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ARTICLE INFO ABSTRACT

Keywords: Intrinsic disorder predictors were evaluated in several studies including the two large CAID experiments.
Intrinsic Disorder However, these studies are biased towards eukaryotic proteins and focus primarily on the residue-level pre-
Disorder Prediction dictions. We provide first-of-its-kind assessment that comprehensively covers the taxonomy and evaluates pre-

Afsessmem ) dictions at the residue and disordered region levels. We curate a benchmark dataset that uniformly covers
Disordered Regions . A R . . L 3 R
Taxonomy eukaryotic, archaeal, bacterial, and viral proteins. We find that predictive performance differs substantially
Eukaryotes across taxonomy, where viruses are predicted most accurately, followed by protists and higher eukaryotes, while
Protists bacterial and archaeal proteins suffer lower levels of accuracy. These trends are consistent across predictors. We
Archaea also find that current tools, except for fIDPnn, struggle with reproducing native distributions of the numbers and
Bacteria sizes of the disordered regions. Moreover, analysis of two variants of disorder predictions derived from the
Viruses

AlphaFold2 predicted structures reveals that they produce accurate residue-level propensities for archaea, bac-
teria and protists. However, they underperform for higher eukaryotes and generally struggle to accurately
identify disordered regions. Our results motivate development of new predictors that target bacteria and archaea
and which produce accurate results at both residue and region levels. We also stress the need to include the

region-level assessments in future assessments.

1. Introduction

Intrinsically disordered proteins (IDPs) contain one or multiple
intrinsically disordered regions (IDRs), which are defined as sequence
segments that lack stable structure under physiological conditions [1,2].
IDPs can be fully disordered, in which case the IDR covers the entire
sequence. While IDPs can be found across all domains of life, several
bioinformatics studies suggest that they are more abundant in eukary-
otic proteomes [3-5]. Functionally, IDPs complement order-
ed/structured proteins, contributing to numerous cellular activities that
include cell cycle regulation, signal transduction, transcription,
post-translational modifications, and phase separation [6-8]. Given
their functional importance, mis-regulation of IDPs was shown to lead to
several human diseases [9-12]. Moreover, IDPs garner increasing
amount of attention as potential drug targets [13-17]. Two databases,
DisProt [18] and MobiDB [19], provide access to experimentally char-
acterized IDRs, where the smaller in scale DisProt includes functionally
annotated IDRs. Combining their data together results in dozens of
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thousands of IDPs, while the current version 2023_05 of UniProt con-
tains around 250 million proteins sequences [20]. This large and
growing IDP annotation gap motivates development of computational
methods that predict intrinsically disordered residues in sequences of
the millions of proteins that lack this annotation.

Well over 100 sequence-based disorder predictors were released so
far [21-29]. They were comparatively evaluated in a number of
community-organized assessments, starting with the fifth Critical
Assessment of protein Structure Prediction (CASP5) in 2002, when six
disorder predictors participated [30]. The disorder predictors were
continually evaluated at the CASP events, until CASP10 in 2012 that
covered 28 methods for the disorder prediction [31]. More recently,
these assessments are organized and run by the intrinsic disorder pre-
diction community. The first Critical Assessment of protein Intrinsic
Disorder prediction (CAID1) was completed in 2018 and involved 32
methods [32]. CAID2 included 46 predictors and was done in 2022 [33].
These assessments are arguably more objective and impactful than other
comparative studies that were done in the meantime by authors of
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individual predictors [34-39]. This is because they are run by assessors
who do not participate in the evaluation, rely on relatively large and
blind datasets (test proteins are not available to the authors of the
participating methods before the event), apply community-screened
evaluation criteria, and provide access to the datasets, ground truth
annotations and predictions. These assessments provide invaluable in-
sights concerning predictive quality, availability of predictors, and
progress and growth of this field. However, the datasets used in the
recent CAID1 and CAID2 events are biased towards certain parts of the
taxonomy. In CAID1, 82 % of the benchmark proteins were from eu-
karyotes, 12 % from bacteria, 5 % from viruses and 1 % from archaea
[32]. Similarly, CAID2's datasets includes 80 % of eukaryotic proteins,
10 % bacterial, 10 % viral, and no archaeal proteins [33]. Corre-
spondingly, the CAID results essentially reflect predictive performance
on the eukaryotic proteins. This taxonomic breakdown is very different
from the data in the main protein repository, UniProt [20], where 30 %
of proteins are from eukaryotes, 65 % from bacteria, 2 % from viruses
and 3 % from archaea. This demonstrates high levels of interest in
bacterial species while disorder prediction assessments are biased to-
wards eukaryotes. Moreover, none of the current comparative studies
evaluate quality of the disorder predictions for specific parts of the
taxonomy, while research shows that abundance and certain functional
characteristics of disorder differ substantially across kingdoms of life
[3-5,40-45].

To this end, we present first-of-its-kind taxonomy-specific assess-
ment of disorder predictors on eukaryotic, archaeal, bacterial, and viral
proteins. We rely on the CAID1 and CAID2 results to select several ac-
curate disorder predictors. We also include two variants of disorder
predictions that are derived from the protein structure generated by
AlphaFold2 (AF2) [46]. We curate a test dataset that includes equal
number of proteins for different parts of the taxonomy and where these
sequences share below 25 % similarity with the training sequences of
the selected methods. The latter ensures that this dataset is equally
challenging for each tool, and simulates a scenario when predicting
proteins that are dissimilar to the IDPs used for training. Importantly, we
evaluate multiple aspects of the disorder predictions. Similar to the past
comparative studies, we evaluate predictions at the residue level.
Moreover, we study quality of the IDR predictions, by qualifying the
degree of the overlap between the predicted and the native IDRs, and
assessing the number and length of the predicted IDRs. Altogether, we
assess several characteristics of disorder predictions across the entire
taxonomic spectrum for a collection of representative methods.

