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Abstract

The thermal structure of subduction zones is fundamental to our understanding of physical and chemical processes
that occur at active convergent plate margins. These include magma generation and related arc volcanism, shallow
and deep seismicity, and metamorphic reactions that can release fluids. Computational models can predict the ther-
mal structure to great numerical precision when models are fully described but this does not guarantee accuracy

or applicability. In a trio of companion papers, the construction of thermal subduction zone models, their use in sub-
duction zone studies, and their link to geophysical and geochemical observations are explored. In part |, the motiva-

tion to understand the thermal structure is presented based on experimental and observational studies. This is fol-
lowed by a description of a selection of thermal models for the Japanese subduction zones.

Keywords Geodynamics, Plate tectonics, Finite element methods, Subduction zone metamorphism, Arc volcanism

1 Introduction

Subduction zones are tectonically active regions on Earth
where oceanic plates descend into the Earth’s mantle
below a continental or oceanic plate. These are locations
that experience explosive arc volcanism, large under-
thrusting earthquakes along the seismogenic zone, and
continental crust production. Deeper expression of sub-
duction are, for example, the metamorphic changes that
include dehydration reactions that lead to melting in the
overlying mantle and that can lead to intermediate-depth
and deep seismicity (Fig. 1a).

The thermal state of subduction zones exerts fun-
damental controls on volcanic activity, seismicity, and
metamorphic reactions. We will provide an introductory
overview of observational, experimental, and modeling
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approaches that can be used to understand the ther-
mal structure of subduction zones and its impact on
global dynamics. We have provided a broad discussion
with more detail than is common in review papers. This
is intended to broaden the appeal of this review to an
audience of advanced undergraduate students, gradu-
ate students, and any professionals from outside the
field of geodynamics who are interested in an introduc-
tory review. We will focus on modeling details that allow
readers to better comprehend how subduction zone ther-
mal models are formulated, executed, and validated. We
will discuss recent literature in particular to highlight the
broad and current interest that the solid Earth scientists
have in the thermal structure of subduction zones. For
more “traditional” reviews, see van Keken (2003), Wada
and King (2015), and Peacock (2020).

1.1 Mechanisms and factors controlling thermal structure

The oceanic lithosphere is a rheological boundary layer
of the Earth’s solid mantle that is relatively strong com-
pared to the underlying asthenosphere. The lithosphere
has petrological distinctions with a ~6 km thick crust
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(Christeson et al. 2019) that overlies a depleted layer of
harzburgite from which the melt that formed the crust
at mid-oceanic ridges has been extracted. As the oce-
anic lithosphere spreads from the mid-ocean ridge, it
ages and cools; at an age of 80—100 Myr the lithosphere
reaches a typical thickness of 100 km. Upon subduc-
tion, the oceanic lithosphere stops cooling and starts
warming due to a combination of processes. Along its
entirety, the slab warms due to heat flowing from the
warm mantle at the base of the slab. At shallow depths
(less than ~50 km) radiogenic heat produced in the
crust of the overriding plate and shear heating due to
friction along the plate interface can heat the top of the
slab (e.g., Molnar and England 1990; van Keken et al.
2019). In most present-day subduction zones, the slab
appears to remain decoupled (over long geodynamical
time scales) from the overriding mantle to a depth of
75-80 km forming a “cold corner” in the mantle wedge
(Furukawa 1993; Wada and Wang 2009, Fig. 1a). Below
this depth the slab couples to the overriding mantle
wedge asthenosphere (Fig. 1b). The motion of the sub-
ducting plate results in a drag on the overlying man-
tle that leads to a cornerflow, which causes advective
transport of the hot mantle wedge material onto the
slab that in turn provides rapid warming of the slab sur-
face and of the underlying oceanic crust and mantle by
further conduction.

The dramatic heating of the slab surface below the cou-
pling depth (indicated by d. in Fig. 1) is evident by the
tightening of the isotherms near the slab surface (Fig. 1b)
and the rapid heating of the slab surface (Fig. 1c). While
the oceanic Moho (green line in Fig. 1b) is only ~6 km
from the top of the oceanic crust, the temperature
increase here is modest and lags significantly behind that
at the top. The average temperature gradient can be more
than 50°C/km throughout the subducting crust. The con-
ductive heat flow from the top is in competition with the
advective transport of the cold slab that originates at the
trench. As a consequence, one can predict that metamor-
phic reactions (including those involving dehydration)
occur at very different depths in the slab as it descends
into the mantle.

(See figure on next page.)
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Important primary factors that control the thermal
conditions in subduction zones at depth are the age of
the incoming plate, the descent rate (which is controlled
by the convergence velocity at the trench and slab geome-
try), the frictional properties of the shear zone decoupling
the slab from the overriding plate, and, at greater depth,
the rheology of the mantle wedge that controls the corner
flow. The first two parameters are used in the subduction
zone thermal parameter ® which is defined as the multi-
plication of age at the trench in Myr, convergence speed
in km/Myr, and the sine of the (average) dip of the slab
geometry (Kirby et al. 1996). The first two can be read-
ily found for a given subduction zone section from global
databases (see approach discussed in Syracuse and Abers
2006). The dip dependence of @ is useful if one wishes to
estimate how fast the thermal effect of subduction along
a straight plane reaches a particular depth. Syracuse and
Abers (2006) determined the average dip for any of their
51 subduction zone segments by averaging the dip within
the 50—150 km depth contours (Ellen Syracuse, personal
communication). This approach was also used in deter-
mining the average dip for the expanded selection of 56
subduction zone segments used in Syracuse et al. (2010).
It should be noted that this parameter is the most uncer-
tain in ® since it can vary greatly depending on specific
cross section and the method used to determine average
dip. Since most subduction zones show a change from
shallow dip at the trench to intermediate or large dip at
depth one should not be overly confident in applying the
thermal parameter—it might be more useful to consider
a simplified thermal parameter that is just age times con-
vergence speed.

