Computational Optimization and Applications (2024) 89:1-32
https://doi.org/10.1007/s10589-024-00583-7

®

Check for
updates

Stochastic Steffensen method

Minda Zhao' - Zehua Lai? - Lek-Heng Lim3

Received: 15 June 2023 / Accepted: 12 May 2024 / Published online: 7 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Is it possible for a first-order method, i.e., only first derivatives allowed, to be quadrat-
ically convergent? For univariate loss functions, the answer is yes—the Steffensen
method avoids second derivatives and is still quadratically convergent like Newton
method. By incorporating a specific step size we can even push its convergence order
beyond quadratic to 1 ++/2 & 2.414. While such high convergence orders are a point-
less overkill for a deterministic algorithm, they become rewarding when the algorithm
is randomized for problems of massive sizes, as randomization invariably compro-
mises convergence speed. We will introduce two adaptive learning rates inspired by the
Steffensen method, intended for use in a stochastic optimization setting and requires
no hyperparameter tuning aside from batch size. Extensive experiments show that
they compare favorably with several existing first-order methods. When restricted to
a quadratic objective, our stochastic Steffensen methods reduce to randomized Kacz-
marz method—note that this is not true for SGD or SLBFGS—and thus we may also
view our methods as a generalization of randomized Kaczmarz to arbitrary objectives.

Keywords Steffensen method - Barzilai-Borwein - Quasi-Newton - Stochastic
gradient descent

Mathematics Subject Classification 65K 10 - 65B05 - 65C05 - 68W20

Minda Zhao, Zehua Lai and Lek-Heng Lim authors contributed equally to this work.

B Lek-Heng Lim
lekheng @uchicago.edu

Minda Zhao
mzhao327 @gatech.edu

Zehua Lai
zehua.lai @austin.utexas.edu

School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Drive,
Atlanta, GA 30332, USA

2 Department of Mathematics, University of Texas, 2515 Speedway, Austin, TX 78712, USA

Computational and Applied Mathematics Initiative, University of Chicago, 5747 South Ellis Avenue,
Chicago, IL 60637, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-024-00583-7&domain=pdf

2 M. Zhao et al.

1 Introduction

In minimizing a univariate function f with an iteration x; 11 = x; — f'(xx)/g(xx),
possibilities for g include

gradient: gp) =1,
: _f1Gaw) = f k1)
secant: glxp) = ’
Xk — Xk—1
Newton: g(x) = £ (),
Steffensen: g(x) = S e+ 1) — (xk)’
I (k)

with different orders of convergence ¢, i.e., |xg+1 — x*| < c|xx — x*|9. Gradient
descent has ¢ = 1, secant method ¢ = (1 + +/5)/2, Newton and Steffensen methods
both have g = 2.

Steffensen method [1, 2] is a surprise. Not only does it not require second deriva-
tives (like Newton) to achieve quadratic convergence, it also does not achieve its
superior convergence through the use of multisteps (like secant). In other words, the
kth Steffensen iterate only depends on xj but not xx_1, xx—2, etc.

Nevertheless, while the other three methods have widely used multivariate gener-
alizations (secant method has several, as quasi-Newton methods, as Barzilai-Borwein
step size, etc), all existing multivariate generalizations of Steffensen method [3—-15]
involve multivariate divided differences that require O (n?) function evaluations and
are no less expensive than using the full Hessian. Furthermore these multivariate gener-
alizations are no longer one-step methods. As a result they have not found widespread
use.

Our contributions are as follows:

(i) We show that by incorporating a carefully chosen step size parameter the con-
vergence of Steffensen method may be further improved beyond quadratic to
qg=1+ ﬁ

(i) We extend Steffensen method to a multivariate setting as an adaptive learning
rate, avoiding divided differences, requiring just two gradient evaluations, and
remaining a one-step method.

(iii)) We show that when used in a randomized setting, our methods outperform SGD,
SVRG, and SLBFGS on a variety of standard machine learning tasks on real data
sets.

The performance in (iii) is measured in actual running time. But aside from speed,
our methods have two advantages over SLBFGS, which has become a gold standard
in machine learning:

(a) Quasi-Newton methods may involve matrix—vector product, a two-loop recursion
with O(d?) computation. Although deterministic LBFGS does not form matrix—
vector product explicitly, stochastic LBFGS does. Our multivariate Steffensen
methods, whether deterministic or stochastic, are free of such products.

@ Springer

Stochastic Steffensen method 3

(b) Quasi-Newton methods come in two flavors: Hessian or inverse Hessian updates.
The latter seems a nobrainer as it avoids matrix inversion but this is a fallacy. It
is common knowledge among practitioners [16, Section 4.5.2.2] that the inverse
Hessian version often conceals an ill-conditioned approximate Hessian; one should
instead update the Cholesky factors of the approximate Hessian in order to detect
ill-conditioning. By its design, LBFGS inevitably uses the inverse Hessian version.
Our multivariate Steffensen methods are not quasi-Newton methods and do not
involve approximate Hessians, avoiding this issue entirely.

A theoretical counterpart to (iii) is that when measured by the number of stochastic
gradient evaluations, we have the following complexity estimates:

SSM/SSBB: O((n + «?)log(1/e)),
SVRG-BB: O((n + «?) log(1/¢)).
SLBFGS: O((n + K>y 10g(1/e)),

to minimize a d-variate convex function of the form f = f; +- - -+ f, to e-accuracy.
So our proposed methods SSM and SSBB are at least an order of magnitude faster!
than SVRG-BB and SLBFGS in terms of the condition number «. Here / refers to the
‘history size’ of SLBFGS. The algorithms and quantities involved will all be explained
in due course.

Johan Steffensen first proposed his eponymous method [1] in 1933. See [19] for
an informative history of the method and a biography of its inventor. The method was
described in the classic books of Henrici [5, pp. 91-95] and Householder [20, p. 164]
but has remained more of a textbook curiosity. One reason, as we mentioned above
and will elaborate in Sect. 2.2, is that there has been no viable multivariate version.

Another reason, as we will speculate, is that much like the Kaczmarz method [21,
22] for iterative solution of linear systems had lingered in relative obscurity until it was
randomized [23], Steffensen method is also most effective in a randomized setting.
This is in fact more than an analogy; we will show in Sect.2.4 that the stochastic
Steffensen method we propose reduces to randomized Kaczmarz method when applied
to a quadratic objective—not true for SGD, SVRG, or SLBFGS. So one may also view
our stochastic Steffensen method as a generalization of randomized Kaczmarz method
to arbitrary differentiable objective functions.

In Sect.3 we will supply proofs of linear convergence of our methods and a theo-
retical comparison with other existing methods. In Sect.4 we show how to adapt our
methods for nonsmooth functions. In the numerical experiments in Sect.5, we will
see that our stochastic Steffensen method compares favorably with SGD, SVRG (with
or without Barzilai-Borwein step size), and SLBFGS across different tasks in the
LIBSVM datasets: ridge regression, logistic regression, and support vector machines
with squared hinge loss.

1 SSM and SSBB are adpative methods; and we restrict our comparison here to other adaptive methods
like SVRG-BB and SLBFGS as opposed to nonadaptive methods like the ones in [17, 18].

@ Springer

4 M. Zhao et al.

Background

As in the usual setting for stochastic gradient descent and its variants, our goal is to
minimize an objective function of the form

1 n
fx) = ;Eﬁ-(x), (1

where x € R? is the model parameter. Such functions are ubiquitous in machine
learning, arising from the empirical risk minimization (ERM) problem where f; takes
the form

fi(x) = (w]x; yi) + AR(x),

with £ : R x R — R, the loss function, R : RY — R the regularizer, A > 0 the
regularization parameter, and {(w;, y;) € RIEXR:i=1,..., n} the training set
with labels. Different choices of £ and R give [>-regularized logistic regression, lasso
regression, soft-margin support vector machine, etc.

The challenge here is that the dimension d and sample size n are extremely large
in modern situations, mandating the use of first-order methods that rely only on first
derivatives. But when n is large, even computing the full gradient of all fi, ..., f,
is intractable, and we need stochastic optimization methods that update x only after
processing a small subset of data, permitting progress in the time deterministic methods
make only a single step. Consequently, stochastic first-order methods have become the
method of choice, with stochastic gradient descent (SGD) [24] and its many variants
[25-27] and various stochastic quasi-Newton methods [28-30] ruling the day.

