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STRATIFIED NONCOMMUTATIVE GEOMETRY

DAVID AYALA, AARON MAZEL-GEE, AND NICK ROZENBLYUM

ABSTRACT. We introduce a theory of stratifications of noncommutative stacks (i.e. presentable
stable oco-categories), and we prove a reconstruction theorem that expresses them in terms of
their strata and gluing data. This reconstruction theorem is compatible with symmetric monoidal
structures, and with more general operadic structures such as E,-monoidal structures. We also
provide a suite of fundamental operations for constructing new stratifications from old ones:
restriction, pullback, quotient, pushforward, and refinement. Moreover, we establish a dual form
of reconstruction; this is closely related to Verdier duality and reflection functors, and gives a
categorification of Mobius inversion.

Our main application is to equivariant stable homotopy theory: for any compact Lie group G,
we give a symmetric monoidal stratification of genuine G-spectra. In the case that G is finite,
this expresses genuine G-spectra in terms of their geometric fixedpoints (as homotopy-equivariant
spectra) and gluing data therebetween (which are given by proper Tate constructions).

We also prove an adelic reconstruction theorem; this applies not just to ordinary schemes but
in the more general context of tensor-triangular geometry, where we obtain a symmetric monoidal
stratification over the Balmer spectrum. We discuss the particular example of chromatic homotopy

theory.
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0. INTRODUCTION

0.1. Overview. In this work, we develop a theory of stratified noncommutative stacks. We
take the term noncommutative stack to mean a presentable stable co-category, as explained in Re-
mark 0.1.2.5 We suggestively refer to the objects of a noncommutative stack as its quasicoherent
sheaves.> Our novel contribution is a theory of stratifications.® In short, a stratification of a non-
commutative stack X is a filtration by noncommutative substacks {Z,},cp indexed by a poset P
that satisfies certain natural geometrically-inspired conditions; for each p € P, the p?* stratum of
the stratification is the associated-graded X, := 2,/Z<,.*

The primary purpose of stratifications is that they provide reconstruction theorems, in a way

that can be summarized informally as follows.®
Slogan 0.1.1. Let X be a noncommutative stack equipped with a stratification over a poset P.
(1) macrocosm: The noncommutative stack X can be reconstructed from the strata
{xp c x}peP
along with gluing data between them.

(2) microcosm: Each quasicoherent sheaf F € X can be reconstructed from its geometric local-

1zations
{2,(F) € Xplper

along with gluing data between them.

LOur results apply equally well to pretriangulated dg-categories admitting all direct sums (or more precisely, to

their underlying k-linear presentable stable co-categories).

2In particular, an ordinary scheme or stack X has an underlying noncommutative stack QC(X), its presentable
stable oco-category of quasicoherent sheaves.

3This builds on work of Glasman and others, as described in §0.2.

4As we explain in §§1.2-1.3, a stratification of an ordinary scheme X determines a stratification of QC(X) via
set-theoretic support on closures of strata, whose strata are closely related to those of X. (On the other hand, in

general not all stratifications of QC(X) arise from stratifications of X.)
50ur terminology for the two parts of Slogan 0.1.1 is inspired by the “macrocosm/microcosm principle”, which

asserts e.g. that it is precisely a monoidal structure on a category that enables one to speak of algebra objects in that
category. In the present situation, macrocosm reconstruction for the noncommutative stack X enables microcosm
reconstruction for each quasicoherent sheaf ¥ € X. This is a familiar phenomenon from classical sheaf theory:
categories of globally-defined sheaves can be reconstructed from categories of locally-defined sheaves, and so globally-
defined sheaves can be reconstructed from locally-defined sheaves.

3



The simplest interesting example of a stratification is when P = {0 < 1}: in this case we recover
the data of a recollement (which we review for the reader’s convenience in §1.1).°
Our main application is a symmetric monoidal reconstruction theorem for genuine G-spectra,

7

which has particularly simple strata.” The eager reader may turn directly to §5.3 to see specific

examples of this reconstruction theorem in action:

e genuine G-spectra where G is one of the cyclic groups C,, Cp2, and C,, (for distinct primes
p and ¢) or the symmetric group Ss, and

e proper-genuine T-spectra, where T denotes the circle group.

In [AMGRa], we build on this last example to provide a symmetric monoidal reconstruction theorem
for cyclotomic spectra. This improves on the foundational work [NS18] of Nikolaus—Scholze, in that
it applies to all cyclotomic spectra (instead of only eventually-connective ones) and specifies its
canonical symmetric monoidal structure. In particular, it provides a universal mapping-in property

at the level of objects, which we use to obtain the cyclotomic trace map
K— TC

from algebraic K-theory to topological cyclic homology in [AMGRA]. In a different direction, in
[AMGRDb] we apply our reconstruction theorem to compute the Cpn-equivariant cohomology of a
point for any odd prime p.

We also set up an O-monoidal enhancement of our theory, where O denotes any oo-operad satis-
fying certain mild conditions (e.g. E,, for 1 < n < c0); this accounts for the symmetric monoidality
of our reconstruction theorem for genuine G-spectra. In this vein, we make contact with the world
of tensor-triangular geometry, by showing that under mild hypotheses a presentably symmetric
monoidal stable co-category admits a canonical adelic stratification, which is a symmetric monoidal
stratification over the specialization poset of its Balmer spectrum. The adelic stratification of
Mody, recovers the classical arithmetic fracture square, which is the natural pullback square for any

M € Mody that is indicated in Figure 1. More generally, for any scheme X satisfying mild finiteness

M—— > Q®z M

(0.1.1)

II ) — e | [[ M)

p prime p prime

FIGURE 1. The arithmetic fracture square is a natural pullback square that recon-
structs any M € Modyz from its rationalization, its p-completions, and gluing data
between them.

6The French word recollement translates to “regluing”.
7At the microcosm level, this presents a genuine G-spectrum in terms of its geometric fixedpoints (as opposed to
its presentation in terms of its categorical fixedpoints as a spectral Mackey functor [GM, Barl7]).
4



hypotheses, the adelic stratification of QC(X) leads to an adelic reconstruction theorem, which bears
a close relationship to existing such formalisms of Beilinson and others. Moreover, the chromatic
stratification of the co-category Sp of spectra organizes the fundamental objects of chromatic homo-
topy theory and recovers integral (i.e. not p-local) and higher-dimensional variants of the chromatic
fracture square, as described in Example 4.3.8.%

In a different direction, we introduce the theory of reflection. This affords a dual form of
reconstruction; applied to Mody, this yields the reflected arithmetic fracture square, which is the

natural pushout square for any M € Mody that is indicated in Figure 2.° In particular, we establish

homyea, | @, | @ M | | —— homy, (Q, M)

p prime

@ M;ors M

p prime

FIGURE 2. The reflected arithmetic fracture square is a natural pushout square
that reconstructs any M € Mody from its corationalization, its p-torsionifications,

and gluing data between them.'®

a precise relationship between the gluing data and the reflected gluing data. In the case of Modz,

this specializes to the remarkable equivalence

Q®7 (H MQ) >~ Yhomy,g, (Q, <@ Mztf's)) :
P P

taking M = Z, this gives an equivalence Afn >~ homy,.4 (Q,Q/Z), where Ag, denotes the ring of

finite adeles. Specialized to the poset P = [1], reflection recovers the theory of reflection functors
(which explains our choice of terminology). More generally, it gives a categorification of the Mobius
inversion formula and is closely related to Verdier duality.

We give a detailed overview of our work in §1, which begins with some recollections and mo-
tivation. Our main theorems (which are stated more precisely therein) may be summarized as

follows.

e Theorem A is our reconstruction theorem for stratified noncommutative stacks, a precise
articulation of Slogan 0.1.1. In fact, it provides a universal mapping-in property — that is,
a limit-type description — both at the macrocosm level (for noncommutative stacks) and at

the microcosm level (for their quasicoherent sheaves).

8This is closely related to its adelic stratification, which is described in Example 4.6.13.

9This particular example can be seen as a consequence of Greenlees—May duality (or even of local duality for
Spec(Z)).

10We write M;°'5 := fib(M — M ®z Z[p~—!]) for the p-torsionification of M, in analogy with the notation MI/,\ for

its p-completion.



e Theorem B provides a suite of fundamental operations for constructing new stratifica-

tions from old ones: restriction, pullback, quotient, pushforward, and refinement.

e Theorem C is our O-monoidal reconstruction theorem, an enhancement of Theorem A.
At the macrocosm level, this provides universal mapping-in properties for presentably O-
monoidal stable co-categories as such.

e Theorem D establishes the symmetric monoidal adelic stratification of a presentably
symmetric monoidal stable co-category satisfying mild finiteness hypotheses over (the spe-

cialization poset of) its Balmer spectrum.

e Theorem E establishes the symmetric monoidal geometric stratification of the pre-
sentably symmetric monoidal stable co-category Sng of genuine G-spectra, where G is
any compact Lie group. This has the following features:

— its strata are the presentably symmetric monoidal stable co-categories
SphW(H) := Fun(BW(H), Sp)

of homotopy W(H)-spectra, where H is a closed subgroup of G and W(H) denotes its
Weyl group;

— its geometric localization functors are the geometric fixedpoints functors
$peC o SphW(H) :
and
— its gluing functors are given by a version of the Tate construction.

As explained in Remark 1.7.2, this provides a sense in which genuine G-spectra are the
quasicoherent sheaves on a “nearly commutative” stack.

e Theorem F establishes the theory of reflection, which affords a dual form of reconstruction

for stratified noncommutative stacks.

In §1 we also discuss a number of additional applications of our work: constructible sheaves; cate-

gorified M6bius inversion; naive G-spectra; t-structures; and additive and localizing invariants.

Remark 0.1.2. The philosophy of noncommutative algebraic geometry can be traced back to
Gabriel’s thesis [Gab62], in which he proved that one can reconstruct a scheme from its abelian
category of quasicoherent sheaves. Following this, Manin proposed that arbitrary abelian categories
might therefore be thought of as categories of quasicoherent sheaves on “noncommutative schemes”
[Mang88, §12.6]. This proposal has since been developed further by many authors, notably Rosenberg
[Ros98b, Ros98a], as well as Kontsevich-Rosenberg [KR00] and Kontsevich-Soibelman [[{S09] from
a more derived perspective. Our usage of the term “noncommutative stack” to mean a presentable

stable co-category is inspired by this trajectory.

0.2. Relations with existing literature. A number of distinct narrative threads converge in the
present work, some of which we discuss here. However, the literature is vast, and we make no

attempt to be comprehensive.



0.2.1. Recollements and semiorthogonal decompositions. Stratifications admit a rich history: they
generalize recollements (which are stratifications over [1]) and more generally semiorthogonal decom-
positions (which are stratifications over [n]).!! Recollements were originally introduced by Beilinson—
Bernstein—Deligne in their study of perverse sheaves [BBD82]. A fruitful source of semiorthogonal
decompositions is exceptional collections; this technique first appeared in Beilinson’s calculation
of the derived category of P™ [Bei78], and was pursued more systematically by Bondal-Kapranov
[BK89]. Semiorthogonal decompositions continue to be a highly active area of research, especially

in connection with algebraic geometry; see e.g. [Kuz14] for more in this direction.

0.2.2. Adelic reconstruction. As explained in §1.6, given a scheme X, our work provides a decom-
position of QC(X) in adelic terms; this generalizes the arithmetic fracture square (0.1.1), which
corresponds to the case that X = Spec(Z). This is quite similar to prior adelic reconstruction
results in the literature, e.g. [Par76, Beig0, Hub91, Grol7, HPV]. However, there is a subtle dif-
ference, even in the case of X = Spec(Z): we recover the arithmetic fracture square (0.1.1) for all
Z-modules M, despite the fact that two of its terms don’t commute with filtered colimits in the
variable M. In the specific context of tensor-triangulated geometry, [BG20] provides a symmetric

monoidal macrocosm-type reconstruction theorem.

0.2.3. Chromatic homotopy theory. Reconstruction has long been a guiding principle in homotopy
theory, going back to Sullivan’s influential lecture notes [Sul05]. The chromatic approach to stable
homotopy theory grew out of Ravenel’s work [Rav84] and the resulting nilpotence and periodicity
theorems of Devinatz—Hopkins—Smith [DHS88, HS98], along with the extensive axiomatic treatment
of Hovey—Palmieri-Strickland [HIPS97] — all pointing to the chromatic fracture squares as essential
from the perspective of reconstruction. More recently, higher-dimensional chromatic fracture cubes
for p-local spectra — and indeed, corresponding macrocosm reconstruction theorems — appear e.g.
in [Glab, Examples 3.14 and 3.31] and [ACB22].

0.2.4. Reconstruction for genuine G-spectra. The idea that genuine G-spectra can be expressed in
terms of their geometric fixedpoints stems from the work of Greenlees and May; see in particular
[Gre, GM95]. There is also much work on similar expressions of rational G-spectra (which are
simpler because the relevant Tate constructions vanish rationally), notably the reconstruction results
of Greenlees—Shipley [GS18]. More recent works in this direction include [MNN17, Glab]; see also
[NS18, Remark I1.4.8].

0.2.5. Glasman’s theory of stratifications. Theorems A and E are directly inspired by Glasman’s
paper [Glab], as we now explain.

In [Glab, Definition 3.5], Glasman introduces a notion of a stratification of a stable co-category
(not assumed to be presentable). His definition is phrased in terms of the strata (in the sense of Def-
inition 2.4.6) for all convex subsets C C P of the stratifying poset. He proves a reconstruction result
for his stratifications [Glab, Theorem 3.21], and for any finite group G he provides a stratification
of the oco-category Sng genuine G-spectra over the poset Pg of conjugacy classes of subgroups of
G |Glab, Proposition 3.18].

By contrast, we work primarily in the setting of presentable stable co-categories. This enables us

to give a relatively simple definition of a stratification, in terms of closed subcategories indexed by

H1p the present discussion we do not distinguish between the small and presentable settings.
7



the poset P itself (rather than by its poset of convex subsets): we recover the strata as presentable

quotients. (These notions are summarized in §1.3.) On the other hand, using this we also provide

a theory of stratifications of stable co-categories (see §7.2).12 This effectively recovers Glasman’s

theory of stratifications, and offers a substantial refinement of his reconstruction theorem as well

(which is a version of our microcosm reconstruction).

0.3. Outline. This work is organized as follows.

§1:

§2:

§3:

§4:

§5:

§86:

87:

§A:

§B:

We give a detailed overview of our work, and explain a number of fundamental examples

and applications.

We introduce closed subcategories and stratifications. We prove that the macrocosm re-
construction theorem (Theorem A(2)) follows from the metacosm reconstruction theorem
(Theorem A(1)).

We establish our fundamental operations on stratifications (Theorem B). We accomplish

this by studying the phenomenon of alignment.

We introduce O-monoidal stratifications and prove the O-monoidal reconstruction theorem
(Theorem C). We also establish the adelic stratification (Theorem D), which we unpack in
the setting of chromatic homotopy theory.

We review the oco-category of genuine G-spectra and establish its geometric stratification
(Theorem E). We record a few facts about its gluing functors, which are essentially given
by proper Tate constructions. Using these facts, we unpack a number of examples of re-
construction for genuine G-spectra. We also give a formula for categorical fixedpoints in
terms of the geometric stratification, and we explain how this interacts with restriction and

transfer.
We prove the metacosm reconstruction theorem (Theorem A(1)).

We prove a number of variants of the metacosm reconstruction theorem, notably our dual

form of reconstruction and the theory of reflection (Theorem F).

We review the theory of lax modules and lax limits, and record a number of results that we
need. This material is used systematically throughout the main body of the work, but this
usage is confined to proofs (rather than assertions) to the greatest extent possible.

We establish the necessary background regarding (oo, 2)-categories, particularly the theory
of lax functors and natural transformations as well as the theory of adjunctions. This

material primarily supports §A.

0.4. Notation and conventions.

(1) We work within the context of co-categories, taking [Lur09] and [Lur] as our standard ref-

erences. We work model-independently (for instance, we make no reference to the simplices
of a quasicategory), and we omit all technical uses of the word “essentially” (for instance,

12A5 a matter of convenience, we restrict our attention to idempotent-complete stable co-categories.

8



we shorten the term “essentially surjective” to “surjective”). We also make some light use

of the theory of (0o, 2)-categories; §B is devoted to its relevant aspects.

(2) We use the following decorations for our functors.'?
e The arrow in the notation

C—sD

denotes a monomorphism, i.e. the inclusion of a subcategory: a functor which is fully
faithful on equivalences and induces inclusions of path components (i.e. monomor-

phisms) on all hom-spaces.

e The arrow in the notation

GRE

denotes a fully faithful functor. (However, the notation “f.f.” is merely emphasis: one
should not take its absence to mean that the indicated monomorphism is not fully
faithful.)

e The arrow in the notation

denotes a surjection.
e The arrow in the notation
cyLD

denotes a functor € — D considered as an object of the overcategory Cat,p of its target

(which will often be some sort of fibration).

More generally, we use the notation X | Y to denote a morphism in any oo-category C that

we consider as defining an object in the overcategory €,y

(3) Given some datum in an co-category (such as an object or morphism), for clarity we may

use the superscript (—)° to denote the corresponding datum in the opposite co-category.

(4) Given a functor F, we write F* for pullback along it, and we respectively write F} and F,
for left and right Kan extension along it.

(5) We write Cat for the oo-category of oo-categories, 8 for the co-category of spaces, and Sp

for the co-category of spectra. These are related by the various adjoint functors

13These are only for emphasis: the absence of such a decoration should not be taken to imply that the corresponding

adjective does not apply.



(6)

We define the commutative diagram of monomorphisms among oco-categories

Prf — % Pr«—— Prf®

d T e

Prk % Pry «—— Prf
as follows:
e objects in the upper rows are presentable co-categories,
e objects in the lower rows are presentable stable co-categories,
e morphisms in the left column are left adjoint functors,

e morphisms in the middle column are accessible functors, with morphisms in Prg; addi-

tionally required to be exact, and
e morphisms in the right column are right adjoint functors.

So, passing to adjoints determines equivalences Pr’ ~ (PrR)°p and PrSLt ~ (Prg)“’7 and both
squares are pullbacks. Moreover, we define the oo-categories appearing in the outer two

columns of the commutative squares

Priw 5 prt Prit «— prfiw

f.fI If.f. and f.fI ]\f.f‘
L,w L R R,w

Prg™ —— Prg Pri «— Prg

as follows:
e in all cases, their objects are additionally required to be compactly generated,

e for those in the left square, their morphisms are additionally required to preserve

compact objects, and

e for those in the right square, their morphisms are additionally required to preserve

filtered colimits.

So, passing to adjoints determines equivalences Pri® ~ (Prf«)op and Pri® ~ (Prf+)or,

and both squares are pullbacks.

For a base co-category B, we define the commutative diagrams of monomorphisms among

oo-categories

coCarty ——— Cateocart/n Cartg —— Catean/
f.f £f and f.f f.f
loc.coCarty s Catioc.cocart/B loc.Carty —— Catjoc.cart/B
as follows:

10



e objects in the upper rows are co/cartesian fibrations over B,
e objects in the lower rows are locally co/cartesian fibrations over B,

e morphisms in the left columns are functors over B which preserve co/cartesian mor-

phisms, and
e morphisms in the right columns are arbitrary functors over B.

We write

cocart
\%

/(__\

coCartg ~ Fun(B, Cat) ~ Cartgor

for the composite equivalences, and refer to them as the cocartesian dual and cartesian dual

functors (named for their respective sources) [BGN18]. We respectively write
LFibg C coCartg and RFibg C Cartg

for the full subcategories on the left and right fibrations. When the base co-category B is
understood, for any co-category C we write

C=Cx3B
for the product, generally considered as an object of Cat,s via the projection functor
C=exB-5HB.M

We make use of the theory of exponentiable fibrations of [AF20] (see also [Lur, §B.3] and
[AFR18, §5]), an co-categorical analog of the “Conduché fibrations” of [Gir64, Con72]: these
are the objects (€ | B) € Cat,s satisfying the condition that there exists a right adjoint

to the pullback; by the adjoint functor theorem, these can be equivalently characterized as
those objects for which the proposed left adjoint preserves colimits. We refer to this right
adjoint as the relative functor co-category construction; it is analogous to the internal
hom of presheaves. Thus, for any target object (F | B) € Cat;g and any test object
(X | B) € Catp, a lift

Fun’ (€, 9)

-1
-
-
-
-
-
-

-

K— 3B

14T his notation is meant to be suggestive of the idea that C is the “constant pre(co)sheaf” at C.

11



is equivalent data to a functor

between pullbacks over K. We write
EFibg C Cat/g

for the full subcategory on the exponentiable fibrations, and we note once and for all that

cocartesian fibrations and cartesian fibrations are exponentiable.
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1. DETAILED OVERVIEW AND FUNDAMENTAL EXAMPLES

In this section, we give an informal overview of our work. In addition to giving somewhat more
precise statements of our main theorems (which we only informally described in §0.1), we place our
work within a broader mathematical narrative and collect key examples and applications.

In contrast with the present section, the main body of the work (i.e. all the material beyond §1)
is almost entirely devoted to proofs of the main theorems.'® (So for instance, we will not revisit any

discussion of sheaves.)

Local Notation 1.0.1. Throughout this section, we fix a scheme X ,'6 a noncommutative stack X
(i.e. a presentable stable co-category), and a poset P.

This section is organized as follows.

§1.1: We recall the notion of a recollement of X and the fact that a closed-open decomposition of

X determines a recollement of QC(X).

§1.2: We generalize closed-open decompositions of X to stratifications of X.

15However, our specific examples of reconstruction for genuine G-spectra are collected in §5.3, and we defer a
discussion of the chromatic and adelic stratifications of spectra to Examples 4.3.8 and 4.6.13.
6More precisely, in order to simplify our exposition, we tacitly assume that our scheme X is finite-dimensional
and noetherian. The utility of these assumptions is explained in Footnotes 21, 29, and 54.
12



§1.3: We define stratifications of X and state our main reconstruction theorem (Theorem A). We
also explain how a stratification of X determines a stratification of QC(X); in retrospect,

§1.1 describes the special case of this phenomenon when P = [1].

§1.4: To address certain subtleties arising in Theorem A, we indicate our fundamental operations

on stratifications (Theorem B).

§1.5: We describe our theory of O-monoidal stratifications and state our O-monoidal reconstruc-

tion theorem (Theorem C).

§1.6: We begin by describing the adelic stratification of QC(X). We unpack in detail the example
of X = Spec(Z), which nicely illustrates essentially all of the material surveyed up to this
point, and which ultimately recovers the arithmetic fracture square (0.1.1). We conclude by
generalizing adelic stratifications to the setting of tensor-triangular geometry (Theorem D).

§1.7: We describe the geometric stratification of genuine G-spectra (Theorem E).

§1.8: Given a P-stratified topological space, we obtain stratifications over P°P of its co-categories

of sheaves, constructible sheaves, and P-constructible sheaves.

§1.9: As a special case of a general construction, we obtain a stratification of naive G-spectra,

which is closely related to the geometric stratification of genuine G-spectra.

§1.10: We explain the theory of reflection (Theorem F) and indicate a number of examples, notably

its close relationship with Verdier duality.
§1.11: We explain how to use stratifications to build t-structures.

§1.12: We explain the relationship between stratifications and additive and localizing invariants

(such as (resp. connective and nonconnective) algebraic K-theory).

1.1. Closed-open decompositions and recollements. We begin by recalling the theory of rec-

ollements (in the context of presentable stable co-categories).

Definition 1.1.1. A recollement of the noncommutative stack (i.e. presentable stable co-category)
X is a diagram
Z—y— X +—v—>U (1.1.1)
S ZJI; A \pJ-R A

of adjunctions among presentable stable co-categories such that there are equalities
im(ig,) = ker(pr) , im(v) = ker(y) , and im(ig) = ker(pg) (1.1.2)

among full subcategories of X.17

1TWe have chosen the notation “y” because this is the restricted Yoneda functor (with respect to the inclusion
i), and the notation “v” because this is the inclusion of the full subcategory of objects whose restricted Yoneda
functors are null.
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Given a recollement (1.1.1) of X, it is not hard to check that for each F € X we obtain a canonical

pullback square

pr, v (F
T MNpr,— (%) Vpof
Nyig (F) vpL (Myi g (F)) 18 (1.1.3)
. X
ZRyg: My, 41/(7;Ry3) VpLZRySt

Hence, the object F € X is recorded by the lower right cospan. However, to record the object ¥ € X
we may actually record less data than this cospan: its lower morphism is the unit of the adjunction
pr 1 v, and so is canonically determined by its source iryF € X. Noting further that the functors
ir and v are fully faithful, we find that the object ¥ € X can be reconstructed from the data of the
object yF € Z, the object p;,F € U, and the morphism

pL(Myig (F))
—rTE

pLF pLiryF (1.1.4)

in U. This observation forms the basis of an equivalence
X -5 lim"'2 (z, LN u) = lim it 19 (1.1.5)

which is given by the formula

(1.1.4)
Fr— I

yF —— priryd

and whose inverse reconstructs each object ¥ € X as the pullback (1.1.3).

This situation is a prototypical instance of Slogan 0.1.1, as well as a special case of Theorem A
below: the equivalence (1.1.5) is a macrocosm reconstruction of the noncommutative stack X, and
the pullback square (1.1.3) determines a microcosm reconstruction of the quasicoherent sheaf F € X.

We have the following fundamental source of recollements.

Example 1.1.2. Suppose we are given a closed-open decomposition of our scheme X as in the

diagram

open

A : X U
closed
N, A , (1.1.6)
Xy

18Indeed, taking fibers of the vertical morphisms reduces us to the case where F € ker(y) = im(v) C X, in which
case the claim is immediate.
19Right—lax limits will be explained further in Remarks 1.3.7 and 1.3.8.
14



in which we have additionally included the formal completion X7 of X along Z. Then, we have a

recollement
JI —~
QCz(X) T QC(X) +—j.— QC(V)
// \L/’
/ , (1.1.7)
QC(X7)
in which

e QCz(X) := ker(5*) € QC(X) denotes the full subcategory of those quasicoherent sheaves
on X that are set-theoretically supported on Z,

e the left vertical equivalence is that between .Zz-torsion and .#z-complete quasicoherent
sheaves of €'x-modules,?’ and

e the triangle commutes.?!

Warning 1.1.3. In the situation of Example 1.1.2, the full subcategory QCz(X) C QC(X) is

generated under colimits by the image of the pushforward functor

QC(Z) 25 QC(X) ,

but this latter functor is not generally fully faithful.??

1.2. Stratified schemes. We now generalize the notion of a closed-open decomposition of X.
Evidently, the closed-open decomposition (1.1.6) of X is entirely determined by the closed subset
Z C X. Let us write Clsy for the poset of closed subsets of X ordered by inclusion.

Definition 1.2.1. A stratification of the scheme X over the poset P is a functor

P 2, Clsy
w w (1.2.1)
p— Zp

satisfying the following conditions:

generation: X =J p Z,

stratification: for any p,q € P, we have

Zynz,= |y 2.

r<p and r<q

Example 1.2.2. Suppose that P = [1] = {0 — 1}. Then, a stratification of X over P is equivalent
data to that of a closed subset Z := Z; C X.

20This equivalence is recorded e.g. as [GR14, Proposition 7.1.3]; see also [GM92, DG02]. (Note that it is not
generally t-exact, and so is an inherently derived phenomenon.)
21T e existence of the recollement (1.1.7) is guaranteed by the assumption that X is qcgs: namely, this guarantees
that the functor js« preserves colimits.
220n the other hand, it is not hard to recover the closed subset Z C X from the data of the full subcategory
QCz(X) € QC(X).
15



Example 1.2.3. Generalizing Example 1.2.2; suppose that the poset P is in fact a totally ordered
set. Then, any functor (1.2.1) satisfies the stratification condition. If P contains a maximal element,
then the functor (1.2.1) satisfies the generation condition (and hence defines a stratification of X
over P) if and only if the maximal element X € Clsx lies in its image.

Example 1.2.4. Let S be a set, and suppose that X — S is a morphism to S considered as a
discrete scheme (i.e. an S-indexed coproduct of copies of Spec(k)). Then, taking preimages defines
a stratification

S — Clsx

(where S is considered as a discrete poset).

Example 1.2.5. Suppose that X = A% = Spec(k[z,y]) is the affine plane. Choose any a,b € k*,

and consider the three full subposets

V() Viz,y) — V(@) | |
l , l , and V(y) < A2
V(y) —— A? V(y) — A2 /
V(z—a,y—b)

of Cls,2: all three contain A2, the first contains the two coordinate axes, the second additionally
contains the origin (0,0), and the third additionally contains the point (a,b).?* The first satisfies the
generation condition but not the stratification condition, while the latter two define stratifications
of AZ.

Definition 1.2.6. For each element p € P, the p™ stratum of the stratification (1.2.1) is the
locally closed subset

X, = (Zp U Zq>

q<p

of X.

Altogether, the inclusions of the strata of the stratification (1.2.1) assemble into a morphism

x—x. (1.2.2)
peP
For the stratifications described in Examples 1.2.2, 1.2.4, and 1.2.5, the morphism (1.2.2) defines a
bijection on underlying sets. In fact, for any stratification (1.2.1), the morphism (1.2.2) defines an
injection on underlying sets: this is a consequence of the stratification condition. However, it does
not always define a surjection: for instance, the constant functor

const x

N*?:={1—-2—>3—..-}°° —= Clsx

defines a stratification (as a special instance of Example 1.2.3) whose strata are all empty, so that
in this case the morphism (1.2.2) is not surjective unless X itself is empty. In fact, it is not hard to
see that this counterexample is prototypical, in the sense that the morphism (1.2.2) is guaranteed

23Here, V(I) € Cls,2 denotes the vanishing locus of an ideal I C k[z,y].
16



to be surjective precisely when the poset P is artinian (i.e. every decreasing sequence eventually
stabilizes).

Of course, in order to reconstruct X not just as a set but as a scheme, one would need to keep
track of not just the strata {X,},cp but also gluing data between them. Theorem A below enacts
this idea in the noncommutative setting. In parallel with the commutative situation just described,

such reconstruction will depend on certain finiteness properties of the poset P.

1.3. Stratified noncommutative stacks. We now introduce our theory of stratified noncommu-

tative stacks, which is closely patterned after the theory of stratified schemes.

Definition 1.3.1. A closed noncommutative substack of the noncommutative stack X is a full

presentable stable subcategory Z C X whose inclusion extends to a diagram

o L Ty
S 1 >

of adjoint functors.?* We write Clsy for the poset of closed noncommutative substacks of X ordered

by inclusion.

Of course, our terminology is motivated by the fact that a closed subset Z C X determines a closed
noncommutative substack QCz(X) € QC(X), as indicated in Example 1.1.2. This construction
defines a functor
QC(_(X)
Clsxy —— CISQC(X) .
Definition 1.3.2. A stratification of the noncommutative stack (i.e. presentable stable oo-

category) X over the poset P is a functor

P % Clsy
w w (1.3.1)
D —— Zyp

satisfying the following conditions:
generation: X = UpeP Zp;
stratification: for any p, q € P, there exists a factorization

U z—z2z

r<p and r<g W
X

»~
|
1
—
Z q

Here, the union symbol J denotes the colimit (i.e. least upper bound) in the poset Clsx.?5 In this
situation, we may also say that X is P-stratified.

241f the right adjoint X — Z admits its own right adjoint, the latter will automatically be fully faithful. (In
general, if a functor F' has adjoints F¥ 4 F 4 FE_ then FL is fully faithful if and only if F'E is: this follows from the
composite adjunction FFL 4 FFE in which one adjoint is naturally equivalent to the identity functor if and only if
the other is.)
251p fact, colimits in Clsy always exist and are quite straightforward to compute; see Observation 2.3.9.
17



Remark 1.3.3. Given a stratification (1.3.1) of X, the commutative square

U z—z2z

r<p and r<q l

Zy e X

of defining fully faithful inclusions is in fact a pullback.? Thus, the stratification condition of
Definition 1.3.2 is a close cousin of the stratification condition of Definition 1.2.1.

Example 1.3.4. Suppose that P = {a, b} is a two-element set, considered as a discrete poset. A

stratification
{a,b} 22 Clsy

is the data of a pair of closed noncommutative substacks Z,,Z, € X such that Z, U Z, = X and

such that the composites
Zg —> X — Zyp and Zp —— X — Zgq

are both zero. It follows immediately that we have an adjoint equivalence
R X Zp T X
(v,9)
in other words, a stratification of the noncommutative stack X over {a,b} is nothing other than
a decomposition of X as the product of two closed noncommutative substacks.?” More generally,
for any set S considered as a discrete poset, a stratification of X over S is the data of a product

decomposition X ~ [],. g Zs by full stable subcategories.?®

Definition 1.3.5. For each element p € P, the p* stratum of the stratification (1.3.1) of X is the

presentable quotient

X, = <z,p Uzq> :

a<p
which essentially by definition participates in the recollement
o i ~ s pL ~.
1L 1
U Zg —YV—— Zp +—v—X,

A N

Hence, we obtain a composite adjunction
PL

Y
®,: X I Zp L Xp:p?P

iR

whose left adjoint ®, we refer to as the pt* geometric localization functor of the stratification
(1.3.1).

26This follows from Lemma 3.4.5; see Definition 3.1.2.
27Conversoly7 any product decomposition X ~ Z, x Z; by full stable subcategories is necessarily by closed non-
commutative substacks.
28This may be compared with Example 1.2.4; note that the functor QC takes disjoint unions to products.
18



Example 1.3.6. A stratification (1.2.1) of the scheme X determines a stratification

Ze QC(—)(X)
Pp———— Clsx —— CISQC(X)
W w (1.3.2)
D QCz, (X)

of its underlying noncommutative stack QC(X).?? Given any element p € P, let us choose a factor-

ization

X, ————— X

locally closed >
.

/f\?a“

e

Up

> N
RORN
o

Then, the p™ stratum of the stratification (1.3.2) can be identified as QCx, (Up) ~ QC((Up)k,)
(recall the equivalence of Example 1.1.2), and thereafter its pt" geometric localization functor can

be identified as the composite
@, - QC(X) 2 QC(Uy) — QC((Up)/)\(p) 0

In parallel with Example 1.2.2, a stratification of X over [1] is simply the data of a closed
noncommutative substack Z := Zo C X. This necessarily extends to a recollement (1.1.1), and

indeed the strata of this stratification are simply
Xo:=2/0~=2 and X1:=X/2~U.

Moreover, as we have seen in §1.1, the gluing datum necessary for reconstructing X from these strata

is the composite functor

2 PLIR U
I I Bl (1.3.3)

Xo ——— Xy
@ p°

This suggests the following general construction: given a stratification (1.3.1) of X over an arbi-

trary poset P, for each morphism p — ¢ in P we have an associated gluing functor

PP @
I‘g:xpf—>DC—q>f)Cq

QC(_\(X)
29Without hypotheses on the scheme X, suppose that the functor Clsx % Clsqc(x) exists, as guaranteed

e.g. by the assumption that X is qcgs (recall Footnote 21). Then, the composite functor (1.3.2) automatically satisfies
stratification condition. The assumption that X is noetherian guarantees that it also satisfies the generation condition.
For an example where the generation condition fails, see Remark 4.6.12.
30This identification follows from Lemmas 3.4.5 and 3.2.3(2)(c).
31Thus7 the recollement (1.1.1) may be thought of as a sort of categorified extension sequence, which is classified
by the data of the functor (1.3.3). This analogy will be amplified in Remark 1.5.7.
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between the corresponding strata.?? Given a composable sequence p — ¢ — 7 in P, the associated

gluing functors generally do not strictly compose: rather, they fit into a lax-commutative triangle

whose natural transformation arises from the unit of the adjunction ®, 4 p?.33 An elaboration of
this observation reveals that the gluing functors assemble into a left-laz functor

P—Th— Pry (1.3.4)
to the (00, 2)-category Prg of presentable stable co-categories and accessible exact functors between
them, which we refer to as the gluing diagram of the stratification and denote by ¥ (X) (see
Definition 2.5.7).

We can now state our first main theorem, which provides sufficient conditions for the reconstruc-
tion of a stratified noncommutative stack X from its gluing diagram ¢(X). As foreshadowed at the
end of §1.2, such reconstruction may be obstructed by certain convergence issues, which we pre-
cisely codify (see Remark 1.3.9). In order to highlight its recursive structure, we state the theorem

succinctly before explaining its terms.
Theorem A (Theorems 6.2.6 and 2.5.14). Let P be a poset.

(1) metacosm: The gluing diagram functor is the left adjoint in an adjunction
9

Stratp 4>| LMod! 2% (Prg) . (1.3.5)
lim{ 12 o

(2) macrocosm: For each P-stratified noncommutative stack X € Stratp, the unit of the

adjunction (1.3.5) determines the left adjoint in an adjunction

X T Glue(X) = lim[ 2, (4(X)) . (1.3.6)

limsq(p)

32When both sources and targets appear in our notation, we put the source as a superscript and the target as a
subscript (so e.g. we have Ar(@)l¢ ~ €., and Ar(C)|. =~ C/. for any co-category C; these conventions are motivated
by the fact that home(—, —) is contravariant in the source and covariant in the target). Moreover, we have chosen
to use a subscript in the notation ®, and a superscript in the notation p? in order to maintain consistency with the
notation I'h.

33For instance, in the situation and notation of Example 1.3.6, the lax-commutative triangle

Qc((Ug)%,)

7N
v TN

QCUp)%,) 7 QCX) 5= QC((Ur)%,)
records the difference between push-pull operations either directly from (Up)9<p to (UT)QT or passing intermediately

through (Uq)g\(q
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(3) microcosm: For each quasicoherent sheaf F € X € Stratp on a P-stratified noncommuta-
tive stack, the unit of the adjunction (1.3.6) is a morphism

T — glue(T) := limg(py (9(F)) (1.3.7)
in X.

(4) nanocosm: For each quasicoherent sheaf € € X € Stratp on a P-stratified noncommutative

stack, applying hom. (€, —) to the morphism (1.3.7) determines a morphism

homye(€,5) — lim oo (homy (@€ Ty®p0)F)) (1.3.8)
in 8p.

Moreover, if the poset P is down-finite,>* then the metacosm adjunction (1.3.5) — and hence the
macrocosm adjunction (1.3.6), and hence the microcosm morphism (1.3.7), and hence the nanocosm

morphism (1.3.8) — is an equivalence.®®
The various expressions appearing in Theorem A have the following meaning.
metacosm: We write
e Stratp for the oo-category of P-stratified noncommutative stacks,

° Ll\/Iod,r_'llaa;_’lf (Prg) for a certain oo-category whose objects are left-lax left P-modules in
Pre (i.e. left-lax functors from P to Prg),

o & for the (macrocosm) gluing diagram functor (taking a P-stratified noncommutative
stack to its gluing diagram), and

r.lax

o lim; 27, for a certain “parametrized right-lax limit” functor.

We say that X € Stratp is convergent if it lies in the image of the right adjoint of the meta-

cosm adjunction (1.3.5), or equivalently if its macrocosm adjunction (1.3.6) is an equivalence.

macrocosm: We refer to Glue(X) := lim[{™(4(X)) as the reglued noncommutative stack

of X € Stratp; this is the underlying object of the P-stratified noncommutative stack
lim{2* . (4(X)) € Stratp. It may be identified as a full subcategory

l.lax.®
Glue(X) C Fun(sd(P), X) (1.3.9)

of the co-category of functors to X from the subdivision of P,3¢ through which the notation

limgq(py acquires meaning. We write g for the (microcosm) gluing diagram functor (taking

347 poset P is called down-finite if for each element p € P, its down-closure (Sp) := {q € P : ¢ < p} is finite.
350f course, the implied implications are irreversible: respectively, it is possible for (1.3.6), (1.3.7), or (1.3.8) to

be an equivalence even if (1.3.5), (1.3.6), or (1.3.7) is not. (On the other hand, fixing some X € Stratp, if for every
F € X € Stratp the microcosm morphism (1.3.7) is an equivalence, then the macrocosm adjunction (1.3.6) is an
equivalence. Likewise, fixing some F € X € Stratp, if for every & € X € Stratp the nanocosm morphism (1.3.8) is
an equivalence, then the microcosm morphism (1.3.7) is an equivalence. See also Remark 1.3.9.)
36The subdivision of the poset P is the full subcategory sd(P) C A /p (which is in fact a poset) on the conservative
(or equivalently injective) functors [n] — P.
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a quasicoherent sheaf to its gluing diagram). For each p € P, the p'" geometric localization

functor appears as the factored composite

ev
X —2— Glue(X) —2+ X
N S Tpp 37
-l
» -
> xp

In particular, the gluing diagram g(F) € Glue(X) indeed consists of the geometric localiza-
tions {®,(F) € X, }pep along with gluing data between them.

microcosm: We refer to glue(F) := limyp)(g(F)) as the reglued quasicoherent sheaf of

F € X. We say that F € X is convergent if its microcosm morphism (1.3.7) is an equivalence.
nanocosm: We write hom to denoted enriched hom, here meaning the hom-spectra of a
stable oco-category. Moreover, for any ([n] <> P) € sd(P) we write

_ pe(n=1)  1(0)
Fe=Tom " Tow

for brevity.?®

When the nanocosm morphism (1.3.8) is an equivalence, it may be viewed as affording a description

of the “(generalized) elements” of a sheaf (i.e. morphisms into it) entirely in terms of compatible

local elements (i.e. morphisms in the strata of the stratification).?”

Remark 1.3.7. Fix an oco-category B € Cat. Given a functor
B L Cat

to the (00, 2)-category Cat of oco-categories, an object of its limit may be thought of informally as a

system of the following data:
e for each object b € B, an object e, € F(b);

e for each morphism by - by in B, an equivalence
F(3)(eny) = e, (1.3.10)
in F(bl),

. . 5 . .
e for each composable pair of morphisms by - by — by in B, a commutative square

€by < T F(6)(en,)
a5y |2 UF©G)(oy) (1.3.11)

F(07)(en,) <= F(8)(F(v)(en,))

37More generally, for any ([n] = P) € sd(P), the composite X < Glue(X) e, X is the composite
pw(n)<1>¢(7l) .. 'P“’(O)q’¢(o)-
38The nanocosm morphism (1.3.8) is described in detail in Remark 2.6.7.
39For instance, via Theorem E this provides an explicit formula for the categorical fixedpoints of a genuine G-
spectrum (where G is a finite group) as a finite limit of spectra that are defined in terms of its geometric fixedpoints
(see §5.4).
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in which the lower equivalence follows from the fact that F' is a functor (and so respects

composition of morphisms up to canonical equivalence);
e higher coherence data.

By contrast, to describe an object of its left-lax limit or of its right-lax limit, we must replace the

equivalences (1.3.10) with morphisms

F()(en) —en,  or F(y)(en) «—ep,

40" More general definitions apply when the functor F is itself only left- or right-lax,

respectively.
such as the gluing diagram (1.3.4) (whose right-lax limit defines the reglued noncommutative stack
Glue(X)); for instance, in the commutative square (1.3.11), the lower morphism will in general no
longer be an equivalence.

We provide a comprehensive treatment of these notions in §A. In particular, we unpack the
general definition of the right-lax limit of a left-lax left [2]-module (the simplest nontrivial case) in
Example A.5.2(1). We also describe the following notions in Example 2.5.16 for a noncommutative
stack X stratified over the poset P = [2]: the gluing diagram ¢(X), the reglued noncommutative
stack Glue(X) := lim[{~(%(X)), the gluing diagram functor X <% Glue(X), and its right adjoint

limg
Glue(X) —& x.
Remark 1.3.8. We show as Lemma A.6.8 that the right-lax limit of a left-lax functor
P — I.ﬂx" Cat

may be computed as the strict (i.e. ordinary) limit of a certain strict (i.e. ordinary) functor

sd(P) S, cat
constructed therefrom:
|imr-"=‘X( P [ Cat ) ~ lim (sd(P) oW, Cat> u (1.3.12)

In addition to its technical utility, this result allows for a more uniform perspective on the metacosm
adjunction (1.3.5) and the macrocosm adjunction (1.3.6): in both, the right adjoint is computed by
taking (strict) limits over sd(P).

Remark 1.3.9. Theorem A is sharp in the sense that the metacosm adjunction (1.3.5) fails to be
an equivalence whenever P is not down-finite.*? Equivalently (as the forgetful functor Stratp — Prk
is conservative), when P is not down-finite then there exists a P-stratified noncommutative stack
whose macrocosm adjunction (1.3.6) is not an equivalence. Using (both the content and terminology
of) Theorems B and D as well as Example 1.6.1, such a P-stratified noncommutative stack may be

constructed by choosing an injective functor

PZ;)P

40Thus7 the limit is a full subcategory of both the left-lax limit and the right-lax limit.
41Thig equivalence generalizes the identification appearing in the equivalence (1.1.5), which is an instance of the
equivalence (1.3.12) in the case that P = [1].
42Hence7 convergence is analogous at the metacosm level to the down-finiteness of P.
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from the specialization poset of Spec(Z) and taking the pushforward of the adelic stratification of
Mody, along it.*3 It is not hard to see that passing to this new stratification of Mody, yields an

equivalent macrocosm adjunction, which is not an equivalence.

Remark 1.3.10. The requirement that P be down-finite is strictly stronger than the requirement
that it be artinian. Indeed, the specialization poset of Spec(Z) (depicted in diagram (1.6.2)) is
artinian but not down-finite. In fact, it is not hard to see that the assumption that P be artinian

guarantees that the functor

x (Brver, 11 (1.3.13)

peP
is conservative; this is directly analogous to the guaranteed surjectivity on underlying sets of the
morphism (1.2.2) under that same assumption. From this perspective, the further assumption that
P be down-finite may be seen as assuring that the gluing data suffice to recover the noncommutative

stack structure of X.

Example 1.3.11 (the Goodwillie-Taylor stratification). Goodwillie calculus leads to a stratification
over a nonartinian poset in which the functor (1.3.13) generally fails to be conservative, as we now
explain.** Specifically, we construct a stratification of X := Fun(J,Y), where Y is any presentable
stable co-category and J is any oco-category that admits finite colimits and has a terminal object.
First of all, by [Lur, Theorem 6.1.1.10] (see also [Goo03]), for any n > 0 the inclusion of the full
subcategory of n-excisive functors is the right adjoint in an adjunction

Pr
Fun(3,Y) T Exc"(3,Y) ,

whose left adjoint P, carries a functor to its m-excisive approximation. This inclusion commutes
with colimits, and so admits a right adjoint of its own. We trivially extend this to the case that
n = —1 by declaring that Exc™*(J,Y) := {0} C Fun(J,Y), i.e. that only the constant functor at the

zero object is (—1)-excisive. Hence, we obtain a stratification
(Zz_l)c’p E— ClsFun(J,‘j)
v " (1.3.14)

n —— ker(Py,)

(recall Example 1.2.3). Following the same reasoning as is laid out in Example 4.3.8 (in the case
of p-local spectra), we find that the macrocosm adjunction of the stratification (1.3.14) may be

identified as the adjunction

Fun(7,Y) 7L Exc™(3,Y) ,

whose unit morphism at a functor F' € Fun(J,Y) is the canonical morphism

F— P F:=Ilm(--+ — PBF— PF — P F — P_1F~0)

to the limit of its Goodwillie-Taylor tower, which is not generally an equivalence.

431ndoed, a poset is down-finite precisely when it admits no injective functors from P.
447 version of this stratification appears in work of Glasman [Glab, Glaa] (see §0.2.5).
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Remark 1.3.12 (filtrations from stratifications). Fix a P-stratified noncommutative stack X €
Stratp, and assume for simplicity that P is down-finite.*®> For each p € P, we have the corresponding
recollement (1.1.1) with Z = Z,. Writing

fill :=iLy  and  filh =gy,

we obtain canonical embeddings with retracts

iL ie
Fun(P,X) «2= o <My pun(por )
\I_/ \/
COimp |impop

in particular, every object of X obtains a natural ascending P-filtration as well as a natural descend-
ing PoP-filtration.*® In order to proceed, we introduce the composite adjunction

v iL
AP X, L Zp 1 X:v,

PR Y

for each p € P, whose right adjoint ¥, we refer to as the p™ reflected geometric localization
functor.*” Using this notation, for each p € P we identify the p** associated graded components
of these filtrations as total co/fibers (Definition 7.4.3), namely

grl == gr,(fil}) := teofib(<,, (fil}) ~ \P®,  and  grh := g (fil},) := tfib < e (fil};) = PP, .

In fact, we also have canonical filtrations corresponding to upwards-closures (rather than downwards-
closures) of elements of P.*® Namely, for each p € P, we have the corresponding recollement (1.1.1)
with Z = v, Zq. Writing

qZp

fill .= vpy, and filf ‘= UpR ,
we similarly obtain canonical embeddings with retracts

fillt

Fun(P, X) AL, oy ey Fun(P°P, X)
limp Co|impop

These have the same associated graded components as the above two filtrations: we have
grh =g (fil}) := tfib, (fil]) =A@,  and  grlf := gr,(fil’) = teofib > e (fillY) = p? T,

(ie. grf ~ grﬁ and grf ~ gr?.). Moreover, the latter two filtrations can be obtained from the former

two by the formulas
fill == cofib(colim,e(z,) fIEF — F)  and  IFF = fib(F — limge iz filhF)

Remark 1.3.13 (spectral sequences from stratifications). Fix a P-stratified noncommutative stack
X € Stratp, and assume that P is down-finite. Suppose that we are additionally given the following
data:

45Without hypotheses on P, the filtrations that we define below exist but convergence is more subtle.

46We use subscripts for ascending filtrations and superscripts for descending filtrations. (This handedness dic-
tates the corresponding convention for associated graded components as either total cofibers or total fibers (Defini-
tion 7.4.3).)

47The functors AP and ¥, play central roles in the theory of reflection (dual to those of pP and ®,), which is
introduced in §1.10.

48These latter filtrations are more natural in the context of stratified topological spaces, where a distinguished
role is played by the closures of strata; see Remark 1.8.1.
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. d
e a conservative functor P — Z;

e an exact functor X — V to a stable oo-category V equipped with a t-structure (e.g.
x hoJx(Ev_

) Sp for some € € X).
Then, we obtain a composite
fill H di
X — Fun(P,X) — Fun(P,V) — Fun(Z,V) ,
i.e. a natural assignment of a filtered object in 'V for each object of X. In particular, for each ¥ € X
we obtain a spectral sequence (see e.g. [Lur, §1.2.2]), which runs
El,= @@ meri(H(gr}d)) = moro(H(F)) 2 (1.3.15)
pEd~1(s)

Dually, using fil®f in place of filZ, we obtain a spectral sequence running
Ely= @B mre(H(grlF)) = more(H(F)) . (1.3.16)
ped=—1(—s)
For the descending filtrations fil7 and fil},, we obtain essentially the same spectral sequences using

dy instead of d;, but with the sums replaced by products.

Remark 1.3.14. More than being convergent, a P-stratified noncommutative stack X or a quasico-
herent sheaf thereon F € X may be strict. In the former case, this is the condition that X € Stratp
is convergent and moreover its gluing diagram (1.3.4) is a strict (as opposed to left-lax) functor. In
both cases, strictness affords a simplified reconstruction theorem. Moreover, X € Stratp is strict if

t.50

and only if all of its objects are stric We study strict objects in §2.7 and strict stratifications in

§6.3.

Remark 1.3.15. We establish a number of variations on the metacosm reconstruction of Theo-
rem A(1), which we briefly describe here.

(1) We establish a theory of stratifications of stable co-categories (that are assumed to be idempotent-

complete but not necessarily presentable), which we refer to as stable stratifications. We

provide a metacosm equivalence

9 .
stratp ~ LMod!" {2, (St'e™)

I.lax.

soarlax
limi’2% o

for stable stratifications as Theorem 7.2.4 (under the assumption that P is finite).

(2) We specialize both metacosm equivalences to strict morphisms among (resp. stable) strat-
ifications, which correspond with strict (as opposed to right-lax) morphisms among (the

suitable sorts of) left-lax left P-modules: we establish equivalences

. 9 . £ .
Strati"™ ——~ 7 LMod/i,, p(Pret) and stratict T~ LMod, jax.p(StM)

as Theorem 7.3.2 (the former when P is down-finite, the latter when P is finite).

49This is guaranteed to converge e.g. if P is finite or if H is colimit-preserving.

5080, strictness is analogous at the metacosm level to the condition that the depth of the poset P is at most 1.
One may likewise contemplate strictness at the nanocosm level, and (in a sense that is evident from the discussion of
§2.7) the object F € X is strict if and only if the pair (€, F) is strict for all € € X.
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(3) We establish the theory of reflection for (resp. stable) stratifications, which we describe
in §1.10. This affords a dual form of reconstruction, which is desirable for reconstructing

constructible sheaves (stratifications of which are discussed in §1.8).

1.4. Fundamental operations on stratified noncommutative stacks. The right adjoint in the
metacosm adjunction (1.3.5) may be viewed as the inclusion of the full subcategory of convergent
stratifications. From this point of view, Theorem A (and its sharpness indicated in Remark 1.3.9)
may be read as the assertion that all stratifications over P are convergent if and only if P is down-
finite.

We view the possibility of nonconvergence not as a bug, but rather as an essential feature. For
example, the adelic stratifications guaranteed by Theorem D below are utterly fundamental and must
constitute valid examples under any reasonable definition, and yet they do not generally converge.
And Example 1.3.11 provides compelling further evidence that nonconvergent stratifications should
be considered as a common phenomenon indeed.

Of course, nonconvergent stratifications are not so useful on their own. In order to extract
convergent stratifications from nonconvergent ones (and as a key ingredient in the proof of Theo-
rem A), we therefore establish a pushforward operation for stratifications. Its utility is illustrated
in Example 1.6.1 below, where we show that a certain pushforward of the (nonconvergent) adelic
stratification of Modyz gives a (necessarily convergent) stratification over [1] whose microcosm recon-
struction theorem (i.e. the pullback square (1.1.3)) recovers the arithmetic fracture square (0.1.1).

In fact, pushforward is but one in a suite of fundamental operations that we provide for
constructing new stratifications from old ones. We indicate their general structure here, and refer

the reader to §3.4 for precise definitions and statements.

Theorem B (Observation 3.4.4, Proposition 3.4.9, Proposition 3.4.10, Proposition 3.4.12, and
Proposition 3.4.14). Let P be a poset and let X € Stratp be a P-stratified noncommutative stack.

(1) restriction: For any down-closed subset D C P, there is a restricted stratification of
Zp == U,ep Zp over D.

(2) pullback: For any noncommutative stack X equipped with a quotient functor X —X by a
closed noncommutative substack, there is a pullback stratification of X over P (assuming

that P is nonempty).

(3) quotient: For any down-closed subset D C P, there is a quotient stratification of X/Zp
over P\D.

(4) pushforward: For any functor P — Q between posets, there is a pushforward stratifi-
cation of X over Q.

5) refinement: For any stratification of each stratum X, over a poset R,, there is a refined
Y P P
stratification of X over the wreath product poset P R,.

Remark 1.4.1. Towards proving Theorem B, in §3.2 we introduce and study the notion of align-

ment between closed subcategories. This does not seem to have a direct analog in point-set topology
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(or even in oo-topos theory): in the co-category of sheaves on a topological space, closed subcate-
gories associated to open subsets are automatically aligned (see §1.8). One manifestation of this idea
is that alignment affords excision- and Mayer—Vietoris-type gluing formulas for closed subcategories.

Given a stratification, all of the closed subcategories that it determines (i.e. its values and colimits
thereof) are automatically mutually aligned. Our results regarding alignment collectively streamline
the arguments that comprise the proof of Theorem B. At the same time, the notion of alignment
allows us to obtain generalizations of parts (1) and (3) of Theorem B (see Proposition 3.4.7 (and
Remark 3.4.8) for the former).

1.5. O-monoidal stratifications. One attractive feature of our definition of a stratification is that
it generalizes quite straightforwardly to the case of a presentably O-monoidal stable co-category R
(i.e. an O-algebra in the symmetric monoidal co-category (PrsLt, ®,8p)), as we now describe.

First of all, an ideal of R is a full presentable stable subcategory J C R which is contagious
under the O-monoidal structure, and a closed ideal is a closed subcategory which is an ideal in
a compatible way (Definition 4.2.8). Closed ideals form a full subposet Idlg C Clsg, and an

O-monoidal stratification of R is simply a stratification that factors through this subposet.

Example 1.5.1. For any closed subset Z € Clsx, the corresponding closed subcategory QCz(X) €
Clsqc(x) is a closed ideal subcategory.

We have the following macrocosm O-monoidal reconstruction theorem.

Theorem C (Theorem 4.5.1). Let O be an oo-operad satisfying the conditions of Notation 4.1.2(1)
(e.g. By, for 1 <n < o0), and suppose that R is a presentably O-monoidal stable co-category equipped

with an O-monoidal stratification
P Idly

over a poset P. Then, the strata of the stratification inherit canonical O-monoidal structures, the
gluing functors become canonically right-laxly O-monoidal, and these assemble into an O-monoidal
gluing diagram 9©(R) that lifts the gluing diagram 4 (R), in such a way that we have a canonical

identification

Alg (Cat) N
w w
lim{ 3% p (4% (R)) =: Glue®(R) ———— Glue(R) := lim{33p (¥ (R))
Moreover, the adjunction

g
R : L Glue(R) (1.5.1)
1M (P)

between oo-categories of Theorem A(2) admits a canonical enhancement to an adjunction

R 1T 7 Glue®(R) (1.5.2)

between O-monoidal co-categories, whose left adjoint is O-monoidal and whose right adjoint is right-
lazly O-monoidal. In particular, if the adjunction (1.5.1) is an equivalence between oo-categories
(e.g. as guaranteed by Theorem A in the case that P is down-finite), then the adjunction (1.5.2) is

an equivalence between O-monoidal co-categories.
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Remark 1.5.2. Given two O-monoidal oo-categories, a right-laxly O-monoidal functor between
them is a functor between their underlying oco-categories that preserves the O-monoidal structures
up to certain (generally noninvertible) comparison morphisms. For example, a right-laxly monoidal

functor
(€,®¢, 1e) - (D, ®p, 1p)

between monoidal co-categories involves the data of natural comparison morphisms
]l'D—>F(]le) and F(X)@DF(Y)HF(X@@Y).
This and related notions are reviewed in §4.1.

Remark 1.5.3. Although we are confident in the existence of a metacosm O-monoidal reconstruc-

tion theorem, we state Theorem C at the macrocosm level only.

Remark 1.5.4. It is immediate from Observation 4.2.9 that the fundamental operations described

in Theorem B admit direct analogs for O-monoidal stratifications.

