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NATURAL SYMMETRIES OF SECONDARY HOCHSCHILD HOMOLOGY

DAVID AYALA, JOHN FRANCIS, AND ADAM HOWARD

ABSTRACT. We identify the group of framed diffeomorphisms of the torus as a semi-direct product
of the torus with the braid group on 3 strands; we also identify the topological monoid of framed
local-diffeomorphisms of the torus in similar terms. It follows that the framed mapping class group
is this braid group. We show that the group of framed diffeomorphisms of the torus acts on twice-
iterated Hochschild homology, and explain how this recovers a host of familiar symmetries. In the
case of Cartesian monoidal structures, we show that this action extends to the monoid of framed
local-diffeomorphisms of the torus. Based on this, we propose a definition of an unstable secondary
cyclotomic structure, and show that iterated Hochschild homology possesses such in the Cartesian
monoidal setting.
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INTRODUCTION

Here are the five main results in this article, all of which are motivated by the study of factorization
homology as developed in [AF1]. We direct a reader to the body of the paper for definitions of terms
and notation, in particular of the bolded terms, as well as precise statements and proofs.

Regard the 2-torus T? as a framed 2-manifold via a translation-invariant framing.

Theorem X(2a). There is an equivalence between continuous groups:
T? % Braids — Diff"(T?) .

This homomorphism is given as follows.
— Translation in the group T? defines a continuous homomorphism T2 — Difffr('H‘Q).
— Sheering in each coordinate supplies two extensions from semi-direct products,

T? x Z — Diff"(T?) «+— T2 x Z ,
U1 U2

where Uy = {(1) ﬂ and Uy = [_11 ﬂ , thereby resulting in a single extension
(0.0.1) T2 % (Uy, Us) —> Diff(T?)

involving the free group on the two abstract generators U; and Us.

(1) _01] = UyUU,, the restrictions

of (0.0.1) along the two abstractly isomorphic subgroups T? x (U;UsU;) =2 T? x Z =2
T? x (UaU Us) can be identified, thereby supplying a morphism from the coequalizer
among continuous groups:

(0.0.2) T? % Braids ~ T2 x (Uy,Us | UiUsUs = UsUyUs) — Diff™(T?) |

— As there is an equality of matrices U1UxU; = {

involving a standard presentation of the braid group on 3 strands.

Theorem X(2b). There is an equivalence between continuous monoids:
T2 % Ef (Z) = Imm™(T?)
involving a central extension among monoids

Z—Ef(Z) — Ef (Z) = {A € Mataxo(Z) | det(A) > 0} .

Proposition 0.3.4. Let X be an co-category. The morphism E} (Z) — EF (Z) — Endgroups(T2)
determines an action by E; (Z) on the co-category e-finT of genuine finite T?-modules in X.
A genuine finite T?-module in X that is coherently invariant with respect to this E;(Z)—action
is simply a Imm™(T2)°P-module in X (see Remark 0.3.5):

. E+
MOdlmmf’(Tz)OP(x) ~ (:X:g.f|n‘]1‘2)E2 (Z) '
In particular, there is a forgetful functor:

M0d|mmf'(']1‘2)op(x) — xg.fim]‘Q '
2



We define an unstable secondary cyclotomic structure to be an E;r (Z)-invariant genuine
finite T?-module. (See Remark 0.3.2.)

Theorem Y.1. Let V be a symmetric monoidal co-category that is ®-presentable. Let A be
a 2-algebra in V. Via factorization homology, there is a canonical action

T? % Braid ~ Diff" (T?) ~ HH®(4)

on the twice-iterated Hochschild homology of A. This action is given as follows.
— The action T2 ~ HH® (A) is Connes’ cyclic operators.
— For i = 1,2, the extension T2 x Z ~ HH® (A) is a canonical sheering action of the Connes

cyclic operators.

— There is an identification between the actions Z ~ HH®(A) and Z ~ HH®(A),
U1 U2U1 U2U1 U2

thereby supplying the action T2 x Braids ~ HH® (A).

Theorem Y.2. Let X be a presentable co-category in which products distribute over colimits.
Regard X as a symmetric monoidal oo-category via its Cartesian monoidal structure. Let A
be a 2-algebra in X. Via factorization homology, the twice-iterated Hochschild homology of A
is canonically endowed with an unstable secondary cyclotomic structure:

c . o B+
( (T2 0 E;(Z))OP ~ |mmfr(T2)op ~ HH(Q)(A) ) c (xg.fm']l‘ )E2 (z) '

In other words, HH® (A) canonically has the structure of a genuine finite T?-module that is
EJ (Z)-invariant.

The remainder of this introduction contextualizes, then restates, these results.

Conventions.

e We work in the co-category Spaces of spaces, or co-groupoids, an object in which is a space. This
oo-category can be presented as the co-categorical localization of the ordinary category of compactly-
generated Hausdorff topological spaces that are homotopy-equivalent with a CW complex, localized
on the weak homotopy-equivalences. So we present some objects in Spaces by naming a topological
space.

e By a pullback square among spaces we mean a pullback square in the co-category Spaces. Should the
square be presented by a homotopy-commutative square among topological spaces, then the canonical
map from the initial term in the square to the homotopy-pullback is a weak homotopy-equivalence.

e By a continuous group (resp. continuous monoid) we mean a group-object (resp. monoid-object)

in 8paces. A continuous monoid N determines a pointed (oo, 1)-category BN, which can be presented

by the Segal space A Bar'—(N)> Spaces which is the bar construction of N. For X € X an object in an

oo-category, and for NV a continuous monoid, an action of N on X, denoted N ~ X, is an extension

(X): *« > BN AN, X, The oo-category of (left) N-modules in X is

Modn (X) := Fun(BN,X) .

Every continuous group can be strictified to a topological group (i.e., a group-object in the ordinary
category of topological spaces), but maps among such are more flexible (corresponding to maps of loop
spaces), as not all topological groups are cofibrant with respect to the usual model structure.

e For G ~ X an action of a continuous group on a space, the space of coinvariants is the colimit

X,g = coIim(%Gﬂ)Spaces) € Spaces .

Should the action G ~ X be presented by a continuous action of a topological group on a topological
space, then this space of coinvariants can be presented by the homotopy-coinvariants.

e We work with co-operads, as developed in [Lul]. As such, they are implicitly symmetric. Some
oo-operads are presented as discrete operads, such as Assoc, while some are presented as topological
operads, such as the little 2-disks operad €.



0.1. Moduli and isogeny of framed tori. Here we restate our first result, which identifies the entire
symmetries of a framed torus.
The braid group on 3 strands can be presented as

(011) Braid3 = <T1 , T2 | T1T2T1 = T2T1T2 > .
Through this presentation, there is a standard representation

T U, , U.
(0.1.2) ®: Braids (mo v m o i)

GLy(Z) , where U; = [(1) ﬂ and U; = {1 0} .

The homomorphism @ defines an action Braids 2, GL2(Z) ~ T? as a topological group. This action
defines a topological group:

T? % Braids .

The following result, which is essentially due to Milnor, is the starting point of this paper.

Proposition 0.1.1 (see §10 of [Mi]). The image of ® is the subgroup SLy(Z); the kernel of ® is central,
and is freely generated by the element (1172)® € Braids. Equivalently, ® fits into a central extension
among groups:

T1T: 6
(0.1.3) 1—7 M Braids — SLy(Z) — 1 .

Furthermore, this central extension (0.1.3) is classified by the element

B(r®)
[BSLQ(Z)—Z> BSLy(R) 2522} € H2(SLy(Z); Z) .

That is, there is a canonical top horizontal homomorphism defining a pullback among groups:

Bra|d3 ***** > SLQ (R)
<I>l/ luniversal cover
.
SL2 (Z) W SL2 (R)

Consider the subgroup GL3 (R) C GL(R) consisting of those 2 x 2 matrices with positive determinant
— it is the connected component of the identity matrix. Consider the submonoid

R®: Ef(Z) C GL3(R)
Z

consisting of those 2 x 2 matrices with positive determinant whose entries are integers. Consider the
pullback! among monoids:

(0.1.4) Ef(Z) — > GL) (R)
‘I/L ‘/univcrsal cover
g
ES(Z) GL3 (R).

This morphism ¥ supplies a canonical action E;(Z) z ES(Z) ~ T? as a topological group. This
action defines a topological monoid

T2 x ES (Z) .
Convention 1. By way of §B.1, in particular Corollary B.1.2, we regard all actions of Braid; and
EJ (Z) as left-actions.

ISee Remark B.2.4 for an explicit description of the monoid E;L (2).
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For ¢: 72 = 6%2 a framing of the torus, we introduce as Definition 1.3.8 the continuous group of
framed diffeomorphisms, and the continuous monoid of framed local-diffeomorphisms of the
torus:

Diff" (T2, ) and Imm™ (T2, ¢) .
For ¢ the standard framing of T2, which is invariant with respect to translation in the torus, we
simply write
Diff"(T?) := Diff" (T2, &) and Imm™(T?) = Imm"(T?, ) .
Theorem X.
(1) The map from the set of homotopy-classes of framings of T? to the set of framed-diffeomorphism-
types of tori,
e} FF(T2) — WQMT s
is canonically equivalent to the map

Z? X Loz, — L>o ( {u] , 0) — ged(u,v) .

[

Furthermore, a framing ¢ € Fr(T?) is homotopic to one that is translation invariant if and
only if it is carried to the 0-component of M';r.

(2) Let p: 72 X ez be a framing of the torus.
(a) There is a canonical identification of the continuous group of framed diffeomorphisms of

(T )
Diff" (T2, ¢) ~ {

T? x Braids  , if ¢ is homotopic to a translation invariant framing

(T2 % Z) xZ , if ¢ is not homotopic to a translation invariant framing

(See Notation 1.4.1 for a description of lower semi-direct product.)
(b) There is a canonical identification of the continuous monoid of framed local-diffeomorphisms

of (T2790)"
Imm™™ (T2, ) ~ {

T2 % E;(Z) , if @ is homotopic to a translation invariant framing

(T2 X (Z = NX)) X7, if ¢ is not homotopic to a translation invariant framing
(See Notation 1.4.1 for a description of lower semi-direct products.)
Taking path-components, Theorem X(2a) has the following immediate consequence.

Corollary 0.1.2. Let ¢ be a framing of the torus. There is a canonical identification of the framed
mapping class group of (T2, ) as a subgroup of the braid group on 3 strands:

MCG™(T?,¢) C Braids .

If ¢ is homotopic with a translation-invariant framing, this subgroup is entire. If ¢ is not homotopic
with a translation-invariant framing, this subgroup is conjugate with a standard subgroup,

MCGfr(T27S0) = <T17 (T1T2)6> = ZLXZ )

conjugate

which is abstractly isomorphic with Z x Z.

Remark 0.1.3. Consider the moduli space M of framed tori. Theorem X(1) & (2a) can be phrased
as the assertion that M? has Z>o-many path-components, with the O-path-component the space of
homotopy-coinvariants (CP>)? g .y with respect to the action Braid; 2y GLy(Z) ~ B2Z2 ~ (CP>)*2,
and each other path-component the space (CP>)?2 /2 X BZ in which the coinvariants are with respect

fo the action Z ~21%, GL2(Z) ~ B2Z? ~ (CP>)*2. A neat result of Milnor (see §10 of [Mi]) gives an
isomorphism between groups:
Braids = 71(S® \ Trefoil) .
5



Using that S? \ Trefoil is a path-connected 1-type, this isomorphism reveals that the 0-path-component
(M) € M fits into a fiber sequence of spaces:

(CP>)? — (MT)o — (S* \ Trefoil) .

In §6 of [De], Dehn identifies the oriented mapping class group of a punctured torus with parametrized
boundary as the braid group on 3 strands, as it is equipped with a homomorphism to the oriented
mapping class group of the torus. Through Corollary 0.1.2, this results in an identification between
these mapping class groups. The next result lifts this identification to continuous groups; it is proved
in §1.4.

Corollary 0.1.4. Fiz a smooth framed embedding from the closed 2-disk D? — T2 extending the
inclusion {0} — T2 of the identity element. There are canonical identifications among continuous
groups over Diff(T?):

Diff"(T? rel 0) ~ Braids ~ Diff(T? rel D?) .2
In particular, there are canonical isomorphisms among groups over MCG(T?):

MCG™(T?) = Braids = MCG(T? \ B rel 9) ,
where B2 C D? is the open 2-ball.

Using Theorem X(2a), the presentation (0.1.1) of the braid group Braids lends to a simple (fully ho-
motopy coherent) description of an action by Diff™(T2?). We articulate this description as the following
result, which is proved at the end of §1.5, and requires a bit of set-up to state.

Set-up. Let X be an oco-category. Let G be a continuous group. Consider the oco-category
Modg (X) of G-modules in X. Let T be an automorphism of the continuous group G. Via
pullback, T" determines an automorphism 7*: (G ~ X) — (G Len X) of Modg(X).
Denote the oo-category of T-invariant G-modules as Modg(X)¢??, an object in which is a G-
module (G ~ X) in X together with an identification (G Len X) ~ (G ~ X) between
G-modules in X. Similarly, for S and 7" automorphisms of G, the co-category of G-modules
that are both S and T invariant is Modg (X)¢*T?, an object in which is a G-module (G ~ X)

in X together with identifications (G 5 an X) ~ (G~ X)and (G Laen X))~ (G X)
s yr
between G-modules in X.

Now, via the standard homomorphism GL3(Z) — Autgroups(T?), regard the matrices

11 1 0 0 1
G|y ] wd w=|4 Y aa r=)

as automorphisms of the continuous group T?2.

Corollary 0.1.5. Let X be an co-category. There is a pullback diagram among oo-categories:

Mod e (12 (X) ————— Modr= (X)(UnUz2)

| |

Moda (X)) —————— Modp2 (X) (B 1)

In particular, for X € X an object, an action Difffr(Tz) ~ X is

(1) an action T> ~ X ,

2This composite equivalence between continuous groups can be witnessed by a span among continuous groups,
Diff" (T2 rel 0) <= Diff"(T2 rel D2) — Diff(T? rel D?) in which the leftward map is an equivalence via routine meth-
ods. The more novel aspect of this result can then be rephrased as the rightward map being an equivalence. A quick
explanation of this fact is that the space of framings of T2, fixed at 0 € T2, has contractible path-components (see
Theorem X(1)).
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(2) an identification a o R ~ « of this action o with the action T? ETA X,
R *

(3) fori=1,2, extensions of this identification g to identifications aoU; ~ « .
YU

A generalization of Smale’s conjecture to Haken manifolds, proved by Hatcher (see [Hal] and [Ha2)),
gives that the standard inclusion is an equivalence between continuous groups:

Aff: T3 % GL3(Z) — Diff(T?) .

In particular, there is an identification of the mapping class group: MCG(T3) =2 GL3(Z). Using these
identifications, we expect our methods could be used to prove the following.

Conjecture 1. Consider the 3-torus T3 =2 R?W‘ as it is equipped with its standard framing. There is
a canonical identification between continuous groups:

Diff"(T3) ~ (’]I‘3 X Q(SLg(R)/SLS(Z))) x (Q2S3 x 9383)3 x QA3
in which the semi-direct product is with respect to the action Q(SL3 (R)/sL, (Z)) Luppe, SL3(Z) ~ T3.
In particular, there is a central extension among groups:
1 — Z% x (Z)3z)* — MCG™(T?) — SL3(Z) — 1.
0.2. Natural symmetries of secondary Hochschild homology.
0.2.1. Hochschild homology.
Notation 0.2.1. Throughout §0.2.1, we fix W to be a ®-presentable symmetric monoidal co-category.