2. Materials and methods
2.1. Selection of predictors

We select a collection of accurate disorder predictors using the re-
sults from CAID1 [32] and CAID2 [33]. We use the popular AUC (area
under the receiver operating characteristic (ROC) curve) metric to select
the ten best methods in CAID1 (on the DisProt dataset) and in CAID2 (on
the Disorder-NOX dataset). In case there are multiple methods that were
developed by the same research group, we select one of them that has
the highest AUC score. We also remove methods which were not pub-
lished in a peer-reviewed journal. These filters resulted in the removal of
fIDPIr, SPOT-Disorder-Single [47] and AUCpred-np [48] from the CAID1
list and fIDPnn2, fIDPIr and fIDPIr2 from the CAID2 list. We focus on
methods that consistently participated in CAID1 and CAID2, resulting in
a list of five tools: fIDPnn [49], EspritzD [50], rawMSA [51], Disomine
[52] and SPOT-Disorder2 [53]. Given the rather large size of our test
dataset that samples the entire taxonomy, we exclude SPOT-Disorder2
that has an average per-protein runtime of about 50 mins. Finally, we
select the remaining four methods. These methods secure high AUC
values, averaged over the two CAID assessments, and they include
fIDPnn, EspritzD, rawMSA, and Disomine with the average AUCs of
0.824, 0.788, 0.782, and 0.781, respectively.

1969

Computational and Structural Biotechnology Journal 23 (2024) 1968-1977

Besides these four accurate predictors of disordered residues, we also
include disorder predictions derived from the AF2 results. Motivated by
recent studies [54-56], we apply two approaches to compute the dis-
order propensities from the AF2 predicted protein structures. The first
approach was defined in the AF2 article [46] by using the per-residue
confidence measure, predicted local-distance difference test (pLDDT),
to calculate the disorder propensity. The pLDDT scores range between
0 and 100, where a higher score denotes higher reliability of the AF2's
prediction. Accordingly, we calculate the disorder propensity as (1 —
pLDDT/100) and we name this prediction AF2 pLDDT. The second
approach, AF2 RSA [54], uses relative solvent accessibility (RSA) scores
that are calculated with DSSP [57] from the AF2 predicted protein
structures, and averages these scores over a sliding window of size 25.
We obtain the AF2 predicted structures from the AlphaFold Protein
Structure Database (AlphaFoldDB) [58]. We note that AlphaFoldDB
explicitly excludes viral proteins, and the AF2 authors made this deci-
sion for “technical reasons” [59]. This effectively means that we cannot
assess AF2's predictions for the viral proteins, while this is possible for
the disorder predictors.

2.2. Dataset curation

We rely on the MobiDB database [60,61], the largest repository of
disordered proteins with their structural and functional annotations
obtained from computational predictions and experimentally verified
sources, which are primarily PDB [62] and DisProt [18]. We collect
sequences with experimentally-derived disorder annotations, which
produced 22,357 proteins. We remove 18 peptides that have sequences
shorter than 30 residues. Next, we remove sequences that share over
25 % similarity to the training datasets of the four selected accurate
disorder predictors. This aims to make the test dataset equally difficult
for each evaluated tool, and simulates predictions for proteins that are
dissimilar to the training IDPs, i.e., proteins that represent a broad
collection of sequences that lack disorder annotations. To do that, we
cluster the 22,357 proteins with the 9721 training proteins using CD-Hit
at 25 % similarity threshold and 80 % coverage [63], and we exclude
all clusters that include training proteins. Correspondingly, we keep the
remaining 15,221 sequences. Next, we exclude proteins that use
PDB-derived annotations that rely on structures of complexes. This is
because such interactions can potentially induce disorder-to-order
transitions for the binding regions, which would incorrectly annotate
these binding IDRs as structured. However, we keep the PDB-derived
annotations where they rely on the structures of protein monomers
with no ligands. Next, we obtain taxonomic details of these sequences
using UniProt [20] and segregate them into five broad taxonomic
groups: 1) higher eukaryotes that cover animals, plants, and fungi (1199
proteins); 2) protists that cover other eukaryotes except animals, plants,
and fungi (113 proteins); 3) archaea (93 proteins); 4) bacteria (1217
proteins); and 5) viruses (124 proteins). Finally, we balance the dataset
taxonomically by keeping the entire collection of the 93 proteins from
archaea and randomly sampling 93 proteins from each of the other four
groups, where we stratify sampling for eukaryotes to retain the original
breakdown between animals, plants and fungi. We investigate whether
this sampling affects the underlying characteristics of the data by
comparing amino acid-level propensities for disorder between a com-
plete dataset and the corresponding sampled dataset for each taxonomic
group (Supplementary Fig. S1). As expected, since this is random sam-
pling, the patterns of disorder enrichment are consistent between the
complete and the sampled datasets where significantly enriched and
depleted amino acids maintain the same bias.

We use the resulting dataset of 465 sequences that combines the five
samples sets to comparatively evaluate results of the three accurate
disorder predictors across the five taxonomic groups. This dataset is
comparable in size to the datasets used in CASP10 (94 proteins), CAID1
(646 proteins), and CAID2 (348 proteins). We provide this dataset,
which includes the UniProt accession numbers, taxonomic classification,
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sequences and annotations of disordered residues/regions, in the Sup-
plement. We also give distribution of the disorder content (fraction of
disordered residues) for the proteins across the five taxonomic groups in
Supplementary Fig. S2. Interestingly, these distributions that rely on the
experimentally annotated disorder agree with past bioinformatics
studies that estimated disorder content based on predictions, showing
that eukaryotic and viral species have substantially more disorder
compared to the archaea and bacteria [3,4,64,65].

2.3. Assessment metrics

Disorder predictors, including the four selected methods and the two
variants of the AlphaFold2-based results, produce a numeric propensity
for intrinsic disorder for each amino acid in the input sequence. These
propensities are used to derive putative structural state (intrinsically
disordered vs. structured) using a threshold, where amino acids with the
disorder propensities > threshold are labelled ‘1" (disordered), and
otherwise they are labeled ‘0’ (structured). Disordered residues form
IDRs in the sequence, where the experimental annotations of disorder in
the source databases, MobiDB and DisProt, assume that IDRs must be at
least 10 consecutive residues in length [18,19]. The putative disorder is
supposed to mimic this annotation and similarly generate disordered
sequence segments. Correspondingly, we assess disorder predictions at
the residue level and the region level, where the latter examines an
overlap between the predicted and native IDRs, and compares numbers
and sizes of the native and predicted IDRs.

