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A B S T R A C T   

Intrinsic disorder predictors were evaluated in several studies including the two large CAID experiments. 
However, these studies are biased towards eukaryotic proteins and focus primarily on the residue-level pre
dictions. We provide first-of-its-kind assessment that comprehensively covers the taxonomy and evaluates pre
dictions at the residue and disordered region levels. We curate a benchmark dataset that uniformly covers 
eukaryotic, archaeal, bacterial, and viral proteins. We find that predictive performance differs substantially 
across taxonomy, where viruses are predicted most accurately, followed by protists and higher eukaryotes, while 
bacterial and archaeal proteins suffer lower levels of accuracy. These trends are consistent across predictors. We 
also find that current tools, except for flDPnn, struggle with reproducing native distributions of the numbers and 
sizes of the disordered regions. Moreover, analysis of two variants of disorder predictions derived from the 
AlphaFold2 predicted structures reveals that they produce accurate residue-level propensities for archaea, bac
teria and protists. However, they underperform for higher eukaryotes and generally struggle to accurately 
identify disordered regions. Our results motivate development of new predictors that target bacteria and archaea 
and which produce accurate results at both residue and region levels. We also stress the need to include the 
region-level assessments in future assessments.   

1. Introduction 

Intrinsically disordered proteins (IDPs) contain one or multiple 
intrinsically disordered regions (IDRs), which are defined as sequence 
segments that lack stable structure under physiological conditions [1,2]. 
IDPs can be fully disordered, in which case the IDR covers the entire 
sequence. While IDPs can be found across all domains of life, several 
bioinformatics studies suggest that they are more abundant in eukary
otic proteomes [3–5]. Functionally, IDPs complement order
ed/structured proteins, contributing to numerous cellular activities that 
include cell cycle regulation, signal transduction, transcription, 
post-translational modifications, and phase separation [6–8]. Given 
their functional importance, mis-regulation of IDPs was shown to lead to 
several human diseases [9–12]. Moreover, IDPs garner increasing 
amount of attention as potential drug targets [13–17]. Two databases, 
DisProt [18] and MobiDB [19], provide access to experimentally char
acterized IDRs, where the smaller in scale DisProt includes functionally 
annotated IDRs. Combining their data together results in dozens of 

thousands of IDPs, while the current version 2023_05 of UniProt con
tains around 250 million proteins sequences [20]. This large and 
growing IDP annotation gap motivates development of computational 
methods that predict intrinsically disordered residues in sequences of 
the millions of proteins that lack this annotation. 

Well over 100 sequence-based disorder predictors were released so 
far [21–29]. They were comparatively evaluated in a number of 
community-organized assessments, starting with the fifth Critical 
Assessment of protein Structure Prediction (CASP5) in 2002, when six 
disorder predictors participated [30]. The disorder predictors were 
continually evaluated at the CASP events, until CASP10 in 2012 that 
covered 28 methods for the disorder prediction [31]. More recently, 
these assessments are organized and run by the intrinsic disorder pre
diction community. The first Critical Assessment of protein Intrinsic 
Disorder prediction (CAID1) was completed in 2018 and involved 32 
methods [32]. CAID2 included 46 predictors and was done in 2022 [33]. 
These assessments are arguably more objective and impactful than other 
comparative studies that were done in the meantime by authors of 
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individual predictors [34–39]. This is because they are run by assessors 
who do not participate in the evaluation, rely on relatively large and 
blind datasets (test proteins are not available to the authors of the 
participating methods before the event), apply community-screened 
evaluation criteria, and provide access to the datasets, ground truth 
annotations and predictions. These assessments provide invaluable in
sights concerning predictive quality, availability of predictors, and 
progress and growth of this field. However, the datasets used in the 
recent CAID1 and CAID2 events are biased towards certain parts of the 
taxonomy. In CAID1, 82 % of the benchmark proteins were from eu
karyotes, 12 % from bacteria, 5 % from viruses and 1 % from archaea 
[32]. Similarly, CAID2′s datasets includes 80 % of eukaryotic proteins, 
10 % bacterial, 10 % viral, and no archaeal proteins [33]. Corre
spondingly, the CAID results essentially reflect predictive performance 
on the eukaryotic proteins. This taxonomic breakdown is very different 
from the data in the main protein repository, UniProt [20], where 30 % 
of proteins are from eukaryotes, 65 % from bacteria, 2 % from viruses 
and 3 % from archaea. This demonstrates high levels of interest in 
bacterial species while disorder prediction assessments are biased to
wards eukaryotes. Moreover, none of the current comparative studies 
evaluate quality of the disorder predictions for specific parts of the 
taxonomy, while research shows that abundance and certain functional 
characteristics of disorder differ substantially across kingdoms of life 
[3–5,40–45]. 

To this end, we present first-of-its-kind taxonomy-specific assess
ment of disorder predictors on eukaryotic, archaeal, bacterial, and viral 
proteins. We rely on the CAID1 and CAID2 results to select several ac
curate disorder predictors. We also include two variants of disorder 
predictions that are derived from the protein structure generated by 
AlphaFold2 (AF2) [46]. We curate a test dataset that includes equal 
number of proteins for different parts of the taxonomy and where these 
sequences share below 25 % similarity with the training sequences of 
the selected methods. The latter ensures that this dataset is equally 
challenging for each tool, and simulates a scenario when predicting 
proteins that are dissimilar to the IDPs used for training. Importantly, we 
evaluate multiple aspects of the disorder predictions. Similar to the past 
comparative studies, we evaluate predictions at the residue level. 
Moreover, we study quality of the IDR predictions, by qualifying the 
degree of the overlap between the predicted and the native IDRs, and 
assessing the number and length of the predicted IDRs. Altogether, we 
assess several characteristics of disorder predictions across the entire 
taxonomic spectrum for a collection of representative methods. 

