Numerische Mathematik (2023) 155:345-376 Numerlsche
https://doi.org/10.1007/500211-023-01377-5 Mathematik

n

Check for
updates

Numerical stability and tensor nuclear norm

Zhen Dai' . Lek-Heng Lim'

Received: 19 July 2022 / Revised: 4 June 2023 / Accepted: 11 October 2023 /
Published online: 3 November 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

We present a notion of bilinear stability, which is to numerical stability what bilinear
complexity is to time complexity. In bilinear complexity, an algorithm for evaluating a
bilinear operator 8 : U x V — W is a decomposition 8 = @1 V1 Qwi+ -+ ¢, ®
Y, ® w,; the number of terms r captures the speed of the algorithm; and its smallest
possible value, i.e., the tensor rank of 8, quantifies the speed of a fastest algorithm.
Bilinear stability introduces norms to the mix: The growth factor of the algorithm
lotllllvillsllwill + - - - + llgr Ll 1+ lwr || captures the accuracy of the algorithm;
and its smallest possible value, i.e., the tensor nuclear norm of 8, quantifies the accuracy
of a stablest algorithm. To substantiate this notion, we establish a bound for the forward
error in terms of the growth factor and present numerical evidence comparing various
fast algorithms for matrix and complex multiplications, showing that larger growth
factors correlate with less accurate results. Compared to similar studies of numerical
stability, bilinear stability is more general, applying to any bilinear operators and not
just matrix or complex multiplications; is more simplistic, bounding forward error
in terms of a single (growth) factor; and is truly tensorial like bilinear complexity,
invariant under any orthogonal change of coordinates. As an aside, we study a new
algorithm for computing complex multiplication in terms of real, much like Gauss’s,
but is optimally fast and stable in that it attains both tensor rank and nuclear norm.

Mathematics Subject Classification 65F05 - 14N07 - 46M05

B4 Lek-Heng Lim
lekheng @uchicago.edu

Zhen Dai
zhen9 @uchicago.edu

Computational and Applied Mathematics Initiative, University of Chicago, Chicago, IL 60637-1514,
USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-023-01377-5&domain=pdf

346 Z.Dai, L-H. Lim

1 Introduction

More than fifty years ago, in Volume 13 of this journal, Volker Strassen announced an
astounding result: A pair of 2 x 2 matrices may be multiplied with seven multiplications
[32]. A consequence is that linear systems can be solved in O (1'°227) time complexity,
a surprise at that time as existing works such as [23] purportedly showed that O (n>)
was the lowest possible.

Strassen’s algorithm is in the spirit of the well-known algorithm, often attributed
to Gauss,! for multiplying a pair of complex numbers with three real multiplications
[17],

(a +bi)(c+di) =(ac —bd)+il[(a+b)(c+d)—ac— bd], (1.1)

but is notable in that Strassen’s applies to a noncommutative product (matrix multipli-
cation) as opposed to a commutative one (complex scalar multiplication). It led to a
plethora of followed-up works and ultimately to the realization that there is a unified
framework underlying the algorithms of Gauss and Strassen, namely, in evaluating
a bilinear operator 8: U x V — W, viewed as a 3-tensor in U* ® V* @ W, any
decomposition

B=01 V1 Qwi+ -+ ¢ QY Q w, (1.2)

into linear functionals ¢; : U — R, ¢; : V — R, and vectors w; e W,i =1,...,r,
gives us an algorithm for computing 8. Furthermore, the number of terms r in such a
decomposition counts precisely the number of multiplications, and thus the minimal
value of r, i.e., the fensor rank of B, gives the optimal complexity for evaluating g
in an appropriate sense [33] (see Sect.2). Both Gauss’s and Strassen’s algorithms are
the fastest possible according to this measure, that is, they attain the tensor ranks of
complex multiplication (three) and 2 x 2 matrix product (seven) respectively [37].
Well-known to readers of this journal, speed is not all that matters in an algorithm,
numerical stability is arguably more important in finite-precision computations as
rounding errors may result in an unstable algorithm producing no correct digits. While
the stability of algorithms for evaluating bilinear operators has been studied for specific
algorithms or operators in isolation, e.g., for Gauss’s algorithm in [17], Strassen’s
algorithm in [7], and other fast matrix multiplication algorithms in [2, 4], there has
been no unfied treatment that applies to all bilinear operators $ as in the case of speed.
There is no analysis that quantifies stability in terms of some tensorial property of
B analogous to how speed is quantified in terms of its tensor rank. The goal of the
present article is to fill this gap. We will show that just as the number of terms r in the
decomposition (1.2) controls the speed of the algorithm, the growth factor, defined as

lotllllwellsllwell + - - 4 ller sl s llwe I, (1.3)

controls the stability of the algorithm; and just as the tensor rank of 8 measures the
optimal speed, the tensor nuclear norm of §, defined as

I See [28, p. 37] [29, p. 8] for example.

@ Springer

Numerical stability and tensor nuclear norm 347

181l = inf{chpi||*||1/fl-||*||wl-|| B=) 0i®Yi® wi}, (1.4)

i=1 i=1

measures the optimal stability, the precise meaning of which we will state in due
course.

Although we have alluded to the relation between tensor nuclear norm and numer-
ical stability in earlier works [15, 27, 38], we have never stated a precise relation nor
carried out numerical experiments to demonstrate the relation. This article provides
both. Theorem 3.3 gives a general relation between the growth factor of a bilinear
algorithm and its forward error, from which a relation between tensor nuclear norm
and forward error may be deduced as in Corollary 3.4. We then perform a range of
numerical experiments involving Gauss’s and Strassen’s algorithms to substantiate
our theoretical findings:

Matrix multiplication: We compare Strassen’s algorithm with a well-known vari-
ant due to Winograd [19, 24]. While both attain the optimal seven multiplications,
Winograd’s variant is often favored because it requires only fifteen additions, com-
pared to Strassen’s eighteen. Nevertheless we will show that Strassen’s algorithm has a
growth factor of 12+2+/2 ~ 14.83 whereas Winograd’s variant has a growth factor of
744+/243+/3 & 17.85. For comparison, the conventional algorithm for 2 x 2 matrix
product has eight multiplications and a growth factor of 8. Our numerical experiments
confirm that in terms of accuracy Winograd’s is indeed worse than Strassen’s, which
is in turn worse than the conventional algorithm, as Theorem 3.3 indicates.

Complex multiplication: We compare the regular algorithm for complex multipli-
cation, which requires four real multiplications and has a growth factor of 4; Gauss’s
algorithm, which requires three real multiplications but has a larger growth factor of
2(1 ++/2) ~ 4.83; and a new algorithm:

(a + bi)(c + di)
e) b e)2 s
e)) e)

This new algorithm has the best features of both the regular and Gauss’s algorithms,
requiring three real multiplications and yet has the smaller (in fact, smallest, as we
will see) growth factor of 4. Again the results are consistent with the prediction of
Theorem 3.3.

For the uninitiated, we would like to stress that the aforementioned algorithms only
begin to make a difference when they are applied recursively, or applied to matrices, or
both. For instance, Gauss’s algorithm (1.1) is really quite useless for multiplying a pair
of complex numbers, whether ‘by hand’ or on a computer. It only becomes useful when
applied recursively in the form of Karatsuba’s algorithm [21] for integer multiplication,
with i replaced by the number base; or when applied to complex matrices [13]:

(A+iB)(C+iD)=(AC—-BD)+i[(A+ B)(C+ D) - AC — BD], (1.6)

@ Springer

348 Z.Dai, L-H. Lim

with A +iB,C+iD € C"", A, B,C, D € R™". As multiplication of matrices
is much more expensive than addition of matrices, so (1.6) really does represent an
enormous savings in speed over the regular algorithm:

(A+iB)(C+iD) = (AC — BD) +i(BC + AD). (1.7)

Likewise, our new algorithm (1.5) only begins to make a difference when applied
to matrices. For the same reason, the algorithms of Strassen and Winograd are only
worth the trouble when applied recursively to a product of n x n matrices partitioned
recursively into 2 x 2 blocks.

To address another related point early on, a surprisingly common complaint among
early feedbacks is that there are a lot of +/3’s in our algorithm (1.5). Certainly, if one
computes these products ‘by hand,” it would be easier to use the regular or Gauss’s
algorithm since they do not involve irrational coefficients. But when performed by a
computer this is completely immaterial. In case itis not clear, it does not matter whether
we multiply by 3 or by +/3; to a computer (or any IEEE 754-compliant equipment) both
are binary strings of 0’s and 1’s and arithmetic takes one flop regardless. Maybe there
would be some minor savings when a constant happens to be a power of 2—because
of binary arithmetic—but aside from that, it makes no difference what coefficients
appear in our algorithm.

