption that h_i is non-decreasing (so h'_i is non-negative).

165 Now by the variational principle for the eigenvalues of self-adjoint operators (see,
166 e.g., [63, Chap 1]), the spectral radius

$$167 \quad (2.10) \quad \rho(\mathcal{L}) = \lambda_{\max}(\mathcal{L}) = \max_{z \neq 0} \frac{\langle \mathcal{L}(z), z \rangle_{D_*}}{\langle z, z \rangle_{D_*}}.$$

168 Let $d = X_{*\perp} z$. Then we have

$$169 \quad (2.11) \quad \langle z, z \rangle_{D_*} \equiv z^H (\lambda_* I_{n-1} - \Lambda_{*\perp}) z = d^H (x_*^H H(x_*) x_* \cdot I_n - H(x_*)) d,$$

170 where we used the identities $\lambda_* = x_*^H H(x_*) x_*$ and $H(x_*) X_{*\perp} = X_{*\perp} \Lambda_{*\perp}$. Therefore,

$$171 \quad \rho(\mathcal{L}) - 1 = \max_{z \neq 0} \frac{\langle \mathcal{L}(z), z \rangle_{D_*} - \langle z, z \rangle_{D_*}}{\langle z, z \rangle_{D_*}} \equiv \max_{z \neq 0, d = X_{*\perp} z} \frac{\varphi(d; x_*)}{\langle z, z \rangle_{D_*}},$$

172 where φ is from (2.7), and we used (2.9) for $\langle \mathcal{L}(z), z \rangle_{D_*}$ and (2.11) for $\langle z, z \rangle_{D_*}$.
173 Consequently, $\rho(\mathcal{L}) < 1$ (or $\rho(\mathcal{L}) \leq 1$) if and only if $\varphi(d; x_*) < 0$ (or $\varphi(d; x_*) \leq 0$)
174 for all $d = X_{*\perp} z$ with $z \neq 0$. Since $[X_{*\perp}, x_*]$ is unitary, a vector $d = X_{*\perp} z$ for some
175 $z \neq 0$ if and only if $d^H x_* = 0$ with $d \neq 0$. Results in items (a) and (b) follow. \square

176 By the standard notion of stability of fixed points of a mapping in the fixed-
177 point analysis, see, e.g., [2, 13], we can classify the stability of the eigenvectors of the
178 mNEPv (1.1) using the spectral radius $\rho(\mathcal{L})$ and, alternatively, the characterization
179 function φ in Lemma 2.1.

180 **DEFINITION 2.2.** Let $x_* \in \mathbb{C}^n$ be an eigenvector of the mNEPv (1.1) and φ be as
181 defined in (2.7). Then x_* is a stable eigenvector if $\varphi(d; x_*) < 0$ for all $d \neq 0$ and
182 $d^H x_* = 0$, and x_* is a weakly stable eigenvector if $\varphi(d; x_*) \leq 0$ for all $d \neq 0$ and
183 $d^H x_* = 0$. Otherwise, x_* is called a non-stable eigenvector.

184 Note that Definition 2.2 does not explicitly require $\lambda_*(H(x_*))$ is a simple ei-
185 genvalue, as the characteristic function φ (2.7) is still well-defined for non-simple
186 eigenvalues. In addition, we note that for a *stable eigenvector* x_* , the correspond-
187 ing λ_* must be a simple eigenvalue of $H(x_*)$. Otherwise, there would exist another
188 eigenvector \tilde{x} of $\lambda_* = \lambda_{\max}(H(x_*))$ orthogonal to x_* . By letting $d = \tilde{x}$ and recalling
189 $h'_i(t) \geq 0$, we derive from (2.7) that $\varphi(d; x_*) \geq 0$, which contradicts the condition for
190 a stable eigenvector that $\varphi(d; x_*) < 0$ for all $d \neq 0$ and $d^H x_* = 0$.

191 **2.2. Characterization of mNEPv via aMax.** The following theorem pro-
192 vides a variational characterization of the mNEPv (1.1) through the aMax (1.3). Be-
193 fore stating the theorem, let us recall a standard optimization concept (see, e.g., [48,
194 Sec. 2.1]): a unit vector x is called a *local maximizer* of the aMax (1.3) if there exists
195 $\varepsilon > 0$ s.t.

$$196 \quad (2.12) \quad F(x) \geq F\left(\frac{x + d}{\|x + d\|}\right) \quad \text{for all } d \in \mathbb{C}^n \text{ with } d^H x = 0 \text{ and } \|d\| \leq \varepsilon,$$

197 and x is a *strict local maximizer* if the inequality for F in (2.12) holds strictly.

198 **THEOREM 2.3.** Let $x \in \mathbb{C}^n$ be a unit vector.

199 (a) If x is a stable eigenvector of the mNEPv (1.1), then x is a strict local maximizer
200 of the aMax (1.3).

201 (b) If x is a local maximizer of the aMax (1.3), then x is a weakly stable eigenvector
202 of the mNEPv (1.1).

203 *Proof.* Let $\hat{x} = (x + d)/\|x + d\|$. Then, we have $\hat{x}^H A_i \hat{x} = x^H A_i x + \delta_i$, for
 204 $i = 1, 2, \dots, m$, where

205 (2.13)
$$\delta_i := 2 \cdot \operatorname{Re}(d^H A_i x) + d^H (A_i - (x^H A_i x) I) d + \mathcal{O}(\|d\|^3).$$

206 Hence, by (1.3), the i -th term of $F(\hat{x})$ satisfies

207 (2.14)
$$\phi_i(\hat{x}^H A_i \hat{x}) = \phi_i(g_i(x) + \delta_i) = \phi_i(g_i(x)) + h_i(g_i(x)) \cdot \delta_i + \frac{1}{2} h_i'(g_i(x)) \cdot \delta_i^2 + \mathbf{o}(\delta_i^2),$$

209 where $g_i(x) := x^H A_i x$. Summing over all ϕ_i from $i = 1$ to m , we obtain

210
$$\begin{aligned} F(\hat{x}) &\equiv \sum_{i=1}^m \left[\phi_i(g_i(x)) + h_i(g_i(x)) \cdot \delta_i + \frac{1}{2} h_i'(g_i(x)) \cdot \delta_i^2 + \mathbf{o}(\delta_i^2) \right] \\ 211 &= F(x) + 2 \operatorname{Re}(d^H H(x)x) + d^H (H(x) - s(x)I) d \\ 212 &\quad + 2 \sum_{i=1}^m h_i'(g_i(x)) \cdot (\operatorname{Re}(d^H A_i x))^2 + \mathbf{o}(\|d\|^2) \\ 213 (2.14) \quad &= F(x) + 2 \operatorname{Re}(d^H H(x)x) + \varphi(d; x) + \mathbf{o}(\|d\|^2), \end{aligned}$$

215 where the second equality is by (2.13) and $s(x) := x^H H(x)x$.

216 For item (a): We need to show the inequality (2.12) holds strictly. By the NEPv
 217 $H(x)x = \lambda x$ and the orthogonality $d^H x = 0$, we have $d^H H(x)x = 0$. So (2.14) implies

218 (2.15)
$$F(\hat{x}) = F(x) + \varphi(d; x) + \mathbf{o}(\|d\|^2).$$

219 Since the stability of x (Definition 2.2) implies $\varphi(d; x) < 0$ and we can drop $\mathbf{o}(\|d\|^2)$
 220 (which is negligible to $\varphi(d; x) = \mathcal{O}(\|d\|^2)$), (2.15) leads to $F(x) > F(\hat{x})$ as $\|d\| \rightarrow 0$.

221 For item (b): Let d be sufficiently tiny and $d^H x = 0$. It follows from the local
 222 maximality (2.12) and the expansion (2.14) that

223 (2.16)
$$0 \geq F(\hat{x}) - F(x) = 2 \cdot \operatorname{Re}(d^H H(x)x) + \varphi(d; x) + \mathbf{o}(\|d\|^2).$$

224 Therefore, the leading first-order term must vanish, that is, $\operatorname{Re}(d^H H(x)x) = 0$ for all
 225 d with $d^H x = 0$. This implies that $H(x)x$ and x have common null spaces, i.e.,

226 (2.17)
$$H(x)x = \lambda x, \quad \text{for some scalar } \lambda.$$

227 To show that x is a weakly stable eigenvector (Definition 2.2), we still need to
 228 prove that (i) λ in (2.17) is the largest eigenvalue of $H(x)$, and (ii) $\varphi(d; x) \leq 0$ for
 229 all d with $d^H x = 0$. Condition (ii) follows from (2.16), by noticing that the first
 230 term on the right side vanishes due to (2.17) and that $\mathbf{o}(\|d\|^2)$ is negligible to the
 231 quadratic function $\varphi(d; x)$ as $\|d\| \rightarrow 0$. Condition (ii), in turn, also implies λ is
 232 the largest eigenvalue of $H(x)$. Otherwise, there is a $\tilde{\lambda} > \lambda$ with $H(x)\tilde{x} = \tilde{\lambda}\tilde{x}$ and
 233 $\tilde{x}^H x = 0$. Recall (2.7) that $\varphi(d; x) \geq d^H (H(x) - (x^H H(x)x)I)d$. Let $d = \tilde{x}$ and we
 234 have $\varphi(d; x) \geq \tilde{\lambda} - \lambda > 0$, contradicting $\varphi(d; x) \leq 0$. \square

235 Results from Theorem 2.3 can be regarded as second-order sufficient and necessary
 236 conditions for the aMax (1.3). They are stated in a way to highlight the connections
 237 between the local maximizers of the aMax and the stable eigenvectors of the mNEPv,
 238 which benefits the analysis of the SCF to be discussed in Section 3. We note that the
 239 objective function $F(x)$ of the aMax is not holomorphic (i.e. complex differentiable in

240 $x \in \mathbb{C}^n$). Therefore, second-order KKT conditions (see, e.g., [48, Sec. 12.5]) are not
 241 immediately applicable. Note that turning the problem to a real variable optimization
 242 (in the real and imaginary parts of $x \in \mathbb{C}^n$) and then applying the KKT condition
 243 will not lead to Theorem 2.3, since there would be no strict local maximizers for the
 244 real problem due to the unitary invariance of $F(x)$.

245 To end this section, let us discuss three immediate implications of the variational
 246 characterization in Theorem 2.3.

247 (1) Given the intrinsic connection between the mNEPv (1.1) and the aMax (1.3),
 248 stable and weakly stable eigenvectors of the NEPv are of particular interest. Since
 249 the aMax always has a global (hence local) maximizer, Theorem 2.3(b) guarantees
 250 the existence of weakly stable eigenvectors. Although such eigenvectors may not
 251 be unique and may correspond to local but non-global maximizers of the aMax
 252 (see Example 6.1), the connection to the aMax greatly facilitates the design and
 253 analysis of algorithms for the mNEPv (1.1), such as a geometric interpretation of
 254 the SCF in Section 3.

255 (2) Theorem 2.3 is a generalization of the well-known variational characterization
 256 of Hermitian eigenvalue problem. Consider the case of the mNEPv (1.1) with
 257 $m = 1$ and $h_1(t) = 1$, i.e., $A_1x = \lambda x$. Let $\lambda \geq \lambda_2 \geq \dots \geq \lambda_n$ be the eigenvalues of
 258 A_1 with eigenvectors $[x, x_2, \dots, x_n]$. Since any non-zero d orthogonal to $[x]$ can
 259 be written as $d = \alpha_2 x_2 + \dots + \alpha_n x_n$ for some $\{\alpha_i\}_{i=2}^n$, the function φ defined
 260 in (2.7) becomes $\varphi(d; x) = d^H(A_1 - \lambda I)d = \sum_{i=2}^n \alpha_i^2(\lambda_i - \lambda)$. Hence, $\varphi(d; x)$ is
 261 non-positive, and strictly negative if λ is simple. Then Theorem 2.3 can be para-
 262 phrased to the well-known variational characterization of Hermitian eigenvalue
 263 problems: Eigenvectors of the largest eigenvalue of A_1 are global maximizers of
 264 $(x^H A_1 x)/(x^H x)$; If the largest eigenvalue is simple, then its eigenvector (up to
 265 scaling) is the only maximizer; see, e.g., [1, Sec.4.6.2].