2. Materials and methods 

2.1. Selection of predictors 

We select a collection of accurate disorder predictors using the re
sults from CAID1 [32] and CAID2 [33]. We use the popular AUC (area 
under the receiver operating characteristic (ROC) curve) metric to select 
the ten best methods in CAID1 (on the DisProt dataset) and in CAID2 (on 
the Disorder-NOX dataset). In case there are multiple methods that were 
developed by the same research group, we select one of them that has 
the highest AUC score. We also remove methods which were not pub
lished in a peer-reviewed journal. These filters resulted in the removal of 
flDPlr, SPOT-Disorder-Single [47] and AUCpred-np [48] from the CAID1 
list and flDPnn2, flDPlr and flDPlr2 from the CAID2 list. We focus on 
methods that consistently participated in CAID1 and CAID2, resulting in 
a list of five tools: flDPnn [49], EspritzD [50], rawMSA [51], Disomine 
[52] and SPOT-Disorder2 [53]. Given the rather large size of our test 
dataset that samples the entire taxonomy, we exclude SPOT-Disorder2 
that has an average per-protein runtime of about 50 mins. Finally, we 
select the remaining four methods. These methods secure high AUC 
values, averaged over the two CAID assessments, and they include 
flDPnn, EspritzD, rawMSA, and Disomine with the average AUCs of 
0.824, 0.788, 0.782, and 0.781, respectively. 

Besides these four accurate predictors of disordered residues, we also 
include disorder predictions derived from the AF2 results. Motivated by 
recent studies [54–56], we apply two approaches to compute the dis
order propensities from the AF2 predicted protein structures. The first 
approach was defined in the AF2 article [46] by using the per-residue 
confidence measure, predicted local-distance difference test (pLDDT), 
to calculate the disorder propensity. The pLDDT scores range between 
0 and 100, where a higher score denotes higher reliability of the AF2′s 
prediction. Accordingly, we calculate the disorder propensity as (1 – 
pLDDT/100) and we name this prediction AF2_pLDDT. The second 
approach, AF2_RSA [54], uses relative solvent accessibility (RSA) scores 
that are calculated with DSSP [57] from the AF2 predicted protein 
structures, and averages these scores over a sliding window of size 25. 
We obtain the AF2 predicted structures from the AlphaFold Protein 
Structure Database (AlphaFoldDB) [58]. We note that AlphaFoldDB 
explicitly excludes viral proteins, and the AF2 authors made this deci
sion for “technical reasons” [59]. This effectively means that we cannot 
assess AF2′s predictions for the viral proteins, while this is possible for 
the disorder predictors. 

2.2. Dataset curation 

We rely on the MobiDB database [60,61], the largest repository of 
disordered proteins with their structural and functional annotations 
obtained from computational predictions and experimentally verified 
sources, which are primarily PDB [62] and DisProt [18]. We collect 
sequences with experimentally-derived disorder annotations, which 
produced 22,357 proteins. We remove 18 peptides that have sequences 
shorter than 30 residues. Next, we remove sequences that share over 
25 % similarity to the training datasets of the four selected accurate 
disorder predictors. This aims to make the test dataset equally difficult 
for each evaluated tool, and simulates predictions for proteins that are 
dissimilar to the training IDPs, i.e., proteins that represent a broad 
collection of sequences that lack disorder annotations. To do that, we 
cluster the 22,357 proteins with the 9721 training proteins using CD-Hit 
at 25 % similarity threshold and 80 % coverage [63], and we exclude 
all clusters that include training proteins. Correspondingly, we keep the 
remaining 15,221 sequences. Next, we exclude proteins that use 
PDB-derived annotations that rely on structures of complexes. This is 
because such interactions can potentially induce disorder-to-order 
transitions for the binding regions, which would incorrectly annotate 
these binding IDRs as structured. However, we keep the PDB-derived 
annotations where they rely on the structures of protein monomers 
with no ligands. Next, we obtain taxonomic details of these sequences 
using UniProt [20] and segregate them into five broad taxonomic 
groups: 1) higher eukaryotes that cover animals, plants, and fungi (1199 
proteins); 2) protists that cover other eukaryotes except animals, plants, 
and fungi (113 proteins); 3) archaea (93 proteins); 4) bacteria (1217 
proteins); and 5) viruses (124 proteins). Finally, we balance the dataset 
taxonomically by keeping the entire collection of the 93 proteins from 
archaea and randomly sampling 93 proteins from each of the other four 
groups, where we stratify sampling for eukaryotes to retain the original 
breakdown between animals, plants and fungi. We investigate whether 
this sampling affects the underlying characteristics of the data by 
comparing amino acid-level propensities for disorder between a com
plete dataset and the corresponding sampled dataset for each taxonomic 
group (Supplementary Fig. S1). As expected, since this is random sam
pling, the patterns of disorder enrichment are consistent between the 
complete and the sampled datasets where significantly enriched and 
depleted amino acids maintain the same bias. 

We use the resulting dataset of 465 sequences that combines the five 
samples sets to comparatively evaluate results of the three accurate 
disorder predictors across the five taxonomic groups. This dataset is 
comparable in size to the datasets used in CASP10 (94 proteins), CAID1 
(646 proteins), and CAID2 (348 proteins). We provide this dataset, 
which includes the UniProt accession numbers, taxonomic classification, 
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sequences and annotations of disordered residues/regions, in the Sup
plement. We also give distribution of the disorder content (fraction of 
disordered residues) for the proteins across the five taxonomic groups in 
Supplementary Fig. S2. Interestingly, these distributions that rely on the 
experimentally annotated disorder agree with past bioinformatics 
studies that estimated disorder content based on predictions, showing 
that eukaryotic and viral species have substantially more disorder 
compared to the archaea and bacteria [3,4,64,65]. 

2.3. Assessment metrics 

Disorder predictors, including the four selected methods and the two 
variants of the AlphaFold2-based results, produce a numeric propensity 
for intrinsic disorder for each amino acid in the input sequence. These 
propensities are used to derive putative structural state (intrinsically 
disordered vs. structured) using a threshold, where amino acids with the 
disorder propensities ≥ threshold are labelled ‘1′ (disordered), and 
otherwise they are labeled ‘0′ (structured). Disordered residues form 
IDRs in the sequence, where the experimental annotations of disorder in 
the source databases, MobiDB and DisProt, assume that IDRs must be at 
least 10 consecutive residues in length [18,19]. The putative disorder is 
supposed to mimic this annotation and similarly generate disordered 
sequence segments. Correspondingly, we assess disorder predictions at 
the residue level and the region level, where the latter examines an 
overlap between the predicted and native IDRs, and compares numbers 
and sizes of the native and predicted IDRs. 