For the matrix multiplication experiments, our goal is to illustrate Theorem 3.3 by
comparing the known algorithms of Strassen and Winograd. Incidentally, a numerical
comparison of the accuracy of Strassen’s algorithm and Winograd’s variant was stated
as a research problem in [17, Exercise 23.10]. Our work in Sect.4 supplies both
numerical evidence and a rigorous explanation of why Strassen’s is more accurate
than Winograd’s.

For the complex multiplication experiments, aside from providing another illustra-
tion of Theorem 3.3, we also have the additional goal of testing, for the first time, the
new algorithm (1.5) applied to multiply complex matrices, which we will see is

e nearly as fast as Gauss’s algorithm (1.6), and
e nearly as stable as the regular algorithm (1.7).

To substantiate these claims, we perform more extensive experiments to compare
(1.5), (1.6), and (1.7), including three practical applications: evaluation of matrix
polynomials via Horner’s method [20], unitary transform, and complex-valued neural
networks [1, 3, 9, 31, 36, 39]. All our codes are available from https://github.com/
zhen06/Complex-Matrix-Multiplication.

Conventions

To reduce notational clutter, we denote norms on different vector spaces U, V, W by
the same || - ||. There is no cause for confusion since we always use it in a form like
llv]| for some v € V, where it is clear from context that || - || refers to a norm on V.
Likewise the corresponding dual norms on U*, V*, W* will be denoted by the same
I - ||« Recall that for ¢ € V*,i.e., ¢ : V — Ris a linear functional, this is defined by

lells := sup{lp@)] : lv|| < 1}.

@ Springer

https://github.com/zhen06/Complex-Matrix-Multiplication
https://github.com/zhen06/Complex-Matrix-Multiplication

Numerical stability and tensor nuclear norm 349

In this article, “stability” and “accuracy” have the same meaning, i.e., small forward
error, but the former is used to describe an algorithm whereas the latter is used to
describe its output.

2 Bilinear complexity

We provide a brief review of bilinear complexity, usually studied in Algebraic Com-
putational Complexity [6, 8, 26, 35], for numerical analysts. Our goals here are to (i)
highlight certain departures from typical practice in numerical linear algebra; and (ii)
show a parallel with our notion of bilinear stability in the next section.

LetU, V, W be finite-dimensional vector spaces, assume to be over R for simplicity.
Let 8 : Ux V — W be a bilinear operator. Depending on one’s definition of a tensor,
we have 8 € U* ® V* @ W either through definition [27, Definition 3.3] or by the
universal mapping property [27, Equation 4.88]. A bilinear algorithm for evaluating
B is a decomposition of the form (1.2). In other words, for any u € Uand v € V,
we evaluate S(u, v) by performing the algorithm given by the decomposition on the
right:

Blu,v) =" @i (v)w;. @.1)

i=1

In practice, the vector spaces involved are usually Euclidean spaces of vectors R” or
matrices R”*". Riesz representation theorem guarantees that any linear functional
¢ : R" — R must take the form ¢(x) = a'x for some a € R” and likewise any
functional ¢ : R”*" — R must take the form ¢(X) = tr(AT X) for some A € R"™*",

Eachrank-one term ¢; (1) ; (v)w; in (2.1) accounts for one multiplication but herein
lies a pitfall — the ‘multiplication’ refers to the product of ¢; () and ¥; (v); note that
this a variable product, i.e., the value depends on variables u and v, as opposed to
a scalar product. Take a randomly made-up example? with U = R?>*2, V = R?,
W =R3, and

wi((25]) =781 [25]) = —a+e+2d.
]

W) =131 =3 o2 w=| 1]

then there is exactly one multiplication in

—3(—a+c+2d)(3x—y/2)
@i (W)Y (v)w; = [4(—a+c+2d)(3x—y/2) }
V3(—a+c+2d)(3x—y/2)

The scalar products like 2d or —y/2 or +/5¢ are discounted in Strassen’s model of
bilinear complexity [33, 34] and for good reasons — these constants coefficients are
fixed in the algorithm and can be hardcoded or hardwired, unlike the product between

2 Genuine examples to follow in Sects.4 and 5.

@ Springer

350 Z.Dai, L-H. Lim

—a + ¢ 4 2d and 3x — y/2, which depends on the variable inputs u = [¢%] and
v = [’yc] In particular, Strassen’s measure of speed, called bilinear complexity, is
independent of the values of these constant coefficients, but we will show in the next
section that these will affect numerical stability of the algorithm.

To emphasize its distinction from scalar products, Strassen calls a variable productin
the above sense a nonscalar product [34]. In other words, bilinear complexity measures
speed purely in terms of the number of nonscalar products. The bilinear complexity
of the algorithm in (2.1) is given by the number terms in the decomposition r and the
optimal speed of evaluating B is therefore given by the tensor rank [33]

rank(B) := min{r B = Z(pi QY @ wi}- (2.2)
i=1

A tensor rank decomposition of B, i.e., one that attains its tensor rank, is then a fastest
algorithm in the context of bilinear complexity.

In realistic scenarios, storage and computations both have finite-precision. Given u
and v, we do not need to know S (u, v) exactly; in fact computing anything beyond 16
decimal digits of accuracy is wasted effort since we do not store more than 16 digits
in IEEE double precision. So the tensor rank of 8 is less relevant than the border rank
[5] of B, which is the smallest r so that

1B—¢i @Y @uw] — s @Y @us — - — ¢! YL @wi| <e

for all ¢ > 0, or, formally,
.
rank(B) := min{r (B = sl—i>I{)1+ ;wf QY ® wf} (2.3)

For the two problems studied in our article, namely, matrix multiplication,
Bmn,p: R x R"™P — R"P (A, B) — AB,
and complex multiplication,
Bc:CxC—C, (w,z)+— wz,
(noting that C is a two-dimensional real vector space), we have [25, 37]
rank(B,2,2) = rank(f222) =7, rank(Bc) = rank(fc) = 3.

Itis inﬁneral difficult to find such exact values. For instance, the values of rank (83 3 3)
and rank (B3 3 3) are still unknown. Most of the efforts in studying matrix multiplica-
tion go towards determining the asymptotic value o := inf{p € R: rank(B,.,.n) =

O (n?)}, called the exponent of matrix multiplication. An advantage is that asymptoti-
cally, the full arithmetic complexity, i.e., counting all operations and not just nonscalar

@ Springer

Numerical stability and tensor nuclear norm 351

multiplications, is also O (n®). More importantly, the role of w stretches far beyond
matrix multiplication, governing the full arithmetic complexity of computing inverse,
determinant, null basis, linear systems, LU/QR/eigenvalue/Hessenberg decomposi-
tions, characteristic polynomials, sparsification, and even linear programming — note
in particular that none of these are bilinear operations [34] (see also [8, Chapter 16]
and [27, Examples 3.10 and 4.40].

3 Bilinear stability

We would like to state at the outset that numerical stability is a moderately complicated
issue that depends on many factors and cannot be completely represented by any single
number. Designing numerically stable algorithms is as much an art as it is a science.
However the six Higham guidelines for numerical stability [19, Section 1.18] capture
the most salient aspects. Among them, the second guideline to “minimize the size of
intermediate quantities relative to the final solution” is one of the most unequivocal,
lends itself to precise quantification, and is what we will focus on in this section.
Consideration of Higham’s second guideline for bilinear algorithms leads us naturally
to the notion of bilinear stability, which relates to accuracy the way bilinear complexity
relates to speed. More precisely, the growth factor (1.3) and tensor nuclear norm (1.4)
are to accuracy in bilinear stability what the number of rank-1 terms in (2.1) and the
tensor rank (2.2) are to speed in bilinear complexity. Here accuracy refers to the size
of relative forward error.

Bilinear stability differs from existing studies of numerical stability of bilinear
algorithms such as those in [2, 4, 7, 17] in three ways: (i) it is more general, applying
to any bilinear operators as opposed to specific ones like matrix multiplication; (ii) it is
more simplistic, relating forward error to just growth factor as opposed to two or three
different factors in the approaches of [2, 4]; (iii) it is truly tensorial, as growth factor
and tensor nuclear norm are invariant under any orthogonal change-of-coordinates,
just as tensor rank is invariant under any invertible change-of-coordinates. The factors
(i) and (ii), i.e., generality and simplicity, may often be sacrificed for better bounds:
Given any specific bilinear operator, we may often obtain smaller forward error bounds
by performing a more precise analysis tailored to that given operator. We will do see
this in Sect.5.2.

One difference between bilinear complexity and bilinear stability is that the latter
requires a norm. While there are many excellent treatises on tensor norms [10, 12, 30],
they are excessive for our purpose. All the reader needs to know is that for a vector
space V; withnorm |- ||;,i = 1,...,d,atensornorm ||- | on Vi ® V, ® --- ® Vg4
satisfies the multiplicativity property for rank-1 tensors:

lvi ®@v2 ® - ®@vgll = llvillilvzll2 -~ - llvalla,

where v; € V;. In particular, the spectral, Frobenius (also called Hilbert—Schmidt),
nuclear norms [27, p. 561 and Example 4.17] are all equal on rank-1 tensors in U* ®

@ Springer

352 Z.Dai, L-H. Lim

Ve W,ie.,

le@Y Qulo =lle @Y Qulr=lle @Y Qwl = llelll¥ilwl

for all ¢ € U*, ¥; € V*, w € W. Consequently, when we speak of the norm of a
rank-1 tensor ¢ ® ¥ ® w, it does not matter which of these three norms we choose,
and we will simply write

le @ ¥ @wll = llll«ll¥l«lwl.