266 (3) If the matrices $\{A_i\}$ of the mNEPv (1.1) are real symmetric, then $H(x)$ is real
 267 symmetric and the eigenvectors of the mNEPv are all real vectors (up to a unitary
 268 scaling). Theorem 2.3(b) implies that the global maximum of the aMax (1.3) is
 269 always achieved at a real vector $x \in \mathbb{R}^n$, namely,

270 (2.18)
$$\max_{x \in \mathbb{C}^n, x^H x = 1} F(x) = \max_{x \in \mathbb{R}^n, x^T x = 1} F(x).$$

271 The two maximizations above are fundamentally different in nature. The identity
 272 holds only due to the specific formulation of F , as demonstrated by Theorem 2.3.
 273 We highlight the identity (2.18) because many practical optimization problems
 274 come in the form of the right-hand side with $x \in \mathbb{R}^n$. We can nevertheless view
 275 such a problem as an aMax (1.3) with $x \in \mathbb{C}^n$. This allows us to develop a
 276 unified treatment for both real and complex variables, which is highly beneficial,
 277 as shown in the case of numerical radius computation in Subsection 5.1.

278 **3. Geometry and global convergence of the SCF.** Much like the power
 279 method for solving linear eigenvalue problems, self-consistent-field (SCF) iteration is
 280 a gateway method for NEPv; see [42, 17] and references therein. For the mNEPv (1.1),
 281 the SCF starts from an initial unit vector $x_0 \in \mathbb{C}^n$ and generates a sequence of approx-
 282 imate eigenvectors x_1, x_2, \dots , via sequentially solving the linear eigenvalue problems

283 (3.1)
$$H(x_k)x_{k+1} = \lambda_{k+1} x_{k+1}, \quad \text{for } k = 0, 1, \dots,$$

284 where λ_{k+1} is the largest eigenvalue of $H(x_k)$ and x_{k+1} is a unit eigenvector. In
 285 the following, we first present a geometric interpretation of the SCF (3.1), and then
 286 provide a proof of the global convergence of SCF based on the geometric observation.

287 **3.1. Geometry of the SCF.** In Subsection 2.2, we have discussed the variational characterization of the mNEPv (1.1) via the aMax (1.3). Now consider the
288 change of variables
289

290 (3.2) $y = g(x)$ with $g(x) := [x^H A_1 x, \dots, x^H A_m x]^T \in \mathbb{R}^m$.

291 The aMax (1.3) is then recast as an optimization over the joint numerical range

292 (3.3) $\max_{y \in W(\mathcal{A})} \left\{ \phi(y) := \sum_{i=1}^m \phi_i(y(i)) \right\},$

293 where $y(i)$ is the i -th entry of y , and $W(\mathcal{A}) \subset \mathbb{R}^m$ is a (first) *joint numerical range* of
294 an m -tuple $\mathcal{A} := (A_1, \dots, A_m)$ of Hermitian matrices A_1, \dots, A_m defined as

295 (3.4) $W(\mathcal{A}) = \left\{ y \in \mathbb{R}^m \mid y = g(x), x \in \mathbb{C}^m, \|x\| = 1 \right\}.$

296 By definition, $W(\mathcal{A})$ is the range of the vector-valued function g over the unit sphere
297 $\{x \in \mathbb{C}^n \mid \|x\| = 1\}$. Since g is a continuous and bounded function, $W(\mathcal{A})$ is a
298 connected and bounded subset of \mathbb{R}^m . Moreover, it is known that the set of $W(\mathcal{A})$ is
299 convex in cases such as $m = 1, 2$ for any matrix size n , $m = 3$ for $n \geq 3$ [3, 4], and
300 other cases under proper conditions [36].

301 Before we proceed, let us first revisit the notion of supporting hyperplane for a
302 general bounded and closed subset Ω of \mathbb{R}^m . To this end, we can define a hyperplane

303 (3.5) $\mathcal{P}_v := \left\{ y \in \mathbb{R}^m \mid v^T(y - y_v) = 0 \right\},$

304 where v is a given non-zero vector in \mathbb{R}^m and y_v satisfies

305 (3.6) $y_v \in \arg \max_{y \in \Omega} v^T y.$

306 The hyperplane \mathcal{P}_v contains in one of its half-space the entire Ω , and it also passes
307 through at least one point in Ω , because

308 (3.7) (i) $v^T y \leq v^T y_v$ for all $y \in \Omega$ and (ii) $y_v \in \Omega$.

309 We will refer to \mathcal{P}_v as a *supporting hyperplanes* of Ω with an outer normal vector v
310 (pointing outward from Ω) and a supporting point y_v . Supporting hyperplanes are
311 commonly used for studying convex sets; see, e.g., [15, Sec. 2.5].

312 Finding the global optimizer in (3.6) for a general set Ω is hard. Fortunately,
313 if the set $\Omega = W(\mathcal{A})$, then the following lemma shows that the supporting point y_v
314 in (3.6) can be obtained by solving a Hermitian eigenvalue problem.

315 LEMMA 3.1. *Let $v \in \mathbb{R}^m$ be a nonzero vector. Then*

316 (3.8) $y_v \in \arg \max_{y \in W(\mathcal{A})} v^T y \quad \text{if and only if} \quad y_v = g(x_v),$

317 where x_v is an eigenvector for the largest eigenvalue λ_v of the Hermitian matrix

318 (3.9) $H_v := \sum_{i=1}^m v(i) \cdot A_i,$

319 and $v(i)$ is the i -th entry of v .

320 *Proof.* Observe that

321 (3.10)
$$v^T g(x) = \sum_{i=1}^m (x^H A_i x) \cdot v(i) = x^H H_v x.$$

322 The maximization from (3.8) leads to

323
$$\max_{y \in W(\mathcal{A})} v^T y = \max_{\|x\|=1} v^T g(x) = \max_{\|x\|=1} x^H H_v x = x_v^H H_v x_v = v^T g(x_v),$$

325 where the second and the last equalities are due to (3.10), and the third equality is by
326 the eigenvalue maximization principle of Hermitian matrices, namely, the maximizer
327 of $x^H H_v x$ is achieved at any eigenvector x_v of the largest eigenvalue of H_v . \square

328 Lemma 3.1 suggests a close relation between the SCF (3.1) and the search for
329 supporting points of $W(\mathcal{A})$. Such relation is called a geometric interpretation of the
330 SCF and is formally stated in the following theorem.

331 THEOREM 3.2. *Let $\{x_k\}$ be a sequence of unit vectors generated by the SCF (3.1),
332 and $y_k := g(x_k)$, where g is defined in (3.2). Then it holds*

333 (3.11)
$$y_{k+1} \in \arg \max_{y \in W(\mathcal{A})} \nabla \phi(y_k)^T y.$$

334 *Therefore, geometrically,*

335 (3.12) y_{k+1} *is a supporting point of $W(\mathcal{A})$ for the outer normal vector $\nabla \phi(y_k)$.*

336 *Proof.* The coefficient matrix $H(x_k)$ by (1.2) is an H_v matrix in Lemma 3.1:

337 (3.13) $H(x_k) \equiv H_{v_k} \quad \text{with } v_k = \nabla \phi(y_k) \text{ and } y_k = g(x_k) \in W(\mathcal{A}).$

338 Hence, the k -th SCF iteration (3.1) is to solve the eigenproblem $H_{v_k} x_{k+1} = \lambda_{k+1} x_{k+1}$.
339 It follows from Lemma 3.1 that $y_{k+1} = g(x_{k+1})$ is a solution of (3.8) for $v_k = \nabla \phi(y_k)$.
340 Therefore, y_{k+1} is a supporting point of $W(\mathcal{A})$ for the outer normal direction $\nabla \phi(y_k)$. \square

341 By Theorem 3.2, the SCF iteration (3.1) can be visualized as searching the so-
342 lution of the mNEPv (1.1) on the boundary of the joint numerical range $W(\mathcal{A})$.
343 Moreover, at a solution x_* of the mNEPv (1.1), the geometric interpretation (3.12)
344 is equivalent to the following geometric first-order optimality condition for the con-
345 strained optimization (3.3):

346 (3.14) $\nabla \phi(y_*)$ *is an outer normal vector of $W(\mathcal{A})$ at y_* ,*

347 where $y_* = g(x_*)$. These concepts are illustrated by the example below.

348 *Example 3.3.* Let us consider the mNEPv (1.1) of the form

349 (3.15) $H(x)x = \lambda x \quad \text{with} \quad H(x) = (x^H A_1 x) \cdot A_1 + (x^H A_2 x) \cdot A_2,$

350 where A_1 and A_2 are Hermitian matrices. The mNEPv (3.15) arises from numerical
351 radius computation and will be further discussed in Subsection 5.1. By Theorem 2.3
352 and (3.3), the mNEPv (3.15) can be characterized by the optimization problems

353 (3.16)
$$\max_{\|x\|=1} \{F(x) := [(x^H A_1 x)^2 + (x^H A_2 x)^2]/2\} = \max_{y \in W(A_1, A_2)} \{ \phi(y) := \|y\|^2/2 \},$$

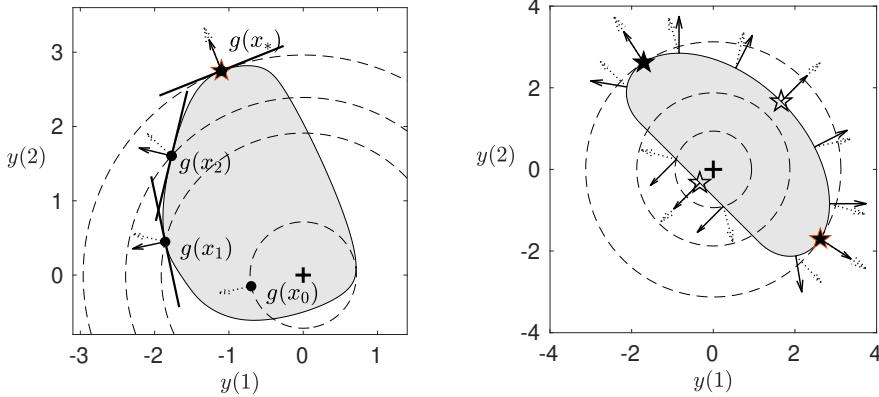


FIG. 1. **(Left)** Illustration of Example 3.3 for the first three iterates x_0, x_1, x_2 by the SCF (3.1) for the mNEPv (3.15): the shaded region is the joint numerical range $W(A_1, A_2)$; dashed lines are contours of $\phi(y) = \|y\|^2/2$ with dashed arrows the gradient directions $\nabla\phi$; solid tangent lines are ‘supporting hyperplanes’ at $y_i = g(x_i)$ with solid arrows the normal direction $\nabla\phi(y_{i-1})$; the maximizer of (3.16) is marked as \star . **(Right)** Illustration of Example 3.6 for stable eigenvectors, marked as solid stars \star , and non-stable eigenvectors, marked as hollow stars $\star\star$: Close to a non-stable eigenvector, the gradients $\nabla\phi$ (dashed arrows) point away from the normal vectors (solid arrow), leading to divergence of the SCF from $\star\star$.

354 where $W(A_1, A_2)$ is a joint numerical range of A_1 and A_2 . The left plot in Figure 1
 355 depicts the SCF as a search process for solving the mNEPv (3.15) with randomly
 356 generated Hermitian matrices A_1 and A_2 of size 10. Given the initial $y_0 = g(x_0)$,
 357 the SCF first searches in the gradient direction $v_0 = \nabla\phi(y_0)$ to obtain a supporting
 358 point $y_1 = g(x_1)$; it then searches in the gradient direction $\nabla\phi(y_1)$ to obtain the
 359 second supporting point $y_2 = g(x_2)$; and so on. When this process converges to
 360 $y_* = g(x_*)$, the gradient $\nabla\phi(y_*)$ overlaps the outer normal vector of $W(\mathcal{A})$ at y_* , i.e.,
 361 the optimality condition (3.14) is achieved.

362 Another key indication of (3.11) is that the SCF is a *successive local linearization*
 363 for the optimization (3.3): At iteration k , it approximates $\phi(y)$ by its first-order
 364 expansion

$$365 \quad (3.17) \quad \ell_k(y) := \phi(y_k) + \nabla\phi(y_k)^T(y - y_k)$$

366 and solves the optimization of the linear function over the joint numerical range

$$367 \quad (3.18) \quad \max_{y \in W(\mathcal{A})} \ell_k(y).$$

368 By dropping the constant terms in $\ell_k(y)$, the maximizers of (3.18) satisfy

$$369 \quad \arg \max_{y \in W(\mathcal{A})} \ell_k(y) \equiv \arg \max_{y \in W(\mathcal{A})} \nabla\phi(y_k)^T y.$$

370 Hence, the solution to (3.18) is exactly y_{k+1} in (3.11), and we have

$$371 \quad (3.19) \quad \ell_k(y_{k+1}) = \max_{y \in W(\mathcal{A})} \ell_k(y).$$

372 These observations are helpful to the proof of the global convergence of the SCF as
 373 to be presented in Subsection 3.2.