We briefly recall a definition of the Hochschild homology and record its natural symmetries. (See [Lo]
for a complete account.) Let B € Alga...(W) be an associative algebra. Via left and right translation,
regard the underlying object B € W as a (B, B)-bimodule. For M a (B, B)-bimodule for B, the
Hochschild homology (of B with coefficients in M) is

HHB,M) = B ® M =~ co|im(A°PB®°—®M>W) 3
BoP®B

which can be constructed as the colimit of a simplicial object in W naturally associated to the pair
(B, M). This is functorial in the (B, B)-bimodule:

BiMod 5y ), 9

The Hochschild homology (of B) is the instance in which M = B as a (B, B)-bimodule:
HH(B) := B ® B =: HH(B,B) ~ |Bary*(B)|,
BP®B

which can be constructed as a geometric realization of the cyclic bar complex of B, as recalled
in §2.1. Also recalled in §2.1 is a canonical action T ~ BZ ~ HH(B),

T (TAHH(B))

Autw (HH(B)) ,
which is Connes’ cyclic operator (see [Col), and this is canonically functorial in the argument B:
(0.2.1) Algassoc(W) — Modr(W) B +— (T ~ HH(B)) .

3For 0 < i < p, the it" face map of this simplicial object is
BOLp} o M ~ BO{Li} g pOlLitl} o pOLit+2,..p} o gy MOLOEOME | peli,. i} o p o p@lit2.p} g pf

B®{Lp} @ pf ~ B} @ BO{20} g pp ~ BO{2:0} g N @ {1} 4@t | p&{2,....0} o £f

B@{l 44444 P} QM ~ B@{l 77777 p—1} ® B{P} QM id ®l.act R B®{1 »»»»» p—1} QM

where l.act is the left action of B on M.



0.2.2. Secondary Hochschild homology.
Notation 0.2.2. Throughout §0.2.2, we fix V to be a ®-presentable symmetric monoidal co-category.

Apply §0.2.1 to the case W := Algp.,.(V). For this situation, denote the co-category
A|g2 (V) = AIgAssoc(W) = AIgAssoc (AIgAssoc(v)) 74

an object in which is a 2-algebra (in V), which is simply an associative algebra in associative alge-
bras in V. Using that Hochschild homology is symmetric monoidal, the Hochschild homology of the
underlying associative algebra of a 2-algebra retains the structure of an associative algebra. For A a
2-algebra in V, the secondary Hochschild homology (of A) is the value

(0.2.2) HH®(4) = HH(HH(A4)) ,
This is evidently functorial in the 2-algebra, as it is equipped with the two Connes cyclic operators:

AlgAssoc(HH)
—_—

HH
HH®) : Alg, (V) := Algpceoc (Algpssoc (V) Modr (Algassoc (V)) —— Modr(Modr(V)) =~ Modp2 (V) .

Remark 0.2.3. In §2.5, we show that our definition (0.2.2) of secondary Hochschild homology (see
Definition 2.2.8 in the body), agrees with factorization homology over a torus: HH(2)(A) ~ sz A. As
such, our definition of secondary Hochschild homology is fit to receive a secondary trace map, which

is related to a secondary Chern character map, from secondary K-theory. (See [TV] and [HSS],
and §0.4 below.)

Warning 0.2.4. Our definition of secondary Hochschild homology does not appear to agree with the
definition introduced by Staic in [St], and further studied in [La], where its cohomological version
parametrizes certain algebraic deformations. Indeed, their definitions are more akin to factorization
homology of a pair [g, p.(B — A) (see [CSS], where this is established in the commutative context, in
the language of higher order Hochschild homology introduced by Pirashvili [Pi]), which is more similar
to factorization homology fs2 B over the 2-sphere.

Theorem X(2a) has the following consequence, proved in §2.5 using factorization homology.

Theorem Y.1. Let A € Algy(V) be a 2-algebra in a ®-presentable symmetric monoidal oo-category V.
There is a canonical action of the continuous group T2 x Braids on secondary Hochschild homology:

(0.2.3) T? x Braids ~ HH®(A) .

We now explain how Theorem Y.1 extends familiar, or at least expected, symmetries of HH(2)(A),
and how the action can be phrased in terms of these expected symmetries.

Let W be an ®-presentable symmetric monoidal co-category. Let B be an associative algebra in
W. Each endomorphism B %+ B of the associative algebra B determines a (B, B)-bimodule structure

B, on the underlying object B, which is characterized by B LN being equivariant with respect to

(B, B) (id.a), (B, B). This assignment o — B, canonically assembles as a functor from the space of
endomorphisms of B to the oco-category of (B, B)-bimodules:

EndA|g(W)(B) — BiMOd(Bﬁg) s g — Ba .
This results in a composite functor
Endajg(w)(B) 2B, BiMod (g, ) B L , o+~ HH(B,B,) .

This functor restricts to automorphisms of id — HH(B, Biq) = HH(B) as a morphism between contin-
uous groups:

(0.2.4) Qg AutA|g(W)(B) = O EndA|g(W)(B) — Autw(HH(B)) .

4Dunn’s additivity (see Theorem 0.2.7) supplies a host of examples of 2-algebras. In particular, a commutative algebra
canonically determines a 2-algebra.
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Now, take W = Alg(V) to be the oo-category of associative algebras in an ®-presentable symmetric
monoidal co-category V, and take B = HH(A) to be the Hochschild homology of a 2-algebra A €
Alg,(V) := Alg(Alg(V)). The above discussion yields the sheer symmetry:

Q(TAHH(A)) 0.2.4

(0.2.5)  Sheer;:Z ~ QT Qg Autagv) (HH(A)) —)>Autv(HH(2)(A)) .

The functoriality of Connes’ cyclic operators yield a T?-action on secondary Hochschild homology of

A:

(0.2.6) Connes’: T? M Auty (HH(Q)(A)) .

Corollary 2.3.3 states that the swapped iteration of Hochschild homology results in the same secondary
Hochschild homology. This yields yet another sheer symmetry:

Q(TAHH(A)) (0.2.4)

(0.2.7)  Sheers: Z ~ QT Qg Autaggv) (HH(A)) ==L Auty (HH<2>(A)) .

Using Theorem Y.1, the presentation (0.1.1) of the braid group Braids lends to the following result,
which is proved in §2.5.

Corollary 0.2.5. Let A be a 2-algebra in V. The sheer actions (0.2.5) € (0.2.7) and Connes’ cyclic
operators (0.2.6) generate the action T? x Braids 0/;3 HH® (A) of Theorem Y.1. More specifically,
(0.2.9)

the sheer actions and Connes’ cyclic operators satisfy the following three relations, thereafter drawing
the final conclusion:

(1) Consider the action defined by the symmetries Sheery and Sheer;l:
(0.2.8) Sheers: ZI1Z ~ HH®(A) .5

Denoting the generators (t1,72) = ZI7Z, consider the two natural actions

(T17271) (2)
Z:ZHZ ~  HHY(A) .
(0.2.8) )

(T27172)

These two symmetries are coequalized:

Braidg = <71,Tz | T2 = T2T172> ~ HH(Q)(A) 0
0.1.1)

(2) The actions Z ~ HH®(A) and T2 ~ HH®(A) intertwine as an action

Sheer; Connes’

T2 x Z ~ HH®(A)
Uy

where this semi-direct product is defined by 7 {o, GL2(Z) ~ Autgroups(T?) (see (0.1.2)).

(3) The actions Z ~ HHZ(A) and T2~ HH®(A) intertwine as an action

heero Connes’
T2 % 2 20 12 % 7 A HHO(4)
Us =] U;l

where this semi-direct product is defined by Z ﬂ> GL2(Z) =~ Autgroups(T?) (see (0.1.2)).

5The pushout appearing here is in the category of groups, where it is often referred to as a free product.
6Phrased more plainly, there is an identification between automorphisms of HH(Z)(A):

Sheerq o Sheerg1 o Sheer; ~ Sheer;1 o Sheery o Sheer;1 .



0 1

e Denoting R := U UUy = {_1 0

} = UsU Uz € GLo(Z) ~ Autgroups(T?), the above three points

imply the two actions

T2z 0 o2 z11z) A HH®(4)
R id 1 (ra7172) U1,U2 (0.2.8)

are coequalized under T?, thusly generating the action

T? x Braids = T x <7'1,7'2 | TiToT = 7'27'17'2> ~ HH®(A) .
idx(0.1.1) U1,U02
Next, the short exact sequence (0.1.3) of Proposition 0.1.1 implies an identification between moduli
spaces:

extensions of Braids ~ HH®(4) along ® N trivializations of
to an action SLy(Z) ~ HH(Q)(A) B 7 = Ker(®) ~ HH(2)(A)

Remark 0.2.6. The action Z = Ker(®) ~ HH® (A) is simply an automorphism p € Auty (HH(2)(A)).

So an extension of Braids ~ HH®(A) along ® to SLy(Z) ~ HH®(A) exists if and only if there
is an equality in the set of path-components of the space of endomorphisms: [idyye) (4)) = [p] €

o (Endv (HH(2) (A)) In the case that the ambient co-category of V is stable, this set of path-components
has the canonical structure of a ring” (in which [p] is a unit), and so the difference [p] — lidune (a)] €

wo(Endv(HH(z)(A)) obstructs such an extension to an SLy(Z)-action.

So we are interested in identifying the action Ker(®) ~ HH®(A) in familiar, or at least expected,
terms. Corollary 0.2.10 does just this, in terms of the familiar/expected symmetry of secondary
Hochschild homology given by braiding-conjugation, as we now explain. A starting point for this
symmetry is given from the following result which was essentially due to Dunn. Recall the topological
operad Es of little 2-disks.

Theorem 0.2.7 ([Du]; Theorem 5.1.2.2 of [Lul]). There is a canonical equivalence from the oo-category
of Es-algebras in 'V to that of 2-algebras in V:

Alge, (V) — Algy(V) .

After Theorem 0.2.7, the standard continuous action O(2) ~ €3 on the topological operad immedi-
ately implies the following.

Corollary 0.2.8. There is a canonical action of the continuous group O(2) ~ Algy(V). In particular,
for each 2-algebra A in V, the orbit map with respect to this action lends to a canonical symmetry of

A:
~ QOrbi
Ba:Z ~ 950(2) = Q,0(2) — Autag, (v)(A) -
Remark 0.2.9. This symmetry S on each 2-algebra A is braiding-conjugation. For instance, this
symmetry (4 is the identity on the underlying object (so, Ba(1) =id4), and for u € €5(2) it supplies
the commutativity of the diagram in V,

AR A Mo AR A given by the point
#AL llm
A id A, Ba@): + s 7~ Q,84(2) — Qu, Homp(A® A, A) .

"For example, let k be a commutative ring and take V = (Mod, ®). Then HH(2) (A) may be presented as a projective
k

chain complex over k; the ring Wo(Endv(HH(z)(A)) = Ho (mk(HH(z)(A))) is the 0" homology of the chain complex
over k of self-maps of a such a presentation of HH(Z)(A).
10



The following result is a direct consequence of Observation 1.3.10, and inspection of the action
Braids ~ HH® (A) of Theorem Y.1, proved in §2.5.

Corollary 0.2.10. Let A be a 2-algebra in V. Through the action of Theorem Y.1, the kernel of ®
acts on HH(Q)(A) as Ba. Specifically, there is a canonically commutative diagram among continuous
groups:

B
7 - AutA|g2(V) (A)

<(7'17'2)6> = lHH@)

Ker(®) — = Braidg — 22 XL Aty (HH®) (4)).

In particular, there is the following immediate consequence of Proposition 0.1.1.

Corollary 0.2.11. Let A be a 2-algebra in V. An SO(2)-invariant-structure on A € Alg, (V) determines
a trivialization of the action Ker(®) ~ HH®(A), and thereafter an extension along ® of the actions
Braids — T2 x Braids ~ HH®)(A) to actions

SLy(Z) — T2 x SLy(Z) ~ HHP(A) .

Example 0.2.12. Here is an example demonstrating that the action Braids ~ HH® (A) does not
generally extend along ® as an action SLy(Z) ~ HH®(A). Indeed, as a tautologous case, take A =

Disk';r/Rz, regarded as a 2-algebra in Cat,,,pigs- The unstraightening of the functor Disk;'/Tz forget,

evy

Disky 4 Cat,, pisks is the coCartesian fibration Ar(Diskg/Tz) — DiSk;r/Tz, as it is equipped with the

functor Ar(Disk;'/Tz) ey Disk';r/rjrg. This functor ev; is a localization on the ev;-coCartesian morphisms.
Using that a colimit of a diagram in Cats is the localization on the coCartesian morphsims of its
unstraightening, there is an equivalence in Cat,/ pig :

. . . f t . ~ .
/ Dlsk';r/R2 = collm(Dlsk;'/W 57, Diskf 4 Cat,, Diskg) — DISkar/Tz ,
T2

which is evidently Diff(T2)-equivariant. We therefore wish to show the action Ker(®) ~ Diskg/rp in
Cat,, Diskf; 15 1Ot trivializable. Consider the composite functor

Mor fiber over 2—1
Cat pisky — SPACES /\or (Diskiy)

Spaces g1
where Mor is given by taking spaces of morphisms, and the last functor is given by taking fibers along
Disk ™% Fin over the morphism 2 = {1, 2} L % =11in Fin, recognizing that Mor(Diskg)l(gﬁl) ~ St is
the space of 2-ary operations of the oco-operad 5. Note that this composite functor carries the object
of interest Diskg/Tz € Cat/ pisk; to the object in Spaces g1,

2

i - fr - fr
pr: T? x S' ~ Sf(TT?) ~ Mor (Diskzy2), ,_,,) — Mor(Disk3 )|, ,,) =~ S,
involving the unit tangent bundle of T? and its standard framing, which is simply the projection
Through this identification, the DifFf'(T2)—action is the canonical one on the unit tangent bundle
Sfib(TT?) as it maps to S!. In particular, the restricted Z = Ker(®)-action is generated by the auto-
morphism of (T2 x S' & §') € Spaces /g1 that is the diagram
T2xSt— 4 . m2xst

\ /
Sl
in which the homotopy witnessing commutativity is the image of 1 € Z via the ma between spaces:

Z ~ Qg Map(S*, S1) I, Qpr Map(T? x S',S') .
11



It is routine to verify that this map is a monomorhpism. In particular, this action Z ~ (T? x St) €
Spaces g1 is not trivializable. Therefore, the action by Z = Ker(®) on [, Disk‘;'/Rz € Cat) pige Is not
trivializable.

0.3. Isogenic symmetries of secondary Hochschild homology. Let X be an co-category. The
action EJ (Z) — E3(Z) ~ T? as a topological group determines, via precomposition, an action
— T ~
2 E@
obs B.1.1
We propose the following. (See Appendix A of [AMGRA3] for a definition of left-lax invariance.)

op

(0.3.1) E}(Z) ~ Modqp2(X) .

Definition 0.3.1. The oo-category of unstable secondary cyclotomic objects in an oco-category
X is that of T?-modules in X that are left-laxly invariant with respect to the action (0.3.1):

Cyc@(X) := Modq(X)">E @)
Remark 0.3.2. Informally, an unstable secondary cyclotomic object in X consists of the following.
e A T?-module (T2 ~ X) inX .

e For each A € EJ(Z), a morphism between T2-modules in X:
T\« (2 (2 YA o cx 2
AN T°A~AX) = [T" —T° A X | = (T~ X .
e For each pair 4, Be E; (Z), a commutative square among T?-modules in X:

(gT)*(ET)* (’}1‘2 r;vX) (AT)ep (AVT)* (’]1‘2 r;vX)

- M |
(G () 2 (2 ).

o
e For each triple A, E, Ce E; (Z), a similar commutative cube among T?-modules in X whose
faces are (possibly pulled back from) the above commutative squares.
e FEtcetera.

After Corollary A.0.6 which is proved in Appendix A, Theorem X(2b) implies the following.