We first present a straightforward heurstic that motivates our definition of the growth
factor, deferring the more formal forward error analysis to Theorem 3.3. If we apply
the rank-one bilinear operator ¢; ® ¥; ® w; to u and v,

(@i ® ¥i @ wi)(u, V)| = llgi (Wi)will = lgi ¥ (V)] l[wil
= ll@illsllulllvillliviliwill = llei @ ¥i @ willllulllv]l.
So ¢; ® ¥ ® w; magnifies the errors in # and v by an amount bounded by its tensor

norm ||¢; ® ¥; & w;||. Therefore, in a bilinear algorithm given by the right side of
(2.1) for evaluating B, triangle inequality gives

18, v)|| =

D (i ® Y @ wi)(u, v)|| < [Zn@ ®Y; ® win} el]l
i=1 i=1

The ith step of the algorithm magnifies the error in the inputs (x, v) by an amount
bounded by |l¢; ® ¥; ® w;|| and over the course of r steps in the algorithm, the
accumulated error is bounded by a factor of

r r
> lloi @ v @ will =Y _lleille Il llwil. 3.1

i=1 i=1

which we will define as the growth factor of the algorithm or decomposition (2.1). Its
minimum value over all possible bilinear algorithms for evaluating g or, equivalently,
over all decomposition of B as a 3-tensor is therefore given by the nuclear norm (1.4).
This idea was first floated in [38, Section 3.2]. Note that the growth factor depends on
the algorithm/decomposition for B but the nulcear norm depends only on 3.

We now state a formal definition to make precise the terms used in the preceding
discussions.

Definition 3.1 Let U, V, W be three finite-dimensional real vector spaces. A decom-
position of a bilinear operator B : U x V — Wis alist D = (g;, ¥i, wi)i_,;
with

B=) 0i® Y ®u;. (3.2)

i=1

@ Springer

Numerical stability and tensor nuclear norm 353

where ¢; : U — Rand v; : V — R are linear functionals and w; € W,i =1,...,r.
An algorithm Bp given by the decomposition D takes (u, v) € U x V as inputs and
computes the output B(u, v) in three steps:

(1) computes ¢;(u) and ¥; (v),i =1,...,r;
(i) computes ¢; (W)Y (V)w;, i =1,...,r;
(iii) computes Y ;_; ¢; ()i (v)w.

The growth factor of the algorithm ED is defined as

yBp) = llgi @ vi @ will = Y lgill vl will.

i=1 i=1

As noted in Sect.2, only the variable multiplication in step (ii) counts in bilinear
complexity; the other two steps comprising scalar multiplications and additions are
discounted. In bilinear stability all three steps contribute to the growth factor.

Proposition 3.2 The minimal growth factor is given by nucler norm of the B, i.e.,
miny (Bp) = 1B,

with D running over all decomposition. Furthermore, there is always an algorithm
that attains the minimal growth factor.

The above equality is just stating (1.4) in terms of the growth factor. That there is always
an algorithm attaining the minimal growth factor, justifying our writing min instead
of inf, follows from the existence of a nuclear decomposition [15, Proposition 3.1],
i.e., a decomposition that attains the nuclear norm. Just as a rank decomposition of
B represents a fastest algorithm in bilinear complexity, a nuclear decomposition of
represents a stablest algorithm in bilinear stability.

We next establish a rigorous relationship between growth factor and numerical
stability by proving a forward error bound in terms of the growth factor of a bilinear
algorithm. We assume a system of floating point arithmetic obeying the standard model
asin[19]: Forx,y € R

flxopy) =@xopy)(1+6), [§/<u, op=-+,—, %/ (3.3)

with u the unit roundoff, except when fl(x op y) = 0, in which case § becomes —1.
We assume that U, V, W are vector spaces of dimensions m, n, p and that appropriate
computational bases have been chosen on them so that we may identify U = R™,
V = R*, W =Z RP. The computational bases do not need to be the standard bases and
may instead be Fourier, Krylov, Haar, wavelet bases, etc. This is another reason why
we cast our discussions in terms of abstract vector spaces and do not choose bases
until absolutely necessary. However, once a choice of bases has been made, the result
below depends only on the dimensions of U, V, W; if say, U = R"*", then only the
fact that it has dimension mn matters, i.e., U = R™",

@ Springer

354 Z.Dai, L-H. Lim

Theorem 3.3 (Growth factor and forward error) Let /3 R™ x R" — RP? be a bilinear
operator, D = (@i, i, w;)i i=1 a decomposition, and ﬁp the corresponding algorithm.
If ﬂp (u, v) is the output of ,BD computed using floating point operations, withu € R"
and v € R" as inputs, then

1B, v) = Bp(u,) loo < (m+n+r + 1)y Bp)lullllv]u+ Ou?).
Proof We first show that the result reduces to the case p = 1. It suffices to show that
1B, v)k — Bp(u,)kl < (m+n+r+ Dy BEp)lulllviu+ O0W* (3.4)

forallk =1, ..., p, where the subscript k refers to the kth coordinate of a vector in
RP. Since

r r
yB) = il i llllwil = llei ll ¥l wik.

i=1 i=1

with w;y the kth coordinate of w; € RP”, to show (3.4), it suffices to show

B, v)i — Bp(u,)il < (m+n+r+ 1)[ani ||*||1/fi||*|wik|} lullllvllu + O (u?),

i=1
which is equivalent to the case p = 1. In the following, we will assume that p = 1.
Since ¢; and v; are linear functionals on R™ and R”, there exist u; € R™ and
v; € R" such that
i) =uju and ¥;(v) =v/v,
forallu € R™ and v € R". By [19, equation 3.7],
Ty =G < nlxTlylu+ O,

for any x, y € R” where | - | applies coordinatewise. So foreachi =1, ...,r,

i (u) — s ()| = |u]u — A w)| < mlu;|T|ulu+ O(u?)
< mlulllullu+ O = mllgi|lulu+ OW?. G
Likewise, foreachi =1, ...,r,
Wi (v) — A)] < nll i llllvu+ O). (3.6)
Let Ay ; = fl(@i (1)) — @i (u) and Ay ; = fl(¥; (v)) — ¥i(v). By (3.5) and (3.6),
1ALl < mlgillslullu+ OW?), [Azil < nl¥illslvllu+O0W?). (3.7

@ Springer

Numerical stability and tensor nuclear norm 355

Let ¢; = ¢;(u)¥;(v) and ¢; be its computed value. By (3.7), there exists §; with
|6;| < u such that

G o= (i) + AL)W (v) + Ar)1 +8)
= @i (W) Yi (V) + A1 (v) + @i (W) Az + 8igi ()i (V) + O(U?). (3.8)

By (3.7) and (3.8),

lei = @il < mlgillslulll¥i @)lu+ lg; @l Yillllviu+ 1g; @i (v) u+ O (u?)
< (m+n+ Dlgillllilllullviiu+ Ow?). (3.9)

Let A; =7¢; — ¢i. By (3.9),
1A < (m+n+ Dllgill Wil lvliu+ Ou?). (3.10)

Let d; = c;w; and Zi\, be the computed value of d;. By (3.10), there exists 8; with
|8/] < u such that

di = (ci + ADwi (1 +8) = ciw; + Ajw; + Slejw; + O(U?). (3.11)
Let A} = d; — d;. By (3.10) and (3.11),

|AL] < (m 4 Dl el Dl ol wi a4 i)y (o) wi[u + O (u?)
< (m+n+2)lgi il willlull [vlu + O). (3.12)

Finally, let a = Y ;_; ¢i ()i (v)w; and @ be the computed value of a. By (3.12),
there exists § with |§| < u such that

G=di(14+8) "+ +8) " +d0+8) 2+ +d (149,

where we compute the sum Zi\l + c/l\z + -4 Zi; from left to right. Hence we obtain

r r
a—al < (n+n+2ullvl Y el 0 lwilu + ¢ = DY ciwi |u+ 0w?)
i=1 i=1
r
< (m+n+r+ Dlullol Y el Jwilu + 0 u?)
i=1
= (m+n+r+ Dy @Ep)llullvu+ 0@w?).
O

@ Springer

356 Z.Dai, L-H. Lim

Theorem 3.3 essentially says that that algorithms with small growth factors have
small forward errors. Combined with Proposition 3.2, we see that the optimally stable
algorithm in this context is the one corresponding to a nuclear decomposition of S.