374 **3.2. Convergence analysis of the SCF.** In this section, we show that the SCF
 375 iteration is globally convergent to an eigenvector of the mNEPv (1.1) as indicated by
 376 the visualization of the SCF in Subsection 3.1. Moreover, the converged eigenvector
 377 is typically a stable one and the rate of convergence is at least linear.

378 We begin with the following theorem on the global convergence of the SCF (3.1).
 379 Here for a sequence of unit vectors $\{x_k\}$, we call x_* an (entry-wise) limit point if

380 (3.20) $x_* = \lim_{j \rightarrow \infty} x_{k_j}$ for some subsequence $\{x_{k_j}\}$ indexed by $k_1 < k_2 < \dots$.

381 By the Bolzano–Weierstrass theorem, a bounded sequence in \mathbb{C}^n has a convergent
 382 subsequence, so the sequence $\{x_k\}$ of unit vectors has at least one limit point x_* .

383 THEOREM 3.4. *Let $\{x_k\}$ be a sequence of unit vectors from the SCF (3.1) for the
 384 mNEPv (1.1), and $F(x)$ be the objective function of the aMax (1.3). Then*

385 (a) $F(x_{k+1}) \geq F(x_k)$ for $k = 0, 1, \dots$, with equality holds only if x_k is an eigenvector
 386 of the mNEPv (1.1);
 387 (b) each limit point x_* of $\{x_k\}$ must be an eigenvector of the mNEPv (1.1), and it
 388 holds $F(x_*) \geq F(x_k)$ for all $k \geq 0$.

389 *Proof.* For item (a), recall that the linearization ℓ_k in (3.17) is a lower supporting
 390 function for the convex function ϕ , i.e., $\ell_k(y) \leq \phi(y)$ for $y \in W(\mathcal{A})$. Consequently,

391 (3.21) $F(x_{k+1}) \equiv \phi(y_{k+1}) \geq \ell_k(y_{k+1}) = \max_{y \in W(\mathcal{A})} \ell_k(y) \geq \ell_k(y_k) = \phi(y_k) \equiv F(x_k),$

392 where the third equality is by (3.19). Moreover, if the equality $F(x_{k+1}) = F(x_k)$
 393 holds, then (3.21) implies

394 (3.22) $\ell_k(y_k) = \max_{y \in W(\mathcal{A})} \ell_k(y),$

395 namely,

396
$$y_k \in \arg \max_{y \in W(\mathcal{A})} \ell_k(y) \equiv \arg \max_{y \in W(\mathcal{A})} \nabla \phi(y_k)^T y.$$

397 According to Lemma 3.1, $y_k = g(x_k)$ and x_k is an eigenvector for the largest eigenvalue
 398 of H_{v_k} with $v_k = \nabla \phi(y_k)$. Since $H_{v_k} \equiv H(x_k)$, we have $H(x_k)x_k = \lambda x_k$ and λ is the
 399 largest eigenvalue, i.e., x_k is an eigenvector of the mNEPv (1.1).

400 For item (b), let $\{x_{k_j}\}$ be a subsequence of $\{x_k\}$ convergent to x_* . The monotonic-
 401 ity from item (a) implies $F(x_*) \geq F(x_k)$ for all $k \geq 0$. To show x_* is an eigenvector,
 402 we denote by $y_{k_j} = g(x_{k_j})$ and $y_* = g(x_*)$. The linearization of ϕ at y_* satisfies

403 (3.23) $\ell_*(y) := \phi(y_*) + \nabla \phi(y_*)^T (y - y_*) = \lim_{j \rightarrow \infty} \ell_{k_j}(y),$

404 where the last equality is due to (3.17), $y_* = \lim_{j \rightarrow \infty} y_{k_j}$, and continuity of ϕ and $\nabla \phi$.

405 We first show that

406 (3.24) $\nabla \phi(y_*)^T (y - y_*) \leq 0 \quad \text{for all } y \in W(\mathcal{A}).$

407 Otherwise, there exists a $\tilde{y} \in W(\mathcal{A})$ with

408 (3.25) $\varepsilon := \nabla \phi(y_*)^T (\tilde{y} - y_*) > 0.$

409 By the convergence of $\ell_{k_j} \rightarrow \ell_*$ in (3.23), there exists $N \geq 0$ such that for all $j \geq N$,

410 (3.26) $\ell_{k_j}(\tilde{y}) \geq \ell_*(\tilde{y}) - \varepsilon/2.$

411 It then follows from (3.21) (with $k = k_j$) that for all $j \geq N$,

412
$$\phi(y_{k_j+1}) \geq \max_{y \in W(\mathcal{A})} \ell_{k_j}(y) \geq \ell_{k_j}(\tilde{y}) \geq \ell_*(\tilde{y}) - \frac{\varepsilon}{2} = \phi(y_*) + \frac{\varepsilon}{2},$$

413 where the last two equations are due to (3.26) and (3.25). The equation above implies
414 $F(x_{k_j+1}) \geq F(x_*) + \varepsilon/2$, contradicting $F(x_*) \geq F(x_k)$ for all k .

415 It follows from (3.23) and (3.24) that

416
$$\ell_*(y_*) = \max_{y \in W(\mathcal{A})} \ell_*(y) = \phi(y_*).$$

417 Then by the same arguments as for the y_k in (3.22), we have x_* is an eigenvector of
418 the mNEPv (1.1). \square

419 In Section 5, we will discuss the mNEPv (1.1) arising from optimization of the
420 form (1.3), for which the monotonicity of the objective function is highly desirable.
421 Starting from any x_0 , the SCF will find an eigenvector x_* that has an increased
422 function value $F(x_*) \geq F(x_0)$.

423 Let's now consider the local convergence properties of the SCF. Theorem 3.4 guar-
424 antees that the SCF will converge globally to some eigenvector of the mNEPv (1.1)
425 from any initial guess x_0 . In theory, SCF may terminate at a non-stable eigenvector
426 x_* of the mNEPv, if it exists. In practice, however, convergence to a non-stable eigen-
427 vector is unlikely to happen, because such eigenvectors are repulsive fixed points of
428 the mapping Π (2.2), as explained in Subsection 2.1. Therefore, the SCF (3.1), which
429 is a fixed point iteration with Π , will diverge from a non-stable x_* when x_k is in a
430 neighborhood of x_* . More rigorously, by the local convergence analysis of the SCF
431 for a general unitarily invariant NEPv (see [7, Theorem 1]), we can draw the local
432 convergence of the SCF (3.1) for the mNEPv (1.1) as stated in the following theorem.

433 **THEOREM 3.5.** *Let x_* be an eigenvector of the mNEPv (1.1) with a simple eigen-
434 value λ_* , \mathcal{L} be the \mathbb{R} -linear operator (2.4) for x_* , and $\rho(\mathcal{L})$ be the spectral radius.*

435 (a) *If $\rho(\mathcal{L}) < 1$ (i.e., x_* is a stable eigenvector by Definition 2.2), then the SCF (3.1)*

436 *is locally convergent to x_* , with an asymptotic convergence rate bounded by $\rho(\mathcal{L})$.*

437 (b) *If $\rho(\mathcal{L}) > 1$ (i.e., x_* is a non-stable eigenvector by Definition 2.2), then the SCF
438 is locally divergent from x_* .*

439 Here we recall that an iterate x_k by the SCF (3.1) is understood as an one-dimensional
440 subspace spanned by x_k . The local convergence and divergence of x_k in Theorem 3.5
441 is measured by the vector angle $\angle(x_*, x_k) := \cos^{-1}(|x_*^H x_k|)$.

442 *Example 3.6.* By the geometric interpretation of the SCF from Theorem 3.2, we
443 can visualize its local convergence behavior revealed in Theorem 3.5. The right plot
444 in Figure 1 depicts the search directions of the SCF for a numerical radius problem
445 described in (3.16), with the corresponding mNEPv (3.15). There are four eigenvec-
446 tors (marked as stars, where the solid and dashed arrows overlap). Two solid stars
447 are stable eigenvectors (i.e., local maximizers of (3.16)) and two hollow stars are non-
448 stable eigenvectors (non-maximizers). The reason why the SCF is locally convergent
449 to stable eigenvectors is now clear: close to a solid star, the search directions $\nabla\phi(y)$
450 by (3.12) (dashed arrow) brings the next iteration closer to the solid star. In contrast,
451 close to a hollow star, the search directions lead away from the hollow star. This ob-
452 servation also justifies the name of *non-stable eigenvector*, since a slight perturbation
453 will lead the SCF to diverge from those solutions.

454 Combining the properties of global and local convergence in Theorems 3.4 and 3.5,
455 we can summarize the overall convergence of the SCF (3.1) as follows:

456 1. Let x_* be an (entry-wise) limit point of $\{x_k\}$ by the SCF. Then x_* is an
 457 eigenvector of the mNEPv (1.1); see Theorem 3.4(b).
 458 2. The limit point x_* is *unlikely* a non-stable eigenvector, since the SCF is locally
 459 divergent from non-stable eigenvectors; see Theorem 3.5(b).² Consequently,
 460 the SCF is expected to converge to (at least) a weakly stable eigenvector x_* .
 461 3. If the limit point x_* is a stable eigenvector, then the SCF is at least locally
 462 linearly convergent to x_* ; see Theorem 3.5(a).

463 **4. SCF in practice.** In this section, we will introduce an acceleration technique
 464 and discuss related implementation details of the SCF iteration.

465 **4.1. Accelerated SCF.** The iterative process (3.1) is an SCF in its simplest
 466 form, also known as the plain SCF. There are a number of ways to accelerate the
 467 plain SCF, such as the damping scheme [19], level-shifting [64], direct inversion of
 468 iterative subspace (DIIS) with Anderson acceleration [51], and preconditioned fixed-
 469 point iteration [39]. Most of these schemes are designed for solving NEPv from elec-
 470 tronic structure calculations. In this section, we present an acceleration scheme of the
 471 SCF (3.1) for the mNEPv (1.1) based on the inverse iteration.

472 Inverse iterations are a commonly used technique for solving linear eigenvalue
 473 problems [30] and eigenvalue-dependent nonlinear eigenvalue problems [25]. Moreover,
 474 there is also an inverse iteration available for NEPv in the form

475 (4.1)
$$H(x/\|x\|) \cdot x = \lambda x,$$

476 where $H(x)$ is a real symmetric matrix that is differentiable in $x \in \mathbb{R}^n$ [31].³ For nor-
 477 malized x , we have $H(x/\|x\|) \equiv H(x)$, so that the mNEPv (1.1) can be equivalently
 478 written to an NEPv (4.1). In the following, we will first revisit the inverse iteration
 479 scheme in [31], and then propose an improved scheme for solving the mNEPv (1.1)
 480 by exploiting its underlying structure.

481 Let x_k be a unit approximate eigenvector of the NEPv (4.1) and σ_k be a given
 482 shift close to a target eigenvalue. The following inversion step is proposed in [31] to
 483 improve x_k :

484 (4.2)
$$\tilde{x}_k = \alpha_k (J(x_k) - \sigma_k I)^{-1} x_k \quad \text{with} \quad J(x) := \frac{\partial}{\partial x} (H(x/\|x\|)x),$$

485 where α_k is a normalization factor. The formula (4.2) can be derived from Newton's
 486 method applied to the nonlinear equations $H(x/\|x\|)x - \lambda x = 0$ and $x^T x = 1$. Iter-
 487 atively applying (4.2) with a fixed shift σ has been proven to converge linearly with
 488 a convergence factor proportional to $|\sigma - \lambda_*|$, whereas using dynamic Rayleigh shifts
 489 $\sigma_k = x_k^T H(x_k) x_k$ is expected to yield quadratic convergence [31]. However, directly
 490 applying the inverse iteration (4.2) may lead to convergence to an eigenvalue that is
 491 not the largest one. Hence, we will only use it as a local acceleration scheme for SCF.

492 We first note that despite the matrix $H(x)$ of the mNEPv (1.1) is symmetric
 493 when all coefficient matrices A_1, \dots, A_m are real symmetric, the corresponding Jaco-
 494 brian $J(x)$ in (4.2) is generally not. Specifically, the Jacobian $J(x)$ is given by

495 (4.3)
$$J(x) \equiv \frac{\partial}{\partial x} (H(x/\|x\|)x) = H(x) + 2M(x)C(x)M(x)^T P(x),$$

²One exceptional but rare case is that some x_k coincides with a non-stable x_* and SCF terminates.

³The authors in [31] considered scaling invariant NEPv $H(x) \cdot x = \lambda x$ with $H(x) \equiv H(\alpha x)$ for
 all $\alpha \neq 0$, and they pointed out such NEPv cover (4.1) as a special case.