The thermal parameter (simplified or not) is a useful
indicator whether we might expect a subduction zone
to be on the “warm” or “cold” end of the spectrum or
that it may be more “intermediate” For example, using
the Syracuse et al. (2010) compilation, Cascadia (& =
100 km) and Nankai (® = 450 km) are by this criterion
among the warmest subduction zones whereas Tohoku
and Hokkaido (® ~ 6000 km) and in particular Tonga
(® =14,800 km) are among the coldest. Cascadia and
Tonga occupy the extremes—the average and median
values for @ are 2900 km and 2200 km, respectively.

Fig. 1 Subduction zone processes and example of thermal structure. a Cartoon of subduction zone processes that control and are affected by its
thermal structure (modified from van Keken (2003)). b Thermal structure predicted for Tohoku (trench-perpendicular cross section below Sendai,
Miyagi Prefecture) adopted from van Keken et al. (2012)). T is temperature. Contour lines are shown at every 100°C. At the decoupling depth d_
the slab changes from decoupling at shallower depths to full coupling with the overlying mantle wedge. Note that we use the terms coupling
and decoupling here and elsewhere in their long-term geodynamical context. This is in contrast with the context of the frictional-elastic

seismic cycle at shorter time scales where these terms are used in the opposite sense. Green line: oceanic Moho. Black top line indicated by M

is the continental Moho. This cross section shows the predicted thermal structure for an end-member cold subduction zone which is caused

by the rapid (8.3 cm/yr) subduction of old (130 Myr) oceanic lithosphere. ¢ Temperature of the top of the oceanic crust (in red) and oceanic Moho

(in green) as a function of lithostatic pressure P and depth



van Keken and Wilson Progress in Earth and Planetary Science

(2023) 10:42

Page 3 of 20

a) Sediment melting,
slab melting Arc volcanism
Accretionary Vollcanlc hazards
wedge formation =

Seismic decoupling
Earthquake hazards

Cold corner

Dehydration reactions
in crust and mantle

(not to scale)

Continental Moho

Induced
wedge flow

Fluid assisted melting

b) d.
__ -50
c 1500
X
= -100
*g 1000 :(3
A -150 ~
500 F
-200
0
100 200 300 400 500
Distance from trench (km)
C) 5 L | L | L | L | L | L | | L | L | L 150
.- L
1 lin 100 —~
=3 coupling E
o d, =
e ] decouplin | Z
Q2 - piing 5}
| - 50 ©
1 N -
Tohoku
0 . , ’ , ’ , ’ , ’ 0
0 200 400 600 800 1000
T(C)

Fig. 1 (Seelegend on previous page.)

It should be noted that the current value for Tonga is
higher than that in Syracuse and Abers (2006) who esti-
mated ® = 6300 km. The difference is because Syracuse
et al. (2010) took into account the addition of the high

trench retreat velocity due to the opening of the Lau
backarc basin. An example that shows a moderate corre-
lation between ® and slab temperatures at the top of the
slab is in van Keken et al. (2011, their Fig. 2). By contrast,
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Figure 12F in Syracuse et al. (2010) showed little cor-
relation between the sub-arc slab surface temperature
and thermal parameter. There is no internal discrepancy
here—the models used in these two papers are largely
similar. The reason for the scatter in the temperature at
the slab surface below the arc is that this part of the slab
surface is still seeing a rapid temperature increase due to
the mantle wedge flow whereas at 120 km depth the tem-
perature increase is significantly more gentle (Fig. 1c).
This clearly suggests that ® in either of its forms should
be used with caution when discussing processes that
occur below the arc.

1.2 Why do we need to know the thermal structure
of subduction zones?

Before we start a discussion on how we can formulate
subduction zone thermal models it may be useful to
consider why we might be interested in this in the first
place. We will provide a motivation by highlighting work
from the last decade or so that use model estimates
from compilations of global models as presented, for
example, by Wada and Wang (2009) and Syracuse et al.
(2010) to inspire experiments or interpret geochemi-
cal and geophysical observations that are relevant to our
understanding of the dynamics of subduction zones. We
embark on this section with some trepidation as any con-
clusions and interpretations presented here may only be
as strong as the thermal models they are based on.

1.2.1 Design and interpretation of physical experiments
Global compilations of subduction thermal structure
have been used extensively to determine whether experi-
mentally determined metamorphic changes and melting
under various hydration states can occur in present-day
subduction zones and whether they can explain volcano
geochemistry. For example, Tsuno et al. (2012) deter-
mined that the sub-volcano slab surface below Nicaragua
could not produce carbonated sediment melting but that
carbonitite production could occur in the warmer over-
lying wedge after diapiric rise. Jégo and Dasgupta (2013,
2014) used thermal model constraints to show that sulfur
could be transferred from the slab to mantle wedge either
by aqueous fluids or by melting of the hydrated basaltic
crust. Brey et al. (2015) used global estimates to con-
strain experimental conditions of carbonate melting in
the presence of graphite or diamond. A similar approach
was taken by Merkulova et al. (2016) but now for study-
ing the role of iron content on serpentinite dehydration.
Lee et al. (2021) used thermal models of cold subduction
zones to argue for the stability of chloritoid and its con-
tribution to the relatively strong trench-parallel seismic-
ity observed in such regions.
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Bang et al. (2021) used thermal models to study the
stability of subducted glaucophane over Earth’s thermal
evolution. Codillo et al. (2022) showed chlorite is pref-
erentially formed over talc during Si-metasomatism of
ultramafic rocks while also suggesting a limited rheologi-
cal role of talc in determining the physical structure of
subduction zones (as suggested to the contrary by Pea-
cock and Wang 2021). Martindale et al. (2013) used mod-
els specific for the Marianas subduction zone to design
experiments focusing on high-pressure phase relations
of volcaniclastic sediments and demonstrated that these
sediments contribute widely to the geochemical char-
acteristics of Mariana arc magmas. The global spread of
the predicted subduction zone thermal structures has
also been used to understand the phase stability field of
various serpentinite phases and to rule out that a labora-
tory-produced high-pressure form of antigorite could be
stable inside the Earth (Reynard 2013).