Stochastic optimization has grown into a vast subject. We have limited our com-
parison in this article to stochastic variants of classical methods that rely primarily on
gradients. We did not include more sophisticated stochastic optimization algorithms
that bring in additional features like moments [31, 32] or momentum [33-36] for two
reasons. Firstly these more sophisticated algorithms invariably require heavy tuning
compared to purely gradient-based methods. Secondly we view them as enhancements
to gradients-based methods and our proposed stochastic Steffensen methods likewise
lend themselves to such enhancements. As such, the most appropriate and equitable
comparisons for us would be the aforementioned gradient-based methods.

Convention

In this article, we use the terms learning rate and step size slightly differently. Take
for example our Steffensen—Barzilai-Borwein iteration in (10):

B BrllV f (i) |1?
[V f G+ BV f (x)) =V f)TV f (k)

V f (),

Xk41 = Xk

@ Springer

Stochastic Steffensen method 5

the coefficient

nSBB.Z ﬂk”vf(xk)”2
KTV a4 BV F () = V)TV f ()

will be called a learning rate whereas the coefficient

llxk — xg—11|?

= F o) = ¥ F) TGt —)

will be called a step size. In general, the term ‘learning rate’ will be used exclusively
to refer to the coefficient of a search direction, which may be a gradient, a stochastic
gradient, a variance-reduced stochastic gradient, etc. The term ‘step size’ will be used
for coefficients in other contexts like f in the definition of the learning rate ;.
We will use 5, to denote a general learning rate. For the learning rate of a particular
algorithm, we will indicate the algorithm in superscript. For example, ;* above is the
learning rate of Steffensen—Barzilai-Borwein method (SBB). The Barzilai—-Borwein

step size above will always be denoted S throughout.

2 Stochastic multivariate Steffensen methods

Our three-step strategy is to (a) push the convergence order of the univariate Steffensen
method to its limit, (b) extend the resulting method to a multivariate setting, and then
(c) randomize the multivariate algorithm. For (a), we are led naturally to the Barzilai—
Borwein step size; for (b), we emulate the multivariate extension of secant method
into quasi-Newton method; and for (c), we draw inspiration from stochastic gradient
descent and its various derivatives.

2.1 Deterministic univariate setting

As we saw in Sect. 1, univariate Steffensen method:

- f'w)?
S+ f1 () — ()

@)

Xg+1 = Xk

avoids second-order derivatives and yet preserves quadratic convergence with the use
of two first-order derivatives f/(xx + f/(xx)) and f’(x;). With modern hindsight, it is
clear that we may obtain an immediate improvement in (2), one that is essentially free,
by incorporating a coefficient f; that only depends on quantities already computed.
The analysis in the next two results will lead us to an appropriate choice of fi. Note
that although the algorithms require only first derivatives of f, the convergence results
assume that f has a higher degree of smoothness.

Proposition 1 (Convergence order of Steffensen method) Let f be a function that is
C? in a neighborhood of a stationary point x* with f'(x*) = 0 and f"(x*) # 0. Let

@ Springer

6 M. Zhao et al.

a € R be a nonzero constant parameter and

o f(x)?
I+ af' () — f/ ()

X1 =Xk —

ork=0,1,2,.... Iflimy_ o0 X = x*, then
S

ekl _ f’”(*)

k— 00 |g]%| f”

1+af’(x

where gi:=x; — x* denotes the error in iteration k.

Proof Let gy = x; — x™. Subtracting x* from both sides, we get

o f(x)?
'O +of () — /)

Ek+1 = &k —

Taylor expanding f”(xx + o f'(x)) about xi, we get

f" (Ek) o2

o +af () = fw) + f/ e f () + =2 £/ (xx)*

for some &; between x; and xi + 1 f’(xx). Combining the previous two equations, we

have

f/(x)
£) + L8 7 (xy)
=)+ e + 5 7 EDaf)sx
B £ + 3 EDe f () '

Taylor expanding f’ about x;, we get

Ek+1 = &k —

3

f (Sk)&%

0=f'(x") = f'(xx) — f"xw)ex + 5

for some £ between x; and x*. Plugging f(x;) into (3) gives us

T EDE Faf"ED S o = 5 E) T EDeE]
21" (i) + fEa f () '

k1 =

Taking limit k — oo and using continuity of f’, f”, and f” at x*, we have

lim el " ED +af"ED) — 5 E) f ek
k—oo e k—oo 21" (xi) + 7 Eef! ()

l f///(x*) . N

E‘f,,(x*) 1+ af" ()

@ Springer

Stochastic Steffensen method 7

as required. O

We next show that with an appropriate choice of «, we can push Steffensen
method into the superquadratically convergent regime. The quadratic convergence
in Proposition 1 is independent of the value « and we may thus choose a different
a at every step. Of course if we simply set ap = —1/f”(xx) in Proposition 1, we
will obtain a cubically convergent algorithm. However since we want a first-order
method whose learning rate depends only on previously computed quantities, we set
ar = —(xx — xx—1)/[f' (xx) — f/(xk—1)] to be the finite difference to avoid second
derivatives — as it turns out, this improves convergence order to 1 + /2.

Theorem 2 (Convergence order of Steffensen method with Barzilai-Borwein step
size) Let f be a function that is C* in a neighborhood of a stationary point x* with
f'x*) =0and f"(x*) #0. Let

B = — Xk — Xk—1
S Ge) = f (xk—1)
and s
bt = X — B f' (xi) @
I/ (x4 B f' () — f(xx)
fork =0,1,2,....Iflimg_ o Xy — x*, then

el _ (S76))2

k—oo [e2er_1] \2f"(x%)

In particular, the order of convergence of (4) is superquadratic with 1 + /2 ~ 2.414.

Proof Taylor expanding f’(x; + Bx f'(xx)) at xg, we get

f<3>(%)

FlO+ Bef) = f/) +) B f (xx) +
f“‘)(sk)

BEF (xi)?

BLf (i)’

for some & between x; and x; + 1 f(xx). Let e = xx — x*, we have

£ (x)
F7G) + SO @B f () + £ FDEDBEF! (xx)?
—f' @) + £ Ger + 3 £) B f ()er + ¢ f<4><sk)ﬂkf<xk)zsk
Fr) + 5 OB () + £ f D EDBE S (i)

Ek+1 = &k —

)
Taylor expanding f/(x*) at x; to 4th, 3th, and 2nd order, we get

O 5 fYE) 4

0=f'(x") = f'(xp) — f"xw)ex + 5 fk L

@ Springer

8 M. Zhao et al.

fOED ,

0=f'(x" = f'x)— f" (e + 5tk
0=f'(* = fow) — fEDex.
Plugging these into (5) and defining
3)) 2 100 \2
Ak::f//(xk) + S Z(Xk)ﬁkf/(xk) + f (gk)lzkf (xx) ’
0 @) (g* 3)
b=l gt eyt - L0 - L o0
we obtain
3P0l (f" i) B + 1) + By
Ek4+1 = .

Ay

Since B = —(xk — xk—1)/(f' (xx) — f'(xk—1)), we may Taylor expand f'(xx—_1) at
X to get

FOEH

> (ek—1 — &x)?

=) = f/) + f7) (k-1 — &) +

for some E,f between x;_1 and xj. Plugging it into

1

B =—
£ + S FOED (et — &)
gives us
O fOEDHER (et — ex) B
202" () + fOE) (-1 — €0))
Ek+1 =
Ag
We deduce that
lex] . [Be|
k—o00 |&k—1| ’ k—00 |g]%gk_1| ’
and therefore
i] (FOu))2
im = .
koo |efer—1] 2P (%)
Hence the convergence order is 1 + /2. O

@ Springer

Stochastic Steffensen method 9

The choice of S above is exactly the Barzilai-Borwein (BB) step size for a univari-
ate function [37]. In the multivariate setting, By will be replaced by the multivariate
BB step size. Theorem 2 provides the impetus for a first-order method with Steffensen
updates and BB step size, namely, it is superquadratically convergent for univariate
functions. Such a high convergence order is clearly an overkill for a deterministic
algorithm but our experiments in Sect. 5 show that they are rewarding when the algo-
rithm is randomized, as randomization inevitably compromises convergence speed.
For easy comparison, we tabulate the convergence order, i.e., the largest g such that
lex+1] < clex|? for some ¢ > 0 and all k sufficiently large, of various methods below:

Method Convergence Derivatives Steps
Steepest descent 1 1st Single step
Secant = Barzilai-Borwein = quasi-Newton 1++/5)/2 Ist Mutltistep
Newton 2 2nd Single step
Steffensen 2 Ist Single step
Steffensen—Barzilai-Borwein 1+ \/E 1st Multistep

Note that for a univariate function, Barzilai-Borwein step size and any quasi-
Newton method with Broyden class updates (including BFGS, DFP, SR1) reduce
to the secant method. In particular, they are all two-step methods, i.e., its iterate at
step k depends on both x; and x;_1. As a result Steffensen—Barzilai-Borwein method
is also a two-step method as it involves the Brazlai-Borwein step size but Steffensen
method is a one-step method.

