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1. Introduction. We consider the following eigenvector-dependent nonlinear ei-16

genvalue problem:17

(1.1) H(x)x = λx,18

where H(x) is a Hermitian matrix-valued function of the form19

(1.2) H(x) :=

m∑
i=1

hi(x
HAix)Ai,20

and {Ai} are n-by-n Hermitian matrices, {hi} are differentiable and non-decreasing21

functions over R. The goal is to find a unit-length vector x ∈ Cn and a scalar λ ∈ R22

satisfying (1.1) and, furthermore, λ (= xHH(x)x) is the largest eigenvalue of H(x).23

The solution vector x is called an eigenvector of the eigenvalue problem (1.1) and λ24

is the corresponding eigenvalue. Since H(γx) ≡ H(x) for any γ ∈ C with |γ| = 1, if25

x is an eigenvector, then so is γx.26

The matrix-valued function H(x) in (1.2) is a linear combination of constant27

matrices {Ai} with monotonic functions {hi}. We say H(x) is of a monotone affine-28

linear structure and, for simplicity, call the eigenvalue problem (1.1) a monotone29

NEPv, or mNEPv. For the case m = 1, the mNEPv simplifies to h(xHAx) ·Ax = λx,30

so its eigenvector x must also be an eigenvector of the Hermitian matrix A, and by31

the monotonicity of h, x corresponds to the largest eigenvalue of A.32

In Section 2, we will see that the mNEPv (1.1) is intrinsically related to the33

following maximization problem:34

(1.3) max
x∈Cn, ‖x‖=1

{
F (x) :=

m∑
i=1

φi
(
xHAix

)}
,35
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2 Z. BAI AND D. LU

where {φi} are anti-derivatives of {hi}, i.e., φ
′

i(t) = hi(t), for i = 1, . . . ,m. Since36

{hi} are differentiable and non-decreasing, {φi} are twice-differentiable and convex37

functions. We call (1.3) an associated maximization of the mNEPv (1.1), or aMax.38

The mNEPv (1.1) is a class of the eigenvalue problems with eigenvector nonlinear-39

ities (NEPv). NEPv have been extensively studied in the Kohn–Sham density func-40

tional theory for electronic structure calculations [42] and the Gross–Pitaevskii eigen-41

value problem, a nonlinear Schrödinger equation to describe the ground states of ul-42

tracold bosonic gases [9, 31]. NEPv have also been found in a variety of computational43

problems in data science, e.g., Fisher’s linear discriminant analysis [47, 66, 67] and its44

robust version [8], spectral clustering using the graph p-Laplacian [16], core-periphery45

detection in networks [57], and orthogonal canonical correlation analysis [68].46

Self-Consistent-Field (SCF) iteration is a gateway algorithm to solve NEPv, much47

like the power method for solving linear eigenvalue problems. The SCF was introduced48

back in the 1950s [54]. Since then, the convergence analysis of the SCF has long been49

an active research topic in the study of NEPv; see [7, 17, 18, 40, 55, 59].50

Although the underlying structure of the mNEPv (1.1) is commonly found in51

NEPv, it has been largely unexploited. In this paper, we will conduct a systematical52

study of the mNEPv and exploit its underlying structure. Theoretically, we will reveal53

a variational characterization of the mNEPv (1.1) by maximizers of the aMax (1.3).54

Using the variational characterization, we will provide a geometric interpretation of55

the SCF for solving the mNEPv (1.1), which reveals the global convergence of the56

algorithm. We will then prove the global monotonic convergence of the SCF. Finally,57

we will present an accelerated SCF by exploiting the underlying structure of H(x)58

and demonstrate its efficiency with examples from a variety of applications.59

The aMax (1.3) is interesting in its own right and finds numerous applications.60

One important source of the problems is a quartic maximization over the Euclidean61

ball, where φi(t) = t2 [46]. In Section 5, we will discuss such quartic maximization62

problems arising from the joint numerical radius computation and the rank-one ap-63

proximation of partial-symmetric tensors. Another application of the aMax (1.3) is64

from computing the distance to singularity for dissipative Hamiltonian differential-65

algebraic equation (dHDAE) systems [43]. The aMax (1.3) also arises in robust opti-66

mization with ellipsoid uncertainty; see e.g., [12]. By the intrinsic connection between67

the mNEPv and the aMax, we will devise an eigenvalue-based approach for solving68

the aMax that can exploit state-of-the-art eigensolvers from numerical linear algebra.69

Optimizations of the form (1.3) have been investigated in the literature, but they70

are often formulated as the minimization of F (x) over the vector space Rn or Cn.71

Examples of recent studies include the quartic-quadratic optimization with φi(t) = t272

or t [29, 65] and the Crawford number computation with φi(t) = t2 [41]. For these73

minimization problems, eigenvalue-based approaches have been developed, which lead74

to NEPv H(x)x = λx with H(x) given by (1.2) and λ corresponding to the smallest75

eigenvalue of H(x); see [29, 41]. However, as the target eigenvalue is the smallest,76

rather than the largest, the solution and analyses of those NEPv differ fundamentally77

from that of the mNEPv (1.1). For example, the SCF is no longer globally convergent78

for computing the smallest eigenvalue.79

The rest of this paper is organized as follows. Section 2 presents a variational80

characterization of the mNEPv (1.1) through maximizers of the aMax (1.3). Section 381

provides a geometric interpretation of the SCF and proves its global convergence. Sec-82

tion 4 focuses on the practical aspects of the SCF. Section 5 discusses the applications83

of the mNEPv (1.1). Numerical experiments are presented in Section 6 and concluding84

remarks are provided in Section 7.85
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MONOTONE NONLINEAR EIGENVECTOR PROBLEMS 3

We follow standard notation in matrix computations. Rm×n and Cm×n are the86

sets of m-by-n real and complex matrices, respectively. Re(·) extracts the real part of87

a complex matrix or a number. For a matrix (or a vector) X, XT stands for transpose,88

XH for conjugate transpose, and ‖X‖ for the matrix 2-norm. We use λmin(X) and89

λmax(X) for the smallest and largest eigenvalues of a Hermitian X. The spectral90

radius (i.e., largest absolute value of eigenvalues) of a matrix or linear operator is91

denoted by ρ(·). Standard little-o and big-O notation are used: f(x) = o(g(x))92

means that f(x)/g(x)→ 0 as x→ 0, while f(x) = O(g(x)) means that f(x)/g(x) ≤ c93

for some constant c as x→ 0. Other notations will be explained as used.94

2. Variational characterization. Variational characterizations provide pow-95

erful tools to the study of eigenvalue problems, facilitating both theoretical analysis96

and numerical computations. A prominent example is the Hermitian linear eigen-97

value problem of the form Ax = λx, where the Courant-Fischer principle uses opti-98

mizers of the Rayleigh quotient xHAx/xHx to form variational characterizations of99

the eigenvalues of A; see, e.g., [14]. With this characterization, bounds for eigenval-100

ues and interlacing, monotonicity of eigenvalues can be proved quickly. Variational101

characterizations have also been developed for eigenvalue-dependent nonlinear eigen-102

value problems of the form T (λ)x = 0 [34]. It is also well-known that the NEPv in103

Kohn-Sham density functional theory is derived from the minimization of an energy104

function in electronic structure calculations; see, e.g., [42, 18]. In this section, we105

provide a variational characterization of the mNEPv (1.1) by exploring its relation to106

the aMax (1.3).107

2.1. Stability of eigenvectors. We start with the following NEPv without108

assuming the structure of H(x) and the order of the eigenvalue λ:109

(2.1) H(x)x = λx with ‖x‖ = 1,110

where H(x) is Hermitian, differentiable (w.r.t. both real and imaginary parts of x),111

and unitarily scaling invariant (i.e., H(γx) = H(x) for any γ ∈ C with |γ| = 1). Due112

to scaling invariance, we can view an eigenvector x of the NEPv (2.1) as an equivalent113

class [x] := { γx | γ ∈ C, |γ| = 1 }, i.e., a point in the Grassmannian Gr(1,Cn).114

Let x∗ be an eigenvector of the NEPv (2.1) and the corresponding λ∗ be the p-th115

largest eigenvalue of H(x∗). Assume λ∗ is a simple eigenvalue. Then [x∗] can be116

interpreted as a solution to the fixed-point equation over Gr(1,Cn):117

(2.2) [x] = Π([x]),118

where the mapping Π : Gr(1,Cn) → Gr(1,Cn) is defined by Π([x]) := [u(x)] and119

u(x) is an (arbitrary) unit eigenvector for the p-th largest eigenvalue of H(x). The120

attractiveness of the fixed point [x∗] for the mapping Π in (2.2) can be determined121

by the spectral radius of a related linear operator, as established in [7]. To introduce122

this linear operator, we first denote the eigenvalue decomposition of H(x∗) as123

(2.3) H(x∗)
[
x∗ X∗⊥

]
=
[
x∗ X∗⊥

] [λ∗
Λ∗⊥

]
,124

where
[
x∗ X∗⊥

]
∈ Cn×n is unitary and Λ∗⊥ ∈ R(n−1)×(n−1) is a diagonal matrix.125

We then define an R-linear operator1126

(2.4) L : Cn−1 → Cn−1 with L(z) = D−1
∗ XH

∗⊥ (DH(x∗)[X∗⊥z ] )x∗,127

1L : Cm → Cm is called R-linear if L(αx+ βy) = αL(x) + βL(y) for all α, β ∈ R and x, y ∈ Cm.
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4 Z. BAI AND D. LU

where D∗ = λ∗In−1−Λ∗⊥ is diagonal and non-singular since λ∗ is a simple eigenvalue,128

and DH(x)[ d ] is the derivative of H at x along the direction of d:129

(2.5) DH(x)[ d ] := lim
α∈R, α→0

H(x+ αd)−H(x)