1.2.2 Interpretation of geochemistry
Thermal models have been used to interpret processes
that contribute to geochemical heterogeneity seen in
arc lavas. Examples include those exploring the relation-
ship between geochemical signatures of the subduct-
ing slab and arc volcanism (Rustioni et al. 2021) as well
as the mechanisms causing volcanism (Marschall and
Schumacher 2012). Global models provided the sugges-
tion that aqueous fluids and hydrous melts produced
enhanced chemical recycling particularly in hot subduc-
tion zones (Herndndez-Uribe et al. 2019). Applications
to specific elemental or isotopic systems include those of
Ce and Nd under the Mariana volcanic arc (Bellot et al.
2018) and the determination that nitrogen subduction in
clay minerals is only possible in cold subduction zones
(Cedefio et al. 2019). Slab surface temperatures strongly
correlate with Mg isotope ratios observed in volcanic
arcs confirming a thermal control on processes control-
ling Mg release from the subducting slab (Hu et al. 2020).
In a more regional example, slab surface temperatures
in the Lesser Antilles are predicted to be lower than that
required for slab melting, suggesting the role of dehydra-
tion of the slab crust (including sediments) as indicated
for example from K isotopic studies (Hu et al. 2021). Vho
et al. (2020) used the average subduction zone thermal
structure to model oxygen isotope variations to study
fluid—rock interaction. They suggested the potential for
rapid serpentinization of the forearc mantle by slab fluids
and that the use of oxygen isotopes allows fluid pathways,
the type of flow, and pressure-temperature conditions
encountered by the fluid to be tracked.

Thermal models of the subducting slab such as those in
van Keken et al. (2002) and Syracuse et al. (2010) form
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a fundamental part of geochemical modeling applica-
tions facilitated by the Arc Basalt Simulator suite of tools
(Kimura et al. 2009; Kimura 2017). A few examples of the
many applications of these tools are as follows. Mazza
et al. (2020) found that the slab thermal structure con-
trols release of tungsten and its isotopic ratios which
allows for tracing of slab dehydration and slab melting.
Kimura et al. (2014) showed that the wide diversity of
magma types found through SW Japan in response to the
subduction of the young Philippine Sea Plate was caused
by melting of the slab and that this induced flux melting
of peridotite in the mantle wedge. A combined geochem-
ical and geophysical study explored the role of water in
magma genesis in the much colder NE Japan subduction
zone and allowed for mass balance constraints on local
water fluxes (Kimura and Nakajima 2014). Variations of
arc lava composition between the volcanic arc and back-
arc in the northern Izu arc could be explained by differ-
ences in the pressure and temperature conditions during
melting in addition to variable water content (Kimura
et al. 2010).

1.2.3 Translation of mineral physics to geophysical
quantities

Slab thermal models are routinely used in interpret-
ing how the presence of volatiles could affect geophysi-
cal properties predicted from laboratory experiments
(e.g., Pommier et al. 2019; Huang et al. 2021; Forster and
Selway 2021). This allows for the interpretation of the
role of fluids in explaining electromagnetic and mag-
netotelluric observations over subduction zones (Pom-
mier and Evans 2017; Forster and Selway 2021). Chen
et al. (2018) used thermal model predictions for various
regions to understand the role of phengite dehydration
on the formation of high conductivity anomalies above
subducting slabs. Similar studies focused on the influence
of dehydration on the electrical conductivity of epidote
(Hu et al. 2017), talc (Wang et al. 2020), NaCl-bearing
aqueous fluids (Guo and Keppler 2019), and glaucophane
(Manthilake et al. 2021).

1.2.4 Plate interface earthquakes, slow slip, and episodic
tremor

Global thermal models have also been used to explore
seismic processes occurring at the plate interface below
the forearc, which include the seismogenic zone that
experience underthrusting seismic events (such as the
2011 Tohoku-oki earthquake) that are separated by inter-
seismic periods. Understanding the rheological proper-
ties of the plate interface, for example whether the plate
interface is locked or deforms by aseismic creep (see,
e.g., Loveless and Meade 2011), is essential to understand
the seismic hazards in a particular subduction zone.
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The discovery of episodic tremor and slip (e.g., Rog-
ers and Dragert 2003) and its relation to low-frequency
earthquakes (Shelly et al. 2006) has led to a further
appreciation of the important role of rheology and fluid
production along the plate interface. These processes
are both at least in part temperature-dependent and it is
expected that various features of the plate interface are
controlled by the thermal characteristics of a given sub-
duction zone. As an example, use of specific thermal
models showed a relatively low temperature (less than
300°C) at the down-dip limit of the seismogenic zone
(Fagereng et al. 2018). In a study combining field exam-
ples of sand-shale mélanges from Kodiak accretionary
complex and the Shimanto belt with kinematic mod-
eling, Fisher et al. (2019) demonstrated the strong influ-
ence temperature at the slab top has on the healing of
cracks that modulate the fault zone strength during the
interseismic period. The Syracuse et al. (2010) model for
Tohoku was used as a basis for models explaining the
viscoelastic flow after the 2011 Tohoku-oki earthquake
(Agata et al. 2019). Condit et al. (2020) showed from
warm subduction zone models that locally produced
fluids are sufficient to explain episodic tremor and slip
events.