2.2 Deterministic multivariate setting

There have been no shortage of proposals for extending Steffensen method to a mul-
tivariate or even infinite-dimensional setting [3—15]. However all of them rely on
various multivariate versions of divided differences that require evaluation and stor-
age of O (n?) first derivatives in each step. Although they do avoid second derivatives,
computationally they are just as expensive as Newton method and are unsuitable for
modern large scale applications like training deep neural networks.

We will propose an alternative class of multivariate Steffensen methods that use
only O (n) first derivatives, by emulating quasi-Newton methods [38—41] and Barzilai—
Borwein method [37] respectively. Our observation is that expensive multivariate
divided differences can be completely avoided if we just use the ideas in Sect.2.1 to
define learning rates. Another advantage is that these learning rates could be readily
used in conjunction with existing stochastic optimization methods, as we will see in
Sect.2.3.

The key idea behind quasi-Newton method is the extension of univariate secant
method to a multivariate objective function f : RY — R by replacing the finite
difference approximation of f”(xx), i.e., hy = [f'(xx) — f'(xk—1)1/ (xx — xk—1), with

@ Springer

10 M. Zhao et al.

the secant equation Hysy = yj or

Biyk = sk (6)

where s = x; — xx—1 and yy = V f(xx) — V f(xk—1), avoiding the need to divide
vectorial quantitites. Here Hy (resp. By) is the approximate (resp. inverse) Hessian.

We use the same idea to extend Steffensen method to a multivariate setting, solving
(6) with

sk =V, =V lr+ Vi) —Vfix).

Note that with these choices, (6) roughly says that “By = si/yx = V f(xx)/[V f (xx +
V f(xi)) — V f(x)])” which gives us f'(xi) /[f(xk + f'(x)) — f'(xi)] as in the
univariate Steffensen method when d = 1 but is of course meaningless when d > 1.
Nevertheless we may pick a minimum-norm solution to (6), which is easily seen to
be given by the rank-one matrix

.
. Sk Yy
By = argmin || B|| = —
Byg=si k Yk
regardless of whether | - || is the Frobenius or spectral norm. Hence we obtain a

multivariate analogue of Steffensen method (2) as

[V + V) — V™V f ()
IV f(xx + V) — V()2

V f (xk).
@)

We will call this quasi-Steffensen method in analogy with quasi-Newton methods.

The key idea behind the Barzilai-Borwein method [37] is an alternative way of
treating the secant equation (6), whereby the approximate Hessian By is assumed to
take the form By = oy I for some scalar o} > 0. Since in general it is not possible to
find oy so that (6) holds exactly with By = o/, a best approximation is used instead.
We seek oy so that the residual of the secant equation || yx — (1 /0%) sk || Zor ok vi — skl 2
is minimized. The first minimization problem gives us

Xg+1 = Xk — BV f(xx) = xx —

.) SESk IV f)l
o = argmin ||yy — (1/o)s¢||” = 53— = = .
o0 sive VG + V) = V™V f(xe)
(®)
and the second minimization gives the same expression as (7). We will call the resulting
iteration

~ IVf Gl
[VF Gt + V) =V @oTV f ()

V f(xx)

Xg+1 = Xk

@ Springer

Stochastic Steffensen method 1

Steffensen method since it most resembles the univariate Steffensen method in (2).
Note that the Barzilai-Borwein step size derived in [37] is

llxx — xx—1]l?

P = N G =V F e TG — D)

©))

and differs significantly from (8). In particular, xx 41 = xx — BrV f (x) is a multistep
method whereas x;+1 = x;r — 0%V f (xx) remains a single step method.

Both (7) and (8) reduce to (2) when f is univariate. Motivated by the univari-
ate discussion before Theorem 2, we combine features from (8) and (9) to obtain a
Steffensen—Barzilai—-Borwein method in analogy with the univariate case (4):

B BillV f o) lI?
[V + BV fx) = VIV f(xx)

V f (xk). (10)

Xk+1 = Xk

Note that (10) reduces to (4) when f is univariate. The stochastic version of (10) will
be our method of choice, supported by extensive empirical evidence some of which
we will present in Sect. 5.

In summary, we have four plausible learning rates:

Quasi-Steffensen: S = VS 4+ Vo) = V)V f ()
' k IV f(xx + V) — V)2

asss _ BRIV Gk + BV f (i) = V f)]V f (xx)

Quasi-Steffensen—Barzilai-Borwein: Ny = 5 ,
IV f Gk + BV f (i) =V fxioll
\v/ 2
Steffensen: r],sc = IV /ol ,
[V + V@) — VTV f ()
\v4 2
Steffensen—Barzilai—-Borwein: n,SCBB = BV S x)l

TVFGk + BV) = VGOV)

Here B is the Barzilai-Borwein step size in (9). For a univariate function, the iterations
with nzs and 7; reduce to (2) whereas those with nZSBB and 7;®® reduce to (4). The
computational costs of all four learning rates are the same: two gradient evaluations
and two inner products.

Note that our muiltivariate Steffensen and quasi-Steffensen methods are one-step
methods — 7; and nzs depend only on x; — just like the univariate Steffensen method.
Steffensen—Barzilai—-Borwein and quasi-Steffensen—Barzilai—-Borwein are inevitably
two-step methods because they involve the Barzilai—-Borwein step size Bk, which has
a two-step formula.

The main difference between our multivariate Steffensen methods and those in the
literature [3—15] is that ours are encapsulated as learning rates and avoid expensive
multivariate divided differences. Recall that for g = (g1,...,g,) : R" — R", its
divided difference [42] at x, y € R”" is the matrix [x, y] € R"*" whose (i, j)th entry

@ Springer

12 M. Zhao et al.

is

&i(Xls ey Xy Vil o vy Yn) — &i(XLs oo s Xjm1s Vjs v s V)

[[xvy]]i./:: 8gl ! !
W(xl’--~yxj,yj+la--~»yn) Xj=yj,
J

fori,j=1,...,n.

In a stochastic s.etting, the learning rates 7y, nzs,.niBB, nZSBB share the same upper
and lower bounds in Lemma 7 and as a result, the linear convergence conclusion in
Theorem 10 applies alike to all four of them. Our experiments also indicate that nzs and

n; have similar performance and likewise for 7> and 1, although there is a slight

difference between 7; and 7;*®. One conceivable advantage of the ‘quasi’ variants is
that for a given V f(xx), the denominator vanishes only at a single point, e.g., when
Vi + VfI(xx)) = Vf(xk), as opposed to a whole hyperplane, e.g., whenever
VI xr+Vf(xp)—Vfxr) LV f(xr). Nevertheless, in all our experiments on their
stochastic variants, this has never been an issue.

We prefer the slightly simpler expressions of the Steffensen and Steffensen—
Barzilai-Borwein methods and will focus our subsequent discussions on them. Their
‘quasi’ variants may be taken as nearly equivalent alternatives for users who may have

some other reasons to favor them.

2.3 Stochastic multivariate setting

Encapsulating Steffensen method in the form of learning rates offers an additional
advantage — it is straightforward to incorporate them into many stochastic optimiza-
tion algorithms, which we will do next.

Standard gradient descent applied to (1) requires the evaluation of n gradients. The
stochastic gradient descent (SGD), instead of using the full gradient V f(x), relies
on an unbiased estimator g; with E[gr] = V f(xx) [24]. One common randomization
is todraw iy € {1, ..., n} randomly and set gx = V f;, (xx), giving the update:

Xkl = Xk — Nk V fiy (k).

Note that E[V f;, (xx) | x¢] = V f(xx) and its obvious advantage is that each step relies
only on a single gradient V f;, , resulting in a computational cost that is 1/n that of
the standard gradient descent. While we could adopt this procedure to randomize our
Steffensen and Steffensen—Barzilai—-Borwein iterations, we will use a slightly more
sophisticated variant with variance reduction and minibatching.

The price of randomization is paid in the form of variance, as the stochastic gradient
V fi, (xx) equals the gradient V f (x) only in expectation buteach V f;, (xx) is different.
Of the many variance reduction strategies, one of the best known and simplest is the
stochastic variance reduced gradient method (SVRG) [27], based on the tried-and-
tested notion of control variates in Monte Carlo methods. We will emulate SVRG to
randomize (7) and (10).

@ Springer

Stochastic Steffensen method 13

The basic idea of SVRG is to compute the full gradient once every m iterations for
some fixed m and use it to generate stochastic gradients with lower variance in the
next m iterations:

X1 = xk — i (V fi () — V fi, X) + V(D).