497 where $M(x) = [A_1x, \dots, A_mx]$ and $C(x) = \text{Diag}(h'_1(x^T A_1x), \dots, h'_m(x^T A_mx))$,
 498 and $P(x) = I - xx^T$ is a projection matrix. To symmetrize $J(x)$, we introduce

499 (4.4)
$$J_s(x) := J(x) + x \cdot q(x)^T = H(x) + 2P(x)M(x)C(x)M(x)^T P(x),$$

500 where $q(x) = 2P(x)M(x)C(x)M(x)^T x \in \mathbb{R}^n$. Since the new matrix J_s is a rank-one
 501 modification of J , by the Sherman–Morrison–Woodbury formula [28], we have

502
$$(J_s(x_k) - \sigma_k I)^{-1} x_k = c \cdot (J(x_k) - \sigma_k I)^{-1} x_k$$

503 for some constant c . Therefore, we can reformulate the inversion step (4.2) to

504 (4.5)
$$\tilde{x}_k = \tilde{\alpha}_k \cdot (J_s(x_k) - \sigma_k I)^{-1} x_k,$$

505 where $\tilde{\alpha}_k$ normalizes \tilde{x}_k to a unit vector, i.e., we can replace J by the symmetric J_s .

506 If the coefficient matrices $\{A_i\}$ are complex Hermitian, then $H(x)$ is not holomor-
 507 phically differentiable, since its diagonal entries are always real and cannot be analytic
 508 functions. Consequently, the (holomorphic) Jacobian of $H(x/\|x\|)x$ does not exist.
 509 Nevertheless, the matrix $J_s(x)$ by (4.4) is well-defined and Hermitian (with transpose
 510 \cdot^T replaced by conjugate transpose \cdot^H), so it can still be used for the inversion (4.5).

511 **4.2. Implementation issues.** The SCF with an optional acceleration for solv-
 512 ing the mNEPv (1.1) is summarized in Algorithm 4.1. A few remarks on the imple-
 513 mentation detail are in order.

Algorithm 4.1 The SCF with optional acceleration

Input: Starting $x_0 \in \mathbb{C}^n$, residual tolerance tol , and acceleration threshold tol_{acc} .

Output: Approximate eigenpair (λ_k, x_k) of the mNEPv (1.1).

```

1: for  $k = 1, 2, \dots$  do
2:    $H(x_{k-1}) x_k = \lambda_k \cdot x_k$  with  $\lambda_k = \lambda_{\max}(H(x_{k-1}))$ ;           % SCF
3:   if  $\text{res}(x_k) \leq \text{tol}$ , then return  $(\lambda_k, x_k)$ ;           % test for convergence
4:   if  $\text{res}(x_k) \leq \text{tol}_{\text{acc}}$  then           % acceleration if activated
5:     compute  $\tilde{x}_k$  by (4.5) with the shift  $\sigma_k = x_k^H H(x_k) x_k$ .
6:     if  $F(\tilde{x}_k) > F(x_k)$ , then update  $x_k = \tilde{x}_k$ ;
7:   end if
8: end for

```

514 (1) The initial x_0 , in view of the geometry of the SCF discussed in Subsection 3.1,
 515 can be chosen from sampled supporting points of $W(\mathcal{A})$. To do this, we randomly
 516 choose ℓ search directions $v_i \in \mathbb{R}^m$, for $i = 1, \dots, \ell$, and then find the supporting
 517 points $y_{v_i} = g(x_{v_i})$ of $W(\mathcal{A})$ along each direction. Among $x_{v_1}, \dots, x_{v_\ell}$, we choose
 518 the one with the largest value $F(x_{v_i})$ as x_0 . This greedy sampling scheme increases
 519 the chance for the SCF to find the global maximizer of the aMax (1.3).
 520 To compute the supporting points, Lemma 3.1 tells us that x_{v_i} is an eigenvector to
 521 the largest eigenvalue of the Hermitian matrix H_{v_i} in (3.9). Thus, we need to solve
 522 ℓ Hermitian eigenvalue problems to obtain ℓ supporting points. For efficiency, we
 523 can exploit the fact that $H_{-v_i} \equiv -H_{v_i}$, so we can compute two supporting points
 524 in both directions $\pm v_i$ by solving a single eigenvalue problem of H_{v_i} .
 525 (2) Algorithm 4.1 requires finding the eigenvector corresponding to the largest eigen-
 526 value of the matrix $H(x_{k-1})$ in line 2. Additionally, when we apply acceleration,
 527 we need to solve a linear system with coefficient matrix $J_s(x_k) - \sigma_k I$ in line 5.

528 For the mNEPv of small to medium sizes, direct solvers can be applied, such as
 529 QR algorithm for Hermitian eigenproblems and LU factoration for linear systems
 530 (e.g., MATLAB's `eig` and backslash, respectively). For large sparse problems,
 531 iterative solvers are applied, such as the Lanczos type methods for Hermitian
 532 eigenproblems (e.g., MATLAB's `eigs`), and MINRES and SYMMLQ for linear
 533 systems; see, e.g., [6, 10].

534 (3) The acceleration with the inverse iteration is expected to work well for x_k close
 535 to a solution. A threshold tol_{acc} is introduced to control the activation of inverse
 536 iteration in line 4. If $\text{tol}_{\text{acc}} = 0$, Algorithm 4.1 runs the plain SCF. If $\text{tol}_{\text{acc}} = \infty$,
 537 Algorithm 4.1 applies acceleration at each step. We observe that the choice of
 538 tol_{acc} is not critical and $\text{tol}_{\text{acc}} = 0.1$ is used in our numerical experiments.
 539 (4) To maintain the monotonicity of $F(x_k)$, as in the SCF, the accelerated eigenvector
 540 \tilde{x}_k is accepted only if $F(\tilde{x}_k) \geq F(x_k)$ in line 6.
 541 (5) To assess the accuracy of iteration k in line 3, we use the relative residual norm

$$542 \quad (4.6) \quad \text{res}(\hat{x}) := \|H(\hat{x})\hat{x} - (\hat{x}^H H(\hat{x})\hat{x}) \cdot \hat{x}\| / \|H(\hat{x})\|,$$

543 where $\|H(\hat{x})\|$ is some convenient to evaluate matrix norm, e.g., the matrix 1-norm
 544 as we used in the experiments.

545 **5. Applications.** The mNEPv (1.1) and the aMax (1.3) can be found in nu-
 546 merous applications. In this section, we discuss three of them. The first one is on
 547 the quartic maximization over the Euclidean sphere and its application for computing
 548 numerical radius. The second is on the best rank-one approximation of third-order
 549 partial-symmetric tensors. The third is from the study of the distance to singularity
 550 of dHADe systems.

551 **5.1. Quartic maximization and numerical radius.** A (*homogeneous*) *quar-*
 552 *tic maximization* over the Euclidean sphere is of the form

$$553 \quad (5.1) \quad \max_{x \in \mathbb{C}^n, \|x\|=1} \left\{ F(x) := \frac{1}{2} \sum_{i=1}^m (x^H A_i x)^2 \right\},$$

554 where $\{A_i\}$ are n -by- n Hermitian matrices. The optimization (5.1) is a classical prob-
 555 lem in the field of polynomial optimization, although in the literature it is usually
 556 formulated in real variables, i.e., $x \in \mathbb{R}^n$ with symmetric $\{A_i\}$ [27, 46, 70]. In addi-
 557 tion, it also arises in the study of robust optimization with ellipsoid uncertainty [12].
 558 Observe that the quartic maximization (5.1) is an aMax (1.3) with $\{\phi_i(t) = t^2/2\}$.
 559 Hence the underlying mNEPv (1.1) is of the form

$$560 \quad (5.2) \quad H(x) x = \lambda x \quad \text{with} \quad H(x) = \sum_{i=1}^m (x^H A_i x) \cdot A_i,$$

561 where the coefficient functions $h_i(t) = \phi'_i(t) = t$ are differentiable and non-decreasing.

562 The simplest non-trivial example of the quartic optimization (5.1) is when $m = 2$,
 563 which occurs in the well-known problem of computing the numerical radius of a square
 564 matrix. The *numerical radius* of a matrix $B \in \mathbb{C}^{n \times n}$ is defined as

$$565 \quad (5.3) \quad r(B) := \max_{x \in \mathbb{C}^n, \|x\|=1} |x^H B x| = \max_{x \in \mathbb{C}^n, \|x\|=1} \left((x^H A_1 x)^2 + (x^H A_2 x)^2 \right)^{1/2},$$

566 where $A_1 = \frac{1}{2}(B^H + B)$ and $A_2 = \frac{i}{2}(B^H - B)$ with $i = \sqrt{-1}$ are Hermitian matri-
 567 ces [28]. An extension of (5.3) is the *joint numerical radius* of an m -tuple of Hermitian

568 matrices $\mathcal{A} = (A_1, \dots, A_m)$ defined as

569 (5.4)
$$r(\mathcal{A}) := \max_{x \in \mathbb{C}^n, \|x\|=1} \left(\sum_{i=1}^m (x^H A_i x)^2 \right)^{1/2},$$

570 see [22]. The (joint) numerical radius plays important roles in numerical analysis. For
 571 examples, the numerical radius of a matrix is applied to quantify the transient effects
 572 of discrete-time dynamical systems and analyze classical iterative methods [5, 56].
 573 The joint numerical radius of a matrix tuple is used for studying the joint behavior
 574 of several operators; see [35] and references therein.

575 Numerical algorithms for computing the numerical radius of a single matrix have
 576 been extensively studied [26, 44, 45, 58, 62]. To find the global maximizer of (5.3),
 577 many methods adopt the scheme of local optimization followed by global certification.
 578 Most of those algorithms, however, do not immediately extend to computing
 579 the joint numerical radius with $m \geq 3$. A major benefit of the NEPv approach pre-
 580 sented in this paper is to allow fast computation of the local maximizers to accelerate
 581 existing approaches. Moreover, the NEPv approach provides a unified treatment for
 582 matrix tuple \mathcal{A} with m matrices and can serve as the basis for future development of
 583 algorithms towards the global solution of $r(\mathcal{A})$ with $m \geq 3$.

584 **5.2. Best rank-one approximation of third-order partial-symmetric ten-**
 585 **sors.** Let $T \in \mathbb{R}^{n \times n \times m}$ be a third-order partial-symmetric tensor, i.e., each slice
 586 $A_i := T(:, :, i) \in \mathbb{R}^{n \times n}$ is symmetric for $i = 1, \dots, m$. The problem of the best
 587 rank-one partial-symmetric tensor approximation is defined by the minimization

588 (5.5)
$$\min_{\substack{\mu \in \mathbb{R}, x \in \mathbb{R}^n, z \in \mathbb{R}^m \\ \|x\|=1, \|z\|=1}} \|T - \mu \cdot x \otimes x \otimes z\|_F^2,$$

589 where \otimes is the Kronecker product. The solution of (5.5) provides a rank-one partial-
 590 symmetric tensor $\mu_* \cdot x_* \otimes x_* \otimes z_*$ that best approximates T in the Frobenius norm $\|\cdot\|_F$
 591 and is also known as a truncated rank-one CP decomposition of T ; see, e.g., [33, 70].

592 The best rank-one approximation (5.5) are often recast as a quartic maximiza-
 593 tion (5.1); see, e.g., [21, Eq. (6)]. Let x_i denote the i -th element of a vector x . Then

594 (5.6)
$$\|T - \mu \cdot x \otimes x \otimes z\|_F^2 = \|T\|_F^2 + \mu^2 - 2\mu \sum_{i,j,k} t_{ijk} x_i x_j z_k,$$

595 where the range of indices i, j, k are omitted in the summation for clarity. Since the
 596 minimum w.r.t. μ is achieved at $\mu = \sum_{i,j,k} t_{ijk} x_i x_j z_k$, the best rank-one approxima-
 597 tion (5.5) becomes the maximization

598 (5.7)
$$\max_{\substack{\|x\|=1 \\ \|z\|=1}} \left(\sum_{i,j,k} t_{ijk} x_i x_j z_k \right)^2 = \max_{\substack{\|x\|=1 \\ \|z\|=1}} \left(\sum_k z_k \cdot x^T A_k x \right)^2 = \max_{\|x\|=1} \sum_k (x^T A_k x)^2,$$

599 where the first equality is by $A_i = T(:, :, i)$, and the second equality is due to that the
 600 maximization w.r.t. z is solved at

601 (5.8)
$$z = \alpha \cdot g(x) \equiv \alpha \cdot [x^T A_1 x, \dots, x^T A_m x]^T$$

602 with α being a normalization factor for $\|z\| = 1$ provided that $g(x) \neq 0$. The formula
 603 of z in (5.8) follows from $|z^T g(x)|^2 \leq \|g(x)\|^2$ with equality holds if $z = g(x)/\|g(x)\|$.