Corollary 0.3.3. For each oo-category X there are canonical equivalences among oo-categories over
X:
Cyc"")(x ~ Mod = o (X ~ Mod|mfr (1200 (X) -
) S 06 MOdmEr@)r ) Xeby ) ()
For X an oo-category, the oo-category of finite-genuine T2-modules in X is

& ™ .= Fun((Orbiti3)°,X)
the oo-category of functors from the opposite of the oco-category Orbitfﬂi-g of transitive T2?-topological
spaces with finite isotropy and spaces of T2?-equivariant maps between them. The action E;r (Z2) —

EJ (Z) ~ T? as a topological group supplies an action,

= = op i

ES(Z) o Bl ES(Z)" ~ Orbitys , A-Tig == Ti 10 -
Pre-composition by this action, in turn, supplies an action:
0.3.2 ES(Z ~  Ej@” ~ xeeT
(0.3.2) 2()ObsB.1.1 2 (Z)

After Theorem X(2b), we have the following immediate consequence of Proposition B.4.1.
12



Proposition 0.3.4. For each co-category X, the co-category of finite-genuine T2-modules in X invari-
ant with respect to (0.3.2) is equivalent with unstable secondary cyclotomic objects in X:
~ B+
Modjpm oy (X) = Cyctn®(x0) = (s T)E @
Cor 0.3.3

In particular, there is a forgetful functor:

Mod, i mfr (7200 (X ~ Cyc""@) () —s xgﬁn»'ﬂ'z )
mm (120 (X) 5 G0

Remark 0.3.5. We explain how Proposition 0.3.4 asserts a significant cancellation of homotopy co-

herence data.

e A finite-genuine T?-module V in X is a specification of its C-fized-points VC € Mod 2 (X)
C

for each finite subgroup C' C T? together with coherent compatibility.
e For V a finite-genuine T2-module in X, the structure of V to be invariant with respect to the

action E;(Z) 0?2 & T is an identification VO ~ VA~ (O for each finite subgroup C' C T2
0.3.2)

and each element A € E;‘ (Z), coherently compatibly.

Lo . ES (Z L . . .
So to name an object in (I)Cgf'"'Tz) 2@ 5 priori requires an overwhelming wrangling of coherence data.

From this perspective, Proposition 0.3.4 is notable: an object in (f)Cgﬁ"'W)E; @) is simply a T2 x E;r (2)-
module in X — in particular, no “genuine” structure is present. Theorem Y.2, below, is an application
of this: via the theory of factorization homology, for A a 2-algebra in X, its secondary Hochschild
homology HH® (A) easily carries the structure of a Imm™(T2)°P-module; through Proposition 0.3.4,
HH® (A) then has the structure of a finite-genuine T2-module that is E;“(Z)—invariant.

Corollary 0.3.3 lends to our last main result, which is proved as Section §2.6.

Theorem Y.2. Let X be a presentable co-category in which finite products distribute over colimits sep-
arately in each variable.® Regard X as a symmetric monoidal co-category via the Cartesian symmetric
monoidal structure. For each 2-algebra A € Alg,(X), the action (0.2.3) of Theorem Y.1 canonically
extends as an unstable secondary cyclotomic structure:

(0.3.3) (T2~ E;(Z))op ~ HH®(4) ) € Cyen@ ().

Remark 0.3.6. We explain a relationship between an unstable secondary cyclotomic structure and
an iterated unstable cyclotomic structure. As in the discussion preceding Proposition B.3.1, one can
construct a morphism between monoids,

(0.3.4) N x < _diagonals , B 7y

lifting the inclusion N* x N* I EJ (Z) as diagonal matrices. With respect to (0.3.4), the product
iagonals

isomorphism T x T = T2 is equivariant. For X an oo-category, this results in a forgetful functor from

unstable secondary cyclotomic objects to iterated unstable cyclotomic objects:

(0.3.5) Cyc""® (X) — Cyc"" (Cyc""(X)) .

This functor is generally not an equivalence.’

8Examples include the oo-categories Spaces, Cat(,,n), X an co-topos.
9Indeed, suppose X is an ordinary category. Then the forgetful functor Mody2 (X) =5 X is an equivalence. Using
Proposition B.3.1 which identifies the group-completion of the monoid E2+ (), the functor (0.3.5) can then be identified

as restriction Mod X) — Mod(Q§0)2(DC) along the inclusion (Q%)? — ET_J (Q) between groups.

aLy @'
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0.4. Remarks on secondary cyclotomic trace. We see the role of Corollary 0.3.3 as informing an
approach to secondary cyclotomic traces.
Let k be a commutative ring spectrum. Let A € Algy(Mody). Recall the k-linear Dennis trace

map: K(A) <5 HH(A) (see, for instance, [BHM]). The cyclic trace map is a canonical factorization of

this Dennis trace map through negative cyclic homology K(A) LN HH™(A) := HH(A)T (see [Go]).
T T

Tterating this cyclic trace map results in a map between spectra: K(K(A)) m HH™ (HHf(A)). The

works of Toen-Vezzosi [TV], followed up by the work of Hoyois—Scherotzke—Sibilla [HSS] (see Theo-

rem 1.2), suggest (from the commutative context) that this map can be refined as a secondary Chern

character map between spectra:

K(K(4))

(T

HH™ (HH™ (4))

from secondary K-theory to the TZ?-invariants of secondary Hochschild homology. We expect the
work of Mazel-Gee-Stern [MGS] (in particular Theorem C (see §0.4.4)) on universal properties of
secondary K-theory to yield a solution both to this, and the following.

Conjecture 2. For each 2-algebra A over Kk, there is a canonical filler in the diagram among spectra:

K(2) (A) _____ > HH(2) (A)T2><Braid3 HH(2) (A)']l‘2
T tr’ () T
K(K(A)) HH_(HH_(A)).
For the case in which k = S is the sphere spectrum, where standard notation is THH := HH

and referred to as topological Hochschild homology, the cyclic trace map factors further as the
cyclotomic trace map,

(0.4.1) K(A) 25 TC(A) := THH(A)O |

through the topological cyclotomic homology which is the cylotomic-invariants with respect to
a canonical cyclotomic structure on topological Hochschild homology. The fantastic culminating
result of [DGM] articulates a sense in which this cyclotomic trace map (0.4.1) is locally constant (in the

Cyc Cyc
algebra A). Iterating this cyclotomic trace map results in a map between spectra: K(K(4)) yre,

TC(TC(A)). which is not locally constant (in the 2-argument A). As above, we expect that this iterated
cyclotomic trace map can be refined as a map between spectra:

K@ (A) - - - - - = THH® (A)CyexCye

T trove (trcyc) T

K(K(4)) — 0 Te(Te(a).

Following the developments in [AMGR1], we expect Definition 0.3.1 of an unstable cyclotomic object to
lend to a definition of a (stable) secondary cyclotomic object, and that Theorem Y.2 lends a sec-
ondary cyclotomic structure on secondary topological Hochschild homology. For secondary topological
cyclotomic homology to be the invariants with respect to this structure, TC?(A4) := THH® (A)Cyc(z),
we again expect the work of Mazel-Gee—Stern ([MGS], in particular Theorem C (see §0.4.4)) on sec-
ondary K-theory to further lend a secondary cyclotomic trace map, which we state as the following.

Problem 1. Define (stable) secondary cyclotomic structure, and show that secondary topological
Hochschild homology canonically possesses such. Show that the iterated cyclotomic trace map factors
14



through the secondary topological cyclotomic homology, compatibly with the factorization of Conjec-
ture 2:

KE)(A) K(K(4)

Cyc(z) tl,Cyc (trCyC)

TCP(A) ————= THH®@ (A)OexOe - TC(TC(A))

| | !

THH(2)(A)'[F2><IBraid3 S THH(2) (14)‘]1‘2 - THH_(THH_(A))

Remark 0.4.1. One might be encouraged by Remark 0.3.6 to expect that the secondary cyclotomic
trace map o< of Conjecture 2 is locally-constant (in the 2-algebra A), thereby correcting the failure

for the iterated cyclotomic trace map trc(tr®) to be locally-constant. However, we do not expect

for this to be so. Namely, the local-constancy of the cyclotomic trace map K(A) o, TC(A) relies
in an essential way on calculations of Hesselholt ([He]), which identify the fiber of the canonical map
TC(V x A) — TC(A) associated to a square-zero extension of A. These calculations in turn rely
on the fact that, for each i« > 0, the canonical action T ~ Diff"(T) ~ Conf;(T)s, on unordered
configuration space canonically factors as a T c,-torsor. Because the canonical action T2 x Braids ~
DifFfr(’IFQ) ~ Conf;(T?)y, does not apparently have any such a property, we do not expect for the
secondary cyclotomic trace map of Problem 1 to be locally-constant.

1. MODULI AND ISOGENY OF FRAMED TORI

1.1. Moduli and isogeny of tori. Vector addition, as well as the standard vector norm, gives R?
the structure of a topological abelian group. Consider its closed subgroup Z? C R%. The torus is the
quotient in the short exact sequence of topological abelian groups:

quot

0 —s ZQ inclusion RQ TQ 0.

Because R? is connected, and because Z2? acts cocompactly by translations on R?, the torus T? is

connected and compact. The quotient map R? 9% T2 endows the torus with the structure of a Lie
group, and in particular a smooth manifold. Consider the submonoid

Es(Z) = {22 A 72 | det(A) # 0} C Endgroups(Z2) ,

consisting of the cofinite endomorphisms of the group Z2. Using that the smooth map R? U0, 2 g
a covering space and T? is connected, there is a canonical continuous action on the topological group:
(1.1.1) E2(Z) ~ T?, Aq = quot(Ag)  (for any § € quot™'(q)) .*°

This action (1.1.1) defines a semi-direct product topological monoid:

T? x Eo(Z) .
Consider the topological monoid of smooth local-diffeomorphisms of the torus:
Imm(T?) c Map(T?,T?) ,

which is endowed with the subspace topology of the C*>°-topology on the set of smooth self-maps of
the torus. Notice the morphism between topological monoids:

(1.1.2) AFF: T2 % Eo(Z) — Imm(T2),  (p, A) — (q — Ag +p) .
Observation 1.1.1.

10Note that (1.1.1) indeed does not depend on § € quot=1(q).
15



(1) The standard inclusion GL2(Z) < E3(Z) witnesses the maximal subgroup. It follows that
the standard inclusion T? x GLy(Z) < T? x E3(Z) witnesses the maximal subgroup, both as
topological monoids and as continuous monoids.

(2) The standard monomorphism Diff(T?) < Imm(T?) witnesses the maximal subgroup, both as
topological monoids and as continuous monoids.

We record the following classical result.

Lemma 1.1.2. The morphism (1.1.2) restricts to mazimal subgroups as a homotopy-equivalence:
Aff: T2 x GLo(Z) —= Diff™(T2) ,  (p, A) — (q — Ag +p) .

Proof. Let G be a locally path-connected topological group, which we regard as a continuous group.
Denote by G1 C G the path-component containing the identity element in G. This subspace Gy C G
is a normal subgroup, and the sequence of continuous homomorphisms

inclusi tient
1 e inclusion Ie. quotien 7T0(G) 1

is a fiber-sequence among continuous groups. This fiber sequence is evidently functorial in the argument
G. In particular, there is a commutative diagram among topological groups,

quot

1 —— T2 = (T2 % GL3(Z)), —2> T? % GLy(Z) > mo(T? x GL2(Z)) = GLo(Z) —

1
—[ Affy J/ AfFL 70 (Aff) l —[
i 1

quot

1 —— = Diff(T?); —2° > Diff(T?) —— > 7 (Diff(T2)) ——— 1,

in which the horizontal sequences are fiber sequences. By the 5-lemma applied to homotopy groups,
we are reduced to showing the vertical homomorphisms Aff; and 7 (Aff) are homotopy equivalences.

Theorem 2.D.4 of [Ro], along with Theorem B of [Ha3], implies 7o (Aff) is an isomorphism. So it
remains to show Aff; is a homotopy equivalence.!! With respect to the canonical continuous action
Diff(T?); ~ T2, the orbit of the identity element 0 € T? is the evaluation map

evg: Diff(T?)y — T? .

Note that the composition,
ev

id: T2 A", Diff(T?); % T2,
is the identity map. So it remains to show that the homotopy-fiber of evq is weakly-contractible. The
isotopy-extension theorem implies evy is a Serre fibration. So it is sufficient to show the fiber of evg,
which is the stabilizer Staby (Diff(T?)), is weakly-contractible. Finally, Theorem 1b of [EE] states that
this stabilizer is contractible.
O

Remark 1.1.3. By the classification of compact surfaces, the moduli space My of smooth tori is
path-connected, and as so is

M, ~ BDIff(T?) 2'1.28(']1“2 x GLo(Z)) ~ (CPOO)Q/GLQ(Z)

Lem
in which the quotient is with respect to the standard action GLy(Z) ~ B2Z? ~ (CP*°)2. In particular,
this path-connected moduli space fits into a fiber sequence

(CP>*)? — M; — BGLy(Z) .

Consider the set £(2) := {A C 22} of cofinite subgroups of Z>.

cofin

Observation 1.1.4.

Hsee [Gr]. We include a proof for the convenience of the reader.
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Image
—_—

(1) The orbit-stabilizer theorem immediately implies the composite map T2 xEy(Z) £ Ey(Z)
L(2) witnesses the quotient:

(T2 A EQ(Z))/szGQ(Z) — EQ(Z)/GLQ(Z) = 5(2) :

(2) Using that each finite-sheeted cover over T? is diffeomorphic with T2, the classification of

covering spaces implies the map given by taking the image of homology Imm(T?) Lmage(Hy), L(2)

witnesses the quotient:
Imm(T?),/ pirr2) — £(2) .
(3) The diagram

T2 % E5(Z) —2T —~ Imm(T2)

prl / llmage(Hﬂ

E2 (Z) Image 5(2)

commutes.
Corollary 1.1.5. The morphism (1.1.2) between topological monoids is a homotopy-equivalence:
Aff: T? 3 Ey(Z) — Imm(T?) .
Proof. Consider the morphism between fiber sequences in the co-category Spaces:

quotient (

T2 % Eo(2) 4 Bo2)) )~ BT % GLa(2)

Affi lAfFAﬁ l B Aff

Imm(T2) — 2 jmm(T2) ) pigr ey B Diff(T2).

Lemma 1.1.2 implies the right vertical map is an equivalence. Observation 1.1.4 implies the middle

vertical map is an equivalence. It follows that the left vertical map is an equivalence, as desired.
O

1.2. Framings. A framing of the torus is a trivialization of its tangent bundle: : 7p2 = 6.2]1-2. Con-
sider the topological space of framings of the torus:

Fr(T?) := lsoga, (712, €2) C Map(TT? T? x R?) ,

which is endowed with the subspace topology of the C*>-topology on the set of smooth maps between
total spaces. The quotient map R? “% T2 endows the smooth manifold T2 with a standard framing
po: for

(p,q)—trans, (q):=p+q

trans: T2 x T? T2

the abelian multiplication rule of the Lie group T? is

(o)t €2s = e, T? x R* 3 (p,v) — (p, Do(trans, o quot)(v)) € TT?

where Dy is differentiation at zero.
The next sequence of observations culminates as an identification of this space of framings.

Observation 1.2.1.
(1) Postcomposition gives the topological space Fr(T?) the structure of a torsor for the topological
group Isoggl_, (e?ﬂ,z,e,ﬂ,z) In particular, the orbit map of a framing ¢ € Fr(T?) is a homeomor-
phism:

(1.2.1) Isogal, (€32, €12) =5 Fr(T?) , aaop.
17



(2) Consider the topological space Map(T?, GL2(R)) of smooth maps from the torus to the standard
smooth structure on GL2(R), which is endowed with the C*°-topology. The map

(1.2.2)  Map(T? GLy(R)) — lsopa, (22, ¢22) ,  ars (T2 x R M T2 x R2) ,
is a homeomorphism.
(3) The map to the product,
(1.2.3) Map(T?,GL2(R)) = I\/Iap((() €T?),(1¢ GLQ(R))) x GLy(R) , a— (a(0)"ta, a(0)),

is a homeomorphism.
(4) Because both of the spaces T? and GL2(R) are 1-types with the former path-connected, the
mabp,

e Map((o eT?), (1€ GLQ(R))) = Hom (m (0eT?),m(1e GLQ(R))) ,

is a homotopy-equivalence.
(5) Evaluation on the standard basis for 71 (0 € T?) — 71 (0 € T)? = Z? defines a homeomorphism:

(1.2.4) Hom(m1(0 € T2),m1 (1 € GLy(R)) ) < mi (1 € GLo(R)?) = 27

Observation 1.2.1, together with the Gram-Schmidt homotopy-equivalence GS: O(2) = GLy(R),
yields the following.