Corollary 3.4 (Tensor nuclear norm and forward error) Let 8 : R? x R" — R?
be a bilinear operator, D = (¢;, Vi, w;);_; a nuclear decomposition, and Bp the
corresponding algorithm. Then

1BG. v) = Bp, V)lloo < (m+n+ 7+ DBl llulllv]u+ 0.

In principle, there is no reason to expect there to be an algorithm that is both
fastest in the sense of Sect.2 and stablest in the sense of this section, i.e., having
a decomposition that attains both tensor rank and nuclear norm. In Sect.5, we will
see that such an algorithm exists for complex multiplication and we will study its
properties when applied to complex matrix multiplication.

4 Fast matrix multiplications

As an illustration of bilinear stability in the last section, we will calculate the growth
factors of Strassen’s algorithm [32] and Winograd’s variant [19, 24] for fast matrix
multiplication and compare their stability empirically. We will see that the growth
factor of Strassen’s algorithm is smaller than that of Winograd’s variant, and, consistent
with the prediction of Theorem 3.3, numerical experiments indeed show that the former
gives more accurate results.

4.1 Bilinear stability of Strassen multiplication

Given two block matrices

A= [Au A12:| ’

_|Bn B
Ay Ay By By’

Strassen’s algorithm [32] first computes

M = (A1 + Ax)(B11 + B2), Ms = (A1 + A12) B2,
My = (A1 + Ap) B, Mg = (A1 — A11)(B11 + Bi2),
M3 = A11(B12 — B), M7 = (A2 — A2)(B21 + Bo),

My = Axn (B2 — Bi),
and then computes the product via

AB=|:M1+M4—M5+M7 M3 + Ms }

My + My My — My + M3 + Mg

@ Springer

Numerical stability and tensor nuclear norm 357

Note that this may be applied recursively. Let Bs : R2*2 x R2X2 — R2*2 denote the
Strassen’s algorithm for 2 x 2 matrices. It is routine to check that for A, B € R2%2,

7
Bs(A, B) =Y 0i(A)Yi(B)W,

i=1

where ¢;(A) = tr(U] A) and ¥;(B) = tr(V;' B) with

T S 1 R |
7 R A [A (0 |
T 0 S (Y A |
T A ESS I R |
T S A R
T S L B |
P Y BTSSR

For simplicity we will use the Frobenius norm on R?*? since it is self dual. The growth
factor of Strassen’s algorithm is then given by

7 7
y(Bs) = lill«llwi I Will =Y U el Villell Wi le

i=1 i=1

=124 2v2 ~ 14.83. .1

4.2 Bilinear stability of Winograd multiplication

Winograd’s algorithm [19, 24] computes a different set of intermediate quantities

M| = (A21 + Ax — Aq)) M5 = (A2 + An)(Bi2 — Biy),
(B11 + B — B1o),

Mj = A1 By, Mg = (A1 + A1z — Ay — Ap)Ba,

Mj = A12Byy, M} = An(Bii + Bx — Bi2 — Ba),

My = (A1 — A21) (B2 — Bio),

@ Springer

358 Z.Dai, L-H. Lim

and then compute the product via

AB — M)+ M} M| + M + M5 + Mg
T M+ ML+ My - M, M+ M+ M+ M

Again this can be applied recursively. Let By : R2*2 x R2*2 — R2*2 denote the
Winograd’s algorithm for 2 x 2 matrices. It is again routine to check that for A, B €
RZXZ’

7
Pw(A. B) =" g{(A)y](B)W],

i=1

where ¢/(A) = tr(U]TA) and ¥/(B) = tr(V/TB) with

w=00 =l) w=l)
si=lo o] w=loo] w1
v=lo o] v=llo} wm=lo o)
v=l4 o w=lp 7 w=ll)
v=0) w=[o) =)
Ué::11 —]1] Vé::g (1)} Wé::g (1):3
] P E Il PR

With respect to the Frobenius norm, the growth factor of Winograd’s algorithm is

7 7
I E A N AN VAT A TIVATIAT

i=1 i=1

=7 +4v2 + 33~ 17.85. (4.2)

@ Springer

Numerical stability and tensor nuclear norm 359

4.3 Bilinear stability of conventional matrix multiplication

For completeness we state the growth factor of the conventional algorithm for matrix
multiplication B¢ : R2X2 x R2*? — R2%2,

2

Bc(A.B)= Y t(E]A)t(E],B)Ej.
i,j.k=1

where E;; € R?*2 denotes the standard basis matrix. Its growth factor is easily seen
to be

2

y(Bo) = > IE;IFIEjlell Eiclle = 8.
i,j.k=1

From (4.1) and (4.2), we see that

y(Bw) > ¥ (Bs) > ¥ (Bo). (4.3)

The first inequality will be verified in the numerical experiments below; the second
is consistent with the well-known fact [19] that Strassen’s algorithm is less stable
than conventional multiplication. In this case, the conventional algorithm attains the
nuclear norm of two by two matrix multiplication, which has value 8 [11].

4.4 Numerical experiments for fast matrix multiplications

By Theorem 3.3 and the sizes of the growth factors in (4.3), we expect Strassen’s
algorithm to give more accurate results than Winograd’s variant since it has a smaller
growth factor. We test this statement with random matrices generated in three different
ways: with (a) real entries drawn from the uniform distribution on [—1, 1], (b) real
entries drawn from the standard normal distribution, (c) complex entries whose real
and imaginary parts are drawn from the uniform distribution on [—1, 1]. In the last
case, note that our earlier discussions over R apply verbatim over C with the same
growth factors.

In all cases, we compute /’3\5(A, B) and EW(A, B) using Strassen’s algorithm and
Winograd’s variant respectively and compare the results against the exact value
B(A, B) = AB computed using the MATLAB symbolic toolbox. From Fig. 1, we
see that Strassen’s algorithm is indeed more stable than Winograd’s variant, substan-
tiating Theorem 3.3. Even though the 14.83 growth factor of Strassen’s algorithm
appears to differ only moderately from the 17.85 growth factor of Winograd’s variant,
the effect is magnified multifold as a result of recursion — these algorithms are applied
recursively to an n x n matrix as a block 2 x 2 matrix |log, n| times. The conventional
algorithm, which has a growth factor of 8, is included in these plots for comparison.

@ Springer

360 Z.Dai, L-H.Lim
L1072 accuracy (uniform random real matrix) 552107 accuracy (normal random real matrix)
25 T T T T T T T T T T
—-—- Strassen —-—- Strassen
— — Winograd — — Winograd
Conventional N‘ 3r Conventional L
2}])
! N
| 251 N
I I
o [o Iy
S 15k [l 4 S R \I
= \s - 2 o2t ! 1
& = S
g / S]
b= —~J £
= ,1 ERE \/ 4
= T 1 = ING
tl ASIPAN
\V I/
NG
\ 1+ ! 4
r L i
05 ‘«// o -/ !
~=1 /V.V\”'/. o5f = =7 ~/A’/]
- P i o
PN P = —————NTT -
oL == T TS —m=) .) L ZEE T .) ‘
13 14 15 16 17 18 19 2 21 13 14 15 16 17 18 19 2 21

Logarithmic Size of Dimension

(B) Real random matrices N'(0,1).

Logarithmic Size of Dimension

(a) Real random matrices U[—1,1].

L1012 accuracy (uniform random complex matrix)
35 ; ; ‘ ; ! ¢ .
—-—- Strassen |
— — Winograd ~
3r Conventional /A
i !
U
L N |
* l'i]
= [
g I
g 2t) 1
= I
¢ v
E I\
]
ERES J 1
= /
/N
1t , 1
/ e
> s
051 - A B
— -
- P
oL zzzzziom e,
13 14 15 16 17 18 19 2 21

Logarithmic Size of Dimension

(c) Complex random matrices U[—1,1] + U[—1,1]i.

Fig.1 Accuracy of Strassen’s algorithm and Winograd’s variant

5 Complex multiplication

As described towards the end of Sect. 2, complex multiplication is an R-bilinear oper-
ator fc € R? x R? — R? when we identify C = R?, with the standard basis vectors

in R?
[t 0
el_ 0 E) 62 1

R2 — R for the dual basis, i.e., linear

corresponding to 1,i € C. We write e, ¢} :

functionals with
a([s]) = a(])=>

We will denote the regular algorithm (a + bi)(c +di) = (ac — bd) +i(bc + ad),
Gauss’s algorithm (1.1), and our new algorithm (1.5) by ,BR, ,BG ,BN respectively. For

@ Springer

Numerical stability and tensor nuclear norm 361

easy reference,

(A) I e (4 1 P
a([g] [c]) = | e B0 s) o=)~) -]

P al) = A) -)

They correspond to the decompositions

Bi=(ci@ef—ch@eh)@er+ (e} ®e5 + ¢ @ef) ®e, 5.1)
Bo=(ef+e) @ +e3)@ertef®ef®(e1 —er) — e @ ® (1 + e2),
(5.2)
~ 4T3 1 V3, o1 1 V3
Pu= 5([74*565} ®[> it ae } ® [zel +762}
V3, o1 V3, 1 V3
+ [767— 583} ® [767— 3¢ 2} ® [561 - 762] ‘63‘@63‘@‘”)‘
(5.3)

5.1 Bilinear stability of complex multiplication algorithms
Recall from Sect.?2 that rank(B8c) = 3 = rank(fB¢), i.e., both Gauss’s algorithm and
our new algorithm have optimal bilinear complexity whether in the exact or approx-
imate sense. One may also show that B¢ has nuclear norm [15, Lemma 6.1] is given
by

Bclly = 4.