604 Problem (5.7) leads to a quartic maximization (5.1) with real symmetric matrices
 605 $\{A_i\}$ and real variables $x \in \mathbb{R}^n$, i.e., an aMax (1.3) with $\{\phi_i(t) = t^2/2\}$. By Theorem 2.3, the optimizer x_* is an eigenvector of the mNEPv (5.2) with $h_i(t) = \phi'(t) = t$
 606 and the corresponding eigenvalue is
 607

608 (5.9)
$$\lambda_* = x_*^T H(x_*) x_* = \sum_k (x_*^T A_k x_*)^2 = \mu_*^2.$$

609 Any other eigenvalue λ of (5.2) must satisfy $\lambda \equiv x^T H(x)x = \sum_k (x^T A_k x)^2 \leq \lambda_*$,
 610 due to (5.9) and maximization (5.7).

611 The best rank-one approximation is a fundamental problem in tensor analysis;
 612 see [23, 32, 69]. Third-order partial-symmetric tensors are intensively studied
 613 [20, 37, 53, 70] and found in applications such as crystal structure [21, 49] and social
 614 networks (Example 6.4). It is known that tensor rank-one approximation problems
 615 are closely related to tensor eigenvalue problems [53], such as the *Z-eigenvalue* [52] and
 616 ℓ^2 -eigenvalue [38] for general supersymmetric tensors and *C-eigenvalue* for third-order
 617 partial-symmetric tensors [21]. Tensor eigenvalue problems provide first-order optimality
 618 conditions for the best rank-one approximation. But those eigenvalue problems
 619 are neither formulated nor studied through the NEPv as presented in this paper. For a
 620 third-order partial-symmetric tensor, its largest C-eigenvalue μ_* and the corresponding
 621 C-eigenvectors (x_*, z_*) form the best rank-one approximation (5.5) [21]. However,
 622 solving the tensor C-eigenvalue problems, which involve two coupled nonlinear equations
 623 in (μ, x, z) , are fundamentally different from solving the mNEPv (5.2). Efficient
 624 solutions to the nonlinear equations for the C-eigenvalue are still largely open.

625 **5.3. Distance problem in dHDAE systems.** Consider the following dissipative
 626 Hamiltonian differential-algebraic equation (dHDAE):

627 (5.10)
$$J \frac{d^j u}{dt^j} = B_0 + B_1 \frac{du}{dt} + \cdots + B_\ell \frac{d^\ell u}{dt^\ell},$$

628 where $u: \mathbb{R} \rightarrow \mathbb{R}^n$ is a state function, j is an integer between 0 and ℓ , $J = -J^T$ is
 629 skew symmetric, and $B_i \succeq 0$ are symmetric positive semi-definite for $i = 0, \dots, \ell$.
 630 By convention, $\frac{d^0 u}{dt^0} = u$. The dHDAE (5.10) arises in energy based modeling of
 631 dynamical systems [43, 60]. An important special case is with $j = 0$ and $\ell = 1$, known
 632 as the linear time-invariant dHDAE system [11, 60]. Another one is the second-order
 633 dHDAE (5.10) with $j = 1$ and $\ell = 2$ [11, 43].

634 To analyze the dynamical properties of a dHDAE system, one needs to know
 635 whether the system is close to a singular one. A dHDAE system (5.10) is called
 636 *singular* if $\det(P(\lambda)) \equiv 0$ for all $\lambda \in \mathbb{C}$, where

637 (5.11)
$$P(\lambda) = -\lambda^j J + B_0 + \lambda B_1 + \cdots + \lambda^\ell B_\ell$$

638 is the characteristic matrix polynomial. The distance of a dHDAE system to the
 639 closest singular dHDAE system is measured by the quantity $d_{\text{sing}}(P(\lambda))$:

640 (5.12)
$$d_{\text{sing}}(P(\lambda)) = \min_{\substack{x \in \mathbb{R}^n \\ \|x\|=1}} \left\{ 2\|Jx\|^2 + \sum_{i=0}^{\ell} \left(2\|(I - xx^T)B_i x\|^2 + (x^T B_i x)^2 \right) \right\}^{1/2},$$

 641

642 see [43, Thm.16]. We can reformulate the optimization (5.12) to an aMax (1.3). First,

643 by the skew-symmetry of J and the symmetry of B_i , we can write (5.12) as

$$644 \quad \left(d_{\text{sing}}(P(\lambda)) \right)^2 = \min_{\substack{x \in \mathbb{R}^n \\ \|x\|=1}} \left\{ 2 \cdot x^T (J^T J) x + \sum_{i=0}^{\ell} [2x^T (B_i^T B_i) x - (x^T B_i x)^2] \right\}$$

$$645 \quad (5.13) \quad = -2 \cdot \max_{\substack{x \in \mathbb{R}^n \\ \|x\|=1}} \left\{ x^T A_1 x + \frac{1}{2} \sum_{i=2}^{\ell+2} (x^T A_i x)^2 \right\},$$

$$646$$

647 where $A_1 \equiv J^2 - \sum_{i=0}^{\ell} B_i^2$ and $A_i \equiv B_{i-2}$ for $i = 2, \dots, \ell + 2$. Consequently, (5.13)
648 is of the form of the aMax (1.3):

$$649 \quad (5.14) \quad \max_{x \in \mathbb{R}^n, \|x\|=1} \left\{ F(x) := x^T A_1 x + \frac{1}{2} \sum_{i=2}^{\ell+2} (x^T A_i x)^2 \right\},$$

650 with $\phi_1(t) = t$ and $\phi_i(t) = t^2/2$, for $i = 2, \dots, \ell + 2$. By Theorem 2.3, a local
651 maximizer of (5.14) can be found by solving the following mNEPv of the form (1.1):

$$652 \quad (5.15) \quad H(x)x = \lambda x \quad \text{with} \quad H(x) \equiv A_1 + \sum_{i=2}^{\ell+2} (x^T A_i x) \cdot A_i.$$

653 where $h_1(t) = 1$ and $h_i(t) = t$, for $i = 2, \dots, \ell + 2$, are non-decreasing functions.

654 Computable upper and lower bounds of the quantity $d_{\text{sing}}(P(\lambda))$ have been studied
655 in [43, 50], and a recent method using two-level minimization and gradient flow
656 has been proposed for estimating $d_{\text{sing}}(P(\lambda))$ [24]. In comparison, the mNEPv approach
657 provides an computationally efficient alternative for estimating $d_{\text{sing}}(P(\lambda))$ for
658 dHDAE systems of any order; see Examples 6.2 and 6.3 in Section 6.

659 **6. Numerical examples.** In this section, we present numerical examples of Al-
660 gorithm 4.1 for solving the mNEPv (1.1) arising from the applications described in Sec-
661 tion 5. The main purpose of the experiments is to illustrate the convergence behavior
662 of the SCF (Algorithm 4.1 with $\text{tol}_{\text{acc}} = 0$) and the efficiency of accelerated SCF
663 (Algorithm 4.1 with $\text{tol}_{\text{acc}} = 0.1$). The error tolerance for both algorithms are set
664 to $\text{tol} = 10^{-13}$. All experiments are carried out in MATLAB and run on a Dell
665 desktop with Intel i9-9900K CPU@3.6GHZ and 16GB core memory. In the spirit of
666 reproducible research, we have made available the MATLAB scripts implementing
667 the algorithms and the data used to generate the numerical results presented in this
668 paper. They can be accessed at <https://github.com/ddinglu/mnepv>.

669 *Example 6.1.* In Subsection 5.1, we have discussed that the computation of the
670 numerical radius of a matrix $B \in \mathbb{C}^{n \times n}$ is related to mNEPv (3.15) and the variational
671 characterization (3.16) with Hermitian $A_1 = (B^H + B)/2$ and $A_2 = (B^H - B) \cdot \iota/2$.
672 For numerical experiment, let us consider the following matrix

$$673 \quad (6.1) \quad B = \begin{bmatrix} 0.6 & -0.2 & -1.9 & -0.3 \\ -0.1 & -0.3 & -1.3 & -1.2 \\ -2.0 & -1.6 & -2.1 & 1.3 \\ -0.1 & -1.6 & 1.5 & -0.1 \end{bmatrix} + \iota \begin{bmatrix} 0.6 & 2.5 & -0.2 & 2.5 \\ 2.3 & -2.6 & 0.4 & 1.3 \\ 0.0 & 0.6 & -0.4 & 1.2 \\ 2.0 & 1.4 & 1.0 & -2.3 \end{bmatrix}.$$

674 The corresponding numerical range $W(A_1, A_2)$ is depicted in Figure 2 as the shaded
675 region. We sampled 100 different starting vectors x_0 to run the SCF, where each

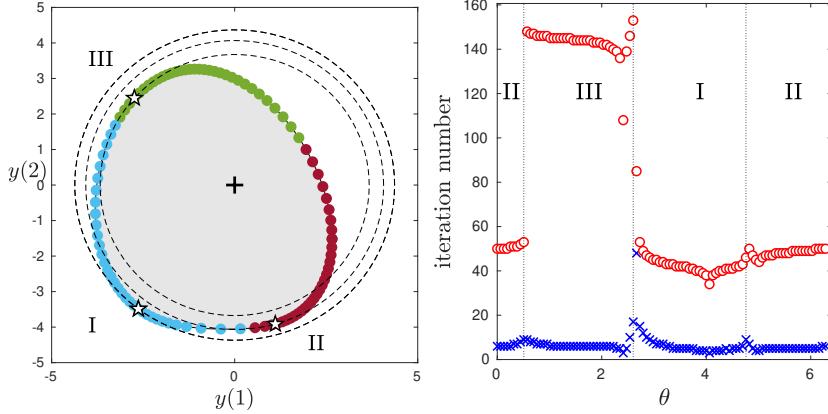


FIG. 2. Left: Numerical range $W(A_1, A_2)$ of the matrix in (6.1). \star represents the solution for the mNEPv and \bullet the starting $g(x_0)$ of the SCF; The \bullet are colored according to the solution they have computed (blue is for solution I, red for II, and green for III); The dashed are contours of $\phi(y) = \|y\|^2/2$; see (3.16). Right: Number of SCF iterations ('o') and accelerated SCF ('x') for different x_0 parameterized by $\theta \in [0, 2\pi]$ as in (6.2).

676 $y_0 = g(x_0)$ is a supporting point of $W(A_1, A_2)$, depicted in Figure 2 as dots on the
 677 boundary of $W(A_1, A_2)$. By the discussion on the implementation of Algorithm 4.1,
 678 such initial x_0 are obtained from the eigenvectors x_v of the matrix H_v for sampled
 679 directions $v \in \mathbb{R}^2$ (see Lemma 3.1 and Subsection 4.2). Since a unit direction $v \in \mathbb{R}^2$
 680 can be represented by polar coordinates as $v = [\cos \theta, \sin \theta]^T$ with $\theta \in [0, 2\pi]$. The
 681 initials x_0 are set as

682 (6.2)
$$x_0 := x_v \quad \text{with } v = [\cos \theta, \sin \theta]^T,$$

683 using 100 equally distant θ between 0 and 2π . The sampled $g(x_0)$ are well distributed
 684 on the boundary of $W(A_1, A_2)$, as shown in Figure 2.

685 For 100 runs of the SCF, three different solutions are found. In Figure 2, they
 686 are labeled respectively with I, II, III, in descending order of their objective values
 687 of (3.16). The initial $g(x_0)$ on the boundary of $W(A_1, A_2)$ are colored the same if SCF
 688 will converge to the same solution, which, hence, reveals the region of convergence for
 689 SCF. The numbers of SCF iterations with each x_0 are reported in Figure 2. For the
 690 SCF, the iteration numbers vary for different solution, whereas the accelerated SCF
 691 are almost independent of the choice of the initial x_0 with only a moderate increase
 692 on the boundary of two convergence regions.

693 The left plot of Figure 3 depicts the convergence history of the objective func-
 694 tion $F(x_k)$ for four different starting vectors x_0 , corresponding to the equally distant
 695 $\theta \in \{0, \pi/2, \pi, 3\pi/2\}$ from Figure 2. As expected the SCF demonstrates monotonic
 696 convergence. The right plot in Figure 3 shows the relative residual norms of x_k as
 697 defined in (4.6). We can see that the SCF quickly enters the region of linear con-
 698 vergence in all cases (in about 3 iterations). The acceleration takes full advantage of
 699 the rapid initial convergence and speeds up the SCF significantly. We note that in
 700 this example the matrices A_1 and A_2 are complex Hermitian, for which the inverse
 701 iteration (4.5) with Rayleigh shift σ_k is not guaranteed quadratically convergent.

