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We experimentally evaluate the performance of several Max Cut approximation algorithms. In particular, we

compare the results of the Goemans and Williamson algorithm using semideonite programming with Tre-

visan’s algorithm using spectral partitioning. The former algorithm has a known .878 approximation guaran-

tee whereas the latter has a .614 approximation guarantee. We investigate whether this gap in approximation

guarantees is evident in practice or whether the spectral algorithm performs as well as the SDP. We also com-

pare the performances to the standard greedy Max Cut algorithm which has a .5 approximation guarantee,

two additional spectral algorithms, and a heuristic from Burer, Monteiro, and Zhang (BMZ). The algorithms

are tested on Erdős–Renyi random graphs, complete graphs from TSPLIB, and real-world graphs from the

Network Repository. We ond, unsurprisingly, that the spectral algorithms provide a signiocant speed advan-

tage over the SDP. In our experiments, the spectral algorithms and BMZ heuristic return cuts with values

which are competitive with those of the SDP.
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1 INTRODUCTION

Given as input a graph G = (V ,E) and weights we ∈ R
+ for all e ∈ E, the Max Cut problem asks

to partitionV into two sets such that the sum of the weights of the edges crossing the partition is
maximized. In particular, a cut is given by a pair of sets (S,T ) such that V = S ∪T and S ∩T = ∅.
The value of this cut is ∑

(s,t )∈E :s ∈S,t ∈T

w (s,t ),

and Max Cut seeks to ond a cut maximizing this quantity.
Max Cut is a problem of vast theoretical and practical signiocance. It is polynomial solvable

for certain classes of graphs, e.g., planar graphs [11, 18], and is well-known to be NP-hard in
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2.1:2 R. Mirka and D. P. Williamson

general; it appears on Karp’s original list of NP-complete problems [15]. Additionally, Max Cut
has applications in oelds such as data clustering [19], circuit design, and statistical physics [2]; see
Poljak and Tuza for a comprehensive survey [20].

Many researchers have made improvements towards exact solvers for Max Cut. For general
graphs of unbounded average degree, Williams presented a Max Cut algorithm using exponen-
tial space to exactly solve (and count the number of optimal solutions) inO (m32ωn/3) time where
ω < 2.376 [27]. Croce, Kaminski, and Paschos introduced an algorithm to ond a Max Cut in graphs

with bounded maximum degree, ∆, running in O∗ (2(1−2/∆)n ) time where O∗ () suppresses polyno-

mial factors [6]. Golovnev improved this to O∗ (2(1−3/(∆+1))n ) [10]. Results from Hrga et al., Hrga
and Povh, Krislock, Malick, and Roupin, and Rendl, Rinaldi, and Wiegele utilize branch and bound
techniques to produce other exact solvers [13, 14, 17, 22]. However, due to the lack of an eo-
cient (polynomial-time) algorithm, researchers have also considered onding good approximation
algorithms. An α-approximation algorithm is a polynomial-time algorithm which guarantees a so-
lution with a value of at least an α fraction of the optimal solution. As one of the most well-studied
problems in theoretical computer science, there is a breadth of known approximation algorithms
for Max Cut varying in runtime and approximation guarantee quality.
The simplest randomized approximation algorithm assigns a vertex v ∈ V to either S or T with

equal probability. In expectation, this is a .5-approximation algorithm. Another .5-approximation
can be achieved through a simple greedy algorithm presented by Sahni and Gonzalez [24]. In this
algorithm, start with S,T = ∅. While there are still unassigned vertices, any unassigned vertex
v is chosen and the quantities cS (v ) =

∑
u ∈S :(u,v )∈E w (u,v ) and cT (v ) =

∑
u ∈T :(u,v )∈E w (u,v ) are

computed. If cS (v ) > cT (v ), v is assigned to T and otherwise to S .
The .5-approximation guarantee was the best known until Goemans and Williamson [9] pre-

sented a .878-approximation algorithm, which is the best possible guarantee assuming the Unique
Games Conjecture [16]. Their algorithm relies on a semideonite programming (SDP) relaxation of
the Max Cut problem to ond a high-value cut. While the approximation guarantee likely cannot be
surpassed by another polynomial-time algorithm, solving the SDP can be quite costly in practice.
More recently, Trevisan [26] introduced a simple .531-approximation for Max Cut based on spec-

tral partitioning. Soto [25] improved this guarantee to .614. Though the approximation guarantees
are weaker than the SDP algorithm, the spectral techniques are much cheaper to implement. In
theory, there is a tradeof between the computational speed and solution quality of Goemans and
Williamson’s SDP algorithm versus Trevisan’s spectral algorithm. This article seeks to determine
whether this tradeof exists in practice or if Trevisan’s algorithm returns solutions competitive
with those of the SDP.

It is common practice to apply a local search procedure at the end of a Max Cut algorithm or
heuristic to locally optimize the found cut. One such local search procedure repeatedly moves a
single vertex at a time from one side of the cut to the other, as long as the move increases the value
of the cut. It terminates when there are no more vertices that can be moved to increase the value
of the cut. In this work, we implement this local search method and apply it to all procedures in
our experiments.
Several previous articles have experimentally compared Max Cut algorithms and heuristics.

Bertoni, Campadelli, and Grossi compare cuts computed by their .39-approximation Lorena al-
gorithm, inspired by Goemans–Williamson SDP, to the SDP and a neural .5-approximation algo-
rithm [4]. They found, on average, Lorena provided larger cuts on random graphs in signiocantly
less time than the SDP and comparable time to the neural algorithm. Dolezal, Hofmeister, and
Lefmann compare cuts from six algorithms, including the SDP, on random graphs concluding that
the computationally-cheap random .5-approximation algorithm provides the best tradeof between
runtime and cut quality [7]. Goemans andWilliamson also included computational results in their
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An Experimental Evaluation of Semidefinite Programming 2.1:3

initial article demonstrating the SDP often outperforms its .878 approximation guarantee. Berry
and Goldberg tested several graph partitioning heuristics against each other and against the SDP,
onding the heuristics consistently produce larger cuts than the SDP [3]. Dunning, Gupta, and Sil-
berholz performed a systematic review of Max Cut heuristics and computationally tested 19 of
them [8]. Their results demonstrate the strength of a heuristic developed by Burer, Monteiro, and
Zhang (BMZ) based on a rank-two relaxation of the Goemans–Williamson SDP [5]. In the initial
presentation by BMZ, they also show their heuristic to outperform the SDP; we include a compar-
ison of the BMZ heuristic in this work. Hassin and Leshenko also used the library of instances
developed by Dunning et al. to compare their greedy heuristic to several others [12].
As far as we are aware there are no previously published results comparing Trevisan’s spectral

algorithm. We seek to oll this gap due to the importance of Trevisan’s algorithm; it is the only
known algorithm for Max Cut other than the SDP which guarantees an approximation better than
.5, which can be achieved by simple algorithms. Additionally, the algorithm does not rely on the
strength of any semideonite or linear programming solvers or relaxations, and there is no proof
that the analysis of the approximation guarantee is tight. Theoretically, the computational speed of
Trevisan’s algorithm seems to be far faster than the SDP, and if the quality of the cuts is comparable
to the SDP, there is justiocation for using spectral methods over the SDP in heuristics.
In this article, we evaluate the performances of the SDP, spectral, and greedy algorithms on a

variety of graphs. We also compare these performances against the BMZ heuristic and optimal
values or upper bounds computed by the Biq Mac solver developed by Rendl, Rinaldi, and Wiegele
[22]. Section 2 provides more complete descriptions of the ove algorithms and BMZ heuristic con-
sidered. Section 3 describes the experiments and presents the results of the algorithms on diferent
classes of graphs. Finally, Section 4 concludes with a summary of the performances and introduces
a few possible directions for future theoretical study.