Corollary 1.2.2. A framing ¢ € Fr(T?) determines a composite homotopy-equivalence:

(1.2.2)0(1.2.1)
%

(1.2.5) Fr(T?) Map(T?, GL2(R))

(1.2.3)
T

~

Map((o eT?), (1€ GLQ(R))) » GLa(R)

_mxid Hom (7T1 (0eT?),m (1€ GL2(R))) x GL2(R)

~

(1.2.4)xid
e

— 7% x GLy(R)
LxG72.,0(2) .

Notation 1.2.3. We denote the values of the homotopy-equivalence of Corollary 1.2.2 applied to the
standard framing ¢ € Fr(T?):
Fr(T?) — Z* x GLo(R), ¢+ (@, By ) .
1.3. Moduli of framed tori. Consider the map:
Act: Fr(T?) x Imm(T?) — Fr(T?) ,

D * - *
(go,f)»—>(m~z%>f 7-‘]1‘2%][ 6%2:6%2>.

Lemma 1.3.1. The map Act is a continuous right-action of the topological monoid lmm(T?) on the
topological space Fr(T?). In particular, there is a continuous action of the topological group Diff(T?) on
the topological space Fr(T?).

Proof. Consider the topological subspace of the topological space of smooth maps between total spaces
of tangent bundles, which is endowed with the C*°-topology,

BdI™*°(rp2, 72) C Map(TT? TT?) ,

consisting of the smooth maps between tangent bundles that are fiberwise isomorphisms. Notice the
factorization _
Act: Fr(T2) x Imm(T2) “2225 Fr(T2) x BdI™ ™ (2, 7p2) < Fr(T?)
18



as first taking the derivative, followed by composition of bundle morphisms. The definition of the C*-
topology is so that the first map in this factorization is continuous. The second map in this factorization
is continuous because composition is continuous with respect to C*°-topologies. We conclude that Act

is continuous.

We now show that Act is an action. Clearly, for each ¢ € Fr(T?), there is an equality Act(y,id) = .
Next, let g, f € Imm(T?), and let ¢ € Fr(T?). The chain rule, together with universal properties for
pullbacks, gives that the diagram among smooth vector bundles

D(gof)
s g 0" > 4" ————> (90 )" 2
lf*g*so l(gOf)*v
5%2 — 9*5%2 — f*g*ﬁ%z ~— (90 f)*€12r2

w

o~

commutes. Inspecting the definition of Act, the commutativity of this diagram implies the equality

Act(Act(p,g), f) = Act(p, g o f), as desired.
O

Definition 1.3.2. The moduli space of framed tori'? is the space of homotopy-coinvariants with
respect to this conjugation action Act:

M';r = FF(TQ)/Diﬂr(—H*z).

Observation 1.3.3. Through Corollary 1.2.2 applied to the standard framing ¢o € Fr(T?), the action
Act is compatible with familiar actions. Specifically, Act fits into a commutative diagram among

topological spaces:

Fr(T2) x Imm(T?) Act Fr(T2)
Cor 1.2.2fosz :TCOr 1.2.2
Map(T2, GLy(R)) x (T2 x E(Z)) 25 Map(T?, GLy(R)) x Eo(Z) Vr:ﬂ—t’;:y> Map (T2, GL,(R))
Cor 1.2.2><idl2 ZlCor 1.2.2xid :lCor 1.2.2

id X pr (7,B;A)—(ATG,BA)
_ >

(Z? x GL2(R)) x (T? x Ex(Z)) (22 x GL2(R)) x Ez(Z) 72 x GLy(R).

We record the following basic application of group theory.

Observation 1.3.4. For ¥ = [z] € 72, consider the subset Ty := {P | P¥ = ged(p, q)e1} C GLa(Z).
(1) In the case that p > 0 and ¢ = 0, the set T is identical with the stabilizer subgroup:
GL, (Z) , if p=0

T = Stabet, (Z)(ged(p, q) - 1) = Lopl_ b 0t By e omywz L itpso
o dlf \lo =1|']o 1|/~ P

in which the semi-direct product is with respect to the standard action O(1) =N Aut(Z).
(2) The set Ty is not empty. Left multiplication defines a free transitive action of this stabilizer:

—

GLy(Z) ~n Ty  for7=0, and O XZ~Ts for7#0.

12This definition is a particular case of a general definition of a moduli space of framed manifolds; see, for instance,
[AF1].
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(3) An element P € Ty determines an isomorphism between groups:

(1.3.1) Stabgy,(z) (%) = P~ 'Stabey, (z)(gcd(p, q) - &) P
GLy(Z) L if =0

= <P_1 10

P, P!
0 -1
n element P = (S RIN] B etermines an identification:
4) An el PZ"ZTSLZd i identificati

SLy(Z) L ifg=0
Stab ) = 1 ? G
absy, (z)(¥) < +;gz z 1> =(P'UP)=Z | ifT#0
—y 1—yz

The next result is phrased in terms of spaces fitting into the diagram in which each of the two
squares, and therefore their concatenated larger square, is a pullback:

(1.3.2) (CPOO)Q/Z X BZ —— ((CPOO)2/Braid3 (CPOO)2/GL2(Z)
l (T1:(1172)%) l . P l
BZ x BZ B Braids ———— BSLy(Z) ———— BGLy(Z)
prl
(U1)
BZ

Proposition 1.3.5.
(1) The standard framing po € Fr(T?) determines an identification between spaces:

M? = (((C]P)OO)Q/Braid3) H ((CPOO)2/Z X BZ) o )

through which @q selects the distinguished path-component.

(2) Furthermore, the resulting map mo Fr(T2) — moMT =N {0}IN = Z>¢ factors as a composition:

7o Fr(T2) — 72 595 7.4

in which the second map takes the greatest common divisor, and the first map is

° —1
AASCRLCUN GLQ(R)} em(1eGly(R)® = 72

20
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Proof. The result follows upon explaining the following sequences of identifications in the oo-category
Spaces:

My ~ Z* x GLy(R
! obs 1.3.3 ( g ))/T2NGL2(Z)
~ 2
(133) iteratezuotient ((Z % GL2 (R))/Tz)/GLQ (z)
1.3.4 ~ 77 x BT? x GLy(R
( 3 ) trivial T? action ( % % 2( ))/GLQ (z)
~ 2 00\ 2
(135) groupoids are effective z /CLa(Z) BGL>:(Z) ((CP ) 8 GLQ(R))/GLQ(Z)
~ 1IN 002
(136) cxplicit_quoticnt (BGL2(Z) H B(Z x 0(1)) ) BGLi(Z) ((CP ) X GL2(R))/GL2(Z)
~ 00\ 2
(137) distribute x over II <BGL2(Z) BGL>:(Z) (((CP ) x GLQ(R))/GLz(Z))
1IN
00\ 2
H <B(Z X O(l)) BGL>:(Z) ((C]P) ) X GLQ(R))/GL2(Z)>
1IN
~ 00 2 002
(1.3.8) e hange (((CP )7 % GLQ(R))/GLz(Z))H((CP ) x GLQ(R))/MO(D)
1IN
~ 00\ 2 00\ 2
(1.3.9) Lom A.0.2 <(CP ) /Q(GLQ(R)/GL2(Z))) H <(CP ) /Q(GL2(R)/Z>40(1))>
1IN
~ 00 2 00 2
(1310) explicit identifications (((CP ) /Braidg) H ((CP ) /2 x BZ)

The first identification follows from Observation 1.3.3. The bottom horizontal map in Observation 1.3.3
reveals that the action Z? x GLy(R) v~ T? x GL3(Z) can be identified as the diagonal action of the
action

\T
(1.3.11) (T2 % GLy(Z))*® 2 GLy(2)°» — =L GLy(Z) 7

together with the action

(T2 % GLa(2)™ - GLy(Z)® 0, GLR)™  ~  GLo(R) .
right mu
The equivalence (1.3.3) identifies the T? x GLy(Z)-quotient as the T2-quotient followed by the GLy(Z)-
quotient. The equivalence (1.3.4) is a consequence of the T?-action being trivial on both factors. The
equivalence (1.3.5) is an instance of the general base-change identity (X x Y),¢ ~ (X,q) x (Y)q).

BG
The equivalence (1.3.6) is the orbit-stabilizer theorem, as we now explain. By Observation 1.3.4, two
elements Z , j € Z* are in the same (1.3.11)-orbit if and only if their greatest common divisors

ged(u,v) = ged(s,t) € Z>o agree. In particular, there is a bijection between the set of (1.3.11)-orbits

and the subset
~ g 2
ZZO = {|:O:|} c 7Z°.
(=-)7"

Furthermore, the stabilizer of [g] € Z? with respect to the action GL2(Z)® —— GL2(Z) ~ Z? is

0
GLy(Z)°P , ifg=0
g\ _ °
Stabgy, (7 ([O}) = {[1 2}} ~ (Z 9 0(1))0p ifg£0
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Therefore, the quotient

Z2/GL2(Z) ~ H BStabGLQ(Z)op ([g}) ~ BGLQ(Z)HB(Z X O(l))HN .

gE€L>o

The equivalence (1.3.7) is the distribution of x over [[. The equivalence (1.3.8) is an instance of the
general base-change identity X, ~ BH x X . The equivalence (1.3.9) is an instance of Lemma A.0.2.
BG

The equivalence (1.3.10) is a direct application of Proposition 0.1.1 for the 0-cofactor, and for each
other cofactor it is an application of Proposition 0.1.1 then a consequence of the diagram (1.3.2) of

pullbacks among spaces.
O

For ¢ € Fr(T?) a framing of the torus, consider the orbit map of ¢ for this continuous action of
Lemma 1.3.1:

( constant,, , id ) Act

Orbit,: Imm(T?) Fr(T?) x Imm(T?) 2= Fr(T?) , [ Act(e, f) .

Recall Notation 1.2.3.

Observation 1.3.6. After Observation 1.3.3, for each framing ¢ € Fr(T?), the orbit map for ¢ fits
into a solid diagram among topological spaces:

Orbit,,

Diff(T?) Imm(T?) Fr(T?)
S T > \”1\ ~lcor 1.2.2
N h A—(AT3,B, A
Aft GL2(2) Eo(Z) — W 2B 72 GLy(R)
Aff
pr pr

TQ bell GLQ(Z) TQ Dall EQ(Z)

The existence of the fillers follows from Observation 1.1.4.

Remark 1.3.7. The point-set fiber of Orbit, over ¢, which is the point-set stabilizer of the action
Fr(T?) «~ Imm(T?) of Lemma 1.3.1, consists of those local-diffeomorphisims f for which the diagram
among vector bundles,

¥ 2
T2 ——————> €2

1T

x foe x
from ————— f*eqs,
commutes. For a generic framing ¢, a local-diffeomorphism f satisfies this rigid condition if and
only if f = idp2 is the identity diffeomorphism. In the special case of the standard framing g, a

local-diffeomorphism f satisfies this rigid condition if and only if f = trans;(g) o quot is translation

in the group T? after a group-theoretic quotient T2 auotient, ‘2 -y particular, the point-set fiber of

(Orbity,) | Diff(r2) OVer 0 is T2, and the homomorphism T? — Diff(T?) witnesses the inclusion of those
diffeomorphisms that strictly fix ¢q.

On the other hand, the homotopy-fiber of Orbit,, over ¢ is more flexible: it consists of pairs (f, )
in which f is a local-diffeomorphism and + is a homotopy

%o > Act(wpo, f) -

As we will see, every orientation-preserving local-diffeomorphism f admits a lift to this homotopy-fiber.
In particular, small perturbations of such f, such as multiplication by bump functions in neighborhoods
of T2, can be lifted to this homotopy-fiber.
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Definition 1.3.8. Let ¢ € Fr(T?) be a framing of the torus. The space of framed local-diffeomorphisms,
and the space of framed diffeomorphisms, of the framed smooth manifold (T2, ) are respectively
the pullbacks in the co-category Spaces:

Imm™ (T2, ) Imm(T?2) Diff" (T2, ) —— Diff(T?)
\LOrbitv, \LOrbitw
() 2 () 2
* Fr(T?) and * Fr(T?) .

In the case that the framing ¢ = ¢ is the standard framing, we simply denote
Imm™(T?) := Imm™ (T2, o) and Diff"(T?) := Diff" (T2, &) .
The following result follows directly from Lemma A.0.1 of Appendix A, and Proposition 1.3.5(1).

Corollary 1.3.9. Let ¢ € Fr(T?) be a framing. The space DifFﬁ(T2,<p) is canonically endowed with
the structure of a continuous group over Diff(T?). With respect to this structure, there is a canonical
identification between continuous groups:

Q(CP>)2,, . ~ T? x Braid . if @ =
Difffr(']IQ,(p) ~ Q[«P]MT ~ ( ) /Bra|d3) 3
Prop 1.3.5(1) | Q (C]POO)Q/Z X Bz) ~ (TQ < Z) X7 Zf@#

Observation 1.3.10. The kernel of ® acts by rotating the framing, which is to say there is a canonically
commutative diagram among continuous groups:

~ Q(A'—}A»gao)
Z— = 0 GLER) —— ", Fr(T?)
<<m>6>lm J/
Ker(®) — > Braids A" Diff™ (T2).

Here Aff™ is defined in Lemma 1.4.3. Indeed, there is a canonically commutative diagram among spaces,
in which each row is an Q-Puppe sequence:

R®
Ker(®) — > Braids —— =+ GLy(Z) ———— = GLy(R)
l lAfFfr lAfl’ lRotate the framing ¢o
Orbit
O, Fr(T?) Diff™(T2) Diff(T2) Y0 L Fr(T?).

1.4. Proof of Theorem X and Corollary 0.1.4. Theorem X consists of three statements. Theo-
rem X(1) is implied by Proposition 1.3.5. Theorem X(2a) is implied by Corollary 1.3.9. Theorem X(2b)
(as well as Theorem X(2a)) is implied by Lemma 1.4.3 below.

Notation 1.4.1. Let ¥ = [ﬂ € 7?2 and r € Z. Denote the matrices

U 1+yz 22 T and Do 1+(r—Day —(r—1azxz ’
VT —u? 1—yz T (r—Dwy 14+ (r—1wz| ~’
for some w, z,y, z € Z that solve
(1.4.1) wp + xq = ged(p,q) > 0
yp+2q=0

wr—xzy=1.
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Denote the semi-direct continuous group, and continuous monoid,

T x Z and T x (N*xZ)
Uz D3, Uz

given through the actions on the continuous group T?:

b—UL

b —
222 Slyz) A~ T2 and 7 x Nx 22Ul

Ex(Z) ~ T? .

Remark 1.4.2. Observation 1.3.4 ensures the existence of a solution to (1.4.1). Observation 1.3.4
also implies, for U and Dy defined by another choice of solution to (1.4.1), then Uj and Dy,
are respectively canonically conjugate with Uy and Dy,, and therefore the continuous groups and
continuous monoids are respectively canonically identified:

T xZ ~ T xZ and T? x (ZxN*) ~ T? x (ZxNX).
Uy Uz Uz, Dy UzL,Dj

The next result extends Corollary 1.3.9 from an assertion about Diff (T2, ¢) to one about Imm™ (T2, ©).
Recall Notation 1.2.3.

Lemma 1.4.3. Let o € Fr(T?) be a framing of the torus.

(1) If g= 0, then there are canonical equivalences in the diagrams among continuous monoids:

(1.4.2)

2 o BT ~ fr 2 2 i = i (T2
T? x ES(Z) — - i > Imm" (T, ) T# x Braidz — — T > Diff" (T%, )
id ><1\I!l lforget id N@l lforget
T? x E2(Z) ——— > Imm(T?) and T? x GLy(Z) ———— Diff(T?).