702 *Example 6.2.* In this example, we consider the mNEPv (5.15) arising from the
 703 distance problem of dHDAE systems described in Subsection 5.3. The characteristic

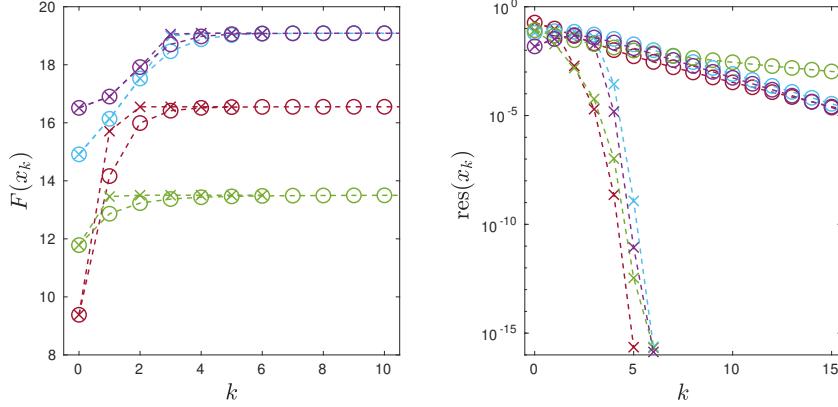


FIG. 3. Left: Convergence history of $F(x_k)$ by SCF ('o') and accelerated SCF ('x'), where each colored curve is a run with a particular x_0 from 4 different starting vectors. Right: Relative residual norms (4.6) of the mNEPv.

704 polynomial of a linear dHDAE system is given by

705 (6.3)
$$P(\lambda) := -J + R + \lambda E,$$

706 where $J = -J^T$ is a skew symmetric, and E and R are symmetric positive definite
707 matrices. As discussed in Subsection 5.3, the computation of distance to singularity
708 $d_{\text{sing}}(P(\lambda))$ leads to the optimization (5.13) and the associated mNEPv (5.15), where

709 (6.4)
$$F(x) = x^T A_1 x + \frac{1}{2} \sum_{i=2}^3 (x^T A_i x)^2 \quad \text{and} \quad H(x) = A_1 + \sum_{i=2}^3 (x^T A_i x) \cdot A_i,$$

710 and $A_1 = J^2 - E^2 - R^2$, $A_2 = E$ and $A_3 = R$.

711 For experiments, the matrices $\{J, R, E\}$ of order 30 are generated randomly.⁴
712 Similar to Example 6.1, the initial x_0 of the SCF are computed from supporting points
713 of the joint numerical range $W(A_1, A_2, A_3) \subset \mathbb{R}^3$ along several sampled directions
714 $v \in \mathbb{R}^3$. Recall that a unit $v \in \mathbb{R}^3$ can be represented by spherical coordinates as

715 (6.5)
$$v = [\sin \eta \cos \theta, \sin \eta \sin \theta, \cos \eta]^T \quad \text{with } \eta \in [0, 2] \text{ and } \theta \in [0, 2\pi].$$

716 We hence construct an equispaced grid of 20-by-40 points of $(\eta, \theta) \in [0, \pi] \times [0, 2\pi]$,
717 yielding 800 supporting points of $W(A_1, A_2, A_3)$. They are depicted in Figure 4,
718 together with the approximate joint numerical range they generate.⁵

719 From all 800 initial x_0 , the SCF converge to the same solution, as marked in Fig-
720 ure 4. This solution appears to be the global optimizer of (5.13), as visually verified
721 by the level-surface of the objective function $\phi(y)$ for the corresponding optimization
722 over the joint numerical range (3.3). From the numbers of iterations reported in Fig-
723 ure 4, we can see that both SCF and accelerated SCF converge rapidly to the solution.
724 The numbers of SCF iterations are not sensitive to the choice of x_0 . Figure 5 depicts

⁴For J : $\mathbf{X} = \text{randn}(\mathbf{n})$; $\mathbf{X} = \mathbf{X} - \mathbf{X}'$; $\mathbf{X} = \mathbf{X} / \text{norm}(\mathbf{X})$. For E and R : $\mathbf{X} = \text{randn}(\mathbf{n})$; $\mathbf{X} = \text{orth}(\mathbf{X})$; $\mathbf{X} = \mathbf{X} * \text{diag}(\text{rand}(\mathbf{n}, 1) + 1.6 \text{E-}6) * \mathbf{X}'$.

⁵Plot generated by MATLAB functions `trisurf` and `boundary` using the 800 supporting points.

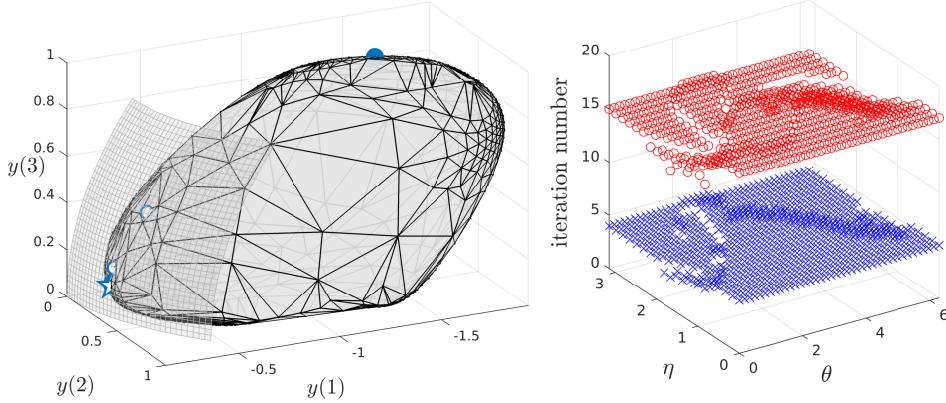


FIG. 4. Left: Computed numerical range $W(A_1, A_2, A_3)$ based on 800 sample supporting points on the boundary (nodes of the mesh); \star represents the solution for the mNEPv, \bullet the starting $g(x_0)$, and ‘ \circ ’ the first few supporting points $g(x_k)$ by SCF; The smaller mesh that crosses \star is part of the level-surface $\phi(y) = \phi(y_*)$ for $\phi(y) = y(1) + (y(2)^2 + y(3)^2)/2$ at the solution $y_* = g(\hat{x}_*)$. Right: Number of SCF iterations (‘ \circ ’) and the accelerated SCF (‘ \times ’) for different starting x_0 parameterized by $\theta \in [0, 2\pi)$ and $\eta \in [0, \pi)$ as in (6.5).

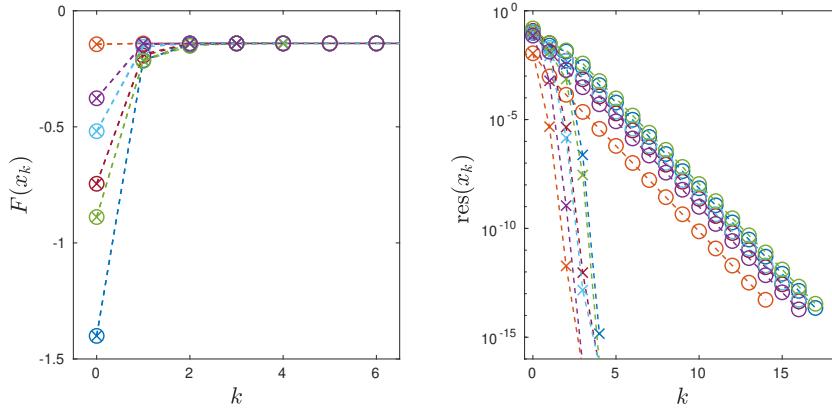


FIG. 5. Left: Convergence history of $F(x_k)$ by SCF (‘ \circ ’) and accelerated SCF (‘ \times ’), where each colored curve is a run with a particular x_0 from 6 different starting vectors. Right: Relative residual norms (4.6) of the mNEPv.

725 the convergence history of $F(x_k)$ and the relative residual norms by the SCF from
 726 six different starting vectors x_0 (sampled supporting points of $W(A_1, A_2, A_3)$ along
 727 the three coordinate axes). We observe that the SCF converges monotonically to the
 728 same solution, regardless of the starting vector used. The accelerated SCF greatly
 729 reduces the number of iterations and shows a quadratic convergence rate.

730 In general, a computed \hat{x}_* may not be a global maximizer of the aMax (5.13).
 731 But we have at least an upper bound of the distance:

$$732 \quad (6.6) \quad d_{\text{sing}}(P(\lambda)) \equiv \left(-2 \cdot \max_{\|x\|=1} F(x) \right)^{1/2} \leq \left(-2 \cdot F(\hat{x}_*) \right)^{1/2}.$$

733 If the initial vector x_0 of the SCF is especially set to be the eigenvector corresponding

734 to the largest eigenvalue of A_1 , then we have

735 (6.7)
$$(-2 \cdot F(\hat{x}_*))^{1/2} \leq (-2 \cdot F(x_0))^{1/2} \leq \delta_M := (-2 \cdot \lambda_{\max}(A_1))^{1/2},$$

736 where the first inequality is by the monotonicity of the SCF (see Theorem 3.4) and the
 737 second inequality is by the definition of $F(x)$ (6.4). The quantity δ_M was introduced
 738 in [43] and used as an estimation of $d_{\text{sing}}(P(\lambda))$. By the inequalities (6.6) and (6.7),
 739 the SCF always produces a sharper upper bound of $d_{\text{sing}}(P(\lambda))$. In this example, the
 740 SCF provides a sharper estimation $\sqrt{-2 \cdot F(\hat{x}_*)} \approx 0.5989$, as opposed to $\delta_M \approx 0.6923$.

741 An alternative computable upper bound to the quantity δ_M has been recently pro-
 742 posed in [50], which involves an optimization of sum of Rayleigh quotients, but it does
 743 not ensure a better estimation than δ_M [50, Thm. 3.7 and Eg. 3]. In another related
 744 work [24], the authors considered an approach to estimate the distance $d_{\text{sing}}(P(\lambda))$,
 745 based on the observation that the distance is the smallest root of a monotonically
 746 decreasing function w . A root-finding method such as the bisection can be applied.
 747 The difficulty there lies in the evaluation of the function w . For a given ϵ , evaluating
 748 $w(\epsilon)$ can be very expensive as it requires an optimization by a gradient flow method,
 749 which involves repeated solution of Hermitian eigenvalue problems of size n .

Example 6.3. In this example, we consider a quadratic dHDAE system with the characteristic polynomial

$$P(\lambda) := -\lambda G + K + \lambda D + \lambda^2 M,$$

750 where $G = -G^T$ is skew symmetric, and M, D and K are symmetric positive definite.
 751 By Subsection 5.3, the computation of distance to singularity $d_{\text{sing}}(P(\lambda))$ leads to the
 752 optimization (5.13) and the mNEPv (5.15) with

753
$$F(x) = x^T A_1 x + \frac{1}{2} \sum_{i=2}^4 (x^T A_i x)^2 \quad \text{and} \quad H(x) = A_1 + \sum_{i=2}^4 (x^T A_i x) \cdot A_i,$$

754 where $A_1 = G^2 - M^2 - D^2 - K^2$, $A_2 = M$, $A_3 = D$, and $A_4 = K$.

755 For numerical experiments, we consider a lumped-parameter mass-spring-damper
 756 system $M\ddot{u} + D\dot{u} + Ku = f$ with n point-masses and n spring-damper pairs. The
 757 matrices D and K are interchangeable with $DK = KD$ and are simultaneously diag-
 758 onalizable [61]. We pick a random skew symmetric G to simulate the gyroscopic effect.
 759 The sizes n of the matrices are set ranging from 500 to 3000. For each set of testing
 760 matrices, we run the SCF with 100 different starting vectors x_0 . Again, those x_0 are
 761 computed from supporting points of the joint numerical range $W(\mathcal{A}) \subset \mathbb{R}^4$ along 100
 762 randomly sampled directions $v \in \mathbb{R}^4$.