Here X denotes the point where full gradient is computed. Notice that when k — oo,
x; and X are very close to the optimal point x*. As x; and X are highly correlated, the
variability of the stochastic gradient is reduced as a result [27].

We may similarly randomize multivariate Steffensen method. Our stochastic Stef-
fensen method (SSM) in Algorithm 1 operates in two nested loops. In the kth iteration
of the outer loop, we compute two full gradients V f(xx) and V f(xx + V f(xr)).
Note that x; plays the role of X in the above paragraph. These two terms are used for
computing the Steffensen learning rate:

L IV f @Ol an
T m IVt VS 0a0) = VTV f)

In the (¢ 4 1)th iteration of the inner loop, we use V f (xi) to generate the stochastic
gradient with lower variance

Vit = V fi, Xke) — V fi, () + V f(xp),

withi; € {1, ..., n} sampled uniformly. The updating rule takes the form

SS
Xk,t+1 = Xk,r — Ny Vit

where the search direction is known as the variance-reduced stochastic gradient. Note
that the learning rate 1y given by (11) has an extra 1/./m factor to guarantee the linear
convergence. The 1/./m factor may be replaced by 1/m? forany p € (0, 1), although
not p = 1, while preserving linear convergence. The optimal complexity, as measured
by the number of stochasic gradient evaluations, is achieved when p = 1/2, with
details to follow in Sect. 3.

Aside from variance reduction, we include another common enhancement called
minibatching. Minibatched SGD is a trade-off between SGD and gradient descent
(GD) where the cost function (and therefore its gradient) is averaged over a small
number of samples. SGD has a batch size of one whereas GD has a batch size that
includes all training samples. In each iteration, we sample a minibatch Sy € {1, ..., n}
with |Sx| = b a small number and update

1
ekl = T = Mhyen DV fi=mx — meV fs (xk).
k JESk
Minibatched SGD smooths out some of the noise in SGD but maintains the ability
to escape local minima. The minibatch size b is kept small, thus preserving the cost-
saving benefits of SGD. As in the discussion after (11), the coefficient 1/,/m may

@ Springer

14 M. Zhao et al.

Algorithm 1 Stochastic Steffensen Method (SSM)
1: Input: initial state x(, inner loop size m, data size n.
2:fork=0,1,... do

3: Compute full gradients V f(x) and V f (x; + V f (xx)).
4: Compute stochastic Steffensen learning rate

oo L IV f) l?
KT Um IV e+ V) = VTV f(g)
5: Setxy=xk.
6: forr=0tom — 1do
7T Sample i; € {1, ..., n} uniformly.
8: Compute variance-reduced stochastic gradient
Vet = V iy (k) =V fi, (i) + V f ().

9: Update xj ;41 = X — ﬂ;ﬁsvk,r-
10: end for
I1: Setxg41 = xi ; for uniformly choseni € {0, ..., m — 1}.
12: end for

be replaced by 1/m? for any p € (0, 1) while preserving linear convergence, but
p = 1/2 gives the minimum number of stochastic gradient evaluations, as we will see
in Sect. 3.

Upon incorporating (i) a Barzilai-Borwein step size, (ii) variance reduction, and
(iii) minibatching, we arrive at the stochastic Steffensen—Barzilai-Borwein method
(SSBB) in Algorithm 2. This is our method of choice in this article.

Although we did not include minibatching in Algorithm 1’s pseudocode to avoid
clutter, we will henceforth assume that it is also minibatched. The randomiza-
tion, variance reduction, and minibatching all apply verbatim when the learning
rates in Algorithms 1 and 2 are replaced respectively by the quasi-Steffensen and
quasi-Steffensen—Barzilai-Borwein learning rates on p. 10. Nevertheless, as we have
mentioned, our numerical experiments do not show that the resulting algorithms differ
in performance from that of Algorithms 1 and 2.

2.4 Randomized Kaczmarz method as a special case

Given A € R™*" of full row rank with row vectors aj, ...,a, € R" and b € R™
in the image of A, the Kaczmarz method [21, 22] solves the consistent linear system
Ax = b via

bj — a]x
Xpt1 = Xk + ——— 5,
lla |l
withi = k mod m, i = 1,...,m. The iterative method has remained relatively

obscure, almost unheard of in numerical linear algebra, until it was randomized in

@ Springer

Stochastic Steffensen method 15

Algorithm 2 Stochastic Steffensen—Barzilai-Borwein Method (SSBB)
1: Input: initial state x(, inner loop size m, minibatch size b, data size n, Barzilai-Borwein step size

Bo=—1.
2:fork=0,1,... do

3: Compute full gradient V f (xg).
4: if k > O then
S: Set sy = xp —xg—1 and yy = Vf(xg) = Vf(xgp—1).
6: Compute Barzilai—-Borwein step size

sl

:Bk = - T .

Sk Yk
7: endif
8: Compute the stochastic Steffensen—Barzilai-Borwein learning rate

ssep _ | BllV S ol
Nk

T Vm IV G+ BV o)) — VTV)

9: Setxg = xg.

10: fort=0tom — 1do

11: Sample minibatch Si , € {1, ..., n} uniformly with |S; ;| = b.
12: Compute variance-reduced stochastic gradient

Vit = VIS Ok) = Vs k) + Vi (g r).

13: Update xj ;11 = X — nSSBB

14: end for

15: Set x4 = xg,; for uniformly choseni € {0, ..., m — 1}.
16: end for

[23], which essentially does

bi, — a] x
— k
Xk+1 = Xk + 7 ik
llai I
where iy € {1, ..., m} is now sampled with probability ||a;, ||>/[| A

We will see that randomized Kaczmarz method is equivalent to applying stochas-
tic Steffensen method, with or without Barzilai-Borwein step size, to minimize the
quadratic function f : R" — R,

1 w 1 «
fey=3 3 i) =3) (ajx = b,
i=1 i=1
While itis sometimes claimed that SGD has this property, this is not quite true. Suppose

ix € {1, ..., m} is the random row index sampled at the kth step, the update rule in
SGD gives

.
X1 = Xk — n(a;, Xk — bi)aiy,

@ Springer

16 M. Zhao et al.

and the update rule in SLBFGS is even further from this. So one needs to impose
further assumptions [43] on the learning rate to get randomized Kaczmarz method,
which requires that n; = 1/ ||ai2k ||. If we use the Steffensen method, we get from (10)
that

IV i Gl 1
IV fir (5 + V fi,60) = V iy GOT'Y fiy (i) a1

m =

and using Steffensen—Barzilai-Borwein method makes no difference:

nSBB _ BV fi (xk)||2 _ 1
k [V fi (k4 BV fi 00)) = V i, TV fip 6 Nl 12

as B = llxx — xk—111>/ ek — =D)LV fi, Cex) = V fip (k)] = 1/ llaz, 1|2

3 Convergence analysis

In this section, we establish the linear convergence of our stochastic Steffensen meth-
ods Algorithm 1 (SSM) and Algorithm 2 (SSBB) for solving (1) under standard
assumptions. We would like to stress that these convergence results are intended to
provide a minimal theoretical guarantee and do not really do justice to the actual per-
formance of SSBB. The experiments in Sect. 5 indicate that the convergence of SSBB
is often superior to other existing methods like SGD and SVRG, with or without
Barzilai-Borwein step size, or even SLBFGS. However, we are unable to prove this
theoretically, only that it is linearly convergent like the other methods.

For easy reference, we reproduce the minibatched SVRG algorithm in [44, Algo-
rithm 1] as Algorithm 3.

Algorithm 3 Minibatched SVRG

1: Input: initial state x(, inner loop size m, minibatch size b, data size n.

2:fork=0,1,... do

3: Compute full gradient V f (xy).

4. Setxg,o = xk.

5: fort=0tom —1do

6: Sample minibatch S ; C {1, ..., n} uniformly with | S ;| = b.
7: Compute variance-reduced stochastic gradient

Ukt = VIS, Okr) = Vs,) + VI (xp).

8 Update xg 1+1 = Xkt — Mk Vk,z-

9: end for

10: Set x441 = xi ; for uniformly choseni € {0,...,m —1}.
11: end for

We need to establish the linear convergence of Algorithm 3 for our own convergence
results in Sects. 3.1 and 3.2 but we are unable to find such a result in the literature. In

@ Springer

Stochastic Steffensen method 17

particular, the convergence results in [44, Propositions 2—4] and [45, Theorem 1] are
for more sophisticated variants of Algorithm 3. So we will provide a version following
the same line of arguments in [45, Theorem 1] but tailored to our own requirements.

