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Abstract
We present a notion of bilinear stability, which is to numerical stability what bilinear
complexity is to time complexity. In bilinear complexity, an algorithm for evaluating a
bilinear operator β : U×V → W is a decomposition β = ϕ1 ⊗ψ1 ⊗w1+· · ·+ϕr ⊗
ψr ⊗ wr ; the number of terms r captures the speed of the algorithm; and its smallest
possible value, i.e., the tensor rank of β, quantifies the speed of a fastest algorithm.
Bilinear stability introduces norms to the mix: The growth factor of the algorithm
∥ϕ1∥∗∥ψ1∥∗∥w1∥ + · · · + ∥ϕr∥∗∥ψr∥∗∥wr∥ captures the accuracy of the algorithm;
and its smallest possible value, i.e., the tensor nuclear normofβ, quantifies the accuracy
of a stablest algorithm. To substantiate this notion, we establish a bound for the forward
error in terms of the growth factor and present numerical evidence comparing various
fast algorithms for matrix and complex multiplications, showing that larger growth
factors correlate with less accurate results. Compared to similar studies of numerical
stability, bilinear stability is more general, applying to any bilinear operators and not
just matrix or complex multiplications; is more simplistic, bounding forward error
in terms of a single (growth) factor; and is truly tensorial like bilinear complexity,
invariant under any orthogonal change of coordinates. As an aside, we study a new
algorithm for computing complex multiplication in terms of real, much like Gauss’s,
but is optimally fast and stable in that it attains both tensor rank and nuclear norm.
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346 Z. Dai, L.-H. Lim

1 Introduction

More than fifty years ago, in Volume 13 of this journal, Volker Strassen announced an
astounding result:A pair of 2×2matricesmay bemultipliedwith sevenmultiplications
[32]. A consequence is that linear systems can be solved in O(nlog2 7) time complexity,
a surprise at that time as existing works such as [23] purportedly showed that O(n3)
was the lowest possible.

Strassen’s algorithm is in the spirit of the well-known algorithm, often attributed
to Gauss,1 for multiplying a pair of complex numbers with three real multiplications
[17],

(a + bi)(c + di) = (ac − bd)+ i[(a + b)(c + d) − ac − bd], (1.1)

but is notable in that Strassen’s applies to a noncommutative product (matrix multipli-
cation) as opposed to a commutative one (complex scalar multiplication). It led to a
plethora of followed-up works and ultimately to the realization that there is a unified
framework underlying the algorithms of Gauss and Strassen, namely, in evaluating
a bilinear operator β : U × V → W, viewed as a 3-tensor in U∗ ⊗ V∗ ⊗ W, any
decomposition

β = ϕ1 ⊗ ψ1 ⊗ w1 + · · · + ϕr ⊗ ψr ⊗ wr (1.2)

into linear functionals ϕi : U → R, ψi : V → R, and vectors wi ∈ W, i = 1, . . . , r ,
gives us an algorithm for computing β. Furthermore, the number of terms r in such a
decomposition counts precisely the number of multiplications, and thus the minimal
value of r , i.e., the tensor rank of β, gives the optimal complexity for evaluating β

in an appropriate sense [33] (see Sect. 2). Both Gauss’s and Strassen’s algorithms are
the fastest possible according to this measure, that is, they attain the tensor ranks of
complex multiplication (three) and 2 × 2 matrix product (seven) respectively [37].

Well-known to readers of this journal, speed is not all that matters in an algorithm,
numerical stability is arguably more important in finite-precision computations as
rounding errors may result in an unstable algorithm producing no correct digits. While
the stability of algorithms for evaluating bilinear operators has been studied for specific
algorithms or operators in isolation, e.g., for Gauss’s algorithm in [17], Strassen’s
algorithm in [7], and other fast matrix multiplication algorithms in [2, 4], there has
been no unfied treatment that applies to all bilinear operators β as in the case of speed.
There is no analysis that quantifies stability in terms of some tensorial property of
β analogous to how speed is quantified in terms of its tensor rank. The goal of the
present article is to fill this gap. We will show that just as the number of terms r in the
decomposition (1.2) controls the speed of the algorithm, the growth factor, defined as

∥ϕ1∥∗∥ψ1∥∗∥w1∥ + · · · + ∥ϕr∥∗∥ψr∥∗∥wr∥, (1.3)

controls the stability of the algorithm; and just as the tensor rank of β measures the
optimal speed, the tensor nuclear norm of β, defined as

1 See [28, p. 37] [29, p. 8] for example.

123



Numerical stability and tensor nuclear norm 347

∥β∥ν := inf
{ r∑

i=1

∥ϕi∥∗∥ψi∥∗∥wi∥ : β =
r∑

i=1

ϕi ⊗ ψi ⊗ wi

}
, (1.4)

measures the optimal stability, the precise meaning of which we will state in due
course.

Although we have alluded to the relation between tensor nuclear norm and numer-
ical stability in earlier works [15, 27, 38], we have never stated a precise relation nor
carried out numerical experiments to demonstrate the relation. This article provides
both. Theorem 3.3 gives a general relation between the growth factor of a bilinear
algorithm and its forward error, from which a relation between tensor nuclear norm
and forward error may be deduced as in Corollary 3.4. We then perform a range of
numerical experiments involving Gauss’s and Strassen’s algorithms to substantiate
our theoretical findings:

Matrix multiplication: We compare Strassen’s algorithm with a well-known vari-
ant due to Winograd [19, 24]. While both attain the optimal seven multiplications,
Winograd’s variant is often favored because it requires only fifteen additions, com-
pared to Strassen’s eighteen. Nevertheless wewill show that Strassen’s algorithm has a
growth factor of 12+2

√
2 ≈ 14.83 whereasWinograd’s variant has a growth factor of

7+4
√
2+3

√
3 ≈ 17.85. For comparison, the conventional algorithm for 2×2 matrix

product has eight multiplications and a growth factor of 8. Our numerical experiments
confirm that in terms of accuracy Winograd’s is indeed worse than Strassen’s, which
is in turn worse than the conventional algorithm, as Theorem 3.3 indicates.

Complex multiplication: We compare the regular algorithm for complex multipli-
cation, which requires four real multiplications and has a growth factor of 4; Gauss’s
algorithm, which requires three real multiplications but has a larger growth factor of
2(1+

√
2) ≈ 4.83; and a new algorithm:

(a + bi)(c + di)

= 1
2

[(
a + 1√

3
b
)(

c + 1√
3
d
)
+

(
a − 1√

3
b
)(

c − 1√
3
d
)

− 8
3
bd

]

+ i
√
3

2

[(
a + 1√

3
b
)(

c + 1√
3
d
)

−
(
a − 1√

3
b
)(

c − 1√
3
d
)]

.

(1.5)

This new algorithm has the best features of both the regular and Gauss’s algorithms,
requiring three real multiplications and yet has the smaller (in fact, smallest, as we
will see) growth factor of 4. Again the results are consistent with the prediction of
Theorem 3.3.

For the uninitiated, we would like to stress that the aforementioned algorithms only
begin to make a difference when they are applied recursively, or applied to matrices, or
both. For instance, Gauss’s algorithm (1.1) is really quite useless for multiplying a pair
of complex numbers, whether ‘by hand’ or on a computer. It only becomes useful when
applied recursively in the formofKaratsuba’s algorithm [21] for integermultiplication,
with i replaced by the number base; or when applied to complex matrices [13]:

(A + i B)(C + i D) = (AC − BD)+ i[(A + B)(C + D) − AC − BD], (1.6)
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348 Z. Dai, L.-H. Lim

with A + i B,C + i D ∈ Cn×n , A, B,C, D ∈ Rn×n . As multiplication of matrices
is much more expensive than addition of matrices, so (1.6) really does represent an
enormous savings in speed over the regular algorithm:

(A + i B)(C + i D) = (AC − BD)+ i(BC + AD). (1.7)

Likewise, our new algorithm (1.5) only begins to make a difference when applied
to matrices. For the same reason, the algorithms of Strassen and Winograd are only
worth the trouble when applied recursively to a product of n × n matrices partitioned
recursively into 2 × 2 blocks.