α
.130

Let ρ(L) be the spectral radius of L (i.e., the largest absolute value of the eigenvalues).131

Then by [7, Thm. 4.2], we know that if ρ(L) < 1, then [x∗] is an attractive fixed point132

of the mapping Π (2.2); If ρ(L) > 1, then [x∗] is a repulsive fixed point; If ρ(L) = 1,133

then no immediate conclusion can be drawn for the attractiveness of [x∗]. It is worth134

noting that although the theorem [7, Thm. 4.2] is stated for the case λ∗ = λn being135

the smallest eigenvalue of H(x∗), the result holds for a general p-th eigenvalue.136

Returning to the mNEPv (1.1), in the following lemma, we can show that the137

operator L in (2.4) is both self-adjoint and positive semi-definite. Consequently, the138

conditions ρ(L) < 1 or ρ(L) ≤ 1 can be characterized using the definiteness of a139

characteristic function. To facilitate the analysis, we denote the vector space Cn−1140

over the field of real numbers R as Cn−1(R) and introduce an inner product over141

Cn−1(R) as142

(2.6) 〈 y, z 〉D := Re( yHDz ),143

where D is a given Hermitian positive definite matrix of size n− 1.144

Lemma 2.1. Let x∗ ∈ Cn be an eigenvector of the mNEPv (1.1) with a simple145

eigenvalue λ∗. Then the R-linear operator L in (2.4) is self-adjoint and positive semi-146

definite over Cn−1(R) in the inner product (2.6) with D∗ = λ∗In−1−Λ∗⊥. Moreover,147

(a) ρ(L) < 1 if and only if ϕ(d ;x∗) < 0 for all d 6= 0 and dHx∗ = 0;148

(b) ρ(L) ≤ 1 if and only if ϕ(d ;x∗) ≤ 0 for all d 6= 0 and dHx∗ = 0.149

Here, ϕ(d ;x∗) is a quadratic function in d ∈ Cn and is parameterized by x∗ as150

(2.7) ϕ(d ;x∗) := dH
(
H(x∗)−(xH∗ H(x∗)x∗) I

)
d+2

m∑
i=1

h′i(x
H
∗ Aix∗)·(Re(dHAix∗))

2.151

Proof. To show that L is self-adjoint and positive semi-definite, we first derive152

from the definition (1.2) of H(x) that the directional derivative (2.5) is given by153

DH(x)[ d ] = 2

m∑
i=1

Re
(
xHAid

)
· h′i(xHAix) ·Ai.154

Therefore, the R-linear operator L in (2.4) takes the form of155

L(z) = 2D−1
∗

m∑
i=1

Re(xH∗ AiX∗⊥z) · h′i(xH∗ Aix∗) ·XH
∗⊥Aix∗.(2.8)156

157

Since λ∗ is a simple largest eigenvalue, D∗ = λ∗In−1−Λ∗⊥ is a diagonal and positive158

definite matrix. A quick verification shows159

〈 L(y), z 〉D∗ = 2
m∑
i=1

h′i(x
H
∗ Aix∗) · Re(xH∗ AiX∗⊥z) · Re(xH∗ AiX∗⊥y) = 〈 y,L(z) 〉D∗ ,160

i.e., L is self-adjoint w.r.t. the inner product 〈·, ·〉D∗ over Cn−1(R). Letting y = z, we161

can also show L is positive semi-definite:162

(2.9) 〈 L(z), z 〉D∗ = 2
m∑
i=1

h′i(x
H
∗ Aix∗) · Re(xH∗ AiX∗⊥z)

2 ≥ 0,163
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where we used the assumption that hi is non-decreasing (so h′i is non-negative).164

Now by the variational principle for the eigenvalues of self-adjoint operators (see,165

e.g., [63, Chap 1]), the spectral radius166

(2.10) ρ(L) = λmax(L) = max
z 6=0

〈 L(z), z 〉D∗
〈 z, z 〉D∗

.167

Let d = X∗⊥z. Then we have168

(2.11) 〈 z, z 〉D∗ ≡ zH(λ∗In−1 − Λ∗⊥)z = dH(xH∗ H(x∗)x∗ · In −H(x∗))d,169

where we used the identities λ∗ = xH∗ H(x∗)x∗ and H(x∗)X∗⊥ = X∗⊥Λ∗⊥. Therefore,170

ρ(L)− 1 = max
z 6=0

〈 L(z), z 〉D∗ − 〈 z, z 〉D∗
〈 z, z 〉D∗

≡ max
z 6=0, d=X∗⊥z

ϕ(d ;x∗)

〈 z, z 〉D∗
,171

where ϕ is from (2.7), and we used (2.9) for 〈 L(z), z 〉D∗ and (2.11) for 〈 z, z 〉D∗ .172

Consequently, ρ(L) < 1 (or ρ(L) ≤ 1) if and only if ϕ(d ;x∗) < 0 (or ϕ(d ;x∗) ≤ 0)173

for all d = X∗⊥z with z 6= 0. Since [X∗⊥, x∗] is unitary, a vector d = X∗⊥z for some174

z 6= 0 if and only if dHx∗ = 0 with d 6= 0. Results in items (a) and (b) follow.175

By the standard notion of stability of fixed points of a mapping in the fixed-176

point analysis, see, e.g., [2, 13], we can classify the stability of the eigenvectors of the177

mNEPv (1.1) using the spectral radius ρ(L) and, alternatively, the characterization178

function ϕ in Lemma 2.1.179

Definition 2.2. Let x∗ ∈ Cn be an eigenvector of the mNEPv (1.1) and ϕ be as180

defined in (2.7). Then x∗ is a stable eigenvector if ϕ(d ;x∗) < 0 for all d 6= 0 and181

dHx∗ = 0, and x∗ is a weakly stable eigenvector if ϕ(d ;x∗) ≤ 0 for all d 6= 0 and182

dHx∗ = 0. Otherwise, x∗ is called a non-stable eigenvector.183

Note that Definition 2.2 does not explicitly require λ∗(H(x∗)) is a simple ei-184

genvalue, as the characteristic function ϕ (2.7) is still well-defined for non-simple185

eigenvalues. In addition, we note that for a stable eigenvector x∗, the correspond-186

ing λ∗ must be a simple eigenvalue of H(x∗). Otherwise, there would exist another187

eigenvector x̃ of λ∗ = λmax(H(x∗)) orthogonal to x∗. By letting d = x̃ and recalling188

h′i(t) ≥ 0, we derive from (2.7) that ϕ(d ;x∗) ≥ 0, which contradicts the condition for189

a stable eigenvector that ϕ(d ;x∗) < 0 for all d 6= 0 and dHx∗ = 0.190

2.2. Characterization of mNEPv via aMax. The following theorem pro-191

vides a variational characterization of the mNEPv (1.1) through the aMax (1.3). Be-192

fore stating the theorem, let us recall a standard optimization concept (see, e.g., [48,193

Sec. 2.1]): a unit vector x is called a local maximizer of the aMax (1.3) if there exists194

ε > 0 s.t.195

(2.12) F (x) ≥ F
(

x+ d

‖x+ d‖

)
for all d ∈ Cn with dHx = 0 and ‖d‖ ≤ ε,196

and x is a strict local maximizer if the inequality for F in (2.12) holds strictly.197

Theorem 2.3. Let x ∈ Cn be a unit vector.198

(a) If x is a stable eigenvector of the mNEPv (1.1), then x is a strict local maximizer199

of the aMax (1.3).200

(b) If x is a local maximizer of the aMax (1.3), then x is a weakly stable eigenvector201

of the mNEPv (1.1).202
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6 Z. BAI AND D. LU

Proof. Let x̂ = (x + d)/‖x + d‖. Then, we have x̂HAix̂ = xHAix + δi, for203

i = 1, 2, . . . ,m, where204

(2.13) δi := 2 · Re(dHAix) + dH
(
Ai − (xHAix)I

)
d+O(‖d‖3).205

Hence, by (1.3), the i-th term of F (x̂) satisfies206

φi
(
x̂HAix̂

)
= φi(gi(x) + δi) = φi(gi(x)) + hi(gi(x)) · δi +

1

2
h′i(gi(x)) · δ2

i + o(δ2
i ),207

208

where gi(x) := xHAix. Summing over all φi from i = 1 to m, we obtain209

F (x̂) ≡
m∑
i=1

[
φi(gi(x)) + hi(gi(x)) · δi +

1

2
h′i(gi(x)) · δ2

i + o(δ2
i )

]
210

= F (x) + 2 Re(dHH(x)x) + dH (H(x)− s(x)I) d211

+ 2

m∑
i=1

h′i(gi(x)) ·
(
Re(dHAix)

)2
+ o(‖d‖2)212

= F (x) + 2 Re(dHH(x)x) + ϕ(d ;x) + o( ‖d‖2),(2.14)213214

where the second equality is by (2.13) and s(x) := xHH(x)x.215

For item (a): We need to show the inequality (2.12) holds strictly. By the NEPv216

H(x)x = λx and the orthogonality dHx = 0, we have dHH(x)x = 0. So (2.14) implies217

(2.15) F (x̂) = F (x) + ϕ(d ;x) + o(‖d‖2).218

Since the stability of x (Definition 2.2) implies ϕ(d ;x) < 0 and we can drop o(‖d‖2)219

(which is negligible to ϕ(d ;x) = O(‖d‖2)), (2.15) leads to F (x) > F (x̂) as ‖d‖ → 0.220