The residue-level evaluation follows past comparative assessments 
and considers both propensities and binary states. In particular, we 
apply the popular AUC metric to evaluate the putative propensities 
[31–34,36,37,39]. The underlying ROC curve plots true positive rates 
(TPR = TP/(TP+FN)) vs. false positive rates (FPR = FP/(FP+TN)) using 
every unique propensity value as the threshold, where TP, TN, FN and 
FP are the numbers of true positives (correctly predicted disordered 
residues), true negatives (correctly predicted structured residues), false 
negatives (disordered residues incorrectly predicted as structured), and 
false positives (structured residues incorrectly predicted as disordered), 
respectively. The AUC values range between 0 (all incorrect predictions) 
and 1 (all predictions are correct), where 0.5 denotes random pre
dictions. In practice, AUC scores are expected to range between 0.5 and 
1. We binarize propensities to derive the putative structural state using a 
threshold that produces the correct disorder content (fraction of disor
dered residues) over the entire dataset. This calibrates predictions across 
different methods, allowing us to directly compare them. We assess 
these binary predictions using the following two metrics that were 
applied in the CAID and CASP experiments [31–33]: 

F1 =
2TP

2TP + FP + FN  

Matthews Correlation Coefficient(MCC)

=
TN ∗ TP − FN ∗ FP

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The F1 is a harmonic mean of precision = TP/(TP+FP) and TPR (also 
called recall), where higher values indicate better predictive perfor
mance. MCC ranges between −1 and 1 where 0 denotes predictions at 
random levels and higher positive value corresponds to a stronger 
agreement between predictions and native values; negative values are 
uncommon and would suggest that predicted state is opposite to the 
native state. 

We also evaluate quality of the predicted IDRs. While this aspect was 
not assessed in the CASP and CAID experiments, similar evaluations 
were done for the secondary structure and transmembrane region pre
dictions, which also form segments in the sequence [66–70]. We 
generate the binary state with the thresholds that generate correct dis
order content over the entire dataset when setting the minimum IDR 

length to 10 residues, which is consistent with the minimal regions sizes 
in the source DisProt and MobiDB databases [18,19]. We compare the 
number of putative IDRs for each of the unique IDR lengths, with the 
corresponding native IDR counts using mean absolute error (MAE). For a 
given set of n unique IDR lengths with native IDR counts a1, a2, ..., an and 
the predicted IDR counts x1,x2, ..., xn, the MAE is defined as: 

MAE =
1
n

∑n

i=1
|xi − ai|

This metric computes an average count by which number of pre
dicted IDRs differ from number of native IDRs across all native lengths of 
IDR. For example, MAE of 20 means that on average (across different 
IDR sizes) the number of predicted IDRs differ by 20 from the number of 
native IDRs. We also compare distributions of native and predicted IDRs 
(i.e., plots of the numbers of IDRs across different IDR sizes) using the 
Kolmogorov-Smirnov test, and we apply the p-value that this test gen
erates as the metric. This metric measures the difference in shape be
tween the distributions of the predicted and the native IDRs, where 
higher p-values correspond to higher likelihood that the native and 
predicted IDR distributions are similar. Besides the number and sizes of 
predicted IDRs, we assess the degree of overlap between the native and 
predicted IDRs using the segment overlap (SOV) metric [71], which was 
originally developed for the assessment of the secondary structure re
gions and was used to assess disorder predictions [38,72]. SOV com
plements the MAE and p-value based evaluation since it considers 
position of the predicted IDRs in the sequence relative to the position of 
the native IDRs. SOV ranges between 0 (no overlap) and 1 (perfect 
overlap) and is calculated per protein. Moreover, since sequence length 
varies across taxonomy, we compute weighted average of these values 
over the corresponding proteins in a given taxonomic group where 
weights correspond to the protein length. This facilitates direct com
parison of the SOV values across taxonomy. 

2.4. Statistical tests 

We quantify statistical significance of differences when comparing 
predictions across taxonomy. We compare results generated for diverse 
sub-sampled collections of proteins from the same taxonomic groups. 
Specifically, we randomly sample 10 sets of 50 % proteins from a given 
taxonomic group and compare with the corresponding 10 sampled re
sults from another group. We use the student t-test when the corre
sponding data (i.e., measured AUC, F1, MCC, MAE, p-value and SOV 
values) are normal, and otherwise we apply the Wilcoxon rank-sum test. 
We determine normality using the Anderson-Darling test at 0.05 
significance. 

3. Results 

3.1. Residue-level assessment 

We compare quality of the residue-level predictions produced by the 
four accurate disorder prediction methods (EspritzD, flDPnn, rawMSA 
and Disomine) on balanced collections of proteins from five diverse 
taxonomic groups (higher eukaryotes, protists, archaea, bacteria and 
viruses) in Table 1. The confusion matrices and additional metrics that 
assess binary predictions are in Supplementary Table S1. 

Table 1 reveals that the four disorder predictors perform reasonably 
well with AUCs ranging from moderate (0.69 for Disomine for bacteria) 
to high (0.87 for EspritzD and Disomine for viruses). This stems from the 
fact that we sampled arguably currently the most accurate disorder 
predictors. Importantly, predictive performance varies widely across 
taxonomy, with substantial and statistically significant differences be
tween the best and the worst performing taxonomic groups, i.e., AUC of 
0.87 vs. 0.70 for EspritzD (p-value≤0.01); 0.86 vs. 0.71 for flDPnn (p- 
value≤0.01), 0.85 vs. 0.71 for rawMSA (p-value≤0.01) and 0.87 vs 0.69 
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for Disomine (p-value≤0.01). Moreover, we note a consistent sorted 
order of taxonomic groups, with the most accurate predictions for eu
karyotes and viruses, followed by archaea, and the least accurate results 
for bacteria. This trend is similar across different predictors and metrics. 
The four tools produce equally very accurate predictions for the viral 
proteins, with AUCs ranging between 0.85 (rawMSA) and 0.87 (EspritzD 
and Disomine). On the other end of the spectrum, the lowest perfor
mance is for the bacterial proteins, with modest and similar AUCs 
around 0.70. We observe a more variable levels of performance for the 
higher eukaryotes and protists, with flDPnn securing high AUCs of 0.82 
and 0.80, respectively, and Disomine obtaining substantially lower 
AUCs of 0.73 and 0.77, respectively. These higher levels of performance 
for flDPnn explain why this tool performed better than the other three 
methods in the CAID assessments where large majority of the test pro
teins are from eukaryotes [32,33]. Finally, predictions for archaea are 
characterized by modest levels of performance, with AUCs between 0.72 
(Disomine) and 0.77 (rawMSA). Moreover, AUCs for archaea are not 
statistically better than AUCs for bacteria (p-value > 0.05), suggesting 
that these two taxonomic groups suffer similarly low levels of predictive 
quality. Analysis based on the F1 and MCC metrics for the binary state 
predictions leads to consistent observations. The highest correlations are 
for viral proteins (MCC of 0.42 for flDPnn), higher eukaryotes (MCC of 
0.40 for flDPnn), and protists (MCC of 0.30 for flDPnn, rawMSA and 
Disomine). We find substantially lower MCCs for archaea and bacteria, 
with the most accurate results for flDPnn (MCC of 0.26 for archaea) and 
rawMSA (MCC of 0.26 for bacteria). Altogether, we observe that the 
residue-level predictive performance of the four disorder predictors 
varies broadly across the taxonomy, with viruses and eukaryotes pre
dicted accurately, and archaea and bacteria securing much lower and 
modest levels of performance. 