To address another related point early on, a surprisingly common complaint among
early feedbacks is that there are a lot of

√
3’s in our algorithm (1.5). Certainly, if one

computes these products ‘by hand,’ it would be easier to use the regular or Gauss’s
algorithm since they do not involve irrational coefficients. But when performed by a
computer this is completely immaterial. In case it is not clear, it does notmatterwhether
wemultiply by 3 or by

√
3; to a computer (or any IEEE754-compliant equipment) both

are binary strings of 0’s and 1’s and arithmetic takes one flop regardless. Maybe there
would be some minor savings when a constant happens to be a power of 2—because
of binary arithmetic—but aside from that, it makes no difference what coefficients
appear in our algorithm.

For the matrix multiplication experiments, our goal is to illustrate Theorem 3.3 by
comparing the known algorithms of Strassen and Winograd. Incidentally, a numerical
comparison of the accuracy of Strassen’s algorithm andWinograd’s variant was stated
as a research problem in [17, Exercise 23.10]. Our work in Sect. 4 supplies both
numerical evidence and a rigorous explanation of why Strassen’s is more accurate
than Winograd’s.

For the complex multiplication experiments, aside from providing another illustra-
tion of Theorem 3.3, we also have the additional goal of testing, for the first time, the
new algorithm (1.5) applied to multiply complex matrices, which we will see is

• nearly as fast as Gauss’s algorithm (1.6), and
• nearly as stable as the regular algorithm (1.7).

To substantiate these claims, we perform more extensive experiments to compare
(1.5), (1.6), and (1.7), including three practical applications: evaluation of matrix
polynomials via Horner’s method [20], unitary transform, and complex-valued neural
networks [1, 3, 9, 31, 36, 39]. All our codes are available from https://github.com/
zhen06/Complex-Matrix-Multiplication.

Conventions

To reduce notational clutter, we denote norms on different vector spaces U,V,W by
the same ∥ · ∥. There is no cause for confusion since we always use it in a form like
∥v∥ for some v ∈ V, where it is clear from context that ∥ · ∥ refers to a norm on V.
Likewise the corresponding dual norms on U∗,V∗,W∗ will be denoted by the same
∥ · ∥∗. Recall that for ϕ ∈ V∗, i.e., ϕ : V → R is a linear functional, this is defined by

∥ϕ∥∗ := sup{|ϕ(v)| : ∥v∥ ≤ 1}.
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In this article, “stability” and “accuracy” have the same meaning, i.e., small forward
error, but the former is used to describe an algorithm whereas the latter is used to
describe its output.

2 Bilinear complexity

We provide a brief review of bilinear complexity, usually studied in Algebraic Com-
putational Complexity [6, 8, 26, 35], for numerical analysts. Our goals here are to (i)
highlight certain departures from typical practice in numerical linear algebra; and (ii)
show a parallel with our notion of bilinear stability in the next section.

LetU,V,W be finite-dimensional vector spaces, assume to be overR for simplicity.
Let β : U×V → W be a bilinear operator. Depending on one’s definition of a tensor,
we have β ∈ U∗ ⊗ V∗ ⊗ W either through definition [27, Definition 3.3] or by the
universal mapping property [27, Equation 4.88]. A bilinear algorithm for evaluating
β is a decomposition of the form (1.2). In other words, for any u ∈ U and v ∈ V,
we evaluate β(u, v) by performing the algorithm given by the decomposition on the
right:

β(u, v) =
r∑

i=1

ϕi (u)ψi (v)wi . (2.1)

In practice, the vector spaces involved are usually Euclidean spaces of vectors Rn or
matrices Rm×n . Riesz representation theorem guarantees that any linear functional
ϕ : Rn → R must take the form ϕ(x) = aTx for some a ∈ Rn and likewise any
functional ϕ : Rm×n → R must take the form ϕ(X) = tr(ATX) for some A ∈ Rm×n .

Each rank-one termϕi (u)ψi (v)wi in (2.1) accounts for onemultiplication but herein
lies a pitfall — the ‘multiplication’ refers to the product of ϕi (u) and ψi (v); note that
this a variable product, i.e., the value depends on variables u and v, as opposed to
a scalar product. Take a randomly made-up example2 with U = R2×2, V = R2,
W = R3, and

ϕi
([

a b
c d

])
= tr

([ −1 0
1 2

]T[ a b
c d

])
= −a + c + 2d,

ψi
([ x

y
])

=
[ 3

−1/2
]T[ x

y
]
= 3x − y/2, wi =

[ −3
4√
5

]
,

then there is exactly one multiplication in

ϕi (u)ψi (v)wi =
[ −3(−a+c+2d)(3x−y/2)

4(−a+c+2d)(3x−y/2)√
5(−a+c+2d)(3x−y/2)

]
.

The scalar products like 2d or −y/2 or
√
5t are discounted in Strassen’s model of

bilinear complexity [33, 34] and for good reasons — these constants coefficients are
fixed in the algorithm and can be hardcoded or hardwired, unlike the product between

2 Genuine examples to follow in Sects. 4 and 5.
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350 Z. Dai, L.-H. Lim

−a + c + 2d and 3x − y/2, which depends on the variable inputs u =
[
a b
c d

]
and

v =
[ x
y
]
. In particular, Strassen’s measure of speed, called bilinear complexity, is

independent of the values of these constant coefficients, but we will show in the next
section that these will affect numerical stability of the algorithm.

Toemphasize its distinction fromscalar products, Strassen calls a variable product in
the above sense anonscalar product [34]. In otherwords, bilinear complexitymeasures
speed purely in terms of the number of nonscalar products. The bilinear complexity
of the algorithm in (2.1) is given by the number terms in the decomposition r and the
optimal speed of evaluating β is therefore given by the tensor rank [33]

rank(β) := min
{
r : β =

r∑

i=1

ϕi ⊗ ψi ⊗ wi

}
. (2.2)

A tensor rank decomposition of β, i.e., one that attains its tensor rank, is then a fastest
algorithm in the context of bilinear complexity.

In realistic scenarios, storage and computations both have finite-precision. Given u
and v, we do not need to know β(u, v) exactly; in fact computing anything beyond 16
decimal digits of accuracy is wasted effort since we do not store more than 16 digits
in IEEE double precision. So the tensor rank of β is less relevant than the border rank
[5] of β, which is the smallest r so that

∥β − ϕε
1 ⊗ ψε

1 ⊗ wε
1 − ϕε

2 ⊗ ψε
2 ⊗ wε

2 − · · · − ϕε
r ⊗ ψε

r ⊗ wε
r ∥ < ε

for all ε > 0, or, formally,

rank(β) := min
{
r : β = lim

ε→0+

r∑

i=1

ϕε
i ⊗ ψε

i ⊗ wε
i

}
. (2.3)

For the two problems studied in our article, namely, matrix multiplication,

βm,n,p : Rm×n × Rn×p → Rm×p, (A, B) +→ AB,

and complex multiplication,

βC : C × C → C, (w, z) +→ wz,

(noting that C is a two-dimensional real vector space), we have [25, 37]

rank(β2,2,2) = rank(β2,2,2) = 7, rank(βC) = rank(βC) = 3.

It is in general difficult to find such exact values. For instance, the values of rank(β3,3,3)

and rank(β3,3,3) are still unknown. Most of the efforts in studying matrix multiplica-
tion go towards determining the asymptotic value ω := inf{p ∈ R : rank(βn,n,n) =
O(n p)}, called the exponent of matrix multiplication. An advantage is that asymptoti-
cally, the full arithmetic complexity, i.e., counting all operations and not just nonscalar
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multiplications, is also O(nω). More importantly, the role of ω stretches far beyond
matrix multiplication, governing the full arithmetic complexity of computing inverse,
determinant, null basis, linear systems, LU/QR/eigenvalue/Hessenberg decomposi-
tions, characteristic polynomials, sparsification, and even linear programming— note
in particular that none of these are bilinear operations [34] (see also [8, Chapter 16]
and [27, Examples 3.10 and 4.40].

3 Bilinear stability

Wewould like to state at the outset that numerical stability is amoderately complicated
issue that depends onmany factors and cannot be completely represented by any single
number. Designing numerically stable algorithms is as much an art as it is a science.
However the six Higham guidelines for numerical stability [19, Section 1.18] capture
the most salient aspects. Among them, the second guideline to “minimize the size of
intermediate quantities relative to the final solution” is one of the most unequivocal,
lends itself to precise quantification, and is what we will focus on in this section.
Consideration of Higham’s second guideline for bilinear algorithms leads us naturally
to the notion of bilinear stability, which relates to accuracy theway bilinear complexity
relates to speed. More precisely, the growth factor (1.3) and tensor nuclear norm (1.4)
are to accuracy in bilinear stability what the number of rank-1 terms in (2.1) and the
tensor rank (2.2) are to speed in bilinear complexity. Here accuracy refers to the size
of relative forward error.