1.2.5 Nature of intermediate-depth and deep seismicity

Earthquakes in the shallow crust and mantle as well as
underthrusting events along the seismogenic zone tend
to be caused by brittle failure, which is possible due
to differential stresses under modest hydrostatic pres-
sures. At depths greater than ~ 40 to 70 km, the hydro-
static pressure becomes large enough to make brittle
failure ineffective, which therefore requires different
physical mechanisms to cause intermediate-depth (~
70 to 400 km) and deep (~ 400 to 700 km) earthquakes
(see Frohlich 2006). Intriguingly, intermediate-depth
seismicity seems to have a strong petrological con-
trol as shown by Abers et al. (2013). In cold subduc-
tion zones such as Tohoku and Hokkaido, the upper
plane seismicity of the Wadati-Benioff zone peaks in
the oceanic crust (Fig. 2a). The oceanic crust in warm
subduction zones tends to have little seismicity in the
oceanic crust with seismicity peaking in the slab man-
tle (Fig. 2b). Abundant seismicity and dense seismic
networks allow for precise hypocenter locations below
Japan (e.g., Kita et al. 2010b). Thermal modeling sug-
gests that the major dehydration reaction of blueschist
to lawsonite eclogite facies (informally denoted as the
“blueschist-out” boundary; Fig. 2c¢) occurs at a pres-
sure and temperature range just where seismicity in the
upper plane disappears (van Keken et al. 2012, Fig. 2d).
This strongly suggests that fluids caused by dehydra-
tion of blueschist facies rock travel back up the slab
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Fig. 2 a, b Panels showing histogram of earthquakes in crust and mantle for cold and warm subduction zones (modified from Abers et al. 2013).
c Figure showing H,O carrying capacity in the oceanic crust (modified from Hacker 2008). The P-T paths at the top of the crust and oceanic Moho
from Fig. 1c are overlain—bold blue line shows the relevant “blueschist-out” boundary. d Earthquakes limited by “blueschist-out” below Tohoku
with interpreted fluid flow (modified from van Keken et al. 2012). e Low V}, in crust below Tohoku suggesting presence of free fluids (modified
from Shiina et al. 2013). Note that the blue colors in the legend are accidentally rendered as purple in the figure such that the purple region
hasV, >8 km/s. f Figure showing fluid flow rises primarily with gravity if compaction pressure is ignored (left frame); if it is included (right frame)
the fluids tend to be contained in the crust before leaving the slab below the arc (modified from Wilson et al. 2014) similar to the flow of fluids
suggested from the seismicity (frame d) and low P-wave velocities (frame e)

triggering the shallower seismicity, possibly through
hydrofracturing caused by fluid overpressure (Padrén-
Navarta et al. 2010). The presence of free fluids in parts
of the oceanic crust below Tohoku that have abundant

seismicity is strongly suggested from observations of
very low P-wave speeds in seismically active region of
the subducting crust below Tohoku (Shiina et al. 2013,
Fig. 2e) and Hokkaido (Shiina et al. 2017).
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Sippl et al. (2019) interpreted the seismicity distri-
bution in the Northern Chile subduction zone to be
caused by the production of fluids due to metamor-
phic dehydration reactions triggered by heating when
the slab gets into contact with the hot mantle wedge.
In this region, Bloch et al. (2018) demonstrated a cor-
relation between earthquakes and a high V ,/V; region
in the lower plane of the double seismic zone that is
likely due to antigorite dehydration at depth and the
presence of fluids at shallower depths. Wei et al. (2017)
showed that the double seismic zone in Tonga extends
to a maximum depth of 300 km with a clear trend of the
maximum depth along a given profile correlating with
the convergence speed, suggesting that metamorphic
dehydration, likely that of antigorite, occurs when the
slab interior first reaches ~ 500°C.

Independent support for the role of free fluids in the
subducting oceanic crust is provided by modeling of
fluid flow in subduction zones where the (important,
but often ignored) driving force of pressure gradients
caused by compaction of rock upon dehydration is
included. Without this force fluids tend to leave the slab
by buoyancy alone—with compaction pressure fluids
released by dehydration reactions in the crust tend to
travel back up the subducting crust before exiting the
slab (Wilson et al. 2014, Fig. 2f). Note that the model
with compaction pressure causes the fluids to exit
below the arc allowing for a self-consistent explana-
tion of the location of the arc. The broad and distrib-
uted fluid release from the slab in the buoyancy-only
model would predict multiple volcanic fronts which is
generally not observed. The suggestion that distributed
seismicity is caused by fluid flow in the slab is an alter-
native to ideas presented by Ferrand (2019) who used
various thermal model estimates of the pressure-tem-
perature conditions in earthquake hypocenters to argue
that dehydration of antigorite as well as other hydrous
phases causes stress transfer to trigger seismicity. It
should be noted that pervasive fluid flow is also evi-
dent from field observations of exhumed portions of
the oceanic crust (e.g., Piccoli et al. 2016; Bebout and
Penniston-Dorland 2016).

Fluids may also play a critical role in deeper seismic-
ity which forms an alternative to proposed processes
such as shear heating instabilities (Kelemen and Hirth
2007; Prakash et al. 2023). For example, Shirey et al.
(2021) explored the correlation between seismicity,
dehydration reactions, and diamond formation in cold
subduction zones. They argued from thermal modeling
that the conditions for deep intermediate-depth seis-
micity are principally met in cold subduction zones
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because in these regions the crust and uppermost man-
tle can bypass shallow dehydration reactions.

Note that seismicity in the subducting slab is gener-
ally widely distributed rather than tightly clustered.
This appears to be in conflict with the hypothesis that
embrittlement due to mineral dehydration reactions is
the main cause for intermediate-depth seismicity (e.g.,
Raleigh and Paterson 1965; Jung et al. 2004). Dehy-
dration embrittlement would cause earthquakes to be
located at the site of dehydration reactions that are in
a narrow pressure-temperature range and therefore
would cause clustering of earthquakes around these
boundaries which is contrary to observations (see also
Ferrand 2019). While heterogeneity, such as the vari-
able presence (and absence) of hydrous phases would
create patches rather than (near-)continuous seismicity
but this would still occur under specific pressure-tem-
perature conditions if dehydration embrittlement were
the main mechanism and would therefore not explain
the widely distributed seismicity.