For item (b): Let d be sufficiently tiny and dHx = 0. It follows from the local221

maximality (2.12) and the expansion (2.14) that222

(2.16) 0 ≥ F (x̂)− F (x) = 2 · Re(dHH(x)x) + ϕ(d ;x) + o(‖d‖2).223

Therefore, the leading first-order term must vanish, that is, Re(dHH(x)x) = 0 for all224

d with dHx = 0. This implies that H(x)x and x have common null spaces, i.e.,225

(2.17) H(x)x = λx, for some scalar λ.226

To show that x is a weakly stable eigenvector (Definition 2.2), we still need to227

prove that (i) λ in (2.17) is the largest eigenvalue of H(x), and (ii) ϕ(d ;x) ≤ 0 for228

all d with dHx = 0. Condition (ii) follows from (2.16), by noticing that the first229

term on the right side vanishes due to (2.17) and that o(‖d‖2) is negligible to the230

quadratic function ϕ(d ;x) as ‖d‖ → 0. Condition (ii), in turn, also implies λ is231

the largest eigenvalue of H(x). Otherwise, there is a λ̃ > λ with H(x)x̃ = λ̃x̃ and232

x̃Hx = 0. Recall (2.7) that ϕ(d ;x) ≥ dH(H(x) − (xHH(x)x)I)d. Let d = x̃ and we233

have ϕ(d ;x) ≥ λ̃− λ > 0, contradicting ϕ(d ;x) ≤ 0.234

Results from Theorem 2.3 can be regarded as second-order sufficient and necessary235

conditions for the aMax (1.3). They are stated in a way to highlight the connections236

between the local maximizers of the aMax and the stable eigenvectors of the mNEPv,237

which benefits the analysis of the SCF to be discussed in Section 3. We note that the238

objective function F (x) of the aMax is not holomorphic (i.e. complex differentiable in239
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x ∈ Cn). Therefore, second-order KKT conditions (see, e.g., [48, Sec. 12.5]) are not240

immediately applicable. Note that turning the problem to a real variable optimization241

(in the real and imaginary parts of x ∈ Cn) and then applying the KKT condition242

will not lead to Theorem 2.3, since there would be no strict local maximizers for the243

real problem due to the unitary invariance of F (x).244

To end this section, let us discuss three immediate implications of the variational245

characterization in Theorem 2.3.246

(1) Given the intrinsic connection between the mNEPv (1.1) and the aMax (1.3),247

stable and weakly stable eigenvectors of the NEPv are of particular interest. Since248

the aMax always has a global (hence local) maximizer, Theorem 2.3(b) guarantees249

the existence of weakly stable eigenvectors. Although such eigenvectors may not250

be unique and may correspond to local but non-global maximizers of the aMax251

(see Example 6.1), the connection to the aMax greatly facilitates the design and252

analysis of algorithms for the mNEPv (1.1), such as a geometric interpretation of253

the SCF in Section 3.254

(2) Theorem 2.3 is a generalization of the well-known variational characterization255

of Hermitian eigenvalue problem. Consider the case of the mNEPv (1.1) with256

m = 1 and h1(t) = 1, i.e., A1x = λx. Let λ ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of257

A1 with eigenvectors [x, x2, . . . , xn]. Since any non-zero d orthogonal to [x] can258

be written as d = α2x2 + · · · + αnxn for some {αi}ni=2, the function ϕ defined259

in (2.7) becomes ϕ(d ;x) = dH(A1 − λI)d =
∑n
i=2 α

2
i (λi − λ). Hence, ϕ(d ;x) is260

non-positive, and strictly negative if λ is simple. Then Theorem 2.3 can be para-261

phrased to the well-known variational characterization of Hermitian eigenvalue262

problems: Eigenvectors of the largest eigenvalue of A1 are global maximizers of263

(xHA1x)/(xHx); If the largest eigenvalue is simple, then its eigenvector (up to264

scaling) is the only maximizer; see, e.g., [1, Sec.4.6.2].265

(3) If the matrices {Ai} of the mNEPv (1.1) are real symmetric, then H(x) is real266

symmetric and the eigenvectors of the mNEPv are all real vectors (up to a unitary267

scaling). Theorem 2.3(b) implies that the global maximum of the aMax (1.3) is268

always achieved at a real vector x ∈ Rn, namely,269

(2.18) max
x∈Cn, xHx=1

F (x) = max
x∈Rn, xT x=1

F (x).270

The two maximizations above are fundamentally different in nature. The identity271

holds only due to the specific formulation of F , as demonstrated by Theorem 2.3.272

We highlight the identity (2.18) because many practical optimization problems273

come in the form of the right-hand side with x ∈ Rn. We can nevertheless view274

such a problem as an aMax (1.3) with x ∈ Cn. This allows us to develop a275

unified treatment for both real and complex variables, which is highly beneficial,276

as shown in the case of numerical radius computation in Subsection 5.1.277

3. Geometry and global convergence of the SCF. Much like the power278

method for solving linear eigenvalue problems, self-consistent-field (SCF) iteration is279

a gateway method for NEPv; see [42, 17] and references therein. For the mNEPv (1.1),280

the SCF starts from an initial unit vector x0 ∈ Cn and generates a sequence of approx-281

imate eigenvectors x1, x2 . . . , via sequentially solving the linear eigenvalue problems282

(3.1) H(xk)xk+1 = λk+1 xk+1, for k = 0, 1, . . . ,283

where λk+1 is the largest eigenvalue of H(xk) and xk+1 is a unit eigenvector. In284

the following, we first present a geometric interpretation of the SCF (3.1), and then285

provide a proof of the global convergence of SCF based on the geometric observation.286

This manuscript is for review purposes only.



8 Z. BAI AND D. LU

3.1. Geometry of the SCF. In Subsection 2.2, we have discussed the varia-287

tional characterization of the mNEPv (1.1) via the aMax (1.3). Now consider the288

change of variables289

(3.2) y = g(x) with g(x) :=
[
xHA1x, . . . , x

HAmx
]T ∈ Rm.290

The aMax (1.3) is then recast as an optimization over the joint numerical range291

(3.3) max
y∈W (A)

{
φ(y) :=

m∑
i=1

φi( y(i))
}
,292

where y(i) is the i-th entry of y, and W (A) ⊂ Rm is a (first) joint numerical range of293

an m-tuple A := (A1, . . . , Am) of Hermitian matrices A1, . . . , Am defined as294

(3.4) W (A) =
{
y ∈ Rm | y = g(x), x ∈ Cm, ‖x‖ = 1

}
.295

By definition, W (A) is the range of the vector-valued function g over the unit sphere296

{x ∈ Cn | ‖x‖ = 1}. Since g is a continuous and bounded function, W (A) is a297

connected and bounded subset of Rm. Moreover, it is known that the set of W (A) is298

convex in cases such as m = 1, 2 for any matrix size n, m = 3 for n ≥ 3 [3, 4], and299

other cases under proper conditions [36].300

Before we proceed, let us first revisit the notion of supporting hyperplane for a301

general bounded and closed subset Ω of Rm. To this end, we can define a hyperplane302

(3.5) Pv :=
{
y ∈ Rm | vT (y − yv) = 0

}
,303

where v is a given non-zero vector in Rm and yv satisfies304

(3.6) yv ∈ arg max
y∈Ω

vT y.305

The hyperplane Pv contains in one of its half-space the entire Ω, and it also passes306

through at least one point in Ω, because307

(3.7) (i) vT y ≤ vT yv for all y ∈ Ω and (ii) yv ∈ Ω.308

We will refer to Pv as a supporting hyperplanes of Ω with an outer normal vector v309

(pointing outward from Ω) and a supporting point yv. Supporting hyperplanes are310

commonly used for studying convex sets; see, e.g., [15, Sec. 2.5].311

Finding the global optimizer in (3.6) for a general set Ω is hard. Fortunately,312

if the set Ω = W (A), then the following lemma shows that the supporting point yv313

in (3.6) can be obtained by solving a Hermitian eigenvalue problem.314

Lemma 3.1. Let v ∈ Rm be a nonzero vector. Then315

(3.8) yv ∈ arg max
y∈W (A)

vT y if and only if yv = g(xv),316

where xv is an eigenvector for the largest eigenvalue λv of the Hermitian matrix317

(3.9) Hv :=
m∑
i=1

v(i) ·Ai,318

and v(i) is the i-th entry of v.319
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Proof. Observe that320

(3.10) vT g(x) =
m∑
i=1

(xHAix) · v(i) = xHHvx.321

The maximization from (3.8) leads to322

max
y∈W (A)

vT y = max
‖x‖=1

vT g(x) = max
‖x‖=1

xHHvx = xHv Hvxv = vT g(xv),323
324

where the second and the last equalities are due to (3.10), and the third equality is by325

the eigenvalue maximization principle of Hermitian matrices, namely, the maximizer326

of xHHvx is achieved at any eigenvector xv of the largest eigenvalue of Hv.327

Lemma 3.1 suggests a close relation between the SCF (3.1) and the search for328

supporting points of W (A). Such relation is called a geometric interpretation of the329

SCF and is formally stated in the following theorem.330

Theorem 3.2. Let {xk} be a sequence of unit vectors generated by the SCF (3.1),331

and yk := g(xk), where g is defined in (3.2). Then it holds332

(3.11) yk+1 ∈ arg max
y∈W (A)

∇φ(yk)T y.333

Therefore, geometrically,334

(3.12) yk+1 is a supporting point of W (A) for the outer normal vector ∇φ(yk).335

Proof. The coefficient matrix H(xk) by (1.2) is an Hv matrix in Lemma 3.1:336

(3.13) H(xk) ≡ Hvk with vk = ∇φ(yk) and yk = g(xk) ∈W (A).337

Hence, the k-th SCF iteration (3.1) is to solve the eigenproblem Hvkxk+1 = λk+1xk+1.338

It follows from Lemma 3.1 that yk+1 = g(xk+1) is a solution of (3.8) for vk = ∇φ(yk).339

Therefore, yk+1 is a supporting point of W (A) for the outer normal direction ∇φ(yk).340