Remark 1.5.5. Closed ideals in R are equivalent data to central co/augmented idempotent objects
in R (see Definition 4.2.12 and Proposition 4.2.14). Tt follows that a morphism R — R’ in Alg, (Prk)

determines a functor

Moreover, by Observation 4.3.6, postcomposition with the functor (1.5.3) carries O-monoidal strat-
ifications of R to O-monoidal stratifications of R’.

Remark 1.5.6. Let R be a presentably monoidal stable co-category equipped with a monoidal

stratification

P2 Idly .
For any left R-module M € LModx (Pr%), we immediately obtain a stratification

P —— Clsy
w w
pr—— Jp ®@x M = LMody, (M)

of M over P (using Notation 4.3.4).%!

Remark 1.5.7. Our work posits a system of analogies between classical algebra and categorified

algebra, which is indicated in Figure 3.52

51This appears to be closely related to Elias-Hogancamp’s theory of categorical diagonalization [FH].

52Colimits categorify addition, O-monoidal structures categorify multiplication, and the distributivity of O-
monoidal structures over colimits categorifies the distributivity of multiplication over addition. The analogy between
presentable stable oco-categories and abelian groups is further evinced e.g. by the fact that given compact objects
X,Y € X%, the sequence

(X) — (X,Y) —» (V)
using Notation 2.3.3) is exact if and only if X and Y are “linearly independent”, i.e. hom,- (X, Y) ~ 0. (A noncompact
e

object of X might be thought of as categorifying a nonconvergent infinite sum in an abelian group.)
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classical algebra categorified algebra
abelian group (or spectrum) presentable stable co-category
O-ring (spectrum) presentably O-monoidal stable co-category
filtration stratification
filtered pieces {Zp}pep
associated graded pieces {Xp}per
extension data gluing diagram

F1cURE 3. This table lays out a system of analogies between classical algebra and
categorified algebra.

1.6. Adelic reconstruction. We now return to our scheme X. Let us write Px for the special-
ization poset of its underlying topological space: it has the same underlying set, and its relation is
defined so that = <y if and only if € §. Then, the closure functor

Py — ) Clsy

w w
r——7T
defines a stratification of X. Upgrading Example 1.3.6 via Example 1.5.1, we obtain a symmetric

monoidal stratification

— C/_
Py — 2 Clsy 9% Tdlge
y N (1.6.1)
QCz(X)

of its underlying noncommutative stack QC(X), which we refer to as its adelic stratification. For

each = € Py, the ' stratum of this symmetric monoidal stratification is

ker (QC(XQ) — 11 QC(X;)> 53
y<zx
In general, the poset Px will not be down-finite, and so the adelic stratification of QC(X) is not
guaranteed to converge. However, writing d := dim(X) for the dimension of X,°* we may take the

pushforward of the adelic stratification (1.6.1) along the dimension functor
dim
Px — [d] ;
53When the subset (<z) := (F\z) C X is closed, the 22 stratum may be identified more simply as QC((X\(<x))2).

540f course, it is here that we use that our scheme X is finite-dimensional.
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as [d] is finite and hence down-finite, the pushforward symmetric monoidal stratification is guaran-
teed to converge. Moreover, as the the fibers of the dimension functor are discrete, the strata of
the pushforward symmetric monoidal stratification will simply be products of strata of the adelic

stratification. We illustrate this maneuver in the following fundamental example.

Example 1.6.1 (the adelic stratification of Z-modules). Suppose that X = Spec(Z). The special-

ization poset of this affine scheme (which is the opposite of the poset of prime ideals of Z) is given

by
(0)
Pz = Pspec(z) = / T '\ . (1.6.2)
(2) (3) (5)

Then, its adelic stratification
Pz — Tdlyeq,
w w (1.6.3)
p—7

is described by the formulas

3(0) = Modyz, and j(p) — Mod(Zp)—torsion 7

i.e. it selects the diagram

MOdZ
Mod(Z2)—torsion Mod(Z3)—torsion Mod(ZS)—torsion

of closed ideal subcategories of Mody.
We now identify the strata and geometric localization adjunctions, as follows. First of all, recalling

Example 1.1.2, we identify the (p)'" strata and geometric localization adjunctions as

Iip) = Mod¥ " T Mody =: R

2 '55
Ry = Modg))”
Then, we identify the (0)*® stratum as
Roy= [0 / U I | == [ Modz / [J ModP ™" | ~ Modg ,

p prime p prime

and the (0)*™® geometric localization adjunction as

@ (0)=Q®z(—)
R = Modz L Mod(@ ~ fR(O)
p(0)=fgt

55\e distinguish between the equivalent co-categories J,) and R(;) according to their inclusions into R.
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From here, we see that the symmetric monoidal gluing diagram ¢®(Mody) of the adelic stratifi-
cation (1.6.3) is the diagram

MOdQ

U

MOd 2)-Complete Mo d(S -complete -complete

of presentably symmetric monoidal stable co-categories, in which all gluing functors are given by

rationalization.’® We may now identify the reglued symmetric monoidal co-category
® e i ®
Glue®(Modz) := limp (¢4 (Modz))

as consisting of tuples of data

My
My € Modg , | M, € Mod(p) ~complete l , (1.6.4)

Q®z M,

p prime

equipped with the componentwise symmetric monoidal structure. This brings us to the symmetric
monoidal macrocosm adjunction
®

Mody, Glue®(Modz) , (1.6.5)

"’"sd<P,>

whose left adjoint ¢g® takes M € Modz to the evident tuple (1.6.4) in which My := Q ®z M and
M, = M) := ZQ@ZM and whose right adjoint takes the tuple (1.6.4) to the evident object

/ MO
lim Q ®z M, Q ®z Ms Q®y M5\/4 . € Modz > (1.6.6)

7 N

5

We can now witness the failure of convergence of the adelic stratification (1.6.3). Reorganizing
the limit (1.6.6) as the pullback

My
lim l € Mody, ,
I M — ][ @&z)
p prime p prime

56The poset Pz has no nondegenerate composite morphisms, and so the functor ¥®(Mody) is in fact a strict
(instead of left-lax) functor.
57The right adjoint Iimg(PZ) of the symmetric monoidal macrocosm adjunction (1.6.5) is only right-laxly (instead
of strictly) symmetric monoidal, as the functors p(P) are only right-laxly symmetric monoidal.
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we find that the unit of the adjunction (1.6.5) at an object M € Modgz is a morphism

Q®z M
M — lim l . (1.6.7)
I M) — [ @ezM))
p prime p prime
Recalling the equivalence
Q®zM

|

[T o —s e | IT

p prime p prime

M =5 lim

resulting from the arithmetic fracture square (0.1.1), we see that the unit morphism (1.6.7) is not
generally an equivalence, because the rationalization functor Q ®z (—) does not commute with

infinite products.”® For instance, consider the abelian group

M = @Z/p:

p prime

for each prime number p we have Mé\ ~ Z/p, and the morphism

Qez | [[ z/v| — ][ @e@z2z/p)~0

p prime p prime

is not an equivalence. Note that this failure of convergence does not contradict Theorem A, as the
poset Pz is not down-finite (because the closure of the generic point (0) € Spec(Z) is infinite).

In order to rectify this failure of convergence, we apply Theorem B: more precisely, we take the
pushforward of the adelic stratification along the dimension functor

(0)—1
—_—

Pz [1] .

(p)—0

58More precisely, the morphism (1.6.7) between pullbacks arises from a natural transformation between cospans
which is an equivalence on the two source terms and is induced by the universal property of the product on the
common target term.
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Recalling Remark 1.5.4, we see that this yields a symmetric monoidal stratification of Modz over

[1],%9 which determines a symmetric monoidal recollement

D1=P ()
/\
(p)-torsion «— L
| I Mody, T Modz <— p'=p® — Modg

p prime

(1.6.8)

H M Od(ZIi\)_C()mplete

p prime

(in the sense that for ¢ € [1] the left adjoints ®; are symmetric monoidal and their right adjoints

p' are right-laxly symmetric monoidal). Combining Theorems A and C, we obtain a macrocosm

equivalence
9® Py 0°
- - let
Modz =~ lim™™ [ J] Mod <™ 212, Modg (1.6.9)
) " P
limge) p prime

between presentably symmetric monoidal stable co-categories. For each M € Modz, the unit of the

adjoint equivalence (1.6.9) recovers the microcosm equivalence

Q®z M

l

M 5 lim ,
A A
H M, Q®z H M,
p prime p prime
i.e. the arithmetic fracture square (0.1.1).

We generalize the preceding discussion to the setting of tensor-triangular geometry as follows.

Theorem D (Theorem 4.6.11). Let R be a presentably symmetric monoidal stable oo-category, and

assume that R is rigidly-compactly generated (Definition 4.6.3). Then, there is a canonical functor
Pr — Idly (1.6.10)

from the specialization poset Py of Spec(R¥) (i.e. the poset of thick prime ideal subcategories of
R¥ ordered by inclusion), which is defined in terms of supports. The functor (1.6.10) satisfies the
stratification condition. So, it defines a symmetric monoidal stratification assuming that it also

satisfies the gemeration condition.

We refer to such a symmetric monoidal stratification (1.6.10) as the adelic stratification of R.

We unpack the adelic stratification of R = 8p as Example 4.6.13.

59Note that this stratification of Modz ~ QC(Spec(Z)) does not arise from a stratification of Spec(Z), as the subset
(Spec(Z)\{(0)}) C Spec(Z) is not closed.
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Remark 1.6.2. The functor (1.6.10) automatically satisfies the generation condition (and so defines
a symmetric monoidal stratification) whenever the topological space Spec(R¥) has finitely many
irreducible components.®® This holds for example in the case that Spec(R¥) is noetherian, which

also implies that its specialization poset is down-finite.

Remark 1.6.3. Adelic stratifications bring an exciting perspective to tensor-triangular geometry,

which seems worthy of further investigation; this is discussed further in Remark 4.6.14.

1.7. The geometric stratification of genuine G-spectra. Let G be a compact Lie group. As a
matter of notation and perspective, we write G for the noncommutative stack whose quasicoherent
sheaves are genuine G-spectra:

QC(AG) := Sps“ .

We also introduce the following notation.

e We write P for the poset of conjugacy classes of closed subgroups of G (ordered by sub-

conjugacy).

e For any element H € Pg, we write W(H) := N(H)/H for its Weyl group (the quotient by

it of its normalizer in G).%!
o We write Sp" := Fun(BG, 8p) for the oo-category of homotopy G-spectra.®?

Theorem E (Theorem 5.1.27). The noncommutative stack $BG admits a canonical symmetric

monoidal stratification over Pg, with the following features.

(1) Its stratum corresponding to an element H € Pg is the commutative stack BW(H) (i.e. the
presentable stable co-category SphW(H) ~ QC(BW(H)) of homotopy W(H)-spectra,).

(2) The geometric localization functors are given by geometric fivedpoints:
H
QC(AG) = 8ps¢ 2 gp™WUH) ~ QC(BW(H)) .63
(8) For any morphism H — K in Pg, the associated gluing functor

QC(BW(H)) ~ 8p"W(H) 1K, gotW() o qc(BW(K))

is given by a version of the Tate construction.%*

60366 Remark 4.6.12 for an example where it fails.

61\ ore invariantly, one can also describe W(H) as the compact Lie group of G-equivariant automorphisms of
G/H.

621 addition to nicely paralleling the notation Sp&F, the notation Sp"C is consistent: this is the homotopy
fixedpoints of the trivial G-action on the oco-category Sp.

630ur notation ®,, for the pt" geometric localization functor, and indeed the terminology itself, are motivated by
the example of geometric fixedpoints. However, we use the notation ®H instead of ®; in order to adhere to standard
conventions in equivariant homotopy theory.

6410 the case that G is abelian, the gluing functor associated to a morphism H — K in Pg is the proper Tate

construction
_\T(K/H)
sph(G/H) ()7 g h(G/K)

which quotients by norms from all proper subgroups (rather than just the trivial subgroup, as in the usual Tate
construction). When G is not abelian, the corresponding description of the gluing functors is slightly more elaborate
(see Remark 5.2.5).
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In order to emphasize its relationship with the geometric fixedpoints functors, we refer to the

symmetric monoidal stratification of Theorem E as the geometric stratification of Sng.

Remark 1.7.1. In the case that the poset Pg is down-finite, it follows from Theorems E and A
that a genuine G-spectrum
E e 8p&¢

is equivalent data to its geometric fixedpoints spectra

{(I)H(E) € 8phW<H>}

HePg

(considered as homotopy W(H )-spectra) along with gluing data among these; Theorem C guarantees
that this equivalence is moreover compatible with symmetric monoidal structures.

However, the poset Pg is down-finite if and only if the compact Lie group G is in fact a finite
group. We do not know whether the geometric stratification of Sp& is convergent in the case that G
is positive-dimensional, but we see no reason to expect it to be 50.%° In any case, its pushforward to
any down-finite poset produces a symmetric monoidal reconstruction theorem for genuine G-spectra.
For instance, writing d := dim(G) we may take its pushforward along the dimension functor

Pe < [d] ;
we note that its fibers are down-finite, so in principle this may lead to a fuller understanding of
Sng in the case that G is positive-dimensional.

Another symmetric monoidal reconstruction theorem resulting from Theorems E, A, and C (and
B(1)) is unpacked as Example 5.3.11: writing T for the circle group, the geometric stratification
of the noncommutative stack SpgT of genuine T-spectra over the poset Py 22 (N4V)> (which is not
down-finite) restricts to a symmetric monoidal stratification of the noncommutative stack Spg<T of
proper-genuine T-spectra over the poset N4V (which is down-finite). We use the resulting symmet-
ric monoidal reconstruction theorem to study cyclotomic spectra (and their symmetric monoidal
structure) in [AMGRa).

Remark 1.7.2. As indicated by our formulation of Theorem E, we view it as providing a sense
in which %G is a “nearly commutative” stack.%¢ Indeed, its strata are commutative stacks and
its gluing functors are right-laxly symmetric monoidal, just as would be the case for a stratified
commutative stack. However, its gluing functors do not appear to be of commutative origin. This
is already apparent in the simplest nontrivial case, where G = C,, is the cyclic group of order p. In
this situation, the geometric stratification of Spgcp amounts to a symmetric monoidal recollement,

whose gluing functor is the Tate construction
_\tC
sphcr (17 s (1.7.1)
(as is unpacked further in Example 5.3.4), and there does not appear to be a natural example of
a commutative (spectral) stack X equipped with a closed-open decomposition (1.1.6) such that
QC(X%) ~ 8p"“», QC(U) ~ 8p, and the gluing functor

QC(x4) L= Q)

650n the other hand, the poset Pg is always artinian; applying Remark 1.3.10 to the geometric stratification of
$p8¢ recovers the “geometric fixedpoints Whitehead theorem” [Gre, §1.6].
66 A5 a nice coincidence, this also gives a second meaning to the terminology “geometric stratification”.
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coincides with the Tate construction (1.7.1).

1.8. Stratified topological spaces and constructible sheaves. We have discussed how the
general theory of stratifications applies in the context of quasicoherent sheaves over a scheme (recall
Example 1.3.6). In fact, it applies in other sheaf-theoretic contexts as well, as we now explain.
Let T be a topological space, and suppose that
U J T i

open closed

is a closed-open decomposition of T' (note that the placement is reversed from that of Example 1.1.2).

Then, we obtain a recollement
Jt i*
/ J_\ / 1 \
Shv(U) <« j'=j* — Shv(T) < i.=ii— Shv(Z) (1.8.1)

NP N

among presentable stable co-categories of sheaves valued in a presentable stable co-category (which
we omit from our notation).

This may be upgraded as follows. A stratification of T' over the poset P is a continuous function
T-Lp, (1.8.2)

where we consider P as a topological space via the poset topology on its underlying set (in which

the closed subsets are precisely the down-closed subsets). This determines a functor

por e, Openy

w w

p° » Up = f~'(Zp)
that satisfies the evident analog of Definition 1.2.1: we have T' =
have U, NU,; = U
the composite

pep Up, and for any p,q € P we

b<r and g<r Ur- From this we obtain a stratification of Shv(T') over P°P, namely

pop # Open; L ClSShv(T)
¥ w . (1.8.3)
P Shv(U,)

For each p € P, let us write

T,:=f'p) =T
for the inclusion of the p' stratum of the stratification (1.8.2) (a locally closed subset). Then,
the (p°)*™® stratum of the stratification (1.8.3) is Shv(7}), and its gluing functor with respect to a

morphism p° — ¢° in P°P is the composite

(‘71))*

Shv(Ty) <2 shw(T) 225 sh(T,) .

Analogous stratifications exist for constructible sheaves. More precisely, the stratification (1.8.3)

restricts to stratifications of the full subcategories

ShvP-®!(T) € Shv®™(T") C Shv(T")
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of P-constructible sheaves and of constructible sheaves. More generally, for any functor Q — P
among posets and any refinement
= Q
r
f\ P
of the stratification (1.8.2), the stratification (1.8.3) restricts to a P°P-stratification of the full sub-
category
Shv@<P!(T) C Shv®(T)

of Q-constructible sheaves.”

Remark 1.8.1. Assume that P°P is down-finite, and fix a conservative functor P 47 (e.g. the
dimension function of strata). Choose any sheaf F € Shv(T'), and fix an exact functor Shv(T') Ly

where V has a t-structure (e.g. cohomology or cohomology with compact support).

(1) The stratification (1.8.3) determines spectral sequences for the cohomology of F in terms of
its cohomologies over strata. Indeed, by Remark 1.3.13, we obtain spectral sequences
E,= @ menlH((0:)(00)"(F) = meri(H(F))
red=1(—s)
and

Esl,t = @ 7Ts+t(H((UT)*(UT)!(§))) = Tt (H(F)) 8
red=1(s)

(2) Let us describe the four filtrations of idsp, (7 that arise from applying Remark 1.3.12 to the
stratification (1.8.3). For each p € P, let us denote by

— jP iT’ - T
Up:=f"'(p) open T f1=p) = Ty, =:2y

closed

the corresponding open and closed subsets (note that these are not generally complements).

Then, for any p € P we have
f”ﬁ =~ (Jp)(p)" ﬁllzj% >~ (Jp)«(ip)™ ﬁl][), =~ (i)« (ip)" and ﬁlf = (ip)*(ip)! .

(3) Using part (2), we describe the spectral sequences obtained by applying the spectral se-
quence (1.10.12) discussed in Remark 1.10.5, which arises from categorified Mébius inversion

(Example 1.10.4). Applied to the filtration fil}, we obtain a spectral sequence

By, = D Tt (My © H((ir)«(ir)"(F))) = Tt (H((0p)1(0p)"(F))) ;

red=1(=s)N(<p)
taking H to be compactly-supported cohomology, we recover the spectral sequence of [Pet17,

Theorem 1.1], which computes compactly-supported cohomology over the p™ stratum in
L

., We obtain a

terms of those over closures of strata. Next, applied to the filtration fil
spectral sequence

By, = D menMy O H((G) (50" (F)) = more(H((0p):(05)" ()

red=1(-s)N(<p)

67A1‘cerna‘civoly7 this stratification may be obtained by taking the pushforward (in the sense of Theorem B) of the
QCP-stratification of Sth'Cb'(T) along the functor Q°P — P°P.
68Note that these two spectral sequences are related by Verdier duality (see Example 1.10.8).
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with the same abutment but different E* page. Finally, applied to the filtrations fil}, and filf,

we obtain spectral sequences that are Verdier dual to these two (again see Example 1.10.8).

Remark 1.8.2. Under suitable hypotheses, the P°P-stratification of Shv"' (T') admits a completely

algebraic description; see Example 1.9.1.

Remark 1.8.3. If we consider sheaves valued in a presentably O-monoidal stable co-category, the

stratification (1.8.3) becomes an O-monoidal stratification.%”

Remark 1.8.4. The stratification (1.8.3) of sheaves on a topological space generalizes to a strat-
ification of sheaves on an oo-topos, using the theory of stratified co-topoi developed by Barwick—
Glasman-Haine [BGH].™
1.9. Functors to a poset and naive G-spectra. Let G be a compact Lie group. The oco-category
of genuine G-spectra admits a variant, the oco-category

8p"? := Fun(62, 8p)

of naive G-spectra, i.e. of spectral presheaves on the orbit co-category of G.”' Naive G-spectra
provide a natural context for computing (generalized) Bredon co/homology, as well as for under-

standing genuine G-suspension spectra (see e.g. [AMGRD, §9]) via the factorization

g

e
{\% //’&

SpnG

g8¢ Sps¢

(which results from the universal property of stabilization).

The oco-category of naive G-spectra admits a stratification closely related to the geometric strat-
ification of the co-category of genuine G-spectra of Theorem E. In fact, this arises as a special
instance of a more general source of stratifications; we return to naive G-spectra in Example 1.9.3.

Fix a presentable stable co-category V, as well as an co-category T equipped with a functor
J—P.
Then, we obtain a stratification of the presentable stable co-category
Fun(T,V)
over the poset P°P according to the formula

poPr —— ClsFun(‘J’,V)
w w , 72 (1.9.1)

p° —— Fun(T>,,V)

691 particular, the stratification (1.8.3) for an arbitrary target is recovered from the case of S8p through Re-
mark 1.5.6.

"OIn the case of a presheaf co-topos, this may also be recovered as an instance of the stratification (1.9.1) below.

"I The terminology “naive” stems from the fact that, whereas the co-category Sng of genuine G-spectra is obtained
from the oco-category SiG of pointed genuine G-spaces by inverting all representation spheres under the smash product,
the co-category Sp"C of naive G-spectra is obtained from 8§G by inverting merely the spheres with trivial G action
under the smash product (i.e. by stabilizing).

"2Here and throughout, for any subposet Q C P we write Tq := T Xp Q for the fiber product; for any element

p € P we simply write Tp := Ty,3.
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where we consider
Fun(7>,,V) C Fun(7T,V)

as a closed subcategory via left Kan extension (which is simply extension by zero); its right adjoint
is restriction, the right adjoint to which is right Kan extension.
The following features of the stratification (1.9.1) are easily verified.

(1) For each p° € P°P_ the (p°)'" stratum of the stratification (1.9.1) is
Fun(T,,V) .

(2) For any morphism ¢° — p° in P°P| the corresponding gluing functor of the stratification
(1.9.1) is given as follows. First of all, we define the ¢** stratum of the link of T, in T as

the limit in the diagram

Links, (7), :

.

s AF(T) *t>

QLe— A

Tp — T
Then, the corresponding gluing functor is the composite
T% : Fun(T,,V) = Fun(Linkg, (T)g, V) == Fun(T,,, V)
of pullback along ¢ followed by right Kan extension along s.

(3) If the functor T — P is an exponentiable fibration, then the stratification (1.9.1) is strict,
i.e. the gluing functors strictly compose. Specifically, exponentiability guarantees that links

glue: for instance, given any composite p — ¢ — r in P, we have an equivalence
Linkg“p (‘.T)T ~ Linkg“p (‘.T)q ®g’q Linkg'q (T)T

(expressing the r*! stratum of the link of T, in T as a coend over T,). In this case, the
gluing diagram

&4 (Fun(T,V))

POP Prst

is simply the unstraightening of the cartesian fibration

Fun'f (T, V)

|

P

(4) If 'V is presentably O-monoidal, then Fun(T,V) is presentably O-monoidal via the pointwise
O-monoidal structure, and with respect to this the stratification (1.9.1) is an O-monoidal

stratification.

Example 1.9.1. Let us say that a stratified topological space T" — P is tamely conical if the

topological space T is paracompact and locally of singular shape and moreover its stratification is
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conical.”™ In this case, if we take

T :=Exit(T) — P
to be the exit-path oco-category of T equipped with its canonical functor to P, then the P°P-
stratification (1.9.1) recovers that of the co-category ShvP"*®(T') of P-constructible sheaves on T
obtained in §1.8. In this case, for each p°® € P°P, the (p")th stratum is the presentable stable oo-

category Loc(T},) of local systems on the p*® stratum (according to (1)), and the gluing functors are

governed by spaces of exiting paths (as described in (2)).

Remark 1.9.2. A converse to Example 1.9.1 is provided by [Hai]: whenever the functor T — P is
conservative (i.e. whenever its fibers are co-groupoids), there exists a P-stratified topological space
T — P and an equivalence T ~ Exit(T) in Cat/p.74

Example 1.9.3 (a stratification of naive G-spectra). Taking
(T — P):=(0F — PY) and V:.:=38p,
the stratification (1.9.1) specializes to a stratification

PG — > Clsgyo
w v (1.9.2)
H+— Fun((ﬁgp)zH,Sp)

of the presentable stable co-category of naive G-spectra. The above features of the stratification
(1.9.1) bear upon the stratification (1.9.2) as follows.

(1) For each H € Pg, the H*® stratum of the stratification (1.9.2) is

SpMaD

(2) For any nonidentity morphism H < K in Pg, the corresponding gluing functor of the
stratification (1.9.2) is given by pullback followed by right Kan extension along the span

(G/E)T)new(r) xwim))
2
home (G/H, G/ K )nw(x)xw())
2 75 (1.9.3)
hom g ((G/K)°, (G/H)nw(rxw(x)) — BW(H)

|

BW(K)

"3These are the conditions under which [Lur, Theorem A.9.3] applies.
TTor instance, this applies to the functor ﬁg’ — P(g considered in Example 1.9.3.
"5 At the level of path components, we have an identification

7o (((G/E) D w(rey sy ) = W) \ (G/K)™ [ W(H)

with the set of double cosets.
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In the case that G is abelian, the span (1.9.3) reduces to the span
BG/H —— BG/H

| :

BG/K

so that the gluing functor is given by the homotopy (K /H )-fixedpoints functor
h(G/H) (=MD h(G/K)
Sp ~ Fun(B(G/H),8p) ———— Fun(B(G/K), 8p) ~ 8p .
(3) In the case that G is abelian, the functor
oF — P¥

is a right fibration (and in particular an exponentiable fibration). Hence, the stratification

(1.9.2) is strict (corresponding to the fact that homotopy fixedpoints strictly compose).

(4) As 8p is presentably symmetric monoidal, Sp"G is presentably symmetric monoidal as well.
With respect to this structure, the stratification (1.9.2) is a symmetric monoidal stratifica-

tion.

Remark 1.9.4. It is not hard to see that the functor
$p"¢ AN $p8¢

defines a morphism in Stratp, (see Definition 6.2.1), where the source is equipped with the strat-
ification (1.9.2) and the target is equipped with the geometric stratification of Theorem E.7 In
fact, considering it as a morphism in CAIg(PrSLt), the geometric stratification of Sng may be seen

as arising from the stratification (1.9.2) of $p"“ via Remark 1.5.5.

1.10. Reflection, Mobius inversion, and Verdier duality. In §1.8, we established a stratifi-
cation of ((P-)constructible) sheaves over a P-stratified topological space. Applying Theorem A(2)
(in the case that P is down-finite), one obtains a reconstruction theorem for such sheaves that in-

volves *-push/pull functors (e.g. the composite prir = i*j, in the recollement (1.8.1)). On the

76T his may be verified as follows (see Definition 5.1.8 for the geometric stratification of Sng). It is clear that
the iz, inclusions commute. It remains to show that the y projections also commute. For this, let us denote the

stratifications by

n

Z 28
Pg — Clsgna and Pc — Clsgec -

Then, we observe that for any H € Pg there are conservative factorizations

ResG Resg
8pn¢ H spnH Spec > SpsH
- and -
X /// X« el
n g
Z’H Z’H

Hence, the fact that the y projections commute follows from the commutativity of the square

SpnG L) Sng

Resgl lResg .

San T Sng
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other hand, particularly in the context of constructible sheaves, it is desirable to instead reconstruct
sheaves using !-push/pull functors (e.g. the composite priz, = i'ji in the recollement (1.8.1)).
We establish a means of passing between these two dual reconstruction patterns, as we describe

presently.””

We refer to this theory as reflection, since in the case that P = [1] it recovers the
theory of reflection functors (see Remark 1.10.3). We use this to give a categorification of the
Mobius inversion formula in Example 1.10.4, and we explain a close connection with Verdier duality
in Example 1.10.8.

Fix a stratification P =% . Let us recall its gluing diagram from §1.3: this is a left-lax functor

9(X)
P — lLlax— Prst
that carries each morphism p — ¢ in P to the gluing functor

PP @
Fg:xp‘—>f)€—q>xq,

which is built from the composite geometric localization adjunctions

Y PL
®,: X I Zp L Xp: pP
ir v
for all p € P. By contrast, if we instead begin with the composite reflected geometric localization
adjunctions ‘
v L
AP Xy L Zp 1 X:Vv,

PR Y
for all p € P (first introduced in Remark 1.3.12), we obtain for each morphism p — ¢ in P the

reflected gluing functor
~P AP \
I, Xp—X — Xy,
and these assemble into the reflected gluing diagram of the stratification: a right-lax functor

P —rla— Pra

Theorem F (Corollary 7.4.25). Let P be a down-finite poset.

(1) metacosm: The reflected gluing diagram functor is an equivalence, as indicated in the

canonical commutative diagram

.78 1.10.1
LMod?%, (P Stratdict —— LMod%. (P ( )
o ( rst) ~ I‘atP (4 o |.|ax.P( rSt)

r.lax.P
= r.dax
limy2 o

"TThis applies primarily in the case that P is down-finite, but see also Remark 7.4.27.
780f course, LMOerJaxAP(Prst) denotes a certain oco-category whose objects are right-lax functors from P to Prst,
I.lax

and the notation lim 3% |

denotes a certain “parametrized left-lax limit” functor. Here we must restrict to the
subcategory Stratf,triCt C Stratp of strict morphisms (as introduced in Remark 1.3.15(2)): there is an implicit

43



2) macrocosm: For each P-stratified noncommutative stack X € StratZ™ the equivalence
P ) q

on the left in diagram (1.10.1) determines an equivalence

colimggy(pyop

Fun(sd(P)°?, X) D lim"® ,(Z(X)) =: Glue(X) JR— (1.10.2)

3) microcosm: For each quasicoherent sheaf F € X € Strats"* on a P-stratified noncommu-
P

tative stack, the equivalence (1.10.2) determines an equivalence
colimeg(pyor (5(F)) =: glue(F) = F (1.10.3)
in X.

nanocosm: For each quasicoherent sheaf & € X € StratE"* on a P-stratified noncommu-
P

tative stack, applying homy(—, &) to the equivalence (1.10.3) determines an equivalence
fim e o (homxm) (T, \1@,(0)8)) & hom. (7, &) .7

In particular, under the assumption that P is down-finite, Theorems F(2) and A(2) provide dual

macrocosm equivalences

lim"2% J(Z(X)) =: Glue(X) % X % Glue(X) = lim{13p(%(X))

r.lax.P

in Prg for each P-stratified noncommutative stack X € Strati". On the other hand, omitting any

reference to stratifications, Theorem F(1) provides a canonical commutative diagram

(1.10.4)

LModX,., p(Prs)

r.lax.P

for any down-finite poset P.8° We refer to the equivalence

LMod!,, p(Prsc) <= LModk,, p(Prsr)

r.lax.P

of diagram (1.10.4) as reflection. In fact, we prove this equivalence more generally for posets

whose intervals are finite (see Corollary 7.4.26). Moreover, we give a direct formula for the reflected

laxness in our definition of Stratp that is compatible with the gluing diagram functor ¢ but not with the reflected

gluing diagram functor 7. (Dually, one could instead allow for laxness that is compatible with @ but not with 9.)
F*P(”*l) . F*P(O)

o(n) o(1) Ve write 'y, 1=

"Given an element ([n] 2> P) € sd(P), in parallel with the notation Ly, =
=p(n—=1)  —p(0)
Fw(ng Lo
80More systematic notation would allow for the horizontal arrow in diagram (1.10.4) to point in both directions.
tstrict
P

We have written it in this way in order to maintain consistency, so that for any X € Stra we have a canonical

equivalence g\(/DC) ~ Z(X).
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gluing functors in terms of gluing functors and reversely, as total co/fibers (Definition 7.4.3): for

any nonidentity morphism p < ¢ in P we have canonical equivalences

P _ 1 _ -
I, ~ tflb«pesd(P)EE r, and I~ tCOf'bwoe(sd(P)}’;)ovzrw (1.10.5)

in Fun(X,,X,) (see Proposition 7.4.5 (and Notation A.6.12)). Note that if P,,,, = [n] for some
n > 1, then sd(P)}p is an (n — 1)-cube; in particular, if p < ¢ admits no nontrivial factorizations

then the equivalences (1.10.5) reduce to the equivalent equivalences

=P 1 =P
[,~27'r  and TI?~3T,. (1.10.6)

q q

Remark 1.10.1. Observe that a closed subcategory

determines a closed subcategory

OP

2P <y XOP
which we refer to as its reflected closed subcategory.®’ In concrete terms, Theorem F(1) may
be interpreted as saying that given a stratification of X over a down-finite poset P, passage to
reflected closed subcategories determines a stratification of X°P over P, which we refer to as its
reflected stratification: writing X" for X°P equipped with its reflected stratification, we have an

equivalence

g(xrefl) ~ g?(x)op .82

Example 1.10.2. We unpack parts (1) and (2) of Theorem F in the case that P = [1]. First of all,

we have identifications

LMod, jax.1j ————— coCarty LMod, jax. 1] ————— Cartpyjer
% / e % /
Ty Cat Ty Cat

Let us denote by

LModf,aX.[l](Prst) ————— » coCart 1](Prst) LMod tax.1] (Prst) --==- > Cart[l]OP(Prst)
| / e | |
LMOd”aX_[l] EEe— coCart[l] LMOdI.Iax.[l] e em— Cartmop

the indicated corresponding subcategories. Now, for any recollement (1.1.1) we have a canonical

equivalence pri;, ~ Y lprigr (a special case of the equivalences (1.10.6)). It follows that the

8lHere and throughout this subsection, whenever we mention opposites of presentable stable co-categories we are
implicitly referring to the theory of stable stratifications (as introduced in Remark 1.3.15(1)); we generally omit this
distinction from the present discussion in order not to clutter our exposition.
82Indeed, our proof of Theorem F (which we establish as Corollary 7.4.25) is based on the analogous result for
stable stratifications (Theorem 7.4.11), the main ingredient in the proof of which is the reflected stable stratification
(Proposition 7.4.16).
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commutative diagram (1.10.4) specializes to a commutative diagram

H Prs;

p€E(1]
NC> &,
Q @/,/%
(1.10.7)
coCart Prst Cart[l]op (Pret)
Prst

in which the equivalence (\—/) carries the cartesian unstraightening of a functor X RN X1 to the

-1
cocartesian unstraightening of the functor Xo RN Xi. Thereafter, the commutativity of the

lower triangle in diagram (1.10.7) records the equivalence

E ) e i (X0 )

I.lax.

“mlr'.lg; 1] (Xo
Y 5 (1.10.8)

(Z — 7P (Z) — fib(a)) +—— (Z — F(Z) <% U)
in PrSLt.

Remark 1.10.3. Example 1.10.2 is closely related to the theory of reflection functors [BGP73]. In-
deed, we recover [DJW21, Theorem 2.3] as follows. Fix a finite poset Q equipped with a conservative
functor Q — [1]. Additionally fix a functor Q — Cat, and let us respectively denote by

et —Q and & — Q%P
its cocartesian and cartesian unstraightenings. These data determine composite functors
EF—Q—1] and (&) —Q—[1].

Fix a presentable stable co-category V. On the one hand, the functor €t — [1] determines a
stratification of

Fun(€*,V)
over [1]°P as in §1.9. On the other hand, the functor (€~)°° — [1] similarly determines a stratification
of

Fun((€7)°,V°P) ~ Fun(E~, V)P

over [1]°P, which by Theorem F(1) (as interpreted via Remark 1.10.1) determines a stratification of

Fun(€—,V)

over [1]°P. Unwinding the definitions, we find that the gluing diagram ¢ (Fun(€™,V)) of the former
as well as the reflected gluing diagram & (Fun(€~,V)) of the latter both record the composite functor

For—=(aca=r) To),cq,
F: H Fun(&,,V) — H Fun(€a(0), V) H Fun(&,,V) .
qeQ: ael(QL[1]) PEQo
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Hence, applying Theorem F(1) (and the equivalence (1.10.8) of Example 1.10.2 combined with the

equivalence F' ~ Y71 F in Fun([1], Prs)), we obtain the composite equivalence

~

Fun(&™,V) ~ Iim|r"||:f_[1]op(g(Fun(EJr,V))) ~ Iimlr'vlgiv[l]op(g(Fun(S_,V))) ~ Fun(€,V) .
Example 1.10.4 (categorified Mobius inversion). Given a down-finite poset P and a presentable
stable co-category V, the presentable stable co-category

X := Fun(P,V)
of P-filtered objects in V admits a stratification

P —— Clsx
W w ; (1.10.9)

p —— Fun((5p),"V)
where we consider
Fun((Sp),V) C Fun(P,V) =: X

as a closed subcategory via left Kan extension.®® Unwinding the definitions, for each p € P we

obtain an identification

: . LKan tcofib(gp)
/j ~ /PJ_ \ /J__\ n

X —v— 2y +—v— X, ~ Fun(P,V) —res+ Fun((Sp),V) ¢ 6, —— V |
\ZLR/ \;/\ v’\Ri_/ \e_VL/

where J,, denotes the “Dirac delta” functor at p € (Sp) (and the right Kan extension is simply

extension by zero). In particular, the reflected gluing diagram is the constant locally cartesian
fibration

G(X) ~V x PP £ pop

and the p'" geometric localization and p** reflected geometric localization functors are respectively
the pt* associated graded and p*" filtered components:

®,(Ve) :=pry(Ve) =~ gr,(Vs) := tcofib< y (Vs) and U, (V) :=pry(Ve) ~fil,(Va) :=V,, .3

In this situation, Proposition 7.4.5 yields a categorified Mobius inversion formula that
expresses the p*™ associated graded component grp(V.) ~ &, (V,) in terms of the filtered components
fil,(Ve) =~ W, (Vs) =~ V, for various ¢ € (Sp), as we now explain. First of all, the stratification (1.10.9)
endows each object V, € X with a (descending) P°P-filtration

filz (Ve) € Fun(P°P, X)
(recall Remark 1.3.12), and for each 7° € P°P its (r°)*" associated graded component is
grr(Ve) = p" (W, (Ve)) = p"(Vr) >~ 6,(V;) € X .
Applying the functor X —(Ilp—> Xp >~ V, we obtain a P°P-filtration
filz(2,(Va)) := @, (fil%(Vs)) € Fun(P°P,V)

83Beware that this is not an instance of the stratification (1.9.1) considered in §1.9.
841 what follows, we use either or both of these possible notations, depending on our desired emphasis.
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of ®,(Vs) ~ gr,(Ve) € V, whose (1°)™ associated graded component is the object
Py (grr(Ve)) = @p(p" ¥ (Ve)) =T (V2) €V
(which is zero whenever r £ p, see Remark 2.5.4). Applying Proposition 7.4.5(2), for any r < p we
obtain an identification
(V) ~ M, OV, (1.10.10)

in V, where M, € 8fin denotes the finite pointed space

SO r=p
M= 8586

E2|PT//p\{7'ap}| , T<p
Note that the reduced Euler characteristic
X(M]) == x(S°M) € Ko(8p™) = Z

is the value up(r,p) = pper (p°, r°) € Z of the Mobius function.

Now, assume that V is compactly generated. In this case, we have two inclusions

Ko(X%) T homset(P?, Ko(V*))

7

of abelian groups as the subgroup of finitely-supported functions, given by the two gluing diagrams:

WVa))(p) = [Vl = [fil,(Va)] = Vo] and  i([Va])(p) := [@5(Va)] = [gr, (V)] -

Now, using the equivalences (1.10.10), we obtain the M&bius inversion formula for P (valued in the
abelian group Ko(V¥)):

AV ) = Y ia)(r)  and  i(Va)p) = > XMp)A(VAD(r) = > pelrp)i([Va])(r) -

re(Sp) re(<p) r€(<p)

Remark 1.10.5. In the context of Example 1.10.4, let us fix a conservative functor P 4. 7 and
an element p € P, and let us assume that V is equipped with a t-structure. Then, we obtain two
spectral sequences by applying Remark 1.3.13 to the restricted stratification over the poset (Sp):

taking H = ¥, = fil, = (—),, we obtain a spectral sequence

El,= P menlern (Vo) = mea(Vy) (1.10.11)

red=1(s)N(=p)

while taking H = &, = gr,, we obtain a spectral sequence

El, = b Tort (M @ Vy) = mora(gr,(Va)) 57 (1.10.12)
red=1(-s)N(<p)

85In the case that P.//p» = {r < p}, we have M} := £?(2) ~ S*.
860ne could also adopt the convention that M} := pt in the case that r £ p.
87The other two spectral sequences that can be constructed in this way (applying (1.3.15) to H = ®,, or (1.3.16)
to H = ¥,) collapse immediately.
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Note that given any P-stratified noncommutative stack X € Stratp and any exact functor X z, Vv,
we can apply these spectral sequences to (the value under H' of) any of the four filtrations discussed
in Remark 1.3.12.88

Example 1.10.6 (filtered objects and chain complexes). Let us specialize Example 1.10.4 to the

case that our down-finite poset is P = Zx>¢. In this case, the gluing diagram is given by

0 0
TN TN
GX) = | V-0V 2 v Zn 2V Z v 2 | € LModi, . (Pry)
i
0

\M
0

and its right-lax limit is the co-category

Glue(X) := lim[12,_(4(X)) ~ Ch>o(V)

I.Iax.ZZO

of chain complexes in V concentrated in nonnegative degrees.3? Theorem A(2) grants an equiva-

lence
FUI’](ZZQ,V) ~ Chzo(\?) )
which is closely related to Lurie’s Dold—Kan correspondence for stable co-categories; more precisely,

it recovers a version of [Lur, Lemma 1.2.2.4].

Warning 1.10.7. As illustrated by Example 1.10.6, reflection does not preserve the property of
being a strict (as opposed to lax) left P-module.

Example 1.10.8 (Verdier duality). Let T be a locally compact Hausdorff topological space equipped
with a stratification T' — P. Assume for simplicity that P is finite, and choose any presentable stable

oo-category V.
(1) Recall that Verdier duality [Lur, Theorem 5.5.5.1] asserts an equivalence
Shvy (T)%P <22 Shvye (T) . (1.10.13)
On the one hand, by §1.8 we have a canonical stratification of
Shvy(T)

over P°P| which by Theorem F(1) (as interpreted via Remark 1.10.1) determines a stratifi-
cation of

Shvy (T)°

over P°P. On the other hand, we similarly have a canonical stratification of

ShVVop (T)

88Note that applying the spectral sequence (1.10.11) in this way simply gives the spectral sequences (1.3.15) and
(1.3.16) of Remark 1.3.13.
89nformally, an object of Ch>( (V) may be thought of as a functor (Z>()°® — V equipped with a coherent system
of nullhomotopies for its i-fold composites for all ¢ > 2. (These are equivalent to gapped objects in V (see [Lur,
Definition 1.2.2.2 and Remark 1.2.2.3]).)
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over P°P. Tt is not hard to see that the equivalence (1.10.13) respects these P°P-stratifications.

In particular, it interchanges the induced filtrations of Remark 1.3.12:
fily ~Drofill oDy  and il ~ Dy ofil} oDy .

(2) Suppose that the dualizing complex wy € Shvy(T) is P-constructible. Then, the Verdier
duality equivalence (1.10.13) extends to a commutative square

Shvy (T)%P 25 Shyye (T)

(1.10.14)

Shv’ P! (T)op T Shvhe?(T)

The lower two terms in diagram (1.10.14) inherit P°P-stratifications from the upper two

terms, as in §1.8, such that the entire diagram (1.10.14) respects P°P-stratifications.

Remark 1.10.9. In the situation of Example 1.10.8(2), suppose further that 7" — P is tamely
conical (as in Example 1.9.1). Then, the lower equivalence of diagram (1.10.14) extends to a
commutative square
]D)P—cbl
ShviP(T)oP L ShviP! ()

. . (1.10.15)

Fun(Exit(T"), V)°P <¢--------» Fun(Exit(T), V°P)
of equivalences. The lower two terms in diagram (1.10.15) inherit P°P-stratifications from the functor

Exit(T) — P as in Example 1.9.1, and it is not hard to see that the entire diagram (1.10.15) respects

PeP_stratifications.

1.11. t-structures. As we now describe, stratifications give a method for constructing new t-
structures from old ones in the spirit of the construction of perverse sheaves [BBD82]; applied
to the geometric stratification of Sng of Theorem E for a finite group G, this technique can also
be used to obtain the slice filtration [{Y18].

Let Z, be a stratification of X over P. Suppose that each stratum X, is endowed with a t-
structure. Then, by [Lur, Proposition 1.4.4.11] we obtain a t-structure on X, whose connective
objects are precisely those that are taken to connective objects by all geometric localization functors
x 2z, Xp, i.e. the composites

x Lz, 2, . (1.11.1)

90This follows from the general fact that Verdier duality is compatible with open embeddings, in the sense that

J . .
for any open subset U — T we have a commutative diagram

Shvy (T)%P «Z5 Shvyes (T)

(j*)(’p]\ ]\j!

Shvy (U)°P <ﬁ> Shvyes (U)
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Suppose that the functors (1.11.1) are jointly conservative, e.g. as guaranteed by P being ar-
tinian (recall Remark 1.3.10). Then, this t-structure becomes particularly computable: we can
also explicitly describe its coconnective objects. Namely, they are precisely those that are taken to
coconnective objects by all of the composites

x4z, 25, . (1.11.2)
We may see this as follows. Given any down-closed subset D C P, let us write

Zo:=|J2%, and  Xp:=X/Zp.

Then, from Theorem B we obtain
e a restricted stratification of Zp over D, whose p'!' stratum is X, for all p € D, as well as
e a quotient stratification of Xp over P\D, whose p** stratum is X,, for all p € P\D.

Hence, Zp and Xp both inherit t-structures, such that in the recollement

Zp «—v— X +—v— Xp y

NN

the functors y and v are t-exact, their left adjoints i, and py, are right t-exact (i.e. preserve connective
objects), and their right adjoints iz and pgr are left t-exact (i.e. preserve coconnective objects).”! It
follows that the functors (1.11.2) preserve coconnective objects, and the same argument as that for

the functors (1.11.1) proves that they too are jointly conservative.

1.12. Additive and localizing invariants. We discuss the interaction of stratifications with ad-
ditive and localizing invariants [BGT13].
Recall that the ind-completion functor on small stable idempotent-complete co-categories factors

as an equivalence

idem Ind L
St Prg

N
N
\\
x\\\) /

L,w
Prg;

onto the subcategory
e whose objects are the compactly generated stable co-categories and
e whose morphisms are those functors that preserve both colimits and compact objects.

In fact, for every morphism € 5 Din Ste™ the right adjoint

Ind(F):=F

91Indeed, y and py, are right t-exact by definition, while i;, and v are right t-exact by inspection.
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is automatically colimit-preserving, and it preserves compact objects if and only if F' itself admits

a right adjoint. Hence, the composite functor

Ind L
St Prg

carries
(1) exact sequences to recollements,
(2) split-exact sequences to recollements in which ir preserves colimits, and

(3) stable recollements (i.e. recollements among stable co-categories (Definition 6.1.8)) to rec-

ollements in which ¢g preserves both colimits and compact objects.
Fix a stable co-category € € St. We say that a full stable subcategory of C is
(1) thick if it is idempotent-complete (relative to €),
(2) split if it is thick and its inclusion admits a right adjoint, and
(3) closed if it is split and the right adjoint to its inclusion admits a further right adjoint.

With the evident notation, we then have a sequence of fully faithful functors
Ind
clse < splite — thicke —— Clsjnq(e)

among posets, and we may define three sorts of stratifications of C as stratifications of Ind(€) that

factor accordingly.

Remark 1.12.1. A convergent stratification of Ind(C) gives, in particular, a means of reconstructing
its full subcategory € C Ind(€). However, this is somewhat unsatisfying, as it will not generally
reconstruct € in terms of subcategories thereof: neither the geometric localization functors nor the
gluing functors for the stratification of Ind(C) need preserve compact objects. On the other hand,
given a stratification

P — clse

(as defined just above), the geometric localization functors and gluing functors of the composite
stratification

P — clse % Clsipae
do preserve compact objects. Indeed, these are precisely the stable stratifications introduced in

Remark 1.3.15(1) (under the assumption that € is idempotent-complete), and the metacosm recon-

struction theorem indicated there expresses € entirely in terms of subcategories thereof.

Now, recall that for a presentable stable co-category V, a V-valued additive (resp. localizing)
tnvariant is a functor
St —V

that

e preserves zero objects and filtered colimits,
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( idem

e inverts Morita equivalences (i.e. factors through St ——— Stidem)

, and
e carries split-exact (resp. exact) sequences to co/fiber sequences;

key examples include algebraic K-theory (the universal additive invariant), nonconnective algebraic
K-theory (the universal localizing invariant), and topological Hochschild homology (a localizing

invariant). It follows that additive invariants carry
(2) split-exact sequences to split co/fiber sequences and

(3) recollements to doubly-split co/fiber sequences (i.e. co/fiber sequences equipped with two
splittings),

while localizing invariants carry
(1) exact sequences to co/fiber sequences.
(2) split-exact sequences to split co/fiber sequences, and
(3) recollements to doubly-split co/fiber sequences.

Putting these observations together, we find that a stratification of € in each of the senses above
determines a corresponding structure on the value at € of any additive and/or localizing invariant.
For instance, given an additive invariant

St 5 v,

a convergent stratification
P 22 split,
determines a direct sum decomposition
Fe)=EF(e,),
peP

thick

where €, denotes the p' stratum of the stratification: the stable quotient of Z, by <Zq>q <p

(using
Notation 7.1.4). Similarly, a stratification

P — thicke
induces a P-filtration (as studied e.g. in Example 1.10.4) on the value at € of any localizing invariant

(e.g. nonconnective algebraic K-theory).

2. STRATIFIED NONCOMMUTATIVE GEOMETRY

In this section, we introduce the theory of stratified noncommutative geometry. From here
onwards, for simplicity we revert to standard categorical terminology, in particular opting for the
term “presentable stable co-category” over the term “noncommutative stack” employed in §§0-1.

This section is organized as follows.
§2.1: We collect some notation and terminology regarding posets.

§2.2: We prove the macrocosm reconstruction theorem (Theorem A(2)) for recollements, i.e. strat-

ifications over [1].
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§2.3: We study the basic features of closed subcategories (called “closed noncommutative sub-
stacks” in §0).

§2.4: We recall the definition of a stratification and related notions.

§2.5: We prove the macrocosm reconstruction theorem (Theorem A(2)) as Theorem 2.5.14. This
follows easily from the metacosm reconstruction theorem (Theorem A(1)), which we prove
in §6. We also explain the entire theory in the particular case of stratifications over [2] as
Example 2.5.16.

§2.6: We explain the microcosm and nanocosm morphisms (over an arbitrary poset).
§2.7: We explain the theory of strict objects in stratified presentable stable co-categories.
Local Notation 2.0.1. In this section, we fix a presentable stable co-category X and a poset P.

2.1. Posets. In this subsection, we collect some basic notation, terminology, and facts regarding

posets.

Definition 2.1.1. A convex subset of P is a full subposet C C P satisfying the condition that if
p,7 € Cand p < g <7 in P then also ¢ € C. We write Convp for the poset of convex subsets of P
ordered by inclusion.

Notation 2.1.2. For any element p € P, we simply write p € Convp (rather than {p}) for the
corresponding singleton convex subset of P that it defines.

Definition 2.1.3. A down-closed subset of P is a full subposet D C P satisfying the condition
that if ¢ € D and p < ¢ then also p € D. We write Downp for the poset of down-closed subsets of P

ordered by inclusion.

Observation 2.1.4. There is a containment Downp C Convp: a down-closed subset of P is auto-

matically convex.
Notation 2.1.5. Choose any C € Convp.

(1) We write
SC:={peP:p<qforsome q € C} € Downp
for the down-closure of C in P.
(2) We write
<C:= (SC)\C € Downp

for the down-closed subset of P obtained by removing the elements of C from <C.
We also write 2C := P\(=C) and #C := P\(<C).

Definition 2.1.6. We say that the poset P is down-finite if for every p € P the subset (Sp) C P
is finite.

Definition 2.1.7. We say that the poset P is artinian if it admits no injective (or equivalently

conservative) functors from N°P.
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Definition 2.1.8. An interval in a poset P is a subset of the form P,,,, C P.

Notation 2.1.9. Given a functor P — Q between posets, for any subset S C Q we write Ps C P

for its preimage.

Observation 2.1.10. For any surjective functor J N J among oo-categories and any functor
g £ P, we have a canonical identification colimg(FG) ~ colimg(F).%2 We use this fact without

further comment.

Remark 2.1.11. Observation 2.1.10 may be articulated informally as the assertion that colimits

in posets are all simply unions (taking J to be a set).

2.2. Recollements. In this subsection, we record the (simple and classical) macrocosm reconstruc-
tion theorem for recollements (Definition 1.1.1).

Lemma 2.2.1. Given a recollement (1.1.1), the canonical functor

U
X lim (2 25 0) = | Ze2, Ue, |
PLIRZ
given by the association
prX
X— (yXvr—pripyX +—pX)=|yX ez, prXelU, l
priryX
18 an equivalence.
Proof. We claim that this functor has an inverse, given by the association
vU U
lim l «+|zez,Ueu, l
iRZ —_— VpLiRZ pLiRZ

r.lax PLIR

Indeed, the composite endofunctor of lim Z —— U ) is immediately seen to be the identity. To
see that the composite endofunctor of X is also the identity, it suffices to check that for any X € X
the commutative square

X — vpr X

J l (2.2.1)

tryX — vpripyX
is a pullback square. As a result of the equality im(v) = ker(y), the fibers of the horizontal morphisms
in the commutative square (2.2.1) are equivalent. O

Warning 2.2.2. Recollements play a central role in our work. We generally use the notations of
diagram (1.1.1) for the various functors involved (e.g. i1 or pr), unless there is more pertinent

notation in a particular context (such as in our study of genuine G-spectra). For simplicity and

921n particular, each colimit exists if and only if the other does.
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readability we do not decorate these symbols further, so that in a single expression (e.g. a composite
functor) these various symbols may be referring to different recollements — some of which may not
even have been explicitly indicated. We hope that the meanings of these functors are always made
clear by the context.

2.3. Closed subcategories. In this subsection, we study some basic properties of closed subcate-

gories (a.k.a. closed noncommutative substacks).

Definition 2.3.1. For simplicity, here we use the term closed subcategory of X in place of the
term “closed noncommutative substack” of X (Definition 1.3.1). We write Clsy for the poset of
closed subcategories of X ordered by inclusion.

Example 2.3.2. Given a set {K; € X¥}cs of compact objects of X, the full stable subcategory
that they generate under colimits is a closed subcategory of X: the restricted Yoneda embedding
commutes with filtered colimits, and hence admits a further right adjoint.

Notation 2.3.3. In the situation of Example 2.3.2, we write
<KS>s€S € Clsy
for the closed subcategory of X generated by the objects {K; € X“}ses.
Notation 2.3.4. Given a full presentable stable subcategory Z C X, we write
2t = {U e X :homy(Z,U)~0forall Ze 2} CX
for its right-orthogonal subcategory.

Observation 2.3.5. A full presentable stable subcategory Z C X determines a diagram

-L

% J
Z I X I Z+ (2.3.1)
iff J

in Cat, in which the functors ¢ and j are the defining fully faithful inclusions and the functor j is
determined by the formula

i ~ cofib (m’R N idx) .

Moreover, the commutative square

Z —t—
0

. . L . .
is a pushout square in Prg: given a morphism

X
b
Z’L

—

x5y
in PrSLt such that Fi ~ 0, we obtain a colimit-preserving factorization

L
x 2 2t

xgﬁ'

56



Definition 2.3.6. In light of Observation 2.3.5, given a full presentable stable subcategory Z C X,

we write
X/2 =2t
for its right-orthogonal subcategory and refer to it as the presentable quotient of X by Z.

Observation 2.3.7. In the special case of Observation 2.3.5 where Z € Clsy is a closed subcategory,
diagram (2.3.1) (lies in Prk and therefore) extends to a recollement (1.1.1) in which

i =1, y =i, U:=2+=X/2, pr = gL, and vi=7j;
the functors py, and pr are respectively determined by the formulas
vpr = cofib (iLy N idx> and  vpg =~ fib (idx , iRy> .

Conversely, any recollement (1.1.1) arises in this way: the functor iy, is the inclusion of a closed

subcategory and the functor v is the inclusion of its right-orthogonal subcategory.

Observation 2.3.8. Inclusions of closed subcategories are stable under composition. Also, if Z,Y €
Clsy with Z CY C X, then Z € Clsy. We use these facts implicitly without further comment.”?

Observation 2.3.9. Let Z C X be a full stable subcategory that is closed under colimits. Then,
Z is a closed subcategory of X if and only if its right-orthogonal subcategory Z+ C X is also closed
under colimits. It follows that for any set {Zs; € Clsx}ses of closed subcategories of X, the full
stable subcategory of X that they generate under colimits is also a closed subcategory of X.%% We

use this fact implicitly without further comment.

Notation 2.3.10. Concordantly with Notation 2.3.3, given a set {Zs € Clsx }scs of closed subcat-

egories of X, we write

(Zs)4eg € Clsx

for the closed subcategory of X that they generate under colimits, i.e. the colimit of the functor
S 225 Clsy. %

Remark 2.3.11. Closed subcategories of presentable stable co-category behave much like closed
subsets of a topological space, but they are not completely analogous. For instance, increasing
unions in the poset Clsy commute with the forgetful functor to PrSLt7 whereas increasing unions
in the poset of closed subsets of a topological space do not generally commute with the forgetful

functor to topological spaces.

93These facts are amplified in §3.2.

945 show this, writing Z C X for the full stable subcategory generated under colimits by the subcategories
{Zs}ses, it suffices to show that Z+ = ,c5((Zs)1). It is immediate that 2+ C M. g((Zs)1). To verify the
inclusion 2+ 2 M, cg((Zs)1), we observe that this intersection of subcategories of X may be computed as a limit in
Prf?, and therefore its inclusion into X admits a left adjoint that evidently annihilates all objects of Z.

95In §1, this was written as Uses Zs = colim(S Ze, Clsy), so as to highlight the analogy with the union of closed
subsets of a scheme. Outside of that section, we use the notation (Zs) g because it is more compact.
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2.4. Stratifications. In this subsection, we recall the definitions (originally given in §1.3) of a

stratification and of its strata.
Definition 2.4.1. A prestratification of X over P is a functor

P —%*, Clsy
W W

p— Zp

such that X = (Zp) cp-

Notation 2.4.2. Given a prestratification Z, of X over P, for any D € Downp we write
Zp = <Z’P>peD € Clsy .
Note that Z<, = Z,; we use the latter notation for simplicity. Note too that Zg = 0.