The growth factor of the regular algorithm (5.1) attains this minimum value,

v (Br) = llefll«llerlllerll + lI—e3lllles s lerll + llefll«lles I« llezl
+ llezllllerlllexl
=4 =|Bcllv.

as does our new algorithm (5.3),

1 1 V3
(B = ‘(”_el 29| |2t et 7 e
1 3 1 1 V3
H—e1 el it Fiiierets +||e§||*||e§||*||e1||)
=4=|Bcll.,

@ Springer

362 Z.Dai, L-H. Lim

but not Gauss’s algorithm (5.2),

y(Be) = lle} + e3ll«llet + esllslleall + llef I« lefllxller — eall
+ I—e3ll«lezllller + el

=2(1++2) > lIBclly-

So Gauss’s algorithm EG is faster (by bilinear complexity) but less stable (by bilinear
stability) than the regular algorithm. Our new algorithm EN on the other hand is optimal
in both measures, attaining both rank(8¢) and || B¢/, .-

We stress that numerical stability is too complicated an issue to be completely cov-
ered by the simple framework of bilinear stability. For instance, from the perspective
of cancellation errors, our new algorithm also suffers from the issue pointed out in
[19, Section 23.2.4] for Gauss’s algorithm. By choosing z = w and b = +/3/a, our
algorithm (5.3) computes

(R e R IE S (o I N

There will be cancellation error in the computed real part X when |a| is small and
likewise in the computed imaginary party when |a| is large. Nevertheless, as discussed
in [19, Section 23.2.4], the new algorithm (5.3) is still stable in the weaker sense of
having acceptably small |x —X|/|z| and |y — V]/|z| evenif |x —X|/|x| or |y — V|/|y|
might be large.

5.2 Error analysis of new algorithm applied to matrices

While using Gauss’s algorithm or our new algorithm for multiplying of complex
numbers is a pointless overkill, they become useful when applied to the multiplication
of complex matrices. Note that any complex matrices A +iB, C + iD € C"*" may
be multiplied via their real and imaginary parts A, B, C, D € R"*":

(A+iB)(C+iD)=(AC - BD)+i[AD + BC(C], 5.4

allowing us to focus our attention on designing algorithms for real matrix products.
In this regard, Gauss’s algorithm applied in the form

(A+iB)(C +iD) = (AC — BD) +i[(A + B)(C + D) — AC — BD] (5.5

reduces the number of real matrix products from four to three at the expense of more
matrix additions. This represents an enormous saving as matrix products are invariably
much more expensive than matrix additions. Our new algorithm (1.5) likewise applies
in the form

@ Springer

Numerical stability and tensor nuclear norm 363

(A+iB)(C +iD)

1 1 1 1 1 8
= - A+—B><C+—D> + (A— —B)(C— —D) — —BD:|

2 [(V3 V3 V3 V3 3

"/_[<A+ B)(C—i— : D) (A : B><C : D)} (5.6)
2 V3 V3 V3 Vi)l

trading expensive matrix products for inexpensive scalar multiplications and additions.
The following is an error analysis of (5.6),1.e., our new algorithm applied to complex
matrix multiplication. We emulate a similar analysis for Gauss’s algorithm in [17, 19],
assuming in particular that the real matrix multiplications involved are performed using

the conventional algorithm (as opposed to Strassen’s or Winograd’s). We remind the
reader that conventional matrix multiplication has the simple error bound

|IAB — fl(AB)| < n|A||Blu + O(u?) (5.7)

for A, B € R"*",

Theorem 5.1 (Error analysiifor/f)ur new algorithm) Let (A+iB)(C+iD) = F+iG
with F, G € R™" and let Fy, Gy be computed via (5.6) in floating point arithmetic
satisfying (3.3). Then

-~ 1 1
|F — Fy < (n +7)<|AI + ﬁlBl)(ICI + ﬁIDI>U

4
+ (§n+4>|B||D|u+0(u2), (5.8)

-~ 1 1
|G — Gyl < V3(n +6)<|A| + ﬁ|B|) (|C| + E|D|>u + 0, (5.9)

where the inequality < and absolute value | - | both apply in a coordinatewise sense.

Proof Following [19], we use the same letter § to denote the error incurred in each
step of our algorithm. So, for example,

fi(B/~/3) = B/N/3 +8B/\/3.

In the following we will define matrices H; and let fl, be its computed value, i =
1,...,8.
Let H, := A+ B/+/3. Then

H =f(A+ B/v3+8B/v3) = (A+ B/vV3+8B/vV/3)(1 +36)
= A+ B/vV3+8(A+2B/V3) + Ou?)
= Hi +2A1+ 0W?), |A] < (|Al+|B|/V3)u.

@ Springer

364 Z.Dai, L-H. Lim

Similarly H := C 4 D/+/3 satisfies
Hy=Hy +2A:+ O(u?), |Az| < (IC| + |D|/+/3)u.
Let Hs := (A + B/+/3)(C + D/+/3). By (5.7),
Hy = (A+ B/342A)(C+D/V3+2A) +nAz+ 0W?) (5.10)
where
|A3] < [(A+ B/Y3 4 2A1D|I(C + D/+/3 +2A2)|u
< (Al + |BI/v/3+2|A1D(C| + |DI/¥/3 + 2| A2])u
< (IA|+1BI/v3+2u(|A|+|B|/v/3)(IC|+|DI/v/3+2u(|C|+|D|/v/3)u
< (|A| + |BI/3)(IC| + [DI/v/3)u + O(u?). (5.11)
By (5.10) and (5.11),

Hsy = (A+ B/N3)(C + D//3) +2A,(C + D/V/3)
+2(A+ B/V3)Ay + nAz 4+ O(u?) (5.12)
=H;+ (n+4)As + O(U?)

where
|Agl < (Al +|BI/v3)(IC| + [D|/v3)u.
Similarly Hy := (A — B/+/3)(C — D/+/3) satisfies
Hy=Hy+ (n +4As + 0Ou?) (5.13)
where
|As| < (1Al + |BI/~/3)(IC] + | DI/v/3)u.

Let Hs := (A+ B/v/3)(C + D/~/3) + (A — B//3)(C — D/+/3). By (5.12) and
(5.13),

Hs = [Hs + (n + 49 Ay + Hy + (n + HAs1(1 +8) + Ou?)

5 (5.14)
= Hs5+ 2n 4+ 10)Ag + O(u”)

where
|A¢| < u(JA| + |BI/~/3)(IC| + |DI/V/3).

@ Springer

Numerical stability and tensor nuclear norm 365

Let He := 8/3BD. Then

He = fI(8/3(BD + nA7)) + O(u?)
=8/3(BD + nA7)(1 +8) + O(u?) (5.15)
= Hs +8/3(n + 1)Ag + O(u?)

where
|A7| < |B||Dlu, |Ag| < |B||D|u.
Let H; := Hs — Hg. By (5.14) and (5.15),

H7 = [Hs + 2n + 10)Ag — Hs — 8/3(n + D Agl(1 +8) + O(u?)
= Hy+ 2n+ 12)Ag + 8/3(n 4+ 2)A1g + O (u?)

where
Aol < (Al +|B|/v/3)(IC| + [DI|/v/3)u, |Ajo| < |B||Dlu.
Then
Fu= (1+8)[H; + 2n+12)A¢ + 8/3(n +2)A10]/2 + O (u?)
= F+m+7DA1+4/3(n+3)A1n + 0u?)
where

|A1] < (Al +|BI/V3)(IC| + [DI/¥3)u, |Arp| < |BI|Dlu,
and from which we obtain (5.8).
Let Hy := (A+B//3)(C+D/v3)—(A—B/v/3)(C — D/+/3). Similar to (5.14),
we have
Hs = Hy — 2n + 10)A13 + O (u)
where
|A13] < (Al + |BI/V/3)(IC| + |D|/+/3)u.

Then

G = V/3/2[Hs — 2n + 10)A13](1 + 8) + O (u?)
=G +V3n+6)A+ OU?)