By Theorem 3.2, the SCF iteration (3.1) can be visualized as searching the so-341

lution of the mNEPv (1.1) on the boundary of the joint numerical range W (A).342

Moreover, at a solution x∗ of the mNEPv (1.1), the geometric interpretation (3.12)343

is equivalent to the following geometric first-order optimality condition for the con-344

strained optimization (3.3):345

(3.14) ∇φ(y∗) is an outer normal vector of W (A) at y∗,346

where y∗ = g(x∗). These concepts are illustrated by the example below.347

Example 3.3. Let us consider the mNEPv (1.1) of the form348

(3.15) H(x)x = λx with H(x) = (xHA1x) ·A1 + (xHA2x) ·A2,349

where A1 and A2 are Hermitian matrices. The mNEPv (3.15) arises from numerical350

radius computation and will be further discussed in Subsection 5.1. By Theorem 2.3351

and (3.3), the mNEPv (3.15) can be characterized by the optimization problems352

(3.16) max
‖x‖=1

{
F (x) := [(xHA1x)2+ (xHA2x)2]/2

}
= max
y∈W (A1,A2)

{
φ(y) := ‖y‖2/2

}
,353
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Fig. 1. (Left) Illustration of Example 3.3 for the first three iterates x0, x1, x2 by the SCF (3.1)
for the mNEPv (3.15): the shaded region is the joint numerical range W (A1, A2); dashed lines
are contours of φ(y) = ‖y‖2/2 with dashed arrows the gradient directions ∇φ; solid tangent lines
are ‘supporting hyperplanes’ at yi = g(xi) with solid arrows the normal direction ∇φ(yi−1); the

maximizer of (3.16) is marked as 8. (Right) Illustration of Example 3.6 for stable eigenvectors,

marked as solid stars 8, and non-stable eigenvectors, marked as hollow stars 9: Close to a non-
stable eigenvector, the gradients ∇φ (dashed arrows) point away from the normal vectors (solid

arrow), leading to divergence of the SCF from 9.

where W (A1, A2) is a joint numerical range of A1 and A2. The left plot in Figure 1354

depicts the SCF as a search process for solving the mNEPv (3.15) with randomly355

generated Hermitian matrices A1 and A2 of size 10. Given the initial y0 = g(x0),356

the SCF first searches in the gradient direction v0 = ∇φ(y0) to obtain a supporting357

point y1 = g(x1); it then searches in the gradient direction ∇φ(y1) to obtain the358

second supporting point y2 = g(x2); and so on. When this process converges to359

y∗ = g(x∗), the gradient ∇φ(y∗) overlaps the outer normal vector of W (A) at y∗, i.e.,360

the optimality condition (3.14) is achieved.361

Another key indication of (3.11) is that the SCF is a successive local linearization362

for the optimization (3.3): At iteration k, it approximates φ(y) by its first-order363

expansion364

(3.17) `k(y) := φ(yk) +∇φ(yk)T (y − yk)365

and solves the optimization of the linear function over the joint numerical range366

(3.18) max
y∈W (A)

`k(y).367

By dropping the constant terms in `k(y), the maximizers of (3.18) satisfy368

arg max
y∈W (A)

`k(y) ≡ arg max
y∈W (A)

∇φ(yk)T y.369

Hence, the solution to (3.18) is exactly yk+1 in (3.11), and we have370

(3.19) `k(yk+1) = max
y∈W (A)

`k(y).371

These observations are helpful to the proof of the global convergence of the SCF as372

to be presented in Subsection 3.2.373
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3.2. Convergence analysis of the SCF. In this section, we show that the SCF374

iteration is globally convergent to an eigenvector of the mNEPv (1.1) as indicated by375

the visualization of the SCF in Subsection 3.1. Moreover, the converged eigenvector376

is typically a stable one and the rate of convergence is at least linear.377

We begin with the following theorem on the global convergence of the SCF (3.1).378

Here for a sequence of unit vectors {xk}, we call x∗ an (entry-wise) limit point if379

(3.20) x∗ = lim
j→∞

xkj for some subsequence {xkj} indexed by k1 < k2 < · · · .380

By the Bolzano–Weierstrass theorem, a bounded sequence in Cn has a convergent381

subsequence, so the sequence {xk} of unit vectors has at least one limit point x∗.382

Theorem 3.4. Let {xk} be a sequence of unit vectors from the SCF (3.1) for the383

mNEPv (1.1), and F (x) be the objective function of the aMax (1.3). Then384

(a) F (xk+1) ≥ F (xk) for k = 0, 1, . . . , with equality holds only if xk is an eigenvector385

of the mNEPv (1.1);386

(b) each limit point x∗ of {xk} must be an eigenvector of the mNEPv (1.1), and it387

holds F (x∗) ≥ F (xk) for all k ≥ 0.388

Proof. For item (a), recall that the linearization `k in (3.17) is a lower supporting389

function for the convex function φ, i.e., `k(y) ≤ φ(y) for y ∈W (A). Consequently,390

(3.21) F (xk+1) ≡ φ(yk+1) ≥ `k(yk+1) = max
y∈W (A)

`k(y) ≥ `k(yk) = φ(yk) ≡ F (xk),391

where the third equality is by (3.19). Moreover, if the equality F (xk+1) = F (xk)392

holds, then (3.21) implies393

(3.22) `k(yk) = max
y∈W (A)

`k(y),394

namely,395

yk ∈ arg max
y∈W (A)

`k(y) ≡ arg max
y∈W (A)

∇φ(yk)T y.396

According to Lemma 3.1, yk = g(xk) and xk is an eigenvector for the largest eigenvalue397

of Hvk with vk = ∇φ(yk). Since Hvk ≡ H(xk), we have H(xk)xk = λxk and λ is the398

largest eigenvalue, i.e., xk is an eigenvector of the mNEPv (1.1).399

For item (b), let {xkj} be a subsequence of {xk} convergent to x∗. The monotonic-400

ity from item (a) implies F (x∗) ≥ F (xk) for all k ≥ 0. To show x∗ is an eigenvector,401

we denote by ykj = g(xkj ) and y∗ = g(x∗). The linearization of φ at y∗ satisfies402

(3.23) `∗(y) := φ(y∗) +∇φ(y∗)
T (y − y∗) = lim

j→∞
`kj (y),403

where the last equality is due to (3.17), y∗ = limj→∞ ykj , and continuity of φ and ∇φ.404

We first show that405

(3.24) ∇φ(y∗)
T (y − y∗) ≤ 0 for all y ∈W (A).406

Otherwise, there exists a ỹ ∈W (A) with407

(3.25) ε := ∇φ(y∗)
T (ỹ − y∗) > 0.408

By the convergence of `kj → `∗ in (3.23), there exists N ≥ 0 such that for all j ≥ N ,409

(3.26) `kj (ỹ) ≥ `∗(ỹ)− ε/2.410
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It then follows from (3.21) (with k = kj) that for all j ≥ N ,411

φ(ykj+1) ≥ max
y∈W (A)

`kj (y) ≥ `kj (ỹ) ≥ `∗(ỹ)− ε

2
= φ(y∗) +

ε

2
,412

where the last two equations are due to (3.26) and (3.25). The equation above implies413

F (xkj+1) ≥ F (x∗) + ε/2, contradicting F (x∗) ≥ F (xk) for all k.414

It follows from (3.23) and (3.24) that415

`∗(y∗) = max
y∈W (A)

`∗(y) = φ(y∗).416

Then by the same arguments as for the yk in (3.22), we have x∗ is an eigenvector of417

the mNEPv (1.1).418

In Section 5, we will discuss the mNEPv (1.1) arising from optimization of the419

form (1.3), for which the monotonicity of the objective function is highly desirable.420

Starting from any x0, the SCF will find an eigenvector x∗ that has an increased421

function value F (x∗) ≥ F (x0).422

Let’s now consider the local convergence properties of the SCF. Theorem 3.4 guar-423

antees that the SCF will converge globally to some eigenvector of the mNEPv (1.1)424

from any initial guess x0. In theory, SCF may terminate at a non-stable eigenvector425

x∗ of the mNEPv, if it exists. In practice, however, convergence to a non-stable eigen-426

vector is unlikely to happen, because such eigenvectors are repulsive fixed points of427

the mapping Π (2.2), as explained in Subsection 2.1. Therefore, the SCF (3.1), which428

is a fixed point iteration with Π, will diverge from a non-stable x∗ when xk is in a429

neighborhood of x∗. More rigorously, by the local convergence analysis of the SCF430

for a general unitarily invariant NEPv (see [7, Theorem 1]), we can draw the local431

convergence of the SCF (3.1) for the mNEPv (1.1) as stated in the following theorem.432

Theorem 3.5. Let x∗ be an eigenvector of the mNEPv (1.1) with a simple eigen-433

value λ∗, L be the R-linear operator (2.4) for x∗, and ρ(L) be the spectral radius.434

(a) If ρ(L) < 1 (i.e., x∗ is a stable eigenvector by Definition 2.2), then the SCF (3.1)435

is locally convergent to x∗, with an asymptotic convergence rate bounded by ρ(L).436