Bilinear stability differs from existing studies of numerical stability of bilinear
algorithms such as those in [2, 4, 7, 17] in three ways: (i) it is more general, applying
to any bilinear operators as opposed to specific ones like matrix multiplication; (ii) it is
more simplistic, relating forward error to just growth factor as opposed to two or three
different factors in the approaches of [2, 4]; (iii) it is truly tensorial, as growth factor
and tensor nuclear norm are invariant under any orthogonal change-of-coordinates,
just as tensor rank is invariant under any invertible change-of-coordinates. The factors
(i) and (ii), i.e., generality and simplicity, may often be sacrificed for better bounds:
Given any specific bilinear operator, wemay often obtain smaller forward error bounds
by performing a more precise analysis tailored to that given operator. We will do see
this in Sect. 5.2.

One difference between bilinear complexity and bilinear stability is that the latter
requires a norm.While there are many excellent treatises on tensor norms [10, 12, 30],
they are excessive for our purpose. All the reader needs to know is that for a vector
space Vi with norm ∥ · ∥i , i = 1, . . . , d, a tensor norm ∥ · ∥ on V1 ⊗ V2 ⊗ · · · ⊗ Vd
satisfies the multiplicativity property for rank-1 tensors:

∥v1 ⊗ v2 ⊗ · · · ⊗ vd∥ = ∥v1∥1∥v2∥2 · · · ∥vd∥d ,

where vi ∈ Vi . In particular, the spectral, Frobenius (also called Hilbert–Schmidt),
nuclear norms [27, p. 561 and Example 4.17] are all equal on rank-1 tensors in U∗ ⊗
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352 Z. Dai, L.-H. Lim

V∗ ⊗ W, i.e.,

∥ϕ ⊗ ψ ⊗ w∥σ = ∥ϕ ⊗ ψ ⊗ w∥F = ∥ϕ ⊗ ψ ⊗ w∥ν = ∥ϕ∥∗∥ψ∥∗∥w∥

for all ϕ ∈ U∗, ψi ∈ V∗, w ∈ W. Consequently, when we speak of the norm of a
rank-1 tensor ϕ ⊗ ψ ⊗ w, it does not matter which of these three norms we choose,
and we will simply write

∥ϕ ⊗ ψ ⊗ w∥ := ∥ϕ∥∗∥ψ∥∗∥w∥.

Wefirst present a straightforward heurstic thatmotivates our definition of the growth
factor, deferring the more formal forward error analysis to Theorem 3.3. If we apply
the rank-one bilinear operator ϕi ⊗ ψi ⊗ wi to u and v,

∥(ϕi ⊗ ψi ⊗ wi )(u, v)∥ = ∥ϕi (u)ψi (v)wi∥ = |ϕi (u)||ψi (v)|∥wi∥
≤ ∥ϕi∥∗∥u∥∥ψi∥∗∥v∥∥wi∥ = ∥ϕi ⊗ ψi ⊗ wi∥∥u∥∥v∥.

So ϕi ⊗ ψi ⊗ wi magnifies the errors in u and v by an amount bounded by its tensor
norm ∥ϕi ⊗ ψi ⊗ wi∥. Therefore, in a bilinear algorithm given by the right side of
(2.1) for evaluating β, triangle inequality gives

∥β(u, v)∥ =
∥∥∥∥

r∑

i=1

(ϕi ⊗ ψi ⊗ wi )(u, v)
∥∥∥∥ ≤

[ r∑

i=1

∥ϕi ⊗ ψi ⊗ wi∥
]
∥u∥∥v∥.

The i th step of the algorithm magnifies the error in the inputs (u, v) by an amount
bounded by ∥ϕi ⊗ ψi ⊗ wi∥ and over the course of r steps in the algorithm, the
accumulated error is bounded by a factor of

r∑

i=1

∥ϕi ⊗ ψi ⊗ wi∥ =
r∑

i=1

∥ϕi∥∗∥ψi∥∗∥wi∥, (3.1)

which we will define as the growth factor of the algorithm or decomposition (2.1). Its
minimum value over all possible bilinear algorithms for evaluating β or, equivalently,
over all decomposition of β as a 3-tensor is therefore given by the nuclear norm (1.4).
This idea was first floated in [38, Section 3.2]. Note that the growth factor depends on
the algorithm/decomposition for β but the nulcear norm depends only on β.

We now state a formal definition to make precise the terms used in the preceding
discussions.

Definition 3.1 Let U,V,W be three finite-dimensional real vector spaces. A decom-
position of a bilinear operator β : U × V → W is a list D = (ϕi ,ψi , wi )

r
i=1

with

β =
r∑

i=1

ϕi ⊗ ψi ⊗ wi , (3.2)
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where ϕi : U → R and ψi : V → R are linear functionals and wi ∈ W, i = 1, . . . , r .
An algorithm β̂D given by the decomposition D takes (u, v) ∈ U × V as inputs and
computes the output β(u, v) in three steps:

(i) computes ϕi (u) and ψi (v), i = 1, . . . , r ;
(ii) computes ϕi (u)ψi (v)wi , i = 1, . . . , r ;
(iii) computes

∑r
i=1 ϕi (u)ψi (v)wi .

The growth factor of the algorithm β̂D is defined as

γ (β̂D) :=
r∑

i=1

∥ϕi ⊗ ψi ⊗ wi∥ =
r∑

i=1

∥ϕi∥∗∥ψi∥∗∥wi∥.

As noted in Sect. 2, only the variable multiplication in step (ii) counts in bilinear
complexity; the other two steps comprising scalar multiplications and additions are
discounted. In bilinear stability all three steps contribute to the growth factor.

Proposition 3.2 The minimal growth factor is given by nucler norm of the β, i.e.,

min
D

γ (β̂D) = ∥β∥ν,

with D running over all decomposition. Furthermore, there is always an algorithm
that attains the minimal growth factor.

The above equality is just stating (1.4) in terms of the growth factor. That there is always
an algorithm attaining the minimal growth factor, justifying our writing min instead
of inf, follows from the existence of a nuclear decomposition [15, Proposition 3.1],
i.e., a decomposition that attains the nuclear norm. Just as a rank decomposition of
β represents a fastest algorithm in bilinear complexity, a nuclear decomposition of β

represents a stablest algorithm in bilinear stability.
We next establish a rigorous relationship between growth factor and numerical

stability by proving a forward error bound in terms of the growth factor of a bilinear
algorithm.We assume a systemof floating point arithmetic obeying the standardmodel
as in [19]: For x, y ∈ R

fl(x op y) = (x op y)(1+ δ), |δ| ≤ u, op = +,−, ∗, / (3.3)

with u the unit roundoff, except when fl(x op y) = 0, in which case δ becomes −1.
We assume thatU,V,W are vector spaces of dimensionsm, n, p and that appropriate
computational bases have been chosen on them so that we may identify U ∼= Rm ,
V ∼= Rn ,W ∼= Rp. The computational bases do not need to be the standard bases and
may instead be Fourier, Krylov, Haar, wavelet bases, etc. This is another reason why
we cast our discussions in terms of abstract vector spaces and do not choose bases
until absolutely necessary. However, once a choice of bases has been made, the result
below depends only on the dimensions of U,V,W; if say, U = Rm×n , then only the
fact that it has dimension mn matters, i.e., U ∼= Rmn .
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354 Z. Dai, L.-H. Lim

Theorem 3.3 (Growth factor and forward error) Let β : Rm ×Rn → Rp be a bilinear
operator,D = (ϕi ,ψi , wi )

r
i=1 a decomposition, and β̂D the corresponding algorithm.

If β̂D(u, v) is the output of β̂D computed using floating point operations, with u ∈ Rm

and v ∈ Rn as inputs, then

∥β(u, v) − β̂D(u, v)∥∞ ≤ (m + n + r + 1)γ (β̂D)∥u∥∥v∥u+ O(u2).