@ Springer

366 Z.Dai, L-H. Lim

where
|A1al < (JAL+ |BI/V/3)(IC| + |DI/v/3)u,

from which we obtain (5.9). O

If we compute the matrices F, G in Theorem 5.1 using Gauss’s algorithm (5.5)
with floating point arithmetic and let the results be Fg and Gg, then the corresponding
error bounds [17, 19] are

|F — Fal < (n+ D(AJIC| + |B[D]u+ O(u?),

~ (5.16)
|G — Gal < n+H[(AI+|BD(C| + D) + |A[|C|+|B||D[Ju+O(u?).

When n — oo, we have n + ¢ = n for any constant c. Hence the errors in (5.8) and
(5.9) are dominated by

1 1
V3 V3

~ 1
|G — G| ~ n[\@lAIICI + |BI|C| + |A|ID] + EIBIIDI]U,

~ 5
|F_FN|Nn|:|A||C|+§|B||D|+ |AllD] + IBIICI}U,

whereas those in (5.16) are dominated by

|F — Fg| ~ n(|A[|C| + |B||D|)u,
|G — Gg| ~ n(2|A||C| +2|B||D| + |A||D| + |B||C|)u.

For easy comparison suppose the magnitudes of the entries in A, B, C, D are all
approximately 6, then these reduce to

|F — Fy| ~ 3.8n2%62, |G — G| ~ 4.3n%62,
= 242 ~ 2.0 (5.17)
|F — Fg| ~ 2n°6~, |G — Gg| ~ 6n°6°.

So Gauss’s algorithm gives an imaginary part that is three times less accurate than
its real part. Note the the imaginary part of Gauss’s algorithm accounts for all its
computational savings; the real part is just the regular algorithm. On the other hand,
our algorithm balances the accuracy of both the real and imaginary parts by spreading
out the computational savings across both parts.

To quantify this, we use the max norm. For a complex matrix A +i B € C"*", this
is

|A +iBllmax := max{la;;l, |b;;| :i,j=1,...,n}. (5.18)

The max norm differs from the usual matrix co-norm given by maximum row sum
used in [17, 19]. We favor the max norm as it is the strictest measure of numerical

@ Springer

Numerical stability and tensor nuclear norm 367

accuracy — a small max norm error implies that each entry is accurate as opposed to
accurate on average.
If we denote the matrices resulting from Gauss’s algorithm and our new algorithm
by
E\G = ﬁG"‘l’G\G, EN = fN‘i‘la\N

respectively, we expect | E — EN |lmax to be smaller than | E — EG |lmax- The extensive
experiments in Sect. 6 will attest to this.

5.3 Derivation of our algorithm

It is perhaps instructive to include a description of how one may derive the algorithm
in (1.5) by minimizing growth factor. Observe that Gauss’s algorithm (1.1) includes
the term (a + b)(c + d), which adds 2 to its growth factor. We seek to reduce the

growth factor by replacing it with (a + rb)(c + rd) for some shrinkage r € (0, 1),
which leads to a family of algorithms parameterized by r:

(a + bi)(c +di) = %[(a +rb)(c +rd) + (a — rb)(c — rd) — (2r + 2)bd]

+ %[(a +rb)(c+rd) — (a —rb)(c —rd)].
Let g(r) denote the growth factor. A simple calculation shows that
1 243/2 4 2
8 =~ (4 7 41,

which has a minimum of 4 attained at » = 1/+/3, giving us (1.5). Note that (1.5) is
not unique; another algorithm with growth factor 4 is given by

(a +bi)(c+di) = f[(u + %b)(%c —d) + (a - %b) (%c—i—d)]
+ %[(a - %b)(%c+d> - (a + %b)(%c—d) + gbc],

which may be obtained from (1.5) by substituting ¢ = di and d = —ci.

6 Experiments for new complex matrix multiplication algorithm

The goal of this section is to provide numerical evidence to show that our new algorithm
(5.6) for complex matrix multiplication is

e nearly as stable as the regular algorithm (5.4), and
e nearly as fast as Gauss’s algorithm (5.5).

@ Springer

368 Z.Dai, L-H. Lim

speed

60 T

—-—-Regular /

—— Gauss ’/'
sob|— New ! i
3/4 of Regular /

40

20 -

Computation Time (seconds)
8
T

3.3 3.4 35 3.6 3.7 3.8
log size of matrix

Fig.2 Speed of the three algorithms for complex matrix multiplication

We begin with routine experiments comparing the three algorithms (5.4), (5.5), (5.6)
on random matrices, and move on to three actual applications: matrix polynomial
evaluations, unitary transformations, and the increasingly popular complex-valued
neural networks. The results, we think, show that our new algorithm can be a realistic
replacment for Gauss’s algorithm in engineering applications.

6.1 Speed of the algorithms

We generate random A + iB,C + iD € C"*" with entries of A, B, C, D drawn
uniformly in [—1, 1]; the results with standard normal are similar and omitted. We
increase n from 2100 to 7000 in steps of 100. The product (A 4+ i B)(C + iD) is
computed numerically with the regular algorithm (5.4), Gauss’s algorithm (5.5), and
our new algorithm (5.6). For each n, we generate ten different matrices and record
the average time taken for each algorithm and plot these in Fig.2, with wall time (in
seconds) for vertical axis and log;,(n) for horizontal axis. The time taken by MATLAB’s
internal function for complex matrix multiplication is virtually indistinguishable from
that of the regular algorithm and therefore omitted.

Consistent with the predictions of bilinear complexity, our new algorithm has
roughly the same computation time as Gauss’s algorithm, at roughly 3 /4 the time taken
by the regular algorithm. We will perform more speed experiments in conjunction with
our accuracy experiments in Sect. 6.2.

@ Springer

Numerical stability and tensor nuclear norm 369

6.2 Accuracy of the algorithms

We generate random A+i B, C+iD € C"*" withn = 64, 128, 256 and with condition
numbers ranging from 174 to 3 x 10'!. We use the spectral condition number x> (X),
i.e., ratio of largest to smallest singular values of X, throughout this article. It is
desirable to limit ourselves to matrices over Gaussian rationals, i.e., Q + Qi, as we
will need to compute the exact values of their products later.

The way we generate such a matrix requires some elaboration. For an X € Z™*"
with a specified x2(X) = « € Z. We form a diagonal A € R"*" whose diagonal
entries are 1 and « toegether with n — 2 other random integers between 1 and k¥ — 1.
We then form X = HAH' with a random Hadamard matrix H € Z"*".If A and B
are generated in this manner, then they are dense matrices (important as we do not want
sparsity to unduly influence arithmetic costs) and k2 (A +iB) = k2(A) = k2(B) =k
as (k +ki)/(14+i) =«k.

We compute the exact value of (A + iB)(C + i D) symbolically with MATLAB’s
symbolic toolbox. Given our relatively modest computational resources, this is the
bottleneck for our experiments as this step becomes prohibitively expensive when
n > 256. In generating the n = 256 plots in Fig. 3, this step alone took 40h on our
University’s Research Computing Center servers.

For each pair of complex matrices A + i B and C + i D, we compute their product
E using each of the three algorithms (5.4), (5.5), (5.6), and compare them against the
exact result E via the max norm relative error

”E - E‘\”max
IA + i Bllmax |C + i Dllmax

As discussed in [17, 19], it is natural to measure error in matrix multiplication relative
to the norms of the input matrices. We use the max norm in (5.18) to better capture
entrywise accuracy.

The results are plotted in Fig. 3: speed plots have wall time in seconds on the vertical
axes; accuracy plots have relative error on the vertical axes; all plots have log;((«x) on
the horizontal axes. We repeat each experiment ten times: every value on these plots
comes from averaging across the results of ten pairs of random matrices with the same
condition number.

Observations from Fig. 3: The accuracy of our new algorithm is much higher than
that of Gauss’s algorithm and only slightly worse than that of the regular algorithm.
Gauss’s algorithm also shows a great deal more fluctuation across varying condition
numbers than either our new algorithm or the regular one. When it comes to speed,
our algorithm is closer to that of Gauss’s than the regular algorithm. These accuracy
results attest to Theorem 5.1 and the discussions around (5.17).

The relative errors and wall times for MATLAB’s internal function for complex
matrix multiplication are virtually indistinguishable from those of the regular algo-
rithm (that we implemented ourselves) and thus omitted. In the next three sections,
we will compare the accuracy and speed of the three complex matrix multiplication
algorithms in more realstic scenarios.

@ Springer

370

Z.Dai, L-H. Lim

10715 accuracy, n = 64, matrix multiplication

3

accuracy (random matrix)

0s
2 3 a4 5 6 7 8 9 10 11 12
log condition number of matrix
o accuracy, n = 128, matrix multiplication
5 T T T T T T T T T
a)
I
\ 0o b v
L 1o ool \ y oy]
b i e
N Ry N T YA IR TR e
% LT |Hlll\/‘[\/ IRy TRITIRTRS !
Sast VT VY [
g U TR AN vibg }
g ! [Il I
< I |

Computation Time (seconds)

Computation Time (seconds)

S x10* speed, n = 64, matrix multiplication

(random matrix)

log condition number of matrix

104 speed, n = 128, matrix multiplication (random matrix
5 T T T T T T

)

A r
\hoAN AU

(S N |
v \/\/\// v\ VR

\
AN -
Yol W TS

AV
\/\/ L

05
2

log condition number of matrix

10715

accuracy, n = 256, matrix multiplication

55

-

accuracy (random matrix)

log condition number of matrix

Computation Time (seconds)

4 L L L L L L
4 5 6 7 8 9 10

log condition number of matrix

5

1

10 speed, n = 256, matrix multiplication (random matrix

)

s
o
T

IS

w
o

AN
- \
NN

25 L L L L L L

|
|
| .