Definition 2.4.3. A prestratification Z, of X over P is a stratification if it satisfies the following

stratification condition: for any p,q € P, there exists a factorization

Zpna 2

Ty.

Zqfo

p)

Remark 2.4.4. In the stratification condition, the upper functor iz, is a monomorphism (in fact
it is the inclusion of a closed subcategory, as indicated by the notation), and so if there exists a
factorization then it is unique. Moreover, if the stratification condition holds, then its factorization

is necessarily the right adjoint
(—> .
Z(=pn(q) ¢---l Zq

this follows from Lemma 3.1.7.

Observation 2.4.5. The stratification condition is automatic if p < g or if ¢ < p. In particular, in
the case that the poset P is totally ordered, every prestratification of X over P is a stratification.

Definition 2.4.6. Suppose that Z, is a prestratification of X over P, and suppose that C € Convp.
(1) The C* stratum of the prestratification is the presentable quotient
Xec:=2<c/Z<c .
(2) The Ct* geometric localization functor is the left adjoint in the composite adjunction
pL

Y
(I>C:DC L Z’C L xC:pC

iR v

We also write
D¢ Pc
Lc: X — DCC — X
for the composite endofunctor, and we write

idy =< Lc

for the unit morphism.



Remark 2.4.7. Considering an element p € P as a convex subset of P, Definition 2.4.6 specializes

to Definition 1.3.5 of the p*™® stratum of a stratification.

Remark 2.4.8. For any D € Downp C Convp, the functor Zp ELN Xp is an equivalence. We
use both of these notations, depending on the context: we use the notation Zp when we mean to
consider this as a subcategory of X via the inclusion iy, while we use the notation Xp when we
mean to consider this as a subcategory of X via the inclusion pP (which coincides with ip in this

special case).

2.5. The macrocosm reconstruction theorem. This subsection is centered around the macro-
cosm reconstruction theorem (Theorem 2.5.14), which we prove using the metacosm reconstruction
theorem (which is itself proved in §6). We unpack the entire theory in the case that P = [2] in
Example 2.5.16.

Local Notation 2.5.1. In this subsection, we fix a stratification Z, of X over P.

Remark 2.5.2. We use the language of modules to discuss certain definitions and constructions.
This is explained in detail in §A. In the interest of keeping the main body of this work relatively

self-contained, we summarize the essential points here.

e By a left/right module over an oo-category, we mean a co/cartesian fibration over it, or

equivalently a functor from it(s opposite) to Cat.

e These modules become laz when our fibrations are only locally co/cartesian, which (defini-

tionally) correspond to left/right-lax functors to Cat.

e One can take the strict, left-lax, or right-lax limit of any module (regardless of whether that

module is itself strict or left/right-lax).

e The specific construction that is relevant for us here is the right-lax limit of a left-lax module;

the precise definition (in our case of interest) is recalled in Remark 2.5.9.

Definition 2.5.3. For any p, q € P, the corresponding gluing functor is the composite
7, <o 2,
Remark 2.5.4. By the stratification condition, the functor X, F—§> Xq is zero whenever p £ q.
Notation 2.5.5. We define the full subcategory
G(X)={(X,p) eXxP: XX} CXxP,
which we consider as an object of Cat p.

Observation 2.5.6. The functor
G(X) — P
is a locally cocartesian fibration, whose monodromy functor over each morphism p — ¢ in P is the
gluing functor
1"17
X, — Xy .
We therefore consider it as defining a left-lax left P-module

4(X) € LMod, jax.p := loc.coCartp .
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Definition 2.5.7. We refer to the left-lax left P-module
4(X) € LMod jax.p
of Observation 2.5.6 as the gluing diagram of the stratification.
Definition 2.5.8. The glued co-category of the stratification is the right-lax limit
Glue(X) := lim[13p(% (X)) .

Remark 2.5.9. For the reader’s convenience, we unpack the definition of the glued oco-category
Glue(X). First of all, we write sd(P) for the subdivision of P: the poset of finite nonempty linearly
ordered subsets of P (Definition A.4.2). Moreover, the functor

sd(P) ™% p

carrying each subset to its maximal element is a locally cocartesian fibration (Lemma A.4.20(1)),
with nontrivial cocartesian monodromy functors given by adjoining new maximal elements. Then,

by Proposition A.5.1 we have an identification
Glue(X) := lim[ 2 p (4(X)) =~ Fun™" (sd(P), 4 (X)) ;
that is, the glued oo-category GIue(f)C) is equivalent to that of morphisms
—————————————— > G(X

\ / (2.5.1)

in loc.coCartp (i.e. functors over P that preserve cocartesian morphisms thereover).
Observation 2.5.10. We can consider the glued oco-category as a full subcategory
Glue(X) C Fun(sd(P), X)
via the composite fully faithful embedding
Glue(X) := lim[2* 5 (4 (X)) ~ Funf2="(sd(P), % (X)) BAIN Fun p(sd(P), ¥ (X)) BEIN Fun p(sd(P), X) ~ Fun(sd(P),X) .
Explicitly, its image consists of those functors
sd(P) -5 X
satisfying the following conditions.
(1) For every ([n] 2 P) € sd(P), we have
F(p) € p"™ ) (Xnax(p)) S X .

(2) Tt carries each morphism in sd(P) of the form

n] ——= s [n+1]
N

(which are precisely the cocartesian morphisms with respect to the locally cocartesian fi-
max

bration sd(P) — P) to a morphism

F(o) — F(¥) (2.5.2)



(pmax
in X that becomes an equivalence after applying the functor X o, Xmax(w).%

We use these facts without further comment.

Notation 2.5.11. We write
lim,
|imsd(P) : Glue(x) (SN Fun(sd(P)JC) Msd(P) X
for the composite.

Observation 2.5.12. The defining inclusion
X&)

is a morphism in LMod::E;P := Catjoc.cocart/p (though not generally in LMod, jax.p := loc.coCartp).

Over each object p € P, this is the right adjoint in the adjunction
¢P
—_—
X pr L Xp
By Lemma A.3.6, the left adjoints ®, assemble into a morphism

const(X) := X — 4(X)

in LMod[ ¥ . Through the definitional adjunction

const r.lax
_— .
Cat T LModoxp
lim[ {2

this corresponds to a functor
X — lim[ 2 6(4(X)) . (2.5.3)
In terms of Observation 2.5.10, the functor (2.5.3) is given by the formula
X ((["] = P) = () Po(n) 'P«:(O)%(O)X) : (2.5.4)

Definition 2.5.13. We refer to the functor (2.5.3) as the (microcosm) gluing diagram functor,
and we denote it by
X L Glue(X) := lim[ {5 (Z(X)) .

Theorem 2.5.14. There is a canonical adjunction

g
X T Glue(X) (2.5.5)
limgq(p)

which is an equivalence whenever P is down-finite.

Proof. By Theorem 6.2.6, the functor X 2 Glue(X) defines a morphism in PrsLt (being the image
under the forgetful functor Stratp — Pr’ of the unit of the adjunction (6.2.3)) and is an equiva-
lence whenever P is down-finite. The identification of its right adjoint is contained in the proof of
Theorem 6.2.6. 0

Definition 2.5.15. We say that the stratification of X over P is convergent if the adjunction

(2.5.5) is an equivalence.
Example 2.5.16. Suppose that P = [2].

96 Assuming condition (1), condition (2) is equivalent to requiring that the morphism (2.5.2) witnesses F'(¢)) as
the Lipax(yp)-localization of F'(y).
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(1) The gluing diagram of the stratification is the lax-commutative triangle

o) - /\ |

DCO—>3C2

in which the natural transformation is the composite
m TG = Bop ~ Byidy p° L5 Bop'®yp? =: TITY .

(2) An object of the glued oco-category Glue(X) amounts to the data of the form

1
X, iE Ti(Xy)
'Yg Xl Fz('Yl)
o7 (2.5.6)
7
'9(Xo) o I3(T9(Xo))
Xo k F?(Xo)

where X; € X; for all ¢ € [2]. One may think of the morphisms 7; as gluing morphisms
(i.e. 1-cubes) for this object of Glue(X), and of the commutative square in Xy as higher-

dimensional gluing data, namely a gluing square Yp12.%

(3) Given an object X € X, its gluing diagram is the object g(X) = (2.5.6) € Glue(X) in which
o X;=d;(X) forall 0 <i<2,

e the gluing morphism ”y; is the unit morphism
Xj = 05(X) = @;(p"(®:(X))) = T5(X)

forall0 <i<j <2 and

max

97The locally cocartesian fibration sd([2]) =% [2] is illustrated in Figure 9.

Voo j
98The notation X - F; (X;) for the gluing morphisms is chosen so as to parallel the notation X; —Z+ X; for

the gluing functors. More generally, each conservative functor [n] P2, P determines a gluing n-cube ~p, that is

»»»»»»»

part of the data of an object of the glued oco-category.
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e the commutativity of the gluing square vp12 follows from the commutativity of the
square

(I)Q # (I)Qplq)l

Dy’ — Dyp' @1
in Fun(X, X3).

(4) Because P = [2] is finite and hence down-finite, Theorem 2.5.14 guarantees that each X € X

is the limit of its gluing diagram: the equivalence
X 5 limggpy (9(X))
amounts to the limit diagram

Ly(X) La(L1(X))

La(Lo(X)) La(L1(Lo(X)))

Lo(X) Li(Lo(X))

2.6. The microcosm and nanocosm morphisms. In this subsection, we discuss the microcosm
and nanocosm morphisms. In particular, we give a detailed description of the nanocosm morphism
in Remark 2.6.7.

Notation 2.6.1. For any ([n] = P) € sd(P), we write

FLP = F‘P(”—l) .. F‘/’(O)

o(n) oy and  Loi=Lomy - L) -

Observation 2.6.2. By definition, for any ([n] 2> P) € sd(P) the functors I', and L, participate

in the commutative diagram

x#x

%(o)l Tp”"”) .

Xo) 17 Xe(n)
We use this fact without further comment.
Observation 2.6.3. By definition, the functors L, for ¢ € sd(P) are the values of a functor

sd(P) =25 Fun™ (%X, X)a, / » (2.6.1)
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namely the adjunct of the composite
X -5 Glue(X) — Fun(sd(P), X)
equipped with its coaugmentation given by the unit of the adjunction (2.5.5) of Theorem 2.5.14.
Remark 2.6.4. Using Notation 2.6.1, the formula (2.5.4) for the composite
X -5 Glue(X) := lim{ {25 (4(X)) — Fun(sd(P), X)
can be expressed more compactly as
X+— (pr— LX) .

r
Observation 2.6.5. For each nonidentity morphism p < ¢ in P, the functors X, —% X, for

p e sd(P)}Z are the values of a factorization

()] AL » Fun® (X, X,)
plo—
Sd(P) L—.> FUneX(:X:7x) T) FUnex(:X:I”:X:)

Definition 2.6.6. Fix any object X € X.
(1) We define the reglued object of X to be
glue(X) := limg(py(9(X)) € X .
(2) We define the microcosm morphism of X to be the unit morphism
X — glue(X)
in X of the adjunction (2.5.5) of Theorem 2.5.14.

(3) For any Y € X, we define the corresponding nanocosm morphism to be the composite
morphism
hom (Y, X) — hom. (Y, glue(X))
~ limesapyhomy (Y, Ly, (X))

~ “m([n]iw)esd(P) (homxv(n) (Pym)Y, Fg,fl)g,(o)X))

obtained by applying hom. (Y, —) to the microcosm morphism of X.
Remark 2.6.7. For any objects X,Y € X, we unpack the nanocosm morphism

homy (Y, X) — lim homy (By(m)Y: Fw%(o)x))

([n] ZP)esd(P) (

as follows. First of all, postcomposing with the canonical morphism to the ([n] £ P)™ constituent

of the limit, we obtain the composite

hom (Y, X) — hom (Y, L, X) ~ homy. - (@)Y, Ty @yyX)
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The functoriality of the diagram

(I P)—homy | (P ()Y TPy () X)
sd(P) Sp (2.6.2)

may be described informally as follows. Observe that every morphism in sd(P) factors as a composite

of morphisms whose images under the forgetful functor sd(P) — A are all coface maps [n] LN [n+1]
(for some n > 0 and some 0 < i < n+ 1), so it suffices to describe the functoriality of the diagram

(2.6.2) on such morphisms. So, let us fix a morphism

n+ 1]

] — s |
X P / (2.6.3)

in sd(P), and describe the morphism
homan) (‘I)g,(n)}/, Ftpq)w(O)X> — homanﬂ) (‘I)g(n_,_l)}/, F@@@(Q)X} (264)

in 8p which is the image of the morphism (2.6.3) under the functor (2.6.2).
e If i = 0, then ¢(n) = @(n + 1) and the morphism (2.6.4) is obtained by postcomposition

with the morphism

. me(n=1) (0) _ 1on) 5(1)
Loy X = TZ,f(n) "'Fiu)q)so(O)X— F§<n+1)“'F§<2>%(1>X

1% (0)

1) 51)
LePa0)X =T T80 @) La X

i Xpn) = Xgm+1)-

e If 1 <i < n,then p(n) = (n+1) and the morphism (2.6.4) is obtained by postcomposition
with the morphism

 pe(n—1) (0) e F-1)  13(0)
Te@oio)X = T00) - T ®oX = TE04 - T T50) Peo X
N5()

o v B B Bl ) g
Ie2z0X = T5iny  Tournlew Tom PeoX

i Xoem) = Xgn+1)-
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e If i =n+ 1, then the morphism (2.6.4) is the composite

homy  (Py(n) Y, Tp@y0)X) = homy_  (Pz()Y. T, Pa(0)X)

F(n)
F(n+1)

(n) (n)
homy_ (Fg(n+1)¢5(")y’ 1—‘g(n-‘rl)

F(n+1)

5(n)
homy o (T804 1) e Y. Ta®s(0)X)

N&(n)

homx (@@(n+1)y7 F@@@(O)X)

F(n+1)

in which the first morphism is obtained by applying the functor

3(n)

. Lotn+1) X
—— Xg(n+1)

@(n)
and the second morphism is obtained by precomposing with the morphism
N3(n) _ 1B(n)
ConinY = Pamin LomY = T500n PemY -
2.7. Strict objects. In this brief subsection, we lay out the general theory of strict objects.

Local Notation 2.7.1. In this subsection, we fix a stratification Z, of X over P.

Definition 2.7.2.

(1) We say that X € X is convergent if its microcosm morphism
X — glue(X) := limgy(p) (9(X))
is an equivalence.

(2) We say that
F € Glue(X) C Fun(sd(P), X)
is strict if it carries every isominmax morphism in sd(P) (Definition A.4.3) to an equivalence
in X.

(3) We say that X € X is strict if it is convergent and moreover its gluing diagram g(X) €
Glue(X) is strict.

Lemma 2.7.3. The functor

(min—max)

sd(P) TwAr(P)
w w

([n] = P) —— (¢(0) = ¢(n))

witnesses TwAr(P) as the localization of sd(P) with respect to the isominmaz morphisms.
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Proof. Let us write W C sd(P) for the subcategory on the isominmax morphisms, and for any X €
Cat let us write Fun(X,sd(P))W C Fun(X,sd(P)) for the subcategory on the natural transformations
that are componentwise in W. By [MG19a, Theorem 3.8], it suffices to show that for every n > 0
the evident factorization

Fun([n],(min—max))

Fun([n],sd(P)) Fun([n], TwAr(P))

] J

Fun([n],sd(P))W - > homcai([n], TwAr(P))

is an oo-groupoid completion, which follows from the observation that it admits a fully faithful left
adjoint. O

Observation 2.7.4. By Lemma 2.7.3, an object F' € Glue(X) C Fun(sd(P), X) is strict if and only
if it admits a factorization
sd(P) L; X
(min—)max)J{ //é
TwAr(P)

-
-

(for which we use the same notation), in which case because localizations are initial we have a

canonical equivalence
limey(py (F) <— limryarp) (F) -
In particular, if X € X is strict, then we have a canonical equivalence
X = limryare (9(X))
and for any Y € X the nanocosm morphism reduces to an equivalence

hom (Y, X) — lim (s g)eTwar(pyhomy (®,Y,TH®,X) .

3. FUNDAMENTAL OPERATIONS

In this section, we establish our fundamental operations on stratifications. Towards this end, we
first study certain fundamental operations on closed subcategories. In particular, we introduce and
study the notion of one closed subcategory being aligned with another. The notion of alignment
allows us to state our fundamental operations on stratifications in greater generality than is done
in §1 as Theorem B, while at the same time streamlining their proofs. The assertions of Theorem B
are recovered as a consequence of the fact that any two closed subcategories determined by a
stratification are mutually aligned (Lemma 3.4.5).

This section is organized as follows.
§3.1: We introduce the notion of alignment and study its basic consequences.
§3.2: We establish a number of fundamental operations on aligned subcategories.

§3.3: We establish excision- and Mayer—Vietoris-type gluing results for closed subcategories in

the presence of alignment.
83.4: We prove our suite of fundamental operations on stratifications.

Local Notation 3.0.1. In this section, we fix a presentable stable co-category X.
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3.1. Alignment. In this subsection, we introduce the notion of alignment between closed subcat-
egories and study its basic consequences. We also give an alternative characterization of alignment
as Lemma 3.1.7.

Local Notation 3.1.1. In this subsection, we fix two closed subcategories Y, Z € Clsx.

Definition 3.1.2. We say that Z is aligned with Y if there exists a factorization

through the intersection (with both the intersection and the factorization considered in Cat). To
indicate that Z is aligned with Y, we write either Z ~~ Y or Y « Z. We say that Y and Z are
mutually aligned if Y is aligned with Z and Z is aligned with Y, and in this case we write Y e~ Z.
We write

Clsi”? «—— Clsy?:= {We Clsy : W ~ Y}

! |

{W € Clsy : W~ Y} =: Clsy? ——— Clsy
for the evident pullback diagram among full subposets of Clsxy.

Example 3.1.3. The diagram

iL iL
Y L X T Z
I E—(0—E) I (E—0)«E I
8p T Fun([1],8p) —__T___ 8p
evy fib

depicts the i;, 4 y adjunctions of two closed subcategories Y,Z € Clsy. Note that YNZ = 0. The
composite

LI I
is zero, and so Z is aligned with Y. On the other hand, the composite
Y2
is given by desuspension, and so Y is not aligned with Z.
Observation 3.1.4. If either Y C Z or Y O Z, then Y and Z are mutually aligned.
Observation 3.1.5. The pullback diagram

YynzZ —— Y

j jn (3.1.1)

1L

lies in Pr5 c Cat. We use this fact without further comment.
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Local Notation 3.1.6. In this subsection, we use the notation

yng <y

izj ju (3.1.2)

2 — X
ir
for the commutative square (3.1.1) of left adjoints, and we use the notation

Yyng 4y

Z.}Zﬁ Ty (3.1.3)

Z—— X
for its corresponding commutative square of right adjoints.
Lemma 3.1.7. The following are equivalent.

(1) There exists a factorization

YNz sy
y'i T?J )
i.e. Z is aligned with Y.
(2) The morphism
iyiGyinL — yirL (3.1.4)
in Fun(Z,Y) is an equivalence.
(8) The morphism
yirizif — yir, (3.1.5)

in Fun(Z,Y) is an equivalence.

(4) The lax-commutative square
Yynz sy
@;ﬁ N Ty (3.1.6)

Z —
ir

determined by either commutative square (3.1.2) or (3.1.3) commutes.
Moreover, if these equivalent conditions are satisfied, then the factorization y' admits canonical
identifications
igyiL ~y

Proof. We begin by proving the diagram of implications



e Given a factorization y’, we obtain an identification
. R € .
iyliyyi, —— YiL
1 ]
iyifiiyy —=— iyy
among morphisms in Fun(Z,Y). This proves that (1) = (2).

e Trivially, (4) = (1).

e Considering the lax-commutative square (3.1.6) as being determined by the commutative
square (3.1.3), its natural transformation is the composite igig SN igi%yiL o~ igigyiL 5
yir. This proves that (2) < (4).

e Considering the lax-commutative square (3.1.6) as being determined by the commutative

square (3.1.2), its natural transformation is the composite igig BN yiLiyig ] yim’zig 5
yir. This proves that (3) < (4).

We now conclude by observing that if (2) holds then setting 3’ := if;yi 1, defines a factorization. O

3.2. Fundamental operations on aligned subcategories. In this subsection we undertake a
deeper analysis of alignment, particularly regarding its interactions with colimits and intersections
in Clsy as well as its with quotients of X by closed subcategories.

Local Notation 3.2.1. In this subsection, given two closed subcategories Y, Z € Clsx we continue

to use the notation iy, iz, ig, and ig of Local Notation 3.1.6.
Lemma 3.2.2. For any closed subcategory Y € Clsy, all four functors in the commutative square

Clsy”? —— Clsy?

j j (3.2.1)

Clsy? «——— Clsy
preserve colimits.

Proof. Since the commutative square (3.2.1) is a pullback among full subposets of Clsy, it suffices
to check that its right vertical functor and its lower horizontal functor both preserve colimits. We
address each of these in turn.

Suppose first that we are given any {Z, € Clsy?},cs, and let us write Z = (Zs) 4eg € Clsx. For
each s € S, by assumption we have a factorization

YNZy —— YN — Y
i P. (3.2.2)
2y — 2 —— X

1L 1L

Because all solid functors in the diagram (3.2.2) preserve colimits, we find that Z is aligned with Y,

i.e. that 2 € Clsy’”.
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Suppose now that we are given any {Z, € Clsy ?},cs, and let us write Z = (Zs) 4eg € Clsx. For

an arbitrary element s € S, consider the diagram

YNz, 2y g,
iRT N T@/
ynzg 252
zgﬂ ™ Ty

L

(3.2.3)

in which the functor i® is the evident right adjoint. By Lemma 3.1.7, to show that Y is aligned
with Z it suffices to show that the lower natural transformation in diagram (3.2.3) is an equivalence.

Also by Lemma 3.1.7, because Y is aligned with Z,, the composite natural transformation
iz il — yyir (3.2.4)

in diagram (3.2.3) is an equivalence. This implies that the upper natural transformation in diagram

(3.2.3) is also an equivalence, as it is given by the composite

. R M . .R.R. (324 .. .o .
12,07 Tz Uy ty — > YYlply = YYiply = Yz,

So, the lower natural transformation in diagram (3.2.3) is indeed an equivalence, because the functors

{2 % 2,}ses are jointly conservative. O

Lemma 3.2.3. Let Y,Z € Clsx be closed subcategories, and suppose that Z is aligned with Y.
(1) The functor iz is the inclusion of YN Z as a closed subcategory of Z.

(2) Consider the resulting commutative diagram

yng W,y

iz\[ \[iL

L SN (3.2.5)

2/(YN2Z) - X/Y
mn PrsLt, in which i is the canonical morphism between presentable quotients.

(a) The functor i is the fully faithful inclusion of Z/(YNZ) as a closed subcategory of X/Y.

(b) The laz-commutative square

2L
"T N T” (3.2.6)
Z2/(zNY) —— X/Y

determined by the lower commutative square in diagram (3.2.5) commutes.
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(c) Suppose further that'Y is aligned with Z. Then, the laz-commutative square

Z+—L X
le N lm (3.2.7)
2/(YN1%) ¢ X/

determined by the lower commutative square in diagram (3.2.5) commutes.

Proof. We begin by proving part (1). Because ig is fully faithful, it remains to show that its right
adjoint ig preserves colimits. For this, because 7y is fully faithful and colimit-preserving, it suffices
to show that the composite igig preserves colimits, which follows from the equivalence igig ~ yir,
guaranteed by Lemma 3.1.7.

We now prove part (2)(b). By definition, the natural transformation in the lax-commutative
square (3.2.6) is the composite iy — vpriLy ~ vipLv —i—) vi. To show that it is an equivalence is

therefore equivalent to showing that the composite functor
2t X
Z/(9N2Z)
lands in the image of the functor
X
xX/Y .

This is equivalent to showing that the composite functor

Y
Ty

Z/(YNnzZ)

is zero. This follows from the commutativity of the diagram

Yyng — % 5y
iQT Ty
g

2/(4N2)

guaranteed by Lemma 3.1.7, because its left vertical composite is zero. So indeed, the lax-commutative
square (3.2.6) is commutative.
We now prove part (2)(a). By part (2)(b), the functor ¢ is fully faithful. Note too that by

definition 4 is colimit-preserving. Passing to right adjoints in the lower commutative square in
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diagram (3.2.5), we obtain a commutative square

2 +—2L X

/] I

2/(912) o X/Y

which implies that i is colimit-preserving. So indeed, i is the inclusion of a closed subcategory.
We now conclude by proving part (2)(c). By Lemma 3.1.7 (with the roles of Y and Z reversed),

we have a commutative diagram

ynz L Y
o [
Z+—t X (3.2.8)

pe| |

Z/(YN2Z) - X/Y

. L
in Prg,

commutative diagram

in which j is the canonical morphism between presentable quotients. Hence, j fits into a

A —'y

le Jv

2/(402) < X/Y
On the other hand, note the commutative square

AP E—',

VI I”

2/(4N%) —— X/Y

obtained by passing to right adjoints in the lower commutative square of diagram (3.2.5). Using

R

this, we obtain the identification j ~ pryv ~ prvi'* ~ ir. Thereafter, we see that indeed the

lax-commutative square (3.2.7) is precisely the lower commutative square in diagram (3.2.8). O

Observation 3.2.4. Let Y,Z € Clsx be closed subcategories, and suppose that Z is aligned with
Y. By Lemma 3.2.3(1), we have (YN Z) € Clsz. It follows that (Y N2Z) € Clsyx, and thereafter that
(YN Z) € Clsy. In other words, all four functors in the pullback diagram

ynz sy
izj ju (3.2.9)
are inclusions of closed subcategories.

Lemma 3.2.5. LetY,Z € Clsy be closed subcategories, and suppose that Z is aligned withY. Then,
the commutative square

Yynz <=,y

iRj jm (3.2.10)
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in Cat obtained by taking right adjoints twice in the commutative square (3.2.9) in Cat (which is
possible by Observation 3.2.4) is a pullback square.

Proof. By Lemma 3.1.7, the square

N

QZ%

yT Yy

Z ——
1L

Y

&

commutes, which implies that the square

Yyng « 42—y

Rj jR (3.2.11)

commutes by passing to right adjoints. Now, consider the solid commutative diagram

9ynz .
r\ ‘w
\ YnpZ —3vy (3.2.12)
% 3y
jjz iR
Z — X

1R

in which Y Nr Z denotes the pullback in Cat. Because both functors to Z in diagram (3.2.12) are
fully faithful, it suffices to show that there exists the dashed factorization of jz. This follows from
the sequence of equivalences

Jz X Yirjz X YiRJY = IRYJY

in which the last equivalence follows from the commutativity of the square (3.2.11). O
Remark 3.2.6. By Observation 3.2.4, two closed subcategories Y, Z € Clsyx are mutually aligned
if and only if the diagram

Yynz <Ly

iLj }-L

1L

defines a stratification of X over [1] x [1].
Remark 3.2.7. Given closed subcategories Y,Z € Clsy, the most important consequence of Z
being aligned with Y is that the image of the composite

R L Y

is a closed subcategory, as guaranteed by Lemma 3.2.3(2)(a). This need not hold if Z is not aligned
with Y. We may see this as follows.

Let us take X := Fun(J, 8p), where J denotes the category generated by the quiver



i.e. the pushout
pt LI pt o, 1]
J := colim (1%
1]
Consider the full subcategories

Y ={FEe €X:E,~0}CXD{E,€X:E,~0}=:2.

They are clearly closed under colimits. Moreover, via the identifications

ev, evy,

Y-—"L8p— 2,

their inclusions’ right adjoints are given by the formulas

% ir " ir e
e L X T I,

W Y w Y w ,
fib(E) o fib(E,)

which preserve colimits so that Y and Z are indeed closed subcategories of X (which justifies the
notations iz, and y). Note that Y N Z ~ 0. On the other hand, the composite functors

Yyl Y2 and YLl x g
may both be identified with desuspension, and in particular are equivalences. So, Y is not aligned
with Z and Z is not aligned with Y.

Now, observe the identification
X Y X/Y
i 2\ ’
Fun(J,8p) +—— {FE. € X : E} is an equivalence}

and thereafter the identification of its left adjoint X %5 X/Y as the assignment

E, E,
~— — >l
E. E, | — cofib ( 07 fib(Ey) ) — | B, E,
K~ N [
E, Ey
EyE.
~ FE, E,
&:I“/

Hence, the composite

Sp & 7 <y o0 Py Y

~

is given by the assignment

E— | E~ TE

id
and so its image is not even closed under colimits — nor does it define a fully faithful functor from
Z/(YNZ)~2Z/0~=2toX/Y.
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Remark 3.2.8. In Lemma 3.2.3(2)(c), the lax-commutative square (3.2.7) need not commute if
Y is not aligned with Z. Indeed, in the situation of Example 3.1.3, it may be identified with the

canonical lax-commutative square

Sp <™ Fun([1],Sp)

idlz N lew)

Sp+8p

Proposition 3.2.9. For any closed subcategory Y € Clsy, taking the image or preimage (in Cat)

of a closed subcategory along either functor in the composite

ir

Y X5 X/Y
yields a closed subcategory, and these constructions define adjunctions

(CISx)/g
o

o

7 1L PL
Clsy ;1 7 Clsiy? T 7 Clsyy
it Lt
////r)//
L

(Cle)y/

with fully faithful images as indicated.

Proof. Tt is immediate that i;, and pzl respectively carry closed subcategories of Y and X /Y to closed
subcategories of X, which are aligned with Y by Observation 3.1.4. Moreover, for any Z € Clsggy,
we have i7'(Z) = (YN 2Z) € Clsy by Observation 3.2.4 and p.(Z) = 2/(Y N 2) € Clsyy by
Lemma 3.2.3(2)(a). The asserted co/reflective adjunctions among posets, as well as the identifica-

tions of the resulting fully faithful images, are now immediate. O

Lemma 3.2.10. Fiz any closed subcategory Y € Clsy.
1
(1) The functor Clsy? Ly Clsy preserves colimits.

-1
(2) The functor Clsy y LN Clsggy preserves nonempty colimits.

Proof. We first prove part (1). Let {Z, € Clsy ?}scg be a set of closed subcategories of X that are
aligned with Y. We have an evident inclusion <izl(25)>ses C izl(<ZS>S€S). On the other hand,
because X % Y preserves colimits, we also have an inclusion izl(<ZS>ses) C <izl(Zs)>SeS.

We now prove part (2). Let now {Z, € Clsx,y}ses be a nonempty set of closed subcategories
of X/Y. We have an evident inclusion <p£1(ZS)>S€S C p;'((Zs)4eg)- On the other hand, for any
X € p;'({Zs)4cg), consider the co/fiber sequence iyX — X — vp, X. Because i yX € p;'(0) C
<pzl(Z,s)>S€S (using that S is nonempty), to show that X € <pzl(Z,s)>S€S it suffices to show that

vpr X € <pzl(Z,S)>S€S, which follows from the fact that X/Y <5 X preserves colimits. O
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Observation 3.2.11. Fix any closed subcategory Y € Clsx and any W € Clsy C Clsy. Then, by

the equivalence (1) < (2) of Lemma 3.1.7 there exists a factorization

—1
Clsy «+—~——— Clsy?
Clsy™" - Clsy? nClsy™

that is, if Z € Clsy is aligned with both Y and W then zzl(Z) :=YN2Zis aligned with 'W.

3.3. Gluing aligned subcategories. In this brief subsection, we establish gluing formulas for
closed subcategories of X in the presence of alignment. More precisely, one may view Lemma 3.3.4
(which merely requires alignment) as an excision principle and Lemma 3.3.5 (which requires mutual
alignment) as a Mayer—Vietoris principle.?®

Local Notation 3.3.1. In this subsection, we fix closed subcategories Y, Z € Clsx.

Remark 3.3.2. In this subsection, we implicitly use Observation 3.2.4 (that if Z is aligned with Y
then YN Z is a closed subcategory of both Y and Z).

Local Notation 3.3.3. Given co/reflective localizations

’

F F
e é_: e and X CJ;_/ L ¢

of X, we write

Ce:=FG "% idxy  and  idx 2% G'F' =: Le
for the corresponding co/monads on X and their co/unit maps.'® In particular, given a closed
subcategory Y € Clsy we obtain the endofunctors

Cy:=iry, Ly :=iRy, Ly,y :=vpL , and Cx,y := VpR

of X.
Lemma 3.3.4. Suppose that Z is aligned with Y.

(1) There is a canonical identification

Cly,z) ~ cofib(S ™' Cz Ly — S~ Loy — Cy) .
(2) There is a canonical identification
Ly,2y ~fib(Ly — XCyx /7 — YLyCy/z) -

Proof. We begin with part (1). For this, consider the morphism

E_ICZLx/y — Cy —— cofib
J (3.3.1)

idx

E_l‘C:ZLDC/‘JJ/

Z_le/y Cy

€y

9Recall that closed subcategories of a presentable stable co-category correspond to open subsets of a topological
space, as indicated in §1.8.
100507 in the notation of Definition 2.4.6 we simply write L¢ := L.
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of cofiber sequences in Fun® (X, X), where we simply write cofib for the indicated cofiber. It suffices
to show that the right vertical morphism in diagram (3.3.1) becomes an equivalence after applying
Cy and Cy. It is clear that it becomes an equivalence after applying Cy. To see that it becomes an

equivalence after applying Cly, it suffices to observe the containment
ker(Cy) C ker(CyC4,)

resulting from the fact that Z is aligned with Y.

We now turn to part (2). For this, consider the morphism

idy —2 Lo ECyx/2

l H P”“ Cuyz (3.3.2)
fib —— Ly —— YLyCy /2

of cofiber sequences in Fun® (X, X), where we simply write fib for the indicated fiber. It suffices to

show that the left vertical morphism in diagram (3.3.2) becomes an equivalence after applying Ly

and Lg. It is clear that it becomes an equivalence after applying Ly. To see that it becomes an

equivalence after applying Ly, it suffices to observe the containment

ker(Lg) C ker(Lg Ly)
resulting from the fact that Z is aligned with Y. 0
Lemma 3.3.5. Suppose that 'Y and Z are mutually aligned.

(1) The commutative square
Cynz — Cy

l l (3.3.3)
Cy — C(H,Z)
in Fun®(X,X) is a pushout.

(2) The commutative square
Lynz +—— Ly

T T (3.3.4)

Lz, — L(‘j,Z}

in Fun®(X, X) is a pullback.

Proof. We begin with part (1). It suffices to show that the square (3.3.3) becomes a pushout after
applying Cy and Cy.

e Applying Cy to the square (3.3.3), we see that both vertical morphisms become equivalences,

the right by inspection and the left because Z is aligned with Y.

e Applying Cy to the square (3.3.3), we see that both horizontal morphisms become equiva-
lences, the lower by inspection and the upper because Y is aligned with Z.

So the square (3.3.3) is indeed a pushout.
We now turn to part (2). It suffices to show that the square (3.3.4) becomes a pullback after
applying Ly and L.
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e Applying Ly to the square (3.3.4), we see that both vertical morphisms become equivalences,
the right by inspection and the left because Y is aligned with Z.

e Applying Ly to the square (3.3.4), we see that both horizontal morphisms become equiva-

lences, the lower by inspection and the upper because Z is aligned with Y.

So the square (3.3.4) is indeed a pullback. 0

3.4. Fundamental operations on stratifications. In this subsection, we record our fundamental

operations on stratifications. For ease of navigation, it is organized into subsubsections.

Local Notation 3.4.1. In this subsection, we fix a poset P, a stratification Z, of X over P, down-

closed subsets D, E € Downp, and a closed subcategory Y € Clsx.

Definition 3.4.2. We respectively say that the stratification Z, is aligned or mutually aligned

with Y if each of its values Z,, is so.
Definition 3.4.3. We name the key outputs of this subsection as follows.

(1) Proposition 3.4.7 provides a restricted stratification of Y over P (under the assumption
that Z, is mutually aligned with Y).

(2) Given a functor X — X that is the quotient by a closed subcategory, Proposition 3.4.9

provides a pullback stratification of X over P (under the assumption that P is nonempty).

(3) Proposition 3.4.10 provides a quotient stratification of X/Y over P (under the assumption
that Ze is aligned with Y).

(4) Given a functor P — Q between posets, Proposition 3.4.12 provides a pushforward strat-

ification of X over Q.

(5) Given a stratification of each stratum X, over a poset R,, Proposition 3.4.14 provides a

refined stratification of X over the wreath product poset P { R,.
3.4.1. Preliminary results.

Observation 3.4.4. The evident factorization

P —%* Clsy

]

is a stratification of Zp over D, whose p'" stratum is X,, for every p € D C P.
Lemma 3.4.5. The closed subcategories Zp, Zg € Clsx are mutually aligned and (ZpNZg) = Zpre-
Proof. We first show that the lax-commutative square

ZorE —E— Zp
yT N Ty (3.4.1)
Z:E (T> x
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determined by the commutative square

i
Zbre —— Zp

uj jn (3.4.2)

ZE‘.—>:X:
L

commutes. By an identical argument to that proving the equivalence (1) < (4) of Lemma 3.1.7, it

suffices to show that there exists a factorization

i
Zbre —— Zp

T Ty : (3.4.3)

ZE(T>:X:

In the special case that D = (Sp) and E = (S¢), this is precisely the stratification condition. In
order to prove the general case, we first prove the intermediate case that E € Downp is arbitrary
but D = (Sp) for some p € P. Then, for each ¢ € E, we have a factorization

Zispn(zg) — Z(spne — Ly

T Ty (3.4.4)
Zq . 2 —— X

L L

by the stratification condition. So, the intermediate case follows from the facts that Zg := <Z’q>qu
and that all solid morphisms in diagram (3.4.4) preserve colimits. Passing to the general case, for

each p € D let us extend the lax-commutative square (3.4.1) to a diagram

Z’(Sp)ﬁE ‘L> Zp

7
Z’DﬂE %L) ZD )

s

ZETDC

(3.4.5)

in which the upper (commutative) square is obtained by applying the intermediate case to the
restricted stratification of Zp over D of Observation 3.4.4 (replacing D,E € Downp respectively
with (Sp),(D N E) € Downp). Note too that the intermediate case is precisely the assertion that
the composite lax-commutative rectangle of diagram (3.4.5) is in fact commutative. So, the lax-
commutative square (3.4.1) must be commutative because the functors {Zp 2, Zptpep are jointly
conservative.

Now, the commutativity of the square (3.4.2) implies that Zpne C (ZpNZg). On the other hand,
the existence of the factorization (3.4.3) implies that (Zp N Zg) C Zpne, as any object of (Zp N Zg)
must lie in the image of the composite Zg ‘£> X % Zp. So indeed, (Zp N Zg) = Zpne. Hence, the
factorization (3.4.3) witnesses Zg as being aligned with Zp. That Zp is aligned with Zg follows by

reversing the roles of D and E. O

Z/
Remark 3.4.6. Evidently, a prestratification P — Clsy satisfies the stratification condition if

for all p, ¢ € P we have that Z| ~ Z;, and (2,NZ;) = Z’/(Sp)m(ﬁq)' Lemma 3.4.5 provides a converse.
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3.4.2. Restricted stratifications.
Proposition 3.4.7. Suppose that the stratification P EIN Clsx is mutually aligned with Y € Clsy.

(1) The composite functor

—1
P2 Clsy? — 2 Clsy
w w (3.4.6)
p iZI(Zp)

is a stratification of Y over P.
(2) For any p € P, the p'* stratum of the stratification (3.4.6) is iy ' (X,).

Proof. We begin with part (1). By Lemma 3.2.10(1), the composite functor (3.4.6) is a prestratifi-

cation. So, it remains to verify the stratification condition. Choose any p,q € P, and consider the

diagram
Z(spn(=q) - 2
/ h /
| W
ZEI(Z'(S )n(Sq)) : = Zil(Zp) v
| 24 e X
i AL Y
i W
-1 1 _
ir (Zq) i (X) =1

iL
in which the upper and lower squares commute by definition of izl and the right square commutes
because Y is aligned with Z,. The back factorization exists because Z, is a stratification, and hence
the front factorization exists because the upper square is a pullback. So, the stratification condition
follows from the identification

1 1

iz RemnEa) =i (EreEpnEg) = (2" @) ez pa=g
resulting from Lemma 3.2.10(1).
We now turn to part (2). Note that Y is aligned with Z<, by Lemma 3.2.2. By Observation 3.2.11,
it follows that izl(Zp) is also aligned with Z<,. Using this and Lemma 3.2.10(1), we identify the

p't stratum of the stratification (3.4.6) as

1 .
T2 Z0) o per(i71(2,) 2 g (2p)) = ker(iz (%) L i3} (2p) <5 22,)
1y, (Z<p)

~ ker(iT1(Z,) <5 2, s Zey) 2 ip ()
as desired. O

Remark 3.4.8. Taking Y = Zp in Proposition 3.4.7, we obtain a stratification of Zp over P, whose

restriction to D is the stratification of Zp over D of Observation 3.4.4.10%

. . . Z .
1011y general, if the stratification P =% Clsy has the property that Z, = Z(Sp)mD for every p € P, then its

C . Z . . . .
restriction D < P =%+ Clsy is evidently also a stratification.
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3.4.3. Pullback stratifications.

Proposition 3.4.9. Let X be a presentable stable co-category. Suppose that X 5 X is the quotient

by a closed subcategory (i.e. the functor pr, in a recollement), and suppose further that P is nonempty.

(1) The composite functor

Ze

P Cle i Clsi“C
w w (3.4.7)
”71(2’;7)

is a stratification of X over P.
(2) For any p € P, the p'" stratum of the stratification (3.4.7) is X, if (Sp) # @ and is 7= 1(X,)
if “p)=2.

Proof. We begin with part (1). Because P is nonempty, the functor (3.4.7) is a prestratification by
Lemma 3.2.10(2). So, it remains to verify the stratification condition. Choose any p,q € P, and

consider the diagram

iL

Z(<p)n(<q) / Zp
W_l(Z(gp)m(gq)) ‘ ‘ W_I(Zp) y
Zq & X
i y
| / /
7(Zy) T (X) =X

in which the upper and lower squares commute by definition of 7~! and the right square commutes by
Lemma 3.2.3(2)(c) and Observation 3.1.4. The back factorization exists because Z, is a stratification,
and hence the front factorization exists because the upper square is a pullback. So, the stratification

condition follows from the identification

T ZpnEa) =1 (Ze) ez pnee) = (T EZ)) e < pnza

resulting from Lemma 3.2.10(2).
We now turn to part (2). In the case that (<p) # &, using Lemma 3.2.10(2) and Proposition 3.2.9
we identify the p*! stratum of the stratification (3.4.7) as

Wﬁl(z’p) -~ Wﬁl(z’p) . Wﬁl(z’p) -~ Wﬁl(z’p)/ﬂfl(o) -~ Zp -
(T Zp)) ey T (Zpdyey) TN Zep) T TN (Zep)/mTH0) T Ry T
as desired. In the case that (<p) = @, we identify the p'" stratum of the stratification (3.4.7) as
mH(Zp) _ 1 (Zp)

<7T—1(Z’p/)>p/<p O

as desired. O
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3.4.4. Quotient stratifications.
Proposition 3.4.10. Suppose that the stratification P ELN Clsy is aligned with Y € Clsy.

(1) The composite functor

P—2 5 Clsy? —2“ Clsyy
w " (3.4.8)
P pr(Zp)

is a stratification of X/Y over P.

(2) Suppose further that 'Y is aligned with the stratification Zo. For any p € P, the subcategory
i, (Xp) € X, is closed and the p™ stratum of the stratification (3.4.8) is X, /iy " (X,).

Proof. Over the course of the proof, for clarity we write Y = X =+ X/Y for the canonical functors.
We begin with part (1). The functor (3.4.8) is a prestratification by Proposition 3.2.9 and the
fact that (X)) = X/Y. It remains to check the stratification condition. For any p,q € P, we have

the solid commutative diagram

T(Z(<pyn(sq) —— m(Zp)
e pd
i v
Z(<p)n(=q) — Zp v
| m(Zq) = m(X) =X/Y
i o
2, X

in which the bottom and top squares commute by the functoriality of presentable quotients and
the right square commutes by Lemma 3.2.3(2)(c). The front factorization exists because Zo is a
stratification, and hence the back factorization exists because the functor Z, 2% 7(Z,) is surjective.

So, the stratification condition follows from the identification

T(Zzpno) = T(ZrhrespnEa) = (7 (@) e <pnizg

resulting from Proposition 3.2.9.

We now proceed to part (2). First of all, Y is aligned with Z<, by Lemma 3.2.2, and thereafter
YN Z, is aligned with Z<, by Observation 3.2.11. Hence, the fact that :=*(X,) € Clsy, follows
from Lemma 3.2.3(2)(a) along with the observation that

jﬁmizipp ~YnX, = HX,) .
Using Proposition 3.2.9, we now identify the pt" stratum of the stratification (3.4.8) as
W(Z’p) N W(Zp) -~ Zp/(y n Zp) -~ Z’p/z’<p -~ Xp _. Xp
<7T(Z’p’)>p/<p S om(Z<p)  Z<p/(INZ<p) T (INZ)/(UN2<p) YN, TN
as desired. g



Observation 3.4.11. Taking Y = Zp in Proposition 3.4.10, we obtain a stratification of X/Zp =:
Xp\p over P, whose ptt stratum is 0 whenever p € D and is X, whenever p ¢ D (because in this
case ((Sp)ND) C (<p) (and using Lemma 3.4.5)). Evidently, the restriction to (P\D) C P is also a

102

stratification of Xp\p."” And in fact, the entire gluing diagram of X/Zp with respect to this latter

stratification is the restriction of that of X, in the sense that we have a pullback diagram

9 (X/Zp) — 4(X)

| |

P\D— P

This follows from the existence of a factorization

S > G()

(X/Zp) x (P\D) —— X x (P\D) —— X x P

VXidp\D

which itself results from Lemma 3.2.3(2)(c) (which applies by Lemma 3.4.5) by passing to right
adjoints in the commutative square (3.2.7).

3.4.5. Pushforward stratifications.

Proposition 3.4.12. Suppose that P — Q is any functor between posets.

(1) The functor
Q —— Clsx
w w (3.4.9)

qgr——— 2q = 2Zp_

—4q

defines a stratification of X over Q.
(2) For any q € Q, the ¢ stratum of the stratification (3.4.9) is Xp,.

Proof. We begin with part (1). Since X = (Zp),p, then also X = (Zg) .q. So, it remains to check

the stratification condition. For any ¢, € Q, we must show that there is a factorization

This follows from Lemma 3.4.5 by taking D = P<, and E = P<, and noting that P<, N P<, =
Pon(sr):

We now proceed to part (2). We write Z := Zp_ for simplicity, and we apply Observation 3.4.4
(taking D = P<,) to pass to the restricted stratification

P, 22 Clsg,

. . . Z . ..
102py general, if the stratification P =% Clsy has the property that Z, = 0 for all p € D, then its restriction

(P\D) = P EIN Clsy is also a stratification.
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of Z over qu with the same strata. Writing

s —— 1
Span := l
U
for the walking span, we define a functor P<, L, Span between posets according to the prescriptions
7771(5) = (<Pq) ) Wﬁl(t) = (SPq\<Pq) ) and 7771(”) = (P<q\<Pq) .
By part (1), we obtain a stratification of Z over Span. Thereafter, applying Observation 3.4.11 (and
Proposition 3.4.10) with D = {s — u} € Downgspan, we obtain a quotient stratification
{t} E— ClSZ/Zu
w w

t ———— Zt/Zs

over the one-element poset (since (St) N {s — u} = {s}). In particular, we find that

Xq = Zq/Z<q = ZPSq/ZP<q =: Z/Zu ~ Zt/ZS =: ngq/Z<pq =: Xp

q ?

as desired. g
3.4.6. Refined stratifications.

Definition 3.4.13. Given a functor

toP Re, Poset ,
we define the wreath product of P with R, to be the poset P R, whose objects are pairs (p,r)
where p € P and r € R, equipped with the lexicographic ordering: (p,r) < (p/,7’) in PR, if and
only if either p < p’ in P or else p = p' in P and r < ' in R,. This comes equipped with a canonical
functor

P!Rg,, —— P

w v

(p,r) ——p

Proposition 3.4.14. Choose any functor 1oP Re, Poset and, for each p € P, a stratification
R, 2% Clsy,
w w . (3.4.10)

r— (Yp)r

(1) The functor

PIRe —* Clsy
W w (3.4.11)

(p,7) —— z(1077”) = Pil((’ﬁp)r)

defines a stratification of X over PUR,.

(2) For any (p,7) € PR, the (p,r)™" stratum of the stratification (3.4.11) is (Xp).
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Proof. We begin with part (1).
We first verify that the functor (3.4.11) defines a prestratification. For this, consider any p € P.
If R, = @, then it must be the case that X, = 0 and so Z, = Z<,. Otherwise, we have Z, =

<2(pm)> by Lemma 3.2.10(2). Hence, we find that
P

reR

X = <Z’p>p€P = <Zp>{peP:Rp;éz} = <<Z(p7r)>T€Rp> = <Z’(p,r)>(pyr)€PZR. :

We note here that the same argument shows that for any D € Downp we have an identification

{pePR,£0}

Z(PiRa)s = 2D (3.4.12)

in Clsy.
We now verify the stratification condition. By Observation 2.4.5, it suffices to verify it for
incomparable pairs of elements of P! R,. There are two types of such pairs: pairs (p,r) and (g, s)
where p and ¢ are incomparable in P, and pairs (p,r) and (p, s) where r and s are incomparable in

Rp. We address these two cases in turn.

e Choose elements (p,r),(q,s) € P1Re such that p and ¢ are incomparable in P. Note the
equality

(S(p,m) N (5(a:5)) = (PR (<p)n(<q)

in Downp,r,. Hence, we obtain a diagram

~ ~

Z’(q,S)

iL iL

in which the identification is (3.4.12) with D = (Sp)N(=¢) and the factorization is guaranteed

by the stratification condition for the stratification of X over P.

e Given elements (p,r), (p,s) € PR, such that r and s are incomparable in R, the factor-

ization
Z(<prn(Ems) —— L)
i Ty
| Zp
Z’(pas) ir Z’p i X

follows from Proposition 3.4.9.
We now proceed to part (2). In light of the equalities
=(p,r) ={(p,r") € PARa: 7 <7} U{(p,r) € PARe:p <p} =: (p,(57)) U (PUR.)<
and

S(p,r) ={(p,r") € PARe 7 <7} U{(p,r") €PIRe:p' <p} =: (p,(°r)) U(P1Re)<,
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in Downpr, , we find that

x( - Z(p)r) N Z(p,r)/Z(Pankp B Z(p)r)/ZKp - (yp)r . (x )
) T = — = ~ I — - pJ)Tr >
b Z,<(pﬁr) Z’<(p,r)/Z’(PzR.)<p Z<(pﬁr)/2»<p (9p)<7“

as desired, using the identification (3.4.12) with D = (<p). O

4. THE O-MONOIDAL RECONSTRUCTION THEOREM

In this section, we upgrade our macrocosm reconstruction theorem (Theorem A(2)) to one that
accounts for operadic structures (Theorem C). We also establish the adelic stratification (Theo-
rem D), which is a symmetric monoidal stratification of a presentably symmetric monoidal stable
oo-category (satisfying mild finiteness hypotheses) over the specialization poset of its Balmer spec-
trum.

This section is organized as follows.

§4.1: We fix an oo-operad O (satisfying mild conditions) and recall the notions of O-monoidal

oo-categories and laxly O-monoidal functors.

84.2: We study the appropriate notion of an ideal subcategory of a presentably O-monoidal stable
oo-category.

84.3: We define O-monoidal stratifications of a presentably O-monoidal stable co-category. We
unpack the chromatic stratification of Sp in Example 4.3.8, which organizes the fundamental

objects of chromatic homotopy theory.

84.4: We define the oco-category that contains the O-monoidal gluing diagram of an O-monoidal

stratification.
84.5: We prove Theorem C as Theorem 4.5.1.

84.6: We recall the basic notions of tensor-triangular geometry and then prove Theorem D as
Theorem 4.6.11. We discuss the adelic stratification of 8p in Example 4.6.13. We explain how
symmetric monoidal stratifications contribute to the theory of tensor-triangular geometry
in Remark 4.6.14.

4.1. Preliminaries on O-monoidal oo-categories. In this subsection, we fix an oo-operad O
satisfying mild conditions and recall the notions of O-monoidal co-categories and laxly O-monoidal

functors.

Remark 4.1.1. We are primarily interested in symmetric monoidal co-categories. Indeed, the
reader will not lose much by simply reading every instance of the oo-operad “0” as “Comm” (a.k.a.
“Es”, a.k.a. Fin,), every instance of “O-monoidal” as “symmetric monoidal”, and so on. However,
we work in this greater generality because it requires almost no extra effort and yet encompasses
other situations of potential interest, notably (E;-)monoidal, braided (i.e. Eo-)monoidal, and more
generally E,,-monoidal co-categories for any 1 < n < oo (e.g. recall Remark 1.5.6).
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Notation 4.1.2.

(1) We fix an co-operad

which we assume

(a) to be unital,

(b) to be reduced (i.e. to have a contractible co-category of colors), and
(¢) to have a nonempty space of binary operations.

We write
(0% | Fin,) € Cat g,

for its defining object.

(2) Justified by the fact that the functor O® — Fin, restricts as an equivalence on underlying
oo-groupoids (by the assumption that O is reduced), we notationally identify objects of
O%® with their images in Fin,; for any n > 0 we write n := {1,...,n} € Fin and n, :=
{1,...,n}+ € Fin,.

(3) For any n > 0, we write

O(n) = homye(n,,1,)

! !

pt — homgin, (n,,1,)

for the fiber over the unique active morphism, the space of n-ary operations in O.

(4) We write
0%, C 0%

cls =

for the subcategory of closed (a.k.a. inert) morphisms.
Remark 4.1.3. A few comments regarding assumptions on the occ-operad O are in order.

(1) All three assumptions of Notation 4.1.2(1) are motivated by examples and by a desire for
simplicity of exposition; we expect that our results go through (mutatis mutandis) in greater
generality.

(2) Tt follows from assumption (b) of Notation 4.1.2(1) that O is the underlying oo-operad of

an ordinary (i.e. single-colored) operad in topological spaces or simplicial sets.

(3) Assumption (c) of Notation 4.1.2(1) is primarily useful in that it allows us to simplify our
notation, e.g. in Observation 4.2.9, Remark 4.3.5, and Observation 4.3.6. However, it also
serves to guarantee that the unique morphism Ey — O from the initial reduced unital oco-
operad is not an equivalence; this is convenient, as a number of our results do not hold as

stated in this degenerate case.
88



(4) The additional assumption that O is quadratic (i.e. that for all n > 2 every n-ary operation
is ((possibly only noncanonically) equivalent to) an iterated composite of binary operations)
would allow us to very slightly simplify certain conditions in §4.2 (from quantifying over all

n > 2 to quantifying merely over n = 2).

Definition 4.1.4.

(1) An O-monoidal co-category is a reduced Segal functor
02 2, Cat .
We also write
(€% | 0%) € coCartpe
for the cocartesian fibration that such a functor classifies, and we write
C:= €’®(l+) € Cat
for its underlying oco-category. These assemble into the full subcategory
Alg,(Cat) C Fun(0®, Cat) ,

whose morphisms we refer to as O-monoidal functors.

(2) We define the co-category whose objects are O-monoidal co-categories and whose morphisms
are right-laxly O-monoidal functors to be the indicated image in the diagram

Alge(Cat) c-------3 » Algl®(Cat)

cls
COC;

coCarto® —» Cat art/O® > Catcocart/(ﬁ)®

—
coCartyo Catepeart/0®

cls

whose lower right square is a pullback.
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(3) We define the co-category whose objects are O-monoidal co-categories and whose morphisms

are left-laxly O-monoidal functors to be the indicated image in the diagram

AlgO(Cat) e > A|g'@'ax(Cat)

Cal’t(o®)op —> Catifrt/(o(@)op —> Catcart/(o«@)op

Ca I’t(o® Yop —» Catcar‘t/((f)c@fs)op

cls

whose lower right square is a pullback.
Notation 4.1.5. For each n > 0, we write

O(n) x X" —— 5 ¢
W W

(1, (Xi)ien) —— Q)(Xi)ien

for the value of an n-ary operation p € O(n) on an n-tuple (X;);en € €™ of objects of C.

Remark 4.1.6. For each n > 0, each p € O(n), and each (X;);en € €*", a right-laxly O-monoidal

F . . .
functor € — D determines a natural comparison morphism

D e
QF(X))ien — F <®(Xz)z€n>

I3 Iz

in D.193 In fact, directly from the definitions, a right-laxly ©-monoidal functor € £y D determines
a functor Alg(C) EiN Algy (D) on oco-categories of O-algebras. Dually, a left-laxly O-monoidal
functor determines comparison morphisms in the opposite direction, and determines a functor on
oo-categories of O-coalgebras.

Observation 4.1.7. It follows from Lemma A.3.6 that given an adjunction F' 4 G between the

underlying oo-categories of O-monoidal co-categories, the following two types of data are equivalent:

e the additional structure on the left adjoint F' of a left-laxly O-monoidal functor;

e the additional structure on the right adjoint G of a right-laxly ©O-monoidal functor.'%*

1031y the case that n = 0, by assumption the space O(0) is contractible, and the comparison morphism determined
by its unique point is a morphism

1p —>F(]1(3) .

1041y deed, this fact motivates our choice of handedness in parts (2) and (3) of Definition 4.1.4: we take concordance
with the handedness of the adjoint as more fundamental than concordance with the handedness of the fibrations.
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It follows in particular e.g. that the right adjoint of an O-monoidal functor is canonically right-laxly

O-monoidal. We will use these facts without further comment.

4.2. Ideals in presentably O-monoidal co-categories. In this subsection, we study the appro-
priate notion of an ideal subcategory of a presentably O-monoidal stable co-category. We also show

as Proposition 4.2.14 that these are equivalent data to certain idempotent objects.

Local Notation 4.2.1. For the remainder of this section, we fix a presentably O-monoidal stable
oo-category R: that is, R is a presentable stable co-category equipped with the structure of an
O-monoidal co-category such that for all n > 2 and all p € O(n) the functor R*™ 2y R commutes

with colimits separately in each variable.
Notation 4.2.2. We write 1 € R for the O-monoidal unit object of R.