(b) If ρ(L) > 1 (i.e., x∗ is a non-stable eigenvector by Definition 2.2), then the SCF437

is locally divergent from x∗.438

Here we recall that an iterate xk by the SCF (3.1) is understood as an one-dimensional439

subspace spanned by xk. The local convergence and divergence of xk in Theorem 3.5440

is measured by the vector angle ∠(x∗, xk) := cos−1
(
|xH∗ xk|

)
.441

Example 3.6. By the geometric interpretation of the SCF from Theorem 3.2, we442

can visualize its local convergence behavior revealed in Theorem 3.5. The right plot443

in Figure 1 depicts the search directions of the SCF for a numerical radius problem444

described in (3.16), with the corresponding mNEPv (3.15). There are four eigenvec-445

tors (marked as stars, where the solid and dashed arrows overlap). Two solid stars446

are stable eigenvectors (i.e., local maximizers of (3.16)) and two hollow stars are non-447

stable eigenvectors (non-maximizers). The reason why the SCF is locally convergent448

to stable eigenvectors is now clear: close to a solid star, the search directions ∇φ(y)449

by (3.12) (dashed arrow) brings the next iteration closer to the solid star. In contrast,450

close to a hollow star, the search directions lead away from the hollow star. This ob-451

servation also justifies the name of non-stable eigenvector, since a slight perturbation452

will lead the SCF to diverge from those solutions.453

Combining the properties of global and local convergence in Theorems 3.4 and 3.5,454

we can summarize the overall convergence of the SCF (3.1) as follows:455
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1. Let x∗ be an (entry-wise) limit point of {xk} by the SCF. Then x∗ is an456

eigenvector of the mNEPv (1.1); see Theorem 3.4(b).457

2. The limit point x∗ is unlikely a non-stable eigenvector, since the SCF is locally458

divergent from non-stable eigenvectors; see Theorem 3.5(b).2 Consequently,459

the SCF is expected to converge to (at least) a weakly stable eigenvector x∗.460

3. If the limit point x∗ is a stable eigenvector, then the SCF is at least locally461

linearly convergent to x∗; see Theorem 3.5(a).462

4. SCF in practice. In this section, we will introduce an acceleration technique463

and discuss related implementation details of the SCF iteration.464

4.1. Accelerated SCF. The iterative process (3.1) is an SCF in its simplest465

form, also known as the plain SCF. There are a number of ways to accelerate the466

plain SCF, such as the damping scheme [19], level-shifting [64], direct inversion of467

iterative subspace (DIIS) with Anderson acceleration [51], and preconditioned fixed-468

point iteration [39]. Most of these schemes are designed for solving NEPv from elec-469

tronic structure calculations. In this section, we present an acceleration scheme of the470

SCF (3.1) for the mNEPv (1.1) based on the inverse iteration.471

Inverse iterations are a commonly used technique for solving linear eigenvalue472

problems [30] and eigenvalue-dependent nonlinear eigenvalue problems [25]. Moreover,473

there is also an inverse iteration available for NEPv in the form474

(4.1) H(x/‖x‖) · x = λx,475

where H(x) is a real symmetric matrix that is differentiable in x ∈ Rn [31].3 For nor-476

malized x, we have H(x/‖x‖) ≡ H(x), so that the mNEPv (1.1) can be equivalently477

written to an NEPv (4.1). In the following, we will first revisit the inverse iteration478

scheme in [31], and then propose an improved scheme for solving the mNEPv (1.1)479

by exploiting its underlying structure.480

Let xk be a unit approximate eigenvector of the NEPv (4.1) and σk be a given481

shift close to a target eigenvalue. The following inversion step is proposed in [31] to482

improve xk:483

(4.2) x̃k = αk (J(xk)− σkI)
−1
xk with J(x) :=

∂

∂x
(H(x/‖x‖)x),484

where αk is a normalization factor. The formula (4.2) can be derived from Newton’s485

method applied to the nonlinear equations H(x/‖x‖)x − λx = 0 and xTx = 1. Iter-486

atively applying (4.2) with a fixed shift σ has been proven to converge linearly with487

a convergence factor proportional to |σ − λ∗|, whereas using dynamic Rayleigh shifts488

σk = xTkH(xk)xk is expected to yield quadratic convergence [31]. However, directly489

applying the inverse iteration (4.2) may lead to convergence to an eigenvalue that is490

not the largest one. Hence, we will only use it as a local acceleration scheme for SCF.491

We first note that despite the matrix H(x) of the mNEPv (1.1) is symmetric492

when all coefficient matrices A1, . . . , Am are real symmetric, the corresponding Jaco-493

bian J(x) in (4.2) is generally not. Specifically, the Jacobian J(x) is given by494

J(x) ≡ ∂

∂x
(H(x/‖x‖)x ) = H(x) + 2M(x)C(x)M(x)TP (x),(4.3)495

496

2One exceptional but rare case is that some xk coincides with a non-stable x∗ and SCF terminates.
3The authors in [31] considered scaling invariant NEPv H(x) · x = λx with H(x) ≡ H(αx) for

all α 6= 0, and they pointed out such NEPv cover (4.1) as a special case.
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where M(x) = [A1x, · · · , Amx] and C(x) = Diag
(
h′1
(
xTA1x

)
, . . . , h′m

(
xTAmx

))
,497

and P (x) = I − xxT is a projection matrix. To symmetrize J(x), we introduce498

(4.4) Js(x) := J(x) + x · q(x)T = H(x) + 2P (x)M(x)C(x)M(x)TP (x),499

where q(x) = 2P (x)M(x)C(x)M(x)Tx ∈ Rn. Since the new matrix Js is a rank-one500

modification of J , by the Sherman–Morrison-Woodbury formula [28], we have501

(Js(xk)− σkI)
−1
xk = c · (J(xk)− σkI)

−1
xk502

for some constant c. Therefore, we can reformulate the inversion step (4.2) to503

(4.5) x̃k = α̃k · (Js(xk)− σkI)
−1
xk,504

where α̃k normalizes x̃k to a unit vector, i.e., we can replace J by the symmetric Js.505

If the coefficient matrices {Ai} are complex Hermitian, then H(x) is not holomor-506

phically differentiable, since its diagonal entries are always real and cannot be analytic507

functions. Consequently, the (holomorphic) Jacobian of H(x/‖x‖)x does not exist.508

Nevertheless, the matrix Js(x) by (4.4) is well-defined and Hermitian (with transpose509

·T replaced by conjugate transpose ·H), so it can still be used for the inversion (4.5).510

4.2. Implementation issues. The SCF with an optional acceleration for solv-511

ing the mNEPv (1.1) is summarized in Algorithm 4.1. A few remarks on the imple-512

mentation detail are in order.513

Algorithm 4.1 The SCF with optional acceleration

Input: Starting x0 ∈ Cn, residual tolerance tol, and acceleration threshold tolacc.
Output: Approximate eigenpair (λk, xk) of the mNEPv (1.1).

1: for k = 1, 2, . . . do
2: H(xk−1)xk = λk · xk with λk = λmax(H(xk−1)); % SCF
3: if res(xk) ≤ tol, then return (λk, xk); % test for convergence
4: if res(xk) ≤ tolacc then % acceleration if activated
5: compute x̃k by (4.5) with the shift σk = xHk H(xk)xk.
6: if F (x̃k) > F (xk), then update xk = x̃k;
7: end if
8: end for

(1) The initial x0, in view of the geometry of the SCF discussed in Subsection 3.1,514

can be chosen from sampled supporting points of W (A). To do this, we randomly515

choose ` search directions vi ∈ Rm, for i = 1, . . . , `, and then find the supporting516

points yvi = g(xvi) of W (A) along each direction. Among xv1 , . . . , xv` , we choose517

the one with the largest value F (xvi) as x0. This greedy sampling scheme increases518

the chance for the SCF to find the global maximizer of the aMax (1.3).519

To compute the supporting points, Lemma 3.1 tells us that xvi is an eigenvector to520

the largest eigenvalue of the Hermitian matrix Hvi in (3.9). Thus, we need to solve521

` Hermitian eigenvalue problems to obtain ` supporting points. For efficiency, we522

can exploit the fact that H−vi ≡ −Hvi , so we can compute two supporting points523

in both directions ±vi by solving a single eigenvalue problem of Hvi .524

(2) Algorithm 4.1 requires finding the eigenvector corresponding to the largest eigen-525

value of the matrix H(xk−1) in line 2. Additionally, when we apply acceleration,526

we need to solve a linear system with coefficient matrix Js(xk) − σkI in line 5.527
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For the mNEPv of small to medium sizes, direct solvers can be applied, such as528

QR algorithm for Hermitian eigenproblems and LU factoration for linear systems529

(e.g., MATLAB’s eig and backslash, respectively). For large sparse problems,530

iterative solvers are applied, such as the Lanczos type methods for Hermitian531

eigenproblems (e.g., MATLAB’s eigs), and MINRES and SYMMLQ for linear532

systems; see, e.g., [6, 10].533

(3) The acceleration with the inverse iteration is expected to work well for xk close534

to a solution. A threshold tolacc is introduced to control the activation of inverse535

iteration in line 4. If tolacc = 0, Algorithm 4.1 runs the plain SCF. If tolacc =∞,536

Algorithm 4.1 applies acceleration at each step. We observe that the choice of537

tolacc is not critical and tolacc = 0.1 is used in our numerical experiments.538

(4) To maintain the monotonicity of F (xk), as in the SCF, the accelerated eigenvector539

x̃k is accepted only if F (x̃k) ≥ F (xk) in line 6.540

(5) To assess the accuracy of iteration k in line 3, we use the relative residual norm541

(4.6) res(x̂) := ‖H(x̂)x̂− (x̂HH(x̂)x̂) · x̂‖/‖H(x̂)‖,542

where ‖H(x̂)‖ is some convenient to evaluate matrix norm, e.g., the matrix 1-norm543

as we used in the experiments.544

5. Applications. The mNEPv (1.1) and the aMax (1.3) can be found in nu-545

merous applications. In this section, we discuss three of them. The first one is on546

the quartic maximization over the Euclidean sphere and its application for computing547

numerical radius. The second is on the best rank-one approximation of third-order548

partial-symmetric tensors. The third is from the study of the distance to singularity549

of dHADE systems.550

5.1. Quartic maximization and numerical radius. A (homogeneous) quar-551

tic maximization over the Euclidean sphere is of the form552

(5.1) max
x∈Cn, ‖x‖=1

{
F (x) :=

1

2

m∑
i=1

(
xHAix

)2 }
,553

where {Ai} are n-by-n Hermitian matrices. The optimization (5.1) is a classical prob-554

lem in the field of polynomial optimization, although in the literature it is usually555

formulated in real variables, i.e., x ∈ Rn with symmetric {Ai} [27, 46, 70]. In addi-556

tion, it also arises in the study of robust optimization with ellipsoid uncertainty [12].557