Our linear convergence proofs for SSM and SSBB are a combination of the proofs
in [45, 46] adapted for our purpose. In particular, we quote [46, Lemma A] and prove
a simplied version of [45, Lemma 3] for easy reference.

Lemma 3 [Nitanda] Ler &1, ...,&, € R? and é::rll ' 1 & Let S be a b-element

subset chosen uniform randomly from all b-element subsets of {1, 2, ...,n}. Then
_ n—>b 2
slp Liess 8 = syl -1
Here Es denotes expectation of the random subset S C {1, ..., n} and E; that of the
uniform random variable i € {1, ..., n}. More specifically, if S = {iy, ..., ip}, then

R O | Za,
EiHEi—§”2=;Z;”5j_é”2'
p

For the rest of this section, we will need to assume, as is customary in such proofs
of linear convergence, that our objective f is p-strongly convex, the gradient of each
additive component f; is L-Lipschitz continuous (and therefore so is V f), and that
all iterates are well-defined (the denominators appearing in our learning rates n; are
nonzero).

Assumption 1 Assume that the function f in (1) satisfies
T H 2
fw) = fw)+Vf) (w—v)+5llv—wll)
IVfiw) = Vi)l < Liv —wll

foranyv,weRd,i:l,...,n.

Applying Lemma 3 with§; = vf’t and [45, Corollary 3], we may bound the variance
of a minibatched variance-reduced gradient as follows.

Lemma4 Let f be as in Assumption I with x*:=argmin, f(x). Let

1
v = VG = VAGD + V), v = b) v

i€Sk;

Then

4L
Ellvk: — Vf(xx)ll* < 7[f(xk,t) — O+ f) — F&H].

@ Springer

18 M. Zhao et al.

The next lemma, a simplified version of [45, Lemma 3], gives a lower bound of the
optimal value f(x*) useful in our proof of linear convergence.

Lemma5 Let A ;:=vk; — V f(xk:) and ni be a learning rate with 0 < n; < 1/L.
Then with the same assumptions and notations in Lemma 4, we have

"
O 2 f (i) + 0 068 =)+ Tkl 4 St =il + AL (e = x°).
Proof By the strong convexity of f, we have
i
FO) = flue) + V) (88 = xir) + Ellx* — xiall®.

By the smoothness of f, we have

L
FO) = FOrn) = V. G Okt = x0) = 5 i = x|l

Summing the two inequalities, we get

2
W Ln
SO 2 o) + VL) 08 =) + 2" =il = =l
The second term on the right simplifies as

Vf e,) T = X i1) = VO) (8 = xg1) + (ier — o) (5 = Xg 1)
= v (" = xp 1) + ks — V) Qo — x9)

2
= vp (" = Xprg1) + Mellvie |

If the learning rate satisfies 0 < nx < 1/L, then

FOM) > fOr) +0f,0F —xi) + %(2 — L) [Joes |
+ 5t = P AL G —)
> (k1) +vg, (6 = xe0) + % I Uk,t||2

+ % " = ks “2 + Ap kg1 — X,

as required. O

Theorem 6 (Linear convergence of Algorithm 3) Let f be as in Assumption 1 with
x*:=argmin, f(x). For the (k + 1)th iteration of outer loop in Algorithm 3,

b 4(m + 1)Lng
muni(b —4Lnk) m(b — 4Lng)

ELf Gk+1) = f()] < [} Lf () = f(D)]

@ Springer

Stochastic Steffensen method 19

If m, ng, and b are chosen so that

1

b
17 i <_7 _)7
p < N < mn 2L L

b 4(m + 1)Lk
ok = <
mune(b —4Lng) m(b —4Lnyg)

then Algorithm 3 converges linearly in expectation with

ELf(xk) — f(x)] < p*[f (x0) — fF(x)].

Proof For the iteration in the inner loop, we apply Lemma 5 to get

et =217 = s = 2| = 2mev] s =2+ g o |

2
< ke = |7+ 2mLF %) = f)] = 2m AL (g1 — x).
(12)
Lemma 5 requires that the learning rate ny < 1/L. Let X4 j1:=xks — NV f (Xk1)-
Then the last term in (12) may be written as

=2 AL o1 — X)) = =2m AL kvt — Xeor1) — 2m A, B — X9

=20 | A |* = 2m AL, Gkt —).

Plugging this into (12) and taking expectations on both sides conditioned on x; ; and
Xy respectively, we get

Ellxk 1 — X* 17 < llxr — ¥ 1% + 20BN Ao I
—E[A] , Grr1 —)] = (F 1) — F@)]
= |lxk.r — X512 4 2m kBl A 12 — (F (Gierg) — FEN],

where the last equality follows from E[A ;] = 0. Set y::8Ln,%/b. By Lemma 4, we
have

Ellg i1 — 17 < bk — X517 4+ v LF (k) — FO) + £ Ox) — £ (9]
= 2k ELf Gk e41) — fF (D]

Fort =0,...,m — 1, we have

E |xr1 — x| + 2mELf (irr) — £(x)]
< Nk — X1 + v [f () — O+ Flx) — £

Summing this inequality over all t = 0, ..., m — 1, the left hand side becomes
m—1 5 m—1
LHS = Y " E |1 — 5|7+ 2m Y BLf Grign) — £,
=0 t=0

@ Springer

20 M. Zhao et al.

and the right hand side becomes

m—1 m—1
RHS =) " llxe — x*|7 +y Y ELf () — fF*)] 4+ ymELf () — f ()]
t=0 t=0

By the definition of xj4 in Algorithm 3,

1 m
ELf ()] = — le £k,
t=
and so, bearing in mind that LHS < RHS,

Ellxtm — x* 12 + 2mmELf (x5 1) — f(x*)]
m—1

<E | —x*|* + ymELf) — f@H] +y Y B () — £
t=0

=E |x.0 — x| + ymELf) — £+ ymELf (s 1) — £()]
+y[f) — FH1,

where the last step follows by replacing Z;";OI with)7, which preserves inequality.
Thus

2mmELf (xit1) — F()] < 2mELf (est) — FOO]+E e — x|
< E [xe = x>+ yn + DELF) = £ (6]
+ ymELf (x41) — f (X))
Rearranging terms and applying strong convexity of f, we have

2

8L17k .
(277k - >m]E[f(Xk+1) — f(xM]

8(m + 1)Ln?
<E |x—x*|* + wE[f(xk) — FGY)]
2 8(m + 1)Ln?
< 160 = S+ %Emm e

Here we require that 27, > 8L17,%/b and thus n; < b/(4 L), leading to

ELf(xkq1) — f] < o[f () — F(x)]
with

b 4(m + 1)Lng
Pri= -
mung(b —4Lny) m(b —4Lnyg)

@ Springer

Stochastic Steffensen method 21

Choose m, ny so that py < p < 1 and apply the last inequality recursively, we get

ELf () = f O] < pM1f (o) = F (9]
as required. O

3.1 Linear convergence of stochastic Steffensen method

With Theorem 6, we may deduce the linear convergence of Algorithm 1 as a special
case of Algorithm 3 with b = 1 (no minibatching) and nx = 1;> (SSM learning rate).

Lemma7 Let f be as in Assumption 1. Then the stochastic Steffensen learning rate

1 IV £) P
Jm V@) (Vi V) — Vf ()

ss
Ny =

satisfies

Proof Since V f is L-Lipschitz, a lower bound is given by

s L IVfl> 1

= LIV o T JmL

The required upper bound follows the p-strong convexity of f. O

Corollary 8 (Linear convergence of SSM) Let f be as in Assumption 1 with
x*:=argmin f(x). If m is chosen so that

S +4/m)x
= <1,
P Jm — 4k
where k = L/ is the condition number, then Algorithm 1 converges linearly in

expectation with
ELf(xx) — £ (] < pF[f(xo0) — F(].
Proof By Theorem 6, we have

1 4(m + 1)Lnp
munS (1 —4Ln?®) m(l —4Lnp°)

ELf (k41) = f(xH)] =< []]E[f(Xk) — fG&M]

@ Springer

22 M. Zhao et al.

aslongas nf° < 1/(4L). Lemma 7 shows that this holds for m > 16«2, which follows
from p < 1. The upper and lower bounds in Lemma 7 also give

1 n 4(m + l)LnlsCS
mpun (1 — 4L m(1 —4Ln?