Remark 4.2.3. The object 1 € R is the unit with respect to all possible monoidal products in
R: for any n > 1, for any p € O(n), and for any X € R, there is a canonical equivalence
QX 1x,...,1x) = X
o

(where there are (n —1) copies of 1), and similarly where X is put in a different slot from the first.

Notation 4.2.4. We simply write ® := ®, in any situation where this notation is canonically
unambiguous, such as throughout Observation 4.2.10. (This unambiguity will then be an implicit

assertion.)

Definition 4.2.5. A full presentable stable subcategory J C R is called an ideal if it is contagious
under the O-monoidal structure, i.e. for all n > 2 and all y € O(n) there exists a factorization

Jx Rxn=1) B g

Mt
J

Notation 4.2.6. Given a set {K; € R}seg of objects, we write <K5);®€S for the ideal that they
generate. Likewise, given a subcategory D C R, we write <'D>® C R for the ideal that it generates.

Observation 4.2.7. Suppose that J C R is an ideal that is also a closed subcategory. Then, J
inherits an O-monoidal structure with unit object 15 := y(1x) € J, such that in the adjunction

) (4.2.1)
Y

the left adjoint iy is left-laxly O-monoidal and nonunitally O-monoidal, i.e. it preserves tensor

products up to natural equivalence but the unit only up to a morphism

. . €14

ir(Lg) ==ip(y(1lg)) —= 1y . (4.2.2)
It follows that the right adjoint y is right-laxly O-monoidal.

Definition 4.2.8. An ideal J C R which is also a closed subcategory is called a closed ideal if the
right adjoint y in the adjunction (4.2.1) is O-monoidal. We write

Idlr C Clsx

for the full subposet consisting of the closed ideals.
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Observation 4.2.9. Because the O-monoidal structure on R commutes with colimits separately in

each variable, the full subposet Idliz C Clsy is stable under colimits.

Observation 4.2.10. Suppose that J C R is a closed ideal, and consider the recollement
i p
SN TN
J¢—y— R+—v—R/J
1L 1
S L N o

It is straightforward to verify the following facts, which we will use without further comment.

(1) The object ir(1g) € R is an idempotent O-coalgebra object with counit morphism (4.2.2).
Moreover, tensoring with this counit morphism implements the colocalization iy, 4 y: for

any X € R, the diagram

in(ly)® X —=8 g X
2 2
ir(1y ®y(X)) X
2 /
iry(X)

canonically commutes.'®

(2) There is a canonical O-monoidal structure on R/J, such that
(a) the unit object is 1g /5 := pr(1lx) € R/J,
(b) the functor pz, is O-monoidal, and

(c) the functor v is right-laxly O-monoidal and nonunitally O-monoidal, i.e. it preserves

tensor products up to natural equivalence but the unit only up to a morphism
n
Ix —% v(pr(1x)) =: v(lgg) - (4.2.3)

Hence, the object v(lg/5) € R is an idempotent O-algebra object with unit morphism
(4.2.3). Moreover, tensoring with this unit morphism implements the localization p, - v:

for any X € R, the diagram

id
Ty 90X —222 5 (g © X

2 2
X v(lg/g @pr(X))

v(pr(X))

canonically commutes. '

105 hat is, for every p € O(2), the functor ir,(1g) ®, (—) is canonically equivalent to the composite i1y (recall
Notation 4.2.4).
106, particular, R/J < R is also the inclusion of an ideal (which is not generally a closed ideal).
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Remark 4.2.11.
(1) An idempotent O-coalgebra object in R is equivalently an object
(C = ]lgg) S R/IIR

such that for all n > 2 and all 4 € O(n) the morphism
Jdeyenid
Rc,....0) M@(M,O,...,C)

is an equivalence.
(2) An idempotent O-algebra object in R is equivalently an object
(1x —5 A) € Ry, )

such that for all n > 2 and all 4 € O(n) the morphism

ida,..id
Rl 4., 4) DL g

I3 7

is an equivalence.

Definition 4.2.12.

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)

(1) An augmented idempotent in R is an object (4.2.4) such that for all » > 2 and all

p € O(n) the morphism (4.2.5) is an equivalence.'%” We say that it is central if for all

n>3,all p € O(n), and all X;,...,X,,_5 € R, the morphism

Q , (g,idc,idx, ,...,id e )
RC.C. s X, ) B ), @1,

I3 Iz

is an equivalence. We write
ZAugldemq C R/IIR

for the full subcategory on the central augmented idempotents.

) Xn72)

(2) A coaugmented idempotent in R is an object (4.2.6) such that for all n > 2 and all

p € O(n) the morphism (4.2.7) is an equivalence.’®® We say that it is central if for all

n>3,all p € O(n), and all Xy,...,X,,_o € R, the morphism

Jda,idxy seenidx, _y)
Qs A, X, X)) (4,4, X

7 I3

is an equivalence. We write
ZcoAugldemy C Ry,

for the full subcategory on the central coaugmented idempotents.

S

107807 an augmented idempotent is equivalently an idempotent O-coalgebra by Remark 4.2.11(1).

108807 a coaugmented idempotent is equivalently an idempotent O-algebra by Remark 4.2.11(2).
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Observation 4.2.13. In the case that O is quadratic, it suffices to verify centrality for ternary

operations. For instance, if O = E;, an augmented idempotent C' € ZAugldemy, is central if and

only if for every X € R the morphisms
COX~COQX®lg LeQUX®E o x oo 24X Ode 4 oX o0~ XoC

are equivalences, while a coaugmented idempotent A € ZcoAugldemy, is central if and only if for

every X € R the morphisms

ADX A X @ Ly SACIXEN, f o x 0 A J0XB 4 ox A~ X0 A
are equivalences. If additionally O(2) is connected (e.g. if O = E,, for any 2 < n < o0), then the
condition of centrality is vacuous: every co/augmented idempotent is automatically central.

Proposition 4.2.14.

(1) The full subcategories
ZAugldemy C R/, and ZcoAugldemy C Ry,

are posets.

(2) There is a canonical commutative diagram

Idlx

(4.2.8)

cofib(e)
ZAugldem, ~ ZcoAugldem,
fib(n)

of equivalences.

(8) Given a central augmented idempotent C € ZAugldemg, for any 7 € O(2) we have an

identification
<O>® =Jor = {X € R : the morphism C ®, X £®ridx, 1 X ~ X is an equivalence} ,
and we may identify the right adjoint to its inclusion as

jC,T (,,,},,,,, R

with counit C &, (—) LN ®r(—) ~idx.

(4) Given a central coaugmented idempotent A € ZcoAugldemy,, for any 7 € O(2) we have an

identification
R/ (fib(n)>® = R/Jsib(n),r = {X € R : the morphism X ~ 13 ®, X 80X, 4 ®, X is an equivalence} ,

and we may identify the left adjoint to its inclusion as

)T

with unit idg ~ 1g ®@-(—) UL @7 (—)-
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Proof. We fix arbitrary C' € ZAugldemy and 7 € O(2), to which we will refer throughout the proof.

We begin by proving part (3), and then use it implicitly through the remainder of the proof. We
first verify that Jo C R is an ideal. It is clearly a full presentable stable subcategory. Now, for
any n > 2, any p € O(n), any X € J, and any Y7,...,Y,_1 € R, we may factor the morphism

C@r QX Yiseo Yoor) — I @ QX V1, Yoot) = QX Yy, Vo)
Iz Iz Iz

as the sequence of equivalences

C o, QX Vi, Vo) ¢ Cor R)C @ X, V1,..., Y0 1) (4.2.9)
Iz Iz
= 1x @, R)(C @, X, Y1, Yo 1) (4.2.10)
n
= Q)C @ X, Y1, Y1)
I
= Q)X Y, Ya) (4.2.11)
I

in which equivalences (4.2.9) and (4.2.11) use that X € J¢, and equivalence (4.2.10) uses the
centrality of C. So indeed, the subcategory Jo . C R is an ideal. Now, we have C' € J¢ ; because
C is an augmented idempotent, so we obtain the containment <C>® C Je,r. On the other hand,
clearly (C ®, X) € (C)® for any X € R, which implies that (C)® D J¢ .. This proves the asserted
equality <C>® = Jo,r. To verify that the right adjoint to its inclusion is as asserted, we observe
that for any X € Jo, and any Y € R, we have (C ®, Y) € (C)® =I5, and moreover we have the

commutative diagram
homg, . (X,C®;Y) :=homx(X,C ®,Y) ——— homx(X,Y)

)
N
2 c®’ 2 )

homy(C ®,; X,C ®,;Y) —— homzx(C ®@, X,Y)

which implies that its upper morphism is an equivalence. This completes the proof of part (3).

We now verify that the ideal Jo» C R is in fact a closed ideal. First of all, it is a closed
subcategory because the right adjoint R M Jo.- preserves colimits. So, it remains to verify
that this right adjoint is O-monoidal. Clearly 15, . ~ C, and hence this right adjoint preserves unit
objects. We now observe that for any n > 2, any u € O(n), and any Y7,...,Y, € R, we may factor

the canonical morphism

®(C Qr Y;)iEQ — C &r <®(Y;)16n>

w Iz
as the sequence of equivalences

R)(C @ Yi)ien ¢ C @, R)C @7 Vi)ien — C @ R)(Vi)ien
w w 7
using the centrality of C. So indeed, J¢, C R is a closed ideal.

We now verify that the association C' +— I » defines a functor

J- T
ZAugldemyz ——7 Idly
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given a morphism

C———C

\ / (4.2.12)

in ZAugldemg, we must verify the inclusion J¢ » C Jor ,. Using the equality Jo » = <O>®, it suffices
to verify that C € Jov . For this, we apply the functor C' ®, (=) to the commutative triangle
(4.2.12), which yields a retraction diagram

C®,C e - o C®, C

C®;1x

which proves the claim since (C'®, C’) € J¢v - and Jov » C R is closed under retracts.

We now prove that the subcategory ZAugldemy C R/, is a poset, i.e. the first half of part (1).
Suppose there exists a morphism C — C” in ZAugldemy. As we have just seen, this implies that
C € Jcr.» € R. Hence, we find that

hOmZAngjem:R (C, C/) = homgz/]l'R (C, C/) ~ hom( (C, C/) ~ pt

Jor,2) et
as desired.

Now, given any closed ideal J € Idlg, it is clear that ir(15) € R,q, is a central augmented
idempotent, and moreover that a morphism J C J’ in Idlg determines a morphism iy, (15) — i (1g/)

in Ry,: in other words, the association J +— i7,(1g) defines a functor

ZAugldemy <222 1414,

From here, we immediately obtain the mutually inverse equivalences on the left in diagram (4.2.8).
It is straightforward to verify the horizontal mutually inverse equivalences in diagram (4.2.8). Part

(2) immediately follows, as do part (4) and the second half of part (1). O

Corollary 4.2.15. Assume that O is quadratic and that O(2) is connected (e.g. O = E,, for 2 <
n<oo). Let R 5 R be a morphism in Algy(Prk), i.e. an O-monoidal left adjoint functor between
presentably O-monoidal stable co-categories. Then for any closed ideal J € Idly, the ideal

7= (FI)? C R
s a closed ideal of R', and moreover

ir(ly) ~ F(ir(1g)) € ZAugldemy, and v(lg ) = F(v(1g)g)) € ZcoAugldemy, .

Proof. Because F is O-monoidal, it preserves co/augmented idempotents. Moreover, by Observa-
tion 4.2.13, our assumptions on O imply that the condition of centrality is vacuous, so that we
obtain factorizations

R/HR jq'//ILR/ RILR/ jz]lg{//

J J e J ]

ZAugldemgp ----- > ZAugldem, ZcoAugldemgy ----- > ZcoAugldemy,
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Now, using Proposition 4.2.14(2), we find that

R 27 = (FO)® = (F(lin@)®)) = (Flin(1:))°
is indeed a closed ideal with i1, (15/) ~ F(ir(1g)). Using this, we compute that
v(lg /) = cofib(ir (13) — 1a) = cofib(F(ir(Lg) — 1x)) == F(cofib(ir(15) — 1x)) = F(v(1x/9)),
as desired. 0

Remark 4.2.16. Let us assume for simplicity that O = Comm, and let us simply write hom (—, —)
for the internal hom bifunctor of R. Then, in light of Observation 4.2.10(1) we may identify the
composite adjoints
Y iL
iL(]lj)®(—) : R L J L fR:homjg(iL(]lg%—)
ir Y

If ir.(15) € R is dualizable, then the composite right adjoint admits a further identification

iry ~ homg (ir(1g), =) ~ir(1s)" @ (),

in which case it itself admits a further right adjoint. Because y is a left adjoint and ig is fully
faithful, this is the case if and only if ig itself admits a further right adjoint. Likewise, in light of
Observation 4.2.10(2) we may identify the composite adjoints

pL v
v(lg/)® (=) : R T R/I pl R homy (v(1x/g), —)
v R

Now, the dualizability of v(1x/5) implies the further identification
vpr ~ homg (V(1r/g), —) ~ v(lg9)" @ (—) ,
which implies that this composite right adjoint itself admits a further right adjoint. Because v is a

fully faithful left adjoint, this is the case if and only if pr admits a further right adjoint.'% See e.g.
[BDS16] for more on these considerations.

4.3. O-monoidal stratifications. In this subsection, we define O-monoidal stratifications and

study their basic properties. We also discuss the chromatic stratification of Sp (Example 4.3.8).
Local Notation 4.3.1. For the remainder of this section, we fix a poset P.

Definition 4.3.2. A prestratification of R over P is an O-monoidal prestratification if it admits

a factorization

P Clsx

AN /

A
Idlx
An O-monoidal prestratification is an O-momnoidal stratification if its underlying prestratification

is a stratification.

Observation 4.3.3. Suppose that
P = Idly

is an O-monoidal prestratification. By Observation 4.2.9, for any D € Downp we have
Ip = <jp>peD € Idly C Clsy, .

10914 is not hard to see that ir admits a further right adjoint if and only if pr does.
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Notation 4.3.4. In the setting of Observation 4.3.3, we write
]lgD = y(]lgz) S jD

for the O-monoidal unit object of Jp.

Remark 4.3.5. Suppose that
P = Idly

is an O-monoidal stratification. Then, for any p < ¢ in P we have an equivalence
ir(ly,) ®ir(Ly,) —in(ly,) .

More generally, for any D — E in Downp we have an equivalence
ir(Lsp) ®ir(Ly) — ir(Ly,) -

Conversely, with the evident notation, there exists an (automatically unique) extension

P —2 Idlg

[
P
if and only if for any p < g in P the canonical morphism
iL(]].jp) ® iL(]].jq) — iL(]].jp)

is an equivalence.

Observation 4.3.6. An O-monoidal prestratification
P = Idly
is a(n automatically O-monoidal) stratification if and only if for any p, ¢ € P the canonical morphism

iL(]ljp) ®iL(]qu) Ry (lj(sp)m(sq)) — iL(]ljp) X iL(]qu)

is an equivalence.

Observation 4.3.7. Suppose that
P = Idly

is an O-monoidal prestratification. For each Q € Downp, this restricts to an O-monoidal prestratifi-
cation

Q = 1dly,, .
Hence, for every p € P the geometric localization functor

®,: R L9, " 9,/1<, =R,

is O-monoidal. It follows from the composite adjunction
Y pL

®,: R L Ip L Rp:p?
iR v

that its right adjoint pP is right-laxly O-monoidal. So for every p < ¢, the gluing functor

oP

(Pq
IRy —R— Ry

is right-laxly O-monoidal.
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FIGURE 4. The poset Pgp is the union of the totally ordered sets {{((p),c0) —
= ((p),2) = ((p),1) = (0)}}p prime Over their common maximal element (0).

Example 4.3.8 (the chromatic stratification of spectra). Consider the presentably symmetric

monoidal stable co-category R = 8p of spectra. We introduce the following notation.
e We write n € N for an arbitrary (finite, positive) natural number.

e We respectively write K,(n) and E,,, for the n'® Morava K- and E-theory spectra at the
prime p. By convention, we also set K,(0) = E, o = Q.

e For any E € 8p, we respectively write Ly and Ag := fib(idsp — Lg) for E-localization

and E-acyclification. We simply write L, for p-localization, L, ,, for E), ,-localization, and

Ly oo for (o< p<oo Fpn)-localization, and similarly for the corresponding acyclifications.*°

Then, the chromatic stratification is a symmetric monoidal stratification of Sp over the poset

Psp described in Figure 4:'11 namely, it is the functor

Ps, —= Idls,
v v (4.3.1)
pr—— 7,

defined by the assignments
Joy=38p,  Jwm = Apn-1LipSp,  and  J(p)c0) = ApocLip)SP -
110We use this notation because it is standard, but note that it mildly conflicts with that of Definition 2.4.6.

11T he adelic stratification of 8p is also defined over the poset Pgp, but it is slightly different (see Example 4.6.13).
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So, the minimal strata are equivalent to dissonant p-local spectra, while the remaining strata and

their geometric localization adjunctions may be identified as

P (0)=0Q®s(—) ®(),m) =LKy
Sp T , Modg =~ Sp(g) and Sp T o Lk, (n)SP > 8P((p) )
50 p((@)m)

(simply by verifying that their kernels are respectively AgSp and Ag, (,)8p). The poset Ps, is not
down-finite, and indeed the chromatic stratification (4.3.1) fails to converge for essentially the same
reasons that the adelic stratification of Mody, fails to converge as illustrated in Example 1.6.1.

Of course, the failure of the poset Ps, to be down-finite is not simply due to the infinitude of the
primes, but also to its failure to be artinian. Let us therefore study the chromatic stratification of
L(,)8p, a quotient stratification (in the sense of Proposition 3.4.10) of the chromatic stratification
(4.3.1) of 8p: namely, writing

Psp D PL(p)SP = {((p),oo) — ((p)v?’) — ((p)72) — ((p)v 1) — (O)}

and employing the identification Pp sp = (N®)® = {0 — --- = 2 — 1 — 0} for notational
simplicity, this is the functor
P8 e Idlr,,sp
v v (4.3.2)
pr——170
given by
Jo=Lpsp,  In=T(m)n) = Apn-1Lpdp,  and oo = I(p),00) = ApooL(p)SP -

In order to understand the behavior of the chromatic stratification (4.3.2) of L, 8p, we pass further

to its quotient stratification over
1% = {0 = o = 0} = (NF)P\ (S0 +1))
this provides a (necessarily convergent) stratification of
d0/dn+1 = Lp)8p/ApnLp)8p =~ Lp n8p

over [n|°P, whose microcosm reconstruction theorem recovers the n-dimensional fracture cube of
[ACB22] (recall Example 2.5.16). Hence, the chromatic stratification (4.3.2) fails to converge as a
result of the difference between harmonic localization and chromatic completion [Barl6].

4.4. O-algebra objects in Ll\/Iod,'_]'jf_B. In this subsection, we define the co-category that contains

the O-monoidal gluing diagram of an O-monoidal stratification.
Local Notation 4.4.1. In this subsection, we fix an oco-category B.

Observation 4.4.2. In the composite
lim{" {5

LMod jax.8 — LMod[{2 ;; ——22, Cat |

all three oco-categories admit finite products and both functors preserve them.

Notation 4.4.3. We write
Alg (LMod]i2 ) € Fun(0%, LMod[ 2 3)

for the full subcategory on the reduced Segal objects.
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Observation 4.4.4. In light of Observation 4.4.2, we obtain a canonical lift

imr.laxl
Algo (LModi {2 5) ™22 5 Alg (Cat)
fgt fgt

r.lax
%
LMod; i35 . Cat
lax

as the restriction to reduced Segal objects of the value of the functor Fun(O®,—) on the finite-
product-preserving functor LMod[{2 ;, M Cat.
Observation 4.4.5. There is a canonical equivalence
10Alg o (LMod {2 ;1) ~ homacat(l.lax(B), Algl™ (Cat)) (4.4.1)
of spaces. Indeed, by Theorem B.4.1 we have an equivalence
homcat (0%, LMod] 1% ) := homacat (0%, 2Caticare /1 tax(m)100) 22 homacae(l.1ax(B), Cateoeart /0@
112

of spaces, through which the equivalence (4.4.1) can be obtained as an equivalence of subspaces.

4.5. The O-monoidal reconstruction theorem. In this subsection, we prove our O-monoidal

reconstruction theorem.

Theorem 4.5.1. Let R be a presentably O-monoidal stable co-category, let P be a poset, and let
P 2% Idlg
be an O-monoidal stratification.
(1) There is a canonical lift

®
P ——?l.éf)—» Algls*(Cat)

%’) \ lfgt

of the gluing diagram of the underlying stratification of R to an O-monoidal gluing diagram.

(2) There is a canonical morphism

R 2% Glue®(R) := lim"'* ( P i Algh™ (Cat) ) (4.5.1)
in Algg(Cat) whose image under the functor Algy(Cat) 8 Cat is the morphism
R 25 Glue(R) = lim"= ( P 1 cat ) (4.5.2)
in Cat, so that the adjunction
R Tj‘]m) Glue(R)

H20n the other hand, the oo-categories Algo(LMod[ 2% ) and homaca(l.lax(B), Algly®(Cat)) are not equivalent;
this can already be seen in the case that B = pt.
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between oco-categories admits a canonical enhancement to an adjunction

®
g
_
R T Glue®(R)
IimS(P)
between O-monoidal co-categories whose left adjoint is O-monoidal and whose right adjoint

is right-lazly O-monoidal.

In particular, if the morphism (4.5.2) is an equivalence then the morphism (4.5.1) is also an equiv-

alence.

Proof. We begin with part (1). By Observation 4.4.5, it is equivalent to enhance the gluing diagram
4(R) € LMod, jax.p € LMod] 2
to an O-monoidal gluing diagram
G2 (R) € Algo(LMod[i2%p) C Fun(0%, LMod[ 3 p) -

We use Lemma A.3.5 to construct this as a locally cocartesian fibration over O® x P, which we
define to be the full subcategory
GO (R) Ly RO X P

—

0® x P
on the objects
{((X1,...,X5),p) €ER® xP: X; €R, CRforall i} 113
We first observe that this is indeed a locally cocartesian fibration over O® x P: over a morphism
(S4,p) % (Ty,q) in O® x P lying over a morphism Sy % T, in 0%, for any X € (Rp)*S and

Y € (Ry)*T we have the string of equivalences

homGe p (((9) 5 (X), p), ((p") " (Y), ) == homs ((p*) (X)), (p*)*" (V) (4.5.3)
=~ homgpxr (a(p”)*5(X), (p) T (V) (4.5.4)
~ hom g, )< ((Pq) T (p7) % (X),Y) (4.5.5)
~ hom(g,)xr (o (Bq) % (p7)*%(X),Y) (4.5.6)

= hom(Rq)xT
= hom(Rq)xT

in which
e equivalence (4.5.3) follows from the fact that P is a poset,

e equivalence (4.5.4) follows from the fact that R® — 0% is a locally cocartesian fibration,

e cquivalence (4.5.5) follows from the adjunction ®, - p? (or really the adjunction (®,)*7 -

(1)), and
e cquivalence (4.5.6) follows from the fact that ®, is O-monoidal.
113Because we are working over both P and O® x P in this proof, we avoid the potentially ambiguous notation

R® for R® x P.
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This identification of the cocartesian monodromy in the locally cocartesian fibration 4®(R) | (0% x
P) immediately implies condition (2) of Lemma A.3.5, and for its condition (1) we observe that for
each p € P the pullback to O%® x {p} is the cocartesian fibration (R,)® | O®. Thus, we have indeed
constructed a functor

®
02 L2, | Mod! 2, .

This is moreover a reduced Segal functor, which evaluates on each object n, € 0% as the locally
cocartesian fibration ¢(R)**™ | P (the n-fold fiber product with itself of the locally cocartesian
fibration 4(R) | P (recall Observation 4.4.2)). In other words, it defines an object

G2 (R) € Alge (LMod| 12 )

ax.P

lifting the object ¥ (R) € LMod[{>p, as desired.
We now proceed to part (2).

We begin by constructing a morphism
lim[ 126 (R® x P) — im[{Z 5 (9®(R)) . (4.5.7)
By definition, we have a morphism
RE x P +— G2(R)

in LMod; (0@ xpy, Which on each fiber is a right adjoint: over the object (S4,p) € Fin, x P it is

lax.

the product right adjoint
py XS
RXS (") (:Rp)XS )
By Lemma A.3.6, the fiberwise left adjoints

xS
RXS (‘I)p) (

Rp) xS
therefore assemble into a morphism

RO x P — 42(R) (4.5.8)

in LMod[jJ:;(O@Xp). We consider this morphism as a point in the lower right space in the diagram

homcae([1], Alg (LMod[12p))

ax.P

homca:([1], Fun(O%, LMod] %))
) (4.5.9)

homeat([1] x OF, LMod! 2% )

toloc.coCartpyjy 9@ xp < homcat([1], LMod[_',':;('(og,Xp)) > (4.5.8)
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of spaces, in which the upper vertical inclusion is definitional and the other two inclusions follow
from Lemma A.3.5. As such, we aim to show that the point (4.5.8) lies in the upper left space of

diagram (4.5.9). So, let us consider its image

e
l € woloc.coCartpy) 0@ xp - (4.5.10)

[1] x 0% x P

To first show that the point (4.5.10) factors through the lower vertical inclusion in diagram (4.5.9),

we verify conditions (1) and (2) of Lemma A.3.5 in turn.

(1) For each p € P, the pullback

11X 0@ x {p} ¢

1] x 0® 1] x 0% x P

(id[l]xc)@,constp)
is indeed a cocartesian fibration: it is classified by the morphism R 2o, Rp in Algy(Cat).
(2) Any pair of a morphism (4,.5) LN (4,T+) in [1] x O® and a morphism p < ¢ in P

determines a functor [2] — [1] x O%® x P classifying the commutative triangle

(i73+ap)
N ’
(iaS+7q) — (j7T+7Q)

and we must show that the resulting pullback

Elgg — €

l J (4.5.11)

2] —— [1] x O® x P

defines a cocartesian fibration over [2]. By what we have already seen, this holds when i = j
(because both of the locally cocartesian fibrations (R® x P) | (0% xP) and ¥®(R) | (0% xP)
satisfy condition (2)). In the remaining case where ¢ = 0 and j = 1, the pullback (4.5.11) is

the cocartesian fibration over [2] classifying the commutative triangle

:RXS
idmxsl \
:RXS (iRp)XT
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in Cat in which both rightward functors coincide with the diagonal composite in the com-
mutative square
RXS X RXT
(‘i’p)xsl J(‘i’p)”

(Rp)™® — (Rp)*T

Qi
®
in Cat (which commutes because R — R, is O-monoidal).

Hence, the point (4.5.10) does indeed factor through the lower vertical inclusion in diagram (4.5.9).
r.lax r.lax
)

Thereafter, considered as a point in homcat([1], Fun(0®, LMod|3xp)), i.e. as a morphism in Fun(O®, LMod| 3 p
its source and target evidently both lie in the full subcategory Alge (LMod[ {2 5) C Fun(O®, LMod!2,):

its source is the composite

® _
0® 25 cat =P coCartp — loc.coCartp =: LMod) jax.p — LMod[ {25 |, (4.5.12)
while its target is the object ¥®(R). Therefore, the point (4.5.10) lies in the uppermost space of
diagram (4.5.9), as we aimed to show. Hence, we may take its postcomposition
li r.lax
[1] — Algo(LModfi2p) —=55 Alg, (Cat)

which provides the desired morphism (4.5.7).

Now, as observed above, the object
(R® x P) € Algo(LModi3xp) < Fun(0%, LMod[ 3 p)
factors as the composite (4.5.12), so that we may identify the source lim[2*5(R® x P) of the morphism
(4.5.7) in Algy(Cat) C Fun(O®, Cat) in simple terms: it is the composite
0® 2%, cat =XP%, Cartper — Cat |

which classifies the oo-category Fun(P°P, R) equipped with its pointwise O-monoidal structure. This
receives a canonical morphism

R — Fun(P°P R)
in Algy(Cat).!** So, we obtain a composite comparison morphism

R — Fun(PP, R) ~ lim/{® o (R® x P) L2, fimriax (7 (R))

in Algy(Cat). Moreover, by construction, upon applying the forgetful functor
f.f. ® eviy
fgt : Algy (Cat) < Fun(0®, Cat) — Cat
we recover the morphism
R lim[ {356 (4 (R))
as desired. 0

Remark 4.5.2. It is not possible to prove Theorem 4.5.1 directly from Theorem 2.5.14, because
a presentably O-monoidal co-category is not defined by a diagram in PrSLt (as the tensor product

functors are required to be multi-cocontinuous rather than cocontinuous).

14T his canonical morphism factors through the strict limit lim) . p(R® x P), which can be similarly identified
with Fun(|P|, R) ~ Fun(|P°P|,R) equipped with its pointwise O-monoidal structure.
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4.6. Symmetric monoidal stratifications and tensor-triangular geometry. In this subsec-
tion, we construct the adelic stratification of a presentably symmetric monoidal stable co-category
(satisfying mild finiteness hypotheses) as Theorem 4.6.11. This is based in the theory of tensor-
triangular geometry, which we begin by reviewing; we refer the reader to the survey [Stel8] for
more background on this topic, which highlights the interaction between the small and presentable
settings. We unpack the adelic stratification of Sp in Example 4.6.13, and we explain how symmetric

monoidal stratifications contribute to the theory of tensor-triangular geometry in Remark 4.6.14.

Observation 4.6.1. The homotopy category of a stable co-category is canonically triangulated,
and (presentably) symmetric monoidal structures descend to (resp. exact and coproduct-preserving)
symmetric monoidal structures. Through this, one can largely apply results concerning triangulated
categories to stable co-categories without any modification; for instance, the condition of an object
being zero can be checked in the homotopy category, and the projection to the homotopy category
preserves co/products (indeed, this is true for any oo-category). We use this fact without further

comment.

Local Notation 4.6.2. For the remainder of this section, we specialize Local Notation 4.2.1 to
further assume that O = Comm, i.e. that R is a presentably symmetric monoidal stable co-category.
We assume moreover that R is compactly generated, and that its full subcategory R“ of compact
objects inherits a symmetric monoidal structure (i.e. the unit object is compact and the tensor

product of compact objects is again compact).

Definition 4.6.3. We say that R is rigidly-compactly generated if (in addition to the hypotheses
of Local Notation 4.6.2) its full subcategory of dualizable (a.k.a. rigid) objects is precisely R¥ C R.

Definition 4.6.4. A full proper stable subcategory p C R¥ is called a thick prime ideal if
e it is idempotent-complete,
e it is contagious under the symmetric monoidal structure, and
o forall X, Y e RV, if X @Y €pthen X eporY e€p.

We write Py for the poset of thick prime ideal subcategories of R“ ordered by inclusion.

Definition 4.6.5. The Balmer spectrum of R¥ is the topological space Spec(R“) € Top defined
as follows. First of all, the underlying set of Spec(R¥) is that of thick prime ideals in R*¥. Then, for
any object X € R¥, we define its support to be the subset

supp(X) := {p € Spec(R”) : X ¢ p} .

Finally, the topology on Spec(R“) is obtained by declaring that the subsets {supp(X) C Spec(R“)} xexw

are closed.!'t?

1151y fact, these subsets form a basis, so that every closed subset is of the form

() supp(Xs) = {p € Spec(R*) : {Xs}ses Np = &}
seS

for some set {Xs € R¥} cg of objects of R“.
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Remark 4.6.6. The specialization poset of the topological space Spec(R¥) € Top is precisely Px:
the membership p € m is equivalent to the containment p C gq. So, we may consider the support
of an object X € R¥ either as a closed subset of Spec(R*) or as a down-closed subset of Px.

Remark 4.6.7. Let X be a qcgs scheme. Thomason proved that there is a canonical isomorphism

Spec(Perf(X)) = X (4.6.1)

of topological spaces [Tho97, Theorem 3.15],116

with the correspondence being given by the support
of perfect complexes. Thereafter, Balmer upgraded the topological space Spec(R“) to a ringed
topological space [Bal05, Definition 6.1], in such a way that the isomorphism (4.6.1) naturally

upgrades to one of ringed topological spaces (and therefore one of schemes) [Bal05, Theorem 6.3].

Notation 4.6.8. For each p € Py, we define the full subcategories
I ={X €R”:supp(X) C (5p)} CR®  and  Jp:=Ind(Ty) = (I5) CR.

Observation 4.6.9. For each p € Px, the subcategory J, C R is obviously closed (recall Exam-
ple 2.3.2), and in fact it is a closed ideal by [HPS97, Theorem 3.3.3] (which is an abstraction of

[Mil92, Corollary 8]). As the assignment p — J,, is order-preserving, we therefore obtain a functor

Pr — Idlg
w v (4.6.2)

Definition 4.6.10. Whenever the functor (4.6.2) is a symmetric monoidal stratification, we refer

to it as the adelic stratification of R over Px.

Theorem 4.6.11. Suppose that R is a rigidly-compactly generated presentably symmetric monoidal

stable co-category, and suppose that R = (J,) Then, the functor (4.6.2) defines a symmetric

peEPR”
monoidal stratification of R over Px.

Proof. By assumption, the functor (4.6.2) is a symmetric monoidal prestratification. Note that if
X, Y € R¥ then

supp(X ® Y) C supp(X) Nsupp(Y)
by definition of a thick prime ideal. Since the symmetric monoidal structure commutes with colimits
separately in each variable, the stratification condition follows from Observation 4.3.6. 0

Remark 4.6.12. We indicate an example in which the condition that R = (Jp),p,
in Theorem 4.6.11 fails to hold.''” Let S be a countably infinite set, let ST denote its one-point

compactification, let R := homTop(S+,IF2) denote the commutative ring of continuous Fo-valued

appearing

~

functions on ST, and let R := QC(Spec(R)). Then there are canonical homeomorphisms S+ =
Spec(R) = Spec(R¥), and in particular the specialization poset Pg is discrete (as R has Krull
dimension 0). However, the functor
R (y)pepy H jp
pePx
is not an equivalence.

H65e¢ also [Nee92] for an affine version of this result, which originates in [Hop&7].
HU7We thank Scott Balchin for pointing out this example to us.
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Example 4.6.13 (the adelic stratification of spectra). The adelic stratification of 8p is quite similar

to its chromatic stratification (Example 4.3.8): namely, it is the functor

gf
ng — Idlgp
w w
pr—7
defined by the assignments

Hy=8p, . =40

. f f B
((p),n) — p,nflL(p)sp ; and J 0,

where

e we identify the poset of primes in the Balmer spectrum as Pg, (depicted in Figure 4) by
[Ball0, Corollary 9.5] (see also [[1S98]),

e we use the superscript f to denote the finite localization/acyclification functors [Mil92,
Definition 3], and

e the identifications of the minimal strata as zero follows from the fact that finite spectra are

harmonic [Rav84, Corollary 4.5].

Note that the telescope conjecture asserts that the morphisms Lg,nfl — Ly n—1 (or equivalently the

morphisms 47— A n_1) are equivalences.
p,n—1 /2

Remark 4.6.14. We view the theory of symmetric monoidal stratifications as an important com-

plement to the study of tensor-triangular geometry, for the following two reasons.

(1) While the Balmer spectrum has a universal property [Bal05, Theorem 3.2] it can be quite
difficult to compute. By contrast, our general theory of (symmetric monoidal) stratifications

is substantially more flexible.

(a) For instance, in addition to its rather subtle stratification indicated in Example 4.3.8,
the oo-category Sp of spectra admits an “arithmetic” stratification over Pmod,, which

behaves just as that of Mody itself as described in Example 1.6.1.

(b) Likewise, as we prove in Theorem 5.1.27, for a compact Lie group G, the co-category
Sng of genuine G-spectra admits a relatively straightforward stratification over the
poset P of closed subgroups of GG; compare this with the computations of its Balmer
spectrum [BS17, BHN 19, BGH20].

This flexibility allows for the systematic study of tensor-triangulated categories that is com-
patible with, but not bound to, their Balmer spectra; and it is of course further augmented
by the fundamental operations for (symmetric monoidal (recall Remark 1.5.4)) stratifica-

tions developed in §3.4.

(2) Our theory of symmetric monoidal stratifications appears to provide a compelling framework
for studying the “presheaf of triangulated categories” that serves as motivation throughout
the literature on tensor-triangular geometry (originating with [Bal02]), enhancing as it does

the presheaf of commutative rings introduced in [Bal05, Definition 6.1]. In this vein, we
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view our symmetric monoidal reconstruction theorem (Theorem 4.5.1) as encoding a form

of descent for this (pre?)sheaf. In particular, we expect that our theory straightforwardly

recovers the reconstruction results of e.g. [3al07, BF07].118

5. THE GEOMETRIC STRATIFICATION OF GENUINE G-SPECTRA

In this section, we prove our symmetric monoidal stratification of genuine G-spectra (Theorem E).
This gives a reconstruction theorem for genuine G-spectra when G is a finite group, which we unpack

in a number of examples.

Local Notation 5.0.1. In this section, we write G for an arbitrary compact Lie group, and we

write H for an arbitrary closed subgroup of G.

This section is organized as follows.
§5.1: We set our conventions regarding genuine G-spectra and prove Theorem E as Theorem 5.1.27.

§5.2: We study the gluing functors of the geometric stratification of genuine G-spectra, which are

versions of the Tate construction.

§5.3: We unpack our reconstruction theorem for genuine G-spectra in the cases where G €
{Cp, Cp2,Cpq, S} (for p and ¢ distinct primes). We also discuss the geometric stratification
of genuine T-spectra and the resulting reconstruction theorem for proper-genuine T-spectra.

85.4: We specialize our nanocosm reconstruction theorem to give a formula for the categorical

H-fixedpoints of genuine G-spectra (when G is finite).

5.1. The geometric stratification of genuine G-spectra. In this subsection, we establish the
symmetric monoidal stratification of genuine G-spectra as Theorem 5.1.27. We begin by laying out
our notation and recalling the facts that we need; for further background on genuine G-spectra, we
refer the reader to [LMSMS86, May96, MMO02].

Notation 5.1.1.

(1) We write
88

for the co-category of genuine G-spaces.
(2) We write
Oc C 8&¢
for the orbit co-category of G, the full subcategory on those objects of the form G/H.

(3) We write P for the poset of conjugacy classes of closed subgroups of G ordered by subcon-
jugacy (the posetification (i.e. homwise (—1)-truncation) of &¢).

1180¢ course, this notion of descent is necessarily oco-categorical, and cannot be carried through at the level of
homotopy categories. In particular, we expect that such recovery would repair the failure of uniqueness of gluings
that arises in [BF07], which appears to come of working with homotopy categories instead of co-categories.
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(4) We write
Sps“
for the oo-category of genuine G-spectra, i.e. the stable oo-category of spectral presheaves

on O¢ with the representation spheres inverted under the symmetric monoidal structure.

(5) We write
el
88¢ 1 " 8pE¢
*
QF
for the adjoint functors of (genuine G-)suspension spectrum and (pointed genuine G-)infinite

loopspace.

(6) We write
8p"“ := Fun(BG, 8p)
for the co-category of homotopy G-spectra.

(7) We write

Uc
$pe¢ T gph®
Ba
for the adjunction — a reflective localization — whose left adjoint is the forgetful functor and
whose right adjoint is the Borel-complete genuine G-spectrum functor.'*® We may also omit

the subscripts, simply writing U - 3 instead of Ug - B¢

Warning 5.1.2. Notation 5.1.1(3) introduces a mild clash: given closed subgroups H and K of G,
we may write H < K when H is subconjugate to K but not necessarily actually contained in it.
On the other hand, in such situations we generally assume (without real loss of generality) that H
is in fact contained in K. To emphasize that we truly mean containment, we use the notation C.

Remark 5.1.3. We will often refer to the set {G/H € Og}uep, (and variants thereof). This may
appear to be ill-defined, as the objects of P& are only conjugacy classes of subgroups of G. However,
a conjugation relation H' = gHg~! determines an equivalence G/H’ ~ G/H. Thus, this notation
is effectively unambiguous.

Notation 5.1.4. We respectively write
N(H) := Ng(H) and W(H) :=Wg(H):=N(H)/H
for the normalizer and Weyl group of the closed subgroup H < G.
Observation 5.1.5. We record the following facts, which we use without further comment.
(1) The set {G/H € Og C 88} pep, of orbits compactly generates 88“: by Elmendorf’s
theorem, the restricted Yoneda functor is an equivalence
88 = Fun(0,8) .

Under this identification, the genuine H-fixedpoints functor (—)#

at the object (G/H)° € 02F.

corresponds to evaluation

H9That is, B is the inclusion of the full subcategory of Borel-complete genuine G-spectra, i.e. those objects
E e Sng such that the canonical map EH — EM (from genuine H-fixedpoints to homotopy H-fixedpoints) is an
equivalence for all closed subgroups H < G.
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(2) The set {EX(G/H); € 8p&9}uep, of suspension spectra of orbits compactly generates
$ps°.

(3) The oo-categories 88 and $8% are both presentably symmetric monoidal, with their respec-
tive cartesian product (denoted x) and smash product (denoted A) defined pointwise: that

is, these symmetric monoidal structures commute with taking genuine fixedpoints.

(4) The oo-category Spe” is presentably symmetric monoidal via the smash product (denoted
®).

(5) The genuine G-suspension spectrum functor
SiG £ Sng
is symmetric monoidal.

(6) The Weyl group W(H) is (the underlying co-group of) the compact Lie group of G-equivariant
automorphisms of G/H.

(7) Given a normal closed subgroup H € Pg, the categorical H-fixedpoints functor fits into a
commutative square
_\H
g&(G/H) PR G M geC

Q) QF

Spg(G/H) . Sng
(=)

that is obtained by passing to right adjoints in the commutative square

g(G/H)  Resg/" gG
83 — 85

in CAlg(Pr™) (which itself is deduced from the universal property of genuine G/ H-spectra).
For an arbitrary closed subgroup H € Pg, the categorical H-fixedpoints functor is the

composite

H . ogG RN o ) (DT o gw(H)
()7 : 8p%" ——= Sp —— 8p )

(8) Categorical fixedpoints compose: if K < H < Ng(K) < G then the triangle

8peC =" §peWe (K)
O (m)H/%
SPEWG(H)
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commutes. 20

(9) At the level of underlying homotopy W(H )-spectra, categorical H-fixedpoints are corepre-
sented by X% (G/H)4: the diagram

canonically commutes.
Notation 5.1.6. We often simply write
(=) : speC i SpEWH) U, g hW(H)
for the composite.'?! Our meaning will always be clear from context.

Notation 5.1.7. We denote by ® the action on Sng of $8¢. So by definition, for any X € 8¢
and E € $p&¢ we have

XOFE~Y¥X®F e 8§ps° .

Definition 5.1.8. The geometric prestratification of Sng over P is the functor

Spe¢
S.
P ——— Clsgyc

w w

H+— Spi% = CF(G/K)4) ke
sending an element H € P¢ to the closed subcategory generated by the set
{EF(G/K)+ € (8p5°)“}ie<n
of compact objects (recall Example 2.3.2).

Definition 5.1.9. A family is an element of the poset Downp,,, i.e. a set of closed subgroups of G
that is closed under subconjugacy. To align with standard notation, we denote an arbitrary family

by .# € Downp, and given an element D € Downp, we also write .%p := D.

Local Notation 5.1.10. In this subsection, in the course of proving that the geometric prestrati-

fication is in fact a symmetric monoidal stratification, we may write
G
jH = SpgSH 5
for brevity. Similarly, for any family .# € Downp,, we may write

I5 = K ker =~ (55 (C/K) ) es -

120Note the canonical isomorphism Ww, (k) (H/K) 2 Wq(H).
121This is in contrast with our conventions for geometric fixedpoints appearing in Definition 5.1.20.
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Notation 5.1.11. For any family .# € Downp,., we write E# € 88 for the genuine G-space
characterized by the fact that

pt, HeF
(Eﬂ)Hﬁ .122
o, H¢gZF

Definition 5.1.12. For any family % € Downp,, the corresponding isotropy separation se-
quence is the cofiber sequence

EZ, — S —EZ (5.1.1)

in SEG, where the first morphism is obtained by applying the functor $&¢ i> S8 to the unique
morphism E.Z — pt in 8&°.

Observation 5.1.13. Applying the genuine H-fixedpoints functor (—)* to the isotropy separation

sequence (5.1.1), we obtain the cofiber sequence
N S0 =80 —spt, HeZF

(Eﬂlr — 58— Eﬂ") ~

pt — S0 80 HE.ZF
in 8,. Extending Definition 4.2.12 and Observation 4.2.13 to the unstable setting in the evident
way, we find that the objects
(EZ; — S%) € (88%) )50  and  (SFEF, — £FS°~S) € (8p°) g
are central augmented idempotents and that the objects
(S° — EZ) € (850, and (S=TFS® — DFEF) € (8p5°)g,

are central coaugmented idempotents. We use these facts without further comment.
Observation 5.1.14. For any family .# € Downp,, the counit of the adjunction

irL
'
Jg L 8p&°
Yy

at an object X € Sng is the morphism
EZ,0X —S°0X~X. (5.1.2)

In particular, the full subcategory iy (Jg) C Sp8Y consists of those objects X € $p8“ such that the

counit morphism (5.1.2) is an equivalence.

12285id differently, (EZ | Og) € RFib(0g) ~ Fun(ﬁg),S) ~ 88C fits into a pullback square

EZ# ‘L) e

|

ﬁt—w Pa
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Observation 5.1.15. It follows from Observation 5.1.14 that for any family .# € Downp,, the
closed subcategory J& C Sng is a closed ideal subcategory (as anticipated by the notation), with

symmetric monoidal unit object X E.Z#, ~ ir(y(1gmc)). In particular, there exists a factorization

Je

\\j /

Idlg e

CISSng

the geometric prestratification of Sng is a symmetric monoidal prestratification.

Observation 5.1.16. It follows from Observation 5.1.14 that the unit of the adjunction

PL
_—
In T SpeY
1%

at an object X € iy, (Jy) C $p8% is the morphism
X~80X —EZpyoX.

Hence, the full subcategory iL(V(Sp%G)) C 8p8Y consists of those objects X € S$p& such that in the

canonical commutative square

(EFep)s OX —— 5 X

(5.1.3)

(E%<py)+ AE@?H) OX — E<9\<H oX

the upper and right morphisms are equivalences. In turn, this is the case if and only if the square

(5.1.3) consists entirely of equivalences.

Notation 5.1.17. For brevity, we write
Edy := (EF<y)+ NEF<p) € 85C .
This notation is motivated by the Dirac delta function: this pointed genuine G-space is characterized

by the fact that

SO K=H
(E5H)K >~

pt, K+#H

Observation 5.1.18. The object Edy € SEC s idempotent with respect to the smash product.

Notation 5.1.19. We define the family
(2H):={K € Pg: K # H} € Downp,, .
Definition 5.1.20. The geometric H -fizedpoints functor
SpEC T, goaW(H)

is defined by the formula
PN (X):=(EFzg0X)T.
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We will be primarily interested in the composite

BH . §pEG 5, gpEW(H) U, g ()

3

which we refer to by the same name.

Remark 5.1.21. For any normal closed subgroup H < G, there is a canonical commutative diagram

G pL G
8pt” ———— 8p¥ /U7,

(5.1.4)

%«9
Spg(G/H)

Recall from Proposition 3.4.10 and Observation 3.4.11 that the geometric stratification of Sng over
P determines a quotient stratification of Sp&©/J Fy, OVer Pc\(ZH). Under the equivalence in

G/H)

diagram (5.1.4), this corresponds to the geometric stratification of Spg( over Pg/p (recall the

third isomorphism theorem).

Observation 5.1.22. One may also define the functor ® (but not the functor ®) using the
family (<H) € Downp,, in fact using any family .# € Downp, that does not contain H and such
that moreover H € Pg\.Z is a minimal element. Namely, for any such family we have a canonical

equivalence
¢ (—) = (EF o ()"
in Fun(Sng,SphW(H)).
To explain this, observe that (SH) € Downp, is the initial such family, so that for any such

family .# € Downp, we have a canonical morphism
EF<y — EF (5.1.5)

in 88 determined by the inclusion (SH) C %#. Then, we claim that for any X € SpeY, the

composite functor

§eG T4, goec (IOX g g (T g gW(r) U, g hw(m) (5.1.6)

carries the morphism (5.1.5) to an equivalence (although its truncation ending at Sng(H) does not

generally do so). Indeed, this follows from the fact that in the commutative diagram

$psC (-7 SpEWUH) U, g hW(H)

Resgl J/fgt ;

Sng Sp

(="
the left vertical functor is symmetric monoidal and carries the morphism X (5.1.5) to an equivalence

while the right vertical functor is conservative. Hence, the composite (5.1.6) carries the span
EZFsy ¢— EF<y — EF

. G .
in 8 to a span of equivalences.
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Observation 5.1.23. Geometric fixedpoints functors compose: if K < H < Ng(K) < G then the
triangle

Sng o N SngG (K)

H/K
[P P,
&

SngG(H )
commutes. We use this fact without further comment.
Observation 5.1.24. The geometric H-fixedpoints functor

$peC ﬂ sphW ()
is symmetric monoidal.

Observation 5.1.25. The geometric H-fixedpoints functor fits into a canonical commutative dia-

gram
§86 S, gneG

(=" oH

ghW(H)

* TSP

hW(H)

Observation 5.1.26. There is a unique nonzero morphism
Eéyg — Eﬂ"z H
in SEG, and it becomes an equivalence
Edy ~ Eéy AESy — EF» 5 AEdy
upon smashing it with its source.

Theorem 5.1.27. The geometric prestratification of SpE° over Pg is a symmetric monoidal strat-

ification. Moreover,
(1) its H™ stratum is the co-category
SP%G ~ §phW(H)

of homotopy W(H)-spectra, and

its geometric localization functor is the geometric H-fizedpoints functor
2) its H" tric localizati tor is th tric H-fizedpoint. t

H
$p&¢ 2, Sp"WH) ~ Sp%G )

Proof. Applying Observation 5.1.15, we see that it suffices to show that the geometric prestratifi-
cation is a stratification. For this, we first verify the two asserted identifications for the geometric
prestratification of Sng over P, and then we use these identifications to verify that it is indeed a

stratification.
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Towards verifying the two identifications, for any X € Sng, referring to the functors in the

diagram _
L pL
Spe¢ ; Ju I Spif

we compute in SphW(H) that

(ivpry(X))" ~ (Edp © X) (5.1.7)
~ (EF 2y NESy) @ X)H (5.1.8)
~ (EFz 5 @ (Edy @ X))
= oA (Edy © X)
~ oH(SF (Esy)) ® @7 (X) (5.1.9)
~ %°((Es) ) @ 7 (X) (5.1.10)
~ oH (X)), (5.1.11)

where
e equivalence (5.1.7) follows from Observation 5.1.16,
e equivalence (5.1.8) follows from Observation 5.1.26,
e equivalence (5.1.9) follows from Observation 5.1.24,
e equivalence (5.1.10) follows from Observation 5.1.25, and
e equivalence (5.1.11) follows from the equivalence (Edg)f ~ S° in ghWiH)

Now, to verify part (1), we begin by observing via the recollement

Jey —v— T —v—> SpE¥

\zi/‘ \IJ{R/

that the object pr, (XX (G/H)4+) € Sp%c is a compact generator, so that it suffices to verify that the

composite morphism
EPW(H) ~ E"Oendsic((G/H)Jr)
255 endg e (S (G/H))
Y - (5.1.12)
— endy, (X3 (G/H)+)
= endg eo (pL(SF (G/H)+))
of ring spectra is an equivalence. For this, by adjunction we compute that
end e (L (S (G H))) = homg o (pi. (3 (G/H) 1), pr (S (G H)..)
~ hom,,, (3G (G/H)+,vpL(X5 (G/H)+))
~ homgyee (S (G/H) 4 iLvpr (S (G/H)+)
~ (irvpr(EF (G/H)+ )"

~ oH(RX(G/H),) (5.1.13)
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~ (G H) 1)) (5.1.14)
~ X% (homsec (G/H,G/H)+)
~ B (W(H)S) |
where equivalence (5.1.13) follows from the equivalences (5.1.7)-(5.1.11) and equivalence (5.1.14)
follows from Observation 5.1.25. This string of equivalences of spectra evidently underlies the

composite morphism (5.1.12) of ring spectra, which proves part (1). To verify part (2), we compute
for any X € $p8“ that

homg eq (pr. (3G (G/H)+), pry(X)) = hom, , (X (G/H) 4, vpry(X))

homg o (X (G/H )+, irvpry(X))

=~ (irvpry(X))"

~ oA (X)), (5.1.15)

12

R

where equivalence (5.1.15) follows from equivalences (5.1.7)-(5.1.11).
We now verify that the geometric prestratification of Sng over Pg is indeed a stratification. Using
Observations 4.3.6 and 5.1.14, it suffices to observe that for any D,D’ € Downp,, the morphism

(Eeg.D)J’_ A\ (EﬁD/)_,_ A\ (Eeg.DﬁD/)_l’_ — (Eeg.D)J’_ A (Efg.D’)-i-
in 88¢ is an equivalence. O

5.2. The proper Tate construction. In this brief subsection we discuss the gluing functors of

the geometric stratification of genuine G-spectra, which are versions of the Tate construction.

Observation 5.2.1. By definition, the H*" geometric localization functor of the geometric strati-
fication of genuine G-spectra is the left adjoint in the composite adjunction
H

ResN(H) @, Uw ()
oH . Sng —> S gN(H) 4} Sng(H) —> SphW(H)

coIndN(H) ng 5W(H)

It follows that for any H < K in Pg, the gluing functor I‘% is the composite

$pEN) °g SpEV(K) Ywro) SpMW(EK)
G
§psC o (5.2.1)
°°/ndo i
V) SpENUD . SpEVU) . gpMWH)
H

ol Bw ()

When H and K are both normal subgroups of G' (which is automatic when G is abelian), then the

composite (5.2.1) reduces to the composite

§pe(G/K) U/ g h(G/K)

K/H
P

SpEG/H) . $p



Observation 5.2.2. The subcomposite

colndﬁ(H) ResNG(K)

SpENCH) $pEC , §pEN(F) T2, g (i)

of the composite (5.2.1) is zero whenever N(H) ? K.

Definition 5.2.3. We define the proper H-Tate construction to be the composite functor

q>H
(_)TH . Sth B Sng 5 Sng(H) U SphW(H)
@H
Remark 5.2.4. We make Definition 5.2.3 here in the interest of self-containment, but in fact the

proper H-Tate construction
(="

spht SphW(H)

admits a description making no reference to genuine equivariant homotopy theory, at least assuming
that G is finite. Namely, we prove as [AMGRD, Proposition 5.9] that it is given by quotienting by
norms from all proper subgroups of H: it is the lower composite in the left Kan extension diagram

Sph¢ (- SpWH)

Sth/StI/]

where p denotes the projection to the stable quotient by the thick ideal subcategory J C Sth
generated by the objects {E°(G/K)4 € 8p"°} k<. In particular, when G = H = C, for a prime

p, this recovers the ordinary Tate construction
(2% 2 (= = cofi (e, 72 () .
Remark 5.2.5. Assuming that G is finite, as [AMGRD, Theorem A] we identify the gluing functor
SpMWH) % SpMWE)
for any H < K in Pg: writing
C(H,K):={geG:HCgKg ' CN(H)},

it is given by the formula

W(K) w(gKg~')/H
E— % Indin(ennmgrg=1)) /g E T
[aEN(H)\C(H.K) /N(K)

(In particular, by Remark 5.2.4 this description also makes no reference to genuine equivariant
homotopy theory.)

Observation 5.2.6. We record here the following arithmetic facts surrounding the proper Tate

construction, which we use in §5.3.

(1) By [NS18, Lemma II.6.7], if G is a finite group whose order is not a prime power, then the

G vanishes.
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(2) By [NS18, Lemma 1.2.8], if E € $p"r and p acts invertibly on m,F for all n € Z, then
E™% ~ (.

(3) By the Segal conjecture [Lin80, AGMS85] combined with [NS18, Theorem 1.3.1], for any
E e Sphc” the spectrum EC» € 8p is p-complete.

Warning 5.2.7. In [AMGRd], for brevity we omit the word “proper” from the terminology “proper
Tate construction”.

5.3. Examples of reconstruction of genuine G-spectra. In this subsection, we give a number
of examples of reconstruction (via Theorem 2.5.14) that follow from the geometric stratification of
genuine G-spectra (Theorem 5.1.27). It is straightforward but notationally cumbersome to describe
the symmetric monoidal structures (which result from Theorem 4.5.1), and so we omit them from

the present discussion.

Local Notation 5.3.1. In this subsection, in the interest of uniformity, even in the case that G is

the trivial group we may include the forgetful functor
Sng L Sth
in our notation.
Remark 5.3.2. In this subsection, we continue to distinguish between the two geometric H-

fixedpoints functors appearing in the commutative diagram

Sng ‘bf} Sng(H)

S

phW(H)

as introduced in Definition 5.1.20. The H*" geometric localization functor for the geometric stratifi-
cation of genuine G-spectra is the functor ®, but we also use its identification as the composite U @f
in order to describe the structure maps in the right-lax limit (as first indicated in Remark 1.3.7),

which are given by the unit maps of various adjunctions of the form U — j.

Notation 5.3.3. We write
SphWG(-)
Pe —1llax—> Prst

for the gluing diagram of the geometric stratification of genuine G-spectra.

Example 5.3.4 (genuine C,-spectra). Let C, denote the cyclic group of order p, where p is a prime.
Its poset of conjugacy classes of closed subgroups is

Pcp ={€—>Cp} .

Theorems 5.1.27 and 2.5.14 provide an equivalence

_ytC
Sngp i> limlr,.llsi(,Pcp (Spthp(.)) — Iimr.lax (8phcp ( P Sp)
By : (5.3.1)
={ | Boesp' Biesp, |

(Eo)™C
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Via the equivalence (5.3.1), a genuine Cp-spectrum F € Sp8<r is specified by the data of

e its underlying homotopy C,-spectrum
Ey:=UE € 8p"r |

e its geometric C,-fixedpoints spectrum
By :=0%E:=Ud;'E € Sp,

and

e the gluing data of a comparison map
Udg” (E — BUE) =: (E; — (Eo)™)
from E; to the C,-Tate construction of Ey (recall Remark 5.2.4).