2 ALGORITHMS

This section describes the local search procedure, ove algorithms, and BMZ heuristic that we im-
plemented for Max Cut. We orst describe the local search procedure utilized in all experiments in
Section 2.1. Section 2.2 describes the benchmark greedy .5-approximation algorithm for Max Cut.
Section 2.3 describes Trevisan’s spectral algorithm for Max Cut, while Section 2.4 describes two
simpliocations of this algorithm. Finally, Section 2.5 describes the SDP algorithm and Section 2.6
describes the BMZ heuristic based on a rank-two relaxation of the SDP algorithm.

2.1 Repeated 1-Flip Local Search

It is common practice in the heuristics community to use a local search procedure to supplement
algorithm implementations.We implemented a repeated 1-nip local searchwhichwas applied after
each procedure before returning a cut; the local search works as follows. Given a cut (S,T ), the
algorithm repeatedly checks to see whether there is a vertexv such that the value of the cut can be
improved by movingv from S toT or vice versa. If more than one such vertex exists, the algorithm
selects to move the one that maximizes the improvement to the value of the cut and repeats the
process. When no such vertices remain, the procedure terminates and the cut is returned. See
Algorithm 1 for pseudocode.

2.2 Greedy Algorithm

The orst Max Cut algorithm we consider is the standard greedy algorithm. This fast and simple
algorithm provides a benchmark for the speed and cut value of the others. For a graphG = (V ,E),
we return a cut (L,R) by greedily assigning vertices to either L or R one at a time. We start with
L,R = ∅. In each step of the algorithm, we choose a vertexv ∈ V yet to be assigned to L or R. Then
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2.1:4 R. Mirka and D. P. Williamson

ALGORITHM 1: Local Search

input :G = (V ,E),A = (ai j ) where ai j = w (i, j ) , cut (L,R)

output :Cut (L,R)

updates ← n-dimensional array of 0s;

for i = 1, . . . ,n do

if i ∈ L then

updates[i] =
∑
j ∈L:(i, j )∈E w (i, j ) −

∑
j ∈R:(i, j )∈E w (i, j ) ;

else

updates[i] =
∑
j ∈R:(i, j )∈E w (i, j ) −

∑
j ∈L:(i, j )∈E w (i, j ) ;

end

end

while max(updates ) > 0 do

v ′ = argmax(updates );

if v ′ ∈ L then

for j such that (v ′, j ) ∈ E do

if j ∈ L then

updates[j] = updates[j] − 2w (v ′, j ) ;

else

updates[j] = updates[j] + 2w (v ′, j ) ;

end

end

move v ′ to R;

else

for j such that (v ′, j ) ∈ E do

if j ∈ R then

updates[j] = updates[j] − 2w (v ′, j ) ;

else

updates[j] = updates[j] + 2w (v ′, j ) ;

end

end

move v ′ to L;

end

updates[v ′] = −updates[v ′];

end

return (L,R)

we add v to L or R by choosing the larger of the two cuts (L ∪ {v},R) and (L,R ∪ {v}) at this step.
See Algorithm 2 for pseudocode.

2.3 Trevisan’s Algorithm

The next algorithm for onding a large cut in a graph is Trevisan’s spectral algorithm. Trevisan
proved a .531 approximation ratio for the algorithm, while Soto improved the analysis to .614.
Here, we describe Soto’s presentation of the algorithm. Given a graphG = (V ,E) with |V | = n, the
adjacency matrixA = (ai j ) is given by ai j = wi j if (i, j ) ∈ E and 0, otherwise. Then the normalized

adjacencymatrixA is given byA = D−1/2AD−1/2 whereD = diaд(d ) ford (i ) =
∑

j :(i, j )∈E w (i, j ) the
weighted degree of vertex i . In our implementation of the algorithm, we compute the eigenvector,
x , corresponding to the minimum eigenvalue of I +A. After normalizing x so that maxi |xi | = 1,
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ALGORITHM 2: Greedy

input :G = (V ,E),A = (ai j ) where ai j = w (i, j )

output :Cut (L,R)

L ← ∅;

R ← ∅;

while V \ (L ∪ R) � ∅ do

select v ∈ V \ (L ∪ R);

L_weiдht =
∑

(v, j )∈E :j ∈L w (v, j ) ;

R_weiдht =
∑

(v, j )∈E :j ∈R w (v, j ) ;

if L_weiдht > R_weiдht then

Add v to R;

else

Add v to L;

end

end

return (L,R)

a number t2 is drawn uniformly at random from [0,1]. We let

L = {v : xv f −t },

R = {v : xv g t }, and

V ′ = V \ (L ∪ R).

Now (L,R) represents a partial cut of the vertices with V ′ being the vertices yet to be partitioned.
Given L,R, and V ′, we compute

C = total weight of the edges between L and R,

X = total weight of the edges between L ∪ R and V ′, and

M = total weight of all edges − total weight of the edges between vertices of V ′.

If C + X/2 −M/2 < 0, we use the greedy algorithm to partition the vertices instead of t as the
expected value of the cut is worse than that of greedy. If C + X/2 −M/2 > 0, we keep the partial
cut and recurse to ond a cut of the vertices in V ′ given by (L′,R′). Finally, we return the larger of
the cuts (L ∪ L′,R ∪ R′) and (L ∪ R′,R ∪ L′). See Algorithm 3 for pseudocode.

Since the results of Trevisan’s algorithm are highly reliant on the t2 value chosen, one could
ask if there are ways to modify the algorithm to increase the likelihood of choosing a good t2

value. We tested two methods. The orst chooses 5 t2 values at each stage of the algorithm. The
idea here was that choosing many random numbers should increase the probability of choosing a
<good= random number. The major roadblock is deciding which partial cut corresponds to one of
the t2 values the algorithm should recurse on. We tested the greedy choice. More speciocally,C,X ,
and M were computed for each drawn t2 value as above, and we kept the partial cut maximizing
C + X/2 − M/2. We made this selection because it represents the partial cut that is currently
performing better than the greedy algorithm by the largest margin. In particular, given a partial
cut due to a partial assignment of vertices, we can consider three types of edges: edges with both
endpoints assigned, edges with exactly one endpoint assigned, and edges with neither endpoint
assigned. The third type is not afected by the partial cut and is not considered in this iteration.
However,C computes the value of the cut in Trevisan’s algorithm due to the orst type of edge.X/2
is the expected value added to this cut from the edges of the second type if the remaining vertices
are greedily assigned, andM/2 is the expected value of the greedy cut due to edges of both of the
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ALGORITHM 3: Trevisan

input :G = (V ,E) with |V | = n,A = (ai j ) where ai j = w (i, j )

output :Cut (L,R)

D = diaд(d ) where d (i ) =
∑
j :(i, j )∈E w (i, j ) ;

A = D−1/2AD−1/2;

x ← minimum eigenvector of I +A;

xi ←
xi

maxj=1, . . .n |x j |
for i = 1, . . .n;

t2 ∼ U (0, 1);

L ← {v ∈ V : xv f −t };

R ← {v ∈ V : xv g t };

V ′ = V \ (L ∪ R);

C ←
∑

(i, j )∈(L,R ) w (i, j ) ;

X ←
∑

(i, j )∈(L∪R,V ′) w (i, j ) ;

M ←
∑

(i, j )∈E w (i, j ) −
∑

(i, j )∈E :i, j ∈V ′ w (i, j ) ;

if C + X/2 +M/2 < 0 then
return Greedy(V,E,A)

else

(L′,R′) ← Trevisan(V ′,E,A);

return the better cut between (L ∪ L′,R ∪ R′) and (L ∪ R′,R ∪ L′);

end

orst two types. Therefore, ifC +X/2 > M/2, the partial cut being considered is performing better
than the greedy algorithm would be in expectation. The greater the diference between C + X/2
andM/2, theoretically the better Trevisan’s algorithm is performing compared to greedy. It is not
obvious that this is the best heuristic, but it does allow the algorithm to test several random values
quickly.
Alternatively, we also experimented with running Trevisan’s algorithm for several iterations

and maintaining the best cut that was found. The advantage here as opposed to the previous
modiocation is we do not have to determine which t value to keep. However, the runtime is slower
because the entire algorithm is run several times instead of adding additional quick random draws.
The results of these modiocations for two of the tested graphs are provided in Figure 1. In each

ogure, the line represents the results from trials of running the algorithm multiple times (1, 2, 5,
10, 20, 35, and 50 times). Note that the line is not monotonically increasing. This is because each
group of runs was unique and not a cumulative total. For example, when considering how well
Trevisan’s algorithm performs when running 10 iterations, we run 10 new iterations and do not
build of of the 5 from the previous data point. The single dot represents the average runtime and
cut value of the best result when implementing the orst modiocation of multiple t2 values.