U~ NP A
‘I _/\"\,' NN
|

I
P R SN

”

4 5 6 7 8 9 10
log condition number of matrix

Fig.3 Accuracy and speed of algorithms for complex matrix multiplication

6.3 Matrix polynomial evaluations

11

We evaluate a polynomial p(x) = ZZ:O arx® with coefficients ag, ...,ax € Rata
X € C™"_ This is a problem that occurs in many tasks involving matrix functions [19,
20]. We limit ourselves to real coefficients as this is by far most common scenario [20];
but the complex coefficients case simply reduces to evaluating two real polynomials

@ Springer

Numerical stability and tensor nuclear norm 371

L1015 accuracy, n = 256, matrix polynomial speed. 1 = 256, matri I ial
T T T T T speed, n = 256, matrix polynomial
\ 0.025 T T T T T
~ //\ /\\ i . —— Regular
/N \ 0.024 - i — — Gauss |q
45f / \ sy \ ANE 4 New
- ! / (Y v 7 ! 0023 '3 -
\ /‘\ / \ ,/ v \// \\ \
\ s / \ z
4 v \ r~_ 1/ V \ g ooz

v/ ~ g

\ 7 Z 0021

relative forward error
°
T

0018

Computation Time
2
3
T

0017 |

25f(—.— Regular| % __7 [/
— — Gauss A\ / 0016 -
New \
2 n 0015
10 1" 12 13 14 15 16 10 " 12 13 14 15 16
log condition number of matrix log condition number of matrix

Fig.4 The three algorithms applied to matrix polynomial evaluations

Rp(x) and Ip(x). The celebrated Horner’s rule [20, Algorithm 4.3], as shown in
Algorithm 1, reduces the problem to one of repeated matrix multiplications.

Algorithm 1 Compute p(X) via Horner’s rule

Input ag,ay,...,a; € R, X € C"*"
Output agl + a1 X + ---+adXd

I: P=X;

2: S=apl +a1X;
3:fork=2:ddo
4. P=PX;

5 S=S4+aP;
6: end for

7: return S;

We generate random matrices X € C26*2% with condition numbers from 234 to
233 as described in Sect.6.2. We set d = 5 and choose random by, ..., bs € (0, 1)
uniformly. We then evaluate p(X) using Algorithm 1, with Step 4 computed via (5.4),
(5.5), and (5.6).

We measure accuracy in terms of the max norm relative forward error

I p(X) — P(X)Imax
| P (X) lImax

’

using MATLAB symbolic toolbox for the exact value of p(X). The results presented in
Fig.4 again show that our new algorithm is nearly as stable as the regular algorithm
and nearly as fast as Gauss’s algorithm. While our accuracy tests are again limited by
our capacity for symbolic computation (n = 256 is fine, n = 512 is beyond reach),
our speed tests can go far beyond (to around n = 4096), and they show a profile much
like Fig. 2.

@ Springer

372 Z.Dai, L-H. Lim

accuracy, n = 256, unitary transform 107 speed, n = 256, unitary transform
T T T 5 T T T T

— — Regular -~ Regular
6) — — Gauss [\ — — Gauss
New

—— New \

relative error
Computation Time (seconds)

10 1 12 13 14 15 16 10 1 12 13 14 15 16
log condition number of matrix log condition number of matrix

Fig.5 The three algorithms applied to unitary transforms

6.4 Unitary transforms

Given a unitary matrix U € C"*" and a complex matrix X € C"*", it may come
as a surprise to the reader that unless U happens to be some special transforms like
FFT, DCT, DWT, etc, or has already been factored into a product of Householder
or Givens matrices, there is no known special algorithm for forming U X that would
take advantage of the unitarity of U. Nevertheless, such unitary matrices with no
additional special structure are not uncommon. For instance, the matrix U could come
from polar decompositions or matrix sign functions [16, 18, 22], and computed via
iterative methods [16, 18, 22] and thus not in Householder- or Givens-factored form.
Here we will explore the use of algorithms (5.4), (5.5), (5.6) for unitary transforms
X — UX.

We generate the unitary matrix U € C>°*236 by QR factoring complex random
matrices with entries in/[0, 1]4+U[0, 1]i. Note thata unitary matrix is always perfectly
conditioned. The matrix X e C?>6*2%6 is generated randomly with condition numbers
from 23* to 233 as in Sect. 6.3. We compute the exact value E := U X symbolically as
before and measure the accuracy of our computed value E by

”E - E”max
U lmax | X llmax

The results, presented in Fig. 5, allow us to draw the same conclusion as in the Sect. 6.3.
Further speed tests up to n = 4096 again show a profile much like Fig.2.

6.5 Complex-valued neural networks
A complex-valued neural networks is simply a neural network with complex-valued

weights and is activated by a complex function. It has become increasingly important
and is widely used in signal processing and computer vision [1, 3, 9, 31, 36, 39]. For

@ Springer

Numerical stability and tensor nuclear norm 373

input hidden hidden hidden hidden hidden output

layer layer 1 layer 2 layer 3 layer 4 layer 5 layer
2 h(14) h(15) n
N h(f) h(45)

Fig.6 A constant width neural network with input dimension n = 4 and depth d = 6. The arrows between
adjacent layers are weighted with values in the weight matrices. 1h®) e R" denotes the output of the kth
layer

simplicity, we consider a d-layer constant width version f : C* — C”" given by
FWi, oo, Wa,0)(x) := Wago (Wa—10(--- Wao (Wix) ---)),

with weight matrices Wy, ..., Wz € C"*" and activation functiono : C — C applied
coordinatewise on C", as depicted in Fig. 6.

Complex matrix multiplications are indispensable when we train (i.e., fit with data
in order to determine the weights Wy, ..., Wy) such a neural network through back-
propagation, or when we evaluate it on multiple inputs xq, ..., x, € C" to make
new predictions. Here we will compare the performance of the three algorithms (5.4),
(5.5), (5.6) for the latter task as it allows for easier control of the condition numbers
of Wi, ..., Wy.

For concreteness, we choose a depth of d = 6 and use the complex ReL.U activation
[3, 36]

o(a + bi) := max(a, 0) + max(b, 0)i.

We generate random weight matrices Wy, ..., Wg € C"*" with n = 64 and 128,

and with condition numbers ranging from 23* to 2°3. We also generate random inputs

X =[x1,...,xy] € C"" with entries drawn fromZ/{[—%, %] —I—U[—%, %]i, and with

(m, n) = (25, 64) or (50, 128). The task is then to evaluate
E:=f(W,...,Wg,0)(X) := Wago(Wy—10(--- Woo (W1 X) ---)).

Again we compute its exact value E symbolically, apply the three algorithms to obtain
E numerically, and measure accuracy in terms of the relative forward error

IE — Ellmax
IEmax

The results, shown in Fig. 7, are fully consistent with those in Sects. 6.3 and 6.4.

@ Springer

374 Z.Dai, L.-H. Lim
105 accuracy, n = 64, neural network g 10 speed, n = 64, neural network
2 T T T T T T T T T T
! —-—- Regular
! — — Gauss

relative forward error

12 13 14

Computation Time (seconds)

—— New

» . . 10 11 12 13 14 15 16
log condition number of weight matrix log condition number of weight matrix
s accuracy, n = 128, neural network
30 T T T T speed, n = 128, neural network
7~ 0022 T T T T T
—_Regular

— — Gauss
New

oot !

0.016

relative forward error

0.014 |

Computation Time (seconds)

0012 |

10 " 12 13 14 15
log condition number of weight matrix

16 10 1 12 13 14 15 16
log condition number of weight matrix

Fig.7 The three algorithms applied to 6-layer complex neural networks with complex ReLU activation and
widths 64 and 128

7 Conclusion

The notion of bilinear complexity started by Strassen has been a great motivator for
more than five decades of exciting developments in numerical linear algebra. Its suc-
cess illustrates the adage that “less is more”. Bilinear complexity does not capture every
operation that underlies the speed of an algorithm; but by focusing on a single oper-
ation (variable multiplications) and disregarding the rest (e.g., scalar multiplications,
additions), it allows speed to be measured by the number of terms in a decompo-
sition of a 3-tensor and the fastest algorithm to be given by a rank decomposition.
This opens a door to other areas of mathematics like algebraic geometry where such
decompositions are studied independent of their computational relevance.