Proof We first show that the result reduces to the case p = 1. It suffices to show that

|β(u, v)k − β̂D(u, v)k | ≤ (m + n + r + 1)γ (β̂D)∥u∥∥v∥u+ O(u2) (3.4)

for all k = 1, . . . , p, where the subscript k refers to the kth coordinate of a vector in
Rp. Since

γ (β̂D) =
r∑

i=1

∥ϕi∥∗∥ψi∥∗∥wi∥ ≥
r∑

i=1

∥ϕi∥∗∥ψi∥∗|wik |,

with wik the kth coordinate of wi ∈ Rp, to show (3.4), it suffices to show

|β(u, v)k − β̂D(u, v)k | ≤ (m + n + r + 1)
[ r∑

i=1

∥ϕi∥∗∥ψi∥∗|wik |
]
∥u∥∥v∥u+ O(u2),

which is equivalent to the case p = 1. In the following, we will assume that p = 1.
Since ϕi and ψi are linear functionals on Rm and Rn , there exist ui ∈ Rm and

vi ∈ Rn such that

ϕi (u) = uTi u and ψi (v) = vTi v,

for all u ∈ Rm and v ∈ Rn . By [19, equation 3.7],

|xT y − fl(xT y)| ≤ n|x |T|y|u+ O(u2),

for any x, y ∈ Rn where | · | applies coordinatewise. So for each i = 1, . . . , r ,

|ϕi (u) − fl(ϕi (u))| = |uTi u − fl(uTi u)| ≤ m|ui |T|u|u+ O(u2)

≤ m∥ui∥∥u∥u+ O(u2) = m∥ϕi∥∗∥u∥u+ O(u2).
(3.5)

Likewise, for each i = 1, . . . , r ,

|ψi (v) − fl(ψi (v))| ≤ n∥ψi∥∗∥v∥u+ O(u2). (3.6)

Let *1,i = fl(ϕi (u)) − ϕi (u) and *2,i = fl(ψi (v)) − ψi (v). By (3.5) and (3.6),

|*1,i | ≤ m∥ϕi∥∗∥u∥u+ O(u2), |*2,i | ≤ n∥ψi∥∗∥v∥u+ O(u2). (3.7)
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Let ci = ϕi (u)ψi (v) and ĉi be its computed value. By (3.7), there exists δi with
|δi | ≤ u such that

ĉi = (ϕi (u)+ *1,i )(ψi (v)+ *2,i )(1+ δi )

= ϕi (u)ψi (v)+ *1,iψi (v)+ ϕi (u)*2,i + δiϕi (u)ψi (v)+ O(u2). (3.8)

By (3.7) and (3.8),

|ci − ĉi | ≤ m∥ϕi∥∗∥u∥|ψi (v)|u+ |ϕi (u)|n∥ψi∥∗∥v∥u+ |ϕi (u)ψi (v)|u+ O(u2)
≤ (m + n + 1)∥ϕi∥∗∥ψi∥∗∥u∥∥v∥u+ O(u2). (3.9)

Let *i = ĉi − ci . By (3.9),

|*i | ≤ (m + n + 1)∥ϕi∥∗∥ψi∥∗∥u∥∥v∥u+ O(u2). (3.10)

Let di = ciwi and d̂i be the computed value of di . By (3.10), there exists δ′
i with

|δ′
i | ≤ u such that

d̂i = (ci + *i )wi (1+ δ′
i ) = ciwi + *iwi + δ′

i ciwi + O(u2). (3.11)

Let *′
i = d̂i − di . By (3.10) and (3.11),

|*′
i | ≤ (m + n + 1)∥ϕi∥∗∥ψi∥∗∥u∥∥v∥|wi |u+ |ϕi (u)ψi (v)||wi |u+ O(u2)

≤ (m + n + 2)∥ϕi∥∗∥ψi∥∗|wi |∥u∥∥v∥u+ O(u2). (3.12)

Finally, let a = ∑r
i=1 ϕi (u)ψi (v)wi and â be the computed value of a. By (3.12),

there exists δ with |δ| ≤ u such that

â = d̂1(1+ δ)r−1 + d̂2(1+ δ)r−1 + d̂3(1+ δ)r−2 + · · · + d̂r (1+ δ),

where we compute the sum d̂1 + d̂2 + · · · + d̂r from left to right. Hence we obtain

|a − â| ≤ (m + n + 2)∥u∥∥v∥
r∑

i=1

∥ϕi∥∗∥ψi∥∗|wi |u+ (r − 1)
∥∥∥∥

r∑

i=1

ciwi

∥∥∥∥u+ O(u2)

≤ (m + n + r + 1)∥u∥∥v∥
r∑

i=1

∥ϕi∥∗∥ψi∥∗|wi |u+ O(u2)

= (m + n + r + 1)γ (β̂D)∥u∥∥v∥u+ O(u2).

⊓⊔
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Theorem 3.3 essentially says that that algorithms with small growth factors have
small forward errors. Combined with Proposition 3.2, we see that the optimally stable
algorithm in this context is the one corresponding to a nuclear decomposition of β.

Corollary 3.4 (Tensor nuclear norm and forward error) Let β : Rn × Rm → Rp

be a bilinear operator, D = (ϕi ,ψi , wi )
r
i=1 a nuclear decomposition, and β̂D the

corresponding algorithm. Then

∥β(u, v) − β̂D(u, v)∥∞ ≤ (m + n + r + 1)∥β∥ν∥u∥∥v∥u+ O(u2).

In principle, there is no reason to expect there to be an algorithm that is both
fastest in the sense of Sect. 2 and stablest in the sense of this section, i.e., having
a decomposition that attains both tensor rank and nuclear norm. In Sect. 5, we will
see that such an algorithm exists for complex multiplication and we will study its
properties when applied to complex matrix multiplication.

4 Fast matrix multiplications

As an illustration of bilinear stability in the last section, we will calculate the growth
factors of Strassen’s algorithm [32] and Winograd’s variant [19, 24] for fast matrix
multiplication and compare their stability empirically. We will see that the growth
factor of Strassen’s algorithm is smaller than that ofWinograd’s variant, and, consistent
with the prediction ofTheorem3.3, numerical experiments indeed show that the former
gives more accurate results.

4.1 Bilinear stability of Strassenmultiplication

Given two block matrices

A =
[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
,

Strassen’s algorithm [32] first computes

M1 = (A11 + A22)(B11 + B22), M5 = (A11 + A12)B22,

M2 = (A21 + A22)B11, M6 = (A21 − A11)(B11 + B12),

M3 = A11(B12 − B22), M7 = (A12 − A22)(B21 + B22),

M4 = A22(B21 − B11),

and then computes the product via

AB =
[
M1 + M4 − M5 + M7 M3 + M5

M2 + M4 M1 − M2 + M3 + M6

]
.
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Note that this may be applied recursively. Let β̂S : R2×2 × R2×2 → R2×2 denote the
Strassen’s algorithm for 2 × 2 matrices. It is routine to check that for A, B ∈ R2×2,

β̂S(A, B) =
7∑

i=1

ϕi (A)ψi (B)Wi ,

where ϕi (A) = tr(U T
i A) and ψi (B) = tr(V T

i B) with

U1 =
[
1 0
0 1

]
, V1 =

[
1 0
0 1

]
, W1 =

[
1 0
0 1

]
;

U2 =
[
0 0
1 1

]
, V2 =

[
1 0
0 0

]
, W2 =

[
0 0
1 −1

]
;

U3 =
[
1 0
0 0

]
, V3 =

[
0 1
0 −1

]
, W3 =

[
0 1
0 1

]
;

U4 =
[
0 0
0 1

]
, V4 =

[−1 0
1 0

]
, W4 =

[
1 0
1 0

]
;

U5 =
[
1 1
0 0

]
, V5 =

[
0 0
0 1

]
, W5 =

[−1 1
0 0

]
;

U6 =
[−1 0
1 0

]
, V6 =

[
1 1
0 0

]
, W6 =

[
0 0
0 1

]
;

U7 =
[
0 1
0 −1

]
, V7 =

[
0 0
1 1

]
, W7 =

[
1 0
0 0

]
.