We also assess AF2 derived disorder predictions, AF2_pLDDT and 

AF2_RSA, in the four taxonomic groups which exclude viruses for which 
AF2 does not provide predictions. In contrast to the disorder predictors, 
both AF2 variants accurately predict disorder propensities for archaeal 
proteins, with AUCs of 0.85 and 0.82 for AF2_RSA and AF2_pLDDT, 
respectively, compared to the best disorder predictor that secures AUC 
of 0.77. They also produce similarly accurate results for protists and 
bacteria while performing at modest levels of performance for the higher 
eukaryotes, i.e., AUC = 0.74 for AF2_pLDDT and AUC = 0.72 for 
AF2_RSA when compared to AUC of 0.82 for flDPnn. The relatively low 
levels of performance for the higher eukaryotes may explain why the 
AF2_pLDDT and AF2_RSA predictors were outperformed by several 
disorder predictors on the Disorder-NOX dataset in CAID2, which is 
composed largely of eukaryotic proteins [33]. Moreover, the high AUC 
values for archaea and protists are coupled with disproportionally lower 
quality of the binary state predictions. In particular, the F1 scores of 0.22 
for archaea and 0.28 for protist for the best variant of AF2 are much 
lower than F1 of 0.32 by flDPnn and F1 of 0.37 by flDPnn and rawMSA, 
respectively. This suggests that while AF2 derived predictions generate 
accurate residue-level propensities, they might not perform as well 
when predicting IDRs based on the putative binary disorder, which we 
evaluate in the next section. 

3.2. Region-level assessment 

We assess two complementary aspects of the region-level predictive 
performance: ability to mimic the native distribution of IDRs of different 
sizes and the degree of overlap between putative and native IDRs. In  
Fig. 1, we show the cumulative counts of IDRs across different IDR 
length values, separately for each taxonomic group. We find that the 
length and numbers of the native IDRs (red plots in Fig. 1) differ across 
taxonomy, in spite of the fact that the number of proteins is the same. 

Table 1 
Residue-level assessment of predictive performance for the six predictors and the five diverse taxonomic groups. We sort the taxonomic groups in the descending order 
of values for a given performance metric. We report medians of the metrics that we calculate over the 10 sampled datasets (see “Statistical test” section for details). We 
summarize results of the statistical significance analysis in the x/y format next to the reported median value where x and y compare against the best and worst 
predicted taxonomic group, respectively, and where ** and * denote statistically significant differences with p-values ≤ 0.01 and ≤ 0.05, respectively, while = denotes 
differences that are not statistically significant (p-value > 0.05). Predictions from AF2_pLDDT and AF2_RSA results are unavailable (UA) for the viral proteins.  

Methods AUC  F1  MCC  

Taxonomic groups Score Taxonomic groups Score Taxonomic groups Score 

EspritzD Viruses 0.866 /* * Viruses 0.438 /* * Viruses 0.388 /* * 
Protists 0.753 * */= Protists 0.298 * */* * Protists 0.213 * */* * 
Higher eukaryotes 0.738 * */= Higher eukaryotes 0.274 * */* * Higher eukaryotes 0.164 * */=

Archaea 0.725 * */= Archaea 0.246 * */* Archaea 0.151 * */=

Bacteria 0.696 * */ Bacteria 0.184 * */ Bacteria 0.137 * */ 
flDPnn Viruses 0.856 /* * Viruses 0.481 /* * Viruses 0.419 /* * 

Higher eukaryotes 0.824 * /* * Higher eukaryotes 0.466 = /* * Higher eukaryotes 0.396 = /* * 
Protists 0.797 * */* * Protists 0.371 * /* * Protists 0.302 * /* * 
Archaea 0.756 * */= Archaea 0.317 * */= Archaea 0.262 * */=

Bacteria 0.706 * */ Bacteria 0.303 * */ Bacteria 0.241 * */ 
rawMSA Viruses 0.853 /* * Viruses 0.378 /* * Viruses 0.316 /* * 

Protists 0.815 * */* * Protists 0.375 = /* * Protists 0.296 = /* * 
Higher eukaryotes 0.785 * */= Higher eukaryotes 0.351 = /* * Higher eukaryotes 0.262 * */=

Archaea 0.772 * */= Bacteria 0.314 = /* * Bacteria 0.260 * /* 
Bacteria 0.713 * */ Archaea 0.224 * */ Archaea 0.193 * */ 

Disomine Viruses 0.866 /* * Viruses 0.374 /* * Viruses 0.315 /* * 
Protists 0.765 * */* * Protists 0.353 = /* * Protists 0.301 = /* * 
Higher eukaryotes 0.732 * */* Higher eukaryotes 0.306 * /* * Higher eukaryotes 0.208 * */* 
Archaea 0.724 * */= Archaea 0.245 * */= Archaea 0.179 * */* * 
Bacteria 0.688 * */ Bacteria 0.218 * */ Bacteria 0.148 * */ 

AF2_pLDDT Archaea 0.818 /* * Protists 0.277 /= Archaea 0.237 /* 
Protists 0.817 = /* * Bacteria 0.268 = /* Bacteria 0.222 = /* 
Bacteria 0.813 = /* * Higher eukaryotes 0.267 = /* Protists 0.167 * /=

Higher eukaryotes 0.736 * */ Archaea 0.221 = / Higher eukaryotes 0.156 * / 
Viruses UA Viruses UA Viruses UA 

