An Experimental Evaluation of Semidefinite Programming
and Spectral Algorithms for Max Cut

RENEE MIRKA and DAVID P. WILLIAMSON, Cornell University, USA

We experimentally evaluate the performance of several Max Cut approximation algorithms. In particular, we
compare the results of the Goemans and Williamson algorithm using semidefinite programming with Tre-
visan’s algorithm using spectral partitioning. The former algorithm has a known .878 approximation guaran-
tee whereas the latter has a .614 approximation guarantee. We investigate whether this gap in approximation
guarantees is evident in practice or whether the spectral algorithm performs as well as the SDP. We also com-
pare the performances to the standard greedy Max Cut algorithm which has a .5 approximation guarantee,
two additional spectral algorithms, and a heuristic from Burer, Monteiro, and Zhang (BMZ). The algorithms
are tested on Erd6s—Renyi random graphs, complete graphs from TSPLIB, and real-world graphs from the
Network Repository. We find, unsurprisingly, that the spectral algorithms provide a significant speed advan-
tage over the SDP. In our experiments, the spectral algorithms and BMZ heuristic return cuts with values
which are competitive with those of the SDP.

CCS Concepts: « Theory of computation — Graph algorithms analysis; Approximation algorithms
analysis;

Additional Key Words and Phrases: Max cut, spectral algorithms

ACM Reference format:

Renee Mirka and David P. Williamson. 2023. An Experimental Evaluation of Semidefinite Programming and

Spectral Algorithms for Max Cut. ACM F. Exp. Algor. 28, 1, Article 2.1 (August 2023), 18 pages.
https://doi.org/10.1145/3609426

1 INTRODUCTION

Given as input a graph G = (V, E) and weights w, € R* for all e € E, the Max Cut problem asks
to partition V into two sets such that the sum of the weights of the edges crossing the partition is
maximized. In particular, a cut is given by a pair of sets (S,T) suchthat V.=SUTand SNT = 0.
The value of this cut is

Z W(s, t)s

(s,t)€E:s€S, teT
and Max Cut seeks to find a cut maximizing this quantity.
Max Cut is a problem of vast theoretical and practical significance. It is polynomial solvable
for certain classes of graphs, e.g., planar graphs [11, 18], and is well-known to be NP-hard in

An extended abstract of this work appeared in the 20th Symposium on Experimental Algorithms.

The authors were partially supported by the National Science Foundation under grant number CCF-2007009.

Authors’ address: R. Mirka and D. P. Williamson, Cornell University, Ithaca, NY 14850; emails: {rem379, davidp-
williamson}@cornell.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1084-6654/2023/08-ART2.1 $15.00

https://doi.org/10.1145/3609426

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

2.1:2 R. Mirka and D. P. Williamson

general; it appears on Karp’s original list of NP-complete problems [15]. Additionally, Max Cut
has applications in fields such as data clustering [19], circuit design, and statistical physics [2]; see
Poljak and Tuza for a comprehensive survey [20].

Many researchers have made improvements towards exact solvers for Max Cut. For general
graphs of unbounded average degree, Williams presented a Max Cut algorithm using exponen-
tial space to exactly solve (and count the number of optimal solutions) in O(m32¢"/3) time where
< 2.376 [27]. Croce, Kaminski, and Paschos introduced an algorithm to find a Max Cut in graphs
with bounded maximum degree, A, running in O*(2(!~2/4)") time where O*() suppresses polyno-
mial factors [6]. Golovnev improved this to O*(2(73/(A+1)m) [10]. Results from Hrga et al., Hrga
and Povh, Krislock, Malick, and Roupin, and Rendl, Rinaldi, and Wiegele utilize branch and bound
techniques to produce other exact solvers [13, 14, 17, 22]. However, due to the lack of an effi-
cient (polynomial-time) algorithm, researchers have also considered finding good approximation
algorithms. An a-approximation algorithm is a polynomial-time algorithm which guarantees a so-
lution with a value of at least an « fraction of the optimal solution. As one of the most well-studied
problems in theoretical computer science, there is a breadth of known approximation algorithms
for Max Cut varying in runtime and approximation guarantee quality.