For simplicity wewill use the Frobenius norm onR2×2 since it is self dual. The growth
factor of Strassen’s algorithm is then given by

γ (β̂S) =
7∑

i=1

∥ϕi∥∗∥ψi∥∗∥Wi∥ =
7∑

i=1

∥Ui∥F∥Vi∥F∥Wi∥F

= 12+ 2
√
2 ≈ 14.83. (4.1)

4.2 Bilinear stability ofWinogradmultiplication

Winograd’s algorithm [19, 24] computes a different set of intermediate quantities

M ′
1 = (A21 + A22 − A11) M ′

5 = (A21 + A22)(B12 − B11),

(B11 + B22 − B12),

M ′
2 = A11B11, M ′

6 = (A11 + A12 − A21 − A22)B22,

M ′
3 = A12B21, M ′

7 = A22(B11 + B22 − B12 − B21),

M ′
4 = (A11 − A21)(B22 − B12),
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and then compute the product via

AB =
[

M ′
2 + M ′

3 M ′
1 + M ′

2 + M ′
5 + M ′

6
M ′

1 + M ′
2 + M ′

4 − M ′
7 M ′

1 + M ′
2 + M ′

4 + M ′
5

]
.

Again this can be applied recursively. Let β̂W : R2×2 × R2×2 → R2×2 denote the
Winograd’s algorithm for 2 × 2 matrices. It is again routine to check that for A, B ∈
R2×2,

β̂W(A, B) =
7∑

i=1

ϕ′
i (A)ψ

′
i (B)W

′
i ,

where ϕ′
i (A) = tr(U ′T

i A) and ψ ′
i (B) = tr(V ′T

i B) with

U ′
1 =

[−1 0
1 1

]
, V ′

1 =
[
1 −1
0 1

]
, W ′

1 =
[
0 1
1 1

]
;

U ′
2 =

[
1 0
0 0

]
, V ′

2 =
[
1 0
0 0

]
, W ′

2 =
[
1 1
1 1

]
;

U ′
3 =

[
0 1
0 0

]
, V ′

3 =
[
0 0
1 0

]
, W ′

3 =
[
1 0
0 0

]
;

U ′
4 =

[
1 0

−1 0

]
, V ′

4 =
[
0 −1
0 1

]
, W ′

4 =
[
0 0
1 1

]
;

U ′
5 =

[
0 0
1 1

]
, V ′

5 =
[−1 1
0 0

]
, W ′

5 =
[
0 1
0 1

]
;

U ′
6 =

[
1 1

−1 −1

]
, V ′

6 =
[
0 0
0 1

]
, W ′

6 =
[
0 1
0 0

]
;

U ′
7 =

[
0 0
0 1

]
, V ′

7 =
[
1 −1

−1 1

]
, W ′

7 =
[
0 0

−1 0

]
.

With respect to the Frobenius norm, the growth factor of Winograd’s algorithm is

γ (β̂W) =
7∑

i=1

∥ϕ′
i∥∗∥ψ ′

i∥∗∥W ′
i ∥F =

7∑

i=1

∥U ′
i ∥F∥V ′

i ∥F∥W ′
i ∥F

= 7+ 4
√
2+ 3

√
3 ≈ 17.85. (4.2)
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4.3 Bilinear stability of conventional matrix multiplication

For completeness we state the growth factor of the conventional algorithm for matrix
multiplication β̂C : R2×2 × R2×2 → R2×2,

β̂C(A, B) =
2∑

i, j,k=1

tr(ET
i j A) tr(E

T
jk B)Eik,

where Ei j ∈ R2×2 denotes the standard basis matrix. Its growth factor is easily seen
to be

γ (β̂C) =
2∑

i, j,k=1

∥Ei j∥F∥E jk∥F∥Eik∥F = 8.

From (4.1) and (4.2), we see that

γ (β̂W) > γ (β̂S) > γ (β̂C). (4.3)

The first inequality will be verified in the numerical experiments below; the second
is consistent with the well-known fact [19] that Strassen’s algorithm is less stable
than conventional multiplication. In this case, the conventional algorithm attains the
nuclear norm of two by two matrix multiplication, which has value 8 [11].

4.4 Numerical experiments for fast matrix multiplications

By Theorem 3.3 and the sizes of the growth factors in (4.3), we expect Strassen’s
algorithm to give more accurate results than Winograd’s variant since it has a smaller
growth factor. We test this statement with randommatrices generated in three different
ways: with (a) real entries drawn from the uniform distribution on [−1, 1], (b) real
entries drawn from the standard normal distribution, (c) complex entries whose real
and imaginary parts are drawn from the uniform distribution on [−1, 1]. In the last
case, note that our earlier discussions over R apply verbatim over C with the same
growth factors.

In all cases, we compute β̂S(A, B) and β̂W(A, B) using Strassen’s algorithm and
Winograd’s variant respectively and compare the results against the exact value
β(A, B) = AB computed using the Matlab symbolic toolbox. From Fig. 1, we
see that Strassen’s algorithm is indeed more stable than Winograd’s variant, substan-
tiating Theorem 3.3. Even though the 14.83 growth factor of Strassen’s algorithm
appears to differ only moderately from the 17.85 growth factor of Winograd’s variant,
the effect is magnifiedmultifold as a result of recursion— these algorithms are applied
recursively to an n×n matrix as a block 2×2 matrix ⌊log2 n⌋ times. The conventional
algorithm, which has a growth factor of 8, is included in these plots for comparison.
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Fig. 1 Accuracy of Strassen’s algorithm and Winograd’s variant

5 Complexmultiplication

As described towards the end of Sect. 2, complex multiplication is anR-bilinear oper-
ator βC ∈ R2 × R2 → R2 when we identify C ∼= R2, with the standard basis vectors
in R2

e1 =
[
1
0

]
, e2 =

[
0
1

]

corresponding to 1, i ∈ C. We write e∗
1, e

∗
2 : R2 → R for the dual basis, i.e., linear

functionals with

e∗
1

([
a
b

])
= a, e∗

2

([
a
b

])
= b.

We will denote the regular algorithm (a + bi)(c+ di) = (ac − bd)+ i(bc+ ad),
Gauss’s algorithm (1.1), and our new algorithm (1.5) by β̂R, β̂G, β̂N respectively. For
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easy reference,

β̂R

([
a
b

]
,

[
c
d

])
=

[
ac − bd
bc + ad

]
, β̂G

([
a
b

]
,

[
c
d

])
=

[
ac − bd

(a + b)(c + d) − ac − bd

]
,

β̂N

([
a
b

]
,

[
c
d

])
=

⎡

⎣
1
2

[(
a + 1√

3
b
)(

c + 1√
3
d
)
+

(
a − 1√

3
b
)(

c − 1√
3
d
)

− 8
3bd

]

i
√
3

2

[(
a + 1√

3
b
)(

c + 1√
3
d
)

−
(
a − 1√

3
b
)(

c − 1√
3
d
)]

⎤

⎦ .

They correspond to the decompositions

β̂R = (e∗
1 ⊗ e∗

1 − e∗
2 ⊗ e∗

2) ⊗ e1 + (e∗
1 ⊗ e∗

2 + e∗
2 ⊗ e∗

1) ⊗ e2, (5.1)

β̂G = (e∗
1 + e∗

2) ⊗ (e∗
1 + e∗

2) ⊗ e2 + e∗
1 ⊗ e∗

1 ⊗ (e1 − e2) − e∗
2 ⊗ e∗

2 ⊗ (e1 + e2),
(5.2)

β̂N = 4
3

([√
3
2

e∗
1 +

1
2
e∗
2

]
⊗

[√
3
2

e∗
1 +

1
2
e∗
2

]
⊗

[
1
2
e1 +

√
3
2

e2

]

+
[√

3
2

e∗
1 − 1

2
e∗
2

]
⊗

[√
3
2

e∗
1 − 1

2
e∗
2

]
⊗

[
1
2
e1 −

√
3
2

e2

]
− e∗

2 ⊗ e∗
2 ⊗ e1

)
.

(5.3)

5.1 Bilinear stability of complexmultiplication algorithms

Recall from Sect. 2 that rank(βC) = 3 = rank(βC), i.e., both Gauss’s algorithm and
our new algorithm have optimal bilinear complexity whether in the exact or approx-
imate sense. One may also show that βC has nuclear norm [15, Lemma 6.1] is given
by

∥βC∥ν = 4.