AF2_RSA Archaea 0.845 /* * Bacteria 0.307 /* * Archaea 0.265 /* * 
Bacteria 0.823 = /* * Protists 0.280 = /= Bacteria 0.258 = /* * 
Protists 0.798 * */* * Higher eukaryotes 0.228 * /= Protists 0.182 * */=

Higher eukaryotes 0.724 * */ Archaea 0.221 * */ Higher eukaryotes 0.101 * */ 
Viruses UA Viruses UA Viruses UA  
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Higher eukaryotes have the highest number and the longest IDRs, with 
some regions longer than 1000 amino acids. Some IDRs in viral proteins 
are also relatively long, while IDRs in the archaeal, bacterial and protist 
proteins are relatively short and there are fewer of them in the latter two 
taxonomic groups. These observations align with the distributions of the 
disorder content (Supplementary Fig. S1), which show that eukaryotic 
and viral proteins have on average higher disorder content, with some 
proteins having more than 80 % disordered residues. 

Fig. 1 compares distributions of the numbers and sizes of native IDRs 
with the putative IDRs generated by the four disorder predictors for each 
of the five taxonomic groups. We find that while some tools produce 
distributions that are relatively similar to the experimental data, others 
predict fewer and longer IDRs than expected. The flDPnn’s plots (green 
lines in Fig. 1) match relatively well with the experimental IDRs (red 
lines in Fig. 1) for higher eukaryotes, protists, bacteria and viruses. The 
rawMSA method under-predicts the number of short IDRs while gener
ating relatively correct numbers of longer IDRs (yellow lines in Fig. 1). 
EspritzD under-predicts the number of short and moderately long IDRs 
and over-predicts long IDRs (blue lines in Fig. 1). Disomine similarly 
under predicts the short IDRs in all taxonomic groups, however, it pre
dicts the amounts of longer IDRs relatively correct, particularly in higher 
eukaryotes, protists and viruses (grey lines in Fig. 1). Overall, all 
methods under-predict the number of IDRs for protists, archaea, bacte
ria, although flDPnn makes smaller mistakes when compared to raw
MSA, EspritzD, and Disomine. 

Table 2 quantifies differences between the native distributions and 
each of the four predicted distributions from Fig. 1 using the mean ab
solute error (MAE) and p-value. MAE is an average difference in the 
number of IDRs across different region sizes. The p-value assesses sig
nificance of the differences in the shape of the distributions, where 
p > 0.05 means that they are not statistically different. We note that 
each taxonomic group has a unique range of errors that is defined by its 
total count of native IDRs. Thus, we normalize the MAE values for the 

taxonomic groups to the widest range of error, observed in eukaryotes, 
which is 0 to 75. This allows us to directly compare the MAE values 
between different taxonomic groups. EspritzD (blue plots in Fig. 1) has 
high MAE scores for all taxonomic groups (Table 2), which implies that 
number of IDRs predicted by this method is very different from the 
native IDR counts (red plot in Fig. 1). Its lowest/best MAE of 41 is for 
viral proteins, which still exceeds half of the total number of native IDRs. 
The putative IDRs produced by EspritzD differ from the native IDRs not 
only in their number, but also in the shape of the IDR distribution. The 
low p-values in Table 2 reveal that the distributions of the putative IDRs 
generated by EspritzD are significantly different from the distributions 
of experimental IDRs (p-value < 0.01). Disomine (grey lines in Fig. 1) 
secures similar MAE scores of around 25, for viruses, protists and higher 
eukaryotes, while its errors are significantly higher for archaea and 
bacteria (p-values < 0.01). The shape of predicted IDR distributions for 
viruses and higher eukaryotes are similar to the respective native dis
tributions (p-values > 0.13), whereas they are significantly different for 
protists and archaea (p-values < 0.01). The rawMSA method (yellow 
plots in Fig. 1) secures a relatively low MAE of 11 for higher eukaryotes 
but its MAEs are high for the other taxonomic groups (Table 2), sug
gesting that it substantially under-predicts the number of IDRs for the 
viral, bacterial and archaeal proteins. The shape of the distributions 
generated by rawMSA are similar to the native distributions for higher 
eukaryotes and protists (p-values ≥ 0.17), while being significantly 
different for archaea (p-value < 0.01). The MAE scores of flDPnn (green 
plots in Fig. 1) are low for eukaryotes, viruses and bacteria (Table 2). 
The only lower quality result is for archaea where flDPnn’s MAE is 19. 
Moreover, the distributions of IDRs generated by flDPnn share similar 
shapes with the distributions of native IDRs across the five taxonomic 
groups (p-values≥ 0.10). To summarize, we find that flDPnn produces 
relatively accurate numbers and sizes of IDRs while EspritzD under
predicts short regions and produces significantly different distributions 
of region sizes when compared to the experimental data. Disomine 

Fig. 1. Cumulative distributions of native IDR sizes (red plots; based on the disorder annotations from MobiDB) and IDR sizes predicted by the four selected and 
accurate disorder predictors (blue for EspritzD; green for flDPnn; yellow for rawMSA; grey for Disomine) and two AF2 derived disorder predictors (purple for 
AF2_pLDDT; pink for AF2_RSA) across the diverse taxonomic groups. Results from AF2_pLDDT and AF2_RSA results are unavailable for the viral proteins. 
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underpredicts the short and moderately long IDRs, but it accurately 
mimics the shape of the native IDR distributions for viruses and higher 
eukaryotes that are enriched in long IDRs. The rawMSA tool provides 
reasonably accurate results for higher eukaryotes while under- 
predicting IDRs and in particular short IDRs for the other four 

taxonomic groups. 
Table 3 reports the region-level SOV scores that quantify the degree 

of overlap between the native and putative IDRs in protein sequences. 
We find that SOV values vary by a factor of 2 across taxonomic groups, 
between 0.38 (EspritzD for archaea) and 0.83 (Disomine for viruses). 
Interestingly, the four disorder predictors consistently produce high SOV 
values, over 0.77, for the viral proteins. EspritzD generates high SOV of 
0.66 for the higher eukaryotes, followed by Disomine with SOV of 0.61, 
while the other two methods secure lower scores at around 0.55 for 
these proteins. Results for protists and bacteria are also relatively ac
curate and consistent across the four disorder predictors, with SOV of 
rawMSA at 0.52 for protists and SOV of EspritzD, flDPnn and Disomine 
at 0.53 for bacteria. However, we note relatively poor quality of the 
region-level overlap for archaea, with SOV of 0.40 for the best flDPnn 
and rawMSA. Altogether, similar to the residue-level evaluation, we find 
that the segment overlap differs across taxonomy where viruses are 
predicted very accurately, eukaryotes and bacteria are predicted with 
modest performance, and archaea suffers relatively low predictive 
quality. Importantly, these trends are consistent across the four disorder 
predictors. 