1.2.6 Mobilization and deep cycling of volatiles
Compilations of thermal subduction zone structures
have been critically used (along with predictions of
metamorphic phase stability and water content as a
function of lithology, pressure, and temperature) to
understand where fluids are being released from the
slab (Ripke et al. 2004; van Keken et al. 2011; Can-
nao et al. 2020; Hermann and Lakey 2021; Vitale Bro-
varone and Beyssac 2014). This applies particularly to
the release of HyO but also to that of carbon by aque-
ous fluids (Farsang et al. 2021; Arzilli et al. 2023). Tian
et al. (2019) used simplified models of thermal struc-
ture with a comprehensive thermodynamic parameter-
ization of open system reactive flow in the subducting
slab. They showed the importance of redistribution
of carbon by fluid flow within the lithological layers
and that the subduction efficiency of HoO and CO;
is increased by fractionation within the subducting
lithologies. These approaches not only facilitate our
understanding of the release of fluids and their con-
tribution to subduction zone processes, but also have
been used as input to global models predicting the
long-term chemical evolution of the Earth’s mantle
(e.g., Kimura et al. 2016; Shimoda and Kogiso 2019). In
a separate study, Smye et al. (2017) used the global set
of thermal models to quantify noble gas recycling into
the deep mantle. They showed a correlation between
noble gases and H,O and that strong fractionation
occurred in warm subduction zone settings with mini-
mal fractionation in cold slabs.
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2 Geophysical observations guiding modeling
of the thermal structure of subduction zones

Figure 1la provides a cartoon of subduction zone struc-
ture that builds on geophysical observations of heat
flow, seismology, and geodetics. Combined, these meth-
ods indicate that the mantle wedge is composed of a hot
region below the arc and backarc that is fairly sharply
delineated from a cold forearc mantle in the tip of the
wedge where the slab surface is above ~80 km depth.
This wedge tip has generally been called the “cold cor-
ner” or “cold nose” of the mantle wedge that indicates the
presence of significant rheological heterogeneity of the
slab surface and mantle wedge that directly controls the
thermal structure of subduction zones (and can therefore
be used to construct thermal models such as the one in
Fig. 1b). In this section, we will explore the main geo-
physical observations that have led to the concept of the
“cold nose” and the partitioning of the mantle wedge into
a cold and hot region that is separated by a fairly sharp
vertical boundary.

2.1 Heat flow

Early heat flow measurements in the Tohoku subduction
zone (see discussion and citations in Honda 1985) sug-
gested a significant change in heat flow values when mov-
ing from the trench to the volcanic arc—very low heat
flow values over the forearc are sharply separated from
much higher and more scattered heat flow values in the
arc and backarc. The scattered values in the arc and back-
arc regions are likely due to local processes such magma
transport in the crust and heterogeneous heat produc-
tion, as well as potential bias in the continental data
(Furukawa and Uyeda 1989). An updated heat flow data-
base for Japan (Tanaka et al. 2004) shows broad consist-
ency of this pattern along Tohoku and Hokkaido (Fig. 3a).
Similar observations are now available for many subduc-
tion zones, including the Andes (Henry and Pollack 1988;
Springer and Forster 1998), Cascadia (see compilation in
Currie et al. 2004, and Fig. 3b), Kermadec (Von Herzen
et al. 2001), and Ecuador—Columbia (Marcaillou et al.
2008). Heat flow data are traditionally obtained using
Fourier’s law by measuring the thermal gradient and
rock conductivity in boreholes (Pollack et al. 1993) or
by marine heat flow probes (e.g., Hyndman et al. 1979).
Alternative methods employ electromagnetic measure-
ments of the Curie point depths and seismic observa-
tions of the BottomSimulating Reflector (BSR). The first
method makes use of change from ferromagnetic to para-
magnetic behavior in minerals such as magnetite when
rock is heated above the Curie temperature. Determin-
ing the depth of this transition therefore allows for esti-
mates of the average thermal gradient in the crust with
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examples in Mexico (Manea and Manea 2011), northeast
Japan (Okubo and Matsunaga 1994) and the western
Pacific (Yin et al. 2021). The second method measures
the location of the base of the stability field of clathrate
hydrates which has a well-calibrated temperature and
pressure range. Depth determinations of the BSR lead
therefore to determinations of temperature gradients
and from that estimates for the average heat flow through
the shallow crust. Examples of the application of the BSR
technique exist for Cascadia (Salmi et al. 2017), Costa
Rica (Harris et al. 2010), Hikurangi (Henrys et al. 2003),
and Nankai (Hyndman et al. 1992; Ohde et al. 2018).

2.2 Seismology
Seismological methods provide critical information on
the geometry of the subducting slab and structure of the
overlying mantle wedge. For example, teleseismic deter-
minations of intermediate-depth and deep seismicity in
Wadati-Benioff zones have been used to delineate the
position of subducting slabs (Gudmundsson and Sam-
bridge 1998). Important improvements over these early
models include earthquake hypocenter relocation using
global tomographic models (e.g., Syracuse and Abers
2006; Portner and Hayes 2018). Additional information
can be obtained from active-source seismic studies, local
seismicity catalogs, and the use of PS and SP converted
phases at velocity interfaces that may provide informa-
tion about the location of the Moho or the top of the sub-
ducting crust (Zhao et al. 1994; Bostock 2013; Kim et al.
2021). The most recent and comprehensive global slab
surface geometries using a combination of these tech-
niques is provided by Hayes et al. (2018). Local earth-
quake conversions (Shiina et al. 2013) and guided-wave
studies (e.g., Abers et al. 2006; Rondenay et al. 2008) pro-
vide information on the hydration state of the subducting
crust which can further constrain thermal models.
Observations of seismic attenuation (which is a meas-
ure of the absorption of seismic energy by non-elastic
processes) is highly sensitive to temperature (Faul and
Jackson 2005; Takei 2017) and can be used to map out
in particular the hot regions in subduction zones. Com-
monly observed features are a low attenuation slab dip-
ping below a high attenuation mantle wedge. Seismic
attenuation is quantified by the quality factor Q which
is inversely proportional to the degree of attenuation.
It has been a common and long-standing observation
(e.g., Utsu 1966; Sacks 1968) that waveforms from local
earthquakes tend to have higher frequency and higher
amplitude characteristics when they are observed by sta-
tions in the forearc compared to those observed in the
arc and backarc (Fig. 3¢, d). In many regions, it has now
become possible to map out the attenuation structure
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from the profile T18 from van Keken et al. (2002) shown in Fig. 1. b Heat flow measurements from the global heat flow database (see Pollack et al.
1993, and https://www.geophysik.rwth-aachen.de/IHFC/heatflow.html) near the CAFE profile in Cascadia (Abers et al. 2009). The high heat flow
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in subduction zones in enough detail to see clear evi-
dence of the cold corner with often a sharp, near-verti-
cal boundary separating the nose of the wedge down to
a slab depth of 75-80 km from the strongly attenuating
mantle wedge below the arc and back-arc. Such regions
include Peru (Jang et al. 2019), New Zealand (Eberhart-
Phillips et al. 2020), the Lesser Antilles (Hicks et al. 2023),
Tohoku (Nakajima et al. 2013), Nicaragua (Rychert et al.
2008), Central Alaska (Stachnik et al. 2004, Fig. 3e),
Ryukyu (Ko et al. 2012), the Aegean (Ventouzi et al.
2018), Tonga (Wei and Wiens 2018), and the Marianas
(Pozgay et al. 2009). In contrast, a 3D attenuation study of
the Kyushu subduction zone showed low Q in the forearc
mantle (Saita et al. 2015) which the authors contributed
to a relatively high degree of serpentinization.