The growth factor of the regular algorithm (5.1) attains this minimum value,

γ (β̂R) = ∥e∗
1∥∗∥e∗

1∥∗∥e1∥ + ∥−e∗
2∥∗∥e∗

2∥∗∥e1∥ + ∥e∗
1∥∗∥e∗

2∥∗∥e2∥
+ ∥e∗

2∥∗∥e∗
1∥∗∥e2∥

= 4 = ∥βC∥ν,

as does our new algorithm (5.3),

γ (β̂N) =
4
3

(∥∥∥∥

√
3
2

e∗
1 +

1
2
e∗
2

∥∥∥∥
∗

∥∥∥∥

√
3
2

e∗
1 +

1
2
e∗
2

∥∥∥∥
∗

∥∥∥∥
1
2
e1 +

√
3
2

e2

∥∥∥∥

+
∥∥∥∥

√
3
2

e∗
1 − 1

2
e∗
2

∥∥∥∥
∗

∥∥∥∥

√
3
2

e∗
1 − 1

2
e∗
2

∥∥∥∥
∗

∥∥∥∥
1
2
e1 −

√
3
2

e2

∥∥∥∥ + ∥e∗
2∥∗∥e∗

2∥∗∥e1∥
)

= 4 = ∥βC∥ν,
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but not Gauss’s algorithm (5.2),

γ (β̂G) = ∥e∗
1 + e∗

2∥∗∥e∗
1 + e∗

2∥∗∥e2∥ + ∥e∗
1∥∗∥e∗

1∥∗∥e1 − e2∥
+ ∥−e∗

2∥∗∥e∗
2∥∗∥e1 + e2∥

= 2(1+
√
2) > ∥βC∥ν .

So Gauss’s algorithm β̂G is faster (by bilinear complexity) but less stable (by bilinear
stability) than the regular algorithm.Our new algorithm β̂N on the other hand is optimal
in both measures, attaining both rank(βC) and ∥βC∥ν .

We stress that numerical stability is too complicated an issue to be completely cov-
ered by the simple framework of bilinear stability. For instance, from the perspective
of cancellation errors, our new algorithm also suffers from the issue pointed out in
[19, Section 23.2.4] for Gauss’s algorithm. By choosing z = w and b =

√
3/a, our

algorithm (5.3) computes

1
2

[(
a + 1

a

)2
+

(
a − 1

a

)2
− 8

a2

]
+ i

√
3

2

[(
a + 1

a

)2
−

(
a − 1

a

)2]
=: x + iy.

There will be cancellation error in the computed real part x̂ when |a| is small and
likewise in the computed imaginary part ŷ when |a| is large. Nevertheless, as discussed
in [19, Section 23.2.4], the new algorithm (5.3) is still stable in the weaker sense of
having acceptably small |x − x̂ |/|z| and |y − ŷ|/|z| even if |x − x̂ |/|x | or |y − ŷ|/|y|
might be large.

5.2 Error analysis of new algorithm applied tomatrices

While using Gauss’s algorithm or our new algorithm for multiplying of complex
numbers is a pointless overkill, they become useful when applied to the multiplication
of complex matrices. Note that any complex matrices A + i B,C + i D ∈ Cn×n may
be multiplied via their real and imaginary parts A, B,C, D ∈ Rn×n :

(A + i B)(C + i D) = (AC − BD)+ i[AD + BC], (5.4)

allowing us to focus our attention on designing algorithms for real matrix products.
In this regard, Gauss’s algorithm applied in the form

(A + i B)(C + i D) = (AC − BD)+ i[(A + B)(C + D) − AC − BD] (5.5)

reduces the number of real matrix products from four to three at the expense of more
matrix additions. This represents an enormous saving asmatrix products are invariably
much more expensive than matrix additions. Our new algorithm (1.5) likewise applies
in the form
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(A + i B)(C + i D)

= 1
2

[(
A + 1√

3
B

)(
C + 1√

3
D

)
+

(
A − 1√

3
B

)(
C − 1√

3
D

)
− 8

3
BD

]

+ i
√
3

2

[(
A + 1√

3
B

)(
C + 1√

3
D

)
−

(
A − 1√

3
B

)(
C − 1√

3
D

)]
, (5.6)

trading expensivematrix products for inexpensive scalarmultiplications and additions.
The following is an error analysis of (5.6), i.e., our newalgorithmapplied to complex

matrix multiplication. We emulate a similar analysis for Gauss’s algorithm in [17, 19],
assuming in particular that the realmatrixmultiplications involved are performedusing
the conventional algorithm (as opposed to Strassen’s or Winograd’s). We remind the
reader that conventional matrix multiplication has the simple error bound

|AB − fl(AB)| ≤ n|A||B|u+ O(u2) (5.7)

for A, B ∈ Rn×n .

Theorem 5.1 (Error analysis for our new algorithm) Let (A+ i B)(C+ i D) = F+ iG
with F,G ∈ Rn×n and let F̂N, ĜN be computed via (5.6) in floating point arithmetic
satisfying (3.3). Then

|F − F̂N| ≤ (n + 7)
(
|A| + 1√

3
|B|

)(
|C | + 1√

3
|D|

)
u

+
(
4
3
n + 4

)
|B||D|u+ O(u2), (5.8)

|G − ĜN| ≤
√
3(n + 6)

(
|A| + 1√

3
|B|

)(
|C | + 1√

3
|D|

)
u+ O(u2), (5.9)

where the inequality ≤ and absolute value | · | both apply in a coordinatewise sense.

Proof Following [19], we use the same letter δ to denote the error incurred in each
step of our algorithm. So, for example,

fl(B/
√
3) = B/

√
3+ δB/

√
3.

In the following we will define matrices Hi and let Ĥi be its computed value, i =
1, . . . , 8.

Let H1 := A + B/
√
3. Then

Ĥ1 = fl(A + B/
√
3+ δB/

√
3) = (A + B/

√
3+ δB/

√
3)(1+ δ)

= A + B/
√
3+ δ(A + 2B/

√
3)+ O(u2)

= H1 + 2*1 + O(u2), |*1| ≤ (|A| + |B|/
√
3)u.
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Similarly H2 := C + D/
√
3 satisfies

Ĥ2 = H2 + 2*2 + O(u2), |*2| ≤ (|C | + |D|/
√
3)u.

Let H3 := (A + B/
√
3)(C + D/

√
3). By (5.7),

Ĥ3 = (A + B/
√
3+ 2*1)(C + D/

√
3+ 2*2)+ n*3 + O(u2) (5.10)

where

|*3| ≤ |(A + B/
√
3+ 2*1)||(C + D/

√
3+ 2*2)|u

≤ (|A| + |B|/
√
3+ 2|*1|)(|C | + |D|/

√
3+ 2|*2|)u

≤ (|A|+|B|/
√
3+2u(|A|+|B|/

√
3))(|C |+|D|/

√
3+2u(|C |+|D|/

√
3))u

≤ (|A| + |B|/
√
3)(|C | + |D|/

√
3)u+ O(u2). (5.11)

By (5.10) and (5.11),

Ĥ3 = (A + B/
√
3)(C + D/

√
3)+ 2*1(C + D/

√
3)

+ 2(A + B/
√
3)*2 + n*3 + O(u2)

= H3 + (n + 4)*4 + O(u2)

(5.12)

where

|*4| ≤ (|A| + |B|/
√
3)(|C | + |D|/

√
3)u.

Similarly H4 := (A − B/
√
3)(C − D/

√
3) satisfies

Ĥ4 = H4 + (n + 4)*5 + O(u2) (5.13)

where

|*5| ≤ (|A| + |B|/
√
3)(|C | + |D|/

√
3)u.

Let H5 := (A+ B/
√
3)(C + D/

√
3)+ (A − B/

√
3)(C − D/

√
3). By (5.12) and

(5.13),

Ĥ5 = [H3 + (n + 4)*4 + H4 + (n + 4)*5](1+ δ)+ O(u2)

= H5 + (2n + 10)*6 + O(u2)
(5.14)

where

|*6| ≤ u(|A| + |B|/
√
3)(|C | + |D|/

√
3).
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Let H6 := 8/3BD. Then

Ĥ6 = fl(8/3(BD + n*7))+ O(u2)

= 8/3(BD + n*7)(1+ δ)+ O(u2)

= H6 + 8/3(n + 1)*8 + O(u2)

(5.15)

where

|*7| ≤ |B||D|u, |*8| ≤ |B||D|u.

Let H7 := H5 − H6. By (5.14) and (5.15),

Ĥ7 = [H5 + (2n + 10)*6 − H6 − 8/3(n + 1)*8](1+ δ)+ O(u2)

= H7 + (2n + 12)*9 + 8/3(n + 2)*10 + O(u2)

where

|*9| ≤ (|A| + |B|/
√
3)(|C | + |D|/

√
3)u, |*10| ≤ |B||D|u.