763 Similar to the linear system in Example 6.2, the SCF converge to the same solution
 764 from all 100 different starting vectors. Figure 6 depicts the convergence history of the
 765 SCF and the accelerated SCF for a case of $n = 1000$, with 8 randomly selected starting
 766 vectors. It shows the same convergence behavior of the SCF and accelerated SCF as
 767 in the previous example. Table 1 summarizes the iteration number and computation
 768 time for the algorithms from all testing cases. We can see that the performance of
 769 both SCF and accelerated SCF are not much affected by the choice of initial vectors.
 770 Both algorithms converge rapidly, and the accelerated SCF speed up to a factor
 771 between 2.5 to 6.2. For comparison, we have included the results by the Riemannian
 772 Trust Region (RTR) method for solving the optimization problem (5.14). We used
 773 the `trustregions` function provided by `Manopt`, a MATLAB toolbox available at

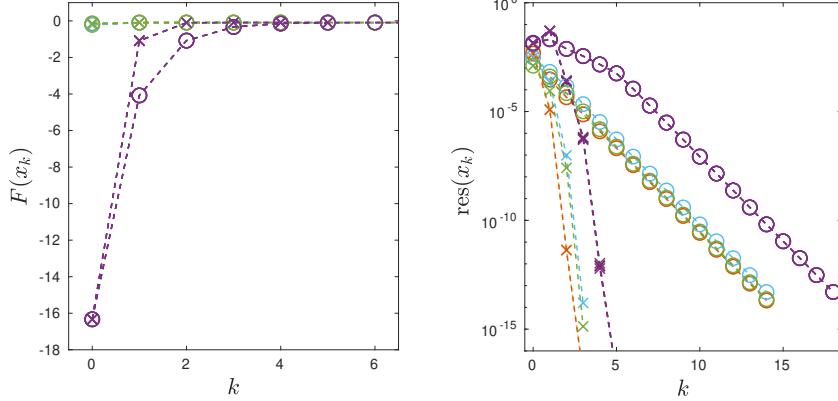


FIG. 6. Left: Convergence history of $F(x_k)$ by SCF ('o') and accelerated SCF (' \times '), where each colored curve is a run with a particular x_0 from 8 different starting vectors (lines overlapped). Right: Relative residual norms (4.6) of the mNEPv.

774 https://www.manopt.org/. RTR is considered as a state-of-the-art approach for the
 775 optimization problems with spherical constraints of the form $\|x\| = 1$. We observe that
 776 RTR finds the same solution as the proposed NEPv approach, but it takes significantly
 777 more running time.

TABLE 1
 Number of iterations and computation time (in seconds) for various problem sizes n . Reported
 are average results from 100 runs with different starting vectors, with the largest deviations marked.

n	algorithms	$F(x_*)$	iterations	timing
500	RTR	$-0.094157045470939 (\pm 7 \cdot 10^{-17})$	24.2 (± 10)	1.63 (± 0.47)
	SCF	$-0.094157045470939 (\pm 7 \cdot 10^{-17})$	17.0 (± 4.0)	1.18 (± 0.34)
	accel. SCF	$-0.094157045470939 (\pm 7 \cdot 10^{-17})$	5.3 (± 1.3)	0.34 (± 0.14)
1000	RTR	$-0.095120974693461 (\pm 7 \cdot 10^{-17})$	27.8 (± 8.8)	8.98 (± 1.33)
	SCF	$-0.095120974693461 (\pm 4 \cdot 10^{-17})$	21.3 (± 3.3)	6.54 (± 1.15)
	accel. SCF	$-0.095120974693461 (\pm 6 \cdot 10^{-17})$	4.7 (± 1.3)	1.32 (± 0.48)
2000	RTR	$-0.090910959613593 (\pm 6 \cdot 10^{-17})$	27.6 (± 12)	58.35 (± 9.37)
	SCF	$-0.090910959613593 (\pm 4 \cdot 10^{-17})$	17.0 (± 4.0)	4.91 (± 1.58)
	accel. SCF	$-0.090910959613593 (\pm 6 \cdot 10^{-17})$	4.8 (± 1.8)	1.52 (± 0.73)
3000	RTR	$-0.089186202007536 (\pm 7 \cdot 10^{-17})$	28.4 (± 11)	181.65 (± 20.6)
	SCF	$-0.089186202007536 (\pm 8 \cdot 10^{-17})$	16.9 (± 3.9)	20.51 (± 5.33)
	accel. SCF	$-0.089186202007536 (\pm 7 \cdot 10^{-17})$	5.2 (± 1.2)	6.39 (± 1.93)

778 *Example 6.4.* As discussed in Subsection 5.2, the problem of best rank-one
 779 approximation for a partial-symmetric tensor $T \in \mathbb{R}^{n \times n \times m}$ leads to a quartic opti-
 780 mization (5.7) and the corresponding mNEPv (5.2), where the coefficient matrices
 781 are $A_i := T(:, :, i) \in \mathbb{R}^{n \times n}$ for $i = 1, \dots, m$. For non-negative tensors, the objective
 782 function $F(x) = \frac{1}{2} \sum_i (x^T A_i x)^2$ of (5.7) satisfies $F(|x|) \geq F(x)$, where $|\cdot|$ denotes
 783 componentwise absolute value. Therefore, it is advisable to start the SCF (3.1) with
 784 a non-negative initial x_0 . Note that if $x_k \geq 0$ then $H(x_k) \geq 0$, so by the Perron-
 785 Frobenius theorem [28], the eigenvector x_{k+1} for the largest eigenvalue of $H(x_k)$ is
 786 also non-negative. Consequently, the iterates x_k by the SCF will remain non-negative.

787 We note that for a non-negative tensor T and a non-negative initial x_0 , the
 788 SCF (3.1) is indeed equivalent to the Alternating Least Squares (ALS) algorithm
 789 for finding the best rank-one approximation (5.5). Recall that in Subsection 5.2, the
 790 best rank-one approximation (5.5) is turned into the maximization problem:

791 (6.8)
$$\max_{\|x\|=1, \|z\|=1} (z^T \cdot g(x))^2,$$

792 where $g(x) = [x^T A_1 x, \dots, x^T A_m x]^T$. Maximizing alternatively with respect to z and
 793 x leads to the alternating iteration:

794 (6.9)
$$\begin{cases} z_{k+1} = \arg \max_{\|z\|=1} (z^T \cdot g(x_k))^2 = \alpha_k \cdot g(x_k), \\ x_{k+1} = \arg \max_{\|x\|=1} (z_{k+1}^T \cdot g(x))^2 = \arg \max_{\|x\|=1} (x^T \cdot H(x_k) \cdot x)^2, \end{cases}$$

795 for $k = 1, 2, \dots$, where $\alpha_k > 0$ is a normalization factor for z_{k+1} . Note that $H(x_k) \geq 0$
 796 if $x_k \geq 0$. The maximizer x_{k+1} of (6.9) is the eigenvector corresponding to the largest
 797 eigenvalue of $H(x_k)$ by the Perron-Frobenius theorem. Therefore, the iteration (6.9)
 798 coincides with the SCF. The ALS algorithms are commonly used for low-rank approx-
 799 imations in tensor computations [33].

800 For numerical experiments, we use the following third-order partial-symmetric
 801 tensors: *New Orleans tensor*⁶ is created from a Facebook network, and has size
 802 $63891 \times 63891 \times 20$ with 477778 nonzeros; *Princeton tensor*⁷ is from a Facebook
 803 ‘friendship’ network, and has size $6593 \times 6593 \times 6$ with 70248 nonzeros; *Reuters*
 804 *tensor*⁸ is from a news network based on all stories released by the news agency
 805 Reuters concerning the September 11 attack during the 66 consecutive days beginning
 806 at September 11, 2001, and the size of the tensor T is $13332 \times 13332 \times 66$ with 486894
 807 nonzeros. All three tensors are non-negative and sparse (density $\approx 10^{-5}$), so are the
 808 corresponding coefficient matrices $A_i = T(:, :, i)$ for $i = 1, \dots, m$.

809 In Algorithm 4.1, we use MATLAB `eigs` for the eigenvalue computation and
 810 `minres` for solving the linear system in the acceleration (4.5). We use an adaptive
 811 error tolerance $\text{Tol} = \min\{10^{-3}, \text{res}(x_k)^2\}$ for each call of `eigs` and `minres`. We
 812 use 100 randomly generated and non-negative starting vectors x_0 to run the SCF
 813 (using `x0=abs(randn(n,1))`). The convergence history is reported in Figure 7. We
 814 observe that from different starting x_0 , Algorithm 4.1 always converge to the same
 815 solution and the convergence rate appears not affected by the choice of x_0 . Also,
 816 the accelerated SCF significantly reduces the number of the SCF iterations and has
 817 a quadratic convergence rate. It is noteworthy that the SCF can find the solution in
 818 just about a fraction of a second. This is a surprising result, given the large size of
 819 the Hermitian eigenvalue problem that is solved in each iteration.

820 **7. Concluding remarks.** A variational characterization for the mNEPv (1.1) is
 821 revealed. Based on that, we provided a geometric interpretation of the SCF iterations
 822 for solving the mNEPv. The geometry of the SCF illustrates the global monotonic
 823 convergence of the algorithm and leads to a rigorous proof of its global convergence. In
 824 addition, we presented an inverse-iteration based scheme to accelerate the convergence
 825 of the SCF. Numerical examples demonstrated the effectiveness of the accelerated SCF

⁶data available at <http://socialnetworks.mpi-sws.org/data-wosn2009.html>.

⁷data available at <https://archive.org/details/oxford-2005-facebook-matrix>.

⁸data available at <http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm>.

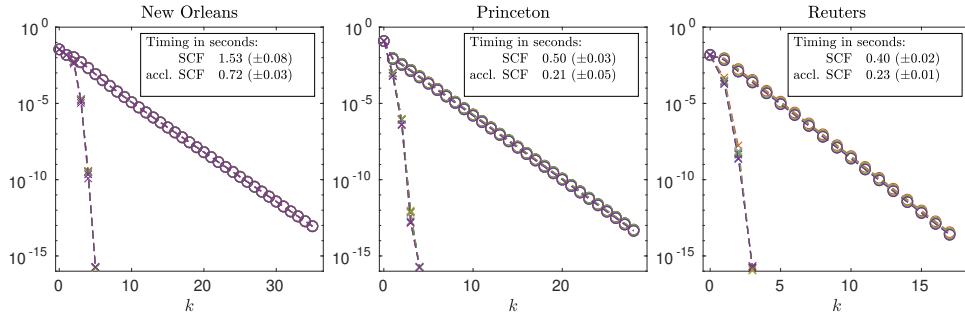


FIG. 7. Convergence history of relative residual norms $\text{res}(x_k)$ (4.6) by the SCF ('o') and accelerated SCF ('x'). Each colored curve represents a run with a different starting vector from 100 randomly generated $x_0 \geq 0$ (due to curve overlapping, 8 selected curves are reported). The reported computational time are the average results from the 100 runs, with the largest deviations marked.

826 for solving the mNEPv arising from different applications. By the intrinsic connection
 827 between the mNEPv (1.1) and the aMax (1.3), we developed an NEPv approach for
 828 solving the aMax. Algorithmically, it allows the use of state-of-the-art eigensolvers
 829 for fast solution

830 Most results presented in this work can be extended to the case of NEPv (1.1)
 831 with h_i being non-decreasing and locally Lipschitz continuous functions. A variational
 832 characterization of such NEPv similar to Theorem 2.3 can be established. The present
 833 work also lays the groundwork for studying a more general class of NEPv in the
 834 form (1.1), where the coefficient of A_i is a composite function $h_i(g(x))$ with a given
 835 $h_i : \mathbb{R}^m \rightarrow \mathbb{R}$ and $g(x)$ as defined in (3.2). Expanding theoretical analysis and
 836 geometric interpretation of the SCF discussed in the present work to such NEPv is a
 837 topic for future study.

838 **Acknowledgment.** We thank the anonymous referees for their many helpful
 839 comments that substantially improved this manuscript.