The experiments were run on a variety of graphs and Figure 1 is a representative sample. Se-
lecting multiple t2 values seemed to perform well for the sparser Network Repository graphs, but
overall, it seems running the algorithm multiple times is more efective in increasing cut quality
than choosing multiple t2 values. However, the number of iterations needed is not obvious, though
it appears at least ove are beneocial. Due to this observation, we use this method of running Tre-
visan’s algorithm ove times and keeping the best cut for the experiments presented in this article.

2.4 Simple Spectral and Sweep Cuts Algorithms

The simple spectral algorithm is a modiocation of Trevisan’s algorithm described in the previous
section. Instead of drawing a random number t in [0, 1], we return the cut corresponding to t = 0.
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Fig. 1. Plots depicting the efects on runtime and returned cut quality of running Trevisan’s algorithm mul-
tiple times on the G(100,.5) and G(200,.25). The X and Y axes are the time in seconds and the cut value,
respectively. The light gray <x= is presented for comparison and is the result of running Trevisan’s algorithm
once, but testing many random values.

ALGORITHM 4: Simple Spectral

input :G = (V ,E) with |V | = n,A = (ai j ) where ai j = w (i, j )

output :Cut (L,R)

D = diaд(d ) where d (i ) =
∑
j :(i, j )∈E w (i, j ) ;

A = D−1/2AD−1/2;

x ← minimum eigenvector of I +A;

L = {v ∈ V : xv < 0};

R = V \ L;

return (L,R);

In particular, let x be the eigenvector corresponding to the smallest eigenvalue as before. Since
scaling numbers by a positive factor does not change their sign, we may skip the normalizing step
for x . We let L = {v : xv < 0} and R = V \L and return the cut (L,R). This modioed simple spectral
algorithm has no known approximation guarantee. See Algorithm 4 for pseudocode.
The sweep cuts algorithm works in a similar fashion. Here, we consider n − 1 diferent cuts and

return the best. Given the smallest eigenvector x , we sort the entries so that xi1 f xi2 f · · · f xin .
Then we calculate the sweep cut value for Lj = {i1, . . . , i j } and R j = V \Lj for j = 1, . . . ,n− 1. The
sweep cuts algorithm returns the cut (Lj ,R j ) of maximal value. See Algorithm 5 for pseudocode.
It is worth noting that the sweep cuts algorithmwill always perform at least as well as the simple

spectral algorithm in terms of cut value since one of the sweep cuts will be the same as the t = 0
cut. However, it is interesting to see how much better the sweep cuts algorithm performs since it
is also guaranteed to have a slower runtime for the same reasons.

2.5 SDP Algorithm

Goemans and Williamson introduced a .878 approximation algorithm for Max Cut based of of the
following model:

MaxCut (G ) = max
xi ∈{1,−1}

1

2

∑

i<j

wi j (1 − xix j ),

where again wi j is the weight of edge (i, j ). Note that this models the problem of onding a Max
Cut. Each cut (S,T ) corresponds to an assignment of 1 or −1 for each xi . In particular, let xi = 1
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ALGORITHM 5: Sweep Cuts

input :G = (V ,E) with |V | = n,A = (ai j ) where ai j = w (i, j )

output :Cut (L,R)

D = diaд(d ) where d (i ) =
∑
j :(i, j )∈E w (i, j ) ;

A = D−1/2AD−1/2;

x ← minimum eigenvector of I +A;

sort x so that xi1 f xi2 f · · · f xin ;

bestL ← ∅;

bestR ← ∅;

for j = 1, . . .n do

L = {i1, . . . , i j };

R = V \ L;

if the value of (L,R) > the value of (bestL,bestR) then

bestL ← L;

bestR ← R;

end

end

return (bestL,bestR);

ALGORITHM 6: SDP

input :G = (V ,E) with |V | = n,A = (ai j ) where ai j = w (i, j )

output :Cut (L,R)

X = (x1 . . . xn ) ← argmax | |xi | |=1
1
2

∑
i<j ai j (1 − xi · x j );

r ← a vector uniformly distributed on the unit sphere in Rn ;

L = {i : 〈r ,xi 〉 f 0};

R = V \ L;

return (L,R);

if i ∈ S and xi = −1 if i ∈ T , then 1
2

∑
i<j wi j (1 − xix j ) exactly computes the value of the cut

(S,T ). Thus, MaxCut (G ) is solving for the cut with maximum value. Since solving MaxCut (G )

directly is NP-complete, Goemans and Williamson instead relax MaxCut (G ) to a model solvable
by a semideonite program. In particular, instead of requiring xi ∈ {1,−1}, they require vi ∈ R

n to
be unit vectors and replace xix j with 〈vi ,vj 〉. Given a solution to this SDP relaxation, they draw a
random vector r ∈ Rn uniformly from the unit sphere and partition the vertices according to

L = {i : 〈r ,vi 〉 f 0} and

R = {i : 〈r ,vi 〉 > 0}.

See Algorithm 6 for the pseudocode.
This gives the .878 approximation in expectation. Since drawing random vectors is computa-

tionally cheap, we opted to draw multiple random vectors instead of just 1. We ran a few tests
to determine how many we should select for each instance and whether local search should be
run for each cut corresponding to a random vector or just the best. First, we compared selecting
100 random vectors and running local search on the single best to selecting 100 random vectors
and running local search on each one. The results indicated that better cuts were almost always
achieved by running local search on each random vector and returning the best of those cuts, but it
increased the overall runtime of tested instances by about 10%. Since the SDP is already the slowest
method, we wanted to limit the runtime increase. Instead, we ran the SDP and selected 100 random
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vectors with local search on the single best and recorded the overall runtime. We then used this
runtime as a budget to run the SDP and draw as many random vectors with local search after each
one as possible. Overall, this kept the runtime consistent but also demonstrated some interesting
behavior. In particular, in some cases, due to the randomness of the SDP solve time, the budget was
not enough to even draw one random vector, and, in other cases, a pattern emerged showing that
not very many random vectors were needed to beat the value of the current benchmark solution, if
local search was run after each one. As a result, for our onal implementation providing the results
presented in this work, we drew 10 random vectors and ran local search after each one. In nearly
all cases, this resulted in a cut with value at least as large as and a runtime at worst as slow as
those produced by drawing 100 random vectors and only locally searching the best one.

2.6 BMZ Heuristic

BMZ observe that adding an additional constraint, that the solution lies in R2, to the Goemans–
Williamson SDP allows the optimization to be represented as a nonlinear optimization problem
with n variables and a nonconvex objective function. They utilize this formulation to develop a
powerful Max Cut heuristic.
In particular, BMZ begin with the Goemans–Williamson SDP, but require that vi ∈ R

2 instead
of Rn . These vectors in R2 can then be represented as a single vector θ ∈ Rn where θi is the angle
such that vi = (cosθi , sinθi ) for i = 1, . . .n. With this translation, 〈vi ,vj 〉 can be replaced with
cos(θi − θ j ), and the relaxed optimization objective function becomes

min
θ ∈Rn

f (θ )

where

f (θ ) =
1

2

∑

i<j

wi j cos(θi − θ j ).