The residue-level evaluation follows past comparative assessments
and considers both propensities and binary states. In particular, we
apply the popular AUC metric to evaluate the putative propensities
[31-34,36,37,39]. The underlying ROC curve plots true positive rates
(TPR = TP/(TP+FN)) vs. false positive rates (FPR = FP/(FP+TN)) using
every unique propensity value as the threshold, where TP, TN, FN and
FP are the numbers of true positives (correctly predicted disordered
residues), true negatives (correctly predicted structured residues), false
negatives (disordered residues incorrectly predicted as structured), and
false positives (structured residues incorrectly predicted as disordered),
respectively. The AUC values range between 0 (all incorrect predictions)
and 1 (all predictions are correct), where 0.5 denotes random pre-
dictions. In practice, AUC scores are expected to range between 0.5 and
1. We binarize propensities to derive the putative structural state using a
threshold that produces the correct disorder content (fraction of disor-
dered residues) over the entire dataset. This calibrates predictions across
different methods, allowing us to directly compare them. We assess
these binary predictions using the following two metrics that were
applied in the CAID and CASP experiments [31-33]:

2TP

Fl= — =
2TP + FP + FN

Matthews Correlation Coefficient(MCC)
TN = TP — FN * FP
\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The F1 is a harmonic mean of precision = TP/(TP+FP) and TPR (also
called recall), where higher values indicate better predictive perfor-
mance. MCC ranges between —1 and 1 where 0 denotes predictions at
random levels and higher positive value corresponds to a stronger
agreement between predictions and native values; negative values are
uncommon and would suggest that predicted state is opposite to the
native state.

We also evaluate quality of the predicted IDRs. While this aspect was
not assessed in the CASP and CAID experiments, similar evaluations
were done for the secondary structure and transmembrane region pre-
dictions, which also form segments in the sequence [66-70]. We
generate the binary state with the thresholds that generate correct dis-
order content over the entire dataset when setting the minimum IDR

1970

Computational and Structural Biotechnology Journal 23 (2024) 1968-1977

length to 10 residues, which is consistent with the minimal regions sizes
in the source DisProt and MobiDB databases [18,19]. We compare the
number of putative IDRs for each of the unique IDR lengths, with the
corresponding native IDR counts using mean absolute error (MAE). For a
given set of n unique IDR lengths with native IDR counts a;, az, ..., a; and
the predicted IDR counts x7,X3, ...,X,, the MAE is defined as:

1 n
MAE = —E |x; — a;l
n
=

This metric computes an average count by which number of pre-
dicted IDRs differ from number of native IDRs across all native lengths of
IDR. For example, MAE of 20 means that on average (across different
IDR sizes) the number of predicted IDRs differ by 20 from the number of
native IDRs. We also compare distributions of native and predicted IDRs
(i.e., plots of the numbers of IDRs across different IDR sizes) using the
Kolmogorov-Smirnov test, and we apply the p-value that this test gen-
erates as the metric. This metric measures the difference in shape be-
tween the distributions of the predicted and the native IDRs, where
higher p-values correspond to higher likelihood that the native and
predicted IDR distributions are similar. Besides the number and sizes of
predicted IDRs, we assess the degree of overlap between the native and
predicted IDRs using the segment overlap (SOV) metric [71], which was
originally developed for the assessment of the secondary structure re-
gions and was used to assess disorder predictions [38,72]. SOV com-
plements the MAE and p-value based evaluation since it considers
position of the predicted IDRs in the sequence relative to the position of
the native IDRs. SOV ranges between 0 (no overlap) and 1 (perfect
overlap) and is calculated per protein. Moreover, since sequence length
varies across taxonomy, we compute weighted average of these values
over the corresponding proteins in a given taxonomic group where
weights correspond to the protein length. This facilitates direct com-
parison of the SOV values across taxonomy.

2.4. Statistical tests

We quantify statistical significance of differences when comparing
predictions across taxonomy. We compare results generated for diverse
sub-sampled collections of proteins from the same taxonomic groups.
Specifically, we randomly sample 10 sets of 50 % proteins from a given
taxonomic group and compare with the corresponding 10 sampled re-
sults from another group. We use the student t-test when the corre-
sponding data (i.e., measured AUC, F1, MCC, MAE, p-value and SOV
values) are normal, and otherwise we apply the Wilcoxon rank-sum test.
We determine normality using the Anderson-Darling test at 0.05
significance.

3. Results
3.1. Residue-level assessment

We compare quality of the residue-level predictions produced by the
four accurate disorder prediction methods (EspritzD, fIDPnn, rawMSA
and Disomine) on balanced collections of proteins from five diverse
taxonomic groups (higher eukaryotes, protists, archaea, bacteria and
viruses) in Table 1. The confusion matrices and additional metrics that
assess binary predictions are in Supplementary Table S1.

Table 1 reveals that the four disorder predictors perform reasonably
well with AUCs ranging from moderate (0.69 for Disomine for bacteria)
to high (0.87 for EspritzD and Disomine for viruses). This stems from the
fact that we sampled arguably currently the most accurate disorder
predictors. Importantly, predictive performance varies widely across
taxonomy, with substantial and statistically significant differences be-
tween the best and the worst performing taxonomic groups, i.e., AUC of
0.87 vs. 0.70 for EspritzD (p-value<0.01); 0.86 vs. 0.71 for fIDPnn (p-
value<0.01), 0.85 vs. 0.71 for rawMSA (p-value<0.01) and 0.87 vs 0.69
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Table 1

Residue-level assessment of predictive performance for the six predictors and the five diverse taxonomic groups. We sort the taxonomic groups in the descending order
of values for a given performance metric. We report medians of the metrics that we calculate over the 10 sampled datasets (see “Statistical test” section for details). We
summarize results of the statistical significance analysis in the x/y format next to the reported median value where x and y compare against the best and worst
predicted taxonomic group, respectively, and where ** and * denote statistically significant differences with p-values < 0.01 and < 0.05, respectively, while = denotes
differences that are not statistically significant (p-value > 0.05). Predictions from AF2_pLDDT and AF2_RSA results are unavailable (UA) for the viral proteins.