The simplest randomized approximation algorithm assigns a vertex v € V to either S or T with
equal probability. In expectation, this is a .5-approximation algorithm. Another .5-approximation
can be achieved through a simple greedy algorithm presented by Sahni and Gonzalez [24]. In this
algorithm, start with S,T = 0. While there are still unassigned vertices, any unassigned vertex
v is chosen and the quantities cs(v) = Y es:(u,0)eE Wu,0) and ¢7(V) = YyeTi(u,0)eE W(u,0) are
computed. If cs(v) > cr(v), v is assigned to T and otherwise to S.

The .5-approximation guarantee was the best known until Goemans and Williamson [9] pre-
sented a .878-approximation algorithm, which is the best possible guarantee assuming the Unique
Games Conjecture [16]. Their algorithm relies on a semidefinite programming (SDP) relaxation of
the Max Cut problem to find a high-value cut. While the approximation guarantee likely cannot be
surpassed by another polynomial-time algorithm, solving the SDP can be quite costly in practice.

More recently, Trevisan [26] introduced a simple .531-approximation for Max Cut based on spec-
tral partitioning. Soto [25] improved this guarantee to .614. Though the approximation guarantees
are weaker than the SDP algorithm, the spectral techniques are much cheaper to implement. In
theory, there is a tradeoff between the computational speed and solution quality of Goemans and
Williamson’s SDP algorithm versus Trevisan’s spectral algorithm. This article seeks to determine
whether this tradeoff exists in practice or if Trevisan’s algorithm returns solutions competitive
with those of the SDP.

It is common practice to apply a local search procedure at the end of a Max Cut algorithm or
heuristic to locally optimize the found cut. One such local search procedure repeatedly moves a
single vertex at a time from one side of the cut to the other, as long as the move increases the value
of the cut. It terminates when there are no more vertices that can be moved to increase the value
of the cut. In this work, we implement this local search method and apply it to all procedures in
our experiments.

Several previous articles have experimentally compared Max Cut algorithms and heuristics.
Bertoni, Campadelli, and Grossi compare cuts computed by their .39-approximation Lorena al-
gorithm, inspired by Goemans-Williamson SDP, to the SDP and a neural .5-approximation algo-
rithm [4]. They found, on average, Lorena provided larger cuts on random graphs in significantly
less time than the SDP and comparable time to the neural algorithm. Dolezal, Hofmeister, and
Lefmann compare cuts from six algorithms, including the SDP, on random graphs concluding that
the computationally-cheap random .5-approximation algorithm provides the best tradeoff between
runtime and cut quality [7]. Goemans and Williamson also included computational results in their

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

An Experimental Evaluation of Semidefinite Programming 2.1:3

initial article demonstrating the SDP often outperforms its .878 approximation guarantee. Berry
and Goldberg tested several graph partitioning heuristics against each other and against the SDP,
finding the heuristics consistently produce larger cuts than the SDP [3]. Dunning, Gupta, and Sil-
berholz performed a systematic review of Max Cut heuristics and computationally tested 19 of
them [8]. Their results demonstrate the strength of a heuristic developed by Burer, Monteiro, and
Zhang (BMZ) based on a rank-two relaxation of the Goemans-Williamson SDP [5]. In the initial
presentation by BMZ, they also show their heuristic to outperform the SDP; we include a compar-
ison of the BMZ heuristic in this work. Hassin and Leshenko also used the library of instances
developed by Dunning et al. to compare their greedy heuristic to several others [12].

As far as we are aware there are no previously published results comparing Trevisan’s spectral
algorithm. We seek to fill this gap due to the importance of Trevisan’s algorithm; it is the only
known algorithm for Max Cut other than the SDP which guarantees an approximation better than
.5, which can be achieved by simple algorithms. Additionally, the algorithm does not rely on the
strength of any semidefinite or linear programming solvers or relaxations, and there is no proof
that the analysis of the approximation guarantee is tight. Theoretically, the computational speed of
Trevisan’s algorithm seems to be far faster than the SDP, and if the quality of the cuts is comparable
to the SDP, there is justification for using spectral methods over the SDP in heuristics.

In this article, we evaluate the performances of the SDP, spectral, and greedy algorithms on a
variety of graphs. We also compare these performances against the BMZ heuristic and optimal
values or upper bounds computed by the Biq Mac solver developed by Rendl, Rinaldi, and Wiegele
[22]. Section 2 provides more complete descriptions of the five algorithms and BMZ heuristic con-
sidered. Section 3 describes the experiments and presents the results of the algorithms on different
classes of graphs. Finally, Section 4 concludes with a summary of the performances and introduces
a few possible directions for future theoretical study.