In other words, we have a recollement
iL o
e L N RN
€ o — Sp . (5.3.2)

D

Remark 5.3.5. It is not hard to see the Wirthmiiller isomorphism IndS” =~ colndS” within the
context of Example 5.3.4. Indeed, writing pt ~ Be = BC,, for the canonical basepoint, the adjoint

functors Indgf’ - Resgp - colndgf’ are obtained as the horizontal composites in the diagram
Ly irL
/ L—\ / N \
8p +—* 8p"Cr ———— 8ps<r
Note that for any E € Sp we have
wE)~ [[E~PE~]][E~wnE) :
Cp/e Cp/e Cp/e

both adjoints to the forgetful functor ¢* are given by inducing up from e to C,. On the other hand,

in the recollement (5.3.2), we see that for any E € $p"“* we have
ir(E)=(E+—— E™ «—0) and B(E)=(E+— E™ & E™%)
(via the identification of Lemma 2.2.1). Hence, the equivalence
IndS? :=ipu ~ B, =: colndS

follows from the fact that the C,-Tate construction vanishes on any homotopy C,-spectra that are

induced from the proper subgroup e < C,,.

Example 5.3.6 (genuine C,2-spectra). Let C,2 denote the cyclic group of order p?, where p is a

prime. Its poset of conjugacy classes of closed subgroups is

CP
Pc, = / \
e ——— Cp2
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Theorems 5.1.27 and 2.5.14 provide an equivalence

(5.3.3)

Spth
° . &8 ~
Spgcp2 i> Iimlr.II:;(( b (Spthpz( )) = Ilmr.lax X \Jz(\
~ Jax-Pe o N S
f
S thz S
P (-)™® P
Via the equivalence (5.3.3), a genuine C,2-spectrum E € Spgcp2 is specified by the following data,

which is precisely that of an object of this right-lax limit.!?3

e First of all, it determines the objects
— By :=UE € 8p"%*,
— B, = 0% E = UdIE € $p"r, and

— By = 0% F = U@gsz € 8p,

the homotopy-equivariant spectra underlying the genuine-equivariant spectra which are its

geometric fixedpoints with respect to the various subgroups of C.
e Thereafter, the unit maps of various adjunctions of the form U H § yield
— a map
US” (E — BUE) =: (E1 — (U¢§Pﬁ) Eo) = (B, —> (Eo)™)

in Sp"°r,

— a map

Uds™ (E —s BUE) =: (E2 — (U®§P2 ﬁ) EO) - (E2 — (EO)TCPQ)

in 8p, and

— a map

(5.3.4)

(5.3.5)

vogr (o5 8 — pUes E) ~ (vag” B — (VaF8) (V8§ E)) =t (B — (B1)) (5.36)

in Sp.

e Finally, these maps fit into a commutative square

B, (5.3.6)

(El)rcp
(5.3.5) (5.3.4)7CP

(EO)Tsz SN ((EO)TCP)TCP

(5.3.7)

123Right-lax limits of left-lax left [2]-modules are described in Example A.5.2(1). See also Example 2.5.16 for a

discussion of macrocosm and microcosm reconstruction for an arbitrary stratification over [2].
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in 8p, as a consequence of the commutativity of the diagram

(voir) (08) —— (voir) v ()

(Ucbgp) (@gp) UB —— (Uq>gp) sU (<1>§P) BU

C
in Fun(SngP2 ,8p) and the canonical equivalence <I>gp2 ~ @gp @gp.

Indeed, the lower morphism in the commutative square (5.3.7) is precisely the component at
Ey € Sphcp2 of the natural transformation in the lax-commutative triangle appearing in equiva-
lence (5.3.3).

Remark 5.3.7. Note that we have an equivalence
(_)rcpz ~ ((_)hCP)T

in Fun(8p"»?,8p) (see e.g. [AMGRD, Lemma 7.3]). Using this, we can apply results of Nikolaus—

Cp

Scholze to identify certain genuine C,2-spectra E € SpE<r as strict (Definition 2.7.2(3)). Strictness
amounts to the assertion that the underlying homotopy Cpz-spectrum Ey := ®°E € Sphcp2 satisfies
the condition that the morphism

TC,

(EO)TCPQ N ((EO)TCP)

is an equivalence (so that the morphism (5.3.5) is uniquely determined by the morphisms (5.3.4)
and (5.3.6)). Namely, this condition is guaranteed to hold assuming that the underlying spectrum
Ey € Sp

e is bounded below by [NS18, Lemma 1.2.1], or alternatively
e admits a Z-module structure by [NS18, Footnote 9] (see also [NS18, Lemma 1.2.7]).

In fact, similar arguments can be applied to give a simplified description of the strict objects of
SpE<r™ | as described in [NS18, Remark IL4.8] (see [Sha, §4]).* Indeed, [AMGRD, Theorem B]
applies them to give a simplified description of Z-linear genuine C,n-spectra (a.k.a. derived Mackey

functors).

Example 5.3.8 (genuine C,q-spectra). Let C,, = C, x C; denote the cyclic group of order pg,

where p and g are distinct primes. Its poset of conjugacy classes of closed subgroups is

e —— G,

et | ]

Cy, —— Cpq

124Note that bounded below objects of SngP" need not be strict (assuming n > 3).
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Theorems 5.1.27 and 2.5.14 provide an equivalence

(5.3.8)

Ilax.Pc,,

Spgcpq i> Iimr.lax (Spthpq(.)) — “mr.lax

Sp"r ————— 8p

(7)TCP

By Observation 5.2.6, all three functors Sphc”q — 8p appearing in the lax-commutative diagram
in equivalence (5.3.8) are zero (the two composite functors by parts (2) and (3), the direct functor
by part (1)). It follows that via the equivalence (5.3.8), a genuine Cp,-spectrum E € Sp8<re is
completely specified by the data of

e the objects
Eyy :=UE € 8p"Cra Egy = % E € §p"©e

FEig = ) € Sphc” Fiq = OCra S Sp

and

e the structure maps

(Eo0)™» «+— Eo1

c, 125
(Eoo) ™ AN
P
E10 E;Op — E11

Remark 5.3.9. Example 5.3.8 makes manifest the equivalence
Spgcp ® Spgcq L) Spgcpq

(where the tensor product is taken in PrsLt). In other words, a genuine Cp,-spectrum is equivalent

data to a genuine C,-object in genuine C,-spectra (and vice versa).'?°

Example 5.3.10 (genuine Ss-spectra). Let Sg denote the symmetric group on three letters. Its

poset of conjugacy classes of closed subgroups is

e — Co

ot T

C3*>S3

125These data are organized so as to reflect their positions within the diagram appearing in the equivalence (5.3.8).
126\We refer the reader to the brief discussion of [AMGRDb, §§1-2] for further support regarding these assertions.
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where C3 = Az denotes the alternating group (the normal subgroup of sign-preserving symmetries)
and Cy denotes the equivalence class of the three (non-normal) order-two subgroups generated by

the three transpositions. Theorems 5.1.27 and 2.5.14 provide an equivalence

Spg53 % |im|r,'||::p53 (SphWS?’(.)) — “mr.lax

(5.3.9)

By Observation 5.2.6, the functors (—)™3 and ((—)%“)*“ are zero (the former by part (1), the
latter by parts (2) and (3)). Moreover, by Observation 5.2.2, the gluing functor corresponding to
the relation Co — Sg is also zero. Therefore, via the equivalence (5.3.9), a genuine Ss-spectrum
E € Spg53 is completely specified by the data of

e the objects

E()() =UF € Sph53 E()l = ®C2E € Sp

Fiy = o S 8phc2 FEi = P53 F € Sp
and
e the structure maps

(Ego)™ «— En1

( EOO ) TCs

I

Eqg (E10)™¢ <— By

Example 5.3.11 (genuine and proper-genuine T-spectra). Let T denote the circle group. Its poset

of conjugacy classes of closed subgroups admits an identification
P']T o~ (Ndiv)b

as the right cone on the poset of natural numbers ordered by divisibility (under which the subgroup
Cn < T corresponds to the element n € N4V C (NYv)>) which we use implicitly for notational
convenience. The gluing diagram
. S hWr (@)
(Ndiv)> P o — Pret
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of the geometric stratification of genuine T-spectra may be depicted as

Sph(T/Cz) . Sph(T/C4)

N

Spn(T/Cs) ...

)

Sph'ﬂ‘

e its values are described by the assignments

N Sph(T/CT) (T/C:J)%T SphT and

e it assigns to morphisms r — rs and r — oo the horizontal functors in the diagrams

Sph(T/CT) (7)T(C’V‘S/C’V‘) Sph(T/Crs)
/e
(T/C,)T |2 2| (T/Cre)2(T/Cs) $p"(T/Cr) _ & Sp
s
SphT (=) Sph(T/CS) and (T/C,)=T|2 \A
. \/
\(\\;\T\C\‘\ 2| (T/Cy)=T sp"*
T
Sp"T

(in which the notation for the dashed functor is mildly abusive), and

e we have suppressed the natural transformations
Cs
(_)TCTS N ((_)TCT)T s
(not to mention higher coherences) for typographical ease.

Theorems 5.1.27 and 2.5.14 provide an adjunction

g
. r.lax .
SpgT —% I|m|||:X(Nd|v)‘> <8phWT( ))
m

(5.3.10)
sd((vdivy>)

However, Theorem 2.5.14 does not guarantee that the adjunction (5.3.10) is an equivalence, because
the poset (N9V)> is not down-finite (recall Remark 1.7.1). On the other hand, there is evidently a
restricted stratification

div\> Sp“g.
(N ) —_— ClSSpgT

J J

(5.3.11)



of the presentable stable co-category Spg<T of proper-genuine T-spectra (recall Observation 3.4.4).1%7

As the poset N4V is down-finite, Theorem 2.5.14 provides an equivalence

~

$pE™T L limi 3 (SP™))

5.4. Categorical fixedpoints via stratifications. In this subsection, we describe categorical
fixedpoints of genuine G-spectra as well as restriction and transfer morphisms among them in terms

of the geometric stratification.
Local Notation 5.4.1. In this subsection, we assume that the group G is finite.

Observation 5.4.2. The poset P is finite, and hence the geometric stratification of Sng over it

converges by Theorem 2.5.14. We use this fact without further comment.

Observation 5.4.3. Given a genuine G-spectrum F € Sng, using the nanocosm reconstruction of
Theorem A(4) (recall Remark 2.6.7), we may identify its categorical H-fixedpoints via the equiva-

lences

EH ~ homsng(EOGO(G/H)_’_’E)
ot (07 (S5 (G H).1), T, 070 1)

i b esd(Pe)

homg e (S°°((G/H)#™) ., T, 8O E) (5.4.1)

= I'm([n]ﬁPc)esd(Pc)

o~ Iim([n]i>(gH))GSd(SH)homC,SF)h\/\/@,(TL))(EOO(((}/1‘_{)4/’(71))+7 qu)sa(O)E) (5.4.2)
in SphW(H), in which
e equivalence (5.4.1) follows from Observation 5.1.25 and

e equivalence (5.4.2) follows from the facts
— that the functor
sd(SH) — sd(Pg)
is a fully faithful right fibration and
— that for any K £ H in Pg we have
SX((G/H) )1 = 5%(2)4 ~0.

Example 5.4.4 (categorical e-fixedpoints). Suppose that H = e < G is the trivial subgroup. Then,
for any genuine G-spectrum E € Sng, the composite equivalence of Observation 5.4.3 reduces to

an equivalence
E® >~ homgya (X7 ((G/e)) 4+, UE) >~ homg e (X*°(G/e),UE) ~UE
in Sth.
127The right vertical functor of diagram (5.3.11) arises from the fact that we may identify proper-genuine T-spectra
as the closed subcategory Spg<T € ClsspgT consisting of those objects E € SpeT such that the canonical morphism

ET — E" is an equivalence.
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ES ~lim

Example 5.4.5 (categorical Cp-fixedpoints). Suppose that H = G = C,, (and recall Example 5.3.4).

For any genuine Cp,-spectrum E € Spgcp, the composite equivalence of Observation 5.4.3 reduces to

an equivalence

homsp(5°°((Cp/Cp) 7)1, < )

l ~ lim

homgic, (5°((Cp/Cp)®)+, UE) —— homgp(5°°((Cp/Cp) )4, (UE)™)

in Sp.

P E

|

(UE)" —— (UE)™

Example 5.4.6 (categorical C,.-fixedpoints). Suppose that H = G = Cp,2 (and recall Exam-

ple 5.3.6). For any genuine C,2-spectrum E € Spgcp2 , the composite equivalence of Observation 5.4.3

yields a limit diagram

/ B (@< E)™r
Ecpz J{ (‘I)Cp E)th
(UE) S (UE) ™)<

" —

e (WEy <y

in Sp.

Local Notation 5.4.7. For the remainder of this subsection, we fix a subgroup K C H of the

chosen subgroup H C G.

Definition 5.4.8. The relative Weyl group of the nested pair K C H of subgroups of G is

W(K C H) = Wg(K C H) = NG(K>2NG(H) 7

the quotient by K of the intersection of the normalizers of K and H in G.'2® By definition, this

comes equipped with homomorphisms

W(K) «— W(K C H) W(H)
il i i
N(K) N(K) N N(H) N(K) N N(H) N(H)
K K N(K)N H H

Observation 5.4.9. Restriction defines a natural transformation

SpsC ()" SpWa H)

H’ﬂ 7 j )

Spth(K) , SphWG(KQH)

128\ ore invariantly, one can also describe W(K C H) as the group of automorphisms of the object (G/K —

G/H) € Ar(6¢) C Ar(S85).
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which is corepresented by the morphism
S (G/K — G/H)s

in Sng. In terms of nanocosm reconstruction, for any genuine G-spectrum F € Sng it may be

expressed as the composite

EH ~ Iim([n]ﬁ(sH))GSd(sH)homSp“W(*’("”(EOO((G/H)w(n))+= I‘g,@“’(O)E) (5.4.3)
— “m([n]i>(sK))esd(SK)homSPhW(”’(”)) (2°((G/H)?™), T ,9%0) E) (5.4.4)
; 00 @(n) »(0)
— llm([n]i)(iK))esd(SK)homSPhW(‘P(n))(E ((G/K) )+,1—‘¢(I) E) (545)
~ EX (5.4.6)

where
e the equivalences (5.4.3) and (5.4.6) follow from Observation 5.4.3,

e the morphism (5.4.4) is that on limits induced by the functor
sd(SK) — sd(SH) ,
and

e the morphism (5.4.5) is that on limits determined by a morphism in Fun(sd(<K), 8p) whose

component at an object ([n] 2 (SK)) € sd(SK) is precomposition with the morphism

S((G/K — G/H)?™)4

in SpMW(e(m)

Observation 5.4.10. Transfer defines a natural transformation

$psC (-7 §p"Wa ()

x| p | :

Spth(K) , SphWG(KQH)

which is corepresented by a morphism

S (G/H);: — SE(G/K), (5.4.7)
in Sng.129 In terms of nanocosm reconstruction, for any genuine G-spectrum FE € Sng it may be
expressed as the composite

EX ~lim homg e (5% ((G/K)#™) 1, T, 2¢O E) (5.4.8)

(In] (S K))€sd(< K)
~ i oo ®(n) #(0)
~ ||m([n]i>(SH))esd(SH)hOmSphW(¢(n)) (E*(G/K) )ty r,o E) (5.4.9)
129 : : : g ndg G :
The morphism (5.4.7) may be obtained by applying the functor §p&8"* —— 8p8~ to the morphism
55 (H/H) 4 — S5 (H/K) 4 =~ colnd 21 (S5 (K/K)+)
corresponding to the identity morphism
Rest! (S35 (H/H) 1) — S32(K/K)+

in Sp&k.
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— lim homg ey (5% ((G/H) ™) T, &7 E) (5.4.10)

([n]==>(SH))esd(< H)
~EH (5.4.11)

where
e the equivalences (5.4.8), (5.4.9), and (5.4.11) follow from Observation 5.4.3, and

e the morphism (5.4.10) is that on limits determined by a morphism in Fun(sd(= H), 8p) whose

component at an object ([n] 2 (SH)) € sd(<H) is precomposition with the morphism

®*(™) (5.4.7)
5

S ((G/H)? ™M), = 990 (S5 (G/H) ) D) (S (G/K) ) = S%((G/K)#),

in 8p"™(#(™) (using Observation 5.1.25).

6. THE METACOSM RECONSTRUCTION THEOREM

In this section, we prove the metacosm reconstruction theorem (Theorem A(1)), which easily
implies the macrocosm reconstruction theorem (Theorem A(2)) as proved in §2. It is organized as

follows.
86.1: We establish a canonical stratification of certain right-lax limits.

§6.2: We prove Theorem A(1) as Theorem 6.2.6. Recall that this is an adjunction, which is an
equivalence when the poset is down-finite. Its left adjoint takes a stratified presentable

stable co-category to its gluing diagram; its right adjoint is essentially constructed in §6.1.
86.3: We explain the theory of strict stratifications.

Local Notation 6.0.1. In this section, we fix a poset P.

6.1. Stratifications of right-lax limits. In this subsection we prove the omnibus Proposition 6.1.6,
which establishes a canonical stratification of certain right-lax limits as well as a number of its es-

sential properties.

Definition 6.1.1. A presentable stable left-lax left P-module is a left-lax left P-module whose
fibers are presentable stable co-categories and whose monodromy functors are exact and accessible.
These assemble into a subcategory

LMod! 2% (Pry) € LMod{12%5

r.lax

whose morphisms are those morphisms in LMod,2

p that are fiberwise left adjoints.

Local Notation 6.1.2. In this subsection, we fix a presentable stable left-lax left P-module
(€1 P) € LMod]\ 775 (Prs,)
For any morphism p — ¢ in P we write
Ep F—g> Eq

for its corresponding cocartesian monodromy functor.
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Local Notation 6.1.3. In this subsection, we write
X = lim[ >, (€) € Cat,
and for any subposet Q C P we write
- r.lax Pq . rlax
X = lim{ e (&) — lim3 o (€)
for the restriction functor.
Observation 6.1.4. It follows from Lemma A.6.8 that X is accessible.

Observation 6.1.5. It follows from Lemma A.6.8 that X is stable. We use this fact without further

comment.

Proposition 6.1.6.
r.lax

(1) The oco-category X = lim| 3% p(€) is cocomplete, and hence presentable by Observation 6.1.4.

(2) The functor

x (‘I’p)pEP ng
peP

18 conservative.
(8) For any subposet Q C P, the restriction functor
X = imiip (€) = imiiq(€)
preserves colimits, and hence admits a right adjoint by part (1).
(4) Choose any D € Downp.
(a) The restriction functor
X = lim{3p(€) = lim{5 5 (&) =: Zo

admits not only a right adjoint ir as guaranteed by part (3) but also a fully faithful left
adjoint i1, whose image consists of those objects X € X such that ®y(X) ~ 0 for all
q € P\D. In particular, for any p € P, we may consider

Zp o= iM% (<, (€) (6.1.1)
as a closed subcategory of X via iy,
(b) The right adjoint v to the restriction functor
X = lim{i5p(€) == “mlr.]l;:.(P\D)(‘s)

guaranteed by part (3) is fully faithful, and its image consists of those objects X € X

such that ®4(X) ~ 0 for all ¢ € D.
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(5) The closed subcategories (6.1.1) assemble into a stratification
P —=* Clsy = Clsjpy i ()
w w . (6.1.2)
pr—Zp = “mlr.]laa:.(ép)(g)
Moreover, our existing notation is consistent with this stratification in the following ways.

(a) For any D € Downp, we have

Zo = i (€) =~ (WM <, (€)) =t (Zp)ep -
(b) For any C € Convp, the Ct" stratum of the stratification (6.1.2) is
Xc = 2sc/Zec = lim[Tc(€)
and its C*" geometric localization functor
X 1= limf 5 (€) 5 {3 (€) ~ Xe

is the restriction functor.

(¢) For any p < q in P, the lax-commutative square

&p L lim[{ (&) =2 X
‘ 174 lq){zsﬂz} (613)
817 (p—zo> limlr:II::.{p<q}(8)

determined by the commutative square

Ep et lim[{2 (€)= X
‘ J/q>{p<q} (614)

810 T Iimlr:II:;((.{p<q}(8)

commutes. In particular, for every morphism p — q in P, there is a canonical identifi-
cation
I“P
X, —— X,
] ]
Ep T Eq

between the corresponding gluing functor for X (with respect to the stratification (6.1.2))

and the corresponding monodromy functor of €.

Warning 6.1.7. In the statement and proof of Proposition 6.1.6, we use notation corresponding
to recollements (such as iy, y, etc.) even before those recollements have been established.

Definition 6.1.8. A stable recollement is a diagram (1.1.1) among stable co-categories such that
there are equalities (1.1.2). (In particular, we use the same notation for the functors involved in a

stable recollement as we do for those involved in a recollement.)
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Remark 6.1.9. A recollement in the sense of Definition 1.1.1 is simply a stable recollement among

presentable stable co-categories.

Observation 6.1.10. Lemma 2.2.1 applies not just to recollements but to stable recollements:
neither the statement nor the proof relies on presentability in any way. We will use this fact

without further comment.
Lemma 6.1.11. Proposition 6.1.6 holds when P = [1].
Proof. 1t is immediate that we have a stable recollement
ir pL
g —v— X +—v— & (6.1.5)
1 1L
\ iR / \ PR
in which, writing
(Ey — TY(Ey) +— Ey) (6.1.6)
for an arbitrary object of X (where E; € &; for i € [1]),
e the three functors with source X are defined by the formulas
y(6.1.6) :== Ey , pr(6.1.6) := E | and  pgr(6.1.6) := fib(y) ,
e the two functors with source £q are defined by the formulas
in(E) = (E+—=TYE)+—0) and igr(E):=(E—T'Y(E)<TUE)),
and
e the one functor with source €; is defined by the formula
V(E) =0 0+«+— E).

In particular, we have an evident identification I'Y ~ ppir. Moreover, applying Lemma 2.2.1 to the

stable recollement (6.1.5), it is straightforward to verify that any functor J L X has a colimit

(colimg(yF) s T9(colimy (yF)) ~ prir(colimy(yF)) +— colimy(ppinyF) {22 colimg(pLF)) ,
so that X is cocomplete. The remaining claims are now evident. O
Lemma 6.1.12. Proposition 6.1.6 holds when P = [n] € A (for any n > 0).

Proof. The claim is immediate if n = 0, and if n = 1 this is the content of Lemma 6.1.11. So
suppose that n > 2. Let us write Y := Iim|'_'||:>f_{1<,,,<n}(€).

Consider the functor [n] = [1] characterized by the fact that 7='(0) = {0}. In light of
Lemma A.6.8, using the composability of right Kan extensions with respect to the composite

sd([n]) dm, sd([1]) — pt, we obtain a pullback square

X —— Fun([1],Y)
| |
&g — Y
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in which the left vertical functor and the composite X — Fun([1],Y) = Y are the canonical restriction

functors. This immediately yields a stable recollement

SN T
o +—v— XN +—v—>Y | (6.1.7)

N

in which the functors y and py are the canonical restriction functors. Note moreover that &g
is presentable by assumption, Y is presentable by induction, and the composite functor prig is
accessible in light of Observation 6.1.4. So, it follows from Lemma 6.1.11 that X is presentable: that
is, we have proved part (1).

Using the recollement (6.1.7) and Lemma 2.2.1, we see by induction that the functor
Di)icin
X (Pi)ic[n) H €,
i1€[n]

is conservative and preserves colimits; in particular, we have proved part (2). Since any subposet
Q C [n] whose inclusion is not an isomorphism is of the form Q = ]_[?Zl[ij] where i; < n for all j,

we then also see by induction (with respect to parts (2) and (3)) that the restriction functor
Pq_ .
X == limj13q (&)

preserves colimits. So, we have proved part (3).
We now turn to part (4). If D = & then part (4) is trivial, while if D = {0} then part (4) follows

<i) = [i]

from the recollement (6.1.7) (and part (2) applied to Y). So, we may assume that D = (
where 1 < i < n. Noting the factorization

X — Y — limfiZ i (€)

of the restriction functor, we find that part (4)(b) follows from induction and the recollement (6.1.7).

So it remains to prove part (4)(a). For this, we introduce the notation
W; = |im|r.'||;>):,{1<---<i}(8)
and make the following observations.
e By induction, we have W; € Clsy.
e Replacing [n] with [i], the recollement (6.1.7) becomes an analogous recollement
1 1
S in A \pn A
e The diagram

o 2L x P,y

H yl ly (6.1.9)

among restriction functors commutes.
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e The fully faithful inclusion ig of recollement (6.1.7) (resp. (6.1.8)) has image consisting of
those objects X € X (resp. X € Z;) such that for all j € {1 < --- < n} (resp. j € {1 <
- < i}) the structure morphism ®;(X) — I'}(®o(X)) is an equivalence. It follows that the

lax-commutative square

determined by the left commutative square in diagram (6.1.9) commutes.

Using these observations and applying Lemma 2.2.1 to the recollements (6.1.7) and (6.1.8), we find
that the restriction functor X <% Z; is described by the formula

2 lim" ™ (£ L8 W ) 42 i (£ L0 ) =
v w
(E+— prir(E) «— y(Y)) +—— (E+— prir(E) «+—Y)

so that it admits a left adjoint described by the formula

2y 2l (89 ZEE W, ) el (89 22 ) & X
W w
(E P—)pLiR(E) — W) [EEEEN (E ’_>pLiR(E) « ZL(W))

which by induction is fully faithful and has image as desired.
We now conclude with part (5). Observe that the closed subcategories
{z; = lim{ < (&) € Clsx}

llax.(= ien]

evidently assemble into a functor [n] M Clsy, which is clearly a prestratification and hence is a

stratification by Observation 2.4.5. Moreover, assertion (5)(a) is trivial, and assertion (5)(b) follows

from part (4)(b) (applied to D instead of P). To prove part (5)(c), in light of the commutative

\*& /)
//q

diagram

r.lax r.lax

I.lax. [n]p//q IImI lax.[n]

lim

we see that it suffices to assume that p = 0 and ¢ = n. Moreover, applying part (2) of Lemma 6.1.11,
we see that it suffices to prove that the natural transformation of diagram (6.1.3) becomes an

equivalence upon postcomposition with the functor

s r.lax Pn
llml.llax.{0<n}(€) — &p
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that is, that the natural transformation in the diagram

an

/ L,w 1]
S A
po\[ 17 th

|im|r.'||:xx.{o<n}(8) s,  Cn

is an equivalence. By Lemma A.6.8, every object of Z,,_1 := Iim[‘,'jfv[nfl] (&) is the limit of a diagram
indexed by the finite poset sd([n — 1]); by our inductive hypothesis, for the image p°(X) € Z,,_1
of any object X € &g, this diagram is equivalent to its right Kan extension from the full subposet

sdo([n — 1]) C sd([n — 1]) on those objects ([i] < [n — 1]) € sd([n — 1]) whose image contains

pln=1]

0 € [n —1]. Note that this finite limit is preserved by the composite Z,,_1 AN TN &, of exact
functors. Because ({0} — [n — 1]) € sdo([n — 1]) is an initial object, it follows that the composite

0
functor g Ly 2y &y, is canonically equivalent to the monodromy functor £9 — &,,, which proves
the claim. 0

Proof of Proposition 6.1.6. Observe the equivalence
X = imf 126 () = limuypyec(a o (nmI o ](5)) . (6.1.10)

It follows from Lemma 6.1.12 that the functor (A ,p)°P M Cat factors through the subcate-
gory Prl c Cat: each oo-category lim2* (n](€) is presentable by its part (1), and for each morphism
[m] — [n] in A/p the corresponding restriction functor limy; 2 m](€) < Iim,'_’fjf_[n]((‘l) preserves col-
imits by its parts (2) and (3). Hence, the identification (6.1.10) shows that X is presentable; that
is, we have proved part (1). Using part (2) of Lemma 6.1.12, equivalence (6.1.10) also proves part
(2). Thereafter, the evident functoriality of equivalence (6.1.10) in the variable P proves part (3).
We now prove part (4)(a). Given our fixed element D € Downp, observe the adjunction
Ap ﬁ> Ap
in which the right adjoint is given by intersection with D C P; thereafter, observe its opposite

adjunction
((=)nD)**
(A/p)eP T T (Ap)P . (6.1.11)

Using the unit of the adjunction (6.1.11), we obtain a morphism

limii3% o (€)
— s

(A/p A/p)oP Cat

6.1.12
% / (6.1.12)
(A /p)*®

in Fun((A /p)°P, Cat), which upon taking limits over (A p)°P yields a morphism

||m([ ]J,P)OG(A/P)OP (||m| ||ax[ ](8)) — “m([n]\LP)Oe(A/P)op (Ilm[||::([n]mD)(8)) . (6113)
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On the one hand, the source of the morphism (6.1.13) is identified as X via equivalence (6.1.10).

On the other hand, because the functor (A /p)°P (=)o), (A /p)°P is initial (being a left adjoint),

we may identify the target of the morphism (6.1.13) as
lim(n)pyoc(a pyer (“mf'ulfxx.([n]mo)(g)) =~ lim((n)ypyoe(a p)er (“mffu'fxx,[n](g)) ~ lim[ 32 p (&) -
Hence, the morphism (6.1.13) is the restriction morphism
X = lim{igxp(€) == lim[13p(€) -
We now make the following observations regarding the morphism (6.1.12) in Fun((A p)°P, Cat).

e For each object ([n] | P)° € (A/p)°, the component of the morphism (6.1.12) is the

restriction functor

lim{ 2% 1 (€) =5 im{i2 (npy (€) - (6.1.14)

I.lax.[n]

By part (4)(a) of Lemma 6.1.12, the functor (6.1.14) admits a fully faithful left adjoint
i1, whose image consists of those objects X € Iimlr.'||::.[n](8) such that ®4(X) ~ 0 for all
q € ([n] N (P\D)).

e For each morphism ([m] | P)° — ([n] | P)° in (A p)°P, i.e. for each commutative triangle

[m] «——— [n]
P
the component of the morphism (6.1.12) is the commutative square

r.lax

1 ] () == iM% (11apy (€)

l l (6.1.15)

lim{ 2% 1 (&) —5— M2 (1) (€)

lim

of restriction functors. Moreover, the lax-commutative square

r.lax

11 (] (€) 2= im0y (€)

Lo~

o (€) A lim{ 2 (1) (€)

lim

lim

determined by the commutative square (6.1.15) is in fact commutative as a result of our

characterization of both functors iy,.
Hence, we find that the morphism (6.1.12) in Fun((A /p)°P, Cat) admits a left adjoint

lim{ 1% (erpy (€) — lim{137 o (€) (6.1.16)

I.lax.®

whose components are fully faithful. Therefore, upon taking limits over (A p)°?, we obtain a fully
faithful left adjoint

r.lax

limy 12 o (€) —



In order to characterize its image, we note that by construction, for any ([n] | P)° € (A /p)% we

have a commutative square

r.lax r.lax

lim{ 3% 0 (€) —r lim[ 3% p(E)
yl Ly : (6.1.17)

lim{ 2 (o) (€) < lim[ 2% 1 (€)

I.lax.[n]

Taking n = 0, the commutative square (6.1.17) immediately implies that for any X € lim[{=(€)
and any g € P\D we have ®,(i5,(X)) ~ 0. On the other hand, given an object X € lim{2*5(€) such
that ®,(X) ~ 0 whenever ¢ € P\D, again using the commutative square (6.1.17) with n = 0, by
part (2) we see that the counit morphism i;,yX — X is an equivalence. So, we have proved part
(4)(a).

Part (4)(b) follows from an essentially identical argument to part (4)(a).

We now conclude with part (5). We first observe that the closed subcategories

{2y = limii <, (€) € 01sx}pep

6.1.2
evidently assemble into a functor P M Clsyx, which is a prestratification by part (2) and satisfies

the stratification condition as a result of part (4)(a) (applied to both P and (Sp)). Moreover,
assertion (5)(a) follows from part (2) (applied to D instead of P), and assertion (5)(b) follows from
part (4)(b) (applied to D instead of P). To prove part (5)(c), writing C € Convp for the convex
hull of the subset {p,q} C P (i.e. the full subposet on those elements r € P such that there exist

morphisms p — r — ¢), in light of the commutative diagram

e 2

limf 3 c(€) ———5— lim[i3c(€)

we see that it suffices to assume that p € P is initial and g € P is terminal. Now, consider the full
subposet sd, ;(P) C sd(P) consisting of those objects ([i] < P) € sd(P) that contain both elements

p and ¢ in their image, and consider the morphisms

constg, <— lim{ 2, (&) (6.1.18)

l.lax.®

in Fun(sd, 4(P)°?, Cat) whose components are given by restriction. Because the inclusion sd, ,(P) C
sd(P) is final (so that its opposite is initial) and moreover sd, ,(P) has contractible oco-groupoid
completion (as it has an initial object), applying the functor limsy _(pyer to the morphism (6.1.18)
yields the morphism

r.lax

Ep id limpisep(€)
in Cat. On the other hand, by (5)(c) of Lemma 6.1.12, the morphism (6.1.18) admits a right adjoint

constg,, — lim{ 2, (&) (6.1.19)

l.lax.®

in Fun(sd, 4(P)°?, Cat). The component at the object ([1] dp<d}, P)° € sd, ¢(P)°P of the limiting

cone of the morphism (6.1.18) is the commutative square (6.1.4), and so the component at that same

object of the limiting cone of the morphism (6.1.19) is the desired commutative square (6.1.3). O
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6.2. The metacosm reconstruction theorem. In this subsection, we prove the metacosm re-
construction theorem as Theorem 6.2.6.

Definition 6.2.1. Let X and X’ be P-stratified presentable stable oco-categories. We define a
morphism between them to be a left adjoint functor X — X’ satisfying the condition that for every

p € P there exist (necessarily unique) factorizations

X — X X — X
1L]\ ]\iL and yl Yy
Zp ----- > 2, Zp ----- » 2]

In this way, we obtain an oo-category

Stratp

that we refer to as that of P-stratified presentable stable cc-categories.
Observation 6.2.2. The forgetful functor Stratp — Pr’ is conservative.
Notation 6.2.3. For any (€ | P) € LMod] 2% (Prg), we write

lim{iax 4 (€) € Stratp

r.la

for the P-stratified presentable stable co-category lim| 2 p(€) of Proposition 6.1.6.

Observation 6.2.4. Given a morphism

e — ¢ (6.2.1)

in LMod[ 2% (Prg), the induced functor
lim{ 12 p (&) — lim 1 p(€) (6.2.2)
lies in Stratp: in other words, we may upgrade Notation 6.2.3 to a functor

li r.lax

LMOdIr.]l:;.)PL(Prst) e, Stratp .

Indeed, the functor (6.2.2) preserves colimits by parts (2) and (3) of Proposition 6.1.6, it obvi-
ously commutes with the restriction functors y, and it commutes with their left adjoints iy by
Proposition 6.1.6(4)(a). We use this fact without further comment.

Observation 6.2.5. For any P-stratified presentable stable co-category X € Stratp, its gluing

diagram
g(:X:) S LMOd|,|aX,p

is in fact a presentable stable left-lax left P-module. We use this fact without further comment.

Theorem 6.2.6. There is a canonical adjunction

9

Stratp .1 LMod[ 2% (Prs) (6.2.3)

s oorlax
Ilm\.\ax.o

whose Tight adjoint is fully faithful, which is an equivalence whenever P is down-finite.
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Proof. Fix arbitrary objects X € Stratp and (€ | P) € LMod] 2% (Prs). The adjunction (6.2.3)
may be extracted from the commutative diagram

r.lax r.lax

homstrat, (X, lim[i3 4 (€)) — homp,z (X, lim[33p(E)) —— homcat (X, lim{ i3 p(€))

I I

2 hom yoqtoL (pr, ) (X, &) = hom g (X, €)

I.lax.P

IZ (6.2.4)

homLMod:::::iée(Prst)(S,%(DC)) —— hom 4 (&,X)

]

hom o griecz pr, ) (4(X), €)

Ilax, R
I.I::jP (Prst)

in 8§ that we explain presently.

e The equivalence in the right column of diagram (6.2.4) follows from the adjunction const -
lim{i3%p-
e The notation LMod, 125 (Pr;) has the evident meaning, analogous to the notation LMod! 2%

introduced in Definition 6.1.1.139

e By parts (2) and (3) of Proposition 6.1.6, a functor X — lim[{2*5(&) preserves colimits
if and only if for every p € P the composite functor X — lim{{2*5(&) — &, preserves
colimits. Hence, in diagram (6.2.4) the equivalence in the right column factors as the upper

equivalence in the middle column.

e The lower equivalences in the left and middle columns of diagram (6.2.4) follow directly
from Lemma A.3.6: over each object p € P, these equivalences are obtained by passage
between adjoints.

e In diagram (6.2.4), we deduce the factorization of the composite equivalence in the middle

column as the upper equivalence in the left column as follows.

r.lax

— Given a morphism X — lim 5,

(&) in Stratp, it is immediate that for each p € P there
exists a factorization

X s i) — &,

that is necessarily a left adjoint. This proves the downwards factorization.

— Suppose we are given a morphism X < € in LMod::::ijg(Prst) that admits a factorization
X — &
f_fI . (6.2.5)
9(x)

13014 s also explained in Notation 7.0.3.
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Fix any p € P, and note that the existence of the factorization (6.2.5) implies (and in

fact is equivalent to) the existence for every ¢ € P of a factorization

X — “mlrjlaa:.P(g)

%i qu : (6.2.6)

We make the following observations.

x In the diagram

qu4> Heq

q&p q&p

(%)WT T@q)qu

X ———— lim{33%p(€)

3

the upper square commutes as a result of the factorizations (6.2.6) and the left
vertical composite is zero as a result of the stratification condition. Because the
right vertical composite is a fiber sequence by Proposition 6.1.6(4)(a), we obtain

the indicated factorization.

x The existence of a factorization

r.lax

X ——— lim[ 13 p(E)

is equivalent to the assertion that if an object X € X is in the kernel of the
functor X % Z, then it is sent to zero under the composite X — lim[12 (&) %

Iim[_]'jj_(gp)((‘l). This latter assertion follows from the diagram

X ——— lim[13p(€)

| T

Zp [imP12x <p(€)

llax.(=

(‘I’q)qépl l((bq)qip
[[% —— []&

q<p q<p

which commutes on account of the factorizations (6.2.6) and in which the lower
right vertical functor is conservative by Proposition 6.1.6(2) (applied to the poset

(=p))-
l.lax,R

It follows that our chosen morphism X < € in LMod| 2’5 (Prs) corresponds to a mor-

phism not just in PrSLt but in Stratp: i.e., it proves the upwards factorization.
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We now prove that the counit of the adjunction (6.2.3) is an equivalence. Unwinding the equiv-

alences of diagram (6.2.4), we see that the counit is given by the following sequence of operations.

e Begin with the counit morphism
i ixp(€) — & (6.2.7)

in LMod{2 5 of the adjunction const 4 lim[{2 5 which lies in LMod > (Prs): over each

p € P it restricts as the left adjoint
limf 26 () 2 &, .
e Use Lemma A.3.6 to pass to the corresponding morphism
lim[ 2 5 (&) «— & (6.2.8)

in LMod, 25 (Prs) to the morphism (6.2.7) in LMod %% (Prs), which restricts over each
p € P as the right adjoint

r.lax

limjacp(€) ﬁ’ &p

e Observe the factorization of the morphism (6.2.8) in LMod:::zifg(Prst) as

r.lax

limpigep (&) «—— €
]\ e . (6.2.9)
e
7 (limf3%4(€))
e Use Lemma A.3.6 to pass to the corresponding morphism

Z(lim 2 (&) — & (6.2.10)

I.lax.®

in LMod! 2% (Prg) to the factorization of diagram (6.2.9) in LMod {75 (Prg).

Evidently, the factorization of diagram (6.2.9) restricts as an equivalence over each p € P. In fact,
it is an equivalence by Proposition 6.1.6(5)(c). Hence the counit (6.2.10) is also an equivalence.

We now study the unit of the adjunction (6.2.3). In order to verify that its component at the
object X € Stratp to be an equivalence, by Observation 6.2.2 it suffices to show that the underlying
morphism

X — lim 25 (4(X)) (6.2.11)
in PrsLt is an equivalence. Unwinding the equivalences of diagram (6.2.4), we see that the morphism
(6.2.11) is the composite
X — lim{iap (X) — lim{ 2% p (4(X))

in which the first functor is the unit of the adjunction const - lim’{>, and the second morphism is
obtained by applying Lemma A.3.6 to the defining morphism X <= %(X) in LMod, > (Prs) (which

r.lax

restricts over each p € P as the right adjoint X <p—p° X,) and then applying the functor limy 3 p.

We now prove that the morphism (6.2.11) is an equivalence under the assumption that P is finite.
We proceed by induction on the number of elements of P, the base case where P = & being trivial.
So, choose any maximal element co € P, and write P’ := P\{oc} € Downp for its complement. This
defines a functor P = [1] with 771(0) = P’ and 7—!(1) = {c0}. Taking pushforwards of stratifica-

tions along 7 via Proposition 3.4.12 allows us to consider the morphism (6.2.11) as lying in Strat;.
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To show that the morphism (6.2.11) is an equivalence, by Observation 2.3.7 and Lemma 2.2.1 it

suffices to show that the lax-commutative square

Xpr n X pL X

2 P 2 (6.2.12)
“mlr.]I:;.P'(g(x)) “in “mlr.'lI:;.P(g(x)) T |im|r.'||§:.{oo}(g(x))

(whose left vertical morphism is an equivalence by induction) commutes. By Lemma A.6.8, every

object of Xp/ is a limit indexed over the finite poset sd(P’) of objects lying in the images of the

P
fully faithful inclusions X, <5 Xp/ for elements p € P'; because all functors in the diagram (6.2.12)
are exact, it suffices to show that its natural transformation is an equivalence when restricted along

each such fully faithful inclusion. After this restriction, the source is precisely the gluing functor
D . r P )
2 Xy — X —= Xoo 3

by Proposition 6.1.6(5)(c) the target is (canonically equivalent to) the gluing functor T'Z_ as well,
and unwinding the construction of the morphism (6.2.11) we see that the natural transformation in
diagram (6.2.12) is indeed an equivalence. So when P is finite the morphism (6.2.11) is indeed an
equivalence.

We now prove that the morphism (6.2.11) is an equivalence under the assumption that P is
down-finite. Let us write Down‘,c—in C Downp for the full subposet on the finite down-closed subsets

of P. Consider the composite

consty — Ze — lim[ 12 (4(X)) (6.2.13)

l.lax.®

in Fun((Downf™)°P, Prk). in which

e the functor Z, takes a morphism D — DY in (Downg")°p corresponding to a morphism
fin

Do < D1 in Downp" to the functor Zp, N Zp,,

H2 (4(X)) takes a morphism DS — DS in (Downfs")°P corresponding to a
morphism Dy < D; in Downl)" to the restriction functor

e the functor lim

lim{3% b, (4(X) — lim{ 13 p, (4(X))

l.lax.Dg

(recall that this lies in Pr% by parts (1) and (3) of Proposition 6.1.6),
fin

e the component at D° € (Downs")°P of the first morphism is the functor X % Zp, and

e the component at D° € (Downs")°P of the second morphism is the functor

Zp — “mlr.]l:xx.D(g(x))

obtained as the instance of the functor (6.2.11) in the case of the restricted stratification of

Observation 3.4.4.
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Down

Applying the functor lim( finyop 50 the composite (6.2.13), we obtain the upper composite in the

commutative diagram

X' == limpoc Downfinyer 2D — liMpo ¢ (Downfinyer (”m[.]l:xX.D(g(x)))

T (6.2.14)

lim{ 12 (¢ (X))

in PrsLt. Because P is down-finite, the canonical morphism
. in fat ~
colim (Downf;'n LN Cat) — P

in Cat is an equivalence. This implies that in diagram (6.2.14), the upper left horizontal morphism
is an equivalence (by definition of a prestratification) and also the right vertical morphism is an
equivalence (note that Downf:i," is filtered). Meanwhile, because each D € Downf;i" is finite, the second
morphism in the composite (6.2.13) is an equivalence, which implies that the upper right horizontal

morphism in diagram (6.2.14) is an equivalence. So the morphism (6.2.11) is an equivalence. O

6.3. Strict stratifications. In this brief subsection, we lay out the general theory of strict strati-

fications.
Definition 6.3.1.
(1) We say that .Z € LMod] 2% (Prs) is strict if it lies in the full subcategory
LMod5"" (Prg) € LMod! 2 (Pry)
(2) We say that X € Stratp is strict if it is convergent (Definition 2.5.15) and moreover its
gluing diagram %(X) € LMod[ 2% (Prg,) is strict.

Observation 6.3.2. Note that X € Stratp is strict if and only if it is convergent and its gluing
functors strictly compose, i.e. for every composable sequence p — ¢ — r in P the morphism

Nq
P qarp
re 12, rary

in Fun(X,, X,) is an equivalence. It follows that X is strict if and only if every object X € X is strict
(Definition 2.7.2).

Remark 6.3.3. Choose any .Z € Ll\/Iodlr"lljjflf(Prst). Considering it as an object .# € LMod| ax.p,
through Lemma A.6.8 we obtain an object &(.%) € LModsqpy and an equivalence

lim[ 12X p (F) =~ limgy(py (&(F))

However, in contrast with Observation 2.7.4, the strictness of .# is not equivalent to the existence

of a factorization
sd(P) =L, cat
(minﬁmax)l Z . (6.3.1)
TWAF(P/)

This distinction is already visible when P = [2], in which case the factorization (6.3.1) exists if and

only if the co-category %5 is an oo-groupoid.
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Observation 6.3.4. The commutative triangle

(min—max)

sd(P) TwAr(P)

/ (6.3.2)

defines a morphism in loc.coCartp, and moreover TwAr(P) € coCartp C loc.coCartp. Moreover, by
Lemma 2.7.3 (recall Definition A.4.3), the functor

sd(P) M), T Ar(P)

is precisely the localization at the comparison morphisms in the locally cocartesian fibration sd(P) e,

P as well as their locally cocartesian pushforwards. It follows that the morphism (6.3.2) is the initial

morphism from sd(P) € loc.coCartp to an object of the full subcategory coCartp C loc.coCartp.

Observation 6.3.5. By Observation 6.3.4, for any € € coCartp we have an equivalence

(min—max)”*

fimE™(€) i= FunSie™ (sd(P), £) <™ Funcear (Twar(P), ) —: Tpo (8 ) |
In particular, if X € Stratp is strict, then taking & = 4(X) gives a canonical equivalence

X 5 Tpor (g(xf’@m) .

7. VARIATIONS ON THE METACOSM RECONSTRUCTION THEOREM

In this section, we provide three variations on metacosm reconstruction (Theorem A(1), proved

as Theorem 6.2.6). It is organized as follows.

§7.1: We recall some preliminary notions regarding various sorts of subcategories of an idempotent-

complete stable co-category that is not necessarily presentable.

§7.2: We extend our theory of stratifications to the case of idempotent-complete stable oco-
categories that are not necessarily presentable; for disambiguation, we refer to these as
stable stratifications. We establish metacosm reconstruction for stable stratifications over

finite posets as Theorem 7.2.4.

§7.3: Our definitions of morphisms in the co-categories of (resp. stable) stratifications require
commutativity for i;, and y. We show as Theorem 7.3.2 that additionally requiring commu-
tativity for ig corresponds to strict (as opposed to possibly right-lax) morphisms between
left-lax left modules over our poset. We refer to such morphisms between stratifications as

strict.

§7.4: We establish the theory of reflection (as discussed in §1.10) for (resp. stable) stratifications
over a finite poset: this is a dual form of reconstruction, which is functorial for strict mor-
phisms between stratifications. We begin by establishing reflection for stable stratifications
(which are the more natural context for reflection) as Theorem 7.4.11. Using this, we es-

tablish reflection for stratifications (i.e. Theorem F) as Corollary 7.4.25.131 We also give

L3I\ ore precisely, we prove part (1) of Theorem F; parts (2)-(4) follow trivially therefrom. (We have stated
Theorem F in four parts primarily to highlight the parallel with Theorem A.)
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formulas expressing the gluing functors and reflected gluing functors in terms of each other

as Proposition 7.4.5.

Local Notation 7.0.1. In this section, we fix a poset P and an idempotent-complete stable co-

category C.

Remark 7.0.2. It is straightforward to treat the more general case of stable co-categories that
are not necessarily idempotent-complete. We restrict to idempotent-complete stable co-categories
merely to ease our language (e.g. so that we can recover € ~ Ind(C)* C Ind(C) as the compact

objects of its ind-completion).

Notation 7.0.3. We extend the notation LMod] 2% (Prg) of Definition 6.1.1 to a systematic nota-
tional scheme for the various co-categories of lax left P-modules that appear in this section.

e The subscript on LMod indicates the handedness of the lax left P-modules that we consider.

e The parenthetical indicates the restrictions placed both on the fibers and monodromy func-

tors of objects as well as on the fiberwise behavior of morphisms. (Those that arise are
Stidem prl Prk and Prg.)

e A superscript l.lax or r.lax on LMod indicates the handedness of the laxness that we allow
for the morphisms. (The absence of either of these indicates that we require strictly P-

equivariant morphisms.)

e A superscript L on LMod indicates that morphisms are additionally required to be fiberwise

left adjoints. (This will only arise in the case that the parenthetical is Prq;.)

7.1. Closed, split, and thick subcategories. In this subsection, we recall some preliminary
notions regarding various sorts of subcategories of an idempotent-complete stable co-category that

is not necessarily presentable.

Definition 7.1.1. A full stable subcategory Z C C is called
(1) thick if it is idempotent-complete,

(2) split if it is thick and its inclusion extends to a diagram

and

Z@G
S 1 P

These various sorts of full stable subcategories of € assemble into posets ordered by inclusion, which

we respectively denote by
thicke , splite and clse .
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Observation 7.1.2. If C is presentable, then there is a canonical equivalence
Clse ~ clse 132

Observation 7.1.3. We record a number of basic facts surrounding Definition 7.1.1, which we

thereafter use without further comment.'33

(1) There are fully faithful inclusions
clse — split, — thicke .
(2) The poset thicke has all colimits.
(3) Ind-completion defines a fully faithful colimit-preserving functor
. Ind
thicke — Clslnd(@) s

whose image consists of those closed subcategories Z € Clsjg(e) that are compactly gener-
ated.!34

(4) The image of the composite functor
splite < thicke < Clsjpge)
consists of those closed subcategories Z € Clsjnqg(e) such that the functor
2 <% Ind(C)
preserves colimits, or equivalently such that the composite functor
Ind(€) -4 2 <% Ind(€)
preserves colimits.!3®
(5) The image of the composite functor
clse — splite < thicke < Clsjge)
consists of those closed subcategories Z € Clsjnqg(e) such that the functor
2 <25 Ind(C)
preserves colimits and compact objects, or equivalently such that the composite functor
Ind(€) -4 2 <% Ind(€)

preserves colimits and compact objects.

13214 follows that the terminology of Definition 7.1.1(3) is unambiguous.
1331\/‘[ar1y of these facts have already been discussed in §1.12.

1346 inclusion 2 <2 Ind(C) automatically preserves compact objects, as its right adjoint Ind(C) Y2 preserves
colimits.
135This implies that Z is compactly generated, with compact objects the image of the composite € ~ Ind(C)* —
Ind(€) % Z.
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Notation 7.1.4. Given a set {2, € thicke}ses of thick subcategories of C, we write
(Z5)M% € thicke
for the thick subcategory that they generate, i.e. the colimit of the functor S LN thicke.

Notation 7.1.5. Given a thick subcategory Z € thicke, we may write
G/Stidemz c Stidem

for the idempotent-complete stable quotient of € by Z, i.e. the cofiber of the inclusion in St'™.
However, we usually simply write

e/z = e/ "z
for this, which is unambiguous since we restrict our attention to the idempotent-complete context
(recall Remark 7.0.2) and due to Observation 7.1.7.

Remark 7.1.6. Concretely, the idempotent-complete stable quotient of € by a thick subcategory
Z € thicke may be realized as the full subcategory

/5" 2 ~ (Ind(€)/Ind(2))* C Ind(€)/Ind(Z)
of compact objects of the corresponding presentable quotient.'*¢ On the other hand, the idempotent-
complete stable quotient of C by a split subcategory Z € splite may be realized more simply as
ker(€ — 2).137

Observation 7.1.7. If C is presentable and Z C € is a full presentable stable subcategory, then the
idempotent-complete stable quotient and the presentable quotient of € by Z coincide: the canonical
morphism

tidem

e/s

is an equivalence. Indeed, the presentable quotient satisfies the universal property of the stable

Z—€/2

quotient: given any stable oco-category D and any exact functor C Ly D such that Fi L =~ 0, the
morphism

F—vpF

is an equivalence (because for each X € € the cofiber sequence ifyX — X — vpr X is carried by F

to a cofiber sequence). We use this fact without further comment.

Observation 7.1.8. The functor
Stidem Ind, Prk
preserves colimits. In particular, given a thick subcategory Z € thicke we have an equivalence
Ind(€/Z) ~ Ind(€)/Ind(Z) .
We use this fact without further comment.

136By contrast, the stable quotient €/5Z (i.e. the cofiber of the inclusion in St) may be realized as the image of
the composite

€ ~ Ind(€)¥ — Ind(€) £L+ Ind(€)/Ind(2) ;

idem

its idempotent-completion recovers €/ St
1371y particular, in this case the canonical morphism @/StZ — (i’/StI "2 is an equivalence.
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Observation 7.1.9. The inclusion of a closed subcategory Z € clse extends to a stable recollement

SN TN
Z4+—y—C+—v—0C/7 . (7.1.1)
\;/‘ \pJ;z

We use this fact without further comment.

7.2. Stratifications of stable co-categories. In this subsection, we extend our theory of stratifi-
cations to the case of idempotent-complete stable co-categories that are not necessarily presentable;
we refer to these as stable stratifications. We establish metacosm reconstruction for stable stratifi-
cations over finite posets as Theorem 7.2.4. We state this result as quickly as possible; much of the
rest of the subsection is devoted to its proof. Although we define stable stratifications in terms of
stratifications of ind-completions, we also characterize them in a way that does not make reference

to ind-completions as Proposition 7.2.11.
Definition 7.2.1. A stable stratification of C over P is a functor

2
P = clse
w w

p— 2y

such that the composite functor

Ind

P2 clse Clsina(e)
w
P Ind(Z))

is a stratification. In this situation, we may also say that C is stably P-stratified.

Definition 7.2.2. We define the co-category
stratp

of stably P-stratified idempotent-complete stable co-categories analogously to the co-category
Stratp of Definition 6.2.1: its objects are stably P-stratified idempotent-complete stable co-categories,
and its morphisms are those exact functors that commute with both the iy inclusions and the y

projections.
Observation 7.2.3. Ind-completion defines a faithful functor

Ind
stratp — Stratp .

Explicitly, an object X € Stratp is in its image precisely when its underlying presentable stable

oo-category X € PrSLt is compactly generated and moreover there exists a factorization

P—— Cle

SN ]\Ind
N

Clew

of its defining functor, and a morphism X — X’ in Stratp between objects in its image lies in its
image precisely when its underlying morphism X — X’ in PrSLt preserves compact objects (i.e. lies in

the subcategory Pri® C Prk).
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Theorem 7.2.4. Assume that P is finite. Then, the metacosm adjunction (6.2.3) restricts to an
equivalence
fﬁ’
stratp LMod[ 2 (St'm) (7.2.1)

r.lax
limp5ce

Definition 7.2.5. We say that two thick subcategories Y, Z € thicke are (resp. mutually) aligned
if the two closed subcategories Ind(Y), Ind(Z) € Clsjnq(e) are (resp. mutually) aligned.

Remark 7.2.6. In the case that C is presentable and Y,Z € Clse ~ clse C thicke, it is not hard
to see that Definition 7.2.5 coincides with Definition 3.1.2.

Definition 7.2.7. We respectively say that a closed subcategory of Ind(C) is compact-thick,
compact-split, or compact-closed if it is the ind-completion of a thick, split, or closed subcategory
of C.

Lemma 7.2.8. Let Y,Z € clse be closed subcategories, and suppose that Z is aligned with Y. Then,
the thick subcategory (Y, Z}thiCk C € generated by Y and Z is a closed subcategory.
Proof. Note the identification
Ind((4,2)™%) = (Ind(Y), Ind(Z)) € Clsing(e) -
Now, by Lemma 3.3.4(1) (and the fact that Ind(Z) is aligned with Ind(Y)), we have that the composite
Ind(€) -2 (Ind(Y), Ind(2)) < Ind(€)
preserves colimits and compact objects, which proves the claim. 0

Corollary 7.2.9. Fiz a stable stratification Ze of C over P. For every finite down-closed subset
D € Downp

fin

, the thick subcategory

(Zp)is c e

generated by the corresponding closed subcategories is itself a closed subcategory.
Proof. This follows by applying Lemmas 7.2.8 and 3.4.5 inductively. O

Proof of Theorem 7.2.4. Under the assumption that P is finite (and hence down-finite), the meta-
cosm adjunction (6.2.3) is an equivalence by Theorem 6.2.6. It therefore suffices to prove that there

exist factorizations
Stratp —2— LMod! 2L (Prg)

Ind] TLMod{;,';;_P(md) (7.2.2)
stratp ----- > LMod] 2 5 (St'%em)
and
Stratp « Tl LMod! 2% (Prs)
Ind] ]\LMod[_'l‘::_P(lnd) . (7.2.3)
stratp ¢--------- LMod 125 (St

We first prove that factorization (7.2.2) exists.!3® Fix a stable stratification

Zo
P = clse ,

1381y fact, for this factorization to exist it suffices that P merely be down-finite.
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and consider the composite stratification
P 2% clse % Clsjae) -

Because P is finite, every D € Downp is finite. Hence, by Corollary 7.2.9, for every D € Downp the
closed subcategory

Ind(Ze)p := (Ind(Z,)) o = Ind((Z,)"%) € Clsjae)

peD peD

is compact-closed. It follows that for every p € P, all functors in the recollement

SN TN
Ind(Ze)<p v — Ind(Zs), v — Ind(C),

N NS

preserve colimits and compact objects, and hence all functors in the composite adjunction

Y prL
@, : Ind(€) LT Ind(Zs), L Ind(C), : pP
iR v

preserve colimits and compact objects. This implies that factorization (7.2.2) exists on objects, and
thereafter it is straightforward to see that it exists on morphisms as well.
We now prove that factorization (7.2.3) exists. To avoid unnecessary notation involving ind-

completions, we simply begin with an object
(& L P) € LMod{ixp(Prsr®)
and prove that its image under the composite

soarlax
Ilml.lax,o

Stratp «—=*— | Mod!{>*5(Prg)
LMod] 25 (Prey™)
lies in the image of the inclusion
Ind
stratp AN Stratp |,

as described in Observation 7.2.3. To further simplify our notation, we write
X = lim{i3p(€) |
and for any p € P and any C € Convp we write

Zp = |imr'|ax(§p)(8) and Xc = “m:’..llaaz.c(g) )

I.lax.

as justified by Proposition 6.1.6(5); in particular, we have X, = &,.