SS
Pr =

) 1 Loy DLz (5 +4/mx
- muﬁ(l —4Lﬁ) m(1 —4Lﬁ) Jm =4k

Hence if m is chosen so that p < 1, we have

ELf(xx) — f(x)] < p*[f (x0) — f(x*)]

as required. O

3.2 Linear convergence of stochastic Steffensen—Barzilai-Borwein

The linear convergence of Algorithm 2 likewise follows from Theorem 6 with n; =

SsBB
-

Lemma9 Let f be as in Assumption 1. Then the stochastic Steffensen—Barzilai—
Borwein learning rate

s L BellV f (xo)|I?
T Um VO A+ BV) = VTV f (k)
satisfies
SSBB 1
<P < —
VmL Vmu
Proof Similar to that of Lemma 7. O

Corollary 10 (Linear convergence of SSBB) Let f be as in Assumption 1 with
x*:=argmin, f(x). If m and b are chosen so that

_(b+4/m+ Dk
- Jmb — 4k

where k = L/ is the condition number, then Algorithm 2 converges linearly in
expectation with

<1,

ELf (%) — f ()] < p*[f (x0) = F ()],

@ Springer

Stochastic Steffensen method 23

Proof Because SSBB is a special case of Algorithm 3, then we can easily get

b n 4(m + l)LniSBB
/’Ln]S(SBB(b _ 4Ln]S(SBB) m(b _ 4LT7]S<SBB)

ELf (xk1) = f()] < |:m } ELf (xk) — f(x)]

when n*® < b/(4L) and n>® < 1/L. From Lemma 9, this is valid for m >
max(/cz, 1612 /b2), which holds because p < 1. Also, from Lemma 9, we have

5588 _ b N 4(m + 1) Ln>®®
k manSBB(b _ 4Ln,,S<SBB) m(b — 4L77’S(SBB)
1
b +4(m+1)Lm _(b+4/m+ Ak
T mp——(b—4L—) mb-4L-) Jmb—4«
VmL Vmp Vmp

Hence if m and b are chosen so that p < 1, we have
ELf () — f ()] < p*Lf (x0) — ()]

as required. O

3.3 Optimal number of stochastic gradient evaluations
Observe that in the proof of Corollary 8 and 10, we may replace 1/4/m by 1/m? for
any p € (0, 1) without affecting the linear convergence conclusion. More precisely, to

reach e-accuracy, the proofs of Corollaries 8 and 10 show that when we set b = O (1)
and m = O(max(/cl/p, Kl/(l’p))), then both SSM and SSBB require evaluation of

O((n + max(x'/?, «/1=P))) log(1/¢))

stochastic gradients. Clearly, this is minimized when p = 1/2. It follows that for
p=1/2,b=0(),and m = O(k?), both SSM and SSBB require evaluation of

0((n +«?)log(1/e)),

stochastic gradients to reduce to e-accuracy.

3.4 Comparison with other methods

For a theoretical comparison with other methods on equal footing, we will have to limit
ourselves to the ones that do not leave the step size n; unspecified. This automatically
excludes SGD and SVRG, which treat ; as a hyperparameter to be tuned separately.
A standard choice is to choose 7 to be the Barzilai-Borwein step size, resulting in
the SVRG-BB method [47], which requires evaluation of

O((n + «)log(1/¢))

@ Springer

24 M. Zhao et al.

stochastic gradients to achieve g-accuracy when « is sufficiently large. On the other
hand, the SLBFGS method [28] requires evaluation of

O((n + >4ty log(1/e)),

stochastic gradients where £ is ‘history size’, the number of previous updates kept in
LBFGS. Evidently both SVRG-BB and SLBFGS are at least an order of magnitude
slower than SSM and SSBB as measured by the condition number «. It is worth
noting that for a d-variate objective, the number of stochastic gradients required by
SLBFGS depends on d. Our methods, like SVRG-BB, are free of such dependence.
Note that the lower bound of O(n + /nk log(1/€)) in [18] and upper bound of
@] ((n + /ni) log(1/ e)) in [17] assume a constant multiple of the stochastic gradient
throughout. We restrict our comparison to adaptive methods where the stochastic
gradient is modified by a nonconstant (scalar or matrix) multiple of the stochastic
gradient that changes from step to step.

4 Proximal variant

As shown in [45], SGD and SVRG may be easily extended to cover nondifferentiable
objective functions of the form

1 n
F(x) = f(x)+ R(x) = ;Zfi(X)+R(X), 13)
i=1

where f satisfies Assumption 1 and R is a nondifferentiable function such as R(x) =
[lx|l1. In this section we will see that SSBB may likewise be extended, and the linear
convergence is preserved.

To solve (13), the proximal gradient method does

X = prox, g (xk—1 =V f(x)),

with a proximal map defined by

1
proxg(y) = afgmln{ Sllx = P+ R(X)}~

xeRd

As in [45], we replace the update rule xi ;1 = Xk, — ;" Vg, in Algorithm 2 by

_ S5BB
X t41 = pI'OanESBBR()Ck’t - vk,,). (14)

We will see that the resulting algorithm, which we will call prox-SSBB, remains
linearly convergent as long as the following assumption holds for some © > 0.

@ Springer

Stochastic Steffensen method 25

Algorithm 4 Proximal Stochastic Steffensen—Barzilai-Borwein Method (prox-SSBB)

1: Input: initial state x(, inner loop size m, minibatch size b, data size n, Barzilai-Borwein step size

Bo=—1.
2:fork=0,1,... do

3: Compute full gradient V f (xy).
4: if k > O then
S: Set sy = xp —xg—1 and yy = V. f(xg) — Vf(xp—1).
6: Compute Barzilai-Borwein step size
_ sl
S]I Yk
7: endif
8: Compute the stochastic Steffensen—Barzilai—-Borwein learning rate
ssgp _ | BillV £ 0ol
Nk =—=

Jm IV f O+ BV f) — VTV flg)

9: Setxgo=xg.

10: fort=0tom —1do

11: Sample minibatch Si , € {1, ..., n} uniformly with |Sg ;| = b.
12: Compute variance-reduced stochastic gradient

Vit = VIS Gkn) = Vs k) + Vi (g o).

13: Update xg ;4] = proxr;]fSBBR(xk»’ — nZSBka,,)‘

14: end for

15: Set xp41 = xg ; for uniformly choseni € {0, ..., m — 1}.
16: end for

Assumption 2 The function R is u-strongly convex in the sense that
T M 2
R(Y) z R(x) + g(x) (y = x) + Zlly — x|

forall x € dom(R), g(x) € dR(x), y € R, and R(y):=+ oo whenever y ¢ dom(R).
Here d R(x) denotes subgradient at x.

It is a standard fact [48, p. 340] that if R is a closed convex function on R4, then

l[prox g (x) — proxg(y)| < llx — ¥l 5)

for all x, y € dom(R). We will write 1 s for the strong convexity parameter of f in
Assumption 1 and pg for that of R in Assumption 2. This implies that the overall
objective function F is strongly convex with > s + ug.

To establish linear convergence for prox-SSBB, we need an analogue of Lemma 5,
which is provided by [45, Lemma 3], reproduced here for easy reference.

@ Springer

26 M. Zhao et al.

Lemma 11 (Xiao—Zhang) Let f be as in Assumption 1, R as in Assumptions 1, and
F = f + R with x*:=argmin, F(x). Let Ay ;:=vk — V f(xk,1) and

1 1
gk,t::_(xk,t - xk,t+1) = _(xk,t - proxnkR(xk,t - nkUk,t))-
Nk Nk
If0 < nx < 1/L, then

Nk
FOM) 2 F o) + 8, (08 = xi) + gkl

W KR
+ 7f s =271 + S et = 717+ AL (e = 3.

Corollary 12 (Linear convergence of prox-SSBB) Let F and x* be as in Lemma 11
and nx = n°*. Then Corollary 10 holds verbatim with F in place of f.

Proof To apply Lemma 11, we need n;y < 1/L and this holds as we have m >
(L/m)? = k> among the assumptions of Lemma 9. In the notations of Lemma 11, the
update (14) is equivalent to Xk ;41 = Xk.; — Nk&k.t- SO

ke, e41 — X% = llxee — 1% = 2megp, ke — 1) + nllgr.e 1.
By Lemma 11, we have
— g Gk =¥ + Lllgil?
< F(*) = Flgqn) — %nxk,, —x*|* - ‘%Rnxk,,ﬂ —x*|1 = AL O g1 — X).
Therefore,
Ixkan = X7 < o — X117 = 20 AL, (k1 — X¥) 4 20 [F (%) = F (e r41)]-

We bound the middle term on the right. Let xj ;41:= proxnkR(xk,, — MV f(xk 1))
Then

2k AL (k1 — X7) = =2m AL Okt — Xkt) — 20k AL Rk — x7)
< 2kl Ak e Nk g1 = Fio1 | = 20k AL (R 1 — x7)
=< 2micll ke — MicV,e) — (ke — iV f (i) |l
— 2 AL (Rt — X7)
= 20l A P = 20k A, i1 —),
where the first inequality is Cauchy—Schwarz and the second follows from Lemma 15.