Observe that the quartic maximization (5.1) is an aMax (1.3) with {φi(t) = t2/2}.558

Hence the underlying mNEPv (1.1) is of the form559

(5.2) H(x)x = λx with H(x) =
m∑
i=1

(xHAix) ·Ai,560

where the coefficient functions hi(t) = φ′i(t) = t are differentiable and non-decreasing.561

The simplest non-trivial example of the quartic optimization (5.1) is when m = 2,562

which occurs in the well-known problem of computing the numerical radius of a square563

matrix. The numerical radius of a matrix B ∈ Cn×n is defined as564

(5.3) r(B) := max
x∈Cn, ‖x‖=1

|xHBx| = max
x∈Cn, ‖x‖=1

(
(xHA1x)2 + (xHA2x)2

)1/2

,565

where A1 = 1
2 (BH + B) and A2 = ı

2 (BH − B) with ı =
√
−1 are Hermitian matri-566

ces [28]. An extension of (5.3) is the joint numerical radius of an m-tuple of Hermitian567
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matrices A = (A1, . . . , Am) defined as568

(5.4) r(A) := max
x∈Cn, ‖x‖=1

(
m∑
i=1

(xHAix)2

)1/2

,569

see [22]. The (joint) numerical radius plays important roles in numerical analysis. For570

examples, the numerical radius of a matrix is applied to quantify the transient effects571

of discrete-time dynamical systems and analyze classical iterative methods [5, 56].572

The joint numerical radius of a matrix tuple is used for studying the joint behavior573

of several operators; see [35] and references therein.574

Numerical algorithms for computing the numerical radius of a single matrix have575

been extensively studied [26, 44, 45, 58, 62]. To find the global maximizer of (5.3),576

many methods adopt the scheme of local optimization followed by global certifica-577

tion. Most of those algorithms, however, do not immediately extend to computing578

the joint numerical radius with m ≥ 3. A major benefit of the NEPv approach pre-579

sented in this paper is to allow fast computation of the local maximizers to accelerate580

existing approaches. Moreover, the NEPv approach provides a unified treatment for581

matrix tuple A with m matrices and can serve as the basis for future development of582

algorithms towards the global solution of r(A) with m ≥ 3.583

5.2. Best rank-one approximation of third-order partial-symmetric ten-584

sors. Let T ∈ Rn×n×m be a third-order partial-symmetric tensor, i.e., each slice585

Ai := T (:, :, i) ∈ Rn×n is symmetric for i = 1, . . . ,m. The problem of the best586

rank-one partial-symmetric tensor approximation is defined by the minimization587

(5.5) min
µ∈R, x∈Rn, z∈Rm

‖x‖=1,‖z‖=1

‖T − µ · x⊗ x⊗ z‖2F ,588

where ⊗ is the Kronecker product. The solution of (5.5) provides a rank-one partial-589

symmetric tensor µ∗ ·x∗⊗x∗⊗z∗ that best approximates T in the Frobenius norm ‖·‖F590

and is also known as a truncated rank-one CP decomposition of T ; see, e.g., [33, 70].591

The best rank-one approximation (5.5) are often recast as a quartic maximiza-592

tion (5.1); see, e.g., [21, Eq. (6)]. Let xi denote the i-th element of a vector x. Then593

(5.6) ‖T − µ · x⊗ x⊗ z‖2F = ‖T‖2F + µ2 − 2µ
∑
i,j,k

tijkxixjzk,594

where the range of indices i, j, k are omitted in the summation for clarity. Since the595

minimum w.r.t. µ is achieved at µ =
∑
i,j,k tijkxixjzk, the best rank-one approxima-596

tion (5.5) becomes the maximization597

(5.7) max
‖x‖=1
‖z‖=1

(∑
i,j,k

tijkxixjzk

)2

= max
‖x‖=1
‖z‖=1

(∑
k

zk · xTAkx
)2

= max
‖x‖=1

∑
k

(
xTAkx

)2
,598

where the first equality is by Ai = T (:, :, i), and the second equality is due to that the599

maximization w.r.t. z is solved at600

(5.8) z = α · g(x) ≡ α · [xTA1x, . . . , x
TAmx]T601

with α being a normalization factor for ‖z‖ = 1 provided that g(x) 6= 0. The formula602

of z in (5.8) follows from |zT g(x)|2 ≤ ‖g(x)‖2 with equality holds if z = g(x)/‖g(x)‖.603

This manuscript is for review purposes only.



MONOTONE NONLINEAR EIGENVECTOR PROBLEMS 17

Problem (5.7) leads to a quartic maximization (5.1) with real symmetric matrices604

{Ai} and real variables x ∈ Rn, i.e., an aMax (1.3) with {φi(t) = t2/2}. By Theo-605

rem 2.3, the optimizer x∗ is an eigenvector of the mNEPv (5.2) with hi(t) = φ′(t) = t606

and the corresponding eigenvalue is607

(5.9) λ∗ = xT∗H(x∗)x∗ =
∑
k

(
xT∗Akx∗

)2
= µ2

∗.608

Any other eigenvalue λ of (5.2) must satisfy λ ≡ xTH(x)x =
∑
k

(
xTAkx

)2 ≤ λ∗,609

due to (5.9) and maximization (5.7).610

The best rank-one approximation is a fundamental problem in tensor analy-611

sis; see [23, 32, 69]. Third-order partial-symmetric tensors are intensively stud-612

ied [20, 37, 53, 70] and found in applications such as crystal structure [21, 49] and social613

networks (Example 6.4). It is known that tensor rank-one approximation problems614

are closely related to tensor eigenvalue problems [53], such as the Z-eigenvalue [52] and615

`2-eigenvalue [38] for general supersymmetric tensors and C-eigenvalue for third-order616

partial-symmetric tensors [21]. Tensor eigenvalue problems provide first-order opti-617

mality conditions for the best rank-one approximation. But those eigenvalue problems618

are neither formulated nor studied through the NEPv as presented in this paper. For a619

third-order partial-symmetric tensor, its largest C-eigenvalue µ∗ and the correspond-620

ing C-eigenvectors (x∗, z∗) form the best rank-one approximation (5.5) [21]. However,621

solving the tensor C-eigenvalue problems, which involve two coupled nonlinear equa-622

tions in (µ, x, z), are fundamentally different from solving the mNEPv (5.2). Efficient623

solutions to the nonlinear equations for the C-eigenvalue are still largely open.624

5.3. Distance problem in dHDAE systems. Consider the following dissipa-625

tive Hamiltonian differential-algebraic equation (dHDAE):626

(5.10) J
dju

dtj
= B0 +B1

du

dt
+ · · ·+B`

d`u

dt`
,627

where u : R → Rn is a state function, j is an integer between 0 and `, J = −JT is628

skew symmetric, and Bi � 0 are symmetric positive semi-definite for i = 0, . . . , `.629

By convention, d0u
dt0 = u. The dHDAE (5.10) arises in energy based modeling of630

dynamical systems [43, 60]. An important special case is with j = 0 and ` = 1, known631

as the linear time-invariant dHDAE system [11, 60]. Another one is the second-order632

dHDAE (5.10) with j = 1 and ` = 2 [11, 43].633

To analyze the dynamical properties of a dHDAE system, one needs to know634

whether the system is close to a singular one. A dHDAE system (5.10) is called635

singular if det(P (λ)) ≡ 0 for all λ ∈ C, where636

(5.11) P (λ) = −λjJ +B0 + λB1 + · · ·+ λ`B`637

is the characteristic matrix polynomial. The distance of a dHDAE system to the638

closest singular dHDAE system is measured by the quantity dsing(P (λ)):639

dsing(P (λ)) = min
x∈Rn

‖x‖=1

{
2‖Jx‖2 +

∑̀
i=0

(
2‖(I − xxT )Bix‖2 + (xTBix)2

)}1/2

,(5.12)640

641

see [43, Thm.16]. We can reformulate the optimization (5.12) to an aMax (1.3). First,642
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by the skew-symmetry of J and the symmetry of Bi, we can write (5.12) as643

(
dsing(P (λ))

)2

= min
x∈Rn

‖x‖=1

{
2 · xT (JTJ)x+

∑̀
i=0

[
2xT (BTi Bi)x− (xTBix)2

]}
644

= −2 · max
x∈Rn

‖x‖=1

{
xTA1x+

1

2

`+2∑
i=2

(xTAix)2

}
,(5.13)645

646

where A1 ≡ J2 −
∑`
i=0B

2
i and Ai ≡ Bi−2 for i = 2, . . . , ` + 2. Consequently, (5.13)647

is of the form of the aMax (1.3):648

(5.14) max
x∈Rn, ‖x‖=1

{
F (x) := xTA1x+

1

2

`+2∑
i=2

(
xTAix

)2 }
,649

with φ1(t) = t and φi(t) = t2/2, for i = 2, . . . , ` + 2. By Theorem 2.3, a local650

maximizer of (5.14) can be found by solving the following mNEPv of the form (1.1):651

(5.15) H(x)x = λx with H(x) ≡ A1 +
`+2∑
i=2

(xTAix) ·Ai.652

where h1(t) = 1 and hi(t) = t, for i = 2, . . . , `+ 2, are non-decreasing functions.653

Computable upper and lower bounds of the quantity dsing(P (λ)) have been stud-654

ied in [43, 50], and a recent method using two-level minimization and gradient flow655

has been proposed for estimating dsing(P (λ)) [24]. In comparison, the mNEPv ap-656

proach provides an computationally efficient alternative for estimating dsing(P (λ)) for657

dHDAE systems of any order; see Examples 6.2 and 6.3 in Section 6.658

6. Numerical examples. In this section, we present numerical examples of Al-659

gorithm 4.1 for solving the mNEPv (1.1) arising from the applications described in Sec-660

tion 5. The main purpose of the experiments is to illustrate the convergence behavior661

of the SCF (Algorithm 4.1 with tolacc = 0) and the efficiency of accelerated SCF662