This relaxation is an unconstrained optimization problem with a nonconvex objective function
and creates the baseline of the BMZ heuristic. Because f (θ ) is a nonconvex function, we cannot
optimally minimize it in practice and, therefore, cannot expect a guarantee on the quality of the
solution. However, this heuristic has performed well in previous experiments, and the low number
of variables indicates a potential for scalability of the technique, an area where the Goemans–
Williamson SDP struggles in particular.

Before presenting the heuristic, note that for a given θ , we may assume θi ∈ [0, 2π ) for i =
1, . . . ,n, and any angle α ∈ [0,π ) induces a cut (Sα ,V \ Sα ) where Sα = {i : θi ∈ [α ,α + π )}.
Furthermore, it is easy to compute all cuts produced in this manner: try α = θi for every θi < π

and α = θi − π for every θi > π .
The heuristic runs as follows. Fix a constant N , and begin with k = 0 and θ0 ∈ R

n randomly
selected. Obtain a local minimum θ ′ to f (θ ) beginning the search at θ0 and using a gradient algo-
rithm with a back-tracking Armijo line-search. Find the best possible associated cut (Sα ′,V \ Sα ′ )
through the procedure previously described. If this is the best cut seen so far, reset k = 0. Other-
wise, increase k by 1 and set θ0 to be the vector with θ0 (i ) = π if i ∈ Sα ′ and 0, otherwise. Finally,
apply a slight random perturbation to θ0 and repeat the optimization until k > N , then return the
best cut found. See Algorithm 7 for pseudocode.

There are a few implementation choices to consider in regards to the time versus cut quality
tradeof of this heuristic. First is the choice of N , the number of consecutive non-improving per-
turbations allowed. A larger N allows the heuristic more opportunities to improve the cut, but re-
quires more compute time. Additionally, this heuristic is faster than the SDP (especially ifN = 0, 1),
so similarly to Trevisan’s algorithm, one might decide to run the entire heuristicM > 0 times and
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2.1:10 R. Mirka and D. P. Williamson

ALGORITHM 7: BMZ

input :G = (V ,E) with |V | = n,A = (ai j ) where ai j = w (i, j )

output :Cut (L,R)

k ← 0;

θ ← random vector in Rn ;

bestL,bestR ← ∅;

while k f N do

θ ′ ← local minimum of 1
2

∑
i<j w (i, j ) cos(θi − θ j ) found via a back-tracking Armijo line-search

beginning at θ ;

L′,R′ ← ∅;

for i = 1, . . . ,n do

if θ ′[i] f π then

L = {j : θ ′[j] ∈ [θ ′[i],θ ′[i] + π )};

R = V \ L;

else

L = {j : θ ′[j] ∈ [θ ′[i] − π ,θ ′[i]);

R = V \ L;

end

if the value of (L,R) > the value of (L′,R′) then

L′ ← L R′ ← R;

end

end

if the value of (L′,R′) > the value of (best_L,best_R) then

bestL ← L;

bestR ← R;

k = 0;

else

k ← k + 1;

end

θ ← a random perturbation of the cut vector for (L,R);

end

return (bestL,bestR)

select the best cut found in all runs. This can be beneocial since the θ0 initialization is random.
After testing several combinations of N andM , we ran our experiments of the BMZ heuristic with
M = 1 and N = 10.

We also implemented and tested windmill cuts—an alternative way to produce a cut from a
rank-two solution to the Goemans–Williamson SDP, or in this case a local minimum from the
BMZ heuristic. For an integer k > 0,Windmillk is the cut given by (S,V \ S ) where S = {v ∈
V : θv ∈ [2� π

k
, (2� + 1) π

k
), 0 f � < k }. If an optimal solution to the Goemans–Williamson SDP

lies in two dimensions, then Avidor and Zwick [1] have shown thatWindmillk improves the .878
approximation ratio. We tested the cut quality of bothWindmill4 and the exhaustive procedure
previously described for the BMZ heuristic. There did not appear to be a signiocant diference, and
in fact, the exhaustive procedure more often returned better cuts on our tested graphs. For this
reason, we ran our experiments with the original cut procedure.

3 EXPERIMENTS

All algorithms were implemented in Julia and can be found at https://github.com/rmirka/max-cut-
experiments. They were run on a machine with an Apple M2 chip and 16 GB of memory. The SDP
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Fig. 2. Plots depicting the efect of a longer budgeted runtime on the found cut quality of Trevisan’s algo-
rithm and the BMZ heuristic on the ENZYMES8 and G(350,.75) random graphs. The X and Y axes are the
percentage of the time budget used and the percentage of the known optimal or upper bound cut value
achieved, respectively.

algorithm was computed with the JuMP modeling language for Julia and the SCS optimizer as the
SDP solver. The LinearAlgebra package was used for the eigenvector computations of the spectral
algorithms, and line searchwas implemented based on theMQLib C++ version (https://github.com/
MQLib/MQLib/blob/master/src/heuristics/maxcut/burer2002.cpp) for the unconstrained nonlinear
optimization of the BMZ heuristic. All graphs were also submitted to the Biq Mac solver (https:
//biqmac.aau.at) to compute optimal values. This solver has a three-hour time limit; for graphs
where the optimal cut was not found in this time, the best cut found and the upper bound are
returned instead. In these cases, the upper bound values are reported in the tables, instead of the
optimal, and denoted with a *. The tables also indicate whether any of the six tested algorithms
returned an optimal cut. Additionally, the fastest compute times and largest cut values found for
each graph are indicated with bold values in the tables.
Wemeasured the algorithms’ performance with three types of test data.We used 20 Erdős-Renyi

random graphs with 50–500 vertices, 16 complete graphs from TSPLIB [21] with 29–280 vertices
(average 124), and 16 sparser graphs from the Network Repository [23] with 39–1,133 vertices
(average 344.5). As previously mentioned, local search was applied to the returned solution from
each procedure. Trevisan’s algorithm, the SDP, and the BMZ heuristic all use randomization, so
the values reported for these procedures are averages over 3 runs each for every individual graph.
In addition, the times for these randomized algorithms can vary signiocantly across runs due to
the randomization. If one of these three procedures found an optimal cut in at least one run but not
all, the value is underlined in the table. In addition, the SDP algorithm tested 10 random vectors,
Trevisan’s algorithm was run 5 times, and the BMZ heuristic was run once but allowed 10 nonim-
proving steps for each run. The simple spectral and sweep cuts algorithms are deterministic, so no
further implementation choices were required. We considered ways to streamline the presentation
of the results by allowing each procedure the same time budget determined by the length of time
required for the SDP algorithm to run on an instance. This could potentially beneot Trevisan’s al-
gorithm and the BMZ heuristic since both rely on randomness, but greedy, sweep cuts, and simple
spectral would be unafected by the extra time allowance. Ultimately, Trevisan’s algorithm and
the BMZ heuristic showed little to no beneot from the extra time, largely due to their ability to
outperform the SDP and ond the optimal or a near-optimal solution in a much smaller amount of
time. Figure 2(a) and (b) provides some illustration of the behavior.
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2.1:12 R. Mirka and D. P. Williamson

Table 1. The Time in Seconds Each Algorithm took to Compute a Cut of an Erdős–Renyi Random Graph

Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP BMZ

G(50, 0.1) 4.692 × 10−44.692 × 10−44.692 × 10−4 6.318 × 10−2 9.575 × 10−2 3.304 × 10−2 8.485 × 10−1 1.553 × 10−1

G(50, 0.25) 8.511 × 10−48.511 × 10−48.511 × 10−4 3.608 × 10−2 1.037 × 10−3 5.121 × 10−3 7.527 × 10−1 1.700 × 10−1

G(50, 0.5) 1.597 × 10−3 3.605 × 10−2 9.414 × 10−49.414 × 10−49.414 × 10−4 7.364 × 10−3 1.011 1.510 × 10−1

G(50, 0.75) 2.164 × 10−3 3.562 × 10−2 1.415 × 10−31.415 × 10−31.415 × 10−3 1.097 × 10−2 1.269 1.496 × 10−1

G(100, 0.1) 2.455 × 10−32.455 × 10−32.455 × 10−3 9.961 × 10−2 3.530 × 10−3 1.938 × 10−2 4.173 8.627 × 10−1

G(100, 0.25) 1.246 × 10−2 1.159 × 10−1 3.380 × 10−33.380 × 10−33.380 × 10−3 3.469 × 10−2 5.023 8.122 × 10−1

G(100, 0.5) 1.172 × 10−2 1.524 × 10−1 3.988 × 10−33.988 × 10−33.988 × 10−3 5.726 × 10−2 4.845 1.193
G(100, 0.75) 1.732 × 10−2 1.987 × 10−1 4.246 × 10−34.246 × 10−34.246 × 10−3 8.832 × 10−2 7.067 1.312
G(200, 0.1) 1.822 × 10−2 3.303 × 10−1 1.431 × 10−21.431 × 10−21.431 × 10−2 1.666 × 10−1 2.330 × 101 6.292
G(200, 0.25) 4.492 × 10−2 7.392 × 10−1 1.308 × 10−21.308 × 10−21.308 × 10−2 3.158 × 10−1 3.768 × 101 3.783
G(200, 0.5) 8.742 × 10−2 1.188 1.404 × 10−21.404 × 10−21.404 × 10−2 5.555 × 10−1 3.905 × 101 1.037 × 101

G(200, 0.75) 1.228 × 10−1 1.449 1.496 × 10−21.496 × 10−21.496 × 10−2 7.773 × 10−1 7.843 × 101 1.284 × 101

G(350, 0.1) 9.105 × 10−2 1.694 3.216 × 10−23.216 × 10−23.216 × 10−2 9.708 × 10−1 1.083 × 102 2.827 × 101

G(350, 0.25) 2.336 × 10−1 3.031 3.273 × 10−23.273 × 10−23.273 × 10−2 1.998 1.574 × 102 2.092 × 101

G(350, 0.5) 4.550 × 10−1 4.833 3.716 × 10−23.716 × 10−23.716 × 10−2 3.652 1.921 × 102 4.273 × 101

G(350, 0.75) 6.599 × 10−1 5.959 4.533 × 10−24.533 × 10−24.533 × 10−2 5.227 4.975 × 102 9.232 × 101

G(500, 0.1) 2.692 × 10−1 4.121 7.329 × 10−27.329 × 10−27.329 × 10−2 3.200 3.027 × 102 5.290 × 101

G(500, 0.25) 6.734 × 10−1 8.013 7.483 × 10−27.483 × 10−27.483 × 10−2 6.742 4.818 × 102 1.106 × 102

G(500, 0.5) 1.342 1.325 × 101 9.525 × 10−29.525 × 10−29.525 × 10−2 1.270 × 10−1 6.469 × 102 1.504 × 102

G(500, 0.75) 1.906 1.858 × 101 1.005 × 10−11.005 × 10−11.005 × 10−1 1.836 × 10−1 7.501 × 102 2.530 × 102

3.1 Erdős–Renyi Random Graphs

The orst class of graphs tested was Erdős–Renyi random graphs. An Erdős–Renyi random graph
G (n,p) is a graph onn vertices where each possible edge is included independentlywith probability
p.We tested random graphswithn = 50, 100, 200, 350, 500 andp = .1, .25, .5, .75. In ourmodel, each
included edge was given an edge weight of 1.
In terms of speed, the simple spectral algorithm signiocantly outperforms the other algorithms

on all but three tested random graphs (where greedy was faster). On the other end of the spectrum,
the SDP is far slower than the alternative algorithms. In general, the BMZ heuristic has computa-
tion times faster than SDP but about one magnitude slower than Trevisan’s algorithm. The time
statistics are presented in Table 1. The plots in Figure 3(a) and (b) illustrates how the computation
times of each algorithm grow as the number of vertices increases. For these plots, we use the data
from Table 1 with p = .5 oxed.

The BMZ heuristic by far performs the best in terms of the returned cut quality for random
graphs. On average, it onds the best cut for 14 of the 20 graphs. Additionally, in at least one run,
it onds an optimal cut for seven of the eight random graphs for which the optimal cut value is
known. The only algorithm to ond better cuts than the BMZ heuristic for multiple random graphs
was sweep cuts, which found the best cut for ove of the remaining graphs. Greedy onds the best
cut on one graph. These results are provided in Table 2.

3.2 Complete Graphs

The algorithms were also tested on 16 complete graphs from TSPLIB, an online library of sample
instances for the Traveling Salesman Problem and related graph problems. Each graph has varying
positive edge weights between 1 and 15,000. The performance in regards to time largely mirrors
that of the random graphs. The simple spectral algorithm is signiocantly faster than the rest of
the algorithms on the vast majority of graphs, with the greedy algorithm in a close second. Sweep
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Fig. 3. Plots depicting the efects on runtime of increasing the number of vertices of an Erdős–Renyi graph
with p = .5. The X and Y axes are the number of vertices and the computation time in seconds, respectively.

Table 2. The Value of the Cut Each Algorithm Returned for an Erdős–Renyi Random Graph

Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP BMZ OPT Achieved

G(50, 0.1) 1.070 × 102 1.150 × 102 1.160 × 1021.160 × 1021.160 × 102 1.160 × 1021.160 × 1021.160 × 102 1.143 × 102 1.160 × 1021.160 × 1021.160 × 102 1.160 × 102 X
G(50, 0.25) 2.030 × 102 2.093 × 102 2.100 × 102 2.110 × 1022.110 × 1022.110 × 102 2.110 × 1022.110 × 1022.110 × 102 2.110 × 1022.110 × 1022.110 × 102 2.110 × 102 X
G(50, 0.5) 3.750 × 102 3.753 × 102 3.730 × 102 3.770 × 1023.770 × 1023.770 × 102 3.770 × 1023.770 × 1023.770 × 102 3.770 × 1023.770 × 1023.770 × 102 3.770 × 102 X
G(50, 0.75) 5.240 × 1025.240 × 1025.240 × 102 5.240 × 1025.240 × 1025.240 × 102 5.240 × 1025.240 × 1025.240 × 102 5.240 × 1025.240 × 1025.240 × 102 5.237 × 102 5.240 × 1025.240 × 1025.240 × 102 5.240 × 102 X
G(100, 0.1) 2.860 × 102 3.030 × 102 3.020 × 102 3.090 × 102 3.087 × 102 3.107 × 1023.107 × 1023.107 × 102 3.110 × 102 X
G(100, 0.25) 7.630 × 102 7.743 × 102 7.740 × 102 7.800 × 102 7.760 × 102 7.807 × 1027.807 × 1027.807 × 102 7.820 × 102 X
G(100, 0.5) 1.385 × 103 1.405 × 103 1.403 × 103 1.412 × 103 1.407 × 103 1.412 × 1031.412 × 1031.412 × 103 1.416 × 103