The remaining steps are as in the proofs of Theorem 6 and Corollary 10 with F in
place of f. O

@ Springer

Stochastic Steffensen method 27

Table 1 Sample size n, dimension d, batch size b, />-regularization parameter A3, /| -regularization param-
eter Aq

Data set Loss function n d m b Ao A
synthetic Squared loss 10000 100 4n 4 1075

wéa Logistic loss 17188 300 2n 16 1074

aba Squared hinge loss 11220 123 2n 16 1073

w6a 1! -regularized logistic loss 17188 300 2n 32 1074 1074

5 Numerical experiments

As mentioned earlier, for smooth objectives, our method of choice is Algorithm 2, the
stochastic Steffensen—Barzilai—-Borwein method (SSBB) with minibatching. We will
compare it with several benchmarking algorithms: stochastic gradient descent (SGD),
stochastic variance reduced gradient (SVRG) [27], stochastic LBFGS [28], and the first
two with Barzilai—-Borwein step size (SGD-BB and SVRG-BB) [47]. For nonsmooth
objectives, we compare Algorithm 4, the proximal stochastic Steffensen—Barzilai—
Borwein method (prox-SSBB), with proximal variants of the previously mentioned
algorithms: prox-SGD, prox-SVRG [45], prox-SLBFGS, and prox-SVRG-BB.

We test these algorithms on popular empirical risk minimization problems — ridge
regression, logistic regression, support vector machines with squared hinge loss, /!-
regularized logistic regression — on standard datasets in LTBSVM.> The parameters
involved are summarized in Table 1. Our experiments show that SSBB and prox-SSBB
compare favorably with these benchmark algorithms. All our codes are available at
https://github.com/Minda-Zhao/stochastic-steffensen.

For a fair comparison, all algorithms are minibatched. We set a batch size of b = 4
for ridge regression, b = 16 for logistic loss and squared hinge loss, b = 32 for /!-
regularized logistic loss. The inner loop size is set atm = 2n or4n. The learning rates in
SGD, SVRG, and SLBFGS are hyperparameters that require separate tuning; we pick
the best possible values with a grid search. SLBFGS requires more hyperparameters:
As suggested by the authors of [28], we set the Hessian update interval to be L = 10,
Hessian batch size to be by = Lb, and history size to be &4 = 10. All experiments
are initialized with xo = 0. We repeat every experiment ten times and report average
results.

In all figures, we present the convergence trajectory of each method. The vertical
axis represents in log scale the value f(x;) — f(x*) where we estimate f(x*) by
running full gradient descent or Newton method multiple times. The horizontal axis
represents computational cost as measured by either number of gradient computations
divided by n or the actual running time — we present both. In all experiments, we
note that the convergence trajectories of SSBB and prox-SSBB agree with the linear
convergence established in Sects.3 and 4.

2 https://github.com/cjlin1/libsvm.

@ Springer

https://github.com/Minda-Zhao/stochastic-steffensen
https://github.com/cjlin1/libsvm

28 M. Zhao et al.

—e— SGD
—¥— SVRG
5 —#- SVRG-BB 5
20 SLBFGS 10
—— SSBB
z 2
= 10 2 107
£ E
a |
g &
2 2
3 107 2 10
> >
2 2
—e— SGD
i 10-6 | =% SVRG
~#— SVRG-BB
SLBFGS
—— s5BB
10-10 10-10
0 50 100 150 200 250 300 0 10 20 30 40 50 60 70

passes through data running time (s)

Fig. 1 Ridge regression on synthetic dataset regularized with A, = 1073, Left: number of passes through
data. Right: running time

5.1 Ridge regression

Figure 1 shows a simple ridge regression on a synthetic dataset generated in a controlled
way to give us the true global solution. We generate x* € R? with x ~N(0, 1) and
A € R"™ with row vectors aj, . ..,a, € R? and entries ajj ~ N(0, 1). We form
y = Ax™ 4+ b with b an n-dimensional standard normal variate. We then attempt to
recover x* from A and y by optimizing, with A, = 107,

2
min — Z(yl —alx)? + 3.

xeRd n

5.2 Logistic regression
Figure 2 shows the results of a binary classification problem on the w6a dataset from

LIBSVM using an /2-regularized binary logistic regression. The associated optimiza-
tion problem with regularization A, = 10™* and labels y; € {—1, +1} is

A
min — Zlog 1 + e vita] X)) + ?2||x||%.

5.3 Squared hinge loss
Figure 3 shows the results of a support vector machine classifier with /%-regularized

squared hinge loss and A» = 1073 on the a6a dataset from LIBSVM. The optimization
problem in this case is

A2
min — Z[(l = yiaj)41 + S x3.

xeRd n

@ Springer

Stochastic Steffensen method 29

107!

,_.
2

log(suboptimality)
=
9

log(suboptimality)

._.
5]
4

10-°
0 100 200 300 400 500 600 0 20
passes through data

40 60 80 100
running time (s)

Fig.2 [/ 2—regularized logistic regression on wéa dataset from LIBSVM regularized with 1o, = 1074, Left:
number of passes through data. Right: running time

1075 -\\

log(suboptimality)
log(suboptimality)

—e— SGD —e— SGD
—— SVRG —— SVRG
107° | —m— SVRG-BB 107° | —m— SVRG-BB
SLBFGS SLBFGS
—— 5388 —— ssB8
10-11 o-11
o 100 200 300 400 500 600] 10 20 30 40 50

passes through data running time (s)

Fig.3 12—regularized squared hinge loss on a6a from LIBSVM regularized with Ay = 1073. Left: number
of passes through data. Right: running time

The results are clear: SSBB solves the problems to high levels of accuracy and is the
fastest, whether measured by running time or by number of passes through data, in all
experiments. When measured by running times, SLBFGS performs relatively poorly
because of the additional computational cost of its matrix—vector products that other
methods avoid.

5.4 Proximal variant

Figure 4 shows the results of a binary classification problem on the w6a dataset from
LIBSVM using a binary logistic regression with both /2- and /'-regularizations, a
problem considered in [45]:

n

1 T A2
min — log(1 —yi(a;x) 23+ A .
in — log(l+e)+ S I3 + Al

xeRd n 4
i=1

We set regularization parameters to be A, = 1074, A1 = 107%.
The results obtained are consistent with those in Sects. 5.1, 5.2 and 5.3, demonstrat-

ing that prox-SSBB solves the problem to high levels of accuracy and is the fastest

@ Springer

30

M. Zhao et al.

log(suboptimality)

—e— Prox-SGD
—¥— Prox-SVRG
—#— Prox-SVRG-BB
Prox-SLBFGS
—— Prox-SSBB

10-10
200

400 600
passes through data

800

1000

log(suboptimality)

1074

)

108

0-10

~&— Prox-SGD
~%— Prox-SVRG
~&~ Prox-SVRG-BB
Prox-SLBFGS
—4— Prox-SSBB

10 20

30 40 50 60 70 80
running time (s)

Fig. 4 Logistic regression with 12 and ! regularizations on wéa dataset from LIBSVM regularized with
Ay = 10~% and A= 1074, Left: number of passes through data. Right: running time

among all algorithms compared, whether measured by running time or by the number
of passes through data.

6 Conclusion

The stochastic Steffensen methods introduced in this article are (i) simple to imple-
ment, (ii) efficient to compute, (iii) easy to incorporate, (iv) tailored for massive data
and high dimensions, have (v) minimal memory requirements and (vi) a negligible
number of hyperparameters to tune. The last point is in contrast to more sophisticated
methods involving moments [31, 32] or momentum [33-36], which require heavy
tuning of many more hyperparameters. SSM and SSBB require just two — minibatch
size b and inner loop size m.

The point (iii) also deserves special mention. Since SSM and SSBB are ultimately
encapsulated in the respective learning rates 7;° and 7;°®®, they are versatile enough
to be incorporated into other methods such as those in [31-36], assuming that we are
willing to pay the price in hyperparameters tuning. We hope to explore this in future
work.

Acknowledgements This work is partially supported by DARPA HR00112190040, NSF DMS-1854831,
NSF ECCS-2216912, ONR N000142312863, and the Eckhardt Faculty Fund. We thank Nati Srebro for his
exceptionally pertinent pointers and the two anonymous referees for their helpful comments. LHL thanks
Junjie Yue for helpful discussions.