A weak and partially inverted Moho in Cascadia (Bos-
tock et al. 2002; Brocher et al. 2003; Hansen et al. 2016)
further illustrates the unusual nature of the forearc man-
tle. The crust-mantle interface is generally seen as a
strong velocity contrast with a change from low crustal
velocities to higher mantle velocities. This is the case in
the backarc of Cascadia, but the near disappearance of
the Moho and partial inversion below the forearc here
suggests that the underlying mantle wedge has a lower
seismic velocity than the ambient mantle. Extensive ser-
pentinization has been suggested as main cause for this
velocity change (Bostock et al. 2002) but the change
could also be due to the gabbroic nature of the overlying
Siletzia terrain (Crosbie et al. 2019). Low V, velocities
in the cold corner seem to be largely limited to Cascadia
(Abers et al. 2017). This is likely due to the less efficient
dehydration of the slab (and limited sourcing of fluids to
the overlying forearc mantle wedge) in most other, colder,
subduction zones (van Keken et al. 2011).

Of further note, particularly for subduction zones in
northeastern Japan and Ryukyu, is a marked transition in
SKS splitting between forearc and arc (e.g., Nakajima and
Hasegawa 2004; Long and van der Hilst 2005). This has
been interpreted by some to represent B-type olivine fab-
ric in the cold, moderately hydrated, and relatively high-
stress cold corner (Long and van der Hilst 2006; Kneller
et al. 2007). It could alternatively be due to the crystal-
preferred orientation formed by deformation of serpen-
tine (e.g., Katayama et al. 2009; Mookherjee and Capitani
2011; Brownlee et al. 2013; Nagaya et al. 2016; Wang et al.
2019; Horn et al. 2020) or perhaps is caused by a com-
bination of these two mechanisms (Kneller et al. 2008;
McCormack et al. 2013). Wang et al. (2019) also dem-
onstrated clear evidence of the slab-mantle decoupling
depth from anisotropic imaging. Of note here is the ani-
sotropy observed from SKS splitting in Central Alaska,
with a marked shift in direction of splitting, but now
from trench-normal in the forearc and trench-parallel in
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the arc and backarc region (Christensen and Abers 2010).
It should be noted that the idea of slow convection with
weak fabric development in the forearc of the northeast-
ern Japan subduction zone may need revision given new
off-shore seismic evidence that the forearc here may be
stagnant and that the weak trench-parallel anisotropy
originates from pre-existing fabric in the subducting
crust (Uchide et al. 2020).

2.3 Geodetics

An intriguing new approach to physically map the extent
and properties of the cold corner is through the use of
postseismic deformation following large seismic events.
Forward modeling can be used to constrain the differ-
ences in rheological behavior between a mostly elastic
forearc mantle compared to the visco-plastic arc and
backarc. This became a focus in modeling studies of the
aftermath of the Tohoku-oki earthquake that took into
account the properties of the Pacific slab. Such models
require a thermal structure with a cold forearc separated
from a warm arc region similar to that suggested from
heat flow and seismology as described above (Hu et al.
2014; Muto et al. 2016, 2019; Luo and Wang 2021; Freed
etal. 2017). A useful review of this evolution in thought is
in Dhar et al. (2023). Alternative models that focused pri-
marily on temperature-dependent rheology also require
a similar thermal structure to fit postseismic uplift data
(e.g., Pena et al. 2020; van Dinther et al. 2019). Dhar et al.
(2022) used a newly deployed geodetic network to dem-
onstrate along-arc variations in the structure of the cold
nose, with a narrowing of the nose below Miyagi and a
broadening below Fukushima.

2.4 The cold corner requires mechanical decoupling
between the slab and shallow mantle wedge

The geophysical evidence presented above requires the
presence of a cold corner in the mantle wedge. This in
itself requires that this part of the wedge is mostly iso-
lated from the convective cornerflow and that there-
fore the slab remains decoupled below the seismogenic
zone to a depth of 75-80 km. The geophysical data also
require a relatively sharp transition to full slab-wedge
coupling below this depth. In Fig. 4, we reevaluate the
classical models by Furukawa (1993) for the Cascadia
subduction zone. The model is similar to the Cascadia
model in Syracuse et al. (2010) but has been modified
for the geometry, convergence velocity, and age at the
trench of the slab below the imaging Magma Under
mount St. Helens (iMUSH) array (Mann et al. 2019). In
this model, we also take into account the low radiogenic
heat production in the continental crust due to the
gabbroic nature of the accreted Siletzia terrane (Wells
et al. 2014), which explains the very low heat flow in
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past the Moho. In all frames, T indicates the location of the trench and VF that of the volcanic front. a Figure redrawn from Furukawa (1993)
(faithfully reproduced with the missing horizontal scale). Solid lines: heat flow predicted from his models with a decoupling depth increasing

from 40 to 100 km. Gray boxes: averages of the available heat flow data at the time. b Heat flow data for Cascadia with heat predictions

from a model below the iIMUSH profile over Mount St. Helens and Mount Adams (see text) with the same decoupling depths as in Furukawa (1993)
in addition to d-=80 km that we use in most of our subduction zone models. Open and filled blue circles as in Fig. 3b but now with the global

heat flow database entries projected onto the iMUSH profile. Small grey triangles are the BSR-derived data from Salmi et al. (2017) projected

onto the iIMUSH profile. ¢-e 2D temperature plots for the iIMUSH cross sections with decoupling depth ranging from 40 km (c), to 70 km (d),