We also perform the region-level assessment for the two AF2 derived 
predictions for protists, higher eukaryotes, archaea and bacteria, 
excluding viruses where AF2 does not generate predictions. AF2_pLDDT 
(purple line in Fig. 1) predicts the size and number of IDRs relatively 
well for protists, substantially overpredicts short and moderately long 
IDRs in higher eukaryotes, and severely underpredicts IDRs in archaea 

Table 2 
Region-level assessment of the distributions of the numbers and sizes of putative 
IDRs generated by the six predictors for the five diverse taxonomic groups. We 
quantify the mean absolute error (MAE) between the number of native and 
predicted IDRs over different lengths of the regions, and p-value that evaluates 
significance of differences in the shapes of the resulting plots (see “Assessment 
Metrics” section for details). We sort the taxonomic groups from the best to the 
worst performance, i.e., in the ascending order by their MAE values and the 
descending order by their p-values. We report medians of the metric that we 
calculate over the 10 sampled datasets (see “Statistical test” section for details). 
We summarize results of the statistical significance analysis in the x/y format 
next to the reported median value where x and y compare against the best and 
worst predicted taxonomic group, respectively, and where * * and * denote 
statistically significant differences with p-values ≤ 0.01 and ≤ 0.05, respec
tively, while = denotes differences that are not statistically significant (p-value 
> 0.05). Predictions from AF2_pLDDT and AF2_RSA results are unavailable (UA) 
for the viral proteins.  

Methods Taxonomic 
groups 

MAE Taxonomic 
groups 

p-value 
(distribution 
shape) 

EspritzD Viruses 41.32 /* * Viruses 1.09E-03 /* * 
Higher 
eukaryotes 

41.52 = / 
* * 

Higher 
eukaryotes 

6.21E-04 = /* * 

Protists 44.24 = / 
* * 

Protists 2.72E-05 * */=

Bacteria 52.64 * */ 
=

Archaea 7.80E-07 * */=

Archaea 52.77 * */ Bacteria 4.05E-07 * */ 
flDPnn Protists 6.31 /* * Viruses 0.648 /* * 

Viruses 6.48 = / 
* * 

Protists 0.618 = /* * 

Higher 
eukaryotes 

7.83 = / 
* * 

Higher 
eukaryotes 

0.441 = /* * 

Bacteria 9.94 = / 
* * 

Bacteria 0.312 = /* * 

Archaea 19.76 * */ Archaea 0.098 * */ 
rawMSA Higher 

eukaryotes 
10.48 /* * Higher 

eukaryotes 
0.451 /* * 

Protists 29.39 * */ 
* * 

Protists 0.174 * */* * 

Viruses 32.14 * */ 
* * 

Viruses 0.066 * */* 

Bacteria 34.51 * */ 
* * 

Bacteria 0.063 * */* 

Archaea 46.75 * */ Archaea 3.93E-04 * */ 
Disomine Viruses 24.72 /* * Viruses 0.472 /* * 

Protists 24.87 = / 
* * 

Higher 
eukaryotes 

0.135 * */* * 

Higher 
eukaryotes 

26.82 = /* Bacteria 0.016 * */=

Bacteria 37.08 * */ 
=

Protists 0.004 * */=

Archaea 40.56 * */ Archaea 0.003 * */ 
AF2_pLDDT Protists 8.27 /* * Protists 5.66E-15 /* * 

Higher 
eukaryotes 

37.33 * */ 
* * 

Archaea 4.15E-42 * /* 

Bacteria 39.21 * */ 
* * 

Bacteria 5.86E-48 * */=

Archaea 53.44 * */ Higher 
Eukaryotes 

5.66E-76 * */ 

Viruses UA Viruses UA 
AF2_RSA Higher 

eukaryotes 
15.18 /* * Higher 

Eukaryotes 
3.44E-26 /* * 

Protists 19.64 * / 
* * 

Protists 6.15E-42 = /* * 

Bacteria 41.71 * */ 
* * 

Archaea 5.34E-44 = /* * 

Archaea 56.10 * */ Bacteria 5.71E-48 * / 
Viruses UA Viruses UA  

Table 3 
Region-level assessment of the segment overlap (SOV) between the native IDRs 
and the putative IDRs generated by the six predictors for the five diverse taxo
nomic groups. Higher SOV scores indicate larger degree of the overlap. We sort 
the taxonomic groups in the descending order of SOV values. We report median 
SOVs that we calculate over the 10 sampled datasets (see “Statistical test” sec
tion for details). We summarize results of the statistical significance analysis in 
the x/y format next to the reported median value where x and y compare against 
the best and worst predicted taxonomic group, respectively, and where * * and 
* denote statistically significant differences with p-values ≤ 0.01 and ≤ 0.05, 
respectively, while = denotes differences that are not statistically significant (p- 
value > 0.05). Predictions from AF2_pLDDT and AF2_RSA results are unavai
lable (UA) for the viral proteins.  

Methods Taxonomic groups SOV 

EspritzD Viruses 0.807/** 

Higher eukaryotes 0.660**/** 
Bacteria 0.525**/** 
Protists 0.502**/** 
Archaea 0.375**/ 

flDPnn Viruses 0.774/** 
Higher eukaryotes 0.550**/** 
Bacteria 0.529**/** 
Protists 0.508**/** 
Archaea 0.404**/ 

rawMSA Viruses 0.776/** 
Higher eukaryotes 0.574**/** 
Protists 0.521**/** 
Bacteria 0.518**/** 
Archaea 0.404**/ 

Disomine Viruses 0.831/** 
Higher eukaryotes 0.614**/** 
Bacteria 0.532**/** 
Protists 0.494**/** 
Archaea 0.393**/ 

AF2_pLDDT Bacteria 0.543/** 
Higher eukaryotes 0.522**/** 
Archaea 0.416**/** 
Protists 0.405**/** 
Viruses UA 