(2) If g+ 0, then there are canonical equivalences in the diagrams among continuous monoids:

2 =~ fr rm2 2 [~ s eefr (2
(T U¢>7<1D¢ (Z = NX)> X Z—Kﬁ;>|mm (T2, ) (T lj'i;Z) X Z—sz> Diff'" (T, o)
id 0 ((b,d. k) U Dy 4 ) l forget lid x ((b.k)—UY) forget
T2 x Ey(Z) v Imm(T?) and T? x GLy(Z) ——— Diff(T?).

Proof. Using Observation 1.1.1, the canonical equivalences in the commutative diagrams on the right
follow from those on the left.
Consider the diagrams in the co-category Spaces, which make use of Notation 1.2.3.

T2 x ES (Z) il Ef(Z) : »
id x\pl \pl <(¢7B¢)>l
T2 x Eo(Z) = Eo(Z) yRRTErY 72 x GLy(R)
Afflz :lcor 1.2.2
Imm(T?2) orbit, Fr(T2),
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—

(2) For @ # 0:

<T2 x (ZNNX)>><Z—>W (Z x N¥) x Z : %
UsDys
pr pr ((%,By))
(b,d)—»B,U%Dg,
T2 x  (ZxNX) il 7 x N* Ml % % GLy(R) 5,
Uz Dy
id x ((b,d)ULDg 1) (b.d)—>UgDg.a () xinc
T? % Eo(Z Ex(Z 72 x GLy(R
x Ex(Z) or 2(Z) PR x GLy(R)
Aff | = ~|Cor 1.2.2
Orbit,,
|mm(']T2) t FF(T2),

where GL2(R)p, C GL2(R) is the path-component containing B, € GL2(R).

Observation 1.3.6 implies that each bottom rectangle canonically commutes. Lemma 1.1.2 and Corol-
lary 1.2.2 together imply each of these bottom rectangles witnesses a pullback. Each of the top left
squares, as well as the middle left square in the lower diagram, is clearly a pullback. Corollary B.2.2
states that the top right square in the upper diagram is a pullback. Provided the top right and middle
right squares in the lower diagram are pullbacks, we would then conclude that each of the outer squares
witnesses a pullback. The result would then follows by Definition 1.3.8 of Immfr(’I['Q, ©).

So it remains to show that the top right and middle right squares in the lower diagram are pullbacks.
The paths of matrices,

0,1] 5 s 1+ted t22 1" 1+t(r—Day —tlr—1)az r € GLo(R)

’ —ty?  1—tyz| | tr—Dwy 1+t — 1wz 20
determine an identification of the named map ZxN* — GL2(R) with the constant map at B,,. Together
with the standard identification Z ~ Qp_ GL2(R), this shows that the top right square in the lower
diagram as a pullback. The middle right square of the lower diagram is a pullback because the map

z Yy oz

2 (Z\ {0)) —> Stabe, e () <b,d>~><[§‘j 10 ik ])T = UDsa.,

is an isomorphism between monoids, where w, x,y, z € Z are as in Notation 1.4.1.

By applying the product-preserving functor Spaces —% Sets, Lemma 1.4.3 implies the following.

Corollary 1.4.4. There is a canonical isomorphism in the diagram of groups:

Braidz — — — — — > MCG™(T?)
<I>L l/forgct
GLy(Z) ————= MCG(T?).

Remark 1.4.5. Proposition 0.1.1 and Corollary 1.4.4 grant a central extension among groups:

1 — Z — MCG™(T?) — MCG™(T?) — 1 .
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Proof of Corollary 0.1.4. By construction, the diagram among spaces,

2 % Ey(Z) ———=—— Imm(T?)

Cor 1.1.5

\/

canonically commutes, in which the left vertical map is projection, and the right vertical map evaluates
at the origin 0 € T?. Therefore, upon taking fibers over 0 € T2, the (left) commutative diagram (1.4.2)
among continuous monoids determines the commutative diagram among commutative monoids:

E}(Z) - Imm™(T? rel 0)
Eo(Z) - T T Imm(T? rel 0)
M /
GLQ(R) )

in which the map R® is the standard inclusion, and Dy takes the derivative at the origin 0 € T2. To
Z

finish, Corollary B.2.2 supplies the left pullback square in the following diagram among continuous
groups, while the right pullback square is definitional:

Braids x DIff(T2 < B2 rel 9)

- |

GLo(Z) —— = GLy(R) ~——> Diff(T? rel 0).

The result follows.
O

1.5. Comparison with sheering. We use Theorem X(2) to show that the Diff(T2) is generated by
sheering. We quickly tour through some notions and results, which are routine after the above material.

Notation 1.5.1. It will be convenient to define the projection T? P T to be projection off of the
ith coordinate. So for T? 3 p = (z,,9,), we have pr,(p) = y,, and pry(p) = z,.

Let i € {1,2}. Consider the topological subgroup and topological submonoid,
Diff(T? &4 T) < Diff(T?) and Imm(T? &5 T) c Imm(T?) ,
consisting of those (local-)diffeomorphisms T? L, T2 that lie over some (local-)diffeomorphism T EN¥

(1.5.1) I R,

The topological space of framings of T? Py T is the subspace

Fr(T? 25 T) c Fr(T?)
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consisting of those framings 72 <> €2, that lie over a framing 7 — €k

A

(1.5.2) T2 ———————> €2,

D prli lpri X pr;

7T 6111-.

1R

sl

1R

Because pr; is surjective, for a given ¢, there is a unique p as in (1.5.2) if any. Better, ¢ — P defines
a continuous map:
(1.5.3) Fr(T2 25 T) — Fr(T), o~ 5.

Notice that the continuous right-action Act of Lemma 1.3.1 evidently restricts as a continuous right-
action:

Fr(T> 25 T) ~ Imm(T? 25 T) .
Furthermore, the map (1.5.3) is evidently equivariant with respect to the morphism between topological
monoids Imm(T2 2% T) Jorget, Imm(T):

( Fr(’IF2 LN T) Imm(']I“2 LN T) ) forget ( Fr(T) «~ Imm(T) ) , =P .

Now let ¢ € Fr(T? LN T) be a framing of the projection. The orbit of ¢ by this action is the map
Orbity: Imm(T? 25 T) — Fr(T2 Z5 1), f— Act(e, f) .

The space of framed local-diffeomorphisms, and the space of framed diffeomorphisms, of
(T? LN T, ¢) are respectively the homtopy-pullbacks among spaces:

Imm" (T2 =5 T, ) —— Imm(T* =5 T) Diff"(T2 2 T, ) — Diff(T? 24 T)
lOrbitv, ‘/ lOrbitw
. Fr(T? 24 T) and L Fr(T2 25 T) .

As in Observation 1.2.1, the topological space Fr(T? 2y T) is a torsor for the topological group
l\/Iap(TQ, GL{Z-}CQ(R)) of smooth maps from T? to the subgroup

GL{iyca(R) = {A|Ae:-espan{e:-}} C GLy(R)

consisting of those 2 x 2 matrices that carry the i*"-coordinate line to itself. For each i = 1,2, denote
the intersections in GL2(R):

SLy(Z) ——— GL2(Z) SLiiyc2(Z) ——— Gl 2(Z)

| | | |

—NGLiy c2(R)
E3 (Z2) ————E2(Z) o E{yco(Z) ————— E(i2(2)

Lemma 1.5.2. For eachi = 1,2, the homotopy-equivalences between continuous monoids of Lemma 1.1.2
and Corollary 1.1.5 restrict as homotopy-equivalences between continuous monoids:

T2 X GL{Z'}CQ(Z) —A£i> DifF(T2 ﬂ} T) T2 X E{,L'}CQ(Z) —A£i> Imm(']I‘2 ﬂ> T)
inclusionl linclusion inclusionl linclusion
T2 x GL(Z) —20 - Diff(T?) and T2 x E3(Z) — — Imm(T?).
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Proof. Via the involution ¥ ~ T? that swaps coordinates, the case in which ¢ = 1 implies the case in
which 4 = 2. So we only consider the case in which i = 1.

The left homotopy-equivalence is obtained from the right homotopy-equivalence by restricting to
maximal continuous subgroups. So we are reduced to establishing the right homotopy-equivalence.
Direct inspection reveals the indicated factorization Aff; of the restriction of Aff to T2 x Efiyc2(Z) C
T? x Ex(Z). So we are left to show that Aff; is a homotopy-equivalence.

Now, projection onto the (1,1)-entry defines a morphism between monoids, with kernel K :=

{ {(1) Z} € E{l}CQ(Z)}, which fits into a split short exact sequence of monoids:

{g ﬂ <—|—a
1 K Eq1yca(Z) — _ (Z~{0})* ——=1.

(1,1)—entry

Now, because pry is surjective, for a given f € Imm(T? LN ), there is a unique f € Imm(T) as
in (1.5.1). Better, Imm(T2 £ T) 5 f — 7 € Imm(T) defines a forgetful morphism between topological
monoids, whose kernel can be identified as the topological monoid of smooth maps from T to Imm(T)
with value-wise monoid-structure. This is to say there is a bottom short exact sequence of topological
monoids, which splits as indicated:

(1.5.4)
((O,z),[g ﬂ)(—(z,a)
. . . N
]l ——=TxK (1d,(0)) wime! T2 NE{l}Cg(Z)<—>TN(Z\{O})X—>1
pr; X(1,1)—entry
Affll id X feaf
v r -~ T W
1 — Map(T, Imm(T)) ———— Imm(T? 2% T) — Imm(T) ——1.
—

Direct inspection of the definition of Aff reveals the downward factorizations making the commutative
diagram (1.5.4) among topological monoids. By the isotopy-extension theorem, the bottom short exact
sequence among topological monoids forgets as a short exact sequence among continuous monoids.
Using Lemma A.0.4, the proof is complete upon showing that the left and right downward maps are

evo,Hi(—)
equivalences between spaces. It is routine to verify that the map Imm(T) M T % (Z ~ {0})*
is a homotopy-inverse to the right downward map in (1.5.4).

Now observe that the left downward morphism in (1.5.4) fits into a diagram between short exact

sequences of continuous monoids:

(Zv Ll) ZDT(id)

bH(O)xB ﬂ - N
1 Z T x K== T x (Z~ {0})* —=1
: id X (2,2)—entry .
: l constant g < f :
v N
1 —— Map((0 € T), (id € Imm(T))) T Map(T, Imm(T)) ———— Imm(T) ——1..

The right downward map here is a homotopy-equivalence, in the same way the right downward map
in (1.5.4) is a homotopy-equivalence. Through this right downward identification of Imm(T), the left
downward map is a homotopy-equivalence, with inverse given by taking 7. Using Lemma A.0.4, we
conclude that the middle downward map is a homotopy-equivalence, as desired.

O
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The Gram—Schmidt algorithm witnesses a deformation-retraction onto the inclusion from the inter-
section in GLa(R):

0(1)2 = 0(1) x O(1) = 0(2) N GLyiyca(R) < GLyyca(R) .

Observation 1.5.3. For each ¢ = 1,2, the sequence of homotopy-equivalences among topological
spaces of Corollary 1.2.2, determined by a framing ¢ € Fr(T? LN T), restricts as a sequence of
homotopy-equivalences among topological spaces:
(1.5.5) Fr(T? 25 T) < Map(T?, GL{;jc2(R))

= Map((0 € T2), (1 € GLyca(R)) ) X GLiyca(R)

& Map((o eT?), ((+1 € 0(1))2) % O(1)?2

~ 0(1)%.

Observation 1.5.4. For each i = 1,2, and each framing ¢ € Fr(T? LN T), the diagram among
topological spaces commutes:

T2 % Egjyca(Z) —2 > Imm(T2 25 T)
( sign of (1,1)-entry , sign of (2,2)-entry )oprojl lo’bitcp
o(1)? Obs 1.5.3 Fr(T? LN ).

For each ¢ = 1,2, the action Z —<[Q> Eriyc2(Z) ~ T2 as a topological group defines the topological

submonoid

T? b Z C T? % Egyca(Z) .

After Lemma 1.5.2 and Observation 1.5.3, Observation 1.5.4 implies the following.

Corollary 1.5.5. For each i = 1,2, and each framing ¢ € Fr(T? LN T), there are canonical identifi-
cations among continuous monoids over the identification Aff;:

A r AT r,
T2 x Z ——— Diff"(T2 &5 T, ) T2 % Efiyca(Z) —= Imm™ (T2 25 T, o)
U; - -
id (‘rl)l Lforget id % (inﬁon}l ‘/forget
H ~ s ecfr = o~ fr
T2 % Braids m Diff (T2, QD) and T? % E; (Z) m Imm (T2, QD)

We now explain how the presentation (0.1.1) of Braids gives a presentation of the continuous group
Difffr('H‘Q). Observe the canonically commutative diagram among continuous groups:

T2 — 5 Diff"(T2 245 T)

| |

Diff (T2 22, T) — = Diff"(T2),
which results in a morphism from the pushout, Diff™ (T2 =% T)] ] Diff"(T2 22, T) — Diff™(T2). Recall
T2

(T17271)
the element R € GLy(Z) from (B.2.1). The two homomorphisms Z ——__ 2 ZIIZ determine two

(T2T172)
morphisms among continuous groups under T?:
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2 idX(71maT1) 2 fr (2 pl'1 secfr (2 Pr2 secfr o2
(156) T’xZ P2 (Z11Z) —= Diff" (T2 ™% T)[] Diff" (T2 *2 T) — Diff"(T?) .
R id X (12711 7T2) Up,Uq T2

Corollary 1.5.6. The diagram (1.5.6) among continuous groups under T? witnesses a coequalizer.
Proof. The presentation (0.1.1) of Braids a coequalizer diagram among groups:

<T1T2Tl> <T1 & T2>
— = ZlUZ

(T27172)

Braids .

Taking semi-direct products with respect to the action Braids 2, GL2(Z) ~ T? results in a coequalizer
diagram among continuous groups:

id X (T17271) i - -
Tz — = T2 x (z117) 7470 12y Braid,
R id ><1<T27’1T2> U11U2

The result then follows from Corollary 1.5.5.

Proof of Corollary 0.1.5. Consider the diagram among oco-categories:

Modpiggr (12) (X) —— Modpger (2 (X) —— Modr2 ,z(X) X Modrz  2(X) <—— Modr (X)(V1:U2)
Uy Mody2 (X) Ugy rop A 0.5

[{ J/ (Id >4<T1T27'1>)*><(id ><1<7'2T17'2>)*l

Mods (X)) — =~ Mod X) —— Mod X Mod X) =<=— Modqe (X) (B2
© T2( ) PropAO5 © 'JPN.Z( ) diagonal © T2§Z( )Mod:g(DC) © T2§Z( lz-’ropAO5 © T2( )

Corollary 1.5.6 implies the middle square is a pullback. Via Proposition A.0.5, which identifies modules
for a semi-direct product in terms of invariants, the left and right squares are pullbacks. Therefore,

the outer square is a pullback, as desired.
O

2. NATURAL SYMMETRIES OF SECONDARY HOCHSCHILD HOMOLOGY

Conventions.

(1) We fix a symmetric monoidal co-category V, and assume it is ®-presentable (meaning the
underlying oo-category V is presentable, and ® distributes over colimits separately in each
variable).

(2) In this section, we apply the results from above only to the case of the standard framing ¢q
of the 2-torus T2. So we suppress the framing ¢y from all notation, while regarding T? as a
framed 2-manifold.

Example 2.0.1. For k a commutative ring, take (V,®) = (Chi[{quasi-isos}~'],®") to be the oo-
k

categorical localization of chain complexes over k on quasi-isomorphisms, with derived tensor product
over k presenting the symmetric monoidal structure. More generally, for R a commutative ring spec-
trum, take (V,®) := (Modg, /1%) to be the oo-category of R-module spectra and smash product over R

as the symmetric monoidal structure.

2.1. Hochschild homology of an associative algebra. Let A be an associative algebra in V.
Recall the paracyclic category A, introduced by Getzler—Jones. An object is a linearly ordered
set I with finite intervals, equipped with an order-preserving action Z ~ I with the property that
i < 1.1 for each ¢ € I; a morphism is a Z-equivariant map between linearly ordered sets. Here are
some standard facts about the paracyclic category (see, for instance, §4.2 of [Lu2]).
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(1) There is a canonical equivalence

whose value on (Z ~ I) is the set of surjective maps between linearly ordered sets from I to
[1], equipped with inherited linear order and residual Z-action.