As a preliminary observation, we note that for every p, ¢ € P the composite functor
PP P,
Xp — X — Xy (7.2.4)

3
is the monodromy functor &, RLEUN &g if p < ¢ (by Proposition 6.1.6(5)(c)) and is zero if p £ ¢; in
particular, in either case it preserves colimits and compact objects.
Now, fix any p € P. The functor
®
x ( q)qu H xq

qeP
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is conservative (because P is finite) and preserves colimits. Combining this with the fact that for
all ¢ € P the composite functor (7.2.4) preserves colimits, it follows that in the adjunction
é}”
—_—
X plp T Xp

the right adjoint p” preserves colimits, which implies that the left adjoint ®, preserves compact
objects.

We now claim that the converse also holds: if an object X € X satisfies the condition that
®,(X) € X, is compact for all p € P, then it is compact. To see this, for any filtered diagram

7 2% X we compute that

hom+ (X, colimg(Y,)) ~ lim homy (Py(n)(X), Ty @y(0)(colimy(Ys))) (7.2.5)

(9P (homxm) (@ () (X), colimy (T, 0) (Y.))))
~lim ) (coumj (homxm) (@ o) (X), rw%(o)(y.)))) (7.2.7)

N
~ colimy (Iim([n]ﬁp)ESd(P) (homxm) (@ o) (X), Tp D0y (Ya)) ) (7.2.8)
~ colimg (hom, (X, Ys)) , (7.2.9)

([n]23P)esd(P) ( o (n)

~ |im

(7.2.6)

where
e cquivalences (7.2.5) and (7.2.9) use nanocosm reconstruction (recall Remark 2.6.7),

e cquivalence (7.2.6) follows from the fact that the composite

1’\80("—1) . 1—\80(0)(1)

Lo®p0) :=1T7 2 Pe(0) = Py p? Y-

L NIV W

preserves colimits,
e cquivalence (7.2.7) uses the assumption that ®,(X) € X, is compact for all p € P, and
e equivalence (7.2.8) uses the facts that J is filtered and sd(P) is finite (because P is finite).

So in fact, an object X € X is compact if and only if the object ®,(X) € X, is compact for all
p € P. It now follows that for every p € P the functor pP preserves compact objects, because for
every q € P the functor (7.2.4) preserves compact objects.

We now verify that X is compactly generated. We proceed by induction on the cardinality
of P, the base case where P = & being trivial. So, assume that P # &, choose any minimal
element —oco € P, and write P’ := P\{—o00} € Convp for its complement. This defines a functor
P 5 [1] with 771(0) = {—oc} and 7~!(1) = P’. Taking pushforwards of stratifications along 7 via
Proposition 3.4.12 yields a recollement

irL pL
x,ooCiE x :isxp,

S S

in which X_.o = €_ is compactly generated by assumption and Xpr = lim{{2* 5, (&) is compactly
generated by induction. Moreover, by Proposition 6.1.6(4) the functors iy, and v are both given by
extension by 0, and so preserve compact objects by our above characterization of compact objects

in X (applied also to Xp/). Since iy, and v also both preserve colimits, we find that the smallest
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cocomplete full subcategory of X containing its compact objects is in fact all of X, i.e. that X is
compactly generated.

We now show that for every p € P the closed subcategory Z, € Clsy is compact-closed. For this,
we use the restricted stratification of Z, over (Sp) of Observation 3.4.4, which converges since the

poset (Sp) is finite. For each ¢ € (Sp), we use the notation

B TN
Zp L Xq
p
for the corresponding geometric localization adjunction, and we write
Lq = p1®,

for the corresponding idempotent endofunctor of Z,. Consider the commutative diagram

limiia (<) (9(Zp))

ax.(Sp)
>
2% Y Fun(sd(Sp), 2,) AR Eed (<), X) (7.2.10)
limey <) limgy(<p)
2, - X

in Cat in which
e the functor ¢’ is described by the formula

2y —2 s Fun(sd(Sp), 2,)

w w

where we write

Ly = Lom) - Ly(0)
for brevity (recall Observation 2.5.12 (and Remark 2.6.4)),

e the commutativity of the left two triangles follow from macrocosm reconstruction (Theo-

rem 2.5.14) for the stratification of Z, over (Sp), and

e the square commutes because sd(<p) is finite (since (Sp) is finite) and iy is exact.

Observe that the functor
“msd(g )

Fun(sd(Sp), X) ——2% X

carries pointwise colimits to colimits and carries pointwise compact objects to compact objects (both
using the facts that X is stable and that sd(=p) is finite). So, using the commutativity of diagram
(7.2.10), to show that the functor



preserves colimits and compact objects, it suffices to show that the composite

Fun(sd(Sp),ir)
Co ooy

2 -5 Fun(sd(Sp), Z,) Fun(sd(Sp), X)

carries colimits to pointwise colimits and carries compact objects to pointwise compact objects, or

equivalently that for every ([n] 2 (Sp)) € sd(Sp) the composite

Z .
Zp =55 2y <5 X
preserves colimits and compact objects. For this, it suffices to show that the composite
L i o
Zp _—4p_) Zp ‘R X% (Pq)qep H xq
qeP

carries colimits to pointwise colimits and carries compact objects to pointwise compact objects —
the former because the functor (®,)4ep is conservative (because P is finite) and preserves colimits,
the latter by our above characterization of compact objects in X. Equivalently, it suffices to show
that for every g € P the composite

2, 25 2, <5 x 29 x, (7.2.11)

preserves colimits and compact objects. To see this, first observe the factorization of the composite

(7.2.11) according to the commutative diagram

Lw iR @4
Zp Zp x %,
L“’\["*UJ{ i;w(n)]\ % s
Q
Z X
P = @(n)
Po(n)

in which the square commutes by definition and the commutativity of the triangle follows from the

commutativity of the triangle

Zp — 5 X

g oL

i
Zp(n
Now, because the composite functor (7.2.4) (replacing p with ¢(n)) preserves colimits and compact

objects, it follows that the functor

Zp 5 X
preserves colimits and compact objects, i.e. the closed subcategory Z, € Clsy is indeed compact-
closed.

We have shown that the factorization (7.2.3) exists on objects, and thereafter it is straightforward
to see that it exists on morphisms as well. 0

Remark 7.2.10. One may interpret our proof of Theorem 7.2.4 as establishing the commutativity

of the functor

i Ind
Stldem ———>n Prst

with certain right-lax limits.
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Proposition 7.2.11. Choose any functor

2
P = clse
w w )

p—— 2

and consider the composite functor

P 22 clse —9 Clspa(e)
w
Ind(Z,)

(1) The composite Ind(Zs) is a prestratification if and only if <Zp>;h€iclif =C.

(2) The composite Ind(Z,) satisfies the stratification condition if and only if for every p,q € P,
(a) the thick subcategory

hick
Z(zpn(zg) = (), ce

re(Sp)N(Sq) =

is in fact a closed subcategory, and
(b) there exists a factorization

L(<pn(za) > ZLp

. .

—
q i e

Lemma 7.2.12. Let Y,2Z € clse be closed subcategories, and suppose that Z is aligned with Y.
Then, the intersection (YNZ) C C is a closed subcategory, and moreover we have an identification

Ind(Y N 2Z) = (Ind(Y) N Ind(Z)) € Clsjngce) -

Proof. Consider the pullback square

Und(Y)

Ind(Y) N Ind(Z) —= - Ind(Y)
ilnd(Z)\[ ‘[iLzlnd(iL) (7.2.12)

in Prk. By Observation 3.2.4 (and the fact that Ind(Z) is aligned with Ind(Y)), we have that
(Ind(¥) NInd(2)) € Clsjnq(e). Thereafter, by Lemma 3.2.5, the commutative square

Ind(Y) N Ind(2) —2— Ind(Y)
iR\[ jiR:md(iR) (7.2.13)
Ind(2) Ind(€)

iR:Ind(iR)

in Cat obtained by taking right adjoints twice in the commutative square (7.2.12) is a pullback
square. In particular, the identifications ig = Ind(ig) in the pullback square (7.2.13) imply that it

lies in Prk. Tt follows that (Ind(Y) NInd(Z)) € Clsjng(e) is compact-closed. Now, using the fact that
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(Ind(Y) NInd(Z)) <= Ind(€) preserves compact objects (because its right adjoint preserves colimits),
we obtain the composite identification

clse 3 (Ind(Y) N Ind(2))* = ((Ind(Y) N Ind(Z)) NInd(C)¥) = (Ind(Y) NInd(Z)NC) = (YN 2Z),
which proves both assertions. O

Proof of Proposition 7.2.11. Part (1) is clear. So, we proceed to part (2). First of all, it is clear
that for any p,q € P, if the functor Z,. satisfies conditions (a) and (b) then the composite Ind(Z.)
satisfies the stratification condition (using the fact that the functor thicke <E> Clsjng(e) commutes
with colimits). Conversely, suppose that the composite Ind(Z,) satisfies the stratification condi-
tion. Then, by Lemma 3.4.5 we have that the closed subcategories Ind(Z,), Ind(Z,) € Clsjnq(e) are

mutually aligned and moreover

Clsjng(e) > (Ind(Z,) N Ind(Z)) = (Ind(Z,)) = Ind((Zr) et i zg) = INd(Z(< pyn(zq)) -
(7.2.14)

In particular, the closed subcategories Z,,%, € clse are mutually aligned, which by Lemma 7.2.12

re(Sp)N(<q)

implies that
Ind(Z, N Z,) = (Ind(Z,) NInd(Z,)) € Clsjng(e) - (7.2.15)

As the functor thicke <= Clsjyge) is fully faithful, the identifications (7.2.14) and (7.2.15) along
with Lemma 7.2.12 now imply that we have an identification
clse © (Z,p n Z,q) = |nd(z,(§p)ﬂ(§q))w s

i.e. the functor Z. satisfies condition (a). Now, by Lemma 3.1.7 the square

Ind(Zp) N Ind(Zq) —= Ind(Zy)

Ind(24) ———— Ind(€)

commutes, and by Lemma 7.2.12 all four of its functors preserve compact objects (because their
right adjoints preserve colimits). Hence, again using identification (7.2.14) we see that the functor
Zo satisfies condition (b). O

7.3. Strict morphisms among stratifications. In this brief subsection, we introduce strict mor-
phisms among (resp. stable) stratifications and show as Theorem 7.3.2 that they correspond through
metacosm reconstruction to strict (as opposed to possibly right-lax) morphisms between left-lax left
P-modules.

Definition 7.3.1. We say that a morphism X — X’ in Stratp or in stratp is strict if for every

p € P there exists a (necessarily unique) factorization

X — X
Zp ----- >y 2,
(with the evident notation). We denote by
Strati"* C Stratp and strati " C stratp
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the respective subcategories on the strict morphisms.

Theorem 7.3.2.

(1) Assume that P is down-finite. Then, the metacosm equivalence (6.2.3) of Theorem 6.2.6

restricts to an equivalence

i @
Straty™™ ——~ LMod{i,, p(Prs)

s r.lax
limie

(2) Assume that P is finite. Then, the metacosm equivalence (7.2.1) of Theorem 7.2.4 restricts

to an equivalence

. 9 .
StI\'a.fff:;tr'ct ~ LMOd|,|ax,p(St'dem)

. rlax
limpax.e

Proof. We begin with part (1). On the one hand, it is clear that there exists a factorization

Stratp —2— LMod] 2% (Prg)

] ]

Stratin< ----- » LModfi, p(Pret)

So, it remains to show that there exists a factorization

li r.lax

Stratp +——2=* | Mod[ 2 (Pry)

~

] J

Stratfict ¢-—------ LMod{,. p(Prst)

Given a morphism & — & in LMod[i,, p(Prst), for each p € P we obtain a commutative square

limi’.AIE:AP(E) E— Iim[.',':f.P(S’)

yl ly , (7.3.1)

r.lax

lim[ (3% (<) (€) — “m|r.'||::.(ép)(8/)

and it suffices to show that the corresponding lax-commutative square

r.lax r.lax

limpip(€) —— lim;p(E)
] N i (7.3.2)
“m|rf||::.(sp)(8) — “m|rf||:;.(sp)(5/)
commutes. For this, we use the restricted stratifications of Iimlr.'||::.(§ »(€) and Iimlr.'||::.(§ ) (E") over

(Sp) of Observation 3.4.4, which converge since the poset (Sp) is finite (because P is down-finite).

To simplify our notation, we write
X = lim{3 p(€) and X' = lim 5 p(E')
and for any p € P we write

Zp = limZp(8), 20 =limpae (),  Xp:=&,, and X, =&,
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as justified by Proposition 6.1.6(5). Moreover, for each ¢ € (Sp), we use the notation

%, ®,
“m|r.'||§xx.(£p)(3) —_— &q and “m|r.'||§:.(sp)(5/) —s &
p p

for the corresponding geometric localization adjunctions. Now, for each ¢ € (Sp), we may extend

the commutative square (7.3.1) to a commutative diagram

X — X
[

Dy Zp —— Z; @,
[

Xy — X,

which determines the lower two squares in the lax-commutative diagram

[I% — 115

peP peP

(@p)pe{ T(%)pep

Df ? (7.3.3)
iR R iR

R [ S— T

s

X, —— X

whose middle square is (7.3.2). Because the upper two vertical functors in diagram (7.3.3) are
conservative, its composite natural transformation is an equivalence by Proposition 6.1.6(5)(c) (and
the fact that ®,p? ~ 0 whenever ¢ £ p). Meanwhile, the same argument (applied to the poset
(=p)) shows that the lower natural transformation in diagram (7.3.3) is also an equivalence. So, the
upper natural transformation in diagram (7.3.3) is an equivalence on every object in the image of
p?. Now, microcosm reconstruction for Z,, (Theorem A(3)) implies that each of its objects is a limit
over sd(=p) of objects in the image of p? for various ¢ € (Sp) (using the fact that sd(Sp) is finite
(because (Sp) is finite because P is down-finite)). So, because sd(Sp) is finite, the upper natural
transformation in diagram (7.3.3) is indeed an equivalence; in other words, the lax-commutative
square (7.3.2) commutes.

Now, part (2) follows from part (1) and the fact that the commutative squares

stratiict «— stratp LMod jax.p (St'*™) ——— LMod[ > 5 (St'%™)
j Lnd and j jLModl’",'::_P(Ind)
Strati — Stratp LMod{,, p(Prst) «——— LMod[ 2% (Prg)
are both pullbacks. O

7.4. Reflection. In this subsection, we establish the theory of reflection for (resp. stable) stratifi-
cations. We establish reflection for stable stratifications over a finite poset as Theorem 7.4.11; using

this, we establish reflection for stratifications over a down-finite poset as Corollary 7.4.25.
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The key input to the proof of Theorem 7.4.11 is the fact that a stable stratification of € over a
finite poset determines a reflected stable stratification of C°P over the same poset, which we prove
as Proposition 7.4.16. Another important input to the proof of Corollary 7.4.25 (in addition to
Theorem 7.4.11) is the fact that a stratification of a presentable stable co-category may also be
considered as a stable stratification thereof, which we prove as Proposition 7.4.21.139

We also give a direct formula for the gluing functors in terms of the reflected gluing functors and

reversely, as total co/fibers; this is recorded as Proposition 7.4.5.

Local Notation 7.4.1. In this subsection we assume that our poset P is finite, except in Corollaries
7.4.25 and 7.4.26 and Remark 7.4.27 (which apply under strictly weaker hypotheses on P). Moreover,

we fix a stable stratification Z, of € over P.

Definition 7.4.2.

(1) For any p € P, we write
irL PL
VR
Z<p Yy — Z,p —v— Zp/Z<p =: Gp
1 1L
\ iR / \ PR /
for the idempotent-complete stable quotient participating in the indicated recollement guar-
anteed by Corollary 7.2.9, which we refer to as the p* stratum of the stable stratification.

(2) For any p € P, we write

Y PL v irL
®,:C T Zy T Cp: p? and AP Cp T Zp T c:vy,
iR v PR Y

for the indicated composite adjoint functors. We respectively refer to the functors &,
and ¥, as the corresponding geometric localization functor and reflected geometric

localization functor.
(3) For any morphism p — ¢ in P, we write
P @ =P W
e, 5e-%¢e, and I,:€,<»e-%¢e,

for the indicated composite functors, which we respectively refer to as the corresponding

gluing functor and reflected gluing functor.
Definition 7.4.3. Fix a stable co-category D € St and an oco-category J € Cat.

(1) Suppose that J admits a terminal object ¢ € J, and write Jo := J\{t}. Then, for any functor
d EiN D, we define its total cofiber to be

teofib(F') := cofib (colimg, (F) — F(t)) € D .
(2) Suppose that J admits an initial object ¢ € J, and write Jo := J\{i¢}. Then, for any functor
J i> D, we define its total fiber to be
Hib(F) = fib (F(i) —s limg, (F)) € D .

139 his may be contrasted with the fact that stable stratifications are definitionally related to stratifications
(although recall Proposition 7.2.11).
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Remark 7.4.4. Here are two alternative descriptions of the total cofiber functor (using the notation
of Definition 7.4.3(1)).

(1) Tt is the left adjoint

Fun(4,D) 7= D
Ot

to the “Dirac delta at t” functor (i.e. extension by zero over Jo).
(2) Tt is the composite
colimz]+

Fun(d,D) — Fun(J+,D) ——— D |

where we write J4 :=J]] o d5 and the first functor is extension by zero over the cone point
of J§.

Of course, the total fiber functor admits dual descriptions.
Proposition 7.4.5. Fix a nonidentity morphism p < q in P.
(1) There is a canonical equivalence

- 1
T, ~ tfib <sd(P){§ = I Fun™(e,, eq))
in Fun®(Cyp, €,), where the functor I'y is given by Observation 2.6.5.

(2) There is a canonical equivalence
lq

. °p E\f. ex
' ~ tcofib ((sd(P)Ip) == Fun®(C,, Gq))

in Fun®(Cp, €4), where the functor I is given by Observation 2.6.5 and Proposition 7.4.16.*

Lemma 7.4.6. Given a stable recollement (7.1.1), there is a canonical equivalence
priL ~ X 'prir ;
that is, Proposition 7.4.5 holds when P = [1].

Proof. Consider the commutative diagram

UpRiLy iLy 0
VPR ide vpr
0 LRY VUPLIRY

in Fun®™(C, €) (in which all morphisms are co/units or zero). Note that the lower-right square is a
pullback by (the proof of) Lemma 2.2.1, while the upper-left square is a pushout by an identical
argument (or by appealing to Proposition 7.4.16). On the other hand, the lower-left and upper-right
squares are clearly both co/fiber sequences. So, the outer square is a pullback, which proves the

claim (by precomposing with either iy, or ig and postcomposing with either pz, or pg). O

140Proposition 7.4.16 does not rely on the present result in any way.
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Proof of Proposition 7.4.5. Part (2) follows from part (1) by applying Proposition 7.4.16, so it
suffices to verify the latter.

We reduce to the case that p € P is initial and ¢ € P is terminal, using Observation 7.2.3 in order
to apply our previous results regarding stratifications of presentable stable co-categories, as follows.
First of all, by passing to the restricted stratification of Z, over (Sq) € Downp (Observation 3.4.4),
we may clearly assume that ¢ € P is terminal. From here, we claim that passing to the quotient
stratification of €/Zz, over (Zp) = P\(Zp) (Observation 3.4.11) allows us to assume that p € P is
initial. On the one hand, the fact that the gluing diagram of € over P restricts to that of €/Zz,
over P\(Zp) (as explained in Observation 3.4.11) implies that the diagram

sd(P)? ————— Fun™(€,,€,)

1 I

sA(P\(Zp))fy — Fun™((€/22,)p: (€/%2,)q)

commutes. On the other hand, the diagram

2, —L € pr e,

R T

(?p (T> G/Zzp W (G/Zzp)q

commutes: the left square commutes by Lemma 3.2.3(2)(b) (which applies by Lemma 3.4.5), while
the right square commutes by passing to left adjoints (recall Proposition 3.4.10). It follows that we

obtain a commutative diagram

=P

Iy
e, ——— €,
2 2
(G/Zzp)p ? (G/Zzp)q

q

So we may indeed assume that p € P is initial.
To simplify our notation, we write P’ := P\{¢} = (<¢) € Downp. Observe that we obtain a stable

recollement

R
Cpr +—v—C¢—rv—Cy . (7.4.1)
\;/‘ \\pJ};/‘
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To finish the proof, we work within the context of the commutative diagram

Dpe
14

ep
ir YpriL

Cpr R e L e, (7.4.2)

p
Sy

Le limeg(pr) &

Fun(sd(P"), Cp/) — Fun(sd(P’),C) —;— Fun(sd(P’),Cq) —— Fun(sd([1]),Cy)
in St, in which
e the upper left (curved) triangle commutes by definition of fz,

e the middle (flattened) triangle commutes by applying Lemma 7.4.6 to the stable recollement
(7.4.1),

e the lower left vertical functor L, is the functor (2.6.1) of Observation 2.6.3,

e the lower left rectangle commutes due to the equivalence limgypry o Le = ide,, that follows
from Theorem 2.5.14 (using that sd(P’) is finite),

e the functor sd(P’) = sd([1]) to the walking cospan is given by the prescriptions
T (0) = {([0] = P}, wt01) =sd(P)P\(0] = P),  and  a'(1) =sd(P")\sd(P")" ,
and
e the lower right triangle commutes because right Kan extensions compose.

We claim that the composite exact functor €, — Fun(sd([1]),C,) in diagram (7.4.2) selects the
evident cospan

0

i (7.4.3)
p<a. (Te)

't —— lim "
sd(P);,\([1]——P)

in Fun®(C,, €,). To see this, observe first that the functor sd(P’) = sd([1]) is a cartesian fibration:

over the morphism 0 — 01 this follows from the fact that the object ([0] £ P’) € sd(P’) is initial,

while its cartesian monodromy over the morphism 1 — 01 is given by removing the element p € P’

from each object. Therefore, the right Kan extension . is computed by fiberwise limit. From here,

it suffices to make the following two observations.

e The composite functor €, N Cpr = Fun(sd(P"), Cp/) takes values in the full subcategory
of functors that restrict to zero on sd(P’)\sd(P")P. This implies that the composite functor

€, — Fun(sd([1]),C,) 2% €, is indeed zero.
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e For each object ([n] £ P’) € sd(P")I?, the composite functor

C, <5 Cpr L% Fun(sd(P'), Cpr) =225 Cps

is canonically equivalent to the composite

max(p)

F“P
Gp = Gmin(w) — Gmax(g,) — Cpr .

This explains the identification of the composite functor €, — Fun(sd([1]), C;) at the objects
0,01 € sd([1]).

So, the claim follows from the fact that the limit of the cospan (7.4.3) is by definition the total fiber

of the functor sd(P)[? =% Fun™(€,, C,). O

Remark 7.4.7. We now simultaneously introduce the gluing diagram and reflected gluing dia-
gram of our stable stratification Zo of € over P. The former was already implicitly defined in

Theorem 7.2.4, but we nevertheless spell it out here for clarity and in order to highlight the com-

parison.!4!

Notation 7.4.8.
(1) We define the full subcategory
G(@):={(X,p)€CxP: X epP(C) CCxP,
which we consider as an object of Cat/p.
(2) We define the full subcategory
Z(€) == {(X,p°) € x P®: X € \P(C,)} C C x P

which we consider as an object of Cat/por.

Observation 7.4.9.

(1) The functor
é(€) — P
is a locally cocartesian fibration, whose monodromy functor over each morphism p — ¢ in
P is the functor
l"P
€, —5 €, .
Moreover, its fibers are idempotent-complete and stable and its monodromy functors are

exact. We therefore consider it as defining an object

() € LMod ax.p(St'**™) C LMod| jax.p := loc.coCartp .

141Inspecting Definition 2.5.7 and Theorem 7.2.4, it is clear that Definition 7.4.10(1) coincides with the gluing
diagram as implicitly defined in Theorem 7.2.4.
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(2) The functor
G(€) —» PP

is a locally cartesian fibration, whose monodromy functor over each morphism p° < ¢° in
P°P is the functor

=P

e, e, .

Moreover, its fibers are idempotent-complete and stable and its monodromy functors are
exact. We therefore consider it as defining an object

G (€) € LMody jax.p (St*™) € LModyjax.p := RMod, ax.por := loc.Cartpes .

Definition 7.4.10.

(1) We refer to the object
() € LMod| jay p(St'™)

as the gluing diagram of the stratification.

(2) We refer to the object
Z(C) € LMod, jax.p(St4em)

as the reflected gluing diagram of the stratification.

Theorem 7.4.11. There is a canonical commutative diagram

peP
fs@b
((=)p)per Sw
. “mlr..llaa);.- . g .
LMod, jax.p(St™) .~ strat¥ <~ " LMod| jay.p(St9™)

i rlax
limi3%.e

fgt

ot @
(NS
RN

Stidem

Remark 7.4.12. In what follows, we use the notation (—)™ to denote opposite co-categories that
are considered in some nonstandard (“reflected”) way. (We explain both usages of this notation as
they arise; see Notation 7.4.15 and Definition 7.4.18.) We continue to use the notation (—)°P to
denote the opposite co-category considered in its own right.

Definition 7.4.13. The reflected closed subcategory (or simply reflection) of a closed subcat-
egory Z € clse of € is the closed subcategory
200 7, gor

of @op 142

1427he right adjoint of i%’? is y°P, and the right adjoint of y°P is i%p; see Notation 7.4.15.
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Observation 7.4.14. Passage to reflected closed subcategories determines an equivalence

(_)refl
clse ————— clsex

w w

)
i

(z LN e) — <Z°P LN e°P>

which when applied twice yields the identity functor

refl _yrefl

idcls(g : ClSe CISGOP ClS(@op)op ~ ClSe .

We use these facts without further comment.

Notation 7.4.15. As indicated in Observation 7.4.14, given a closed subcategory Z € clse we write

2l ¢ clseor for its reflection. Moreover, we write
it pE" iR PR
grefl (et COP il > eop/zrefl = ZOP 40P CP «— o — (C/2Z)°P

\irgﬂ/‘ \\;}éﬂ/\ \7]%/‘ \\pép_/‘

for the functors in the stable recollement that is opposite to the stable recollement (7.1.1).143

Proposition 7.4.16. The composite

_yrefl

e p Zey clse (—> clseor
s a stable stratification of C°P over P.

Observation 7.4.17. Passage to opposites defines an equivalence

_\op
thicke < thickee

w w
(Z C @) — (Z°P C C°P)
In particular, it preserves colimits, so that given a set {Ys € thicke}ses of thick subcategories of

©, we have an identification
. . op
(Yo) T = ((9)0F) " € thickes .
We use this fact without further comment.

Proof of Proposition 7.4.16. We apply the criteria of Proposition 7.2.11.
We begin with condition (1) of Proposition 7.2.11. Observe first that

. hick hick
(iR(Z) 1 D (P ) = ¢

where the equality is guaranteed by Theorem 7.2.4 (and the fact that P is finite). Since € € thicke

is terminal, this implies the equality

(ir(Zp))yrs = € € thicke (7.4.4)

(7

) op .
143Hero, we implicitly use the evident fact that the involution Stidem —)> Stidem preserves stable recollements.
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which implies the equality

<Zreﬂ >thick —

refl /e refiy \ thick _ thick . thick
ey = (M () e = (1)) M = (i (%))
Z

=
= ((in(

Before turning to condition (2) of Proposition 7.2.11, we make some preliminary deductions.

. op
p)>;“€'°,,k) — € ¢ thickee .

Fix any p,q € P. First of all, applying Proposition 7.2.11(2)(a) to the stable stratification
p 2o clse, we find that the thick subcategory

thick .
Z(spn(q) = Zrlre(zpn(zq) € thicke

is a closed subcategory. Thereafter, by Observation 3.4.4 it is clear that the evident factorization

P R clse

] ] (7.4.5)

(Sp)N(Sq)

defines a stable stratification of Z<,)~(<,) over (Sp) N (Sq). For any r € (Sp) N (=q), let us denote
by

iR
Zr = Z(=p)n(=n)

the corresponding ir inclusion, so that we have a commutative triangle

e 2 ZEpn(sa)
[ (7.4.6)
e

Then, the equality (7.4.4) applied to the factorization (7.4.5) becomes an equality

— thick
(ir(2,)) = Z(zp)n(=q) € thickz

re(Sp)N(<q) EpnEo 7

which by the commutativity of the triangle (7.4.6) yields an equality
. hick . .
<ZR(Z’T>>tre(Sp)m(Sq) = 'LR(Z(Sp)m(Sq)) € thicke .

This implies the composite equality
refl\ thick ./ refl ferrefl thick . /0 oph \ thick
< r >7«€(Sp)m(iq) T <7’L (Z’r )>7«€(Sp)m(ﬁq) T <Z]%p(z’rp)>re(ﬁp)ﬂ(ﬁq)
. hick . hick °p
= <’R(Z’r)°p>trec(sp)m(sq) = (<ZR(Z’T)>:«ec(sp)m(sq)>
= iR(Z(sp)m(sq))OP € thickeo ,

which we record for readability as the equality
thick . .
<z;ef'>re(gpm(gq) = ir(Z(<p)n(=q))* € thickee . (7.4.7)
We now turn to condition (2) of Proposition 7.2.11. Applying Proposition 7.2.11(2)(a) to the
stable stratification P =2 clse, we immediately find that equality (7.4.7) implies part (a) of condi-

tion (2) of Proposition 7.2.11. Then, applying Proposition 7.2.11(2)(b) to the stable stratification
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p 2 clse with the roles of p and g reversed and invoking Lemma 3.1.7, we obtain a commutative

square
Y
Z(spn(sq) < %p
iL\[ \[i[‘ )
Zq # e
which upon passing to right adjoints yields a commutative square

Z(<pn(zg) —— Zp

J iR

2y —— €
iR

which upon passing to opposites and applying equality (7.4.7) yields a commutative square

-refl

refl L refl
<Zre >r€(§p)ﬂ(5® 2y

yreflT Ty refl

Zrefl < ©op
q

irefl

which verifies part (b) of condition (2) of Proposition 7.2.11. O

Definition 7.4.18. We refer to the stable stratification 2" of @°P over P of Proposition 7.4.16 as
the reflected stable stratification (or simply the reflection) of the stable stratification Zo of C
over P, and we denote it by

Zrefl )
erefl .= (P S clseop) € stratg"® .

Observation 7.4.19. Passage to reflected stable stratifications determines an involution

. _yrefl .
stratp" % stratp"

w w

e erefl

Observation 7.4.20.

(1) There is a canonical equivalence

LMod) jax.p := loc.coCartp % loc.Cartpor =: RMod, jax.por =: LMod; jax.p
w w . (7.4.8)

(€L P) —— (E | P)oP := (€% | PoP)
(2) The equivalence (7.4.8) of part (1) restricts to an equivalence

. _\°op .
LMody 12 p (SE9™) <5 LMod, jae.p(St™)

l l

I—'\/IOdI.Iax.P <(_—,\)Jop> LMOdr.Iax.P
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(3) In view of the identification
op .
(sd(P) ™5 P) " = (sd(Por)e® % pop)
the equivalence (7.4.8) of part (1) participates in a commutative square

LModi jaxp < LMod, jax.p

144
imi 2| Jimi,
Cat +———— Cat
(=)*
Proof of Theorem 7.4.11. First of all, it follows immediately from the definitions that the upper
two triangles commute. Next, the inverse equivalences on the right are precisely the content of
Theorem 7.3.2(2), which also implies the commutativity of the lower right triangle. Thereafter,
unwinding its definition, we see that the construction G is precisely the composite functor

- . _yrefl ) . __\op X
G : stratp"< o7, stratp" “, LMod jax.p (St'™) o LMod, jax.p (St@e™)

~

(as asserted by Theorem 7.4.11), in which the three functors are respectively equivalences by Ob-
servation 7.4.19, Theorem 7.3.2(2), and Observation 7.4.20(2). This implies that the functor Z is
indeed an equivalence. Combining these three results with Observation 7.4.20(3) justifies the no-

I.lax
r.lax.e

implies the commutativity of the lower left triangle. 0

tation lim for its inverse (referring to the evident analog of Notation 6.2.3), and in particular

Proposition 7.4.21. Fizx a presentable stable co-category X. For any stratification
P — Clsy
of X over P, its postcomposition
P — Clsy — clsy

with the equivalence of Observation 7.1.2 is a stable stratification.

Proof. Choose any closed subcategories Y, Z € Clsy such that Z is aligned with Y. By Lemma 3.3.4(1),
the colocalization iy into the closed subcategory (Y,2) € Clsy is the cofiber of a morphism from
an object of Z C X to an object of Y C X. This implies that the inclusion

<1é, Z>thick C <y7 Z>

in thicky is an equality. Hence, the claim follows from Lemma 3.4.5 and Proposition 7.2.11 (and
the fact that P is finite). O

Observation 7.4.22. Considering a stratification of a presentable stable oco-category as a sta-
ble stratification via Proposition 7.4.21 does not change its gluing diagram: Definitions 2.5.7 and
7.4.10(1) are compatible.

Notation 7.4.23. We use a hat in order to emphasize that we are referring to a huge co-category

whose objects are possibly large.

144hig may be seen as resulting from the fact that the equivalence (7.4.8) between oo-categories enhances to an
equivalence LMod| jax.p =~ (LMod, jax.p)2°P between (oo, 2)-categories.
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Observation 7.4.24. By Proposition 7.4.21, we have inclusions

-

Stratp «------ > stratp

J J

_——strict

Strati" «--- stratp

Corollary 7.4.25. Assume that the poset P is down-finite. Then, there is a canonical commutative

diagram

((7);0)1)6P

. 9
LMod?”,, p(Prst) ~ Strati"* —~ 7 LMod};,. p(Pret)

i rlax
limj’i3.e

fgt

P I'st

145

Proof. We first address the case that P is finite. By interpreting Theorem 7.4.11 in a larger universe

and appealing to Observation 7.4.22, it suffices to verify the image factorizations

T _—strict -

LMod, 1o p (SE™) ‘% stratp  —2— LMod jax p(St™)

J J J

LMod”,, p(Pret) --=--- Stratinc --—_- » LMod i, p(Pret)

~ ~

(7.4.9)

of the indicated composites, where the middle vertical inclusion is that of Observation 7.4.24. The

lower right equivalence in diagram (7.4.9) follows from Theorem 7.3.2(1). To conclude, we observe

the outer commutative rectangle in diagram (7.4.9): the upper composite equivalence is the identity

on fibers, and the conditions of accessibility of monodromy functors coincide by Proposition 7.4.5.

fin

We now turn to the case that P is merely down-finite. Writing Downp” C Downp for the full

subposet on the finite down-closed subposets of P, observe that P ~ colimDeDowngn(D). Now, for an

arbitrary finite poset Q, we have just argued that we have a commutative diagram

(&,
14
(()a)qeq o
r.lax. e .
LMod/,, q(Pr) -~ Stratgy"™ 4’<~7| LMod/i,x.q(Prst)
7 lim{ {2,

145By 7 here we refer to the evident analog of Definition 7.4.10(2).
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Moreover, this diagram is clearly contravariantly functorial as we vary Q over the category of finite
posets and inclusions of down-closed subposets. From here, it is not hard to see that we obtain the

desired diagram for P by passing to cofiltered limits over (Dowani,")°p. O

Corollary 7.4.26. Let P be an arbitrary poset whose intervals are finite. Then, there is a canonical

commutative diagram

H Prs

peP

LMOdL (Prst) = LMOdi[./Iax.P(PrSQ

r.lax.P

Moreover, on monodromy functors, the equivalence (\—/) acts as described in Proposition 7.4.5.

Proof. This diagram is clearly contravariantly functorial as we vary P over the category of finite
posets and inclusions of finite convex subposets. So, the claim follows from Corollary 7.4.25 by
passing to cofiltered limits over the poset (Conv‘,c:i,")°p7 the opposite of the poset of finite convex

subposets of P. O

Remark 7.4.27. In the situation of Corollary 7.4.26, if the poset P is not down-finite then the
equivalence does not necessarily commute with the lax limit functors: rather, we have a commutative
diagram

)

LModZ,,, p(Pret) «—— " LMod,, p(Prs:)

Prst
in which the components of the natural transformation are left adjoints. For example, let us take
P =7 and fix a presentable stable co-category V € Prg. Then, taking the constant diagram

V e LMod%,,, ;(Prg)

r.lax.Z

we obtain an adjunction
|im'r'.'|ixx.z(2) ~Fun(Z,V) 1T 7 Ch(V) ~ |im|r.'|l::.z(@ 5
in which the right adjoint is fully faithful with image the subcategory of complete filtered objects,

i.e. those whose limit is zero (compare with Example 1.10.6).

APPENDIX A. ACTIONS AND LIMITS, STRICT AND LAX

In this section, we provide definitions of strict, left-lax, and right-lax modules over co-categories:
in effect, functors of the corresponding sort into the (oco,2)-category Cat.!4¢ We also provide def-

initions of strict, left-lax, and right-lax functors among them (and in particular, limits thereof);

1467 terminology “module” is inspired by ordinary group actions: for instance, a left (resp. right) G-module in
an oo-category C is the data of a functor BG — € (resp. BG? — C).
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perhaps surprisingly, these various notions are actually well-defined in all nine cases. Moreover, we

record a number of fundamental results regarding these notions.
Local Notation A.0.1. Throughout this section, we fix a base co-category B.

This section is organized as follows.
§A.1: We introduce all of the notions of B-modules and most of the notions of equivariant functors.
§A.2: We introduce the more straightforward sorts of limits.

§A.3: We introduce the remaining sorts of equivariant functors (and in particular the remaining
sorts of limits), using the theory of (0o, 2)-categories developed in §B: namely, those in
which the handedness of the laxness of the B-modules disagrees with that of the equivariant

functors among them.
§A.4: We study the subdivision sd(B) € Cat.

§A.5: We give an alternative and more explicit description of the right-lax limit of a left-lax left
B-module using sd(B).

§A.6: In the case that the only retracts in B are equivalences, we provide a useful alternative
description of the right-lax limit of a left-lax left B-module as the strict limit of a strict left
sd(B)-module.

Remark A.0.2. In §§A.1 and A.2 we give a comprehensive account of the theory, explaining all
possible handednesses and how they relate. However, thereafter we specialize in order to streamline

our discussion.

Remark A.0.3. We omit essentially all mention of lax colimits, as we will have no explicit need
for them. On the other hand, they will certainly be present: for example, the left-lax colimit of a
functor B — Cat is nothing other than the total co-category € of the cocartesian fibration & | B
that it classifies. (See, e.g. [GIIN17] for a discussion of lax colimits of strict functors along these
lines.)

Remark A.0.4. The lax B-modules and lax equivariant functors that we study are all strictly
unital (in the sense that the corresponding functors to Cat strictly respect identity morphisms).'47
This stands in contrast with the laxly O-monoidal functors between O-monoidal co-categories that
arise in §4: as described in Remark 4.1.6, we do not require those to be strictly unital (in the sense

that we do not require them to strictly respect the unit objects of O-monoidal structures).

A.1. Strict and lax actions. In this subsection, we introduce all of the notions of B-modules
and most of the notions of equivariant functors. We begin with an omnibus definition, which the

remainder of the subsection is dedicated to discussing.

Definition A.1.1. In Figure 5, various co-categories of B-modules depicted on the left side are
defined as indicated on the right side. The objects in the co-categories in the upper left diagram are
(various sorts of) left B-modules, while the objects in the oo-categories in the lower left diagram

are (various sorts of) right B-modules. In both diagrams on the left side, we refer

1470¢ course, more general definitions exist (see §B.1).
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e to the objects
— in the middle rows as (strict) B-modules,
— in the top rows as left-lax B-modules, and
— in the bottom rows as right-lax B-modules,

and

e to the morphisms
— in the middle columns as (strictly) equivariant,
— in the left columns as left-lax equivariant, and
— in the right columns as right-lax equivariant.

So in our notation, laxness of the actions is indicated by a subscript (placed before “.B”), while

laxness of the morphisms is indicated by a superscript.
Remark A.1.2. We give definitions in §A.3 that extend the diagrams of Figure 5 to full 3 x 3 grids.
Example A.1.3. Let us unwind the definitions of the co-categories

LMods , LMod!3> RMods , and  RMod}>

in the simplest nontrivial case, namely when B = [1].

(1) Let € | [1] and F | [1] be cocartesian fibrations, the unstraightenings of functors

<50£>£1>

[1] ——— Cat
and
<30i>crl>
[1] ——— Cat,

respectively. Then, let us consider a left-lax equivariant functor

E—=—=F

N7

Given a cocartesian morphism e — FE(e) in € with e € £y and E(e) € &1, the functor «
takes it to some not-necessarily-cocartesian morphism a(e) — a(E(e)) in F with a(e) € F
and «(E(e)) € F1. This admits a unique factorization
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as a cocartesian morphism followed by a fiber morphism. This operation is functorial in
e € &g, which implies that our left-lax equivariant functor amounts to the data of a lax-
commutative square

& —2— &

o o e

Fo ——
To say that the left-lax equivariant functor is actually strictly equivariant is equivalently
to say that this square actually commutes, i.e. that the natural transformation is a natural

equivalence.

(2) Dually, let € | [1] and F | [1] be cartesian fibrations, the unstraightenings of functors

- (Eoot7e10 ) -

<:ﬂ)o<—F—'flo>

e % Cat,

and

respectively. Then, a right-lax equivariant functor

E——*—— F

N

likewise amounts to the data of a lax-commutative square
800 <L E1o
(XOOJ/ ﬁ J{O&lo .

ffoo (T 3:10

To say that the right-lax equivariant functor is actually strictly equivariant is equivalently
to say that this square actually commutes, i.e. that the natural transformation is a natural

equivalence.

Example A.1.4. Let us unwind the definitions of the co-categories
LMod™,  LMod%™,  RMod3™,  and  RModi™
in the simple but illustrative case that B = BG for a group or monoid G. Choose any two objects
€,F € Catieoycart /B >

with the two choices of whether or not to include the parenthesized bits made independently. These
are classified by left or right G-actions on the fibers £y and Fy over the basepoint of BG (op) _ right
if the choices coincide, left if they do not — and morphisms between them are left-lax equivariant in

the case of “cocart” and right-lax equivariant in the case of “cart”. In all four cases, a morphism
& & F

~N 7

BG (P
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is the data of a functor
&0 2% Ty

on underlying oco-categories equipped with certain natural transformations indexed over all g € G,
as recorded in Figure 6. Moreover, these must be equipped with compatibility data with respect to

LMody2x g-ap(—) — aolg-—)
RMod5 & ag(—-g) — ao(—) g
LModj2 aog(g-—) — g - ao(—)
RModjy2x ag(—-g) — ao(—) g

FIGURE 6. Given two oo-categories equipped with (strict) left or right G-actions,
defining a left- or right-lax equivariant functor between them amounts to defining
a functor on underlying oco-categories along with compatible lax structure maps

indexed by ¢g € G, as indicated.

r.lax

the multiplication in G: for example, in the case of LModga", for all g, h € G the diagram

ao(ghe) ghao(e)

~

gao(he)
must commute, naturally in e € &g.
Example A.1.5. Let us unwind the definitions of the co-categories
LModyi3is  and  RMod]i 5
in the simplest nontrivial case, namely when B = [2].

(1) (a) Let € | [2] be alocally cocartesian fibration; let us write &; for its fibers (for ¢ € [2]) and
E;; for its cocartesian monodromy functors (for 0 < i < j < 2). An object e € &g deter-
mines a pair of composable locally cocartesian morphisms e — Foi(e) — E12(Fo1(e))
with Ep1(e) € €1 and E12(Ep1(e)) € €. Their composite is a not-necessarily-locally-

cocartesian morphism, which admits a unique factorization

€ -------3 > Eog(e)

|

Er2(Eoi(e))

as a locally cocartesian morphism followed by a fiber morphism. This operation is

functorial in e € €y, which implies that our left-lax left [2]-module amounts to the data
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of a lax-commutative triangle

2

&o —> Eq
This should be thought as the unstraightening of a left-lax functor
[2] —1lax— Cat
of (00, 2)-categories.

(b) Let €& | [2] and F | [2] be locally cocartesian fibrations, and let us continue to use

notation as in part (a) for both € and &F. Then, a left-lax equivariant functor

[e3

E———— F

NS

2]

amounts to the data of left-lax equivariant functors over the three nonidentity mor-
phisms in [2] (as described in Example A.1.3(1)), along with an equivalence between

the composite 2-morphisms

&1
B S
&o o €
7 =
[e 7)) ?1 a2
T " &
0 Fos 2
and
&1
B> " 6}9
& &
0 Fos 2
[e7) Z a2
F F.
0 Foa 2

(i.e. a 3-morphism filling in the triangular prism).

(2) (a) Dually, let €& | [2] be a locally cartesian fibration; let us write €;0 for its fibers (for

i € [2]) and Ejo0 for its cartesian monodromy functors (for 0 <4 < j < 2). Then, this
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right-lax right [2]-module amounts to the data of a lax-commutative triangle

This should be thought as the unstraightening of a right-laz functor
[2]°P — rlax— Cat
of (00, 2)-categories.
(b) Let & | [2] and F | [2] be locally cartesian fibrations, and let us continue to use notation
as in part (a) for both & and F. Then, a right-lax equivariant functor

E——*—— F

N

amounts to the data of right-lax equivariant functors over the three nonidentity mor-
phisms in [2] (as described in Example A.1.3(2)), along with an equivalence between

the composite 2-morphisms

E1o
@\,00 @QOIO
8 o Qo 8 o
0 2
AN
Qo 20
/ \
Foe Fyogo
and
/ \
800 Faogo 820
Qo Y Qg0
3500 Taogo ?20

(i.e. a 3-morphism filling in the triangular prism).

Example A.1.6. Let us unwind the definitions of the co-categories
LMod jax. 5 s RMod, jax.3 s LMod; jax.3 s and RMod| jax. 5

in the simple but illustrative case that B = BG for a group or monoid G. Choose an object

€e Catloc.(co)cart/BG("p) ’
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with the two choices of whether or not to include the parenthesized bits made independently. Write
&p for the fiber over the basepoint of BG(OP), the underlying oo-category. Then, this is the data of
an endofunctor (g-—) or (—-g) of & for each g € G, along with compatible natural transformations,
as recorded in Figure 7. Of course, these must also be compatible with iterated multiplication in G.

LMod, jax.Bc (gh-—) —g-(h-—)
RMod;.1ax.Bc (—-g)-h— (—-gh)
LMod, 1oy G g (h-—) —> (gh-—)
RMod, jax.8¢ (—-gh) —(—-9)-h

FIGURE 7. Equipping an co-category with a left- or right-lax left or right G-action
amounts to defining endofunctors indexed by g € G, equipped with lax structure

maps corresponding to multiplication in G, as indicated.

Observation A.1.7. Consider a colimit
B ~ colim;eg(B;) (A.1.1)
in Cat. By un/straightening, it is clear that the canonical functor
coCartg — lim;ocgen (coCartsp, )
is an equivalence (of (0o, 2)-categories). On the other hand, the canonical functor
loc.coCartg — lim;oeger (loc.coCarts,) (A.1.2)

is not generally an equivalence. However, the functor (A.1.2) is an equivalence under the condition
that the colimit (A.1.1), considered in complete Segal spaces, is in fact a colimit in simplicial spaces.
This follows from Theorem B.4.3 using Observation B.1.27.148

A.2. Strict and lax limits. In this subsection, we introduce the more straightforward sorts of
limits. We begin with an omnibus definition, which the remainder of the subsection is dedicated to

discussing.
Notation A.2.1. Given two objects
(€1 B),(F L B) € Catym ,

we write

Fun(5)<"(€,9) € Fun /s (€, F)
for the full subcategory on those functors which take all locally (co)cartesian morphisms over B in
€ to locally (co)cartesian morphisms over B in F. As a special case, we write

co)cart . 1(co)cart L (co)cart
Pt ) .= ") := Fun 3" (B, F)
14814 s also easy to see directly without appealing to un/straightening using the fact that simplicial spaces is an

oo-topos.
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(using the subscript in the case that there is any potential ambiguity).

Definition A.2.2. In Figure 8, we define various limzit functors on various oo-categories of B-
modules. Our notation is largely concordant with that of Definition A.1.1; we indicate the hand-
edness of the original module in the subscript by writing B for left modules and B°P for right
modules.!*® We refer to a limit functor according to its superscript (which is more relevant any-
ways), e.g. we refer to lim 12X o as the left-laz limit functor. We also write e.g.

limb= : LMods —— LMod} ,, ™5, o

for the composite functor, which carries each strict left B-module to its left-lax limit.

Example A.2.3. Let us unwind the definitions of the functors in the diagrams

|imr5 |im/Bop
/\ /_\
LModg ) Cat and RModg i} Cat
\_Il/f \I/'
lim'3™ lim’;3p

in the simple but illustrative case that B = BG for a group or monoid G.

(1) Suppose that
(8 d BG) € coCartgg =: LModgg

is classified by a left G-action on &g.
(a) An object of the strict limit is given by an object e € €y equipped with equivalences
g-e—e
for all g € G that are compatible with the multiplication in G.
(b) An object of the left-lax limit is given by an object e € €y equipped with morphisms
g-e—e

for all g € G that are compatible with the multiplication in G.

(2) Suppose that
(8 1 BG) € Cartgg =: RModgg

is classified by a right G-action on €.
(a) An object of the strict limit is given by an object e € €y equipped with equivalences
e—e-g
for all g € G that are compatible with the multiplication in G.
(b) An object of the left-lax limit is given by an object e € &y equipped with morphisms
e—e-g
for all g € G that are compatible with the multiplication in G.

149This coincides with the corresponding notation for G-actions: the limit of a left (resp. right) G-action is a limit
over BG (resp. over BG°P).
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LMod

LMod

f.f.

LModg ----limg ---» Cat

f.f.

LI\/IOdr.Iax.‘B

LMod

I.lax
l.lax. B

™

I.lax
limy 25 s

N

-~

r.lax
Ilmr lax. B

/

r.lax
r.lax.B

RMod; 3 »

f.f

I

I'ml lax. BOP

RMod| jax. B
\ \
f. 1imy jax. BoP
N

RModg ---limge --» Cat

f.f.

RMOdr.Iax.B

lim, op/’
/

r.lax
limy 12 gop

/

RMod; 3 5

Catloc.cocart/‘B

loc.coCartg

AN

7 r

FCOCQIT
coCartg \
2 Cat
Cartfgop /
Fcart
£.f. /
loc.Cartpor X r
Catloc.cart/'B‘Jp
Catloc.cocart/‘B°P
loc.coCartger 2 r
£.f. \
FCOCSVt
coCartpon \
] Cat
CartB /
FCSVE
£.f. /
loc.Cartp A\ r

CatIoc.cart/‘B

FI1GURE 8. The rightwards functors to Cat on the left are defined to be those on the
right (except that each dashed functor may be defined as either adjacent composite:

the inner triangles all commute).



Example A.2.4. Let us unwind the definitions of the functors

- llax s r.lax
lim 3 s r.lax limy 3. s

LMod| X, —22, Cat  and ~ RMod" > 5, —=22, Cat
in the simplest nontrivial case, namely when B = [2].

1) Let € | [2] be a locally cocartesian fibration, and let us employ the notation of Exam-
y
ple A.1.5(1)(a). Then, an object of the left-lax limit of this left-lax left [2]-module is given
by the data of

e objects e; € &; (for 0 < i < 2),
e morphisms
Eij
Eij (ei) —]> €4
(for 0 <i<j<2),and
e a commutative square

E02 (60) * €9

E12(Eo1(eo)) T Era(e1)
12(€01)

in €9, where the morphism on the left is the canonical one (recall Example A.1.5(1)(a)).

Note that the structure map egs is canonically determined by the structure maps €91 and

£12.

(2) Let & | [2] be a locally cartesian fibration, and let us employ the notation of Exam-
ple A.1.5(2)(a). Then, an object of the right-lax limit of this right-lax right [2]-module
is given by the data of

e objects e;0 € &0 (for 0 < < 2),

e morphisms
Ejoio
€jo —> Ejoio (ejo)
(for 0 < i< j<2),and

e a commutative square

600 2000 Egooo (620)

€q000

E1°0° (610) E1°0° (EQolo (62o))

Ejogo (€2010)

in €go, where the morphism on the right is the canonical one (recall Example A.1.5(2)(a)).
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Note that the structure map 9090 is likewise canonically determined by the structure maps

E9oqo and E10Q°.

A.3. Lax actions and lax limits with mixed handedness. In this subsection, we introduce
lax morphisms among lax modules (and in particular lax limits) of mixed handedness, using the

theory of (0o, 2)-categories developed in §B.150

We also record some key results here: an (oo, 1)-
categorical description of such morphisms (Lemma A.3.5), as well as two results that relate such
morphisms with those in the co-categories appearing in §A.1 via passage to adjoints (Lemmas A.3.6
and A.3.7). To streamline our discussion, we restrict our attention to left B-modules; the case of

right B-modules is obtained by replacing B with B°P.

Observation A.3.1. By Theorem B.4.3, we can describe the co-categories of lax modules as well
as their lax limit functors described in §§A.1 and A.2 in terms of (0o, 2)-categories according to the
identifications

LMOd|_|ax_'B > LMOdeiB 1C0Car1:I.Iax(23) - 2ca1:lcc:cart/l.lax(‘B)

% 7
K M N ()
Cat Cat

1

a
and
LMod, jax. 5 > LMod" % 1Cart, jax(p)y1or ——» 2Caticart/r.lax(B)1op
7 = 7
”, - 9 )
X%‘ @ e ) W (Q\ .i:*@\
Cat Cat

Definition A.3.2. We define right-lax equivariant morphisms between left-lax left B-modules
and right-lax limits thereof as well as left-lax equivariant morphisms between right-lax left B-
modules and left-lax limits thereof according to the diagrams

LMOd|r.'||::.,B = 2Cat1cart/|'|ax(3)lop LMOdIr'.lfa);.,B = 2Cat1cocart/,.|ax(g)

and

Cat Cat
Observation A.3.3. As the notation suggests, we have canonical equivalences
toLMod[{2 55 =~ 1oLMod| 2%
on spaces of objects. Indeed, by Theorem B.3.4 and (1&20p applied to) Theorem B.4.3, we have a

commutative square

r.lax

LMod, jax. 58— LMod| 3% 5

] Jor

LMody «—— LMod>

extending the evident span in the diagram of Figure 5, and moreover the two diagrams there extend

to 3 x 3 commutative squares in the evident way. We use these facts without further comment.

150Here we freely refer to some basic (oo, 2)-categorical notions (such as left- and right-laxification and 1-
co/cartesian fibrations) described there.
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Remark A.3.4. We give a purely (0o, 1)-categorical description of the right-lax limit of a left-lax
left B-module in §A.5 (see Proposition A.5.1). In the main body of the work, we take this as an
alternate definition. In the case that the only retracts in B are equivalences, we also give another
description in §A.6 as a strict limit over its subdivision category.

Lemma A.3.5. For any oco-category C, the datum of a functor
€ — LMod[{Z 5
is equivalent to the datum of a locally cocartesian fibration € | (C x B) satisfying the following two

conditions.
(1) For every object b € B, the base change & — C is a (strict) cocartesian fibration.

(2) For any pair of morphisms ¢ — ¢ in C and b — V' in B, the pullback along the functor
[2] = € x B selecting the commutative triangle

(¢ b)

N

(¢,b) —— (, V)
is a (strict) cocartesian fibration.
Proof. Using Theorem B.4.1, we have the identification
hom,,2cat (€, LMod[ % 1) := hom,, 2cat (€, 2Cat cart/1.1ax(y10) = hom,, acat (11ax(B), 2Catycocart/c) -

The result now follows from Theorem B.4.4. O

I.lax

Lemma A.3.6. The datum of a morphism Eg < &1 in LMod, 3% 5 whose restriction to each b € B

s a right adjoint is equivalent to the datum of a morphism €9 — €1 in LMOdf_]'jzg whose restriction

to each b € B is a left adjoint, with the equivalence given fiberwise by passing to adjoints.
Proof. This follows from Lemma B.5.7 by taking € = l.lax(B). O

Lemma A.3.7. A morphism €y < &1 in LMod| a8 whose restriction to each b € B is a right

adjoint becomes a right adjoint in LMod[2 ., i.e. there exists a (necessarily unique) extension

[1]op ? LMOdLIaxKB

| l

Adj ----- + LMod[ 2% 5
Proof. This follows from Lemma B.5.9 by taking € = l.lax(B). O
A.4. Subdivisions. In this subsection, we study subdivisions of co-categories.
Local Notation A.4.1. In this subsection, we fix a poset P € Poset.
Definition A.4.2. The subdivision of P is the full subcategory
sd(P) € A/p:= A xca Cat)p

on the conservative (or equivalently injective) functors [n] — P.
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Definition A.4.3. A morphism [m] <+ [n] in A is called isomin if a(0) = 0, isomaz if a(m) = n.
We use the same terminology for morphisms in sd(P) according to their images under the forgetful
functor sd(P) — A.

Remark A.4.4. The co-category sd(P) is in fact a poset, namely the full subposet of the power
set Z(P) (ordered by inclusion) on those subsets of P which are nonempty and totally ordered.

Example A.4.5. For each [n] € A C Poset, we have an identification
sd([n]) = P2z ([n])

of its subdivision with its power set with its initial element removed, which is a punctured (n + 1)-

cube.

Observation A.4.6. The defining fully faithful inclusion sd(P) C A /p admits a left adjoint

Observation A.4.7. Subdivisions of posets assemble into a functor
Poset =23 Cat

A
(whose unstraightening is a full subcategory of that of the functor Poset e, Cat).