and 100 km. The volcanic front is taken to be the location of Mount Adams. While the heat flow data would allow a 100 km decoupling depth

the location of the volcanic front clearly does not

the forearc region (Fig. 4b). The models are more fully  questioned using experiments that showed stronger,
described in Pang et al. (2023) and are available in the  semi-brittle deformation under relevant forearc condi-
Supplementary Information (see data availability state-  tions (Hirauchi et al. 2020).
ment). These models show that heat flow and position We will in the remainder of this pair of papers assume
of the volcanic arc are not satisfied by a very shallow that the slab is decoupled from the overriding crust and
(40 km) or deep (100 km) decoupling point, but that mantle to a depth of 80 km at which point it couples to
a depth of around 70-80 km gives satisfactory model  and drags down the overriding mantle wedge (Fig. 1). We
results. Other examples are in Wada and Wang (2009). will then explore the resulting effects on the thermal field
We will not delve deeply into the very interesting in subduction zones and compare these to observations.
question of why this decoupling seems to end at that
depth but one can find abundant interest and sugges- 3 Selected literature examples of numerical
tions for potential causes in the literature. Proposed models exploring subduction zone thermal
mechanisms and features include the presence of weak structure
phases such as serpentinite (Wada et al. 2008; Burdette  In wrapping up part I of this review paper, we will high-
and Hirth 2022), the role of secondary phases (Peacock light a few modeling studies. The literature covering
and Wang 2021), or the convolution of multiple com-  approaches to understand and use the thermal structure
peting effects (Kerswell et al. 2021). It should be noted  of subduction zones through modeling is vast and can-
that explanations that rely on dehydration reactions not be covered fully in an introductory review. To limit
that are largely isothermal at 2—4 GPa (such as those of  our present scope, we will focus on literature that was
antigorite and chlorite) lead to dynamics that are dif- published in the last decade or so and that studies the
ficult to reconcile with a fixed-depth transition (see, thermal structure of the Japanese subduction systems in
e.g., the T550 models in Syracuse et al. 2010). Note also  particular.
that the weak nature of antigorite has been recently
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3.1 Why Japan?

Subduction zones in Japan (Fig. 5a) are predicted to
have a broad range of thermal structure with the ther-
mal parameter ranging across more than an order of
magnitude, from the relatively slow subduction of the
young Philippine Sea Plate in Nankai (thermal parameter
® =450 km) to fast subduction of old oceanic lithosphere
in NE Japan (® = 5100-6000 km), with intermediate con-
ditions for Ryukyu and Kyushu (¢ = 1600-2100 km). An
introductory tour of thermal models of this region will
therefore provide us with an efficient and focused way of
exploring the features that may characterize the global
subduction system.

3.2 Nankai

The shallow structure of the Nankai subduction zone
is of particular interest to understand the mechanisms
leading to large underthrusting events and the role of
low frequency earthquakes, tectonic tremors, and slow
slip. Harris et al. (2013) complemented a synthesis of
the extensive off-shore heat flow measurements with
2D thermal modeling to show that heat flow data sug-
gest pervasive fluid flow in the oceanic crust. This leads
to differences in estimates of temperature along the
seismogenic zone of up to 100°C compared to models
that do not take this fluid flow into account. Hamamoto
et al. (2011) also combined heat flow data and 2D ther-
mal modeling to show that the shear stress on the plate
interface in the central part of the Nankai Trough is very
low. Using the, at the time, most recent heat flow data,
Yoshioka et al. (2013) demonstrated, using thermal mod-
els along a number of 2D cross sections, the importance
of shear heating along the plate interface and that the
thermal effects of surface erosion and sedimentation due
to Quaternary deformation has to be taken into account.
Suenaga et al. (2019) performed 2D thermal modeling to
show that the metamorphic phase change from amphi-
bolite to eclogite with its associated fluid release controls
the location of low-frequency earthquakes and tectonic
tremors.

A combination of features makes the Nankai subduc-
tion zone very challenging for thermal modeling. These
include: relative recent (re)initiation of subduction of the
Philippine Sea Plate into a region of mature subduction of

(See figure on next page.)
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the Pacific below NW Japan; the complicated and time-
variable tectonic history (Kimura et al. 2005); the variable
age of the incoming lithosphere (e.g., Seno and Maruy-
ama 1984); and changes in apparent dip along-strike (see
discussion in Wang et al. 2004). In addition, the proximity
of the Euler pole between the Philippine Sea Plate and the
Eurasian plate (Seno 1977) causes oblique convergence
with changes of obliquity along strike. This suggests that
we can draw the most confidence from models that are
3D, time-dependent, and take time-dependent changes in
the age of the incoming slab and convergence parameters
into account. Such studies are, aside from complicated,
quite expensive computationally but there are a few such
studies that we can highlight. Ji et al. (2016) showed that
the changes in obliquity caused significant variations in
temperature along the plate interface providing a poten-
tial example for lateral changes in the occurrence of low-
frequency earthquakes and slow slip events. Morishige
and van Keken (2017) focused on changes in curvature
of the slab and suggested that focused fluid migration
explains along-strike differences in accumulated slip rates
of slow slip events. Wada and He (2017) focused on the
interaction between the recently subducting Philippine
Sea plate into the mature subducting of the Pacific below
the Kanto region (Fig. 5b). This study confirmed that the
heat flow data were best explained by a decoupling depth
of 75 km here (Fig. 5c). Given the relatively young age
of the Nankai subduction zone, this study suggests the
characteristics of the plate interface that lead to the cold
corner establishes early. They also found that the down-
dip limit of the seismogenic zone is characterized by the
350°C isotherm throughout the region.