(2) The Z-action on each object in A, and the Z-equivariance of each morphism in A, assemble
as an action:

BZ ~ AO .
*Z
(3) There is a standard functor A M A, whose value on a non-empty finite linearly
ordered set its Z-fold join as it is equipped with the Z-action given by translating joinands.
The resulting functor

AP — AOOP ~ AO
is final.

Recall from [Lo] Connes’ cyclic category A in which an object is a cyclically ordered non-empty finite
set, and a morphism is a cyclic order preserving map. For (Z ~ I) € A an object, the Z-coinvariants
of the underlying set I, canonically retains a cyclic order; this association assembles as a functor:

Ao—)A, (ZNI)I—>I/Z
This functor witnesses the BZ-coinvariants:

Recall from [BV] an explicit description of the symmetric monoidal envelope Env®(Assoc) of the
associative operad.'® There is a canonical functor

Ay — Env®(Assoc)

whose value an object (Z ~ I) € A is the quotient set I,7;, and whose value on a morphism
(Z ~ 1) ER (Z ~ J) in A is the induced map between quotient sets 1,7 T, Jz together with the

linear order on f;Zl ([5]) inherited through the canonical bijection I O f~1(j) Dbijection, f;Zl ([7]) for some

(any) choice of j € [j] € J/z. Evidently, this functor is canonically BZ invariant, thusly canonically
factoring through the BZ-coinvariants:

Apgy, ~ A— Env®(Assoc) .
In particular, each associative algebra A in V determines a composite functor
Bar?“(A): A® — Ay — A — Env®(Assoc) Ay,

which is the cyclic bar construction (of A). The Hochschild homology (of A) (in V) is the
geometric realization of this simplicial object:

HH(A) := HHy(4) = AAO%AA ~ |Bard“(A)] € V.

This construction is evidently functorial in the argument A:

AIgAssoc(v) i> V.

13Spociﬁcally7 an object is a finite set; a morphisms from I to J is a map between finite sets [ i> J together with
a linear order on f~!(j) for each j € J; composition is composition of maps between finite sets together with joins of
finite sets; the symmetric monoidal structure is given by disjoint unions of finite sets.
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Using finality of A°® — A, the action T ~ BZ ~ A determines an action T ~ HH(A), which is
Connes’ cyclic operator (see [Co]). This action is evidently functorial in the argument A:

(2.1.1) Modr(V)

>
HH — — l
- forget

—
—

AIgAssoc(V) L V.

When working over the sphere spectrum (which is to say V = (Spectra, A)) so that HHspectra(A4) =
THH(A) is topological Hochschild homology, in [BHM]| Bokstedt-Hsaing-Madsen extend this T-
action as a cyclotomic structure on THH(A). In [AMGRI1] it is demonstrated how this cyclotomic
structure on THH(A) is derived from an action of the continuous monoid T x N* on the unstable
version HHgpaces(A).

Below, we prove Theorem Y.1, which constructs a canonical T2 x Braids-action on HH®) (A), which
is functorial in the 2-algebra A. We then prove Theorem Y.2, which, in the case that V = (Spaces, x),
extends this action to one by the continuous monoid T? x E;(Z)

2.2. Secondary Hochschild homology of 2-algebras. In order for the Hochschild homology con-
struction to be twice-iterated, we endow the entity A € V with an algebra structure among algebras.

Definition 2.2.1. The oo-category of 2-algebras (in V) is

A|g2(V) = AlgAssoc(AlgAssoc(V)) .

Example 2.2.2. A commutative algebra A = (A, ) in V, determines the 2-algebra (A, u,p) in V.
This association assembles as a functor

CAIg(V) —> Algy (V) ,
thusly supplying a host of examples of 2-algebras.

Observation 2.2.3. Using that the tensor product of operads is defined by a “hom-tensor” adjunction,
there is a canonical equivalence between co-categories:

AIgAssoc@Assoc(v) = A|g2(V)

In particular, swapping the two tensor-factors supplies an involution:
Yo~ Algy (V) .

Remark 2.2.4. After Observation 2.2.3, a 2-algebra in V is an object A € V together with two
associative algebra structures p; and pe on A, and compatibility between them which can be stated
as either of the two equivalent structures:

e A lift of the morphism A ® A 22 A in V to a morphism (A, 1) ® (A, 1) 2 (A, 1) in

AIgAssoc(v)'
e A lift of the morphism A ® A £ A in V to a morphism (A, u2) @ (A, o) 25 (A, po) in
AIgAssoc (V) :

Example 2.2.5. Consider the operad €o of little 2-disks. There is a standard morphism between
operads Assoc ® Assoc — &3 (see [Du]). Through Observation 2.2.3, restriction along this morphism
defines a functor between oco-categories

(2.2.1) Alge, (V) — Algy (V) ,

thusly supplying some rich examples of 2-algebras. For instance, for k a commutative ring, a braided-
monoidal k-linear category R is a 2-algebra in the (2, 1)-category of k-linear categories. Specifically, for
G a simply-connected reductive algebraic group over C, a choice of Killing form on its Lie algebra g
determines the quantum group U,g, and thereafter the braided-monoidal category Rep, (G) (for generic
q). (See [CP], for instance.)
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Theorem 2.2.6 (Dunn’s additivity [Du] (see also Theorem 5.1.2.2 of [Lul])). The functor (2.2.1) is
an equivalence between oo-categories.

Remark 2.2.7. The action O(2) ~ Algy(V) of Corollary 0.2.8, afforded by Theorem 2.2.6, extends
the evident 351 O(1)-action which swaps the two associative algebra structures (as the Yo-factor) and
takes opposites of the two associative algebra structures (as the two O(1)-factors).

Definition 2.2.8. Secondary Hochschild homology is the composite functor, given by twice-
iterating Hochschild homology:

HH(2): Ang(v) = AIgAssoc (AIgAssoc(v)) & AIgAssoc(v) & A% ’
(A, Nlaﬂl) — (HH(A, /1,1), HH(/,LQ)) — HH(HH(A, /1,1), HH(/,LQ)) .

The canonical lift (2.1.1) supplies, for each 2-algebra A in V, two commuting actions T ~ HH(Q)(A),
functorially in the argument A:

(2.2.2) Modq= (V)
HH® _ — 7 l
Algy(V) — 2y

2.3. Comparison with factorization homology. Let n > 0. Recall from [AF1] the symmetric
monoidal co-category Mfldz whose objects are (finitary) framed m-manifolds, whose spaces of mor-
phisms are spaces of framed embeddings between them, and whose symmetric monoidal structure is
given by disjoint union. Let M be a framed n-manifold. Consider the full co-subcategories,

Disk™ < MAdf « BDiff" (M) |
respectively consisting of those framed n-manifolds each of whose connected components is equivalent
with R", and by those framed n-manifolds that are equivalent with M. The left full co-subcategory is
closed with respect to the symmetric monoidal structure. Restriction along these full co-subcategories

determines the solid diagram among oco-categories:
(2.3.1)

- N
Alge, (V) < Fun®(Diskly, V) <% Fun®(Mfld'T, V) =5 Fun (BDIff" (M), V) ~ Modpigr(ar) (V) -

Factorization homology is defined as the left adjoint to the leftward restriction functor, indicated by
the dashed arrow; factorization homology over the torus, as it is endowed with a canonical DifFfr(M )-
action, is the rightward composite functor:

(232) /]WZ Alggn (V) — MOdDifFfr(]W)(v) .
Proposition 2.3.1. There is a canonical equivalence

HH ~ / in Fun(AIgAssoc(V),ModT(V)) .
T

Proof. Recall from [AF1] the functor between oo-categories Disk‘;'/sl Lorget, Disk’. Both of these a pri-

ori co-categories are ordinary categories. Through Example 5.1.0.7 of [Lul], taking path-components
defines an equivalence between oco-operads: €5 — Assoc. Proposition 2.12 of [AFT2] states an identi-
fication between symmetric monoidal co-categories: Env®(81) = Disk‘;'. Consequently, taking path-
components of disjoint unions of Euclidean spaces defines an equivalence between symmetric monoidal
oo-categories:
mo: Disk” ~ Env®(&;) — Env®(Assoc) .
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Similarly, taking path-components of disjoint unions of Euclidean spaces while remembering cyclic
orders from S! defines a T ~ BZ-equivariant equivalence between oo-categories filling the diagram
among oo-categories,

for
Diskf e oreet Disk'"
I
T | ~ Wolz
final inclusi Y
A°P - Ay —20 S A ——— = Env®(Assoc) .
In particular, there is a commutative diagram among oo-categories:
- fr
(2.3.3) (Ao)/T (As)r (Disky/s1) /7
Env®(Assoc)

We now explain the diagram among co-categories:

Fun (Disk™ o, V)"

Algassoc (V) = Fun® (Env® (Assoc), V) — Fun(Env® (Assoc), V) —— Fun(A9, V)
Fun(Ag, V)" Modr (V).

The rightward functor on the left is the forgetful functor from symmetric monoidal functors to functors
between underlying oco-categories. The equivalence on the left is the universal property of symmetric
monoidal envelopes. Restriction along the diagram (2.3.3) defines the two triangles involving unlabeled
functors, where the superscript denotes the T-invariants with respect to the action on the domain-
argument of each functor co-category. The functors labeled by colim are given by taking colimits. The
right vertical equivalence is definitional, using that the T-action on V is understood as trivial. The
upper right triangle commutes because the functor Disk';r/gl = A Y is an equivalence and in particular
final. Finality of A°® — A, together with the fact that A has a final object, implies the oo-groupoid-
completion of A contractible. This implies the functor Ay < A is final, which proves the lower

triangle commutes.
To finish, the definition of fT is the upper composite functor, while the definition of HH is the lower

composite functor.
O

Corollary 2.3.2. There is a canonical equivalence
HH® ~ / in Fun(AIg2(V),Mode(V)) .
T2

Proof. The sought equivalence is a concatenation of the following sequence of equivalences in the oo-
category Fun (Alg2 (V), Modr:2 (V)),

(2.3.4) HH® (=) ~ HH(HH(-))

(2.3.5) ~ /T(/T(_))
~ [ )
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which we now explain. The first equivalence is the definition of secondary Hochschild homology. The
second equivalence is two applications of Proposition 2.3.1. The third equivalence is a consequence of
the pushforward formula (Proposition 3.23) of [AF1].

O

Swapping the order of pushforward immediately implies the following.

Corollary 2.3.3. For A = (A, u1,p2) a 2-algebra in 'V, the two iterations of Hochschild homology
canonically agree:

HH(HH(A, 1), HH(p2)) =~ HH(HH(A, s12), HH(111)) -

2.4. Comparing sheers. Here, we show the sheer symmetries of HH® agree.

Consider the composite morphism between continuous groups:
(r1): Z — T2 x Z 2" Diff" (pr,) — Diff™(T2) .
Ui

Note that the composition Diff"(T2) — Diff(T2) <= T2 x GlLy(Z) carries 71 to the sheering matrix

Uy = [(1) ﬂ € GLy(2).

Proposition 2.4.1. The diagram among co-categories

fgt; fgty

Algy (V) <—————— Alge, (V) Algy (V)
~ HH®
Zsr(e-:rlHHm L Jr2 l lZSheer21HH
MOdZ(V) L MOdDiﬂrfr(T2)(V) r2) MOdZ(V)

canonically commutes. In other words, for each Es-algebra A in 'V, there are canonical identifications
between the two symmetries of HH® (A),

(2.4.1) (r1) =~ Sheer; and (r9) ~ Sheery ',
functorially in A € Alge, (V).

Proof. By swapping the two coordinates of T2, commutativity of the left square implies commutativity
of the right square. So we only establish commutativity of the left square.

Notice that this diagram is functorial in the presentably symmetric monoidal co-category V. There-
fore, commutativity of this diagram for any presentably symmetric monoidal co-category V is implied
by an identification (2.4.1) in the case that the pair (A,V) is initial among presentably symmetric
monoidal co-categories equipped with an Es-algebra.

We first identify the initial presentably symmetric monoidal oco-category equipped with an &s-
algebra. Day convolution supplies a symmetric monoidal structure on the co-category PShv(Diskg).
By construction, this symmetric monoidal co-category is ®-presentable. Also, the Yoneda embed-
ding Disky Yoneda, PShv(Disk)) is canonically symmetric monoidal. Via the equivalence Algg, (V) <
Fun®(Disk{T, V), the Yoneda functor is an €s-algebra in PShv(Diskf). Furthermore, it is initial among
presentably symmetric monoidal co-categories equipped with an €s-algebra. Indeed, for A € Algg, (V) &

Fun®(Diskll, V) an &;-algebra in V, left Kan extension of A along the Yoneda functor is the unique
colimit-preserving symmetric monoidal filler:

Disky

) LKE =V,

PShv(Diskf) — — — == — —
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L

Recall the fully faithful symmetric monoidal functor Diskff < Mfld®. The restricted Yoneda functor
associated to ¢ is

Mfldfy testricted Yoneds , popy DiskT) | M — Hompgas (¢, M)

which is canonically symmetric monoidal. The definition of factorization homology is such that there
is a canonical morphism in Fun® (I\/Ifld‘;', PShv(Disk‘;')),

(2.4.2) LYoneda — Homygqs (v,—) -

This morphism is an equivalence. Indeed, unpacking definitions, and identifying presheaves with right
fibrations via the (un)straightening equivalence, the unstraightening of this morphism is a functor
between right fibrations over Disk‘z:

/ Disk( jgn — Disk]}, .

As explained in Example 0.2.12, this functor is an equivalence. In particular, we have a canonical
composite equivalence

2.4.3 HH® (Yoneda ~ Yoneda ~ Hompgqq (¢, T? in PShv(Disk) .
(2.4.3) ( ) 3322 - 2.4.2) e (¢, T°) (Diskz)

Also, the symmetric monoidal functor

Tx— Mﬂdg— restricted Yoneda PShV(DISk];r)

. s fr
Hompgqe (L, T x —) : Disk;

is the Hochschild homology of the 2-algebra in PShv(Diskg) underlying the €o-algebra ¢, as it is equipped
with its residual associative algebra structure:
(2.4.4)

HH(Yoneda) =~ = Yoneda =~ Homyggs (1, T x R in Alga.. (PShv(Disk™)) .
( ) Prop 2.3.1 /JI‘XRU‘ (2.4.2) Mﬂdg( ) €A ( ( 2))

Now, taking mapping tori defines a map between pointed spaces Diff"(T) — BDiff"(T2). Based
loops of this map is the morphism between continuous groups

Q(mapping torus)

Diff" (T?) .

(r): Z == QT = QDiff"(T)

By construction of the morphism (0.2.4), this fills the diagram among continuous groups:

Z Z

Q Diff"(T) — © Autpsp (oisks) (HomMﬂdg (4, T x R)) —= = O Autpghy is) (HH(L)) heers

| (2.4.4)
: Q(mapping torus) (024)1
¥
Diff"(T?) —— Autpsp, (Diskt) (HomMﬂdg (4, TQ)) TI?») Autpshy (Disky) (HH(Q) (L)) :

Commutativity of the outer diagram is the sought identification (2.4.1) in the universal case.