Lemma A.4.8. The commutative triangle

A <y Poset —4 5 Cat

o]

3
Poset °

s a left Kan extension diagram.
Proof. We must show that the canonical functor
colim (A/p 5 A < Poset =% Cat) — sd(P)

is an equivalence. By Observation A.4.6, the functor sd(P) < A p is final. So, it is equivalent to
show that the functor

colim (sd(P) — Ajp 85 A < Poset =% Cat) — sd(P) (A4.1)
is an equivalence. Consider the composite
sd(P) — A p &5 A — Poset =% Cat (A.4.2)

(whose colimit is the source of the functor (A.4.1)). It is not hard to see that the unstraightening

of the composite (A.4.2) is the cocartesian fibration

Ar(sd(P)) — sd(P) , (A.4.3)
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and that the composite

(A4.1)
0

Ar(sd(P)) — colim(A.4.2) sd(P) (A.4.4)

is precisely the functor Ar(sd(P)) = sd(P), where the first functor in the composite (A.4.4) is the
localization of Ar(sd(P)) with respect to the cocartesian morphisms in the cocartesian fibration
(A.4.3). These cocartesian morphisms are precisely the morphisms that are sent to equivalences by
the functor Ar(sd(P)) = sd(P). But this functor is itself a localization (because it admits a fully
faithful left adjoint), which shows that the functor (A.4.1) is an equivalence. O

Definition A.4.9. Justified by Lemma A.4.8, we define the subdivision endofunctor on Cat as

the left Kan extension

A~ Cat

o
f.f. 4
\[ /// 96

Cat

Lemma A.4.10. There is a canonical functor
A /g — sd(B)

witnessing a localization on those morphisms ([n] | B) — ([m] | B) in A g for which the underlying
morphism [n] = [m] in A is surjective.

Proof. Let sAd(B) — A3 be the unstraightening of the composite functor
Ay B A Cat (A.4.5)

Note the natural transformation by fully faithful functors sd([e]) — A (4], a morphism in Fun(A, Cat).

A .
Note also that the unstraightening of A /3 8 A 2/ Cat is the cocartesian fibration Ar(A/g) 5N
A /3. Therefore, we identify

sd(B) C Ar(A3)
as the full subcategory consisting of those objects
(k] = [n] = B)
in which [k] — [n] is injective. Observe that the fully faithful left adjoint
Ay T Ar(A)g)
factors through s/(\:I(B) Therefore, the composite functor
sd(B) — Ar(A/z) 5 Ag (A.4.6)

is a right adjoint localization.
Next, by definition we have an equivalence colim(A.4.5) = sd(B). Therefore, there is a canonical
functor

sd(B) —> sd(B) (A.4.7)
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witnessing a localization on those morphisms in s:j(B) that are cocartesian over A 5. This collection

of morphisms is precisely those that are defined by a diagram
[k] —— [n] — B
L
k'] — [n/] — B

in which the morphism [k] — [k'] is surjective. Clearly, this localization (A.4.7) factors through the
localization (A.4.6). Because localizations satisfy a two-out-of-three property, we have a resulting

localization functor
A/g — Sd('B) .
By direct inspection, this localization is as asserted. O

Proposition A.4.11. Let C be an co-category. Let BP E, Cat be a functor from the opposite of an

oo-category. Consider its cartesian unstraightening UnR(E) } B. There is a canonical identification

Un” (Fun(E(e), @) ~ Funr/e,)'3 (UnR(E) (‘l’)

y =

in Cat/g, in which on the left is the cocartesian unstraightening of the composite functor

Fun(E(s),€) : B 27 cater P20, cat

In particular, the functor Fun;e% (UnR(E),Q) 1 B is a cocartesian fibration.
Proof. Fix an object (X | B) € Cat;z. We have the sequence of identifications
homcat (IK, Un” (Fun(E(e), e))) ~ hoMmeun(s.cat) (Ko, Fun(E(s), €)) (AA4.8)

~ Iim(bs_)bt)oeTWAr(B)ophomcat (j{/bt, Fun(E(bS), G)) (A49)
~ lim b, b, )0 eTwar(B)ehomeat (E(bs) x Ky, , €)
~ homCat (Colim(bs‘)bt)eTwAr(‘B)E(bs) X K/btu (‘3)
~ homeat (UnR(E)|g<, e) (A.4.10)
—: homcyt, (fK, Fun'fg(unR(E),g))

in 8, in which equivalences (A.4.8), (A.4.9), and (A.4.10) respectively follow from Theorem 4.5,
Proposition 5.1, and Corollary 7.6 of [GHN17]. O

Notation A.4.12. We write Ar™(A%) C Ar(A) for the full subcategory whose objects are the
inert morphisms (i.e. the opposites of morphisms A that are injective and convex). Via evaluation
at source, we regard Ar"™(A°P) as a category over AP

Observation A.4.13. The fiber of Ar"(A°) 2 A% over [n]° € A is the full subcategory
(A jinrt[))°P C (A[n))° whose objects are the inert morphisms. It is easy to see (e.g. using the

inert-active factorization system on A%) that the functor Ar"™(A°P) 5 A is a cartesian fibration.

Notation A.4.14. Given an oco-category D, we write

Span(D) C Funr/dAop (Afinrt(AOP)vg)
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for the full subcategory on those objects ([n], ((A jir[y))°P EiN D)) such that for every 0 < i < j <
k <1< mn, the functor F' carries (the opposite of) the diagram

[ k) —— [4,1]
in A i, to a pullback diagram in D.

Remark A.4.15. In Notation A.4.14, if D admits pullbacks, then by Proposition A.4.11 the functor

Span(D) — A°P is a cocartesian fibration whose maximal sub-left fibration is the unstraightening of

Span(D
the complete Segal space A°P M 8 corresponding to the co-category of spans in D (as studied

e.g. in [Haulg]).151
Local Notation A.4.16. We write sd’(B) for the following co-category of spans in A g

e its objects are those objects ([n] | B) € A, such that for each 0 < i < n the composite

functor [i — 1,4] < [n] — B is conservative, and
e its morphisms are those spans
() 4 B) «— (k] L B) —> (] 1 B)
for which the functor [n] < [k] is surjective and the functor [k] — [m] is injective.

More specifically, we may define sd’(B) via the unstraightening of its corresponding complete Segal

space, which is the evident subcategory of Span(A/g).l52

Lemma A.4.17. There is a canonical equivalence sd'(B) ~ sd(B).
Proof. Observation A.4.13 gives that Ar"(A%) 2 AP is a cartesian fibration. Hence, the projec-
tion
Fun'?hes (Ari"'t(A"P), A /73) A%
is a cocartesian fibration. Note that we have a subcategory inclusion

(A o)) —> Fun'fher (Ari"'t(A""), A /73) , (A4.11)

by definition of sd’(B).
Now, consider the cocartesian fibration U — A that straightens to the standard inclusion A —
Cat. This cocartesian fibration has the feature that for any oo-category €, we have a canonical

inclusion
(Ae)*™ — Fun’pe (UP,C)

which is that of the maximal sub-left fibration of the indicated oco-category of relative functors.

151This follows from the fact that the functor Ar"(A%P) 2 AP is a cartesian fibration (via the inert-active

L]
factorization system of A°P) that corresponds to the functor A =, Cat of [Haul8, Definition 5.1].
15214 ig straightforward to verify that this co-category is indeed well-defined.
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Now, observe the morphism

U —— AFM(A) ~ Ar"t(A0P)oP
w w (A.4.12)
(i € [n]) —— ([n]<i = [n])

in Cat/a. Hence, we obtain the composite morphism

op (A.4.11)

(A/sd’('B)) o |:unr/elAop (Afinrt(AOP),A/'B) (A.4.12)*

Funhe (U, Ays)  (A413)
in Cat/a. By inspection, the composite functor (A.4.13) factors through the subcategory
surj
Fun'er (u°P, A /93) ' C Funhe (u°'°, A /93)

with the same objects but only those morphisms that project via the forgetful functor A g A
to surjections. Using the surjective-injective factorization system on A as well as the localization-

conservative factorization system on Cat, we find that the resulting functor

(A/sd/(fB))op — Funr/elep (UOP, A/rB)
over AP ig fully faithful on fibers, with the image on fibers over [n]° € A°P consisting of those
objects ([ko] = -+ = [kn] — B) such that

surj

o for each 0 < ¢ < n the functor [k;_1] — [k;] is injective, and
e for each 0 < j < k,, the composite functor [j — 1,j] < [k,] — B is conservative.

Moreover, using the same two factorization systems, this fully faithful inclusion on fibers over
[n]° € A°P admits a left adjoint. Therefore, the composite functor

surj surj a
(& jsar(m) ™ — Funfhe (W A/z) — (Funrf'Aop (W a/s) ) (A.4.14)
I.fib

to the fiberwise co-groupoid completion is an equivalence. In particular, the target of the functor,
considered as a left fibration over A°P, unstraightens to a complete Segal space. By [MGI19h,

Theorem 3.8], this complete Segal space corresponds to the localization of A ;¢ at those morphisms

that project to surjections under the forgetful functor A g e A By Lemma A.4.10, we obtain
the desired equivalence sd’(B) = sd(B). O

Corollary A.4.18. Suppose that every retraction in B is trivial (i.e. is a pair of inverse equiv-
alences). Then, we have an identification sd(B) C A g as the full subcategory on those objects
([n] L B) € A,p defined by conservative functors.

Proof. This follows directly from Lemma A.4.17 (and Local Notation A.4.16). O

Notation A.4.19. For any [n] € A, there are evident functors

max

sd([n]) 2% [n]  and  sd([n])°®® 2 [n] | (A.4.15)

which respectively take a nonempty subset of [n] to its maximal or minimal element. By functoriality
of left Kan extension, these induce augmentations in Fun(Cat, Cat) that we likewise denote by

max min

sd — id and sd®? —id .
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Lemma A.4.20.

max

(1) The functor sd(B) — B is a locally cocartesian fibration. Furthermore, for each locally
cocartesian fibration (€ | B) € loc.coCarts, the canonical functor

ho—mloc.coCart'B (Sd(B)7 8) — lim([n]lB)GA/ghomloc.coCart[n] (Sd([n])7 SHH]) (A416)

is an equivalence, which is functorial in the object (€ | B) € loc.coCarts.

min

(2) The functor sd(B) — B°P is a locally cartesian fibration. Furthermore, for each locally
Cartesian fibration (€ | B°P) € loc.Cartpor, the canonical functor

ho—mloc.CartBop (Sd(B)v 8) — lim([n]i'B)EA/ghomloc.Cart[n]op (Sd([n])a 8\[n]°”)

is an equivalence, which is functorial in the object (€ | BOP) € loc.Cartgep.

Example A.4.21. In the case that [n] € A, the functors (A.4.15) are respectively a locally co-
cartesian fibration and a locally cartesian fibration (as asserted by Lemma A.4.20): in both cases

the monodromy functors are given by union, as illustrated in Figure 9.

2 —mMm8M 12

e

1 sd([2))
02 — 012
/ / (A.4.17)
0 ——— 01 max
/ 2
o —"__ 4 / 2]

(A.4.18)

[0]

max

FIGURE 9. The functor sd([2]) — [2] is a locally cocartesian fibration, as illus-
trated in diagram (A.4.17); its unstraightening is illustrated in diagram (A.4.18).
max

Note that the functor sd([1]) — [1] can also be seen in diagram (A.4.17) in three
different ways, corresponding to the three nonidentity morphisms in [2].

Proof of Lemma A.4.20. We prove part (1); the proof of part (2) is essentially identical.
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max

To show that sd(B) — B is a locally cocartesian fibration, by Lemma A.4.17 it is equivalent to

show that the functor

([n]-=B)—sp(n)

sd'(B) B

is a locally cocartesian fibration. For this, given an object ([n] 2 B) € sd’(B) we must show that
there exists a locally cocartesian lift of any morphism ¢(n) Iy bin B. Tt suffices to assume that fis
not an equivalence. In this case, it is clear from the definition of sd’(B) that the morphism ¢ — 1
therein defined by the span ¢ <= ¢ < v is a locally cocartesian lift of f, where the morphism ¢ in
A g is defined by the commutative triangle

K % (A.4.19)

in Cat in which ¥(n — (n+ 1)) = f. In other words, a morphism in sd(B) is locally cocartesian
over B if it is the image of a morphism (A.4.19) in A g under the localization A,z — sd(B) of
Lemma A.4.10.

We now establish the equivalence (A.4.16). By the definition of sd(B) as a colimit, we have that

the functor
home,, , (sd(B), &) — lim(uyn)ea,,homey  (sd([n]), €pn) (A.4.20)

is an equivalence. Using the above description of the locally cocartesian morphisms of the functor
sd(B) ™2 B, we see that for each object ([n] | B) € A /3 the corresponding functor sd([n]) — sd(B)
carries locally cocartesian morphisms over [n] to locally cocartesian morphisms over B, and moreover
that each locally cocartesian morphism in sd(B) is the image of such a morphism. It follows that
the equivalence (A.4.20) restricts as the equivalence (A.4.16). O

A5. Lax limits with mixed handedness via subdivisions. In this subsection, we give an
alternative description of left-lax limits of right-lax left B-modules in terms of the subdivision of B

(Proposition A.5.1). In the main body of the work, we use this description as an alternate definition.

Proposition A.5.1. Right-lax limits of left-lax left B-modules are corepresented by the object
(sd(B) | B) € loc.coCarty =: LMod| jax. 5. In other words, there is a canonical commutative di-
agram

r.lax

LMod) jax. 3 = LMod| 5 5 p

.. m/ls,
[ N

loc.coCartg — Cat
Fun?5™ (sd(B),-)

Proof. This is Theorem B.6.2. O
Example A.5.2. Using Proposition A.5.1, let us unwind the definitions of the functors
li r.lax . |im|.|a>< sop
LModjjax s —=2%5 Cat ~ and  RMod, a5 —=22%; Cat

in the simplest nontrivial case, namely when B = [2].153

153Recall the description of sd([2]) given in Figure 9.
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1) Let € | [2] be a locally cocartesian fibration, and let us employ the notation of Exam-
y
ple A.1.5(1)(a). Then, an object of the right-lax limit of this left-lax left [2]-module is given
by the data of

e objects e; € &; (for 0 < i < 2),

e morphisms
€44
€4 —J> Eij (61)
(for 0 < i< j<2),and
e a commutative square

£
eg ————— Eia(eq)
€02 Ei2(e01)

Eo2(e0) —— E12(Eoi(eo))
in €9, where the lower morphism is the canonical one (recall Example A.1.5(1)(a)).

Note that the structure map £g2 is not generally determined by the structure maps €¢; and
€12 (in contrast with Example A.2.4(1)).

(2) Let € | [2] be a locally cartesian fibration, and let us employ the notation of Exam-
ple A.1.5(2)(a). Then, an object of the left-lax limit of this right-lax right [2]-module is
given by the data of

e objects e € €0 (for 0 < i < 2),

e morphisms
€500
Ejoio (ejo) EEARAN €0

(for 0 <i<j<2),and
e a commutative square

EIOOO (EQO 10 (620 )) _— E2000 (620 )
Elooo (82010) €g000

E1°0° (610)

€1000 €o°

in €go, , where the upper morphism is the canonical one (recall Example A.1.5(2)(a)).

Note that the structure map e20¢o is likewise not generally determined by the structure

maps 2010 and €1000 (again in contrast with Example A.2.4(2)).

Remark A.5.3. It is because we are taking e.g. the right-lax limit of a left-lax module that

we end up with the perhaps unfamiliar compatibility conditions of the commutative squares in
191



Example A.5.2. Comparing with Example A.2.4, we see that the analogous compatibility condition
for e.g. the left-lax limit of a left-lax module as a section of a locally cocartesian fibration is simply
that the section preserves composition of morphisms — which is of course built into the very definition
of a functor.

Example A.5.4. Consider the projection from the product
G:=G6xB 5B (A.5.1)

as an object of LModg. In the diagram

sd(B) —Mn, Bop

maxl )

B

the horizontal functor is the localization at the locally cocartesian morphisms with respect to the

vertical functor.!®* Hence, we find that
lim52(9) := Fun;ogfart (sd(B),9) == Funjogart (sd(B), G x B) ~ Fun (B, G) .
Dually, considering (A.5.1) € RModg, we have that
lim3ax(S) ~ Fun(B,9) .

Observation A.5.5. Given a B-module of any sort, there are canonical fully faithful inclusions

from its strict limit to its various lax limits. In terms of Proposition A.5.1, the canonical morphism
lim a5 (—) < lim{ {2 5 (—)

max

in Fun(LMod jox. 5, Cat) is corepresented by the epimorphism (in fact localization) B +— sd(B) in
LMod| jax. 5 := loc.coCart.

A.6. An alternative description of right-lax limits of left-lax modules. In this subsection,

we provide a useful alternative description of right-lax limits of left-lax modules.
Definition A.6.1. For any object ¢ € sd(B), its isomax undercategory is the fiber

Sd(‘B)ga/isomax — Sd(B)w/

{max(¢)} ——— B
i.e. the oo-category of isomax morphisms in sd(B) with source .

Observation A.6.2. Suppose that the only retracts in B are equivalences. Observe the factoriza-

tion system on A, whose left factor consists of isomax morphisms and whose right factor consists

154This follows from the case in which B = [n], which follows from Example A.4.21.
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of isomin morphisms that are moreover consecutive inclusions: it takes a morphism [m] = [n] in A
to the factorization

m] ———“—— [

~ -
-
~ -
QN ///OL@

(7] /a(m)
This lifts to a factorization system on A 5, which restricts to a factorization system on sd(B) C A /3
(recall Corollary A.4.18).
Notation A.6.3. Given a locally cocartesian fibration & | B and an object ([m] 2= B) € sd(B)
(using Lemma A.4.17), we write

€o(fo<1))

Coriczy)  Com-n<m)) e

€p 1 Ep(0) Eo(1) @(m)

for the composite of locally cocartesian monodromy functors.
Observation A.6.4. The forgetful functor
coCarty — Cat/g
preserves colimits. Indeed, by [GHN17, Theorem 7.4], the composite functor
Fun(B, Cat) ~ coCartp — Cat 3 8, Cat

is given by a formula which evidently preserves colimits. Thereafter, the claim follows from the fact

fat . . o
the functor Cat;s £ Cat is conservative and preserves colimits.

Observation A.6.5. Let (€ = B) € loc.coCartg be a locally cocartesian fibration. The postcom-

position functor

coCarte E) loc.coCartg (A.6.1)

admits a right adjoint, which we describe presently.

First of all, using Observation A.6.4, we see that the composite forgetful functor coCartg Tet,
Cat/e M Cat/p preserves colimits. Moreover, any cocone in loc.coCarty C Cat/p that is a
colimit diagram in Cat/g is also a colimit diagram in loc.coCartz. Therefore, the functor (A.6.1)
preserves colimits.

Now, notice that the composite functor

Yr: EP e, Fun(&,8) — Fun(€, Cat) ~ coCartg o), loc.coCarts

evaluates as
&>er—— (&, | B) € loc.coCartp .17
It follows that the right adjoint to (A.6.1) is given through un/straightening by the functor
loc.coCarty — coCarte ~ Fun(&, Cat)

w w

(8 \l’ B) _ ho—mloc.coCart:B (yﬂ'ﬂ E)

155g6¢ e.g. [GHN17, Lemma 4.7].
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Notation A.6.6. Let (¢ = B) € loc.coCartg be a locally cocartesian fibration. We write

coCartg ,___L "7 loc.coCartp

™

for the right adjoint given by Observation A.6.5. In the case that (€ = B) = (sd(B) =5 B) (recall
Lemma A.4.20(1)), we simply write & := Gpax.

Observation A.6.7. Let (¢ = B) € loc.coCartg be a locally cocartesian fibration. By Observa-
tion A.6.5, there are canonical equivalences

ho—mloc.coCartrB (87 _) = I\E‘OCart (677(_)) ~ lim (8 GW—(_)> Cat)
in Fun(loc.coCartg, Cat).

Lemma A.6.8. Suppose that the only retracts in B are equivalences. Then, the diagram

r.lax

LMod jax.B . Cat

x % (A.6.2)

LMOde(g)

canonically commutes. Moreover, given a left-lax left B-module (€ | B) € LMod) jax.5, the left
sd(B)-module (&(&) | sd(B)) € LModgyn) has the following properties.

e Its fiber over an object ([m] > B) € sd(B) is the oo-category
6(8)50 := Fun (Sd('B)w/isomaX, Emax(@)) .

e Quer a morphism

[m] —————[n]
X i X (A.6.3)

in sd(B), its cocartesian monodromy functor

Fun (Sd(B)@/isomax, Smax(@)) = 6(8)4/, 6(8)1/, := Fun (Sd('B)w/isomaX, Smax(w)) (A.6.4)

evaluates on a functor

S(&)a

F
Sd(B)cp/isomax — 8max(ga) (A.6.5)
as a functor that evaluates as

S(€)a(F)

Sd<3)¢'/isomax 8max(@!))

w % )
(¥ = @) s Eu(F((a)1))
where writing ([k] <> B) € sd(B) we denote by
W = (Kl maxt(s) )y — [F] = B) € sd(B)
the restriction of w to the undercategory of max((8a)r) € [k].

Furthermore, in the case that B is an ordinary category, the above properties characterize the functor

G.
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Example A.6.9. Suppose that B = [1], so that

1
sd(B) =sd([1]) = l

0—— 01

Given a (locally) cocartesian fibration € | [1] classified by a diagram &g EiN &1, the functor

sd([1]) S, Cat selects the diagram

Fun([1],&1)
[
&o — &1
whose limit is indeed
cog
&
limii ) (&) ~ mf(€) =T | | |
[1]

Example A.6.10. Suppose that B = [2], so that sd(B) = sd([2]) is as depicted in diagram (A.4.17)
of Figure 9. Given a locally cocartesian fibration & | [2] selecting a lax-commutative triangle

e,

o ———F— &2

the functor sd([2]) S, Cat selects the diagram

(id,consty )™

Fun([1] x [1], €2) Fun([1], €2)
G
(consty,id)™ Fun([l}, 81) t
t
Fun([1], &2) t &
A\ 5
&o - &1

whose limit is indeed Iim[‘,'jfp] (&) (as described in Example A.5.2(1)).
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Remark A.6.11. Let P be a poset. By construction, for any inclusion D < P of a down-closed

subset we have a commutative square

LMody jax.p —2— LModgq(p)

! |

I—'\/lodl.lax.D T LMOdsd(D)

(in which the horizontal functors are those of Lemma A.6.8 and the vertical functors are restriction).

Notation A.6.12. For any b, c € B, we write

sd(B)I® —— sd(B) sd(B)|. — sd(B) sd(fB)}i — sd(B)
l lmin s J{ max and l J{(min,max)
pt —— B pt ——— 3B Pt —eg B® % B

for the indicated pullbacks.

Remark A.6.13. Notation A.6.12 is chosen so as to be suggestive e.g. of the pullback

TWAr(‘B)}i — TwAr(B)

l l(m)

ptT)BOPXB

(min,max)
_—

Indeed, the locally cocartesian fibration sd(B) BP x B may be thought of as the un-

straightening of the composite

homl.lax('B)

BP x B —Llax— Llax(BP) x I.lax(B) = I.lax(B)1°P x I.lax(B) Cat

(For a precise relationship between TwAr and sd, see Lemma 2.7.3.)

Observation A.6.14. For any b € B, the composite functor

max

max : sd(B)/® — sd(B) =25 B

is a locally cocartesian fibration, whose locally cocartesian morphisms are precisely those that map

to locally cocartesian morphisms in the locally cocartesian fibration sd(B) I B.

Lemma A.6.15. Fiz any C € Cat and b € B.

(1) The composite functor
€ x sd(B)® 5 sd(B)P ™25 B

is a locally cocartesian fibration, whose locally cocartesian morphisms are those that project

to equivalences in C and to locally cocartesian morphisms in sd(B)“’ with respect to the
maXx

locally cocartesian fibration sd(B)IP ™2 B,
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(2) The morphism

(idc,const i) )
o C x sd(B)

Se)

) X

X o0
B

in Cat/p witnesses its target as the free locally cocartesian fibration on its source: for any

C

object (€ | B) € loc.coCartg, restriction defines an equivalence
Fun(€, €) ~ home,, , (€,€) <= homy. cocar, (€ x sd(B) ", €) .
Observation A.6.16. Let us write
Bty B Lyt = 1]
for the evident functors. Then, we have a canonical pullback square

loc.coCartgs SN loc.coCartg
po(ﬂl lfgt (A.6.6)

coCartpy) — Cat

among (0o, 2)-categories. (In particular, a locally cocartesian fibration & — B” is equivalent data
to a locally cocartesian fibration €5 — B along with a functor €3 — €..) To see this, observe
first the right adjoint

This implies that we have a pullback square

Cat/rB» L> Cat/B

po(—)l lfgt

Cat/m T) Cat
among (00, 2)-categories, which it is easy to check restricts to give the pullback square (A.6.6).

Proof of Lemma A.6.15. Part (1) is clear.
We first prove part (2) in the case that B = [n] and b = 0, by induction on n. The case that n =0

is a tautology, so we may assume that n > 1. For the inductive step, note the evident equivalence
sd([n — 1])‘0 x 1] = sd([n])‘0

in Cat,[;) that selects the natural transformation carrying an object ([m] — [n —1]) € sd([n — 1])!°

[m] [m]”
\[ | /

>
in sd([n])!°. Therefore, restriction along the inclusion {0} < [1] determines an equivalence

to the morphism

n—1

ho—mcoCa rt(1]

(€ x sd([n])!’, €) = home,, (€ x sd([n — 1])\°, 1)) -
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It follows from Observation A.6.16 that restriction along the inclusion [n — 1] < [n — 1|9 = [n]

determines an equivalence
ho_mwc.coCart[n] (e X Sd([n])loa 8) — ho_mwc.coCart[n,l] (e X Sd([n - 1])‘05 8\[11—1]) :

The assertion now follows by induction on n.
We now prove part (2) in the general case. We may clearly assume that b € B is initial. Using

this assumption, the fully faithful functor

sd(B)" T sd(B) (A.6.7)
is a right adjoint, with left adjoint given at the level of A 3 by taking a functor [n] — B to the
functor [n]® = [n + 1] — B carrying the cone point to b € B (using Lemma A.4.10). In particular,
the fully faithful functor (A.6.7) is final. Therefore, we obtain a canonical equivalence

colim 1y 8 esa(s)l»sd([n]) — colim(p)ys)ecsa(sysd([n]) =: sd(B)

in Cat,, in which the colimits can be computed in simplicial spaces. Then, using that pullbacks in

simplicial spaces commute with colimits, we obtain a canonical equivalence
: 0 b
COlIm([n]J,'B)GSd('B)‘bSd([n])l — Sd(B)‘
in Cat/. Using that Cat EX7y Cat preserves colimits, we then obtain a composite equivalence
|0

colim (1 5)esa(®) 1+ € % sd([n])1® == € x colim (1 5)esa(myesd([n])® = € x sd(B)'?

in Cat;. Therefore, we have an equivalence

homc,, , (€ x sd(B)!*, &) = lim( (), 5)csq(m) rywhomeye (€ x sd([n])!, €)p))

in Cat. Observe that this equivalence restricts to give an equivalence

hoM)oc cocarty (€ X sd(B)I, ) ~ M ()3 esd(B) 1) NOMyoc cocart,,, (€ X sd([n))!”, &)

in Cat. The assertion now follows from the case that B = [n] and b = 0. O

Proof of Lemma A.6.8. The canonical commutativity of the triangle (A.6.2) is an instance of Ob-
servation A.6.7.
Next, for any object ¢ € sd(B), by Observation A.6.2 we have the identification

(p—¢)—(ar.¥")

sd (’B)Ap/isomax X sd (B) Imax()

\ ) (A.6.8)
sd(B)

Sd(B)Lp/

in Cat/gq(s), where
e as in the statement of the result, writing ([] LN B) € sd(B) we denote by
W= ([k]max(aR)/ — K] B) € sd(B)
the restriction of ¢ to the undercategory of max(ag) € [k], and

e the lower right morphism is given by concatenation.
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We now identify the fiber of (&(€) | sd(B)) € Catsq(zy over ¢ € sd(B) through the composite

equivalence
6(8)4/7 = ho—mloc.coCartB (Sd (B)LP/7 8)

~ hoMye cocarta (sd(B)g, Jsomax X sd(B)/m(#), 8) (A.6.9)

=~ Fun (sd(B).,isomax> Emax(y)) >
in which the individual equivalences respectively follow from Observation A.6.5, diagram (A.6.8),
and Lemma A.6.15. This establishes that the fibers are indeed as claimed.
Next, by Observation A.6.5 the locally cocartesian monodromy functor over the morphism (A.6.3)
in sd(B) is the functor

a)*
ho—mloc.coCart'B (Sd(‘B)kpﬁ 8) (—> ho—mloc.coCartT, (Sd(B)¢/7 8) .

Given a functor (A.6.5) and writing F € hom sd(B),/, &) for its corresponding object

loc.coCartg (

under the equivalence (A.6.9), we see that its image under the cocartesian monodromy functor

(A.6.4) is given by the factorization

sd (fB)ga/isomax L’ gmax(tp)

l /

sd(B)y,) —2— sd(B),, — T
Sd(B)dJ/isomax ””””””””””””” ” Emax(w)

This establishes that the monodromy functors are indeed as claimed.
We now turn to the final statement of the claim. Note that the functor & is adjunct to the

composite functor

sd(B) ——— LMod®™ , «—— - Fun (LMod) o3, Cat)

w w . (A.6.10)
o —s (sd(%)/w — sd(B) ™ 3)

In the case that B is an ordinary category (with no nontrivial retracts), the co-category A 5 is an
ordinary category. Using Corollary A.4.18, we see that the subcategory sd(B) C A3 is an ordinary
category. It follows that for any ¢, € sd(B), the space of morphisms

homLMOdme,'B (Sd (B)/dﬂ sd (B)/@)

is discrete. It follows that the functor (A.6.10) is uniquely determined by its values on objects and

morphisms. O

APPENDIX B. SOME (00, 2)-CATEGORY THEORY

In this section, we establish some aspects of (0o, 2)-category theory. (In the main body of the
work, we only refer to applications thereof that are recorded in §A.)

A large part of §§B.1-B.5 is adapted from [GR17, Appendix A]. As explained in [GR17, Chapter
10, §0.4], some of the results there rely on results whose proofs do not appear in the literature at

the time of writing. Here, we give a logically complete account of the material that we use; in
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particular, this section does not logically depend on [GR17] in any way. Nevertheless, we provide
references where appropriate.

This section is organized as follows.

§B.1: We introduce some basic notions in (o0, 2)-category theory.

§B.2: We define various notions of fibrations among (0o, 2)-categories.

§B.3: We give (a lax version of) un/straightening for (oo, 2)-categories.

§B.4: We study parametrized versions of un/straightening for (oo, 2)-categories.

§B.5: We study adjunctions in (oo, 2)-categories, and prove parametrized versions of the mate
correspondence.

§B.6: We define lax limits in Cat over (0o, 2)-categories, and give an alternative (0o, 1)-categorical

description in the case that the base is the left-laxification of an (oo, 1)-category.

B.1. Basic notions in (0o, 2)-category theory. In this subsection, we discuss (strict and) lax
versions of functors and natural transformations among (oo, 2)-categories. Relatedly, we discuss
various laxifications of an (0o, 2)-category, and we give an explicit identification in one important
case (Proposition B.1.29). We also introduce the class of thin (0o, 2)-categories (Definition B.1.15),
for which homotopy-coherence data is vacuous (see Observation B.1.16) — analogously to the class

of posets among (0o, 1)-categories.

Definition B.1.1 ([Bar05]). An (oco,2)-category is a complete Segal (0o, 1)-category whose 0"
oo-category is an oo-groupoid.'®® These assemble into a full subcategory

112Cat C Fun(A® Cat) ,

whose morphisms we refer to as functors (or occasionally strict functors in order to contrast
with the notions introduced in Definition B.1.8). We consider co-categories (which we may refer to

as (00, 1)-categories for emphasis) as forming a full subcategory of ¢12Cat according to the pullback

Cat — " 1 )2Cat

o] Joe

Fun(A®P,8) ——— Fun(A°P, Cat)

We refer to an (0o, 2)-category as a 2-category if its hom-co-categories are ordinary categories.®7

Notation B.1.2. Presenting (0o, 1)-categories as complete Segal spaces gives a fully faithful functor
t1Cat < Fun(A°P,8). We write
Ax A% 2Cat

for the functor corepresenting the resulting fully faithful functor
t12Cat — Fun(A°P, Cat) — Fun (A°",Fun(A°®?,8)) ~ Fun(A°® x A" S§) .
(An explicit description of 6 is given in the discussion preceding [BSP21, Lemma 14.5].)

156gaid differently, it is a two-fold complete Segal space.
157Note that these are most naturally modeled by the classical notion of a bicategory.
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Notation B.1.3. Given an (00, 2)-category € € 112Cat and objects ¢, ¢’ € €, we write home(c, ) €

Cat for the oco-category of morphisms from c to c’.

Notation B.1.4. The oo-category ¢12Cat is cartesian closed [Rez10, BSP21], and we denote its
internal hom by Fun(—,—). By [GHIL5, Haul5], it follows that ¢12Cat is the underlying (oo, 1)-
category of an (0o, 3)-category. We write 2Cat for its underlying (oo, 2)-category.'5®

Definition B.1.5. Given an (oo, 2)-category A°P N Cat, its 1-opposite and 2-opposite are the
(00, 2)-categories

_\op
elop . A% ¥, A ot and 2P A% %, cat 20 cat

given respectively by pre- and postcomposing with the indicated involutions.'®® These two opera-

tions define commuting involutions of ¢;2Cat, and we write
(_)1&20p - ((_)lop)Qop ~ ((_)QOp)lop
for their composite.
Notation B.1.6. We denote by
f.f. ~
(=) : 112Cat <= Fun(A®, Cat) 5 coCartae

the composite functor carrying an (oo, 2)-category to its corresponding cocartesian fibration over
A°P,

Definition B.1.7. A morphism in A is called convez if its image is convex.!®® A morphism in A
is called inert if it is convex and injective (or equivalently conservative). We use the same terms

for corresponding morphisms in A°P.

Definition B.1.8 ([GR17, Chapter 10, §3.1.3]). Given (o0, 2)-categories C,D € ¢;2Cat, a non-

unital right-lax functor from C to D is a morphism

cs DS
\ - /

in Catcocart/ace that preserves inert-cocartesian morphisms. It is called a (unital) right-lax func-

tor if it preserves convex-cocartesian morphisms. These respectively define the morphisms in oo-
categories that we denote by

112Caty y.r.1ax and t12Caty jax
so that we have monomorphisms

112Cat — 112Caty jax — ¢t12Caty u.r.lax -

158 hat is, we do not make any use of the full (co, 3)-category of (oco,2)-categories. In particular, we only ever
consider (oo, 2)-categorical laxness in 2Cat, i.e. laxness in 1-morphisms but not 2-morphisms.

159Hero, rev denotes the involution given by reversing linear orders.

1601y [GR17], such morphisms are referred to as “idle”.
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We define a (non-unital or unital) left-lax functor from C to D to be a (respectively non-unital
or unital) right-lax functor from €2°P to D?°P and we use the evident corresponding notation. Given

(00, 2)-categories C, D € 2Cat, we write
€ ~~»D

to denote a (possibly) lax functor (be it non-unital or unital, right- or left-lax).'6!

Remark B.1.9. One can similarly define left-lax functors in terms of cartesian fibrations over A.
We systematically privilege right-lax functors in our treatment here (so that for instance we do not

introduce a cartesian variant of Notation B.1.6).

Remark B.1.10. Informally, a lax functor is one that only laxly respects composition of 1-
morphisms. More specifically, given a pair of composable 1-morphisms ¢ e Y, c2, a right-lax
functor F' determines a 2-morphism F(¢)) o F(¢) — F(1 o ) while a left-lax functor G determines
a 2-morphism G (v o ) — G(¢) o G(p). A lax functor is strict precisely when these 2-morphisms
are all invertible.

Remark B.1.11. Our primary interest will be in unital lax functors. While non-unital lax functors
are of independent interest, for our purposes they serve as an auxiliary notion (see Definitions B.1.19
and B.1.23).

Definition B.1.12 ([GR17, Chapter 10, §3.2.7]). Fix (oo, 2)-categories €, D € 2Cat.

(1) A right-lax natural transformation between right-lax functors from € to D is a right-lax

functor
Cx[1] ~~ D (B.1.1)

Ji ide, 5L
that is strict on pairs of composable 1-morphisms of the form (cg,0) (piido), (c1,0) M

(01,1).162

(2) A left-lax natural transformation between right-lax functors from € to D is a right-lax

ide ,t
functor (B.1.1) that is strict on pairs of composable 1-morphisms of the form (¢, 0) M

(co,1) 21 ¢y 1),
Dually, a right- (resp. left-)lax natural transformation between left-lax functors from € to D
is a right- (resp. left-)lax natural transformation between the corresponding right-lax functors from
@2°P to D2oP 163 Ag in Definition B.1.8, given (right- or left-lax) functors F and G, we simply write

F~sG
to denote a lax natural transformation between them (regardless of its handedness).
Remark B.1.13. Given left- or right-lax functors F' and G from € to D, a right-lax natural trans-

formation from F' to G specifies the data, for each 1-morphism ¢y — ¢; in C, of a lax-commutative

1610utside of §B, we explicitly label our arrows according to the handedness of the laxness.
162 hat is, its precomposition with the corresponding functor [2] — € x [1] defines a strict functor [2] — D.
163Evidently7 these can also be expressed as left-lax functors € x [1] ~ D.
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square

F(cp) —— Fl(er) F(cp) —— Fler) F(cp) —— Fl(er)
I~ = 1 -~ [ = [ |
G(cp) — G(er) G(cp) — G(er) G(ep) — G(er)

in D — the square on the left (resp. right) applying in the case that F and G are left-lax (resp.
right-lax).

Remark B.1.14. The paper [GHL21] studies lax functors and lax natural transformations in a

more combinatorial model of (0o, 2)-categories. We expect that these notions agree.

Definition B.1.15. An (o0, 2)-category is called a thin 2-category (or simply thin) if its hom-

oo-categories lie in Poset C Cat and its endomorphism oo-categories are all equivalent to pt € Cat.'54

Observation B.1.16. We collect the following apparent facts about thin 2-categories, which we

use without further reference.

(1) Thin 2-categories form a full subcategory of the (oo, 2)-category (in fact strict 2-category)
of strict 2-categories. Under this identification, non-unital right-lax functors correspond to
lax functors, while unital right-lax functors correspond to normal lax functors. Moreover,

right-lax natural transformations correspond to lax natural transformations.

(2) Given a thin 2-category D and an (0o, 2)-category C, a (possibly left- or right-lax) functor
from € to D is uniquely determined by its values on 1-morphisms, i.e. by the morphism of
sets

mohom,,acat([1], €) — hom,,2cat([1], D) .

Hence, given (possibly left- or right-lax) functors from € to D, a (possibly left- or right-lax)
natural transformation between them is uniquely determined by its values on objects, i.e.

by the morphism of sets

7TOL0€ — hOmL12Cat([1]7 ‘D) .

(3) Given a functor € — D in 2Cat such that D is thin, for every object d € D the functor
Cq — € is fully faithful.

(4) Given a thin 2-category D, the forgetful functor

2Cat;p — 2Cat

is 1-full (i.e. it is fully faithful on hom-oo-categories).!63

Observation B.1.17. Lax transformations can be composed in the following sense. Let C,D €

2Cat. Consider the bisimplicial space

Fun; m(€,D)
Sy

A°P x A°P S

164This notion is strictly stronger than that of gauntness, which merely requires that all invertible k-morphisms
are identities. It is also strictly stronger than the requirement that every k-morphism has a contractible space of
endomorphisms.
1655aid differently, given Co, €1 € 2Cat,p it is merely a condition for a morphism €p — C; in 2Cat to lie in
2Cat /D-
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that is the subfunctor of hom, acat, ., (€ X 6(—), D) carrying each ([i]°,[j]°) € A°P x A°P (recall
Notation B.1.2) to the subspace of those right-lax functors € x 6([i], [j]) ~> D that are strict on pairs
of composable 1-morphisms of the form (cg,z) = (c1,2) — (c1,y), where ¢ — ¢; is a 1-morphism
in € and x — y is a 1-morphism in 6([7]°, [j]°). |

It is clear that if C,D € 2Cat are thin, then the bisimplicial space Fun, ,,(C, D) presents a thin
2-category. 166

Notation B.1.18. Given (o0, 2)-categories C, D € 2Cat, we write
Fun™2(€, D) € 2Cat

r.lax

r.lax

for the (0o, 2)-category presented by the bisimplicial space El\;\max((‘,’, D) of Observation B.1.17.167
Definition B.1.19 ([GR17, Chapter 11, §A.1]). Given an object (€ | A°P) € coCartae, we write

Fact(g) = & x Aract(Aop) Aract(Aop) t A°P

& l l (B.1.2)

g5 A®

for the indicated fiber product (where Ar***(A°P) C Ar(A°P) denotes the full subcategory on the
active morphisms). Noting that the functor Ar**(A%) X AP is a cocartesian fibration, we find

that the horizontal composite of diagram (B.1.2) defines a functor

FaCt
coCartaor —> coCartaor .

In particular, given an (oo, 2)-category G € 2Cat, it is straightforward to see that Ft(Gf) e
coCartaw defines an (0o, 2)-category, %8 which we denote by r.lax™" (€) € 2Cat (so that r.lax"" (C)¢ ~
Fact(@4)) and refer to as its non-unital right-lazification. Altogether, this defines a functor

r.dax™! (=)

L12Cat e L12Cat .

Observation B.1.20. The functor F2<* has the following universal property. First of all, the func-
id(_
tors s,t € homc,e (Ar*(A°P), A%) admit a common section A°P 20, Ar*“*(A°P), which induces

for any € € coCartae a natural morphism

€ — F(e)

166y, fact, this bisimplicial space presents an (co,2)-category for arbitrary €,D € 2Cat; this follows from the
Yoneda lemma for (oo, 2)-categories (see [Hin20]) and Theorems B.4.3 and B.4.4 below. (Since we do not need this
fact, we do not give a detailed argument.)

167That is, Fun{:lgi(e, D) denotes the (0o, 2)-category obtained by applying the left adjoint from bisimplicial spaces
to (00, 2)-categories, although this application is always vacuous by Footnote 166 (and not just in case € and D are
thin).

168Namely, the straightening of FaCt(fo ) satisfies the Segal and completeness conditions, and its co-category of
0-simplices is an oco-groupoid. The last claim follows from the fact that Al0)/* — {[0]}, which gives an equivalence

FaCt(ef)[O]o ~ (?f

O The Segal condition follows from commutativity for each [n] € A of the square

Al Fun(Span, Cat)

fgtl lcol im

> Sa—
A T Cat

in which the upper horizontal functor is given by pullback to the span [n — 1] <= {n — 1} — {n — 1 < n} in A,

The completeness condition is evident from that of cs.
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in Cat/ae. Then, by [AMGRc, Proposition 2.18], for any & € coCartae, restriction therealong

defines a monomorphism
homeocart pop (F?(E), F) — homcat, aop (€, F)

in 8§ whose image consists of those morphisms that preserve cocartesian lifts of inert morphisms in
A°P,

Observation B.1.21 ([GR17, Chapter 11, Theorem A.1.5]). By Observation B.1.20, non-unital
right-laxification defines a left adjoint

112Catnyrtax o i ? 112Cat

to the inclusion; in particular, for any (oo, 2)-category € € 2Cat, we have a universal non-unital
right-lax functor
€~ rlax™"(C)

We use this fact without further comment.

Observation B.1.22. Noting the identification
rlax™ (pt)¥ ~ AP(AP) Ly AP

we see that r.lax™" (pt) has a single object * := ([0]° = [0]°) € r.lax™"(pt) as well as a distinguished
2-morphism
id. =(0]°—[1]°)

TN

* v *
\N/’
ew:=([1]"—>[1]%)
By the functoriality of r.lax™" (=), for any object ¢ € € € 2Cat we obtain a canonical 2-morphism
ide = ec in r.lax™"(@).

Definition B.1.23. We refer to the 2-morphism id. — e. in r.lax™"(€) of Observation B.1.22 as
the quasi-unit 2-morphism corresponding to the object ¢ € C. Inverting these determines an
(00, 2)-category

rlax(C) € 2Cat

which we refer to as the (unital) right-laxification of C. This construction defines an endofunctor

112Cat M} 112Cat

equipped with a natural epimorphism from r.lax™" (—).

Observation B.1.24. A non-unital right-lax functor € L D between (00, 2)-categories is unital if

and only if it carries quasi-unit 2-morphisms to invertible 2-morphisms. Indeed, let G¢ —Iif—> DS be
the corresponding morphism in Cat/ae. By definition, F' ¢ preserves inert-cocartesian morphisms.
The functor F is unital if and only if F’ ¢ additionally preserves surjective-cocartesian morphisms.
Because both €f and D¢ satisfy the Segal condition, F’ ¢ preserves surjective-cocartesian morphisms
if and only if it preserves cocartesian morphisms over the morphism ([1] — [0])°. And by defini-
tion, F carries quasi-unit 2-morphisms to invertible 2-morphisms if and only if F¥ preserves such

cocartesian morphisms.
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Observation B.1.25. By Observation B.1.24, the composite
€~ rlax™"(€) — r.lax(C)

is a (unital) right-lax functor. Moreover, it is the universal right-lax functor from €. We use this
fact without further comment.

rev

Observation B.1.26. For any C,D € 2Cat, pullback along the involution A°® — A°P defines
equivalences

homl/12catn,u,r,lax(e7 :D) — holezcatn,u,Llax(elop7 Dlop)

and
~ 1 1
homl/12catr,lax(e7 :D) homL12catLIax(e op, D op)

in 8. Therefore, we have canonical equivalences
rlax™" (C1P) ~ r.lax"" (@)'°P and r.lax(CP) ~ r.lax(€)'°P .

Observation B.1.27. In the case that ¢ € Cat C 2Cat is an oo-category, we have a natural
equivalence
colimi) eyea o r-lax([n]) — rlax(€) ;

by the universal property of r.lax(€) € ¢12Cat, this follows from the equivalence
C0|im([n]¢e)eA/e [n]9§ ;> (‘399
in which the colimit can be computed either in coCartas or in Cat/ae by Observation A.6.4.

Definition B.1.28. Given an (00, 2)-category € € 2Cat, we define its non-unital left-laxification

and its (unital) left-laxification respectively as the (0o, 2)-categories
Llax™" (€) := r.lax™"(€%°P)2P  and  llax(@) := r.lax(C%°P)°P

Proposition B.1.29. The left-lazification |.lax([n]) € 2Cat is the thin 2-category that is character-
ized as follows: its objects are those of [n], and for any i,j € [n] the poset homy () (4, ) is that of
strictly increasing sequences

1<k <---<k<j

in [n] (for somel > 0) fromi to j (ordered by inclusion), with composition given by concatenation.'®®

Proof. We establish the corresponding description of r.lax([n]) =~ l.lax([n]?°P)?°P =~ l.lax([n])?°P.
We begin by noting the identification

nlf = (&) = %)

in Cat/ae. For i,j € [n] with i < j, let us write [4, j] := [n];//; € A for the corresponding closed
interval. Using this notation, r.lax™"([n]) € 2Cat can be characterized as follows: its objects are

those of [n], and for i < j we have

hom, jasnu- (fn]) (i, 5) = AP (AP) 1 0

with composition given by concatenation (and for i > j we have hom, jy0.u.([n)) (4, 7) = @).170

169This (00, 2)-category can be presented as the simplicially-enriched category €(A™) (where € denotes the left
adjoint of the homotopy-coherent nerve functor to simplicial sets), but thought of as enriched in co-categories (via
the Joyal model structure) rather than in spaces (via the Kan—Quillen model structure).
1701 other words, hom, jaxm.u.([n]) (%, j) has objects the nondecreasing sequences in [n] from i to j.
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Now, let us define the further pullback

'rlax([n])f —— rlax™*([n])f —— AP (AP) Ly AP

i i L B

(AT )P s (A )P ———— AP
i
n)*

in Cat, where we write Ai/n[jn] := (AM),,; and we consider "rlax([n])f € Cat/a via the upper
horizontal composite. We claim that ’r.lax([n])¢ ~ r.lax([n])#, which will prove the desired result.

We first note that 'r.lax([n])¥ € Cat/aor lies in the image of the monomorphism ¢;2Cat ‘ﬂ)
Cat/ar; we write 'r.lax([n]) € 2Cat for the corresponding (oo, 2)-category. Moreover, in diagram
(B.1.3), the upper left horizontal functor is fully faithful (because the lower left horizontal functor
is) and admits a right adjoint

'rlax([n))f L rdax™([n))¢

in Cat/Aop.Nl In particular, ¢ is a localization (considered in Cat,ae» or in Cat). Moreover, it is

clear that ¢ defines a morphism in coCart/a and therefore a functor ’r.lax([n]) & rlax™" ([n]) in
2Cat. Hence, by the Segal condition, it follows that ¢ is a localization at certain 2-morphisms; and
unwinding the definitions, we see that these are generated under (horizontal) composition by the

quasi-unit 2-morphisms of the objects of [n].172 O
B.2. Fibrations. In this subsection, we introduce several notions of fibrations among (co,2)-

categories. These will feature in our study of un/straightening in §B.3.

Local Notation B.2.1. Throughout this subsection, we fix a functor & =+ € between (0o, 2)-
categories.

Definition B.2.2 ([GR17, Chapter 11, Definition 1.1.2]). We say that a 1-morphism ey — €7 in &

is cartesian (with respect to 7), or m-cartesian, if for all e € € the commutative square
home (e,e9) —— homeg (e, e1)
l l (B.2.1)

home(7(e), m(e0)) —— home(m(e), m(e1))

in Cat is a pullback. We then say that & = C is a 2-cartesian fibration if the following conditions
are satisfied.

(1) For every object e € € and 1-morphism ¢ — 7(e) in € there exists a cartesian 1-morphism
in € covering it with target e.

171lon objects, this right adjoint is given by taking images of morphisms to [n] € A.
172Given an object @ € [n], its corresponding quasi-unit 2-morphism corresponds to the diagram

1] ——— [0

\/’

considered as a morphism in A /[,
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(2) For all eg, e € &, the morphism
home (eq, e1) — home(m(eg), 7(e1))
in Cat is a cocartesian fibration.
(3) For all eg, e, ez € €, in the commutative square

home (eg, e1) X homg (e1,e5) ————— homeg (e, e2)

| |

home(7(eg), m(e1)) x home(m(e1), m(e2)) —— home(w(eg), w(e2))

in Cat, the upper horizontal functor preserves cocartesian morphisms with respect to the

vertical functors (which are cocartesian fibrations by condition (2)).

We say that & = C is a homwise cocartesian fibration if condition (2) is satisfied, and a strict
homuwise cocartesian fibration if additionally condition (3) is satisfied. If € = € is a homwise
cocartesian fibration, we refer to the 2-morphisms in € that define cocartesian 1-morphisms in a
hom-oco-category home (eg, e1) as cocartesian 2-morphisms (with respect to 7).

We write

2Cat2cart/(‘3 C 2Cat/(i

for the 1-full subcategory on the 2-cartesian fibrations, whose 1-morphisms are those that preserve

cocartesian 2-morphisms. Moreover, we write
2Carte - 2Cat2cart/@

for the 1-full subcategory on the same objects, whose 1-morphisms are those that additionally
preserve cartesian 1-morphisms.

A 1-cartesian fibration is a 2-cartesian fibration whose fibers are (0o, 1)-categories. We write
1Carte C 2Carte and 2Carticart/e € 2Catacart/e

for the full subcategories on the 1-cartesian fibrations.

1&20p
Dually, we say that & = C is a 2-cocartesian fibration if 1420 T @1&20p ig 5 2_cartesian

fibration. We use the evident notation and terminology for the corresponding related notions.

Observation B.2.3. The functor & = € in 2Cat is a strict homwise cocartesian fibration if and

- of
only if the corresponding functor &€ " @4 in Cat is a cocartesian fibration.'™

Definition B.2.4 ([GR17, Chapter 11, Definition 3.1.2]). We say that a 1-morphism ey — €7 in &
classified by a functor [1] % & is locally cartesian (with respect to ), or locally w-cartesian,
if it defines a cartesian 1-morphism with respect to the pullback (wp)*E — [1]. We then say that
& 5 Cis a locally 2-cartesian fibration if for every object e € € and 1-morphism ¢ — 7(e) in €
there exists a locally cartesian 1-morphism in € covering it with target e and moreover 7 is a strict
homwise cocartesian fibration.

173For the forwards implication, ™ being a homwise cocartesian fibration implies that fisa locally cocartesian
fibration, and thereafter its strictness guarantees composability of the locally cocartesian morphisms.
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We employ the evident variants of the remaining notation and terminology of Definition B.2.2,

e.g. the 1-full subcategories
loc.2Carte C 2Catioc.2cart/e € 2Cat e

and the notion of a locally 2-cocartesian fibration are defined similarly.

Lemma B.2.5. Suppose that & = C is a locally 2-cartesian fibration. Then, it is a 2-cartesian

fibration if and only if its locally cartesian 1-morphisms are closed under composition.

Proof. Clearly, in a 2-cartesian fibration the cartesian 1-morphisms are closed under composition.
Conversely, suppose that the locally cartesian 1-morphisms in € are closed under composition. Then,
each locally cartesian 1-morphism eg s ey in & is in fact a cartesian 1-morphism. Indeed, since
& 5 Cis a strict homwise cocartesian fibration, the commutative square (B.2.1) is a pullback if and

only if it induces an equivalence on fibers. So, choose an object e € € and a morphism 7 (e) ERN m(eo)

in C, let e ER e be a locally cartesian f, and consider the commutative triangle

home_ ., (e, )

§o ”X\) (B.2.2)

homg(wof(e, e1)

hom]g(e, €o) Zom

in Cat (in which the two lower terms denote the evident fibers over f). By assumption, the composite

1-morphism e L eo 2 ey is locally cartesian. It now follows from the definition of a locally
cartesian fibration that both downwards functors in diagram (B.2.2) are equivalences, which implies

that its lower horizontal functor is an equivalence as well. Hence, ¢ is indeed a cartesian 1-morphism.
O

Observation B.2.6. It follows from Observation B.2.3 that we can pull back locally 2-cartesian

fibrations along right-lax functors: given a diagram

€

lloc.2cart

(in which F is a right-lax functor), we obtain a locally 2-cartesian fibration F*& — D via the

pullback square
(F*e)$ —— ¢&f

L]

D —— ¢
in Cat/ae (in fact in Catcocart/Aop).174 Evidently, if F' is a strict functor then this construction

coincides with ordinary pullback therealong.

174 he Segal condition for (F*E)f follows from the fact that it can be checked over the subcategory of inert
morphisms in A°  and the completeness condition therefor follows from the fact that (unital) right-lax functors
preserve equivalences. Thereafter, the conditions of Definition B.2.4 for the functor F*& — D follow from the
facts that the functor (F*&)$ — D is a cocartesian fibration and that for every functor [1] — D the composite
[1]$ — DF — @f defines a strict (as opposed to right-lax) functor [1] — €.
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Observation B.2.7. We collect the following apparent facts about (locally) 2-cartesian fibrations.

(1) Suppose that the functor & = € is a homwise cocartesian fibration and moreover all its

fibers are (0o, 1)-categories. Then it is automatically a strict homwise cocartesian fibration.

(2) The functor &€ = € in 2Cat is a (locally) 1-cartesian fibration if and only if the functor

1€ ﬂ 11€ in Cat is a (resp. locally) cartesian fibration and moreover for all eg,e; € €

the functor home (eg, €1) — home(m(ep), m(e1)) is a left fibration.

(3) Suppose that C € 2Cat is an (0o, 1)-category. Then, the functor & = € is automatically
a strict homwise cocartesian fibration. Hence, the inclusions 2Catycart/e € 2Catioc.2cart/e €
2Cat /e are fully faithful. In particular, & L @ is a locally 2-cartesian fibration if and only
if its pullback along every functor [1] — € defines a 2-cartesian fibration over [1].

(4) A morphism in loc.2Carte is an equivalence if and only if it’s an equivalence on fibers
(because the latter condition implies that it is both surjective and fully faithful).

B.3. Un/straightening. In this subsection, we consider variants of the Grothendieck construction
for (oo, 2)-categories. Its main result is Theorem B.3.7, which establishes the Grothendieck con-
struction for lax functors as an equivalence of co-categories. We later enhance it to an equivalence
of (00, 2)-categories (see Theorem B.4.3).

Definition B.3.1. We refer to the equivalences of Theorem B.3.4 as un/straightening, and to
the equivalence (B.3.1) of Theorem B.3.7 as laxz un/straightening.

Remark B.3.2. Theorem B.3.4 appears as [GR17, Chapter 11, Theorem-Construction 1.1.8(b)],
while Theorem B.3.7 is a slight variant of [GR17, Chapter 11, Theorem-Construction 3.2.2] (with
essentially the same proof).

Local Notation B.3.3. In this subsection, we fix an (0o, 2)-category € € 2Cat.

Theorem B.3.4. There are canonical equivalences

Fun(C, 2Cat) ~ 2coCarte and Fun(C'P 2Cat) ~ 2Carte
in 2Cat, which are functorial in @ € 2Cat'°P.
Proof. This is a special case of [Nui, Theorem 6.21].17 O

Observation B.3.5. Let € | [1] be a 2-cartesian fibration. Then, the corresponding monodromy
functor &, — & is the composite

&1 = TH(E) == & .
Indeed, we have an equivalence
Fff]rt(S) ~ lim ([1]°? — 2Cat)

in 2Cat, where the functor [1]°° — 2Cat corresponds to € | [1] through Theorem B.3.4. The

assertion then follows from the fact that given a functor [1]°P L € to an (00, 1)-category, the

175Note that our definition of 2Cat agrees with that of [Nui] by [Nui, Remark 4.21].
210



F((0—1)°)

morphism F(1°) F(0°) in C is the composite

F(1°) ~ lim ({1}°P e Ly e) & im ([1]°P N e) — lim ({0}°P e L e) ~ F(0°).
Observation B.3.6. Let & | [1] be a 2-cartesian fibration. By the definition of a 2-cartesian
fibration and Corollary B.5.6, the functor I';;)(€) 21, & is admits a right adjoint evl?, which carries
each object to the cartesian section of which it is the target. Hence, the unit is an equivalence

ide, — evl o evy, and the image of evl® lies in the full subcategory IE(€) € Ty (€) of cartesian

sections. Hence, evf is the composite functor
& = I‘ff]’t(e) — I'y(€) .

Therefore, using Observation B.3.5 we see that the monodromy functor can also be identified as the

composite

R
evy

& =5 T (8) =% & .