Then

F̂N = (1+ δ)[H7 + (2n + 12)*9 + 8/3(n + 2)*10]/2+ O(u2)

= F + (n + 7)*11 + 4/3(n + 3)*12 + O(u2)

where

|*11| ≤ (|A| + |B|/
√
3)(|C | + |D|/

√
3)u, |*12| ≤ |B||D|u,

and from which we obtain (5.8).
Let H8 := (A+B/

√
3)(C+D/

√
3)−(A−B/

√
3)(C−D/

√
3). Similar to (5.14),

we have

Ĥ8 = H8 − (2n + 10)*13 + O(u2)

where

|*13| ≤ (|A| + |B|/
√
3)(|C | + |D|/

√
3)u.

Then

ĜN =
√
3/2[H8 − (2n + 10)*13](1+ δ)+ O(u2)

= G +
√
3(n + 6)*14 + O(u2)
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where

|*14| ≤ (|A| + |B|/
√
3)(|C | + |D|/

√
3)u,

from which we obtain (5.9). ⊓⊔

If we compute the matrices F,G in Theorem 5.1 using Gauss’s algorithm (5.5)
with floating point arithmetic and let the results be F̂G and ĜG, then the corresponding
error bounds [17, 19] are

|F − F̂G| ≤ (n + 1)(|A||C | + |B||D|)u+ O(u2),

|G − ĜG| ≤ (n+4)[(|A|+|B|)(|C | + |D|)+ |A||C |+|B||D|]u+O(u2).
(5.16)

When n → ∞, we have n + c ≈ n for any constant c. Hence the errors in (5.8) and
(5.9) are dominated by

|F − F̂N| ∼ n
[
|A||C | + 5

3
|B||D| + 1√

3
|A||D| + 1√

3
|B||C |

]
u,

|G − ĜN| ∼ n
[√

3|A||C | + |B||C | + |A||D| + 1√
3
|B||D|

]
u,

whereas those in (5.16) are dominated by

|F − F̂G| ∼ n(|A||C | + |B||D|)u,
|G − ĜG| ∼ n(2|A||C | + 2|B||D| + |A||D| + |B||C |)u.

For easy comparison suppose the magnitudes of the entries in A, B,C, D are all
approximately θ , then these reduce to

|F − F̂N| ∼ 3.8n2θ2, |G − ĜN| ∼ 4.3n2θ2,

|F − F̂G| ∼ 2n2θ2, |G − ĜG| ∼ 6n2θ2.
(5.17)

So Gauss’s algorithm gives an imaginary part that is three times less accurate than
its real part. Note the the imaginary part of Gauss’s algorithm accounts for all its
computational savings; the real part is just the regular algorithm. On the other hand,
our algorithm balances the accuracy of both the real and imaginary parts by spreading
out the computational savings across both parts.

To quantify this, we use the max norm. For a complex matrix A+ i B ∈ Cn×n , this
is

∥A + i B∥max := max{|ai j |, |bi j | : i, j = 1, . . . , n}. (5.18)

The max norm differs from the usual matrix ∞-norm given by maximum row sum
used in [17, 19]. We favor the max norm as it is the strictest measure of numerical
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accuracy — a small max norm error implies that each entry is accurate as opposed to
accurate on average.

If we denote the matrices resulting from Gauss’s algorithm and our new algorithm
by

ÊG := F̂G + i ĜG, ÊN := F̂N + i ĜN

respectively, we expect ∥E − ÊN∥max to be smaller than ∥E − ÊG∥max. The extensive
experiments in Sect. 6 will attest to this.

5.3 Derivation of our algorithm

It is perhaps instructive to include a description of how one may derive the algorithm
in (1.5) by minimizing growth factor. Observe that Gauss’s algorithm (1.1) includes
the term (a + b)(c + d), which adds 2 to its growth factor. We seek to reduce the
growth factor by replacing it with (a + rb)(c + rd) for some shrinkage r ∈ (0, 1),
which leads to a family of algorithms parameterized by r :

(a + bi)(c + di) = 1
2
[(a + rb)(c + rd)+ (a − rb)(c − rd) − (2r2 + 2)bd]

+ i
2r

[(a + rb)(c + rd) − (a − rb)(c − rd)].

Let g(r) denote the growth factor. A simple calculation shows that

g(r) = 1
r
(1+ r2)3/2 + r2 + 1,

which has a minimum of 4 attained at r = 1/
√
3, giving us (1.5). Note that (1.5) is

not unique; another algorithm with growth factor 4 is given by

(a + bi)(c + di) =
√
3
2

[(
a + 1√

3
b
)(

1√
3
c − d

)
+

(
a − 1√

3
b
)(

1√
3
c + d

)]

+ i
2

[(
a − 1√

3
b
)(

1√
3
c + d

)
−

(
a + 1√

3
b
)(

1√
3
c − d

)
+ 8

3
bc

]
,

which may be obtained from (1.5) by substituting c = di and d = −ci .

6 Experiments for new complexmatrix multiplication algorithm

Thegoal of this section is to provide numerical evidence to show that our newalgorithm
(5.6) for complex matrix multiplication is

• nearly as stable as the regular algorithm (5.4), and
• nearly as fast as Gauss’s algorithm (5.5).
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Fig. 2 Speed of the three algorithms for complex matrix multiplication

We begin with routine experiments comparing the three algorithms (5.4), (5.5), (5.6)
on random matrices, and move on to three actual applications: matrix polynomial
evaluations, unitary transformations, and the increasingly popular complex-valued
neural networks. The results, we think, show that our new algorithm can be a realistic
replacment for Gauss’s algorithm in engineering applications.

6.1 Speed of the algorithms

We generate random A + i B,C + i D ∈ Cn×n with entries of A, B,C, D drawn
uniformly in [−1, 1]; the results with standard normal are similar and omitted. We
increase n from 2100 to 7000 in steps of 100. The product (A + i B)(C + i D) is
computed numerically with the regular algorithm (5.4), Gauss’s algorithm (5.5), and
our new algorithm (5.6). For each n, we generate ten different matrices and record
the average time taken for each algorithm and plot these in Fig. 2, with wall time (in
seconds) for vertical axis and log10(n) for horizontal axis. The time taken byMatlab’s
internal function for complex matrix multiplication is virtually indistinguishable from
that of the regular algorithm and therefore omitted.

Consistent with the predictions of bilinear complexity, our new algorithm has
roughly the same computation time asGauss’s algorithm, at roughly 3/4 the time taken
by the regular algorithm.Wewill performmore speed experiments in conjunction with
our accuracy experiments in Sect. 6.2.

123



Numerical stability and tensor nuclear norm 369

6.2 Accuracy of the algorithms

Wegenerate random A+i B,C+i D ∈ Cn×n withn = 64, 128, 256 andwith condition
numbers ranging from 174 to 3× 1011. We use the spectral condition number κ2(X),
i.e., ratio of largest to smallest singular values of X , throughout this article. It is
desirable to limit ourselves to matrices over Gaussian rationals, i.e., Q + Qi , as we
will need to compute the exact values of their products later.

The way we generate such a matrix requires some elaboration. For an X ∈ Zn×n

with a specified κ2(X) = κ ∈ Z. We form a diagonal - ∈ Rn×n whose diagonal
entries are 1 and κ toegether with n − 2 other random integers between 1 and κ − 1.
We then form X = H-HT with a random Hadamard matrix H ∈ Zn×n . If A and B
are generated in thismanner, then they are densematrices (important as we do not want
sparsity to unduly influence arithmetic costs) and κ2(A+ i B) = κ2(A) = κ2(B) = κ

as (κ + κi)/(1+ i) = κ .
We compute the exact value of (A + i B)(C + i D) symbolically with Matlab’s

symbolic toolbox. Given our relatively modest computational resources, this is the
bottleneck for our experiments as this step becomes prohibitively expensive when
n > 256. In generating the n = 256 plots in Fig. 3, this step alone took 40h on our
University’s Research Computing Center servers.

For each pair of complex matrices A+ i B and C + i D, we compute their product
Ê using each of the three algorithms (5.4), (5.5), (5.6), and compare them against the
exact result E via the max norm relative error

∥E − Ê∥max

∥A + i B∥max∥C + i D∥max
.

As discussed in [17, 19], it is natural to measure error in matrix multiplication relative
to the norms of the input matrices. We use the max norm in (5.18) to better capture
entrywise accuracy.