AF2_RSA Bacteria 0.577/** 
Higher eukaryotes 0.535**/** 
Protists 0.472**/** 
Archaea 0.418**/** 
Viruses UA  
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and bacteria. Correspondingly, Table 2 reveals that AF2_pLDDT secures 
low MAE of 8.3 for protists, and only flDPnn performs better for these 
proteins with MAE of 6.3. However, AF2_pLDDT’s MAEs for the other 
three taxonomic groups are high and exceed 37. Moreover, in spite of the 
low MAE in protists, AF2_pLDDT fails to mimic the shape of their native 
IDR distribution (p-value < 0.01) and performs similarly poorly for the 
other three taxonomic groups (p-value < 0.01). Table 3 shows that 
AF2_pLDDT generates modest levels of performance when considering 
the overlap between its putative IDRs and the native IDRs. The SOV 
scores range between 0.40 and 0.54, and they are particularly low for 
protists, at 0.40, where rawMSA disorder predictor secures SOV of 0.52. 
This suggests that while AF2_pLDDT predicts the number and sizes of 
IDRs for protists relatively well, their location in the sequence is not 
predicted as well. 

The AF2_RSA method (pink line in Fig. 1) underpredicts short IDRs in 
the four taxonomic groups but predicts longer IDRs relatively well for 
higher eukaryotes and protists. Table 2 shows that AF2_RSA secures 
reasonably low MAE of 15 for the higher eukaryotes (two disorder 
predictors, flDPnn and rawMSA obtain lower/better MAEs) but these 
errors are significantly worse for protists, bacteria and archaea (p-value 
< 0.05). Moreover, the shape of IDR distributions derived from the 
AF2_RSA’s predictions is significantly different from the corresponding 
native distribution for the four taxonomic groups where it can produce 
results (p-value < 0.01). Table 3 shows that SOV scores of AF2_RSA are 
relatively good for bacteria and archaea but they lag behind the disorder 
predictors for protists and higher eukaryotes. To compare with the dis
order predictions, an average SOV across the four taxonomic groups for 
ESpritzD is 0.52 while AF2_RSA and AF2_pLDDT obtain SOV averages of 
0.50 and 0.47, respectively. Moreover, the four disorder predictors 
secure SOV scores between 0.77 and 0.83 for the viral proteins where 
AF2 does not make predictions. Altogether, the region-level assessment 
reveals that the AF2 derived methods are outperformed by the disorder 
predictors, particularly in the context of reconstructing the distributions 
of the IDRs sizes and the extend of the overlap between the predicted 
and native IDRs in sequences. This aligns well with the relatively low 
quality of the binary state predictions generated by AF2_pLDDT and 
AF2_RSA that we observe in Table 1. 

4. Summary and discussion 

While disorder predictors were assessed in numerous studies 
[31–39], these works do not consider the taxonomic diversity of the 
underlying test proteins. We evaluate results produced by a represen
tative collection of four accurate disorder predictors and AF2 over the 
entire taxonomic spectrum including higher eukaryotes, protists, bac
teria, archaea and viruses. Moreover, we analyze three diverse aspects of 
the predictive performance including residue-level predictions, number 
and sizes of the putative IDRs, and segment overlap between putative 
and native IDRs. Given the comprehensive nature of our analysis, i.e., 
five taxonomic groups, three aspects of predictive performance, and six 
predictors, we summarize these results using a rank-based approach 
focusing on the taxonomy. We could not include the AF2_pLDDT and 
AF2_RSA predictors in this analysis since they do not provide results for 
viral proteins, and so we discuss AF2 results separately in subsequent 
paragraphs. We rank the five taxonomic groups for each of the four 
disorder predictors and assessment metric and we average these ranks 
across the methods. Ranks of 1 and 5 correspond to the best and worst 
predicted taxonomic groups, respectively. Moreover, we score the 
taxonomic groups that secure near-random levels of performance for a 
particular metric with the worst/highest rank. For the residue-level as
sessments, the near-random performance corresponds to AUC, F1 and 
MCC around 0.5, 0.1 or lower, and 0.1 or lower, respectively. In the MAE 
case, we consider scores higher than 50 % of the maximum error range 
as near-random. Similarly, the p-values < 0.01 corresponds to predicted 
IDR distributions which are significantly different from native distri
butions and hence, are equivalent to near-random distributions. Finally, 

ref. [71] shows that SOVs below 0.19 represent overlap between two 
random proteins with a p-value close to one. 

Fig. 2 shows the corresponding average ranking of taxonomic groups 
for each of the considered metrics of predictive performance. We note 
that lower rank means that a given taxonomic group is consistently 
(across different methods) predicted with higher levels of the predictive 
performance. 

Fig. 2 reveals that predictive quality differs substantially across 
taxonomy, particularly for the residue-level metrics (blue bars) and the 
segment overlap (yellow bar). These metrics, which include AUC, F1, 
MCC and SOV, are in good agreement with each other, and show that 
viruses are consistently predicted with the highest levels of perfor
mance, followed by protists and higher eukaryotes, while bacterial and 
archaeal proteins are predicted relatively poorly. We note that the small 
standard deviations (red capped lines) signify the fact that these results 
are consistent across the four predictors. On the other hand, the MAE 
and p-value metrics (green bars), which evaluate how well the pre
dictions mimic the distributions of the number and sizes of the native 
IDRs, show that ranking is inconsistent across predictors. This is because 
the values are more similar across the taxonomic groups and the cor
responding standard deviations are also on average higher. This stems 
from the fact that only flDPnn provides reasonably accurate distribu
tions for eukaryotes, viruses and bacteria, while the other predictors 
underpredict short IDRs, except for rawMSA that generates accurate 
results for higher eukaryotes. This aspect of disorder predictions is 
particularly inaccurate for archaeal proteins where all four methods fail 
to provide accurate distributions. Altogether, we find that disorder 
predictors perform at substantially different levels of predictive quality 
for different parts of taxonomy. The residue-level assessment and the 
SOV scores suggest that predictions are the most accurate for viral 
proteins (AUC of 0.87 and SOV > 0.80 for EspritzD and Disomine) and 
similarly very accurate for higher eukaryotes (AUC of 0.82 and SOV of 
0.55 for flDPnn), and protists (AUC of 0.82 and SOV of 0.52 for raw
MSA). However, the predictions for archaeal and bacterial proteins are 
only modestly accurate (AUC ≤ 0.77 and SOV ≤ 0.40 for archaea; AUC ≤
0.71 and SOV ≤ 0.53 for bacteria). Similarly, the current disorder pre
dictors also struggle with reproducing the distribution of the numbers 
and sizes of IDRs for the archaeal proteins. 