840 REFERENCES

- 841 [1] P. A. ABSIL, R. MAHONY, AND R. SEPULCHRE, *Optimization Algorithms on Matrix Manifolds*,
 842 Princeton University Press, 2009.
- 843 [2] H. AMANN, *Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces*,
 844 SIAM Review, 18 (1976), pp. 620–709.
- 845 [3] Y.-H. AU-YEUNG AND N.-K. TSING, *An extension of the Hausdorff-Toeplitz theorem on the*
 846 *numerical range*, Proc. Amer. Math. Soc., 89 (1983), pp. 215–218.
- 847 [4] Y.-H. AU-YEUNG AND N.-K. TSING, *Some theorems on the generalized numerical ranges*, Linear
 848 *Multilinear Algebra*, 15 (1984), pp. 3–11.
- 849 [5] O. AXELSSON, *Iterative Solution Methods*, Cambridge University Press, 1996.
- 850 [6] Z. BAI, J. DEMMEL, J. DONGARRA, A. RUHE, AND H. VAN DER VORST, *Templates for the*
 851 *Solution of Algebraic Eigenvalue Problems: a Practical Guide*, SIAM, 2000.
- 852 [7] Z. BAI, R.-C. LI, AND D. LU, *Sharp estimation of convergence rate for self-consistent field*
 853 *iteration to solve eigenvector-dependent nonlinear eigenvalue problems*, SIAM J. Matrix
 854 *Anal. Appl.*, 43 (2022), pp. 301–327.
- 855 [8] Z. BAI, D. LU, AND B. VANDEREYCKEN, *Robust Rayleigh quotient minimization and nonlinear*
 856 *eigenvalue problems*, SIAM J. Sci. Comput., 40 (2018), pp. A3495–A3522.
- 857 [9] W. BAO AND Q. DU, *Computing the ground state solution of Bose–Einstein condensates by a*
 858 *normalized gradient flow*, SIAM J. Sci. Comput., 25 (2004), pp. 1674–1697.
- 859 [10] R. BARRETT, M. BERRY, T. F. CHAN, J. DEMMEL, J. DONATO, J. DONGARRA, V. EIJKHOUT,
 860 R. POZO, C. ROMINE, AND H. VAN DER VORST, *Templates for the Solution of Linear*
 861 *Systems: Building Blocks for Iterative Methods*, SIAM, 1994.

862 [11] C. BEATTIE, V. MEHRMANN, H. XU, AND H. ZWART, *Linear port-Hamiltonian descriptor sys-*
863 *tems*, Math. Control Signals Syst., 30 (2018), pp. 1–27.

864 [12] A. BEN-TAL AND A. NEMIROVSKI, *Robust convex optimization*, Math. Oper. Res., 23 (1998),
865 pp. 769–805.

866 [13] V. BERINDE, *Iterative Approximation of Fixed Points*, Springer Berlin, Heidelberg, 2007.

867 [14] R. BHATIA, *Matrix Analysis*, Springer, New York, NY, 2013.

868 [15] S. P. BOYD AND L. VANDENBERGHE, *Convex Optimization*, Cambridge University Press, 2004.

869 [16] T. BÜHLER AND M. HEIN, *Spectral clustering based on the graph p -Laplacian*, in Proceedings
870 of the 26th Inter. Conf. on Machine Learning, 2009, pp. 81–88.

871 [17] Y. CAI, L.-H. ZHANG, Z. BAI, AND R.-C. LI, *On an eigenvector-dependent nonlinear eigenvalue*
872 *problem*, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1360–1382.

873 [18] E. CANCÈS, G. KEMLIN, AND A. LEVITT, *Convergence analysis of direct minimization and*
874 *self-consistent iterations*, SIAM J. Matrix Anal. Appl., 42 (2021), pp. 243–274.

875 [19] E. CANCÈS AND C. LE BRIS, *Can we outperform the DIIS approach for electronic structure*
876 *calculations?*, Int. J. Quantum Chem., 79 (2000), pp. 82–90.

877 [20] J. D. CARROLL AND J.-J. CHANG, *Analysis of individual differences in multidimensional scaling*
878 *via an N -way generalization of “Eckart-Young” decomposition*, Psychometrika, 35 (1970),
879 pp. 283–319.

880 [21] Y. CHEN, A. JÁKLI, AND L. QI, *The C -eigenvalue of third order tensors and its application in*
881 *crystals*, J. Ind. Manag. Optim., (2021).

882 [22] M. CHŌ AND M. TAKAGUCHI, *Boundary points of joint numerical ranges*, Pac. J. Math., 95
883 (1981), pp. 27–35.

884 [23] L. DE LATHAUWER, B. DE MOOR, AND J. VANDEWALLE, *A multilinear singular value decom-*
885 *position*, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.

886 [24] N. GUGLIELMI AND V. MEHRMANN, *Computation of the nearest structured matrix triplet with*
887 *common null space*, Electron. Trans. Numer. Anal., 55 (2022), pp. 508–531.

888 [25] S. GÜTTEL AND F. TISSEUR, *The nonlinear eigenvalue problem*, Acta Numerica, 26 (2017),
889 pp. 1–94.

890 [26] C. HE AND G. WATSON, *An algorithm for computing the numerical radius*, IMA J. Numer.
891 Anal., 17 (1997), pp. 329–342.

892 [27] S. HE, Z. LI, AND S. ZHANG, *Approximation algorithms for homogeneous polynomial optimiza-*
893 *tion with quadratic constraints*, Math. Program., 125 (2010), pp. 353–383.

894 [28] R. A. HORN AND C. R. JOHNSON, *Matrix Analysis*, Cambridge University Press, 2012.

895 [29] P. HUANG, Q. YANG, AND Y. YANG, *Finding the global optimum of a class of quartic mini-*
896 *mization problem*, Comput. Optim. Appl., 81 (2022), pp. 923–954.

897 [30] I. C. F. IPSEN, *Computing an eigenvector with inverse iteration*, SIAM Review, 39 (1997),
898 pp. 254–291.

899 [31] E. JARLEBRING, S. KVAAL, AND W. MICHELS, *An inverse iteration method for eigenvalue*
900 *problems with eigenvector nonlinearities*, SIAM J. Sci. Comput., 36 (2014), pp. A1978–
901 A2001.

902 [32] E. KOFIDIS AND P. A. REGALIA, *On the best rank-1 approximation of higher-order supersym-*
903 *metric tensors*, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 863–884.

904 [33] T. G. KOLDA AND B. W. BADER, *Tensor decompositions and applications*, SIAM Review, 51
905 (2009), pp. 455–500.

906 [34] J. LAMPE AND H. VOSS, *A survey on variational characterization for nonlinear eigenvalue*
907 *problems*, Electron. Trans. Numer. Anal., 55 (2022), pp. 1–75.

908 [35] C.-K. LI AND E. POON, *Maps preserving the joint numerical radius distance of operators*,
909 *Linear Algebra Appl.*, 437 (2012), pp. 1194–1204.

910 [36] C.-K. LI AND Y.-T. POON, *Convexity of the joint numerical range*, SIAM J. Matrix Anal.
911 Appl., 21 (2000), pp. 668–678.

912 [37] N. LI, C. NAVASCA, AND C. GLENN, *Iterative methods for symmetric outer product tensor*
913 *decomposition*, Electron. Trans. Numer. Anal., 44 (2015), pp. 124–139.

914 [38] L.-H. LIM, *Singular values and eigenvalues of tensors: a variational approach*, in 1st IEEE
915 International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,
916 2005., IEEE, 2005, pp. 129–132.

917 [39] L. LIN AND C. YANG, *Elliptic preconditioner for accelerating the self-consistent field iteration*
918 *in Kohn-Sham density functional theory*, SIAM J. Sci. Comput., 35 (2013), pp. S277–S298.

919 [40] X. LIU, Z. WEN, X. WANG, AND Y. ULRICH, M. YUAN, *On the analysis of the discretized*
920 *Kohn-Sham density functional theory*, SIAM J. Numer. Anal., 53 (2015), pp. 1758–1785.

921 [41] D. LU, *Nonlinear eigenvector methods for convex minimization over the numerical range*, SIAM
922 J. Matrix Anal. Appl., 41 (2020), pp. 1771–1796.

923 [42] R. M. MARTIN, *Electronic Structure: Basic Theory and Practical Methods*, Cambridge Univer-

924 sity Press, 2004.

925 [43] C. MEHL, V. MEHRMANN, AND M. WOJTYLAK, *Distance problems for dissipative Hamiltonian*
926 *systems and related matrix polynomials*, Linear Algebra Appl., 623 (2021), pp. 335–366.

927 [44] E. MENGI AND M. L. OVERTON, *Algorithms for the computation of the pseudospectral radius*
928 *and the numerical radius of a matrix*, IMA J. Numer. Anal., 25 (2005), pp. 648–669.

929 [45] T. MITCHELL, *Convergence rate analysis and improved iterations for numerical radius computa-*
930 *tion*, Preprint arXiv:2002.00080, (2020).

931 [46] Y. NESTEROV, *Random walk in a simplex and quadratic optimization over convex polytopes*,
932 tech. report, CORE Discussion Paper, UCL, Louvain-la-Neuve, Belgium, 2003.

933 [47] T. T. NGO, M. BELLALIJ, AND Y. SAAD, *The trace ratio optimization problem*, SIAM Review,
934 54 (2012), pp. 545–569.

935 [48] J. NOCEDAL AND S. WRIGHT, *Numerical Optimization*, Springer New York, NY, 2006.

936 [49] J. F. NYE, *Physical Properties of Crystals: Their Representation by Tensors and Matrices*,
937 Oxford University Press, 1985.

938 [50] A. PRAJAPATI AND P. SHARMA, *Estimation of structured distances to singularity for matrix*
939 *pencils with symmetry structures: A linear algebra-based approach*, SIAM J. Matrix Anal.
940 Appl., 43 (2022), pp. 740–763.

941 [51] P. PULAY, *Improved SCF convergence acceleration*, J. Comput. Chem., 3 (1982), pp. 556–560.

942 [52] L. QI, *Eigenvalues of a real supersymmetric tensor*, J. Symb. Comput., 40 (2005), pp. 1302–
943 1324.

944 [53] L. QI, H. CHEN, AND Y. CHEN, *Tensor Eigenvalues and Their Applications*, vol. 39, Springer,
945 2018.

946 [54] C. C. J. ROOTHAAN, *New developments in molecular orbital theory*, Rev. Mod. Phys., 23 (1951),
947 p. 69.

948 [55] R. E. STANTON, *Intrinsic convergence in closed-shell SCF calculations. A general criterion*, J.
949 Chem. Phys., 75 (1981), pp. 5416–5422.

950 [56] L. N. TREFETHEN AND M. EMBREE, *Spectra and Pseudospectra: the Behavior of Nonnormal*
951 *Matrices and Operators*, Princeton University Press, 2005.

952 [57] F. TUDISCO AND D. J. HIGHAM, *A nonlinear spectreal method for core-periphery detection in*
953 *networks*, SIAM J. Math. Data Sci., 1 (2019), pp. 269–292.

954 [58] F. UHLIG, *Geometric computation of the numerical radius of a matrix*, Numer. Algor., 52
955 (2009), p. 335.

956 [59] P. UPADHYAYA, E. JARLEBRING, AND E. H. RUBENSSON, *A density matrix approach to the*
957 *convergence of the self-consistent field iteration*, Numer. Algebra, Control. Optim., 11
958 (2021), pp. 99–115.

959 [60] A. VAN DER SCHAFT AND D. JELTSEMA, *Port-Hamiltonian systems theory: An introductory*
960 *overview*, Found. Trends Syst. Control, 1 (2014), pp. 173–378.

961 [61] K. VESELIĆ, *Damped Oscillations of Linear Systems: a Mathematical Introduction*, vol. 2023,
962 Springer Berlin, Heidelberg, 2011.

963 [62] G. A. WATSON, *Computing the numerical radius*, Linear Algebra Appl., 234 (1996), pp. 163–
964 172.

965 [63] A. WEINSTEIN AND W. STENGER, *Methods of Intermediate Problems for Eigenvalues: Theory*
966 *and Ramifications*, Academic Press, Elsevier, 1972.

967 [64] C. YANG, J. C. MEZA, AND L.-W. WANG, *A trust region direct constrained minimization*
968 *algorithm for the Kohn-Sham equation*, SIAM J. Sci. Comput., 29 (2007), pp. 1854–1875.

969 [65] H. ZHANG, A. MILZAREK, Z. WEN, AND W. YIN, *On the geometric analysis of a quartic-*
970 *quadratic optimization problem under a spherical constraint*, Math. Program., (2021).

971 [66] L.-H. ZHANG, *On optimizing the sum of the Rayleigh quotient and the generalized Rayleigh*
972 *quotient on the unit sphere*, Comput. Optim. Appl., 54 (2013), pp. 111–139.

973 [67] L.-H. ZHANG AND R.-C. LI, *Maximization of the sum of the trace ratio on the Stiefel manifold,*
974 *I: Theory*, Sci. China Math., 57 (2014), pp. 2495–2508.

975 [68] L.-H. ZHANG, L. WANG, Z. BAI, AND R.-C. LI, *A self-consistent-field iteration for orthogonal*
976 *canonical correlation analysis*, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2022), pp. 890–
977 904.

978 [69] T. ZHANG AND G. H. GOLUB, *Rank-one approximation to high order tensors*, SIAM J. Matrix
979 Anal. Appl., 23 (2001), pp. 534–550.

980 [70] X. ZHANG, L. QI, AND Y. YE, *The cubic spherical optimization problems*, Math. Comput., 81
981 (2012), pp. 1513–1525.