Theorem B.3.7. Pullback (in the sense of Observation B.2.6) along the universal right-lax functor
e L rlax(@)

determines an equivalence
0" : 112Cart, ae) — t1loc.2Carte .
In particular, there is an equivalence

t1loc.2Carte =~ 11 Fun(r.lax(€'°P), 2Cat) . (B.3.1)

The remainder of this subsection is devoted to proving Theorem B.3.7. We first construct an

inverse to the pullback functor 8* as the leftmost factorization in a diagram

t1loc.2Carte -2

! S~ Te-— _ Hn-u. -~

P . Bl R
< @b, 4~\\$ —— -~y

>
L12cartr.|ax(€) — L12cartr.|ax"'“'(€) — L12cat/r.lax"'”'(€) W Cat/r.lax”'“'((f)f

Local Notation B.3.8. Let S, ,, denote the thin 2-category

o —>e— - — e
Lz lz 2]
e e — ... —3 e

1ol ]
Lele o]

with m vertical 1-morphisms in each column and n horizontal 1-morphisms in each row. These

Se.e .
assemble into a bicosimplicial thin 2-category A x A —— ¢12Cat, and we write
Sq := hom,,2cat(Se,e, —) : t12Cat — Fun(A°P x A, S8)

for the functor that it corepresents. We use these notations in the present subsection.
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Observation B.3.9. By [HORR23, Corollary 4.4.2] (see also [Col]), the functor Sq lands in the
full subcategory of double co-categories: simplicial objects in Cat C Fun(A°P,8) satisfying the Segal

and completeness conditions.!”® We write

Sq(—)?
t12Cat ——— coCartaor

for the cocartesian unstraightening of the functor carrying each object [n]° € A°P to the functor

112Cat Sien, Cat ¢ Fun(A°P,8). Note that

()¢ € Sq(—)f
is a 1-full subcategory: it contains the same objects, and in the fiber over [n]® € A°P its 1-morphisms
are those functors S, — (—) that carry the vertical 1-morphisms to equivalences.
Observation B.3.10. Any morphism I 2 .J in At admits a canonical factorization

I—*
AN S/ h
Y s (B.3.2)
Sx
in A where K := (I U J)/{max(I) ~ max(J)} with ordering characterized by the requirement
that for all i € T and j € J we have i < j if and only if ¢(¢) < j. This determines a monomorphism

Ar*t(A°P) — Fun([2], A°P), which is adjoint to natural transformations

t— p—s (B.3.3)
in Fun(Ar**(A°P), A°) (whose components at (I = J)° € Ar**(A°) correspond to the diagram
(B.3.2) in A*).

Local Notation B.3.11. Any functor Ar**(A%) X A° determines an endofunctor

act

coCartaee — coCartaee
given by taking € | A°P to the fiber product

c t ol t o
Fact(e) —— AP (A%P) —Ly AP

| 5
E —— AP

considered in coCartae by the horizontal composite (compare with Definition B.1.19); in par-

ticular, F?* := F2% where s is as in (B.3.3). This defines a functor Fun(Ar**(A°P), A°P) —

Fun(coCartacr, coCartae ). 7"

Local Notation B.3.12. Given an object (€ | C) € loc.2Carte, we define the 1-full subcategory
o™ (€)F C Ft(Sq(e)f)

as follows, using the notation of diagram (B.3.2) in Observation B.3.10 throughout. First of all, an
object of ®"(&)¥ is given by functors I — K <% & such that for every k € K\{max(K)}, the

Oth

176807 a double co-category is an (00, 2)-category if and only if its oo-category is an co-groupoid.

177Indeod7 the functoriality is as follows: given any C,D € Cat, pullback assembles as a functor
Fun(C, D) x coCartp — coCarte

(which corresponds through straightening to composition of functors).
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morphism e — ex41 is sent to an equivalence in C if k € I and is locally cartesian over C if k € J.

’

Then, a morphism in @"'”'(SW from I’ — K’ 2% € to I — K =% € is given by (the opposite of) a
morphism
I' — K —— J
T ﬂT T (B.3.4)
I —K —— J
in Ar**(A) C Fun([2]°P, A) along with a diagram

%...%e

ﬁ(mm(K mln(K )+1) B(max(K))
Ymin(K) /éym,n(KHl / \/x Fmax(K) (B.3.5)
6mln(K) — €nmin (K)+1 emax(K)

in &,'"8 such that

for every k € K, the 1-morphism ~;, in € is sent to an equivalence in C;

e for every i € I C K, the 1-morphism ~; in € is an equivalence; and

for every i € (I\{max(I)}) C (K\{max(K)}), the 2-morphism 7, in € is sent to an equiva-
lence in C;

for every j € (J\{max(J)}) C (K\{max(K)}), the 2-morphism 7, in € is a cocartesian
2-morphism over C.

Observation B.3.13. By the definition of " (&)#, we have a factorization

(I)nu(g)f FZCt(Sq(g’)f)
| , (B.3.6)
r.laxn.u.(e)f ~ Fact(ef) - Fact(sq(e)f) — FZCt(Sq(e)fﬁ)

S— 1L

where the lower right horizontal functor (induced by the natural transformation s — p) is 1-full

since Sq(C) is a double co-category (in particular it is complete).

Lemma B.3.14. The functor ®" (&) — rlax""(C)¢¥ of Observation B.3.13 is a cocartesian
fibration. The cocartesian morphisms are those in which, for each i € I\{max(I)}, the corresponding
2-morphism n; (as in diagram (B.3.5)) is invertible (or, equivalently, for each k € K \ {max(K)},

the 2-morphism i is cocartesian).

Proof. Observe that the functor Ffft(Sq(E)ﬁ)

change is a cocartesian fibration: a morphism in its source is cocartesian if and only if in the

@) = rlax™" (€)# from the indicated base

[r.lax"

corresponding diagram (B.3.5) each ~; is invertible, for each i € I\ {max(I)}, 7; is invertible,
and for each j € J \ {max(J)}, the 2-morphism 7; is cocartesian. Consider the subcategory
U € Ft(Sa(€)f)

Ir.laxn-u- ()¢ Consisting of those morphisms such that in its corresponding diagram

178 Beware that the upper row in diagram (B.3.5) may not define an object of ®"U-(€)¢ although for every

k € (I\{max(I)}) C (K\{max(K)}) the 1-morphism ¢/ is sent to an equivalence in C.

B(k) /J’(k+1)
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(B.3.5), for each ¢ € I, the 1-morphisms ~; are equivalences and, for each j € (J\{max(J)}), the
2-morphism 7); is a cocartesian 2-morphism over €. Notice that U contains all cocartesian mor-
phisms over r.lax™" (€)#; in particular, U | r.lax™" (€)¥ is a cocartesian fibration and the inclusion
U F(Sa(e)) |

Now, observe the monomorphism ®"U(&)¥ — Ffft(Sq(Eﬂs)‘r_|axmu‘(e)¢'. Inspecting the defini-

Ir.laxnu-(@)f Preserves cocartesian morphisms.

tion of r.lax™" (€)#, and of U, observe that this monomorphism factors as a fully faithful functor
Pnu-(€)$ < U. We claim that for each object z € r.lax™"(€)# the inclusion (®"" (£)), < U,
admits a left adjoint. For this, fix an object # := (I — K <% &) € U,. We must construct an initial
object in the undercategory ((@"'”'(8)§)m)5/. By definition of U, for each k € I the 1-morphism
er — ex+1 is sent to an equivalence in €. To construct the desired initial object, we enforce that
each er — epy1 is locally cartesian over € for each k € J. We do this by working backwards in the
finite linearly ordered set J: inductively, take the morphism ej, — €}, = exy1 to be the locally
cartesian lift of the image in € of the 1-morphism e; — ex11. This resulting object § € (®"4(&)#),
receives a canonical morphism from #. As so, this object is initial. Moreover, in the canonical
morphism & — ¢, for each k € K \ {max(K)}, the corresponding 2-morphism 7 (as in (B.3.5)) is
invertible. It follows that ®"4(&)f | r.lax™"(C)¢ is a locally cocartesian fibration, with cocarte-
sian morphisms those in which, for each i € I'\{max(I)}, the corresponding 2-morphism 7; (as in
diagram (B.3.5)) is invertible. It is clear that the locally cocartesian morphisms are closed under

composition. Therefore, " (&)$ | r.lax™"(€)# is indeed a cocartesian fibration, as claimed. [

Observation B.3.15. By Lemma B.3.14, we obtain a functor

v (F
t1loc.2Carte Rl coCart, . ()f -

For the composite cocartesian fibration,
(&) — rlax™(C)f — AP, (B.3.7)
using Local Notation B.3.12, the cocartesian morphisms are given as those in which
e the morphism J — J' (in diagram (B.3.4)) is inert,
e each morphism v (in diagram (B.3.5)) is carried to an equivalence in €, and
e each 2-morphism 7 (in diagram (B.3.5)) is invertible.

Moreover, the cocartesian fibration (B.3.7) defines an (0o, 2)-category.!” Explicitly, its objects are
those of €, its 1-morphisms are strings of 1-morphisms eg — - -+ — e, in €& with m > 1 such that
the 1-morphism ey — e; in € is sent to an equivalence in € and the 1-morphisms e; — e;41 in € are

locally cartesian over C for all 1 < ¢ < m, and a typical 2-morphism is given by a diagram

eg €} eh el €} ek g el
2 % B.3.8
’YoJ{Z )/“Q 'Yll }%‘ % 'YSl }\/(\q, ’Y4J{ )/\/4 ,\/{\" 2| e ( )
> >
€0 €1 €2 €3 €4 €5 €6

179From the description of cocartesian morphisms in ®"4-(€)¢ | r.lax""(€)f of Lemma B.3.14, the inclusion
onu-(&)F FiCt(Sq(Ef))\nla‘xn»w(c)f preserves cocartesian morph‘isms over inert morphisms in A°P. Therefore, the
Segal condition for ®"U-(&)f | AP follows from that for Sq(€)¢ | A°P. Similarly, the completeness condition for
on-u-(&)F | A% follows from that for Sq(&)f | A°. Furthermore, we clearly have @"'“'(E)g ~10(€).
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in € in which the 2-morphism 7y is sent to an equivalence in € and all remaining 2-morphisms in
the diagram are required to be cocartesian over C.

Altogether, we obtain a functor
t1loc.2Carte & 2Cat/r_|axmu.((3) .

Observation B.3.16. The functor ™" factors through 2Cart, jpnu. () C 2Cat/p jaxnv-(¢)- Indeed,
by Observation B.2.3, the functor ®"" (&) — r.lax™"(€) is a strict homwise cocartesian fibration;
inspecting the definition of ®"(&)$ (see also Observation B.3.15), its cartesian 1-morphisms are
those 1-morphisms in ®""(€) in which all constituent 1-morphisms in € are locally cartesian (i.e.
the first 1-morphism is an equivalence), and by Lemma B.3.14, its 2-cocartesian morphisms are
those in which each constituent 7 (as in (B.3.8)) is cocartesian (i.e. the first 2-morphism 7 is an

equivalence).

Observation B.3.17. There exists a factorization

B () > &4

~ <

Fact(Sq(€)F) 5 Fit(Sq(€)F) = Ar(A?) % Sq(€)f —— Sa(€)f

rlax™"(@)¢ cf

\ /
F(Sq(€)f) ——7 Fi(Sa(€)¥) =~ Ar'(A°P) X Sq(€)f —5— Sa(e)?

in which the leftmost vertical functor comes from Observation B.3.13 and the two diagonal inclusions

on the right arise from Observation B.3.9. In other words, we have a commutative square

o (e)f —— &

l J , (B.3.9)

rlax™" ()¢ —— ¢

Moreover, the commutative square (B.3.9) in Cat lifts to Cat;aes, and in fact lies in the subcategory
2Cat C coCartaer C Cat)ace-

Observation B.3.18. The functor ®™" factors further through 2Cart, ;i) € 2Cart, jaxov-(¢), @

subcategory via un/straightening. In particular, we obtain a functor
t1loc.2Carte N 2Cart, jax(e) -

Indeed, because the construction of ®"% commutes with pullbacks in the variable € € 112Cat®?, it
suffices to check the case that € = pt. And in this case we have ®"" (&) ~ & x r.lax™" (pt), where
the projection ®"!-(€) — & is given by (B.3.9).

Proof of Theorem B.3.7. The second statement follows from the first using Observation B.1.26 and
un/straightening.
We will show that @ is inverse to the functor 6*. We first verify the equivalence 6*® ~ id,ioc.2cartc -

For this, given any € € t1loc.2Carte, we have the commutative diagram (B.3.9). Now, 6% is the
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L ef () nu.(@\§ § oy § §
composite €f ——— r.lax™"(€C)? — r.lax(C)?, and by definition of ®(€)* | r.lax(C)?, its base

change along r.lax™" (€)f — r.lax(C) is ®"4(&)# | r.lax""(C)¢. Thus, we have a functor
0y ae)f ~ ((m)f)yren(e)f —ef

over @¥. By the description of cocartesian morphisms in (6%)*®(€)¢ over A% as in Observa-
tion B.3.15, this functor preserves cocartesian morphisms over A°P. In other words, it defines a

morphism
*P(E) — & (B.3.10)

in 2Cat. By construction, this functor is an equivalence between spaces of objects. Because &€ — €
is a locally 2-cartesian fibration, each 1-morphism in € uniquely factors as a 1-morphism in a fiber
over € followed by a locally cartesian 1-morphism over €, and similarly for 2-morphisms in €.189
Therefore, the functor (B.3.10) also induces an equivalence between spaces of 1- and 2-morphisms.
Hence, it is an equivalence. With the evident functoriality of (B.3.10), this supplies the natural
equivalence §*® ~ id,, oc.2¢arte -

We now verify the equivalence ®6* ~ id,, acart For this, fix an object € € 112Cart, jox(e), and

rlax(€) *

let us write €™ € 112Cart, 5,00 (@) for its pullback. Observe the diagram

(ene)f

|

rlax™ ()¢ —— €f —— rlax""(@)¢

\i/’
id . (¥

in Cat, in which the left horizontal functor lies in coCartae and corresponds to ide and the 2-
morphism is the unit of an adjunction in Catcocart/Aop.lgl Since (8"'”')§ — r.Iax"'“'((‘,’)f is a cocarte-

sian fibration (recall Observation B.2.3), we obtain a commutative square

EH.U. 9*8

| !

rlax™"(€) —— C

180T he (o0, 2)-category *®(E) can be described as follows: its objects are those of &, a 1-morphism from eg to
e is a pair of 1-morphisms eg — e — e1 in € such that eg — e is sent to an equivalence in € and e — e is locally

cartesian over C, and a 2-morphism from eg — ¢/ — e1 to eg — e — e1 is given by a diagram

eg —— e —— e

| szl sl

epg —> e —— €1

in € in which the 2-morphism 7g is sent to an equivalence in € and the 2-morphism 7); is cocartesian over C. In these
terms, the corresponding functor 6*®(€) — € is given by composition of 1- and 2-morphisms (and this is clearly both
surjective and fully faithful).

181The counit of this adjunction is the equivalence between the composite ef - r.Iax”'“'(C)f — ¢f and idgg. To
see that this indeed gives an adjunction, it suffices to verify that it gives an adjunction fiberwise over A°P. Thereafter,
the Segal condition reduces the verification to the fibers over the objects [0]°, [1]° € A°P, in which cases the assertion
is evident.
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in 2Cat. Applying Sq(—)#, the composite Cf — r.lax""(€)f — Sq(r.lax™"(€))# gives rise to a
morphism

Sq(enu)¥f x e —sqre)f x ef (B.3.11)
Sq(r.lax™u-(@))$ Sa(e)f

in coCartaw,'®? which is an equivalence because it is so on fibers over each [n]° € A°. Next, we

observe the factorization

(I)"'“'(@*E)f SN cmt (Sq(@*&)f S (fg)f Gf) (<B'i¢) Ffft (SQ(EH'U')f Sa(r x @né 63§>
. a(r Jax

|

cmt(sq(gn.u.)f)

; |

((c:n.u.)f Sq(gn.u.)f

(ame)

in Catcocart/acr, in which the lower right vertical functor is the composite pro (u — t) as in Obser-

vation B.3.17. Explicitly, the factorization is given by the functor

JRERY
pru(pre)f — S, gqenuy

w w ; (B.3.12)
€)

prf (eq)o0

(I 25 K =% 60%€) (1

- prf
where (0*€)¥ £ & is the canonical projection over A°P. 183
Using the description of cocartesian morphisms in ®"-*: (H*S)f over A°P from Observation B.3.15,
the morphism (a"'“')9§ lies in the subcategory coCartas C Categeart/acr- Hence, we obtain a functor
(I)nu(e*g) a™t enu.
in ¢12Cat /r,|axn.u.(@).184 Using the description of cartesian 1-morphisms and cocartesian 2-morphisms
in ®"4-(0*€) over r.lax™"(€) as in Observation B.3.16, we see that the functor o™ preserves

cartesian 1-morphisms and cocartesian 2-morphisms. Hence, it also defines a natural morphism
d(h*e) 2 &

in the full subcategory ¢12Cart, j5e) € t12Cart, 5,00 (@) This functor « is evidently functorial in

& € 112Cart, ja(e); that is, o defines a natural transformation ®6* 2 id,; 2Cart, je) -

It remains to show that « is an equivalence. By Observation B.2.7(4), « is an equivalence provided

it restricts as an equivalence between fibers over r.lax(€). Because the right-lax functor € 2 r.lax(C)

’
™

182This follows from the fact that for any locally 2-cartesian fibration & — €’ the corresponding functor
Sqe")f x et —ef
sq(e’)$
is a cocartesian fibration (as in Observation B.2.3).
183Note that this factorization indeed exists because by definition of morphisms in @“‘“‘(G*Eﬂ’, the composite
functor ®"(0*&)f — Sq(€"¥)$ carries 1-morphisms to 1-morphisms given by functors S1 ., — &Y that carry
vertical 1-morphisms to equivalences (see Observation B.3.9).
184Informally7 the corresponding functor ®"-*-(0*E) — E™Y: is given by composing 1- and 2-morphisms in ™.
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induces an equivalence between spaces of objects, it suffices to show that 6*« is an equivalence.
This follows from the above verification that 8*® =~ id,,oc.2Carte - ]

B.4. Cartesian yoga. In this subsection, we establish two enhancements of un/straightening (The-
orems B.4.1 and B.4.4), as well as an enhancement of lax un/straightening to an equivalence of
(00, 2)-categories (Theorem B.4.3). We begin by stating the main results, and then prove them in
turn at the end of this subsection based on supporting lemmas.

Theorem B.4.1. Let C,D € 112Cat be (00, 2)-categories. Then, there is a natural equivalence

|'1(:’r"'1L12Cat,A|ax (G, 2Catloc.Qcocart/D) = I']Omu2Cat|,|ax (D7 2cat|oc.2cart/el°P)

6

in 8.18% This equivalence is contravariantly functorial in both variables,'®® and which is the identity

endofunctor of 2Cat in the case that © = D = pt. Moreover, it restricts to equivalences
hOlegcat(e, 2cat|oc.2cocart/D) = homl/12cat|‘|ax(®7 2cat2cart/€1°P) )
homLIQCatrJax(ev 2cat2cocart/D) = homb12cat(®7 2CatIo<:.2<:art/(31°F’) ) and

hom,,2cat, .. (C, loc.2coCartp ) =~ hom,, 2cat, ., (D, loc.2Carteior) .

Observation B.4.2. Given a right-lax functor € L D between (00, 2)-categories, Theorem B.4.1

gives a functor
P
2CatIo<:.2<:art/'D — 2CatIoc.2cart/(i )

which restricts to a functor
loc.2Cartp F—> loc.2Carte

namely, for any (oo, 2)-category X € ¢12Cat, we obtain a natural morphism
hom,, 2cat (X, 2Catioe. 2cart/n ) = hom,, acat, ., (D', 2Catacocart/x )
— hom,, acat, ,,, (€', 2Catacocart/x )
=~ hom,, 2cat (X, 2Catioc 2cart/c)
in 8. Evidently, this is contravariantly functorial in C € ¢12Cat, |a«.

Theorem B.4.3. For any (00, 2)-category C € 112Cat, pullback along the universal right-lax functor
C ~ r.lax(@) (using Observation B.4.2) defines an equivalence

2Cat2cart/r.|a><((i) = 2CatIoc.2cart/@

in 2Cat. This equivalence is contravariantly functorial in C € 112Cat via pullback. In particular, it
restricts to an equivalence

2Cart, jox(e) — loc.2Carte 187

Proof. For any (0o, 2)-category X € 112Cat, we have the sequence of equivalences

homL12Cat(x7 2Cat2c.’=\rt/r.lax((?)) = hOlegcat(r.|aX(e)10p, 2cat2cocart/DC) (B41)
=~ hom,, acat(r.lax(€'°P), 2Catococart /) (B.4.2)

185Note that this equivalence does not generally extend to one between hom-oo-categories.
1861 particular, it restricts to an equivalence hom, , acat, |, (€, 2Catioc.1cocart/ D) = hom, acay, . (D, 2Catloc'1cm/€10p).
187Inspecting the proof, it is obvious that on (o this equivalence coincides with that of Theorem B.3.7. In fact
this is also true on ¢1, but we do not use that here.
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1
= homL12Catr_lax(e P, 2C3t2cocart/9€)

= homL12Cat (x7 2Catloc.2cart/€) ’ (B43)

in which equivalences (B.4.1) and (B.4.3) follow from Theorem B.4.1 and equivalence (B.4.2) follows
from Observation B.1.26. O

Theorem B.4.4. Let C,D € 112Cat be (00, 2)-categories. Then, unstraightening gives a monomor-
phism

hom,, acat, . (€, 2Catioc 2cocart/n) — toloc.2coCartex

in 8, whose image consists of those locally 2-cocartesian fibrations (€ | (€ x D)) € woloc.2coCartexp
that satisfy the following condition. s

(%) For any pair of 1-morphisms ¢ — ¢ in € and d — d' in D, the pullback of € | (€ x D) along
the functor [2] — C x D selecting the commutative triangle

(¢,d) —— (,d)

~

(¢, d)

is a 2-cocartesian fibration.'89

Moreover, the further subspace

homL12Cat(eu 2Catloc.2cocart/®) g homb12Cat|A|ax (ea 2Catloc.Qcocart/D)

corresponds to the additional condition that for every object d € D the functor €4 — C is a 2-

cocartesian fibration.

Observation B.4.5. Let €, D € 2Cat, and recall the (oo, 2)-category Fun™2(€, D) € 2Cat from

r.lax

Notation B.1.18. Then, for any fixed 2-cartesian fibration € | D, pullback defines a functor

)*e
Fun”:i(e’D)lop % 2Cat2|oo:.cart/@

% w (B44)

F (F*e | e)

Indeed, for each ([i], [j]) € A x A, pullback of (€ | D) defines a map

hom,,acat, ,,, (C x O([i], [1]), D) — t02Cataioc.cart/e x0([il,[])

in 8; applying (1&20p of) Theorem B.4.4, this restricts to a presentation of the desired map.
The functor (B.4.4) evidently has the following functorialities.

188The further subspace hom,, acat, ,,, (€, 2Catacocart /) € hom, acay, ., (€, 2Catioc 2cocart/p) corresponds to the ad-
ditional condition that for every object ¢ € € the functor £ — D is a 2-cocartesian fibration, by the naturality of
un/straightening.
189Recall Remark B.1.13.
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(1) For any (strict) functor D’ S, D, there is a canonical commutative triangle

(=)(@Gr¢g)

Fun"[2(@, D’)1op

r.lax
k K/\% 19

Fun"[(@, D)tep

r.lax

2cat2loc.cart/(‘3

in 2Cat.

(2) For any right-lax functor ¢’ 4 C, there is a canonical commutative triangle

Funr.|ax(e7.D)1op (_)*8

r.lax

2cat2loc4cart/€’

\08 K/\% <

Fun" (€, D)1op

r.lax

in 2Cat.

The remainder of this subsection is dedicated to the proofs of Theorems B.4.1 and B.4.4, which

rely on some preliminary results.

Definition B.4.6. Given a locally 2-co/cartesian fibration & =+ €, we say that a functor & — D

smushes 7 if it carries all m-co/cartesian 1- and 2-morphisms to equivalences.

Lemma B.4.7. Suppose we are given a span C L & 5% D oin 2Cat such that F is a locally

2-cartesian fibration that G smushes. Then, the following conditions are equivalent.
(1) The functor G is a (locally) 2-cocartesian fibration that F smushes.
(2) The following two conditions are satisfied.
(i) For every object ¢ € C, the functor &, — D is a (resp. locally) 2-cocartesian fibration.

(ii) For every I-morphism c¢; — co in C, the corresponding cartesian monodromy func-
tor &, + &, (which lies over D by the assumption that G smushes F) lies in
2Catioc 2cocart/ v € 2Catp (i.e. it preserves cartesian 2-morphisms over D).

Proof. We will prove the version involving the two instances of the word “locally”; in particular, we
will explicitly identify the locally cocartesian 1-morphisms over D. Using this, the version without
the word “locally” follows from Lemma B.2.5.

We begin by establishing the result in the case that D € Cat C 2Cat is an (oo, 1)-category. Since
both conditions are compatible with pullback in the variable D, it suffices to consider the case that
D =[1].

Now, suppose first that the functor € | (€x[1]) satisfies condition (1). Given an object ey € €0,
observe that the cocartesian l-morphism eq — ey in € | [1] lifting 0 — 1 canonically lifts to
a cocartesian 1-morphism in €. | [1]. Thus, condition (1) implies condition (2) (assuming that
D € Cat).

In the other direction, suppose that the functor € | (€ x [1]) satisfies condition (2). By Obser-
vation B.2.7(3) it suffices to show that a cocartesian 1-morphism e — ¢’ in &, | [1] lifting 0 — 1

is also a cocartesian 1-morphism in & | [1]. To see this, recall that C Leisa locally 2-cartesian
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fibration, and observe that since G smushes F', the functor € < €; is a morphism in loc.2Carte.

Therefore, for any e; € €1 we obtain a commutative triangle

home (e, e1) home, (¢',e1)

\ / (B.4.5)

home(F(e), F(e1))

(recall that F'(e) = c) that defines a morphism in coCarthome (7 (e),F(ey))- Hence, to show that the
horizontal functor in diagram (B.4.5) is an equivalence, it suffices to verify that it is an equivalence on
fibers over an arbitrary object ¢ € home(F'(e), F'(e1)). Letting €] — e1 be a cartesian 1-morphism
in & lifting the 1-morphism F(e) 2 F(e;) in €, we see that on fibers the horizontal functor in

diagram (B.4.5) is the composite equivalence

hom{ (e, e1) ~ homgp(e) (e,€)) ~home .., , (€', €]) ~ home, (¢, e1) .

e),1)

So indeed, condition (2) implies condition (1) (assuming that D € Cat).

We now consider the case that D € 2Cat is an arbitrary (oo, 2)-category. Note that conditions (1)
and (2) refer to both 1- and 2-morphisms, and the above special case establishes the equivalence of
the conditions on 1-morphisms. Thus, the relevant functors to D are locally 2-cocartesian fibrations
if and only if they are strict homwise cartesian fibrations.

Now, fix any objects e, e’ € & and let us respectively write ¢, ¢’ € € and d,d’ € D for their images
under F' and G respectively. Then, we obtain a span

F ’ G ’
home (c, ') +—— home (e, e’) — homp(d,d’)

in Cat in which F, . is a cocartesian fibration that G, .- smushes. By ((—)*¥2°P applied to) the above
special case, the functor G, . is a cartesian fibration that F¢ .- smushes if and only if for every object
¢ € home(c, ¢’) the functor hom{ (e, ') — homy (d, d') is a cartesian fibration. This latter condition
holds if and only if for every object ¢’ € €. the functor home_(e,e”) — homp(G(e), G(e")) is a
cartesian fibration: indeed, given an object ¢ € home(c,c’), letting e’ — ¢’ be a locally cartesian

1-morphism lift in € we obtain a commutative triangle

~

hom¢ (e, ¢’) homeg_(e,e”)

\ /

homq (d, d’)

in Cat using the 2-cartesianness of € over €, so that in particular one functor is a cartesian fibration
if and only if the other is. Unwinding the definitions, we see that & Sy D is a strict homwise locally
cartesian fibration if and only if the functors €. — D are such for all objects ¢ € € and moreover

condition (2)(ii) is satisfied, which proves the claim. O

Proof of Theorem B.4.1. Fix aright-lax functor € ~ 2Catjoc.2cocart/»- By lax (cartesian) unstraight-

ening, this is equivalent data to a morphism

(F,G) elop

X‘ /
elop
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in loc.2Carteio such that the upper horizontal functor satisfies condition(2) of Lemma B.4.7. There-
fore, by Lemma B.4.7, G is a locally 2-cocartesian fibration that F' smushes. By lax (cocartesian)
straightening and ((—)'%2°" applied to) Lemma B.4.7,1% this is equivalent data to a left-lax functor
D ~» 2Catjoc.acart/erer- The functoriality in €, D € 112Cat®® is clear. Moreover, the first two spe-
cializations are evident from the construction. The third specialization is implemented by imposing
the following condition: for any 1-morphisms ¢ — ¢ in €' and d — d’ in D as well as a lifted

commutative square

e —— ¢ yd) —— (¢, d)
L b l |
e/ ——e” (¢,d) —— (,d)

in &€, such that « is locally cartesian and 7 is locally cocartesian, then 3 is locally cocartesian if and

only if ¢ is locally cartesian.!9! O

Lemma B.4.8. Suppose we are given a span C L e % D oin 2Cat. Then, the following conditions

are equivalent.

(1) The the functor & —— Sl

(x) of Theorem B.4.4.

C x D is a locally 2-cocartesian fibration that satisfies condition

(2) The following three conditions are satisfied.
(i) The functor F is a locally 2-cocartesian fibration that G smushes.
(i1) For every object ¢ € C, the functor E. — D is a locally 2-cocartesian fibration.

(i11) For every I-morphism ¢; — ca in C, the corresponding cocartesian monodromy func-
tor €., — &, (which lies over D by the assumption that G smushes F) lies in

2Cat|0c.2cocart/93 (i.e. it preserves cartesian 2-morphisms over D).

Proof. Suppose that condition (1) is satisfied.

First of all, clearly condition (2)(ii) is satisfied.

We now establish condition (2)(i). For this, fix any object e € &, write (¢,d) := (F(e),G(e)) €
@ x D for its image, and fix a 1-morphism ¢ = ¢/ in €. Let e — ¢’ be the locally cocartesian
(oida), (c,d) in € x D. We claim that this is also a

locally cocartesian 1-morphism lift of the 1-morphism ¢ 2 ¢/ in €. To see this, fix an object f € €,

1-morphism lift in € of the 1-morphism (¢, d)

and write d’ := G(f) € D for its image. Then, we have a commutative triangle

home , (¢/, f) hom¥ (e, f)

\ / (B.4.6)

homq (d, d’)

in Cat defining a morphism in Cartpem., 4,4y (using that (F,G) is a locally 2-cocartesian fibration,

D X920 o D s as well). So to verify that the upper horizontal

so that its pullback along [1] x
190 hat is, we interchange the words “cartesian” and “cocartesian” in the statement of Lemma B.4.7.
191Hero, we mean e.g. that « is locally cartesian with respect to the composite & — @1°P x D — @1°P or equivalently
with respect to the functor 5 — C1°P,
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functor in diagram (B.4.6) is an equivalence, it suffices to check that it is an equivalence on fibers
over an arbitrary object ¢ € homqp(d,d’). For this, let e/ — e” be a locally cocartesian 1-morphism

lift in & of the 1-morphism (¢, d) lder,¥), (¢,d") in € x D. Then, we have equivalences

hom? (', f) ~ home,, ,, (¢, f) = hom¢™* (e, f) .

the latter by condition (%) of Theorem B.4.4. It follows that the functor & L, @ admits locally
cocartesian 1-morphism lifts. To see that it is a homwise cartesian fibration, observe that for any
pair of objects e, ¢’ € &, writing (¢, d), (¢, d’) € Cx D for their images under (F, @), in the composite

homg (e,¢e’) — homexn((¢,d), (¢, d’)) =~ home(c, ') x homqp(d, d’) — home(c,c)

the first functor is a cartesian fibration by assumption and hence the composite is as well. From
here, the fact that it is a strict homwise cartesian fibration follows from the fact that (F,G) is.
Moreover, it follows immediately from these considerations that G smushes F.

We now establish condition (2)(iii). Choose any 1-morphism ¢ = ¢ in € and objects e, f € &,
and let e — €’ and f — f’ be locally cocartesian 1-morphism lifts in & of ¢. Then, the locally
cocartesian monodromy functor €. — €. acts on hom-oco-categories via the diagram

home, (e, f) — homZ (e, f') <— home_, (¢’, f’) (B.4.7)

in Cat, which lies over homp (G(e'), G(f')) because G smushes F. Hence, condition (2)(iii) follows
from the fact that the left functor in diagram (B.4.7) preserves cartesian morphisms because (F,G)
is a strict homwise cartesian fibration.

Now, suppose that condition (2) is satisfied.

Fix a I-morphism (c,d) — (¢/,d’) in € x D and an object e € €. 4). Let e — €’ be a locally
F-cocartesian 1-morphism lift of the 1-morphism ¢ — ¢’ in €; this lies over the object d € D because
G smushes F' (by condition (2)(i)). Then, let ¢’ — €” be a locally cocartesian 1-morphism lift of
d — d’ with respect to the locally 2-cocartesian fibration &+ — D (using condition (2)(ii)). By
conditions (2)(i) and (2)(ii), the composite e — €’ — €' is a locally (F, G)-cocartesian 1-morphism.
Thus, locally (F, G)-cocartesian 1-morphism lifts exist, and moreover condition () of Theorem B.4.4
is satisfied.

Now, choose any pair of objects e, e’ € &€, and respectively write (¢, d), (¢/,d") € € x D for their
images. Then, we have a span

F ’ G ’
home (c, ¢') +—— home (e, e’) — homp (d,d’)

in Cat in which F' is a cartesian fibration that G smushes. Now, choose any 1-morphism ¢ % ¢ in

@, and write e — e; for its locally F-cocartesian 1-morphism lift in €. Then, we have an equivalence
hom¢ (e, ') ~ home, (e1,€’)

in Cat, which lies over homp(d,d’) because G smushes F. Thus, the functor homf(e,e’) —
homp(d,d’) is a cartesian fibration. Moreover, for every morphism @1 — @2 in home(c, ¢'), the
corresponding cartesian monodromy functor homf(e,e’) < homZ*(e,e’) defines a morphism in
Carthom., (d,4/): it lies over homp(d,d’) since G smushes F, and moreover preserves cartesian mor-

phisms since F is a strict homwise cartesian fibration. It follows that the functor

home (e, ') — home(c, c’) x homxp(d,d") =~ homexp((c,d), (¢',d"))
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. . . . F.G . . . . .
is a cartesian fibration, i.e. that & M Cx D is a homwise cartesian fibration. In particular, €& | D

is a homwise cartesian fibration. Explicitly, a 2-morphism « in € is cartesian over D if and only if

it can be expressed as a composite

e — e e e (B.4.8)
~_ 7
in which the 1-morphism ¢ is locally cocartesian over € and the 2-morphism o’ is the image of a

2-morphism in €p(.y that is cartesian over D.

To see that & & C x D is a strict homwise cartesian fibration, we observe that & Eoeis such,
so that it suffices to show that & &5 D is such as well. That is, we must show that the cartesian
2-morphisms in € over D are closed under precomposition and postcomposition by (arbitrary) 1-
morphisms in €. Closure under precomposition follows from the fact that each 1-morphism in &
factors as a l-morphism in € that is locally cocartesian over C followed by a 1-morphism in &
that lies in a fiber over C, together with condition (2)(ii) (namely that for each ¢ € €, the functor
€. — D is a strict homwise cartesian fibration). Using closure under precomposition, closure under
postcomposition reduces to the case in which the 1-morphism ¢ in diagram (B.4.8) is an equivalence.
Let o be a 2-morphism in € that is cartesian over D, and let e’ Yy ¢ be a 1-morphism in €. We
must show that the 2-morphism ¢ o a in € is cartesian over D. By condition (2)(ii), the functor
Ep(ery 4 D is a homwise cartesian fibration. Therefore, the 2-morphism 1) o v is cartesian over D
in the case that ¢ is in the image of Ep (/). Since ¢ is a composite of a 1-morphism in & that is
locally cocartesian over € followed by a 1-morphism in &g, we can reduce to the case in which

1 is locally cocartesian over C. In this case, ¢ o av is cartesian over D by condition (2)(iii). O

Proof of Theorem B.4.4. Fix a left-lax functor € ~ 2Catjoc.ococart/p- By lax unstraightening, this is
equivalent data to a morphism

E—F— CxD
(3/

in loc.2coCarte such that the upper horizontal functor satisfies condition (2) of Lemma B.4.8. The
first assertion now follows from Lemma B.4.8. For the second assertion, it suffices to observe that
the functor &€ — € is a 2-cocartesian fibration if and only if the functors £; — € are 2-cocartesian
fibrations for all d € D, which follows from Lemma B.2.5 and the fact that € — D smushes
& —C. O

B.5. Adjunctions. In this subsection, we discuss adjunctions in (oo, 2)-categories (including in
2Cat). Our main results are Lemmas B.5.7 and B.5.9, which give parametrized versions of the mate
correspondence; their proofs are adapted from [GR17, Chapter 12, §§3-4].

Local Notation B.5.1. Throughout this subsection, we fix (0o, 2)-categories €, D € 2Cat.

Definition B.5.2. A 1-morphism ¢ LidinCisa left adjoint if there exist a 1-morphism ¢ L4
(a right adjoint) and 2-morphisms id. 2 RL and LR < idg (a unit and counit, respectively)

such that the composite 2-morphisms

idL’I7 EidL

L~Lid 2% LRL Z9% idyL~L and R~id, R 2% RLR 25 Ridy~ R (B.5.1)
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are homotopic to identity 2-morphisms. We write Adj € 112Cat for the object corepresenting (the
space of) left adjoints.'%> We generally consider Adj € 2Catyy); via the epimorphism [1] — Adj
corepresenting the universal left adjoint. Dually, we say that a 1-morphism ¢ Ldincisa right

adjoint if there exist (L,n,e) as above.

Observation B.5.3. It is immediate from Definition B.5.2 that we have a canonical equivalence
Adj ~ Adj'*?*°" and moreover that Adj'®® ~ Adj?*® corepresents the space of right adjoints. Fur-
thermore, it follows e.g. from the description of Adj € 2Cat given in [RV16] that there is also a
canonical equivalence Adj ~ Adj1°p; in particular, adjoints are unique when they exist. We use these

facts without further comment.
Definition B.5.4. We write
2biCarte := 2coCarte N 2Carte and 2Catapicart/e = 2Catacocart/e N 2Catocart/ce
and refer to objects of these (00, 2)-categories as 2-bicartesian fibrations over C.
Lemma B.5.5. Pullback along the functor [1] — Adj defines an equivalence
hom,, 2cat(Adj, 2Cat) to2biCartyy .

Proof. By straightening, the pullback functor vp2coCartad; — to2coCart[y) is a monomorphism. We
show that it is an equivalence onto the subspace 1o2biCart(;) C tp2coCartyy.

Suppose first that we are given a functor [1] — 2Cat that selects a left adjoint C L Din
2Cat. Consider the cocartesian unstraightening & | [1] of L. Using any adjunction data (R, n,¢)
extending L, we show that € | [1] is a 2-cartesian fibration. Given any object d € D, the morphism
LRd < d in D determines a morphism Rd — d in &, which it is easy to see is cartesian. Hence, by
Observation B.2.7(3), € | [1] is a 2-cartesian fibration.

In the other direction, suppose that € | [1] is a 2-bicartesian fibration. We must show that
its cocartesian unstraightening [1] Ly 9Cat selects a left adjoint. Let us write C Ly D for the 1-
morphism selected by its cocartesian straightening and C & D for the 1-morphism selected by its
cartesian straightening. Now, an evident composite [2] x [2] S, [1] L, 2Cat classifies a diagram

in 2Cat.1%% Write € := G*€. Clearly, the canonical functor € | [2] x [2] is a 2-bicartesian fibration.
Applying cocartesian straightening in the second coordinate, we obtain the first functor in the
composite

[2] — 2Catapicart/[2] e, 2Catacart/[2]

192Indeed7 assigning to an (oo, 2)-category the space of left adjoints in it assembles as a functor ¢12Cat — 8
(a subfunctor of that corepresented by [1]); this functor evidently preserves limits and filtered colimits. Hence, the
presentability of ¢12Cat implies this functor is indeed corepresented by an (0o, 2)-category. (For an explicit description
thereof, see [RV16].)
193Here and in what follows, we orient our diagrams according to the same conventions as matrices (rows (top to
bottom) before columns (left to right)).
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which by Theorem B.4.4 gives an object of 2Catjoc.2cart/([21opx[2]) that is classified by a diagram

C+—C+—2¢ C+—C«+—2¢
||l @ X lL [ /u //\\1 lL
Ce=0C+2- D = Ce=_pCcf _p (B.5.2)
I \iLJ N lu I //&LJ \S”& M
G<TD<T® GTD%Q

in 2Cat; in particular, this defines the 2-morphisms 1 and ¢ as (straightenings of) locally 2-cartesian
fibrations over [2] via appropriate functors [2] — ([2]°P x [2]). Moreover, the requisite identifications
of the composite 2-morphisms (B.5.1) follow from the functoriality of un/straightening with respect
to functors ([1]°P x [1]) — ([2]°P x [2]), namely those selecting the right half and the bottom half of
diagram (B.5.2) respectively. O

Corollary B.5.6. A functor C LoD in2Cat is a left adjoint if and only if for every object d € D
the functor homp (L(—),d) € Fun(C'°P, Cat) is representable, i.e. there exist an object ¢ € C and a
1-morphism L(c) — d in D such that the composite

home(c’, ¢) — homqp (L(c'), L(c)) — homp (L(c),d)
is an equivalence in Cat for all ¢’ € C.
Proof. This is immediate from Lemma B.5.5. O

Lemma B.5.7. The datum of a morphism
80 — 81 (B53)

in 2Catycocart/c that on fibers over each object ¢ € € is a right adjoint is equivalent to the datum of
a morphism

cocart cocart

(€0) ¥ — (&) (B.5.4)

in 2Catycart/ero that on fibers over each object ¢ € ClP s q left adjoint, with the equivalence given

fiberwise by passing to adjoints.'%*

Proof. Let us consider the morphism (B.5.3) as a functor
[1]°" — 2Caticocart/e -
By Theorem B.4.1, this is equivalent data to a functor
C — 2Catycart/1) = 1Catcart/(1] = Cateart/ [

that factors through the subcategory Catpicart/[1) := Catcocart/[1] N Cateart/1] C Cateary1)- Applying
Theorem B.4.1 to the resulting composite

f,
C— Catbicart/[l] it) Catcocart/[l] = 2Catlcocart/[l] ’

we obtain a functor

[1] — 2catlcart/el°P )

cocart
V' for the cocartesian duality equivalence 2coCarte —»

194Here, just as for (oo, 1)-categories we write (—)
2Carte1op.
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which selects the desired morphism (B.5.4). It is now clear that this construction indeed defines an

equivalence of spaces. O
Remark B.5.8. A more restrictive version of Lemma B.5.7 is proved in [HHLN].
Lemma B.5.9. Given a solid diagram

[HOP r ? 2Catlcart/@
j e : (B.5.5)
Ad_] 10p

there exists an extension (i.e. I selects a right adjoint in 2Catycan/c) if and only if the following

conditions are satisfied.
(1) On fibers over each object ¢ € C, the functor F selects a right adjoint.
(2) The functor F factors through the subcategory 1Carte C 2Caticar/c-

Proof. Suppose first that there exists an extension (B.5.5). It is clear that condition (1) is satisfied.
To verify condition (2), let us write
L
—
& é F

for the adjunction in 2Catycar /e (leaving the functors to € implicit). We must show that R preserves
cartesian 1-morphisms over €. For this, by taking pullback along an arbitrary functor [1] — € it
suffices to consider the case that € = [1]. Given a cartesian l-morphism fy — f1 in F over the
morphism 0 — 1 in [1], we must show that the 1-morphism R(fy) — R(f1) in & is also cartesian.
For any object e € £y we have the commutative diagram

home, (e, R(fo)) —— homg (e, R(f1))
2 2 )
homg, (L(e), fo) —<— homg(L(e), f1)

in which the vertical equivalences arise from the adjunctions L 4 R and Ly + Ry and the lower
morphism is an equivalence since fy — f1 is cartesian.

Now, suppose that conditions (1) and (2) are satisfied. We must show that there exists an
extension

[1]°° —E— 1Carte

j j , (B.5.6)

Adj1op 77777 » 2Caticart/e

We claim that it suffices to assume that C is a thin 2-category. Indeed, to show this we verify
that it suffices to assume that € = ¢ is the free (0o, 2)-category on a k-morphism for 0 < k < 2.

For this, observe the monomorphism
homL12Cat(Adjlopu 2cat1cart/€) — homL12Cat([1]op7 2Ca‘tlcart/@)
in 8, which by Theorem B.4.1 is equivalent to a morphism

1 1
holegcat(e Op, 2cat1cocart/Adjlop) — holegcat(e Op, 2cat1cocart/[1]op)
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which is therefore also a monomorphism in 8, functorially in € € (;2Cat°®. It follows that the

pullback functor

2catCOCart/Adj1°p — 2Catcocart/[1]op

is a monomorphism in ¢12Cat. Hence, again applying Theorem B.4.1, there exists an extension
(B.5.5) if and only if there exists an extension after pullback along each functor ¢ — €. (And
clearly conditions (1) and (2) hold if and only if they do after pullback along each functor ¢, — C.)
Thus, we can indeed assume that € is thin.

. . . fi . . .
Now, since € is thin, the functor 2Caticn/e 8% 9Cat is 1-full. Hence, there exists an extension

(B.5.5) if and only if the composite [1]°° — 2Catjcan/c 8% 9Cat selects a functor admitting a left
adjoint that satisfies the condition of admitting a lift to 2Catjcart/e-

Consider the cartesian unstraightening & LN [1] of the functor F (the upper horizontal
functor in diagram (B.5.6)). By Lemma B.5.5, it is equivalent to show that & % [1] is a 2-bicartesian
fibration whose cocartesian 1-morphisms are carried to equivalences by the functor & 5 e By
assumption, for each object ¢ € @, the functor &. 2% [1] is a 2-bicartesian fibration. Given any
eo € & = ¢ 1(0), let us write s := p(eg) € C and let eg — e; be a gs-cocartesian 1-morphism.
We claim that this 1-morphism is in fact g-cocartesian, which will evidently give the desired result.
That is, we must show that for any object €} € &1, writing ¢ := p(e}) € C, the upper functor in the

commutative triangle

home, (e1, €') home (e, €)

\ / (B.5.7)

home(s,t)

in Cat is an equivalence. Because & % € is a 2-cartesian fibration, diagram (B.5.7) defines a
morphism in coCarthom (s,¢), S0 it suffices to prove that its upper horizontal functor restricts to an
equivalence homg (e1,e}) — hom{(ep,e}) on fibers over an arbitrary object ¢ € home(s,t). Now,
let ef — €} be a (p,q)-cartesian lift of the 1-morphism (id1, ). Then, we have a commutative

diagram

hom“g’l(el,e’l) —— hom{ (eg, €})

f I

home, ,,(e1,e7) —<— home_(eo, )

in Cat, where the vertical morphisms are equivalences since ef — €] is (p, ¢)-cartesian and the lower

horizontal morphism is an equivalence since ey — e is gs-cocartesian. 0

B.6. Lax limits. In this subsection, we define lax limits in Cat over (0o, 2)-categories, and we give
an alternative description (Theorem B.6.2) in the case that the base is the left-laxification of an
(00, 1)-category in terms of its subdivision (as introduced and studied in §A.4). For an alternate
discussion of lax limits, see also [GHL].

Definition B.6.1. Given an (00, 2)-category € € 2Cat and a functor € — Cat, its left- and right-

lax limits are respectively the (oo, 1)-categories of sections of its cocartesian unstraightening over
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€ and its cartesian unstraightening over C'°P.19 Evidently, these define right adjoints
(- )><€ (—)xeter

Cat | ’"Tf"’ 2Caticocart/e and Cat ””LT"’ 2Catycart/e10p
lim™ lim{g®

Theorem B.6.2. Given an oo-category B € Cat, the composite functor

lim/ '::f
loc.coCarty =~ 1coCart) o) = 1Cart) jax(p)y1or — 2Caticart/l.lax(B)1op —=, Cat

(in which the equivalences respectively follow from Theorems B.4.8 and B.3.4) is corepresented by

the object (sd(B) — B) € loc.coCarty (recall Lemma A.4.20(1)).

Lemma B.6.3. Suppose we are given (00,2)-categories C,D € 2Cat, right-lax functors F,G €
hom,,2cat, ... (D, C), and a right-lax natural transformation F ~5 G. Suppose we are also given a

2-cartesian fibration € | C. Then, we obtain a laz-commutative triangle

Le(€) - T (F*€)
X) v O
)
T'p(G*E)

in 2Cat. Moreover, these data are natural with respect to pullback along right-lax functors D’ ~~ D.

Proof. Let D x [1] £ € be the right-lax functor defining a. Note that by (the (—)'%2°P version of)
Lemma B.4.8, the composite functor 5*& — D x [1] — [1] is a 2-cartesian fibration.
Now, we have a solid commutative square
Fun,([1],8%€) __L___7 Fun,({1}, 87€) ~ G*€
l (B.6.1)

Fun([1],D) ; n D

in 2Cat. Here, the upper dashed right adjoint exists by Observation B.3.6. Moreover, the diagram
(B.6.1) commutes after omitting the left adjoints (i.e. it satisfies the Beck—Chevalley condition)
since 8*€ | D smushes 8*€ | [1] by Lemma B.4.8. Hence, we obtain a diagram

Funy(1,6°€)_ x D T Gre
evol
F*E
in 2Cat,p, and thereafter a lax-commutative triangle
Fun,j([1],8%€)  x D F*¢

Fun([1],D)

in 2Cat;p. By Observation B.3.6, we have an identification a*& ~ evoevi. Applying I'p(—) and

@L
o®

precomposing with the evident functor

Te(€) — oy (3°8) = (Funy(10.5°) < )

Fun([1],D)

195These are also the (00, 2)-categories of sections: all 2-morphisms therein are invertible.
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establishes the claim. 0
Proof of Theorem B.6.2. Observation B.1.27 gives an equivalence

l.lax(B) =~ colim((n)ym)ea 4 -1ax([n]) -

Therefore, by Lemma A.4.20, it suffices to consider the case that B = [n] for some [n] € A.

Throughout, we refer to the description of l.lax([n]) given by Proposition B.1.29.1%

max

We now explicitly describe the image of the object (sd([n]) — [n]) € loc.coCarty,; under the

composite equivalence
Ioc.coCart[n] — 1coCart|v|aX([n]) ~ 1Cart|_|ax([n])1op

(where the first (leftwards) equivalence is that of Theorem B.4.3). For this, let coSpan(sd([n])) €
2Cat denote the strict 2-category of cospans in sd([n]) (which exists since sd([n]) has pushouts, which
are given by union of subsets of [n]). We define the 1-full subcategory

- e~

sd :=sd([n]) C coSpan(sd([n]))

on those 1-morphisms

I K+—J (B.6.2)

from I to J (a cospan among subsets of [n]) in which the inclusion I — K is isomax and the
inclusion K < J is both isomin and inert. We note that sd is a thin 2-category. Now, we claim

that the desired image in 1Cart) jax([n])1er is given by the functor
sd ™25 |lax([n]) P (B.6.3)

characterized by the fact that it carries a 1-morphism (B.6.2) in sd to the 1-morphism in |.lax([n])'P

corresponding to the 1-morphism

K> max(7)

max(I) = max(K) max(J)

in l.lax([n]). Using Observation B.2.7(2), we now observe that the functor (B.6.3) is a 1-cartesian
fibration, whose cartesian 1-morphisms are those 1-morphisms (B.6.2) for which I = K. Next,
by definition of sNd, for any I,J € s~d7 a morphism K < K’ in hom(I,J) has the feature that
K'= KUK . (;)- Using this it is routine to verify that the functor (between posets) hom (7, J) —
hom, .y ryrer (15 J) is a left fibration.

Now, in the 1-cartesian fibration (B.6.3) the fiber over an object a € l.lax([n])'°P is sd([n]) {a} /isomax
and its cartesian monodromy functors are given by concatenation. Noting that the straightening
llax([n]) — Cat factors through the full subcategory Poset C Cat so that it is characterized by its
values on the objects and generating 1-morphisms in I.lax([n]) (i.e. those of the form a < b), the
claim follows.

In order to proceed, let us observe that the functor (B.6.3) admits an evident section

sd <7 Llax([n])'*?

1961y particular, we use without further reference that I.lax([n])1°P is a thin 2-category.
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whose image is the full subcategory on the inclusions of singletons into [n], which we consider
as a morphism in 2Caticart/1jax([n])tee- 1t now suffices to show that for any 1-cartesian fibration

(& | Llax([n])'°P) € 2Catycart/1.1ax([n]) o> the resulting restriction functor

homicart S:j, 8) Zs F|.|ax([n])10p(8) (B.6.4)

1.lax([n]) 1oP (

in Cat is an equivalence. We will construct an inverse.
For this, consider the right-lax functor

sd ~2% |.lax([n])P

characterized by the fact that it carries a 1-morphism (B.6.2) in sd to the 1-morphism in I.lax([n])'°?

corresponding to the 1-morphism

K <min(1)

min(7) min(K) = min(J)

in l.lax([n]). Observe that there exists a right-lax natural transformation
max -~~~ min (B.6.5)

from max to min characterized by the fact that it carries an object (I C [n]) € sd to the 1-
morphism in l.lax([n])!°P corresponding to the 1-morphism max(T) L min(I) in l.lax([r]); in terms
of the description of Remark B.1.13, the value of the right-lax natural transformation (B.6.5) on a
morphism (B.6.2) is depicted by the diagram in l.lax([n])

max(I) = max(K) Km max(J)
; = X ; (B.6.6)
S””"(l)
min([l) min(K) = min(J)

K <min(1)

in which the 2-morphism indicates the inclusion (I U Kgm;nu)) CK.
We now construct a functor

homycart in, 8) — F|.|ax([n])lop(8) (BG?)

I.lax([n])1oP (

in the opposite direction as (B.6.4), which we will later show to be its inverse. By Observation B.4.5,

we obtain a morphism min*& — max*€ in 2Cat On sections, we therefore have a composite

loc.1cart/sd"
functor

F|V|ax([n])lop(€) — F;i(min*e) — Fs~d(max*8) . (B.6.8)
We claim that the functor (B.6.8) lands in the subcategory

sd, €) ~ I'~ (max*€) ;

SAav 8) g h0m2Cat od

homlCart

I.lax([n])1oP ( /1.lax([n])1op (

this will give our functor (B.6.7). To see this, let [1] 2 sd select a (sd =2 I.lax([n])'°P)-cartesian
1-morphism. By our above description thereof, the composite (strict) functor

[1] —2— sd -2 Llax([n])'o?
is constant. Therefore, using Observation B.4.5(2) the functor

L jax([n])1or (€) — T'yj(¢*min*€)
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cart

factors through I'ffy (@*min*€) C I'yj(¢*min™€). Moreover, pullback along ¢ of the right-lax natural
transformation (B.6.5) yields a strict natural transformation (between strict functors),'®” so that
the morphism
©*min*& — p*max*&

lies in 1Cart;;; C 2Catycart/ [ (i.e. it preserves cartesian l-morphisms). This proves the claimed
factorization of the functor (B.6.8).

We now conclude by showing that the functors (B.6.4) and (B.6.7) are inverses.

We first show that the composite functor (B.6.4) o (B.6.7) is the identity: using Observa-
tion B.4.5(2) this follows from the fact that (B.6.5) o o is the identity natural transformation from

id|_|ax([n])10p to itself.

We now show that the composite functor (B.6.7) o (B.6.4) is the identity. Let us first observe

. . 00(B.6.5) . .
that the right-lax natural transformation ¢ o max ———= ¢ o min factors as a composite

oomaxiﬂd;a —~~r~nd 0O MiN

of right-lax natural transformations among right-lax endofunctors of s:j, which is determined (using
that sd is thin) by the fact that its value on an object (I C [n]) € sd is the composite

{max(])} {max(I)}—I+—1I I I——I«+—{min(I)} {mm([)} '
By Observation B.4.5(1) applied to the functor (I.lax([n])*P <5 sd), the composite (B.6.7) o (B.6.4)

is the restriction to the full subcategory homicar, (s~d7 €) € I';;(max*€) (in both the source

n])lop

and the target) of the composite

Lo (max*€) — T4 ((o o min)*max*€) — I'5((0 0 max)*max*€) ~ I';(max*€) (B.6.9)

in which the second morphism is obtained from Observation B.4.5 applied to the right-lax natural
transformation o o max ~~ ¢ o min and the equivalence follows from the identification max o o = id.

Next, observe the identification
max o (o o max — idg) = (max oo — id|_|ax([n])10p> o max

between natural transformations. This gives an identification of the composite (B.6.9) with the

composite
F4(max*€) — Tz ((o o min)*max*€) — I'5(max*€) , (B.6.10)

in which the second morphism arises by applying Observation B.4.5 to the right-lax natural trans-
formation id; ~~ o o min. Thus, the composite (B.6.7) o (B.6.4) can be identified as the restriction
to the full subcategory homicart (sd, &) C I~ (max*€) (in both the source and the target) of
the composite (B.6.10).

Now, Lemma B.6.3 applied to id_ ~» o o min gives a natural transformation

1.lax([n]) 1oP

idp_ (max-e) — (B.6.10) . (B.6.11)

197Indeed, first of all, every (unital) lax functor from [1] is strict. Next, given a 1-morphism (I < K < J) in sd
it is cartesian over over l.lax([n])!°P if I = K. In this case, the inclusion I U K <min(ry < K appearing in (B.6.6) is an
isomorphism, hence the natural transformation is strict.
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It remains to show is an equivalence on the full subcategory homlcartl,lax([n])l‘m (SIJ, &) C T'g(max*€).

For this, suppose we are given an object

sd, &) CT (max*€) .

pe homlca’t|,|ax([n])1op( sd

max

For an arbitrary object (I C [n]) € sd, consider the (sd 2% I.lax([n])°P)-cartesian morphism

7 I I+ {min(I)}

to show that the natural transformation (B.6.11) is an equivalence on objects given by singleton

{min(I)}. Since both ¢ and (B.6.10)(¢) preserve cartesian 1-morphisms, it suffices

subsets of [n], i.e. those in the image of . Upon observing the identification
(U =idg 00 ~ cominoo > 0 oid| jay(n])1ee = a) ~id, ,

this follows by the naturality of Lemma B.6.3. O
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