(Algorithm 4.1 with tolacc = 0.1). The error tolerance for both algorithms are set663

to tol = 10−13. All experiments are carried out in MATLAB and run on a Dell664

desktop with Intel i9-9900K CPU@3.6GHZ and 16GB core memory. In the spirit of665

reproducible research, we have made available the MATLAB scripts implementing666

the algorithms and the data used to generate the numerical results presented in this667

paper. They can be accessed at https://github.com/ddinglu/mnepv.668

Example 6.1. In Subsection 5.1, we have discussed that the computation of the669

numerical radius of a matrix B ∈ Cn×n is related to mNEPv (3.15) and the variational670

characterization (3.16) with Hermitian A1 = (BH + B)/2 and A2 = (BH − B) · ı/2.671

For numerical experiment, let us consider the following matrix672

(6.1) B =


0.6 −0.2 −1.9 −0.3
−0.1 −0.3 −1.3 −1.2
−2.0 −1.6 −2.1 1.3
−0.1 −1.6 1.5 −0.1

+ ı


0.6 2.5 −0.2 2.5
2.3 −2.6 0.4 1.3
0.0 0.6 −0.4 1.2
2.0 1.4 1.0 −2.3

 .673

The corresponding numerical range W (A1, A2) is depicted in Figure 2 as the shaded674

region. We sampled 100 different starting vectors x0 to run the SCF, where each675
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Fig. 2. Left: Numerical range W (A1, A2) of the matrix in (6.1). 9 represents the solution
for the mNEPv and • the starting g(x0) of the SCF; The • are colored according to the solution
they have computed (blue is for solution I, red for II, and green for III); The dashed are contours
of φ(y) = ‖y‖2/2; see (3.16). Right: Number of SCF iterations (‘o’) and accelerated SCF (‘×’) for
different x0 parameterized by θ ∈ [0, 2π) as in (6.2).

y0 = g(x0) is a supporting point of W (A1, A2), depicted in Figure 2 as dots on the676

boundary of W (A1, A2). By the discussion on the implementation of Algorithm 4.1,677

such initial x0 are obtained from the eigenvectors xv of the matrix Hv for sampled678

directions v ∈ R2 (see Lemma 3.1 and Subsection 4.2). Since a unit direction v ∈ R2679

can be represented by polar coordinates as v = [cos θ, sin θ]T with θ ∈ [0, 2π). The680

initials x0 are set as681

(6.2) x0 := xv with v = [cos θ, sin θ]T ,682

using 100 equally distant θ between 0 and 2π. The sampled g(x0) are well distributed683

on the boundary of W (A1, A2), as shown in Figure 2.684

For 100 runs of the SCF, three different solutions are found. In Figure 2, they685

are labeled respectively with I, II, III, in descending order of their objective values686

of (3.16). The initial g(x0) on the boundary of W (A1, A2) are colored the same if SCF687

will converge to the same solution, which, hence, reveals the region of convergence for688

SCF. The numbers of SCF iterations with each x0 are reported in Figure 2. For the689

SCF, the iteration numbers vary for different solution, whereas the accelerated SCF690

are almost independent of the choice of the initial x0 with only a moderate increase691

on the boundary of two convergence regions.692

The left plot of Figure 3 depicts the convergence history of the objective func-693

tion F (xk) for four different starting vectors x0, corresponding to the equally distant694

θ ∈ {0, π/2, π, 3π/2} from Figure 2. As expected the SCF demonstrates monotonic695

convergence. The right plot in Figure 3 shows the relative residual norms of xk as696

defined in (4.6). We can see that the SCF quickly enters the region of linear con-697

vergence in all cases (in about 3 iterations). The acceleration takes full advantage of698

the rapid initial convergence and speeds up the SCF significantly. We note that in699

this example the matrices A1 and A2 are complex Hermitian, for which the inverse700

iteration (4.5) with Rayleigh shift σk is not guaranteed quadratically convergent.701

Example 6.2. In this example, we consider the mNEPv (5.15) arising from the702

distance problem of dHDAE systems described in Subsection 5.3. The characteristic703
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Fig. 3. Left: Convergence history of F (xk) by SCF (‘o’) and accelerated SCF (‘×’), where
each colored curve is a run with a particular x0 from 4 different starting vectors. Right: Relative
residual norms (4.6) of the mNEPv.

polynomial of a linear dHDAE system is given by704

(6.3) P (λ) := −J +R+ λE,705

where J = −JT is a skew symmetric, and E and R are symmetric positive definite706

matrices. As discussed in Subsection 5.3, the computation of distance to singularity707

dsing(P (λ)) leads to the optimization (5.13) and the associated mNEPv (5.15), where708

(6.4) F (x) = xTA1x+
1

2

3∑
i=2

(xTAix)2 and H(x) = A1 +
3∑
i=2

(xTAix) ·Ai,709

and A1 = J2 − E2 −R2, A2 = E and A3 = R.710

For experiments, the matrices {J,R,E} of order 30 are generated randomly.4711

Similar to Example 6.1, the initial x0 of the SCF are computed from supporting points712

of the joint numerical range W (A1, A2, A3) ⊂ R3 along several sampled directions713

v ∈ R3. Recall that a unit v ∈ R3 can be represented by spherical coordinates as714

(6.5) v = [sin η cos θ, sin η sin θ, cos η]T with η ∈ [0, 2) and θ ∈ [0, 2π).715

We hence construct an equispaced grid of 20-by-40 points of (η, θ) ∈ [0, π] × [0, 2π],716

yielding 800 supporting points of W (A1, A2, A3). They are depicted in Figure 4,717

together with the approximate joint numerical range they generate.5718

From all 800 initial x0, the SCF converge to the same solution, as marked in Fig-719

ure 4. This solution appears to be the global optimizer of (5.13), as visually verified720

by the level-surface of the objective function φ(y) for the corresponding optimization721

over the joint numerical range (3.3). From the numbers of iterations reported in Fig-722

ure 4, we can see that both SCF and accelerated SCF converge rapidly to the solution.723

The numbers of SCF iterations are not sensitive to the choice of x0. Figure 5 depicts724

4For J : X=randn(n); X = X-X’; X = X/norm(X). For E and R: X=randn(n); X = orth(X); X =

X*diag(rand(n,1)+1.6E-6)*X’.
5Plot generated by MATLAB functions trisurf and boundary using the 800 supporting points.
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Fig. 4. Left: Computed numerical range W (A1, A2, A3) based on 800 sample supporting points

on the boundary (nodes of the mesh); 9 represents the solution for the mNEPv, • the starting g(x0),

and ‘◦’ the first few supporting points g(xk) by SCF; The smaller mesh that crosses 9 is part of
the level-surface φ(y) = φ(y∗) for φ(y) = y(1) + (y(2)2 + y(3)2)/2 at the solution y∗ = g(x̂∗). Right:
Number of SCF iterations (‘o’) and the accelerated SCF (‘×’) for different starting x0 parameterized
by θ ∈ [0, 2π) and η ∈ [0, π) as in (6.5).
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Fig. 5. Left: Convergence history of F (xk) by SCF (‘o’) and accelerated SCF (‘×’), where
each colored curve is a run with a particular x0 from 6 different starting vectors. Right: Relative
residual norms (4.6) of the mNEPv.

the convergence history of F (xk) and the relative residual norms by the SCF from725

six different starting vectors x0 (sampled supporting points of W (A1, A2, A2) along726

the three coordinate axes). We observe that the SCF converges monotonically to the727

same solution, regardless of the starting vector used. The accelerated SCF greatly728

reduces the number of iterations and shows a quadratic convergence rate.729

In general, a computed x̂∗ may not be a global maximizer of the aMax (5.13).730

But we have at least an upper bound of the distance:731

(6.6) dsing(P (λ)) ≡
(
− 2 · max

‖x‖=1
F (x)

)1/2 ≤ (− 2 · F (x̂∗)
)1/2

.732

If the initial vector x0 of the SCF is especially set to be the eigenvector corresponding733
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to the largest eigenvalue of A1, then we have734

(6.7)
(
− 2 · F (x̂∗)

)1/2 ≤ (− 2 · F (x0)
)1/2 ≤ δM :=

(
− 2 · λmax(A1)

)1/2
,735

where the first inequality is by the monotonicity of the SCF (see Theorem 3.4) and the736

second inequality is by the definition of F (x) (6.4). The quantity δM was introduced737

in [43] and used as an estimation of dsing(P (λ)). By the inequalities (6.6) and (6.7),738

the SCF always produces a sharper upper bound of dsing(P (λ)). In this example, the739

SCF provides a sharper estimation
√
−2 · F (x̂∗) ≈ 0.5989, as opposed to δM ≈ 0.6923.740

An alternative computable upper bound to the quantity δM has been recently pro-741

posed in [50], which involves an optimization of sum of Rayleigh quotients, but it does742

not ensure a better estimation than δM [50, Thm. 3.7 and Eg. 3]. In another related743

work [24], the authors considered an approach to estimate the distance dsing(P (λ)),744

based on the observation that the distance is the smallest root of a monotonically745

decreasing function w. A root-finding method such as the bisection can be applied.746

The difficulty there lies in the evaluation of the function w. For a given ε, evaluating747

w(ε) can be very expensive as it requires an optimization by a gradient flow method,748

which involves repeated solution of Hermitian eigenvalue problems of size n.749

Example 6.3. In this example, we consider a quadratic dHDAE system with the
characteristic polynomial