The results are plotted in Fig. 3: speed plots havewall time in seconds on the vertical
axes; accuracy plots have relative error on the vertical axes; all plots have log10(κ) on
the horizontal axes. We repeat each experiment ten times: every value on these plots
comes from averaging across the results of ten pairs of randommatrices with the same
condition number.

Observations from Fig. 3: The accuracy of our new algorithm is much higher than
that of Gauss’s algorithm and only slightly worse than that of the regular algorithm.
Gauss’s algorithm also shows a great deal more fluctuation across varying condition
numbers than either our new algorithm or the regular one. When it comes to speed,
our algorithm is closer to that of Gauss’s than the regular algorithm. These accuracy
results attest to Theorem 5.1 and the discussions around (5.17).

The relative errors and wall times for Matlab’s internal function for complex
matrix multiplication are virtually indistinguishable from those of the regular algo-
rithm (that we implemented ourselves) and thus omitted. In the next three sections,
we will compare the accuracy and speed of the three complex matrix multiplication
algorithms in more realstic scenarios.
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Fig. 3 Accuracy and speed of algorithms for complex matrix multiplication

6.3 Matrix polynomial evaluations

We evaluate a polynomial p(x) = ∑d
k=0 akx

k with coefficients a0, . . . , ak ∈ R at a
X ∈ Cn×n . This is a problem that occurs in many tasks involving matrix functions [19,
20].We limit ourselves to real coefficients as this is by far most common scenario [20];
but the complex coefficients case simply reduces to evaluating two real polynomials

123



Numerical stability and tensor nuclear norm 371

Fig. 4 The three algorithms applied to matrix polynomial evaluations

ℜp(x) and ℑp(x). The celebrated Horner’s rule [20, Algorithm 4.3], as shown in
Algorithm 1, reduces the problem to one of repeated matrix multiplications.

Algorithm 1 Compute p(X) via Horner’s rule
Input a0, a1, . . . , ad ∈ R, X ∈ Cn×n

Output a0 I + a1X + · · · + ad Xd

1: P = X ;
2: S = a0 I + a1X ;
3: for k = 2 : d do
4: P = PX ;
5: S = S + ak P;
6: end for
7: return S;

We generate random matrices X ∈ C256×256 with condition numbers from 234 to
253 as described in Sect. 6.2. We set d = 5 and choose random b0, . . . , b5 ∈ (0, 1)
uniformly. We then evaluate p(X) using Algorithm 1, with Step 4 computed via (5.4),
(5.5), and (5.6).

We measure accuracy in terms of the max norm relative forward error

∥p(X) − p̂(X)∥max

∥p(X)∥max
,

usingMatlab symbolic toolbox for the exact value of p(X). The results presented in
Fig. 4 again show that our new algorithm is nearly as stable as the regular algorithm
and nearly as fast as Gauss’s algorithm. While our accuracy tests are again limited by
our capacity for symbolic computation (n = 256 is fine, n = 512 is beyond reach),
our speed tests can go far beyond (to around n = 4096), and they show a profile much
like Fig. 2.
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Fig. 5 The three algorithms applied to unitary transforms

6.4 Unitary transforms

Given a unitary matrix U ∈ Cn×n and a complex matrix X ∈ Cn×n , it may come
as a surprise to the reader that unless U happens to be some special transforms like
FFT, DCT, DWT, etc, or has already been factored into a product of Householder
or Givens matrices, there is no known special algorithm for forming UX that would
take advantage of the unitarity of U . Nevertheless, such unitary matrices with no
additional special structure are not uncommon. For instance, the matrixU could come
from polar decompositions or matrix sign functions [16, 18, 22], and computed via
iterative methods [16, 18, 22] and thus not in Householder- or Givens-factored form.
Here we will explore the use of algorithms (5.4), (5.5), (5.6) for unitary transforms
X +→ UX .

We generate the unitary matrix U ∈ C256×256 by QR factoring complex random
matriceswith entries inU[0, 1]+U[0, 1]i .Note that a unitarymatrix is always perfectly
conditioned. The matrix X ∈ C256×256 is generated randomly with condition numbers
from 234 to 253 as in Sect. 6.3. We compute the exact value E := UX symbolically as
before and measure the accuracy of our computed value Ê by

∥E − Ê∥max

∥U∥max∥X∥max
.

The results, presented in Fig. 5, allow us to draw the same conclusion as in the Sect. 6.3.
Further speed tests up to n = 4096 again show a profile much like Fig. 2.

6.5 Complex-valued neural networks

A complex-valued neural networks is simply a neural network with complex-valued
weights and is activated by a complex function. It has become increasingly important
and is widely used in signal processing and computer vision [1, 3, 9, 31, 36, 39]. For
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Fig. 6 A constant width neural network with input dimension n = 4 and depth d = 6. The arrows between
adjacent layers are weighted with values in the weight matrices. h(k) ∈ Rn denotes the output of the kth
layer

simplicity, we consider a d-layer constant width version f : Cn → Cn given by

f (W1, . . . ,Wd , σ )(x) := Wdσ (Wd−1σ (· · ·W2σ (W1x) · · · )),

with weight matricesW1, . . . ,Wd ∈ Cn×n and activation function σ : C → C applied
coordinatewise on Cn , as depicted in Fig. 6.

Complex matrix multiplications are indispensable when we train (i.e., fit with data
in order to determine the weights W1, . . . ,Wd ) such a neural network through back-
propagation, or when we evaluate it on multiple inputs x1, . . . , xm ∈ Cn to make
new predictions. Here we will compare the performance of the three algorithms (5.4),
(5.5), (5.6) for the latter task as it allows for easier control of the condition numbers
of W1, . . . ,Wd .

For concreteness, we choose a depth of d = 6 and use the complex ReLU activation
[3, 36]

σ (a + bi) := max(a, 0)+max(b, 0)i .

We generate random weight matrices W1, . . . ,W6 ∈ Cn×n with n = 64 and 128,
and with condition numbers ranging from 234 to 253. We also generate random inputs
X = [x1, . . . , xm] ∈ Cn×m with entries drawn from U[− 1

2 ,
1
2 ]+U[− 1

2 ,
1
2 ]i , and with

(m, n) = (25, 64) or (50, 128). The task is then to evaluate

E := f (W1, . . . ,Wd , σ )(X) := Wdσ (Wd−1σ (· · ·W2σ (W1X) · · · )).

Again we compute its exact value E symbolically, apply the three algorithms to obtain
Ê numerically, and measure accuracy in terms of the relative forward error

∥E − Ê∥max

∥E∥max
.

The results, shown in Fig. 7, are fully consistent with those in Sects. 6.3 and 6.4.
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Fig. 7 The three algorithms applied to 6-layer complex neural networks with complex ReLU activation and
widths 64 and 128

7 Conclusion

The notion of bilinear complexity started by Strassen has been a great motivator for
more than five decades of exciting developments in numerical linear algebra. Its suc-
cess illustrates the adage that “less ismore”.Bilinear complexity does not capture every
operation that underlies the speed of an algorithm; but by focusing on a single oper-
ation (variable multiplications) and disregarding the rest (e.g., scalar multiplications,
additions), it allows speed to be measured by the number of terms in a decompo-
sition of a 3-tensor and the fastest algorithm to be given by a rank decomposition.
This opens a door to other areas of mathematics like algebraic geometry where such
decompositions are studied independent of their computational relevance.

Wehope the notionof bilinear stability proposed in this articlewould do for the study
of numerical stabilitywhat bilinear complexity did for the study of time complexity. By
focusing on a single factor (growth) and disregarding other factors (e.g., cancellation
errors) that play a role in numerical stability, it allows stability to be measured by the
growth factor in a decomposition of a 3-tensor and the stablest algorithm to be given
by a nuclear decomposition. Just as tensor rank connects to algebraic geometry, tensor
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nuclear norm connects to functional analysis [10, 12, 30]; thus bilinear stability could
potentially open a door to this rich area of mathematics.

A very recent development in bilinear complexity is the automated discovery of
fast algorithms using deep reinforcement learning. In [14], AlphaTensor found more
than 14,000 inequivalent 49-term decompositions for 4 × 4 matrix product. This is
impressive. But when one has that many different algorithms the question becomes
which one to pick? From the perspective of numerical linear algebra, numerical sta-
bility would be the most natural secondary criteria. Since the 14,000 algorithms are
all given in the form of 49-term decompositions, their growth factors are trivial to
calculate and all one needs to do is to pick the decomposition with the smallest growth
factor.
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