Methods AUC F1 MCC
Taxonomic groups Score Taxonomic groups Score Taxonomic groups
EspritzD Viruses 0.866 /* * Viruses 0.438 /* * Viruses
Protists 0.753 * */= Protists 0.298 Protists
Higher eukaryotes 0.738 * */= Higher eukaryotes 0.274 * */ Higher eukaryotes
Archaea 0.725 * */= Archaea 0.246 * */* Archaea
Bacteria 0.696 * */ Bacteria 0.184 * */ Bacteria
fIDPnn Viruses 0.856 /* * Viruses 0.481 /* * Viruses
Higher eukaryotes 0.824 * /* * Higher eukaryotes 0.466 = /* * Higher eukaryotes
Protists 0.797 * */* * Protists 0.371 * /* * Protists
Archaea 0.756 * */= Archaea 0.317 * */= Archaea
Bacteria 0.706 * Bacteria 0.303 Bacteria
rawMSA Viruses 0.853 /* * Viruses 0.378 /* * Viruses 0.316 /* *
Protists 0.815 * */* * Protists 0.375 = /* * Protists 0.296 = /* *
Higher eukaryotes 0.785 * */= Higher eukaryotes 0.351 = /* * Higher eukaryotes
Archaea 0.772 * */= Bacteria o Bacteria
Bacteria 0.713 * */ Archaea 0.224 * */ Archaea
Disomine Viruses 0.866 /* * Viruses 0.374 /* Viruses .
Protists 0.765 * */* * Protists 0.353 = /* Protists 0.301 = /* *
Higher eukaryotes 0.732 * */* Higher eukaryotes 0.306 * /* * Higher eukaryotes 0.208 * */*
Archaea 0.724 * */= Archaea 0.245 * */= Archaea 0.179 * */* *
Bacteria 0.688 * */ Bacteria 0.218 * */ Bacteria 0.148 * */
AF2 pLDDT Archaea 0.818 /* * Protists 0.277 /= Archaea 0.237 /*
Protists 0.817 = /* * Bacteria 0.268 = /* Bacteria 0.222 = /*
Bacteria 0.813 = /* * Higher eukaryotes 0.267 = /* Protists 0.167 * /=
Higher eukaryotes 0.736 * */ Archaea 0.221 =/ Higher eukaryotes 0.156 * /
Viruses UA Viruses UA Viruses UA
AF2_RSA Archaea 0.845 /* * Bacteria 0.307 /* * Archaea 0.265 /* *
Bacteria 0.823 = /* * Protists 0.280 = /= Bacteria 0.258 = /* *
Protists 0.798 * */* * Higher eukaryotes 0.228 * /= Protists 0.182 * */=
Higher eukaryotes 0.724 * */ Archaea 0.221 * */ Higher eukaryotes 0.101 * */
Viruses UA Viruses UA Viruses UA

for Disomine (p-value<0.01). Moreover, we note a consistent sorted
order of taxonomic groups, with the most accurate predictions for eu-
karyotes and viruses, followed by archaea, and the least accurate results
for bacteria. This trend is similar across different predictors and metrics.
The four tools produce equally very accurate predictions for the viral
proteins, with AUCs ranging between 0.85 (rawMSA) and 0.87 (EspritzD
and Disomine). On the other end of the spectrum, the lowest perfor-
mance is for the bacterial proteins, with modest and similar AUCs
around 0.70. We observe a more variable levels of performance for the
higher eukaryotes and protists, with fIDPnn securing high AUCs of 0.82
and 0.80, respectively, and Disomine obtaining substantially lower
AUCs of 0.73 and 0.77, respectively. These higher levels of performance
for fIDPnn explain why this tool performed better than the other three
methods in the CAID assessments where large majority of the test pro-
teins are from eukaryotes [32,33]. Finally, predictions for archaea are
characterized by modest levels of performance, with AUCs between 0.72
(Disomine) and 0.77 (rawMSA). Moreover, AUCs for archaea are not
statistically better than AUCs for bacteria (p-value > 0.05), suggesting
that these two taxonomic groups suffer similarly low levels of predictive
quality. Analysis based on the F1 and MCC metrics for the binary state
predictions leads to consistent observations. The highest correlations are
for viral proteins (MCC of 0.42 for flDPnn), higher eukaryotes (MCC of
0.40 for flDPnn), and protists (MCC of 0.30 for fIDPnn, rawMSA and
Disomine). We find substantially lower MCCs for archaea and bacteria,
with the most accurate results for fIDPnn (MCC of 0.26 for archaea) and
rawMSA (MCC of 0.26 for bacteria). Altogether, we observe that the
residue-level predictive performance of the four disorder predictors
varies broadly across the taxonomy, with viruses and eukaryotes pre-
dicted accurately, and archaea and bacteria securing much lower and
modest levels of performance.

We also assess AF2 derived disorder predictions, AF2_pLDDT and
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AF2 RSA, in the four taxonomic groups which exclude viruses for which
AF2 does not provide predictions. In contrast to the disorder predictors,
both AF2 variants accurately predict disorder propensities for archaeal
proteins, with AUCs of 0.85 and 0.82 for AF2_RSA and AF2_pLDDT,
respectively, compared to the best disorder predictor that secures AUC
of 0.77. They also produce similarly accurate results for protists and
bacteria while performing at modest levels of performance for the higher
eukaryotes, i.e., AUC = 0.74 for AF2 pLDDT and AUC = 0.72 for
AF2 RSA when compared to AUC of 0.82 for fIDPnn. The relatively low
levels of performance for the higher eukaryotes may explain why the
AF2 pLDDT and AF2 RSA predictors were outperformed by several
disorder predictors on the Disorder-NOX dataset in CAID2, which is
composed largely of eukaryotic proteins [33]. Moreover, the high AUC
values for archaea and protists are coupled with disproportionally lower
quality of the binary state predictions. In particular, the F1 scores of 0.22
for archaea and 0.28 for protist for the best variant of AF2 are much
lower than F1 of 0.32 by fIDPnn and F1 of 0.37 by fIDPnn and rawMSA,
respectively. This suggests that while AF2 derived predictions generate
accurate residue-level propensities, they might not perform as well
when predicting IDRs based on the putative binary disorder, which we
evaluate in the next section.