We hypothesize that possible reasons for the varying performance of 
the disorder across taxonomy could be a taxonomic bias in their training 
datasets and/or differences in the compositional bias of amino acid, i.e., 
differences in the amino acid-level propensities for disorder that cannot 
be adequately addressed by the taxonomy-agnostic predictive models. 
We were able to collect the taxonomic details of the training data for two 
methods, flDPnn and rawMSA. The taxonomic breakdown of the 
flDPnn’s training sequences is approximately 75 % eukaryotes, 16 % 
bacteria, 7 % viruses and 2 % archaea. Similarly, the rawMSA’s 
training sets are composed of around 69 % eukaryotes, 20 % bacteria, 
9 % viruses and 2 % archaea. While the substantial enrichment in the 
eukaryotic proteins may explain why these predictors perform well for 
the eukaryotes, the high levels of predictive quality for viruses and 
similar levels for bacteria and archaea, in spite of 8 to 10 times differ
ences in their numbers in the training data, do not align with this 
explanation. 

IDRs are known to have compositional bias at the amino acid level 
[73–76] and we posit that this bias might be different across taxonomy. 
This, in turn, could cause problems for the taxonomy-agnostic models 
that generate predictions from the amino acid sequences. We compute 
the amino acid bias of the intrinsic disorder and present these results in 
Supplementary Fig. S3. We were able to reproduce the bias identified in 
the past studies [75,76] when using the dataset of 465 proteins that 
combines the sampled sets of 93 proteins from the five taxonomic group 
(top left panel in Supplementary Fig. S3). More specifically, we find that 
the disorder bias is significantly negative (p-value < 0.05; green dotted 
box in Supplementary Fig. S3) for the order promoting residues reported 
in these studies. Similarly, we find that the amino acids with the 
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significantly positive bias for disorder (p-value < 0.05; red dotted box in 
Supplementary Fig. S3), except for Asn, were previously reported as 
disorder-promoting. Moreover, out of the four amino acids that did not 
produce a significant bias in our analysis on the dataset with 465 pro
teins (Ala, Thr, Asp, and Met), three of them (Thr, Asp and Met) were 
reported as neutral (neither disorder nor order promoting) in ref. [76]. 
Our analysis of the compositional bias for the five taxonomic groups 
(Supplementary Fig. S3) reveals that the disorder promoting amino 
acids do not switch to act as the order promoting residues in any of the 
five taxonomic groups and vice versa. This indicates that the composi
tional bias across the taxonomic groups is generally consistent. How
ever, the degree and significance of the bias varies substantially, where 
order and disorder promoting amino acids in some parts of the taxon
omy become neutral in other taxonomic groups and some neutral amino 
acids may shift to be disorder or order promoting. For example, Val that 
has significantly negative bias for disorder (i.e., order promoting bias) in 
eukaryotic and viral proteins has neutral propensity for disorder in 
archaea and bacteria. We quantify the degree of agreement between the 
reference compositional bias on the entire dataset that combines all 
taxonomic groups and the individual taxonomic groups by counting how 
many amino acids match their reference disorder and order bias (red and 
green bars in Supplementary Fig. S3). Out of the 16 disorder and order 
promoting amino acids from the entire dataset, 14 matches in viruses, 13 
in higher eukaryotes, 12 in protists, 10 in archaea, and 9 in bacteria. This 
correlates well with the varying levels of predictive performance across 
these taxonomic groups, where AUCs that we averaged across the four 
disorder predictors are 0.86, 0.79, 0.77, 0.74 and 0.70 for viruses, 
protists, higher eukaryotes, archaea and bacteria, respectively. The 
corresponding Pearson correlation coefficient between the numbers of 
matches and the average AUCs is 0.91. This suggests that the degree of 
divergence from the overall taxonomy-agnostic disorder bias may partly 
explain the corresponding differences in the predictive performance for 
the disorder predictors. 

The two AF2-derived disorder predictors, AF2_pLDDT and AF2_RSA, 
produce accurate residue-level propensities for the archaea, bacteria and 
protists while being outperformed by the disorder predictors for the 
higher eukaryotes. However, these two predictors secure lower levels of 
performance for the binary state predictions (median F1 of 0.27 and 
median MCC of 0.20) when compared to the disorder predictors (median 
F1 of 0.31 and median MCC of 0.23 when excluding viruses for which 
AF2 does not produce predictions). Correspondingly, we find that 
AF2_pLDDT and AF2_RSA predicted IDRs suffer lower degree of overlap 
with the native IDRs (median SOV of 0.49) when contrasted with the 

disorder predictors (median SOV of 0.52 when excluding viruses). The 
AF2 derived results are also outperformed by the disorder predictors in 
the context of reconstructing the distributions of the IDRs sizes (median 
p-value of 2.1 *10−42 for AF2 vs. 3.9 *10−2 when excluding viruses; 
higher value is better). The lower quality when predicting IDRs can be 
explained by the fact that AF2 was designed to predict protein structure 
and so it should excel in predicting ordered residues rather than disor
dered residues and regions. The overall observation that AF2 derived 
predictions of disorder suffer lower quality than the predictions gener
ated by state-of-the-art disorder predictors is in line with other studies 
[54,56]. 

To sum up, we assess predictive performance of four representative 
disorder predictors along with two AF2 derived methods on protein 
sequences in the five taxonomic groups. Our study sheds light on sub
stantial limitations of the current disorder predictors along with the 
challenges in using AF2 for the disorder prediction. We see the need for 
the disorder prediction community to develop a new generation of 
methods that aim to provide more accurate results at the residue and the 
region levels for the bacterial and archaeal proteins. This need is 
particularly acute for the archaeal organisms where IDRs were found to 
be important for their adaptation to hostile habitats [45] and for which 
none of the tools produced accurate region-level results. Moreover, the 
new tools should strive to more accurately reproduce the distributions of 
IDR numbers and sizes since we found that only one method, flDPnn, 
was able to do that reasonably well. Moreover, we advocate for the in
clusion of the region-level assessments in the future comparative studies, 
so that progress and performance on this often-neglected aspect of the 
disorder prediction is adequately measured. 
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