We hope the notion of bilinear stability proposed in this article would do for the study
of numerical stability what bilinear complexity did for the study of time complexity. By
focusing on a single factor (growth) and disregarding other factors (e.g., cancellation
errors) that play a role in numerical stability, it allows stability to be measured by the
growth factor in a decomposition of a 3-tensor and the stablest algorithm to be given
by a nuclear decomposition. Just as tensor rank connects to algebraic geometry, tensor

@ Springer

Numerical stability and tensor nuclear norm 375

nuclear norm connects to functional analysis [10, 12, 30]; thus bilinear stability could
potentially open a door to this rich area of mathematics.

A very recent development in bilinear complexity is the automated discovery of
fast algorithms using deep reinforcement learning. In [14], AlphaTensor found more
than 14,000 inequivalent 49-term decompositions for 4 x 4 matrix product. This is
impressive. But when one has that many different algorithms the question becomes
which one to pick? From the perspective of numerical linear algebra, numerical sta-
bility would be the most natural secondary criteria. Since the 14,000 algorithms are
all given in the form of 49-term decompositions, their growth factors are trivial to
calculate and all one needs to do is to pick the decomposition with the smallest growth
factor.

Acknowledgements The authors would like to thank Nick Higham and Ke Ye for helpful discussions, the
two anonymous reviewers for their very pertinent suggestions, and the University of Chicago’s Research
Computing Center for its computing resources and services. ZD acknowledges the support of DARPA
HRO00112190040 and NSF ECCF 2216912. LHL acknowledges the support of DARPA HR00112190040,
NSF DMS 1854831, and a Vannevar Bush Faculty Fellowship ONR N000142312863.

References

1. Aizenberg, I.: Complex-Valued Neural Networks with Multi-Valued Neurons. Studies in Computa-
tional Intelligence, vol. 353. Springer, Berlin (2011)

2. Ballard, G., Benson, A.R., Druinsky, A., Lipshitz, B., Schwartz, O.: Improving the numerical stability
of fast matrix multiplication. SIAM J. Matrix Anal. Appl. 37(4), 1382-1418 (2016)

3. Bassey, J., Qian, L., Li, X.: A survey of complex-valued neural networks. arXiv:2101.12249 (2021)

4. Bini, D., Lotti, G.: Stability of fast algorithms for matrix multiplication. Numer. Math. 36(1), 63-72
(1980)

5. Bini, D., Lotti, G., Romani, F.: Approximate solutions for the bilinear form computational problem.
SIAM J. Comput. 9(4), 692-697 (1980)

6. Borodin, A., Munro, I.: The Computational Complexity of Algebraic and Numeric Problems. Elsevier
Computer Science Library: Theory of Computation Series, No. 1. American Elsevier Publishing Co.,
Inc., New York-London-Amsterdam (1975)

7. Brent, R.P.: Algorithms for matrix multiplication. March 1970. Report Stan-CS-70-157, Stanford
University

8. Biirgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Grundlehren der
Mathematischen Wissenschaften, vol. 315. Springer, Berlin (1997)

9. Dash, B.N., Khare, N.: Deep complex neural network applications in remote sensing: an introductory
review. In: Ranney, K.I., Raynal, A.M. (eds.) Radar Sensor Technology XXV. 11742, pp. 34-44.
International Society for Optics and Photonics, SPIE, Bellingham (2021)

10. Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland Mathematics Studies, vol.
176. North-Holland Publishing Co., Amsterdam (1993)

11. Derksen, H.: On the nuclear norm and the singular value decomposition of tensors. Found. Comput.
Math. 16(3), 779-811 (2016)

12. Diestel, J., Fourie, J.H., Swart, J.: The Metric Theory of Tensor Products. American Mathematical
Society, Providence (2008)

13. Fam, A.T.: Efficient complex matrix multiplication. IEEE Trans. Comput. 37(7), 877-879 (1988)

14. Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-Paredes, B., Barekatain, M., Novikov, A., Ruiz,
FJ.R., Schrittwieser, J., Swirszcz, G., Silver, D., Hassabis, D., Kohli, P.: Discovering faster matrix
multiplication algorithms with reinforcement learning. Nature 610, 47-53 (2022)

15. Friedland, S., Lim, L.-H.: Nuclear norm of higher-order tensors. Math. Comp. 87(311), 1255-1281
(2018)

16. Higham, N.J.: Computing the polar decomposition—with applications. SIAM J. Sci. Stat. Comput. 7(4),
1160-1174 (1986)

@ Springer

http://arxiv.org/abs/2101.12249

376 Z.Dai, L-H. Lim

17. Higham, N.J.: Stability of a method for multiplying complex matrices with three real matrix
multiplications. SIAM J. Matrix Anal. Appl. 13(3), 681-687 (1992)

18. Higham, N.J.: The matrix sign decomposition and its relation to the polar decomposition. In:
Proceedings of the 3rd ILAS Conference (Pensacola, FL, 1993) volume 212/213, pp. 3-20 (1994)

19. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and
Applied Mathematics (STAM), Philadelphia (2002)

20. Higham, N.J.: Functions of Matrices. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA (2008)

21. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Dokl.
Akad. Nauk SSSR 14(145), 293-294 (1962)

22. Kenney, C., Laub, A.J.: On scaling Newton’s method for polar decomposition and the matrix sign
function. SIAM J. Matrix Anal. Appl. 13(3), 698-706 (1992)

23. Kljuev, V.V., Kokovkin—géerbak, N.I.: On the minimization of the number of arithmetic operations for
solving linear algebraic systems of equations. Z. Vy&isl. Mat i Mat. Fiz. 5, 21-33 (1965)

24. Knuth, D.E.: The Art of Computer Programming, vol. 2, 3rd edn. Addison-Wesley, Reading (1998)

25. Landsberg, J.M.: The border rank of the multiplication of 2 x 2 matrices is seven. J. Am. Math. Soc.
19(2), 447-459 (2006)

26. Landsberg, J.M.: Geometry and Complexity Theory Cambridge. Studies in Advanced Mathematics,
vol. 169. Cambridge University Press, Cambridge (2017)

27. Lim, L.-H.: Tensors in computations. Acta Numer. 30, 555-764 (2021)

28. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press, Oxford (2011)

29. Rudich, S.: Complexity theory: from Godel to Feynman. In: Computational Complexity Theory,
volume 10 of IAS/Park City Math. Ser., pp. 5-87. Amer. Math. Soc., Providence, RI (2004)

30. Ryan, R.A.: Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics.
Springer, London (2002)

31. Scardapane, S., Van Vaerenbergh, S., Hussain, A., Uncini, A.: Complex-valued neural networks with
nonparametric activation functions. IEEE Trans. Emerg. Topics Comput. 4(2), 140-150 (2018)

32. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354-356 (1969)

33. Strassen, V.: Vermeidung von Divisionen. J. Reine Angew. Math. 264, 184-202 (1973)

34. Strassen, V.: Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math. 375(376),
406443 (1987)

35. Strassen, V.: Algebraic complexity theory. In: Handbook of Theoretical Computer Science, Vol. A.
Elsevier, Amsterdam, pp. 633—-672 (1990)

36. Trabelsi, C., Bilaniuk, O., Zhang, Y., Serdyuk, D., Subramanian, S., Santos, J.F., Mehri, S., Ros-
tamzadeh, N., Bengio, Y., Pal, C.J.: Deep complex networks. In: International Conference on Learning
Representations (2018)

37. Winograd, S.: On multiplication of 2 x 2 matrices. Linear Algebra Appl. 4, 381-388 (1971)

38. Ye, K., Lim, L.-H.: Fast structured matrix computations: tensor rank and Cohn-Umans method. Found.
Comput. Math. 18(1), 45-95 (2018)

39. Zhang, H., Gu, M., Jiang, X., Thompson, J., Cai, H., Paesani, S., Santagati, R., Laing, A., Zhang,
Y., Yung, M., et al.: An optical neural chip for implementing complex-valued neural network. Nat.
Commun. 12(1), 1-11 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

	Numerical stability and tensor nuclear norm
	Abstract
	1 Introduction
	Conventions

	2 Bilinear complexity
	3 Bilinear stability
	4 Fast matrix multiplications
	4.1 Bilinear stability of Strassen multiplication
	4.2 Bilinear stability of Winograd multiplication
	4.3 Bilinear stability of conventional matrix multiplication
	4.4 Numerical experiments for fast matrix multiplications

	5 Complex multiplication
	5.1 Bilinear stability of complex multiplication algorithms
	5.2 Error analysis of new algorithm applied to matrices
	5.3 Derivation of our algorithm

	6 Experiments for new complex matrix multiplication algorithm
	6.1 Speed of the algorithms
	6.2 Accuracy of the algorithms
	6.3 Matrix polynomial evaluations
	6.4 Unitary transforms
	6.5 Complex-valued neural networks

	7 Conclusion
	Acknowledgements
	References