G(100, 0.75) 2.018 × 103 2.025 × 103 2.033 × 103 2.033 × 103 2.033 × 103 2.034 × 1032.034 × 1032.034 × 103 2.035 × 103 X
G(200, 0.1) 1.243 × 103 1.283 × 103 1.289 × 103 1.296 × 1031.296 × 1031.296 × 103 1.285 × 103 1.296 × 1031.296 × 1031.296 × 103 1.310 × 103*
G(200, 0.25) 2.912 × 103 2.958 × 103 2.969 × 103 2.970 × 1032.970 × 1032.970 × 103 2.962 × 103 2.970 × 103 3.006 × 103*
G(200, 0.5) 5.538 × 1035.538 × 1035.538 × 103 5.518 × 103 5.520 × 103 5.529 × 103 5.524 × 103 5.537 × 103 5.594 × 103*
G(200, 0.75) 7.811 × 103 7.874 × 103 7.880 × 103 7.899 × 1037.899 × 1037.899 × 103 7.887 × 103 7.899 × 103 7.945 × 103*
G(350, 0.1) 3.630 × 103 3.693 × 103 3.703 × 103 3.720 × 103 3.704 × 103 3.728 × 1033.728 × 1033.728 × 103 3.829 × 103*
G(350, 0.25) 8.557 × 103 8.646 × 103 8.663 × 103 8.690 × 103 8.668 × 103 8.699 × 1038.699 × 1038.699 × 103 8.860 × 103*
G(350, 0.5) 1.639 × 104 1.642 × 104 1.645 × 104 1.646 × 1041.646 × 1041.646 × 104 1.645 × 104 1.646 × 104 1.665 × 104*
G(350, 0.75) 2.384 × 104 2.387 × 104 2.390 × 104 2.394 × 1042.394 × 1042.394 × 104 2.393 × 104 2.393 × 104 2.412 × 104*
G(500, 0.1) 7.345 × 103 7.447 × 103 7.440 × 103 7.466 × 103 7.461 × 103 7.499 × 1037.499 × 1037.499 × 103 7.725 × 103*
G(500, 0.25) 1.720 × 104 1.731 × 104 1.732 × 104 1.734 × 104 1.734 × 104 1.738 × 1041.738 × 1041.738 × 104 1.770 × 104*
G(500, 0.5) 3.308 × 104 3.312 × 104 3.315 × 104 3.320 × 1043.320 × 1043.320 × 104 3.318 × 104 3.318 × 104 3.361 × 104*
G(500, 0.75) 4.833 × 104 4.847 × 104 4.845 × 104 4.853 × 104 4.850 × 104 4.853 × 1044.853 × 1044.853 × 104 4.890 × 104*

cuts, Trevisan’s algorithm, and the BMZ heuristic are a magnitude or two slower, and the SDP is
even slower still. This data is presented in Table 3.
This time several of the procedures perform very well. Greedy, Trevisan’s algorithm, sweep cuts,

and the BMZ heuristic all ond best cuts for all but one or two of the complete graphs each (and
hence onding equally good cuts on a majority of the graphs). Optimal cut values are known for
15 of the 16 graphs, and corresponding optimal cuts are found by multiple procedures for each of
these graphs. Simple spectral and the SDP also ond many good cuts, but not quite as many as the
other procedures. These results are presented in Table 4.

3.3 Sparser Graphs

The third group of graphs is composed of a variety of graphs from the Network Repository, an
online and interactive collection of network graph data coming from a variety of sources and
applications. Though more structured than a random graph, these 16 graphs are sparser than the
complete graphs tested in Section 3.2 and are chosen from a range of real-world scenarios. All
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Table 3. The Time in Seconds Each Algorithm Took to Compute a Cut of a Complete Graph from TSPLIB

Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP BMZ

bayg29 6.936 × 10−46.936 × 10−46.936 × 10−4 8.519 × 10−2 2.246 × 10−2 2.808 × 10−3 3.679 × 10−1 7.586 × 10−2

bays29 6.615 × 10−46.615 × 10−46.615 × 10−4 1.165 × 10−2 7.907 × 10−4 2.777 × 10−3 3.977 × 10−1 3.426 × 10−2

berlin52 3.051 × 10−3 3.577 × 10−2 2.236 × 10−32.236 × 10−32.236 × 10−3 1.405 × 10−2 1.254 1.579 × 10−1

bier127 4.474 × 10−2 3.977 × 10−1 1.811 × 10−21.811 × 10−21.811 × 10−2 2.223 × 10−1 7.971 1.685
brazil58 3.772 × 10−3 4.448 × 10−2 2.794 × 10−32.794 × 10−32.794 × 10−3 2.175 × 10−2 1.911 1.149 × 10−1

brg180 1.135 × 10−11.135 × 10−11.135 × 10−1 1.265 1.165 × 10−1 7.213 × 10−1 1.850 × 101 4.241
ch130 4.779 × 10−2 4.529 × 10−1 1.514 × 10−21.514 × 10−21.514 × 10−2 2.557 × 10−1 9.934 1.316
ch150 6.942 × 10−2 7.625 × 10−1 3.236 × 10−23.236 × 10−23.236 × 10−2 3.983 × 10−1 1.261 × 101 1.985
d198 1.789 × 10−1 1.545 5.201 × 10−25.201 × 10−25.201 × 10−2 1.034 3.874 × 101 3.786
eil101 2.121 × 10−2 2.411 × 10−1 1.290 × 10−21.290 × 10−21.290 × 10−2 1.140 × 10−1 5.521 6.425 × 10−1

gr120 3.516 × 10−2 3.259 × 10−1 1.377 × 10−21.377 × 10−21.377 × 10−2 1.965 × 10−1 1.707 × 101 7.915 × 10−1

gr137 6.499 × 10−2 5.163 × 10−1 1.747 × 10−21.747 × 10−21.747 × 10−2 3.016 × 10−1 1.660 × 101 1.176
gr202 1.933 × 10−1 1.549 4.802 × 10−24.802 × 10−24.802 × 10−2 1.065 2.990 × 101 5.493
gr96 2.220 × 10−2 2.145 × 10−1 8.834 × 10−38.834 × 10−38.834 × 10−3 9.609 × 10−2 6.027 4.647 × 10−1

kroA100 2.055 × 10−2 2.103 × 10−1 8.645 × 10−38.645 × 10−38.645 × 10−3 1.130 × 10−1 3.925 4.501 × 10−1

a280 5.086 × 10−1 3.653 9.850 × 10−29.850 × 10−29.850 × 10−2 3.123 1.559 × 102 1.202 × 101

Table 4. The Value of the Cut Each Algorithm Returned for a Complete Graph from TSPLIB

Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP BMZ OPT achieved

bayg29 4.269 × 1044.269 × 1044.269 × 104 4.269 × 1044.269 × 1044.269 × 104 4.269 × 1044.269 × 1044.269 × 104 4.269 × 1044.269 × 1044.269 × 104 4.269 × 1044.269 × 1044.269 × 104 4.269 × 1044.269 × 1044.269 × 104 4.269 × 104 X
bays29 5.399 × 1045.399 × 1045.399 × 104 5.399 × 1045.399 × 1045.399 × 104 5.399 × 1045.399 × 1045.399 × 104 5.399 × 1045.399 × 1045.399 × 104 5.397 × 104 5.399 × 1045.399 × 1045.399 × 104 5.399 × 104 X
berlin52 4.707 × 1054.707 × 1054.707 × 105 4.707 × 1054.707 × 1054.707 × 105 4.695 × 105 4.707 × 1054.707 × 1054.707 × 105 4.707 × 1054.707 × 1054.707 × 105 4.707 × 1054.707 × 1054.707 × 105 4.707 × 105 X
bier127 2.342 × 1072.342 × 1072.342 × 107 2.342 × 1072.342 × 1072.342 × 107 2.337 × 107 2.340 × 107 2.337 × 107 2.342 × 1072.342 × 1072.342 × 107 2.342 × 107 X
brazil58 2.319 × 1062.319 × 1062.319 × 106 2.319 × 1062.319 × 1062.319 × 106 2.319 × 1062.319 × 1062.319 × 106 2.319 × 1062.319 × 1062.319 × 106 2.319 × 1062.319 × 1062.319 × 106 2.319 × 1062.319 × 1062.319 × 106 2.319 × 106 X
brg180 4.118 × 107 4.626 × 107 4.621 × 107 4.634 × 1074.634 × 1074.634 × 107 4.624 × 107 4.631 × 107 4.648 × 107*
ch130 1.885 × 106 1.888 × 106 1.888 × 1061.888 × 1061.888 × 106 1.888 × 1061.888 × 1061.888 × 106 1.887 × 106 1.888 × 1061.888 × 1061.888 × 106 1.888 × 106 X
ch150 2.526 × 1062.526 × 1062.526 × 106 2.526 × 1062.526 × 1062.526 × 106 2.526 × 1062.526 × 1062.526 × 106 2.526 × 1062.526 × 1062.526 × 106 2.526 × 1062.526 × 1062.526 × 106 2.526 × 1062.526 × 1062.526 × 106 2.526 × 106 X
d198 1.294 × 1071.294 × 1071.294 × 107 1.294 × 1071.294 × 1071.294 × 107 1.294 × 1071.294 × 1071.294 × 107 1.294 × 1071.294 × 1071.294 × 107 1.294 × 1071.294 × 1071.294 × 107 1.294 × 1071.294 × 1071.294 × 107 1.294 × 107 X
eil101 1.071 × 1051.071 × 1051.071 × 105 1.071 × 1051.071 × 1051.071 × 105 1.071 × 105 1.071 × 1051.071 × 1051.071 × 105 1.071 × 1051.071 × 1051.071 × 105 1.071 × 1051.071 × 1051.071 × 105 1.071 × 105 X
gr120 2.157 × 1062.157 × 1062.157 × 106 2.157 × 1062.157 × 1062.157 × 106 2.157 × 1062.157 × 1062.157 × 106 2.157 × 1062.157 × 1062.157 × 106 2.157 × 1062.157 × 1062.157 × 106 2.157 × 1062.157 × 1062.157 × 106 2.157 × 106 X
gr137 3.070 × 1073.070 × 1073.070 × 107 3.070 × 1073.070 × 1073.070 × 107 3.070 × 1073.070 × 1073.070 × 107 3.070 × 1073.070 × 1073.070 × 107 3.070 × 1073.070 × 1073.070 × 107 3.070 × 1073.070 × 1073.070 × 107 3.070 × 107 X
gr202 1.600 × 1071.600 × 1071.600 × 107 1.600 × 1071.600 × 1071.600 × 107 1.599 × 107 1.600 × 1071.600 × 1071.600 × 107 1.599 × 107 1.600 × 1071.600 × 1071.600 × 107 1.600 × 107 X
gr96 1.166 × 1071.166 × 1071.166 × 107 1.166 × 1071.166 × 1071.166 × 107 1.166 × 1071.166 × 1071.166 × 107 1.166 × 1071.166 × 1071.166 × 107 1.166 × 1071.166 × 1071.166 × 107 1.166 × 1071.166 × 1071.166 × 107 1.166 × 107 X
kroA100 5.897 × 1065.897 × 1065.897 × 106 5.897 × 1065.897 × 1065.897 × 106 5.897 × 1065.897 × 1065.897 × 106 5.897 × 1065.897 × 1065.897 × 106 5.897 × 1065.897 × 1065.897 × 106 5.897 × 1065.897 × 1065.897 × 106 5.897 × 106 X
a280 3.210 × 1063.210 × 1063.210 × 106 3.210 × 1063.210 × 1063.210 × 106 3.210 × 1063.210 × 1063.210 × 106 3.210 × 1063.210 × 1063.210 × 106 3.210 × 1063.210 × 1063.210 × 106 3.210 × 1063.210 × 1063.210 × 106 3.210 × 106 X

graphs have edge weights of 1 except for inf-USAir-97 which has positive real weights between 0
and 1. The relationships between relative computation times remain mostly unchanged with the
exception of the greedy algorithm replacing simple spectral as the fastest algorithm most often
(Table 5).

For this group of graphs, the BMZ heuristic is again the most dominant. Of the six tested pro-
cedures, it returns the best cut on average for all but three of these graphs, onding an optimal cut
for at least ove graphs. The other procedures ond cuts that are competitive with those found by
the BMZ heuristic, but no procedure matched the consistency of the quality of the BMZ heuristic
cuts Table 6.

In Figure 4(a), (b) and Figure 5(a), (b), we provide a representative sample of the tradeof between
runtime and returned cut value of the algorithms using the graphs DD687, email-enron-only, and
dwt_503.
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Table 5. The Time in Seconds Each Algorithm Took to Compute a Cut of a Graph from the Network
Repository Arising in the Real-world

Graph |V | |E | Greedy Trevisan Simple Spectral Sweep Cuts SDP BMZ

ENZYMES8 88 133 8.904 × 10−48.904 × 10−48.904 × 10−4 9.541 × 10−2 2.966 × 10−3 1.007 × 10−2 2.441 × 101 4.619 × 10−1

johnson16-2-4 120 5460 2.795 × 10−2 2.478 × 10−1 8.734 × 10−38.734 × 10−38.734 × 10−3 1.462 × 10−1 4.083 × 10−1 1.025
hamming6-2 64 1824 4.899 × 10−3 8.449 × 10−2 2.191 × 10−32.191 × 10−32.191 × 10−3 2.469 × 10−2 1.297 2.149 × 10−1

ia-infect-hyper 113 2196 1.167 × 10−2 2.235 × 10−1 6.717 × 10−36.717 × 10−36.717 × 10−3 7.248 × 10−2 9.224 1.357
soc-dolphins 62 159 6.412 × 10−46.412 × 10−46.412 × 10−4 2.868 × 10−2 1.634 × 10−3 6.459 × 10−3 2.616 2.553 × 10−1

email-enron-only 143 623 5.029 × 10−35.029 × 10−35.029 × 10−3 1.473 × 10−1 8.221 × 10−3 5.102 × 10−2 6.712 × 101 2.369
dwt_209 209 976 9.041 × 10−39.041 × 10−39.041 × 10−3 2.570 × 10−1 1.190 × 10−2 1.101 × 10−1 9.190 × 101 2.861
inf-USAir97 332 2126 4.977 × 10−24.977 × 10−24.977 × 10−2 6.497 1.244 × 10−1 5.658 × 10−1 4.039 × 102 2.723 × 101

ca-netscience 379 914 2.796 × 10−22.796 × 10−22.796 × 10−2 8.056 × 10−1 4.444 × 10−2 4.575 × 10−1 3.582 × 102 2.961 × 101

ia-infect-dublin 410 2765 5.727 × 10−2 1.034 4.686 × 10−24.686 × 10−24.686 × 10−2 8.552 × 10−1 6.253 × 102 3.775 × 101

road-chesapeake 39 170 4.167 × 10−44.167 × 10−44.167 × 10−4 1.461 × 10−2 6.285 × 10−4 3.671 × 10−3 5.055 × 10−1 8.947 × 10−2

Erdos991 492 1417 5.026 × 10−25.026 × 10−25.026 × 10−2 3.256 7.632 × 10−2 1.062 6.654 × 102 5.013 × 101

dwt_503 503 3265 8.141 × 10−2 1.878 7.045 × 10−27.045 × 10−27.045 × 10−2 1.408 1.215 × 103 1.771 × 101

p-hat700-1 700 60999 1.894 1.924 × 101 1.830 × 10−11.830 × 10−11.830 × 10−1 2.253 × 101 1.286 × 103 2.152 × 102

DD687 725 2600 1.116 × 10−11.116 × 10−11.116 × 10−1 5.923 1.858 × 10−1 2.955 2.793 × 103 8.822 × 101

email-univ 1133 5451 2.807 × 10−12.807 × 10−12.807 × 10−1 2.504 × 101 1.116 × 10−1 5.940 × 101 5.940 × 103 5.278 × 102