3.2. Region-level assessment

We assess two complementary aspects of the region-level predictive
performance: ability to mimic the native distribution of IDRs of different
sizes and the degree of overlap between putative and native IDRs. In
Fig. 1, we show the cumulative counts of IDRs across different IDR
length values, separately for each taxonomic group. We find that the
length and numbers of the native IDRs (red plots in Fig. 1) differ across
taxonomy, in spite of the fact that the number of proteins is the same.
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Fig. 1. Cumulative distributions of native IDR sizes (red plots; based on the disorder annotations from MobiDB) and IDR sizes predicted by the four selected and
accurate disorder predictors (blue for EspritzD; green for fIDPnn; yellow for rawMSA; grey for Disomine) and two AF2 derived disorder predictors (purple for
AF2_pLDDT; pink for AF2_RSA) across the diverse taxonomic groups. Results from AF2_pLDDT and AF2_RSA results are unavailable for the viral proteins.

Higher eukaryotes have the highest number and the longest IDRs, with
some regions longer than 1000 amino acids. Some IDRs in viral proteins
are also relatively long, while IDRs in the archaeal, bacterial and protist
proteins are relatively short and there are fewer of them in the latter two
taxonomic groups. These observations align with the distributions of the
disorder content (Supplementary Fig. S1), which show that eukaryotic
and viral proteins have on average higher disorder content, with some
proteins having more than 80 % disordered residues.

Fig. 1 compares distributions of the numbers and sizes of native IDRs
with the putative IDRs generated by the four disorder predictors for each
of the five taxonomic groups. We find that while some tools produce
distributions that are relatively similar to the experimental data, others
predict fewer and longer IDRs than expected. The fIDPnn’s plots (green
lines in Fig. 1) match relatively well with the experimental IDRs (red
lines in Fig. 1) for higher eukaryotes, protists, bacteria and viruses. The
rawMSA method under-predicts the number of short IDRs while gener-
ating relatively correct numbers of longer IDRs (yellow lines in Fig. 1).
EspritzD under-predicts the number of short and moderately long IDRs
and over-predicts long IDRs (blue lines in Fig. 1). Disomine similarly
under predicts the short IDRs in all taxonomic groups, however, it pre-
dicts the amounts of longer IDRs relatively correct, particularly in higher
eukaryotes, protists and viruses (grey lines in Fig. 1). Overall, all
methods under-predict the number of IDRs for protists, archaea, bacte-
ria, although fIDPnn makes smaller mistakes when compared to raw-
MSA, EspritzD, and Disomine.

Table 2 quantifies differences between the native distributions and
each of the four predicted distributions from Fig. 1 using the mean ab-
solute error (MAE) and p-value. MAE is an average difference in the
number of IDRs across different region sizes. The p-value assesses sig-
nificance of the differences in the shape of the distributions, where
p > 0.05 means that they are not statistically different. We note that
each taxonomic group has a unique range of errors that is defined by its
total count of native IDRs. Thus, we normalize the MAE values for the
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taxonomic groups to the widest range of error, observed in eukaryotes,
which is 0 to 75. This allows us to directly compare the MAE values
between different taxonomic groups. EspritzD (blue plots in Fig. 1) has
high MAE scores for all taxonomic groups (Table 2), which implies that
number of IDRs predicted by this method is very different from the
native IDR counts (red plot in Fig. 1). Its lowest/best MAE of 41 is for
viral proteins, which still exceeds half of the total number of native IDRs.
The putative IDRs produced by EspritzD differ from the native IDRs not
only in their number, but also in the shape of the IDR distribution. The
low p-values in Table 2 reveal that the distributions of the putative IDRs
generated by EspritzD are significantly different from the distributions
of experimental IDRs (p-value < 0.01). Disomine (grey lines in Fig. 1)
secures similar MAE scores of around 25, for viruses, protists and higher
eukaryotes, while its errors are significantly higher for archaea and
bacteria (p-values < 0.01). The shape of predicted IDR distributions for
viruses and higher eukaryotes are similar to the respective native dis-
tributions (p-values > 0.13), whereas they are significantly different for
protists and archaea (p-values < 0.01). The rawMSA method (yellow
plots in Fig. 1) secures a relatively low MAE of 11 for higher eukaryotes
but its MAEs are high for the other taxonomic groups (Table 2), sug-
gesting that it substantially under-predicts the number of IDRs for the
viral, bacterial and archaeal proteins. The shape of the distributions
generated by rawMSA are similar to the native distributions for higher
eukaryotes and protists (p-values > 0.17), while being significantly
different for archaea (p-value < 0.01). The MAE scores of fIDPnn (green
plots in Fig. 1) are low for eukaryotes, viruses and bacteria (Table 2).
The only lower quality result is for archaea where fIDPnn’s MAE is 19.
Moreover, the distributions of IDRs generated by fIDPnn share similar
shapes with the distributions of native IDRs across the five taxonomic
groups (p-values> 0.10). To summarize, we find that fIDPnn produces
relatively accurate numbers and sizes of IDRs while EspritzD under-
predicts short regions and produces significantly different distributions
of region sizes when compared to the experimental data. Disomine
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Table 2

Region-level assessment of the distributions of the numbers and sizes of putative
IDRs generated by the six predictors for the five diverse taxonomic groups. We
quantify the mean absolute error (MAE) between the number of native and
predicted IDRs over different lengths of the regions, and p-value that evaluates
significance of differences in the shapes of the resulting plots (see “Assessment
Metrics” section for details). We sort the taxonomic groups from the best to the
worst performance, i.e., in the ascending order by their MAE values and the
descending order by their p-values. We report medians of the metric that we
calculate over the 10 sampled datasets (see “Statistical test” section for details).
We summarize results of the statistical significance analysis in the x/y format
next to the reported median value where x and y compare against the best and
worst predicted taxonomic group, respectively, and where * * and * denote
statistically significant differences with p-values < 0.01 and < 0.05, respec-
tively, while = denotes differences that are not statistically significant (p-value
> 0.05). Predictions from AF2_pLDDT and AF2_RSA results are unavailable (UA)
for the viral proteins.