2 ALGORITHMS

This section describes the local search procedure, five algorithms, and BMZ heuristic that we im-
plemented for Max Cut. We first describe the local search procedure utilized in all experiments in
Section 2.1. Section 2.2 describes the benchmark greedy .5-approximation algorithm for Max Cut.
Section 2.3 describes Trevisan’s spectral algorithm for Max Cut, while Section 2.4 describes two
simplifications of this algorithm. Finally, Section 2.5 describes the SDP algorithm and Section 2.6
describes the BMZ heuristic based on a rank-two relaxation of the SDP algorithm.

2.1 Repeated 1-Flip Local Search

It is common practice in the heuristics community to use a local search procedure to supplement
algorithm implementations. We implemented a repeated 1-flip local search which was applied after
each procedure before returning a cut; the local search works as follows. Given a cut (S, T), the
algorithm repeatedly checks to see whether there is a vertex v such that the value of the cut can be
improved by moving v from S to T or vice versa. If more than one such vertex exists, the algorithm
selects to move the one that maximizes the improvement to the value of the cut and repeats the
process. When no such vertices remain, the procedure terminates and the cut is returned. See
Algorithm 1 for pseudocode.

2.2 Greedy Algorithm

The first Max Cut algorithm we consider is the standard greedy algorithm. This fast and simple
algorithm provides a benchmark for the speed and cut value of the others. For a graph G = (V, E),
we return a cut (L, R) by greedily assigning vertices to either L or R one at a time. We start with
L,R = 0. In each step of the algorithm, we choose a vertex v € V yet to be assigned to L or R. Then

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

2.1:4 R. Mirka and D. P. Williamson

ALGORITHM 1: Local Search
input :G = (V,E), A = (a;j) where a;j = w(; j), cut (L, R)
output:Cut (L, R)
updates < n-dimensional array of 0Os;

fori=1,...,ndo
if i € L then
| updates[i] = ¥jer:(i,j)eE W(i,j) — jeR:(i,))eE W(i,})
else
| updates[i] = ¥ jeri(i,j)eE Wi, j) = ZjeLii, j)eE Wi));
end
end

while max(updates) > 0 do

v’ = argmax(updates);

if v’ € L then

for j such that (v’,j) € E do

if j € L then
‘ updates(j] = updates[j] — 2wy jy;
else
‘ updates(j] = updates[j] + 2wy jy;
end
end

move v’ to R;

else
for j such that (v’,j) € E do
if j € R then
‘ updates(j] = updates[j] — 2wy jy;
else
‘ updates([j] = updates[j] + 2wy jy;
end
end

move v’ to L;
end
updates[v’] = —updates[v’];

end
return (L, R)

we add v to L or R by choosing the larger of the two cuts (L U {v}, R) and (L, R U {v}) at this step.
See Algorithm 2 for pseudocode.

2.3 Trevisan’s Algorithm

The next algorithm for finding a large cut in a graph is Trevisan’s spectral algorithm. Trevisan
proved a .531 approximation ratio for the algorithm, while Soto improved the analysis to .614.
Here, we describe Soto’s presentation of the algorithm. Given a graph G = (V, E) with |V| = n, the
adjacency matrix A = (a;;) is given by a;; = w;; if (i, j) € E and 0, otherwise. Then the normalized
adjacency matrix A is given by A = D~2AD~"/2 where D = diag(d) for d(i) = ¥, jyer W(,j) the
weighted degree of vertex i. In our implementation of the algorithm, we compute the eigenvector,
x, corresponding to the minimum eigenvalue of I + A. After normalizing x so that max; |x;| = 1,

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

An Experimental Evaluation of Semidefinite Programming 2.1:5

ALGORITHM 2: Greedy
input :G = (V,E), A = (aij) where a;j = w(; j
output:Cut (L, R)
L« 0
R « 0;
while V\ (LUR) # 0 do
selectv € V'\ (LUR);
L_weight = 3.y jeE:jel W(v,j)}
R_weight = }(4 j)eE:jeR W(o,)5
if L_weight > R_weight then
‘ Add v to R;
else
| AddovtoL;
end

end
return (L, R)

a number t2 is drawn uniformly at random from [0,1]. We let
L={v:x, <-t},
R={v:x, > t}, and
V' =V \(LUR).