Table 6. The Value of the Cut Each Algorithm Returned for a Graph from the Network Repository

Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP BMZ OPT achieved

ENZYMES8 1.200 × 102 1.257 × 102 1.260 × 1021.260 × 1021.260 × 102 1.260 × 1021.260 × 1021.260 × 102 1.253 × 102 1.260 × 1021.260 × 1021.260 × 102 1.260 × 102 X
johnson16-2-4 3.036 × 1033.036 × 1033.036 × 103 3.036 × 1033.036 × 1033.036 × 103 3.036 × 1033.036 × 1033.036 × 103 3.036 × 1033.036 × 1033.036 × 103 3.036 × 1033.036 × 1033.036 × 103 3.036 × 1033.036 × 1033.036 × 103 3.077 × 103*
hamming6-2 9.920 × 1029.920 × 1029.920 × 102 9.920 × 1029.920 × 1029.920 × 102 9.720 × 102 9.920 × 1029.920 × 1029.920 × 102 9.920 × 1029.920 × 1029.920 × 102 9.920 × 1029.920 × 1029.920 × 102 9.920 × 102 X
ia-infect-hyper 1.259 × 103 1.275 × 103 1.276 × 103 1.276 × 103 1.275 × 103 1.278 × 1031.278 × 1031.278 × 103 1.282 × 103*
soc-dolphins 1.170 × 102 1.183 × 102 1.220 × 1021.220 × 1021.220 × 102 1.220 × 1021.220 × 1021.220 × 102 1.220 × 1021.220 × 1021.220 × 102 1.220 × 1021.220 × 1021.220 × 102 1.220 × 102 X
email-enron-only 4.030 × 102 4.080 × 102 4.100 × 102 4.160 × 102 4.217 × 102 4.260 × 1024.260 × 1024.260 × 102 4.270 × 102

dwt_209 5.340 × 102 5.357 × 102 5.370 × 102 5.470 × 102 5.507 × 102 5.570 × 1025.570 × 1025.570 × 102 5.570 × 102 X
inf-USAir97 1.066 × 102 1.080 × 102 1.058 × 102 1.080 × 102 1.080 × 1021.080 × 1021.080 × 102 1.080 × 102 1.081 × 102

ca-netscience 6.000 × 102 6.003 × 102 6.220 × 102 6.260 × 102 6.340 × 102 6.343 × 1026.343 × 1026.343 × 102 6.393 × 102*
ia-infect-dublin 1.700 × 103 1.710 × 103 1.733 × 103 1.750 × 103 1.750 × 103 1.767 × 1031.767 × 1031.767 × 103 1.789 × 103*
road-chesapeake 1.260 × 1021.260 × 1021.260 × 102 1.260 × 1021.260 × 1021.260 × 102 1.250 × 102 1.260 × 1021.260 × 1021.260 × 102 1.250 × 102 1.260 × 1021.260 × 1021.260 × 102 1.260 × 102 X
Erdos991 9.760 × 102 9.793 × 102 9.550 × 102 9.990 × 102 1.019 × 103 1.031 × 1031.031 × 1031.031 × 103 1.043 × 103*
dwt_503 1.903 × 103 1.903 × 103 1.812 × 103 1.912 × 103 1.934 × 1031.934 × 1031.934 × 103 1.931 × 103 1.938 × 103

p-hat700-1 3.316 × 104 3.333 × 104 3.336 × 104 3.346 × 1043.346 × 1043.346 × 104 3.345 × 104 3.344 × 104 3.405 × 104*
DD687 1.711 × 103 1.711 × 103 1.759 × 103 1.769 × 103 1.778 × 103 1.807 × 1031.807 × 1031.807 × 103 1.833 × 103*
email-univ 3.615 × 103 3.622 × 103 3.636 × 103 3.665 × 103 3.736 × 103 3.765 × 1033.765 × 1033.765 × 103 3.885 × 103*

Fig. 4. Plots depicting the computation time and returned cut values of procedures on the DD687 graph. The
X and Y axes are the runtime in seconds and the returned cut value, respectively.

4 CONCLUSION

The goal of this article was to compare Max Cut algorithms with varying approximation guaran-
tees in practice. In particular, we know the SDP has the provably best approximation guarantee;
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Fig. 5. Plots depicting the computation time and returned cut values of the greedy, spectral, and BMZ pro-
cedures on the email-enron-only and dwt_503 graphs. The X and Y axes are the runtime in seconds and the
returned cut value, respectively.

however, it is also the costliest in terms of computational space and time. This raises the question
of whether or not the <cheaper= spectral Max Cut algorithms can perform competitively to the
SDP in practice. Furthermore, if yes, can the approximation guarantees be improved?
We tested six procedures on three types of graphs—random, complete, and sparse real world. For

the complete graphs, the experiments show that all tested procedures ond strong, competitive cuts,
and the main diference comes from their computational times. For this reason, we would expect
the faster, spectral algorithms to be desirable algorithms for near-complete graphs. For the other
two cases, random and sparse, the BMZ heuristic performs most strongly across the board. We
would expect the BMZ heuristic to be an appropriate choice for these classes of graphs if the goal
is to ond the cut with the largest value but believe the spectral algorithms would ond competitive
cuts in less time if this is a main concern.
As demonstrated, the spectral and greedy algorithms provide a signiocant speed advantage over

the SDP. Additionally, they often compute cuts better than or comparable to the cuts returned by
the SDP, despite the disparity in approximation guarantees. Furthermore, the BMZ heuristic com-
putes the highest number of best cuts and is overall competitive and consistent, even though it
has no approximation guarantee, and the computation time is not quite as fast as the spectral op-
tions. The results of this experiment appear to illustrate spectral algorithms are in fact competitive
with the SDP algorithm in practice and reiterate the strength of the BMZ heuristic. This suggests
that the investigation into approximation guarantees for the spectral algorithms is a direction for
further theoretical study. Furthermore, because the BMZ heuristic relies on onding a local min-
imum of a function which is not guaranteed to bound the optimal cut value, there is no known
approximation guarantee for the heuristic. It would be interesting to prove a guarantee better than
.5 or to show an example where the local minima correspond to cuts far from optimal.
In terms of practical implementations, for the graphs on which the SDP seems to outperform

spectral algorithms, one could consider running Trevisan’s algorithm for even more than ove it-
erations and choosing the best cut returned. The magnitude of the speed advantage of Trevisan’s
algorithm allows for many runs before being as costly as the SDP, especially since the initial eigen-
vector only needs to be computed once. Additionally, onding a viable heuristic to use when choos-
ing multiple t2 values would also provide implementation beneots. We attempted to improve Tre-
visan’s algorithm through drawing additional random t2 values and greedily choosing one. How-
ever, it is not obvious that this choice in heuristic is optimal. In particular, perhaps it is more
useful to draw a oxed number of t2 values but onish the algorithm’s entire partitioning instead of
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estimating at that point in time. The magnitude by which the spectral algorithms are faster than
the SDP allows this to be a reasonable option.
It is also worth noting the performance of the simple spectral and sweep cuts algorithms. Partic-

ularly for large graphs, these two algorithms along with the greedy algorithm are much faster than
even Trevisan’s algorithm, with the simple spectral almost always being several times faster than
greedy (and sweep cuts being slightly slower than greedy). It is known that the greedy algorithm
has a .5 approximation guarantee, but to the best of our knowledge, there is no known approxima-
tion guarantee for the simple spectral or sweep cuts algorithms. This raises the question of whether
any approximation guarantee can be proven for either of these algorithms. A desired guarantee
would be greater than greedy’s .5; given the performance results presented here, it seems possible
that this is achievable.
Relatedly, there is no indication that Soto’s .614 approximation guarantee for Trevisan’s algo-

rithm is tight. It is clear that the algorithm often far surpasses this bound in practice. Can the
analysis of this algorithm be improved?
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