Methods Taxonomic MAE Taxonomic p-value
groups groups (distribution
shape)
EspritzD Viruses 41.32 /* * Viruses 1.09E-03 /* *
Higher 41.52=/ Higher 6.21E-04 = /* *
eukaryotes o eukaryotes
Protists 4424 =/ Protists 2.72E-05 * */=
* %
Bacteria 52.64 * */ Archaea 7.80E-07 * */=
Archaea 52.77 * */ Bacteria 4.05E-07 * */
fIDPnn Protists 6.31 /* * Viruses 0.648 /* *
Viruses 6.48 =/ Protists 0.618 = /* *
% %
Higher 7.83=/ Higher 0.441 = /* *
eukaryotes x eukaryotes
Bacteria 9.94=/ Bacteria 0.312 = /* *
* %
Archaea 19.76 * */ Archaea 0.098 * */
rawMSA Higher 10.48 /* * Higher 0.451 /* *
eukaryotes eukaryotes
Protists 29.39 * %/ Protists 0.174 * */* *
Viruses 32.14 * */ Viruses 0.066 * */*
Bacteria 34.51 * */ Bacteria
* %
Archaea 46.75 * */ Archaea 3.93E-04 * */
Disomine Viruses 24.72 /* * Viruses 0.472 /* *
Protists 24.87 =/ Higher 0.135 * /% *
o eukaryotes
Higher 26.82 =/* Bacteria 0.016 * */=
eukaryotes
Bacteria 37.08 * */ Protists 0.004 * */=
Archaea 40.56 * * Archaea 0.003 * */
AF2 pLDDT Protists 8.27 /* * Protists 5.66E-15 /* *
Higher 37.33*%*/ Archaea 4.15E-42 * /*
eukaryotes x
Bacteria 39.21 * */ Bacteria 5.86E-48 * */=
* %
Archaea 53.44 * */ Higher 5.66E-76 * */
Eukaryotes
Viruses UA Viruses UA
AF2 RSA Higher 15.18 /* * Higher 3.44E-26 /* *
eukaryotes Eukaryotes
Protists 19.64 * / Protists 6.15E-42 = /* *
Bacteria 41.71 * */ Archaea 5.34E-44 = /* *
* %
Archaea 56.10 * */ Bacteria 5.71E-48 * /
Viruses UA Viruses UA

underpredicts the short and moderately long IDRs, but it accurately
mimics the shape of the native IDR distributions for viruses and higher
eukaryotes that are enriched in long IDRs. The rawMSA tool provides
reasonably accurate results for higher eukaryotes while under-
predicting IDRs and in particular short IDRs for the other four
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taxonomic groups.

Table 3 reports the region-level SOV scores that quantify the degree
of overlap between the native and putative IDRs in protein sequences.
We find that SOV values vary by a factor of 2 across taxonomic groups,
between 0.38 (EspritzD for archaea) and 0.83 (Disomine for viruses).
Interestingly, the four disorder predictors consistently produce high SOV
values, over 0.77, for the viral proteins. EspritzD generates high SOV of
0.66 for the higher eukaryotes, followed by Disomine with SOV of 0.61,
while the other two methods secure lower scores at around 0.55 for
these proteins. Results for protists and bacteria are also relatively ac-
curate and consistent across the four disorder predictors, with SOV of
rawMSA at 0.52 for protists and SOV of EspritzD, fIDPnn and Disomine
at 0.53 for bacteria. However, we note relatively poor quality of the
region-level overlap for archaea, with SOV of 0.40 for the best fIDPnn
and rawMSA. Altogether, similar to the residue-level evaluation, we find
that the segment overlap differs across taxonomy where viruses are
predicted very accurately, eukaryotes and bacteria are predicted with
modest performance, and archaea suffers relatively low predictive
quality. Importantly, these trends are consistent across the four disorder
predictors.

We also perform the region-level assessment for the two AF2 derived
predictions for protists, higher eukaryotes, archaea and bacteria,
excluding viruses where AF2 does not generate predictions. AF2 pLDDT
(purple line in Fig. 1) predicts the size and number of IDRs relatively
well for protists, substantially overpredicts short and moderately long
IDRs in higher eukaryotes, and severely underpredicts IDRs in archaea

Table 3

Region-level assessment of the segment overlap (SOV) between the native IDRs
and the putative IDRs generated by the six predictors for the five diverse taxo-
nomic groups. Higher SOV scores indicate larger degree of the overlap. We sort
the taxonomic groups in the descending order of SOV values. We report median
SOVs that we calculate over the 10 sampled datasets (see “Statistical test” sec-
tion for details). We summarize results of the statistical significance analysis in
the x/y format next to the reported median value where x and y compare against
the best and worst predicted taxonomic group, respectively, and where * * and
* denote statistically significant differences with p-values < 0.01 and < 0.05,
respectively, while = denotes differences that are not statistically significant (p-
value > 0.05). Predictions from AF2_ pLDDT and AF2_RSA results are unavai-
lable (UA) for the viral proteins.

Methods Taxonomic groups
EspritzD Viruses
Higher eukaryotes
Bacteria
Protists
Archaea 0.375%*/
fIDPnn Viruses 0.774/**
Higher eukaryotes 0.550%**/**
Bacteria 0.529%% /**
Protists 0.508%*/**
Archaea 0.404**/
rawMSA Viruses 0.776
Higher eukaryotes
Protists 0.521%*/**
Bacteria 0.518%*/**
Archaea 0.404**/
Disomine Viruses 0.831/**
Higher eukaryotes 0.614%*/**
Bacteria th
Protists
Archaea
AF2 pLDDT Bacteria
Higher eukaryotes
Archaea
Protists 0.405%**/*
Viruses UA
AF2 RSA Bacteria 0.577/**
Higher eukaryotes 0.535%*/**
Protists Wk
Archaea
Viruses
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and bacteria. Correspondingly, Table 2 reveals that AF2_pLDDT secures
low MAE of 8.3 for protists, and only fIDPnn performs better for these
proteins with MAE of 6.3. However, AF2 pLDDT’s MAEs for the other
three taxonomic groups are high and exceed 37. Moreover, in spite of the
low MAE in protists, AF2_pLDDT fails to mimic the shape of their native
IDR distribution (p-value < 0.01) and performs similarly poorly for the
other three taxonomic groups (p-value < 0.01). Table 3 shows that
AF2 pLDDT generates modest levels of performance when considering
the overlap between its putative IDRs and the native IDRs. The SOV
scores range between 0.40 and 0.54, and they are particularly low for
protists, at 0.40, where rawMSA disorder predictor secures SOV of 0.52.
This suggests that while AF2_pLDDT predicts the number and sizes of
IDRs for protists relatively well, their location in the sequence is not
predicted as well.