3.3 Tohoku and Hokkaido
For a thermal modeler, the relatively uniform subduction
of the old Pacific lithosphere below N'W Japan provides a
welcome respite from the complications in Nankai. Con-
vergence becomes somewhat oblique when moving north
from the Japan Trench to the Kurile Trench but conver-
gence characteristics vary relatively little along strike.
Extending the suggestion by Kita et al. (2010b),
van Keken et al. (2012) demonstrated that the upper-
most seismicity contained within ~7 km from the slab
top is controlled by metamorphic dehydration reactions

Fig. 5 a Map of the Japanese subduction systems. Black contours show depth to the top of the subducting slab (from Hayes et al. 2018)

for the Japan, Nankai, Kyushu, and Ryukyu segments at 10 km intervals (50 km intervals are in bold). Red triangles show locations of arc volcanoes.
Orange lines are plate boundaries from Bird (2003). Age of oceanic lithosphere is from Muller et al. (2008). b 3D model showing subduction

of the Philippine Sea Plate (PHS) and Pacific slab below the Kanto region (modified from Wada and He 2017). MDD = maximum decoupling depth
(denoted as d, in this paper). ¢ Heat flow comparison between observations (Tanaka et al. 2004) and model predictions (also modified from Wada
and He 2017). d Predicted "blueschist-out” boundary below Tohoku (modified from Morishige 2022) assuming this occurs, as in van Keken et al.
(2012), at T=617-52P (in °C with P in GPa). Compare with Fig. 2b. e as frame d but now for the serpentinite-out boundary using, as in Faccenda et al.
(2012), T=740-1.8P—3.9P? at P >2.1 GPa and T=478+180P—31P?at P <2.1 GPa
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in the subducting oceanic crust by showing that, to rea-
sonable confidence, this seismicity disappears at the
blueschist-out dehydration reaction across most of
the Tohoku-Hokkaido subduction zone. An important
exception was for a cross section across SW Hokkaido.
Below this region, the seismic belt deepens anomalously
which was suggested to be caused by the thermal effects
of subducted forearc crust (Kita et al. 2010a). Using 2D
modeling, van Keken et al. (2012) failed to confirm this
hypothesis and suggested that 3D flow caused by geo-
metrical changes at the junction of the Tohoku-Kurile
arc (as demonstrated by Morishige and Honda 2013)
may be the real cause for the anomalous characteristics
of upper plane seismicity here. Using 3D thermal mod-
eling, Morishige and van Keken (2014) provided a nega-
tive test of this hypothesis. They showed that the thermal
variations caused by 3D flow were too small to explain
the deepening of the seismic belt. By contrast, Wada et al.
(2015) were able to show a significant cooling of the man-
tle wedge at the transition between the Tohoku and Hok-
kaido subduction zones potentially because they used a
more realistic slab geometry than the idealized one in
Morishige and van Keken (2014). Wada et al. (2015) also
cautioned that the cooling effect they predicted might be
an overestimate due to the assumption of steady state.
This suggests that the anomalous character of subduc-
tion below SW Hokkaido remains an important topic for
future research.

The Tohoku subduction zone was the focus in a study
by Morishige (2022) to test whether variable thermal
properties (such as thermal conductivity and thermal
expansivity) could have a significant effect on the ther-
mal structure of the subducting slab. A novel aspect of
this study was the use of a Bayesian inversion to make
sure the thermal structure of the incoming plate satisfied
constraints from heat flow and bathymetry. The conclu-
sion of this study was that one could use constant ther-
mal properties since differences in thermal structure
between these two assumptions were found to be small.
It confirmed the importance of the blueschist-out bound-
ary on controlling the depth of the upper belt of seis-
micity (Fig. 5d) and showed that the lower plane of the
double seismic zone was in the serpentinite stability field
(Fig. 5e), confirming earlier suggestions that the deeper
plane seismicity might be related to the production of flu-
ids by metamorphic dehydration of the slab mantle (e.g.,
Peacock 2001; Hacker et al. 2003; Faccenda et al. 2012).

Horiuchi and Iwamori (2016) explored fluid release and
flow in the mantle wedge below Tohoku. They showed
they could to a reasonable degree match observations of
the location of the volcanic arc, seismic tomography, and
heat flow if the initial water content of the incoming slab
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was 2-3 wt% and the viscosity of the modeled serpent-
inite layer was in the range of 102°~10%! Pa s. Yoo and Lee
(2023) provided a similar study of fluid production and
release along with melt generation and freezing. They
suggested that the observed melt focusing below the
Tohoku volcanic arc can be best explained by a relatively
deep decoupling depth (90 km) with an important role
for melt freezing.

3.4 Kyushu and Ryukyu

The Kyushu and Ryukyu subduction zones are charac-
terized by faster (~7 cm/yr), more mature, and steeper
subduction of somewhat older (27-43 Myr) lithosphere
compared to Nankai. These subduction zones have a
northern termination at the Kyushu-Palau ridge and end
to the south at Taiwan.

There are a few studies of note in this region that par-
ticularly focused on constraining thermal conditions
from the seismic characteristics of the plate interface.
Thermal modeling showed that lateral variations in the
characteristics of short-term slow slip events in Ryukyu
could not be explained by thermal variations alone, but
could be due to variable fluid flux from the oceanic crust
(Suenaga et al. 2021). Gutscher et al. (2016) used 2D
thermal models near the southern termination of the
Ryukyu subduction zone combined with the characteris-
tics of the seismogenic zone to argue either for a thermal
rejuvenation of the westernmost Philippine Sea Plate or
that toroidal flow in the mantle wedge caused warmer
than expected conditions here (see also the discussion
in part III about 3D flow effects on thermal structure).
Using a 2D model for Kyushu that matched local heat
flow data, Suenaga et al. (2018) showed that tectonic
tremors occurred in the mantle wedge corner at tempera-
tures between 450 and 650°C and that the afterslip of the
1996 Hyuga-nada earthquake occurred where the plate
interface is at 300-350°C. This is at the high end of tem-
peratures suggested for the seismogenic zone (Hyndman
et al. 1995) suggesting therefore that maximum afterslip
occurred near the down-dip end of the seismogenic zone
in their model.

4 Conclusions for part|

We provided the motivation for the need to understand
the thermal structure through geodynamical modeling
and provided a select number of examples of such mod-
els. In part II, we will turn to explore numerical methods
that can be used to model this thermal structure, provide
ways to test the quality of such models. In part III we
will provide a comparison between model predictions for
subduction zone temperatures and observations of these
from geochemical and geophysical observations.
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