36



2.5. Proof of Theorem Y.1 and Corollaries 0.2.5, 0.2.10. This subsection proves Theorem Y.1
and Corollary 0.2.5, then Corollary 0.2.10.
Next, we explain the following diagram among co-categories:

(2.5.1)
fgt fgt
Algy (V) :1 A|ge2 V) : Alg, (V)
Jor Jor @)
ng:q“”(”l / lfw \ lzsmigl””
forget forget forget forget

MOdZ (V) < MOdDifFfr(prl)(V) - MOdDifff'('JIQ)(V) e MOdDifFfr(pr2)(V) —_— MOdZ(V)

forget forget forget
forget forget

Vv Modrz (V) V.

forget forget

e The functors labeled “forget” are restriction along the canonically commutative diagram among
continuous groups:

7 —" . Diff"(pr,) —— Diff"(T?) < Diff"(pr,) ~—— 27,

in which, for each i = 1,2, the the morphism (;) is the composite Z < T2 x Z —% Diff" (pr,).

i

In particular, each of the lower triangles canonically commutes.
e The functor [, is (2.3.2).
e For i = 1,2, the functor fpr‘ is factorization homology over the circle T of the pushforward

along the projection T2 Py T off of the i*_coordinate, as it is endowed with its canonical
Diff" (pr;)-action. The pushforward formula fpri ~ [} J; (see Proposition 3.23 of [AF1]),

which is manifestly DifFfr(pri)—equivariant, supplies commutativity of the upper triangles.

f
e The functor Alg,, (V) £ Alg, (V) is restriction along the standard morphism between operads

f
Assoc®Assoc 22294, &) The functor Alge, (V) g, Alg, (V) is restriction along the morphism

between operads Assoc ® Assoc —2s Assoc ® Assoc Standard, &9. Theorem 2.2.6 implies that

each of these functors are equivalences.
e For i = 1,2, the outer vertical functors are HH(Q)7 as it is endowed with its canonical action
Z HH® (A) of (0.2.5),(0.2.7) from §0.2, which is evidently functorial in A € Algy(V).

heer;
e Commutativity of the upper tilted squares is Proposition 2.4.1.

In particular, for each 2-algebra A € Alg,(V), there is a canonical action Difff(T2) ~ HH®(A).
Through Theorem X(2a), this is an action T2 x Braids ~ HH®(A), which establishes the statement
of Theorem Y.1.

After Theorem Y.1, the standard presentation (0.1.1) of the braid group Braid; immediately implies

Corollary 0.2.5(1). Via the identification T2 x Z = Diff" (pr;) of Corollary 1.5.5, commutativity of the
U,

outer squares in the diagram (2.5.1) directly {mplies Corollary 0.2.5(2)(3).

Next, consider the O(2) ~ GLy(R)-action on Mfld} given by change-of-framing. Observe that this
action restricts to as one along the full co-subcategory Disk;r - l\/IfId';r. This implies the left adjoint, [,
is O(2)-equivariant. Therefore, for each A € Alg,(V), and each (X, ¢) € MfldY, taking O(2)-orbits of
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both A and (%, ¢) define a canonically commuting diagram among oo-categories

0(2) — 224 Algy(V)

Orbit():,gz)l ‘/f(zw)

A
MfldTy _Ia Ly
Through Observation 1.3.10, restricting along BZ ~ BQ;0(2) — O(2) gives the commutative diagram
asserted in Corollary 0.2.10.

2.6. Proof of Theorem Y.2. After Corollary 0.3.3, to prove Theorem Y.2 we are left to extend the
action
fr
Diff™ (T2)°P = Diff"(T2) & T2 x Braid; ~ HH®)(A4)

to an action Imm™(T2)°P ~ HH®(A4). We do this by extending factorization homology, via the devel-
opments of [AFR]. Namely, recall from [AFR] the co-category MfdS" of solidly 2-framed stratified
spaces. Consider the full co-subcategory M‘fQ C J\/[fdséfr consisting of those solidly 2-framed stratified
spaces each of whose strata is 2-dimensional.

Observation 2.6.1. Inspection of the definition of J\/[fds;r reveals the following.
(1) The moduli space of objects

Obj(Meh) ~ [ BDIff"(3, )
[Z¢]
is that of a framed 2-manifold. In other words, there is a canonical bijection between framed-

diffeomorphism-types of framed 2-manifolds and equivalence-classes of objects in MS:er, and for
(3, ) a framed 2-manifold, there is a canonical identification between continuous groups:

Diff"(, ) ~ Autye (3, ¢) -

(2) Let (3, ¢) and (X', ¢’) be framed 2-manifolds. The space of morphisms from (X, ¢) to (¥, ¢’)
in MS:er ,

Homyst, (Z,0), (2, ¢)) ~ H Embfr((zv ), (2, 9"/))/ Diff /5 (S)
=55
is the moduli space of finite-sheeted covers over ¥ together with a framed-embedding from its
total space to (X', ¢’).
(3) Composition in MS:{'Q is given by base-change of framed embeddings along finite-sheeted covers,
followed by composition of framed-embeddings:

Homyesr ((2,9), (X',¢")) x Homyes (2, ¢), (57, ¢")) — Hompesr (), (27, ¢")) ,
T Sk f o S *
(@) EEmod @), (@.6) & ) S "))

— ( (Z,0) < (S x &, (pry om)* ) L2 (87, ¢") ) :
E/

(4) Evidently, framed embeddings form the left factor in a factorization system on M, whose
right factor is (the opposite of) framed finite-sheeted covers.
(5) Finite products exist in Mszfrz, and are implemented by disjoint unions of framed 2-manifolds.
(6) For each framing ¢ of the 2-torus T?, there is a canonical identification between continuous
monoids:
fr (2 op o 2
Imm™(T%, ) > Endyer (T, ) .
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Denote the full co-subcategory
f f
v: DT, < M,
consisting of those framed 2-manifolds that are equivalent with a finite disjoint union of framed Eu-
clidean spaces. Regard both fDS:er and MS:er as symmetric monoidal co-categories, via their Cartesian
monoidal structures.'* Notice the evident monomorphisms of symmetric monoidal co-categories,

p: Disk] — Dsfr, and  p: Mfld] — M,

each of whose images consists of all objects yet only those morphisms ((, ¢) & (i, T™*p) ER (2, ¢)
in which 7 is a diffeomorphism.*?
Let X be a presentable oo-category in which products distribute over colimits. Consider the full
oo-subcategory
Fun* (D5, X) < Fun(D5",X)
consisting of those functors that preserve finite products.

Proposition 2.6.2 ([AMGR2]). Let X be a presentable co-category in which products distribute over
colimits. Restriction along p defines an equivalence between oco-categories:

s Fun™ (D1, ) < Fun® (Diskf. ) = Al (X)

The inverse of restriction along p followed by left Kan extension along ¢ defines a composite functor

/: Alge, (X) ~ Fun®(DiskT, X) e, Fun™ (D, X) =4 Fun™ (M, ) .

Proposition 2.6.3. Let X be a presentable oo-category in which products distribute over colimits. The
diagram among oco-categories canonically commutes:

Algg, (X) / Fun™ (M, 20) restriction Fun(BAutMs:fr2 (T2, ¢0), X)

fl :‘/Obs 2.6.1(1)

~

Fun® (Mfldff, or) —Lestriction Fun (BAutygas (T2, ©0), X) — = Modpigr (12 ) (X)-

Proof. Let A € Algg,(X) ~ Fun®(Disk{T, X). Using Proposition 2.6.2, the monomorphism p determines
a canonical morphism between colimits in X:

(2.6.1) /T A = colim(Disk;’/(Ww = Diskf" X MAd]) o ) 2 Disky 2 x)
2
* —1
st A, x)

L> colim (‘Dszﬁé/('ﬂ-z .Ds:fr2 X MS:er/(TQ

e, ,0)

o) T
~ A.
T2
This morphism is manifestly Diff"(T?)-equivariant and functorial in A € Alge,(X) as so. So the

proposition is proved upon showing this morphism (2.6.1) is an equivalence. The morphism (2.6.1) is
an equivalence provided the canonical functor

(2.6.2) Diskfz'/mz,m) — 952'2/(?2,@0)

is final. But the factorization system of Observation 2.6.1(4) reveals that this functor (2.6.2) is a right
adjoint: its left adjoint given by projecting to the right factor of the factorization system:

o r =g =
DLy (12,p0) — Disky(r2,00) (D45 D 5 (T2, 00)) = (D = (T2, 00)) -

141ndeod7 notice that the full co-subcategory Di’z C MS:f'Q is closed under finite products.
15In other words, p is the inclusion of the left factor in the factorization system of Observation 2.6.1(4).
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The sought finality of the functor (2.6.2) follows.
O

Proposition 2.6.3, together with Observation 2.6.1(6), immediately supply a filler in the commutative
diagram among oco-categories:

(2.6.3)
Fun (B Ends g (T? X = Mod,. (120 (X) ——= Mod /.o =4 1, vyop (X
gy oD Endee, (1% 0), X) o e Mo gy () 5 Mlod i (1)
-7 Lfﬁ)rge‘ﬁ li’orgct
/ (Diff" (T*)~ fr2 ) N
Algg, (X) 230 MOdDifrf'(W)(x)Thm X(2a)M0d']1'2><lBraid3(x)-

Theorem Y.2 follows from this commutative diagram (2.6.3) after the commutative diagram (2.5.1).

APPENDIX A. SOME FACTS ABOUT CONTINUOUS MONOIDS

We record some simple formal results concerning continuous monoids.

Lemma A.0.1. Let G ~ X be an action of a continuous group on a space. Let * —<£>—> X be a point

in this space. Consider the stabilizer of x, which is the fiber of the orbit map of x:
(A.0.1) Stabg(z) *

l//m*l "
id X (z)

id X (x ac
GoGxs— " S GxX—2 X

There is a canonical identification in Spaces between this stabilizer and the based-loops at [x]: * —<i>—>

tient , .
P g e X,q of the G-coinvariants,

Stabg(:v) ~ Q[x](X/G) R
through which the resulting composite morphism Q) (X ) ~ Stabg(xz) — G canonically lifts to one
between continuous groups.
Orbit,

Proof. By definition of a G-action, the orbit map G —= X is canonically G-equivariant. Taking
G-coinvariants supplies an extension of the commutative diagram (A.0.1) in Spaces:

Stabg (117) G duotient G/G o~ ok
l lOrbitur l(OrbitI)/c
% (z) X quotient X/G,

Through the identification G g ~ x, the right vertical map is identified as * ﬂ X /G- Using that

groupoids in Spaces are effective, the right square is a pullback. Because the lefthand square is defined
as a pullback, it follows that the outer square is a pullback. The identification Stabg(z) ~ Q,1(X,¢)
follows. In particular, the space Stabg(x) has the canonical structure of a continuous group.

Now, this continuous group Stabg(z) is evidently functorial in the argument G ~ X > z. In

particular, the unique G-equivariant morphism X L5 « determines a morphism between continuous
groups:
Stab, (X) — Stab.(x) ~ G .
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Lemma A.0.2. Let H — G be a morphism between continuous groups. Let H ~ X be an action on
a space. There is a canonical map between spaces over Gy,

Xa@G, ) — (X xXG)/m
from the coinvariants with respect to the action Q(G p) RN SN ¢ Furthermore, if the induced
map wo(H) = mo(G) between sets of path-components is surjective, then this map is an equivalence.

Proof. The construction of the Q-Puppe sequence is so that the morphism Q(G,g) — H witnesses the

stabilizer of * 2% G with respect to the action H - G ~ G

left trans
QG /n) If
M unit G.

In particular, there is a canonical Q(G g )-equivariant map

id X unit

X ~ X xx———3 X xG.

Taking coinvariants lends a canonically commutative diagram among spaces:

(A.0.2) Xawy —= X xG)yg —= X)n
BOAG, ) G BH.

This proves the first assertion.
We now prove the second assertion. Because groupoid-objects are effective in the co-category Spaces,
the H-coinvariants functor,

Fun(BH, Spaces) — Spaces gy (H~X)— (X7 —BH),

is an equivalence between oo-categories. In particular, it preserves products. It follows that the
right square in (A.0.2) witnesses a pullback. By definition of coinvariants of the restricted action
QG g) - H ~ X, the outer square is a pullback. The connectivity assumption on the morphism
H — G implies the left bottom horizontal map is an equivalence. We conclude that the left top
horizontal map is also an equivalence, as desired.

O

Let BN <—> Monoids be an action of a continuous monoid on a continuous monoid. This action

can be codified as unstraightening of the composite functor ‘BN — Monoids 2, Cat?(fo 1) We denote
this unstraightening as
(%M)/I,IaxN — BN : 16

it is a coCartesian fibration equipped with a section. Because the (0o, 1)-category BN is equipped with
a functor * — BN, the given section supplies the (oo, 1)-category (BM) ey with a distinguished
point, and so we regard (BM ) my as a pointed (oo, 1)-category. The semi-direct product (of N
by M ) is the continuous monoid

M x N = End(sBM)/uaxN(*) ’

16The notation here is intended to evoke left-lax quotient. Indeed, for K LN Cat(o,1) & functor from an co-category,
its left-lax colimit is the (oo, 1)-category defined as the domain of the unstraightening of F:

colim!-12X (1)

(coliml'lax(F) coliml‘lax(*)) = (Un(F) —>9<) .

See Appendix A of [AMGR3] for a treatement of lax (0o, 1)-category theory.
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which is endomorphisms of the point.!” Note the canonical morphism between monoids M x N — N
whose kernel is M.

Dually, let BN°P M l\/Ionoids a Tight be a action. Consider the unstraightening of the com-
posite functor BN — Monoids 2, Cat 50,1) is a pointed Cartesian fibration (BM) ey — BN .
The semi-direct product (of N by M ) is the continuous monoid

N x M := End(%M)/r.laxNop (*) s

which is endomorphisms of the point. Note the canonical morphism between monoids M x N — N
whose kernel is M.

Observation A.0.3. Let N ~ M be an action of a continuous monoid on a continuous monoid. There
is a canonical identification between continuous monoids under M°P and over N°P:

(M » N)® =~ (N° x M) .

The next result is a characterization of semi-direct products.

i
Lemma A.0.4. Let AS N be a retraction between continuous monoids (so roi ~idy ).
T

o If the canonical map between spaces

(A.0.5) Ker(r) x N nelusionxi, g o g B4, 4
is an equivalence,'® then there is a canonical action N N Ker(r) 19 for which there is a canonical
equivalence between monoids:

Ker(r) x N ~ A.
A
e If the canonical map between spaces

N x Ker(r) o Xinclusion A % A A

is an equivalence,?” then there is a canonical action Ker(r) ~ N for which there is a canonical
P
equivalence between monoids:

Ker(r) x N ~ A.
P

Proof. By way of Observation A.0.3, the two assertions imply one another by taking Cartesian/coCartesian
duals of coCartesian/Cartesian ﬁbratlons So we are reduced to proving the first assertion.

Consider the retraction %A %N among pointed oo-categories. Note that B¢ is essentially
surjective. Note that Ker(r) is the ﬁber of Br over x — BN.

" The underlying space of this continuous monoid is canonically identified as M x N; the 2-ary monoidal structure
Uarx N 1s canonically identified as the composite map between spaces:

idys Xswap Xidpn
4>

U QR)Y (M X N) X (M x N)=M x (N xM)x M M x (M x N)x N

idpys X (projM 7action) Xidn

(A.0.4) Mx (MxN)xN=(MxM)x(NxN)

KA X
KM EEN Mx N .

18Note that this condition is always satisfied if N is a continuous group.
19The action map associated to A can be written as the composition

N x Ker(r) ixinclusion, 4 o4 M4, 4 ;%5 Ker(r) x N LN Ker(r) .
(A.0.9)

20Note that this condition is always satisfied if NV is a continuous group.
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Let ¢; —<E>—> BN be a morphism. Consider the commutative diagram among oco-categories:

(*)

Co BA

7
SL <Z(n2 -7 l%r
7 (n)

g ——" > BN.

The assumption on the retraction implies the diagonal filler is initial among all such fillers. This is to
say that the morphism i(n) in BA is coCartesian over Br. Because Bi is essentially surjective, this
shows that Br is a coCartesian fibration. The result now follows from the definition of the semi-direct
product Ker(r) X N.

O

Proposition A.0.5. Let X be an co-category. Let BN M Monoids be an action of a continuous

monoid N on a continuous monoid M. Consider the pre-composition-action:

BNoe M7 onoidse? M40 Cat(oo,1) -

There is a canonical identification over Modpse (X) from the oo-category of (M x N)°P-modules in
X to that of M°P-modules in X with the structure of being left-laxly invariant with respect to this
precomposition N°P-action:

Mod (a7 3yer () = Modazer ()N .
In particular, there is a canonical fully faithful functor from the (strict) N -invariants,
Mod o0 (X)N < Mod(prsnyer (X)
which is an equivalence if the continuous monoid N is a continuous group.