The AF2_RSA method (pink line in Fig. 1) underpredicts short IDRs in
the four taxonomic groups but predicts longer IDRs relatively well for
higher eukaryotes and protists. Table 2 shows that AF2_RSA secures
reasonably low MAE of 15 for the higher eukaryotes (two disorder
predictors, fIDPnn and rawMSA obtain lower/better MAEs) but these
errors are significantly worse for protists, bacteria and archaea (p-value
< 0.05). Moreover, the shape of IDR distributions derived from the
AF2_RSA’s predictions is significantly different from the corresponding
native distribution for the four taxonomic groups where it can produce
results (p-value < 0.01). Table 3 shows that SOV scores of AF2_RSA are
relatively good for bacteria and archaea but they lag behind the disorder
predictors for protists and higher eukaryotes. To compare with the dis-
order predictions, an average SOV across the four taxonomic groups for
ESpritzD is 0.52 while AF2_RSA and AF2_pLDDT obtain SOV averages of
0.50 and 0.47, respectively. Moreover, the four disorder predictors
secure SOV scores between 0.77 and 0.83 for the viral proteins where
AF2 does not make predictions. Altogether, the region-level assessment
reveals that the AF2 derived methods are outperformed by the disorder
predictors, particularly in the context of reconstructing the distributions
of the IDRs sizes and the extend of the overlap between the predicted
and native IDRs in sequences. This aligns well with the relatively low
quality of the binary state predictions generated by AF2 pLDDT and
AF2_RSA that we observe in Table 1.

4. Summary and discussion

While disorder predictors were assessed in numerous studies
[31-39], these works do not consider the taxonomic diversity of the
underlying test proteins. We evaluate results produced by a represen-
tative collection of four accurate disorder predictors and AF2 over the
entire taxonomic spectrum including higher eukaryotes, protists, bac-
teria, archaea and viruses. Moreover, we analyze three diverse aspects of
the predictive performance including residue-level predictions, number
and sizes of the putative IDRs, and segment overlap between putative
and native IDRs. Given the comprehensive nature of our analysis, i.e.,
five taxonomic groups, three aspects of predictive performance, and six
predictors, we summarize these results using a rank-based approach
focusing on the taxonomy. We could not include the AF2 pLDDT and
AF2 _RSA predictors in this analysis since they do not provide results for
viral proteins, and so we discuss AF2 results separately in subsequent
paragraphs. We rank the five taxonomic groups for each of the four
disorder predictors and assessment metric and we average these ranks
across the methods. Ranks of 1 and 5 correspond to the best and worst
predicted taxonomic groups, respectively. Moreover, we score the
taxonomic groups that secure near-random levels of performance for a
particular metric with the worst/highest rank. For the residue-level as-
sessments, the near-random performance corresponds to AUC, F1 and
MCC around 0.5, 0.1 or lower, and 0.1 or lower, respectively. In the MAE
case, we consider scores higher than 50 % of the maximum error range
as near-random. Similarly, the p-values < 0.01 corresponds to predicted
IDR distributions which are significantly different from native distri-
butions and hence, are equivalent to near-random distributions. Finally,
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ref. [71] shows that SOVs below 0.19 represent overlap between two
random proteins with a p-value close to one.

Fig. 2 shows the corresponding average ranking of taxonomic groups
for each of the considered metrics of predictive performance. We note
that lower rank means that a given taxonomic group is consistently
(across different methods) predicted with higher levels of the predictive
performance.

Fig. 2 reveals that predictive quality differs substantially across
taxonomy, particularly for the residue-level metrics (blue bars) and the
segment overlap (yellow bar). These metrics, which include AUC, F1,
MCC and SOV, are in good agreement with each other, and show that
viruses are consistently predicted with the highest levels of perfor-
mance, followed by protists and higher eukaryotes, while bacterial and
archaeal proteins are predicted relatively poorly. We note that the small
standard deviations (red capped lines) signify the fact that these results
are consistent across the four predictors. On the other hand, the MAE
and p-value metrics (green bars), which evaluate how well the pre-
dictions mimic the distributions of the number and sizes of the native
IDRs, show that ranking is inconsistent across predictors. This is because
the values are more similar across the taxonomic groups and the cor-
responding standard deviations are also on average higher. This stems
from the fact that only fIDPnn provides reasonably accurate distribu-
tions for eukaryotes, viruses and bacteria, while the other predictors
underpredict short IDRs, except for rawMSA that generates accurate
results for higher eukaryotes. This aspect of disorder predictions is
particularly inaccurate for archaeal proteins where all four methods fail
to provide accurate distributions. Altogether, we find that disorder
predictors perform at substantially different levels of predictive quality
for different parts of taxonomy. The residue-level assessment and the
SOV scores suggest that predictions are the most accurate for viral
proteins (AUC of 0.87 and SOV > 0.80 for EspritzD and Disomine) and
similarly very accurate for higher eukaryotes (AUC of 0.82 and SOV of
0.55 for fIDPnn), and protists (AUC of 0.82 and SOV of 0.52 for raw-
MSA). However, the predictions for archaeal and bacterial proteins are
only modestly accurate (AUC < 0.77 and SOV < 0.40 for archaea; AUC <
0.71 and SOV < 0.53 for bacteria). Similarly, the current disorder pre-
dictors also struggle with reproducing the distribution of the numbers
and sizes of IDRs for the archaeal proteins.