P (λ) := −λG+K + λD + λ2M,

where G = −GT is skew symmetric, and M , D and K are symmetric positive definite.750

By Subsection 5.3, the computation of distance to singularity dsing(P (λ)) leads to the751

optimization (5.13) and the mNEPv (5.15) with752

F (x) = xTA1x+
1

2

4∑
i=2

(xTAix)2 and H(x) = A1 +

4∑
i=2

(xTAix) ·Ai,753

where A1 = G2 −M2 −D2 −K2, A2 = M , A3 = D, and A4 = K.754

For numerical experiments, we consider a lumped-parameter mass-spring-damper755

system Mü + Du̇ + Ku = f with n point-masses and n spring-damper pairs. The756

matrices D and K are interchangeable with DK = KD and are simultaneously diago-757

nalizable [61]. We pick a random skew symmetric G to simulate the gyroscopic effect.758

The sizes n of the matrices are set ranging from 500 to 3000. For each set of testing759

matrices, we run the SCF with 100 different starting vectors x0. Again, those x0 are760

computed from supporting points of the joint numerical range W (A) ⊂ R4 along 100761

randomly sampled directions v ∈ R4.762

Similar to the linear system in Example 6.2, the SCF converge to the same solution763

from all 100 different starting vectors. Figure 6 depicts the convergence history of the764

SCF and the accelerated SCF for a case of n = 1000, with 8 randomly selected starting765

vectors. It shows the same convergence behavior of the SCF and accelerated SCF as766

in the previous example. Table 1 summarizes the iteration number and computation767

time for the algorithms from all testing cases. We can see that the performance of768

both SCF and accelerated SCF are not much affected by the choice of initial vectors.769

Both algorithms converge rapidly, and the accelerated SCF speed up to a factor770

between 2.5 to 6.2. For comparison, we have included the results by the Riemannian771

Trust Region (RTR) method for solving the optimization problem (5.14). We used772

the trustregions function provided by Manopt, a MATLAB toolbox available at773

This manuscript is for review purposes only.



MONOTONE NONLINEAR EIGENVECTOR PROBLEMS 23

0 2 4 6

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 5 10 15

10
-15

10
-10

10
-5

10
0

Fig. 6. Left: Convergence history of F (xk) by SCF (‘o’) and accelerated SCF (‘×’), where
each colored curve is a run with a particular x0 from 8 different starting vectors (lines overlapped).
Right: Relative residual norms (4.6) of the mNEPv.

https://www.manopt.org/. RTR is considered as a state-of-the-art approach for the774

optimization problems with spherical constraints of the form‖x‖ = 1. We observe that775

RTR finds the same solution as the proposed NEPv approach, but it takes significantly776

more running time.777

Table 1
Number of iterations and computation time (in seconds) for various problem sizes n. Reported

are average results from 100 runs with different starting vectors, with the largest deviations marked.

n algorithms F (x∗) iterations timing

500
RTR −0.094157045470939 (±7 · 10−17) 24.2 (±10 ) 1.63 (±0.47)
SCF −0.094157045470939 (±7 · 10−17) 17.0 (±4.0) 1.18 (±0.34)

accel. SCF −0.094157045470939 (±7 · 10−17) 5.3 (±1.3) 0.34 (±0.14)

1000
RTR −0.095120974693461 (±7 · 10−17) 27.8 (±8.8) 8.98 (±1.33)
SCF −0.095120974693461 (±4 · 10−17) 21.3 (±3.3) 6.54 (±1.15)

accel. SCF −0.095120974693461 (±6 · 10−17) 4.7 (±1.3) 1.32 (±0.48)

2000
RTR −0.090910959613593 (±6 · 10−17) 27.6 (±12 ) 58.35 (±9.37)
SCF −0.090910959613593 (±4 · 10−17) 17.0 (±4.0) 4.91 (±1.58)

accel. SCF −0.090910959613593 (±6 · 10−17) 4.8 (±1.8) 1.52 (±0.73)

3000
RTR −0.089186202007536 (±7 · 10−17) 28.4 (±11 ) 181.65 (±20.6)
SCF −0.089186202007536 (±8 · 10−17) 16.9 (±3.9) 20.51 (±5.33)

accel. SCF −0.089186202007536 (±7 · 10−17) 5.2 (±1.2) 6.39 (±1.93)

Example 6.4. As discussed in Subsection 5.2, the problem of best rank-one778

approximation for a partial-symmetric tensor T ∈ Rn×n×m leads to a quartic opti-779

mization (5.7) and the corresponding mNEPv (5.2), where the coefficient matrices780

are Ai := T (:, :, i) ∈ Rn×n for i = 1, . . . ,m. For non-negative tensors, the objective781

function F (x) = 1
2

∑
i

(
xTAix

)2
of (5.7) satisfies F (|x|) ≥ F (x), where | · | denotes782

componentwise absolute value. Therefore, it is advisable to start the SCF (3.1) with783

a non-negative initial x0. Note that if xk ≥ 0 then H(xk) ≥ 0, so by the Perron-784

Frobenius theorem [28], the eigenvector xk+1 for the largest eigenvalue of H(xk) is785

also non-negative. Consequently, the iterates xk by the SCF will remain non-negative.786

This manuscript is for review purposes only.

https://www.manopt.org/


24 Z. BAI AND D. LU

We note that for a non-negative tensor T and a non-negative initial x0, the787

SCF (3.1) is indeed equivalent to the Alternating Least Squares (ALS) algorithm788

for finding the best rank-one approximation (5.5). Recall that in Subsection 5.2, the789

best rank-one approximation (5.5) is turned into the maximization problem:790

(6.8) max
‖x‖=1, ‖z‖=1

(
zT · g(x)

)2
,791

where g(x) = [xTA1x, . . . , x
TAmx]T . Maximizing alternatively with respect to z and792

x leads to the alternating iteration:793

(6.9)


zk+1 = arg max

‖z‖=1

(
zT · g(xk)

)2
= αk · g(xk),

xk+1 = arg max
‖x‖=1

(
zTk+1 · g(x)

)2
= arg max

‖x‖=1

(
xT ·H(xk) · x

)2
,

794

for k = 1, 2, . . . , where αk > 0 is a normalization factor for zk+1. Note that H(xk) ≥ 0795

if xk ≥ 0. The maximizer xk+1 of (6.9) is the eigenvector corresponding to the largest796

eigenvalue of H(xk) by the Perron-Frobenius theorem. Therefore, the iteration (6.9)797

coincides with the SCF. The ALS algorithms are commonly used for low-rank approx-798

imations in tensor computations [33].799

For numerical experiments, we use the following third-order partial-symmetric800

tensors: New Orleans tensor 6 is created from a Facebook network, and has size801

63891 × 63891 × 20 with 477778 nonzeros; Princeton tensor 7 is from a Facebook802

‘friendship’ network, and has size 6593 × 6593 × 6 with 70248 nonzeros; Reuters803

tensor 8 is from a news network based on all stories released by the news agency804

Reuters concerning the September 11 attack during the 66 consecutive days beginning805

at September 11, 2001, and the size of the tensor T is 13332×13332×66 with 486894806

nonzeros. All three tensors are non-negative and sparse (density ≈ 10−5), so are the807

corresponding coefficient matrices Ai = T (:, :, i) for i = 1, . . . ,m.808

In Algorithm 4.1, we use MATLAB eigs for the eigenvalue computation and809

minres for solving the linear system in the acceleration (4.5). We use an adaptive810

error tolerance Tol = min{10−3, res(xk)2} for each call of eigs and minres. We811

use 100 randomly generated and non-negative starting vectors x0 to run the SCF812

(using x0=abs(randn(n,1))). The convergence history is reported in Figure 7. We813

observe that from different starting x0, Algorithm 4.1 always converge to the same814

solution and the convergence rate appears not affected by the choice of x0. Also,815

the accelerated SCF significantly reduces the number of the SCF iterations and has816

a quadratic convergence rate. It is noteworthy that the SCF can find the solution in817

just about a fraction of a second. This is a surprising result, given the large size of818

the Hermitian eigenvalue problem that is solved in each iteration.819

7. Concluding remarks. A variational characterization for the mNEPv (1.1) is820

revealed. Based on that, we provided a geometric interpretation of the SCF iterations821

for solving the mNEPv. The geometry of the SCF illustrates the global monotonic822

convergence of the algorithm and leads to a rigorous proof of its global convergence. In823

addition, we presented an inverse-iteration based scheme to accelerate the convergence824

of the SCF. Numerical examples demonstrated the effectiveness of the accelerated SCF825

6data available at http://socialnetworks.mpi-sws.org/data-wosn2009.html.
7data available at https://archive.org/details/oxford-2005-facebook-matrix.
8data available at http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm.
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Fig. 7. Convergence history of relative residual norms res(xk) (4.6) by the SCF (‘◦’) and
accelerated SCF (‘×’). Each colored curve represents a run with a different starting vector from 100
randomly generated x0 ≥ 0 (due to curve overlapping, 8 selected curves are reported). The reported
computational time are the average results from the 100 runs, with the largest deviations marked.

for solving the mNEPv arising from different applications. By the intrinsic connection826

between the mNEPv (1.1) and the aMax (1.3), we developed an NEPv approach for827

solving the aMax. Algorithmically, it allows the use of state-of-the-art eigensolvers828

for fast solution829

Most results presented in this work can be extended to the case of NEPv (1.1)830

with hi being non-decreasing and locally Lipschitz continuous functions. A variational831

characterization of such NEPv similar to Theorem 2.3 can be established. The present832

work also lays the groundwork for studying a more general class of NEPv in the833

form (1.1), where the coefficient of Ai is a composite function hi(g(x)) with a given834

hi : Rm → R and g(x) as defined in (3.2). Expanding theoretical analysis and835

geometric interpretation of the SCF discussed in the present work to such NEPv is a836

topic for future study.837
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