Data availability We do not analyze or generate any datasets. The numerical experiments in Sect. 5 rely on
standard datasets in LIBSVM that is publicly available from https://github.com/cjlin1/libsvm. The authors
declare no conflict of interest.

References

1. Steffensen, J.F.: Remarks on iteration. Skand. Aktuarietidskr. 1, 64-72 (1933)

2. Steffensen, J.F.: Further remarks on iteration. Skand. Aktuarietidskr. 28, 44-55 (1945)

3. Amat, S., Ezquerro, J.A., Herndndez-Verén, M.A.: On a Steffensen-like method for solving nonlinear
equations. Calcolo 53(2), 171-188 (2016)

@ Springer

https://github.com/cjlin1/libsvm

Stochastic Steffensen method 31

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. Ezquerro, J.A., Herndndez-Verén, M.A., Rubio, M.J., Velasco, A.L.: An hybrid method that improves

the accessibility of Steffensen’s method. Numer. Algorithms 66(2), 241-267 (2014)

. Henrici, P.: Elements of Numerical Analysis. John Wiley, New York (1964)
. Huang, H.Y.: Unified approach to quadratically convergent algorithms for function minimization. J.

Optim. Theory Appl. 5, 405-423 (1970)

. Johnson, L.W., Scholz, D.R.: On Steffensen’s method. SIAM J. Numer. Anal. 5, 296-302 (1968)
. Nedzhibov, G.H.: An approach to accelerate iterative methods for solving nonlinear operator equations.

In: Applications of Mathematics in Engineering and Economics (AMEE’11). AIP Conf. Proc., vol.
1410, pp. 76-82. Amer. Inst. Phys., Melville (2011)

. Nievergelt, Y.: Aitken’s and Steffensen’s accelerations in several variables. Numer. Math. 59(3), 295—

310 (1991)

. Nievergelt, Y.: The condition of Steffensen’s acceleration in several variables. J. Comput. Appl. Math.

58(3), 291-305 (1995)

Noda, T.: The Aitken-Steffensen method in the solution of simultaneous nonlinear equations. Stigaku
33(4), 369-372 (1981)

Noda, T.: The Aitken-Steffensen method in the solution of simultaneous nonlinear equations. II. Sigaku
38(1), 83-85 (1986)

Noda, T.: The Aitken-Steffensen method in the solution of simultaneous nonlinear equations. III. Proc.
Jpn. Acad. Ser. A Math. Sci. 62(5), 174-177 (1986)

Noda, T.: The Aitken-Steffensen formula for systems of nonlinear equations. IV. Proc. Jpn. Acad. Ser.
A Math. Sci. 66(8), 260263 (1990)

Noda, T.: The Aitken-Steffensen formula for systems of nonlinear equations. V. Proc. Jpn. Acad. Ser.
A Math. Sci. 68(2), 37-40 (1992)

Gill, P.E., Murray, W., Wright, M.H.: Numerical linear algebra and optimization. In: Classics in Applied
Mathematics, vol. 83. Society for Industrial and Applied Mathematics, Philadelphia (2021)

. Allen-Zhu, Z.: Katyusha: The first direct acceleration of stochastic gradient methods. In: Hatami, H.,

McKenzie, P., King, V. (eds.) STOC’17: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing. Annual ACM Symposium on Theory of Computing, pp. 1200-1205 (2017)
Woodworth, B., Srebro, N.: Tight complexity bounds for optimizing composite objectives. In: Lee, D.,
Sugiyama, M., Luxburg, U., Guyon, L., Garnett, R. (eds.) Advances in Neural Information Processing
Systems (NIPS 2016). Advances in Neural Information Processing Systems, vol. 29 (2016)
Brezinski, C., Redivo-Zaglia, M.: Extrapolation and Rational Approximation—the Works of the Main
Contributors. Springer, Cham (2020)

Householder, A.S.: The Numerical Treatment of a Single Nonlinear Equation. International Series in
Pure and Applied Mathematics, McGraw-Hill, New York (1970)

Kaczmarz, S.: Angeniherte auflosung von systemen linearer gleichungen. Bull. Int. Acad. Polon. Sci.
A 57(6), 355-357 (1937)

Kaczmarz, S.: Approximate solution of systems of linear equations. Int. J. Control 57(6), 1269-1271
(1993)

Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J.
Fourier Anal. Appl. 15(2), 262-278 (2009)

Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400-407 (1951)
Roux, N.L., Schmidt, M., Bach, F.R.: A stochastic gradient method with an exponential convergence
rate for finite training sets. In: Advances in Neural Information Processing Systems 25, pp. 2672-2680
(2012)

Defazio, A., Bach, F.R., Lacoste-Julien, S.: SAGA: a fast incremental gradient method with support for
non-strongly convex composite objectives. In: Advances in Neural Information Processing Systems
27, pp. 1646-1654 (2014)

Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction.
In: Advances in Neural Information Processing Systems 26, pp. 315-323 (2013)

Moritz, P., Nishihara, R., Jordan, M.I.: A linearly-convergent stochastic L-BFGS algorithm. In: Pro-
ceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS. JMLR
‘Workshop and Conference Proceedings, vol. 51, pp. 249-258 (2016)

Byrd, R.H., Hansen, S.L., Nocedal, J., Singer, Y.: A stochastic quasi-Newton method for large-scale
optimization. STAM J. Optim. 26(2), 1008-1031 (2016)

Zhao, R., Haskell, W.B., Tan, V.Y.: Stochastic L-BFGS: improved convergence rates and practical
acceleration strategies. IEEE Trans. Signal Process. 66(5), 1155-1169 (2018)

@ Springer

32 M. Zhao et al.

31. Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res. 12, 2121-2159 (2011)

32. Kingma, D.P, Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on
Learning Representations, ICLR (2015)

33. Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate O (1/ K2).
Dokl. Akad. Nauk SSSR 269(3), 543-547 (1983)

34. Poljak, B.T.: Some methods of speeding up the convergence of iterative methods. Z. Vy&isl. Mat i Mat.
Fiz. 4, 791-803 (1964)

35. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural Netw. 12(1), 145-151
(1999)

36. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of Adam and beyond. arXiv:1904.09237 (2019)

37. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141-148
(1988)

38. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms. II. The new
algorithm. J. Inst. Math. Appl. 6, 222-231 (1970)

39. Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13(3), 317-322 (1970)

40. Goldfarb, D.: A family of variable-metric methods derived by variational means. Math. Comput. 24,
23-26 (1970)

41. Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24,
647-656 (1970)

42. Potra, FA.: On an iterative algorithm of order 1.839--- for solving nonlinear operator equations.
Numer. Funct. Anal. Optim. 7(1), 75-106 (1984/85)

43. Needell, D., Srebro, N., Ward, R.: Stochastic gradient descent, weighted sampling, and the randomized
Kaczmarz algorithm. Math. Program. 155(1-2, Ser. A), 549-573 (2016)

44. Babanezhad, R., Ahmed, M.O., Virani, A., Schmidt, M., Konec¢ny, J., Sallinen, S.: Stopwasting my
gradients: practical SVRG. In: Advances in Neural Information Processing Systems 28, pp. 2251-2259
(2015)

45. Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM
J. Optim. 24(4), 2057-2075 (2014)

46. Nitanda, A.: Accelerated stochastic gradient descent for minimizing finite sums. In: Proceedings of
the 19th International Conference on Artificial Intelligence and Statistics, AISTATS. JMLR Workshop
and Conference Proceedings, vol. 51, pp. 195-203 (2016)

47. Tan, C., Ma, S., Dai, Y., Qian, Y.: Barzilai-borwein step size for stochastic gradient descent. In:
Advances in Neural Information Processing Systems 29, pp. 685-693 (2016)

48. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics, Princeton University Press,
Princeton (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

http://arxiv.org/abs/1904.09237

	Stochastic Steffensen method
	Abstract
	1 Introduction
	Background
	Convention

	2 Stochastic multivariate Steffensen methods
	2.1 Deterministic univariate setting
	2.2 Deterministic multivariate setting
	2.3 Stochastic multivariate setting
	2.4 Randomized Kaczmarz method as a special case

	3 Convergence analysis
	3.1 Linear convergence of stochastic Steffensen method
	3.2 Linear convergence of stochastic Steffensen–Barzilai–Borwein
	3.3 Optimal number of stochastic gradient evaluations
	3.4 Comparison with other methods

	4 Proximal variant
	5 Numerical experiments
	5.1 Ridge regression
	5.2 Logistic regression
	5.3 Squared hinge loss
	5.4 Proximal variant

	6 Conclusion
	Acknowledgements
	References