Proof. The second assertion follows immediately from the first. The first assertion is proved upon
justifying the sequence of equivalences among oco-categories, each which is evidently over Mod;(X):

(A0.6)  Modiapnys(X) = Fun((B(M x N)*, X )

(A.0.7) (%) Fun( B(NP x M), X )
(A.0.8) = Fun /%Nop( BNP | Funigyer (B(NP 5 M), X x BNP) )
(A.0.9) & Fun /%NOP( BN, Funfeyes (BMP) iy, X x BN) )
(A.0.10) = Fun /%Nop( BN | Fun(BM®, X) . pver )
(A.0.11) = Fun /%NOP( BN | Moder (X) 1 1mever )

é) Mod pzer ()" 2N

The identifications (a) and (f) are both the definition of co-categories of modules for continuous monoids

in X. The identification (b) is Observation A.0.3. By definition of semi-direct product monoids, the

N M
Cartesian unstraightening the composite functor BN u Monoids —» Cat(oo,1) is the Cartesian

fibration:
B(NP x MP) — BN .
Being a Cartesian fibration ensures the existence of the relative functor co-category (see [AF2]).
The identification (c) is direct from the definition of relative functor co-categories. Furthermore, there
is a definitional identification of the right-lax coinvariants B(NP x M%) =~ (BMP) iy over
SBNP (see Appendix A of [AMGRS3]), which determines the identification (d). The identification (e)
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follows from the codification of the N°P-action on Fun(BM°P,X) in the statement of the proposition.
The identification (g) is the definition of left-lax invariants (see Appendix A of [AMGR3]).
O

The commutativity of the topological group T? determines a canonical identification T? 22 (T?)°P be-
tween topological groups, and therefore between continuous groups. Together with Observation B.1.1,
we have the following consequence of Proposition A.0.5.

Corollary A.0.6. For X an co-category, there is a canonical identification between co-categories over

Modrz (X):
axET
Mod(TQNE;(Z))OP(fXj) ~ Mode(f)C)” Ef(2)

APPENDIX B. SOME FACTS ABOUT THE BRAID GROUP AND BRAID MONOID

Here we collect some facts about the braid group on 3 strands, and the braid monoid on 3 strands.

B.1. Ambidexterity of Ef (Z).

Observation B.1.1. Taking transposes of matrices identifies the nested sequence among monoids
with the nested sequence of their opposites:

)T

IRT

(SLQ(Z) C Ef(Z) C GLI(R) ) (SLQ(Z)op C Ef(2)” C GLI(R)® ) .
By covering space theory, these identifications canonically lift as identifications between nested se-
quences among monoids and their opposites:

T

~ — ) ~
(‘Braids  Ef(z) c GL;(R)) = (Braids™ c Ef(2)

—

op

C GL, (R)* ) .
Corollary B.1.2. For each co-category X, there are canonical identifications

Modgraids (X) =~ Modgraidser (X) and ModE;(Z)(fXJ) ~ ModE;(Z)op(DC)
between oco-categories of (left-)modules in X and those of right-modules in X.

_\T _\—1
Remark B.1.3. The composite isomorphism Braids % Braids°? L Braids is the involution of

o

Braids given in terms of the presentation (0.1.1) by exghanging T and To. Similarly, the involution

N\T -1
SLa(2) <1 SLy(2)°° - SLy(Z) exchanges U and Us.

B.2. Comments about Braid; and E;L(Z)
Observation B.2.1. In Braids (recall the presentation of (0.1.1), there is an identity of the generator
of Ker(®):
(rimem)? = (1172)% = (27172)* € Ker(®) .
For that matter, since the matrix

0 1

(B.2.1) R = U UU, = [_1 0

:| = U, U1U; € GLQ(Z)

implements rotation by —7, then R* =1 in GLy(Z).

The following result is an immediate consequence of how E; (Z) is defined in equation (0.1.4), using
that the continuous group GL3 (R) is a path-connected 1-type.
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Corollary B.2.2. There are pullbacks among continuous monoids:

Braids — > EJ (Z) —— >«

| |y

GLy(Z) — > Eo(Z) ———— > GLy(R).

+
2

In particular, there is a canonical identification between continuous groups over GLo(Z):
Braid3 ~ Q(GLQ(R)/GLQ(Z)) (OVGI‘ GLQ(Z)) .

Observation B.2.3. The inclusion SLy(Z) C EJ(Z) between submonoids of GL; (R) determines an
inclusion between topological monoids:

(B.2.2) T? x Braids — T? x Ef (Z) .

After Observation 1.1.1, this inclusion (B.2.2) witnesses the maximal subgroup, both as topological
monoids and as monoid-objects in the co-category Spaces.

Remark B.2.4. We give an explicit description of E; (Z). In [Ral], the author gives an explicit
description for the universal cover of SP2(R) = SL3(R) (and goes on to establish the pullback square
of Proposition 0.1.1). Following those methods, consider the maps

(a+d)+i(b—c)

. 1
¢: GL2(R) — S* | AH|(a+d)+i(b—c)|’

where A = {Z Z} . As in [Ra], consider a map n: GL2(R) x GLz(R) — R for which

a’+c? —b* — d* — 2i(ad + be)

ein(AB) o 1-— aAQp—1
@+ d?+ (o

= where ap =
|1 — asap—]

In these terms, the monoid E;r (Z) can be identified as the subset
E;(Z) = {(4,s) | ¢(A) = €} C E(Z) xR, with monoid-law (A4, s)-(B,t) := (AB, s+t+n(A, B)) .

B.3. Group-completion of E;‘ (Z). The continuous group GL3 (R) is path-connected with 71 (GL3 (R), 1) =
Z. Consequently, there is a central extension

(B.3.1) 1 — 7 —s GL, (R) Sniversal cover, ) gy q

Consider the inclusion as scalars RZ, SC;’;S GL3 (R). Contractibility of the topological group RZ,

implies base-change of this central extension (B.3.1) along this inclusion as scalars splits. In particular,
for R®: GL3 (Q) C GLJ (R) the subgroup with rational coefficients, there are lifts among continuous
Q

monoids in which the squares are pullbacks:

scalars

NX QX R, — =Ef(@#)——— =Gl (Q ———>GL; (R)
Q® R®

Q
universal | cover

scalars

ES (2) — GLI (@) — GLJ (R)
Z Q
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Proposition B.3.1. Fach of the diagrams among continuous monoids

—_—

NX scalars EQ (Z) N scalars ’E;r (Z)
inclusion[/ ‘/Q% inclusiont l(@%
scalars sga\;;s ~+
Q%, —2 L GLy(Q) and Q%, —=2 . GL, (Q)

. . inclusion . .
witnesses a pushout. In particular, because N* ——— QX wilnesses group-completion among con-

tinuous monoids, then each of the right downward morphisms witnesses group-completion among con-
tinuous monoids.

Proof. We explain the following commutative diagram among spaces:

R®
Ex2(Z) - > GL2(Q)

~ —

N O

(@\\& - R®

im Eo(Z) - — — — — x\—1

colim E;(Z) o~ T ER@IN)T]
The top horizontal arrow is the standard inclusion. Here, scalar matrices embed the multiplicative
monoid of natural numbers N* C  Ez(Z). The bottom right term, equipped with the diagonal

scalars
arrow to it, is the indicated localization (among continuous monoids). The up-rightward arrow is

the unique morphism between continuous monoids under E(Z), which exists because the continuous
monoid GL2(Q) is a continuous group. The solid diagram of spaces is thusly forgotten from a diagram
among continuous monoids.

Next, the poset N4V is the natural numbers with partial order given by divisibility: r < s means r
divides s. Consider the functor

Feyzy: N9 — Sets — Spaces, 1 Ex(Z) and (r < s) = ( Ea(Z) = Eo(Z) ) .

The colimit term in the above diagram is coIim(FEz(Z)), which can be identified as the classifying space
of the poset

Un(Fe,z)) = (Nx Ex(Z) , with partial order (r, A) < (s, B) meaning r < s in N~ and ;-A =B ) .

e The dashed arrow (a) is the canonical map from the 1-cofactor of the colimit.

e The dashed arrow (b) is implemented by the map (Nb): GL2(Q) AnCarad), E2(Z) where
r4 € N is the smallest natural number for which the matrix r4 - A € E3(Z) has integer
coefficients. The triangle with sides (a) and (b) evidently commutes.

~ (r,A)sr—1t

e The dashed arrow (c) is implemented by the map (c): Un(Fg,(z)) 4 E2(Z)[(N*)~1].
The triangle with sides (a) and (c¢) evidently commutes. We now argue that the map (c) is an
equivalence between spaces.

Observe the identification between continuous monoids

@ (Z>o,+) =, NX , ({p prime} 2 Zzo) — H p®)

p prime p prime

as a direct sum, indexed by the set of prime numbers, of free monoids each on a single generator.
For S a set of prime numbers, denote by (S)* C N* the submonoid generated by S. For S a
set of primes, and for p € S, the above identification as a direct sum of monoids restricts as an
identification (Z>o,+) X (S~ {p})* = {p})* x (S~ {p})* = (S)*.
Next, observe an identification of the poset N4V ~ (BN*)*/ as the undercategory of the
deloop. Through this identification, and the above identification supplies an identification
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between posets from the direct sum (based at initial objects) indexed by the set of prime
numbers:

@ (ZZO, <) i> NV 7 ({p prime} N ZZO) — H pX(P) )

p prime p prime

For S a set of prime numbers, denote by (S)4v c N9V the full subposet generated by S. For
S a set of primes, and for p € S, the above identification as a direct sum of posets restricts as
an identification (Zsq, <) x (S~ {p})® = ({p}H)dV x (S~ {p})4v = (S)dV. In particular, the
standard linear order on the set of prime natural numbers determines the sequence of functors
(B.3.2) Neiv 102, ) 5 gydiv 108,y o gydiv 105,y o ydiv Joery
each which is isomorphic with projection off of (Z>¢,<). In particular, each projection is a
coCartesian fibration, so left Kan extension along each functor is computed as a sequential
colimit. Because N* C  Ey(Z) is (strictly) central, so too is (Z>o,+) = ({p})* C Ea2(Z).

scalars
The following claim follows from these observations, using induction on the standardly ordered

set of primes.

.
Claim. For each prime g, left Kan extension of Fg,(z) along the composite functor Ndiv 2%y (p >

¢)4" is the functor

>di\, (locg)1(E2(2))

D >q Spaces ,

P [(w<a-]" ¢

r=E(Z) (0 <)) and  (r<s)— (B(2) (0 <)) 25 B@) [0 <)),

that evaluates on each r as the localization Eo(Z)[({(p’ < ¢)*)~!], and on each relation
r < s in N9V as scaling by 2.
Next, the colimit of this sequence (B.3.2) is [\ (p > ¢)%" ~ x terminal. Consequently, there

q prime
is a canonical identification

colim(Fe.(z)) =~ qe{2cc<)!0)|2n5m}((locq)!( EZ(Z))) = qe{gggg»»»}(FE2(Z)[((10’§Q>X)’1])

~e@[ U <09 = @)

ge{2<3<5<-+ }

e By inspection, the resulting self-map of GL2(Q) is the identity. Indeed, the natural transfor-

mation
id
Un(Fe,z)) fr Un(Fe,(z))

o .
E2(Z)[(N%) 7] - GL2(Q),

given by, for each (s, B) € Un(FEQ(Z)), the relation (r571_3,r571,3-(s’1 B)) < (s, B), witnesses
an identification of the resulting self-map of coLim E2(Z) with the identity.
N %

R®
We conclude that the map Ey(Z)[(N*)~'] — GLo(Q) is an equivalence. It follows that the left square
in the statement of the proposition is a pushout because the morphism N* Inclusion, Qéo witnesses a
group-completion (among continuous monoids).
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The same argument also implies the square
N scalars Eg_ (Z)

inclusion l(@%

Q;O scalars GL;_ (Q)

also witnesses a pushout among continuous monoids. Base-change along the central extension (B.3.1)
among continuous groups reveals that the right square is also a pushout among continuous groups.
O

B.4. Relationship with the finite orbit category of T2. Recall the oo-category Orbit%g of tran-
sitive T2-spaces with finite isotropy, and T2-equivariant maps between them. Recall that the action
EJ (Z) — E3(Z) ~ T? on the topological group determines an action
(B.4.1) Ef(Z) ~ EF 2™ ~ Orbithh .

obs B.1.1

Proposition B.4.1. There is a canonical identification of the co-category of coinvariants with respect

to the action (B.4.1):
(Orbit%’%)/ c o =5 B(T? x E£(2)) .

Proof. Recall that E}(Z) C a_: (R) is defined as a submonoid of a group. As a result, the left-

multiplication action by its maximal subgroup, éI; (Z) ~ E; (Z), is free. Consequently, the space of

objects Obj((B EF (Z))*/) ~ EF (Z) @

maximal subgroup acting via left-multiplication, which is bijective with the quotient of EJ (Z) by its

N E;(Z)/GL;(Z) is simply the quotient set of E; (Z) by its

maximal subgroup via the canonical projection E; (Z) — E5(Z). The space of morphisms between
objects represented by A, B € EJ (Z),

Hom g5 -/ ([ [B]) = {X ¢ Ef(2)| XA= B} ¢ E5(2),

is simply the set of factorizations in E3 (Z) of B by A. In particular, the co-category (B E;‘ (Z))* is a
poset. We now identify this poset essentially through Pontryagin duality.

Consider the poset P%’; of finite subgroups of T? ordered by inclusion. We now construct mutually-
inverse functors between posets:
o [22-2%522)

(A} Ker (T2 25T2 . . _
i G I O sl I IR

(B42)  (BEF(2)
The first functor assigns to [A] the kernel of the endomorphism of T? induced by a representative
A € Ef (Z) ~ T?. The second functor assigns to C' the endomorphism (Z? Ao, 7%) € EF (Z) defined
as follows. The preimage Z2 C quot—1(C) C R? % R?ZZ =: T? by the quotient is a lattice in R?
that contains the standard lattice cofinitely. There is a unique pair of non-negative-quadrant vectors
(u1,u2) € (R>0)? x (R>0)? that generate this lattice quot =1 (C) and agree with the standard orientation

of R2. Then A¢ € EJ(Z) is the unique matrix for which Acil; = €; for i = 1,2. It is straight-forward
to verify that the two assignments in (B.4.2) indeed respect partial orders, and are mutually-inverse

to one another. Observe that the action (B.4.1) descends as an action E; (Z)op ~ P8, with respect to

. . =+ op . .
which the equivalences (B.4.2) are E5 (Z) " -equivariant.

fin (T2AT)—Stabpa (¢ :
Next, reporting the stabilizer of a transitive T2-space defines a functor Orbltfﬂ'-g (T AT)725tbee () P%‘.’;.

Evidently, this functor is conservative. Notice also that this functor is a left fibration; its straightening
is the composite functor

. C— L
(B.4.3) Pfin _—C , Groups —>+ Spaces .
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The result follows upon constructing a canonical filler in the diagram among co-categories witnessing
a pullback:

Orbith} — — — - - — - ~ Ar(B(T? x Ef (2)))
l/ lAr(%proj)
pfin = BES(2) — 2 Ar(BES(2)).
T (B.4..2) ( 2 ( )) r( 2 ( ))

By definition of semi-direct products, the canonical functor B(T? x E; (2)) Zerol, %E;‘ (Z) is a co-
Cartesian fibration. Because the co-category BT? = BT? is an co-groupoid, this coCartesian fibration
is conservative, and therefore a left fibration. Consequently, the functor

Ar(B(T? x E5 (2))) — Ar(BES (Z))

is also a left fibration. Therefore, the base-change of this left fibration along (B E;(Z))*/ forget,
Ar(BEJ (Z)) is again a left fibration:
~ 2 ~ .
(B.4.4) Ar(B(T2 x Ef(2)))®" — (BEf(2)) ~ Py,
(B.4.2)
Direct inspection identifies the straightening of this left fibration (B.4.4) as (B.4.3).
|
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