We hypothesize that possible reasons for the varying performance of
the disorder across taxonomy could be a taxonomic bias in their training
datasets and/or differences in the compositional bias of amino acid, i.e.,
differences in the amino acid-level propensities for disorder that cannot
be adequately addressed by the taxonomy-agnostic predictive models.
We were able to collect the taxonomic details of the training data for two
methods, fIDPnn and rawMSA. The taxonomic breakdown of the
fIDPnn’s training sequences is approximately 75 % eukaryotes, 16 %
bacteria, 7 % viruses and 2 % archaea. Similarly, the rawMSA’s
training sets are composed of around 69 % eukaryotes, 20 % bacteria,
9 % viruses and 2 % archaea. While the substantial enrichment in the
eukaryotic proteins may explain why these predictors perform well for
the eukaryotes, the high levels of predictive quality for viruses and
similar levels for bacteria and archaea, in spite of 8 to 10 times differ-
ences in their numbers in the training data, do not align with this
explanation.

IDRs are known to have compositional bias at the amino acid level
[73-76] and we posit that this bias might be different across taxonomy.
This, in turn, could cause problems for the taxonomy-agnostic models
that generate predictions from the amino acid sequences. We compute
the amino acid bias of the intrinsic disorder and present these results in
Supplementary Fig. S3. We were able to reproduce the bias identified in
the past studies [75,76] when using the dataset of 465 proteins that
combines the sampled sets of 93 proteins from the five taxonomic group
(top left panel in Supplementary Fig. S3). More specifically, we find that
the disorder bias is significantly negative (p-value < 0.05; green dotted
box in Supplementary Fig. S3) for the order promoting residues reported
in these studies. Similarly, we find that the amino acids with the
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Fig. 2. Average rank (over the four disorder predictors) for the predictive performance across the five taxonomic groups. The color-coded bars identify different
types of evaluations where shades of blue are for the residue-level evaluations (AUC, F1 and MCC), shades of green for the region-level distribution evaluations (MAE,
and p-value for distribution), and yellow for the region-level segment overlap (SOV). The taxonomic groups are arranged in the ascending order of the average rank
based on AUC, where a lower rank depicts higher predictive quality. The error bars (red capped lines) are the standard deviations associated with the averages.

significantly positive bias for disorder (p-value < 0.05; red dotted box in
Supplementary Fig. S3), except for Asn, were previously reported as
disorder-promoting. Moreover, out of the four amino acids that did not
produce a significant bias in our analysis on the dataset with 465 pro-
teins (Ala, Thr, Asp, and Met), three of them (Thr, Asp and Met) were
reported as neutral (neither disorder nor order promoting) in ref. [76].
Our analysis of the compositional bias for the five taxonomic groups
(Supplementary Fig. S3) reveals that the disorder promoting amino
acids do not switch to act as the order promoting residues in any of the
five taxonomic groups and vice versa. This indicates that the composi-
tional bias across the taxonomic groups is generally consistent. How-
ever, the degree and significance of the bias varies substantially, where
order and disorder promoting amino acids in some parts of the taxon-
omy become neutral in other taxonomic groups and some neutral amino
acids may shift to be disorder or order promoting. For example, Val that
has significantly negative bias for disorder (i.e., order promoting bias) in
eukaryotic and viral proteins has neutral propensity for disorder in
archaea and bacteria. We quantify the degree of agreement between the
reference compositional bias on the entire dataset that combines all
taxonomic groups and the individual taxonomic groups by counting how
many amino acids match their reference disorder and order bias (red and
green bars in Supplementary Fig. S3). Out of the 16 disorder and order
promoting amino acids from the entire dataset, 14 matches in viruses, 13
in higher eukaryotes, 12 in protists, 10 in archaea, and 9 in bacteria. This
correlates well with the varying levels of predictive performance across
these taxonomic groups, where AUCs that we averaged across the four
disorder predictors are 0.86, 0.79, 0.77, 0.74 and 0.70 for viruses,
protists, higher eukaryotes, archaea and bacteria, respectively. The
corresponding Pearson correlation coefficient between the numbers of
matches and the average AUCs is 0.91. This suggests that the degree of
divergence from the overall taxonomy-agnostic disorder bias may partly
explain the corresponding differences in the predictive performance for
the disorder predictors.

The two AF2-derived disorder predictors, AF2_pLDDT and AF2_RSA,
produce accurate residue-level propensities for the archaea, bacteria and
protists while being outperformed by the disorder predictors for the
higher eukaryotes. However, these two predictors secure lower levels of
performance for the binary state predictions (median F1 of 0.27 and
median MCC of 0.20) when compared to the disorder predictors (median
F1 of 0.31 and median MCC of 0.23 when excluding viruses for which
AF2 does not produce predictions). Correspondingly, we find that
AF2_pLDDT and AF2_RSA predicted IDRs suffer lower degree of overlap
with the native IDRs (median SOV of 0.49) when contrasted with the
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disorder predictors (median SOV of 0.52 when excluding viruses). The
AF2 derived results are also outperformed by the disorder predictors in
the context of reconstructing the distributions of the IDRs sizes (median
p-value of 2.1 *10™*2 for AF2 vs. 3.9 *10~2 when excluding viruses;
higher value is better). The lower quality when predicting IDRs can be
explained by the fact that AF2 was designed to predict protein structure
and so it should excel in predicting ordered residues rather than disor-
dered residues and regions. The overall observation that AF2 derived
predictions of disorder suffer lower quality than the predictions gener-
ated by state-of-the-art disorder predictors is in line with other studies
[54,56].

To sum up, we assess predictive performance of four representative
disorder predictors along with two AF2 derived methods on protein
sequences in the five taxonomic groups. Our study sheds light on sub-
stantial limitations of the current disorder predictors along with the
challenges in using AF2 for the disorder prediction. We see the need for
the disorder prediction community to develop a new generation of
methods that aim to provide more accurate results at the residue and the
region levels for the bacterial and archaeal proteins. This need is
particularly acute for the archaeal organisms where IDRs were found to
be important for their adaptation to hostile habitats [45] and for which
none of the tools produced accurate region-level results. Moreover, the
new tools should strive to more accurately reproduce the distributions of
IDR numbers and sizes since we found that only one method, fIDPnn,
was able to do that reasonably well. Moreover, we advocate for the in-
clusion of the region-level assessments in the future comparative studies,
so that progress and performance on this often-neglected aspect of the
disorder prediction is adequately measured.
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