Now (L, R) represents a partial cut of the vertices with V' being the vertices yet to be partitioned.
Given L, R, and V', we compute

C = total weight of the edges between L and R,
X = total weight of the edges between L UR and V', and
M = total weight of all edges — total weight of the edges between vertices of V'.

If C+ X/2 - M/2 < 0, we use the greedy algorithm to partition the vertices instead of ¢ as the
expected value of the cut is worse than that of greedy. If C + X /2 — M/2 > 0, we keep the partial
cut and recurse to find a cut of the vertices in V’ given by (L', R’). Finally, we return the larger of
the cuts (LUL,RUR’) and (LU R’,RU L’). See Algorithm 3 for pseudocode.

Since the results of Trevisan’s algorithm are highly reliant on the ¢ value chosen, one could
ask if there are ways to modify the algorithm to increase the likelihood of choosing a good t?
value. We tested two methods. The first chooses 5 t* values at each stage of the algorithm. The
idea here was that choosing many random numbers should increase the probability of choosing a
“good” random number. The major roadblock is deciding which partial cut corresponds to one of
the 2 values the algorithm should recurse on. We tested the greedy choice. More specifically, C, X,
and M were computed for each drawn ¢ value as above, and we kept the partial cut maximizing
C + X/2 — M/2. We made this selection because it represents the partial cut that is currently
performing better than the greedy algorithm by the largest margin. In particular, given a partial
cut due to a partial assignment of vertices, we can consider three types of edges: edges with both
endpoints assigned, edges with exactly one endpoint assigned, and edges with neither endpoint
assigned. The third type is not affected by the partial cut and is not considered in this iteration.
However, C computes the value of the cut in Trevisan’s algorithm due to the first type of edge. X /2
is the expected value added to this cut from the edges of the second type if the remaining vertices
are greedily assigned, and M/2 is the expected value of the greedy cut due to edges of both of the

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

2.1:6 R. Mirka and D. P. Williamson

ALGORITHM 3: Trevisan
input :G = (V,E) with [V| = n, A = (a;;) where a;; = w; j)
output:Cut (L, R)
D = diag(d) where d(i) = Xj.(;, j)eE W(i, j)s
A= D_I/ZAD_UZ;

X < minimum eigenvector of I + A;

Xj — mforiz 1,...m;
t2 ~U(0,1);
L—{veV:x,
R—{veV:x,
V' =V\ (LUR);
C = X0, j)e(L,R) Wi, j);
X X(i,j)e(LUR. V') W(i, j);
M = 2(i.j)eE W(i.j) = Z(i.j)eE:i jeV’ Wi j)}
if C+X/2+ MJ/2 <0 then
| return Greedy(V,E,A)

else

(L',R’) « Trevisan(V',E, A);

return the better cut between (LU L’,RUR’) and (LUR’,RUL’);
end

—t};

<
> th

first two types. Therefore, if C + X/2 > M/2, the partial cut being considered is performing better
than the greedy algorithm would be in expectation. The greater the difference between C + X/2
and M/2, theoretically the better Trevisan’s algorithm is performing compared to greedy. It is not
obvious that this is the best heuristic, but it does allow the algorithm to test several random values
quickly.

Alternatively, we also experimented with running Trevisan’s algorithm for several iterations
and maintaining the best cut that was found. The advantage here as opposed to the previous
modification is we do not have to determine which ¢ value to keep. However, the runtime is slower
because the entire algorithm is run several times instead of adding additional quick random draws.

The results of these modifications for two of the tested graphs are provided in Figure 1. In each
figure, the line represents the results from trials of running the algorithm multiple times (1, 2, 5,
10, 20, 35, and 50 times). Note that the line is not monotonically increasing. This is because each
group of runs was unique and not a cumulative total. For example, when considering how well
Trevisan’s algorithm performs when running 10 iterations, we run 10 new iterations and do not
build off of the 5 from the previous data point. The single dot represents the average runtime and
cut value of the best result when implementing the first modification of multiple ¢* values.

The experiments were run on a variety of graphs and Figure 1 is a representative sample. Se-
lecting multiple ¢ values seemed to perform well for the sparser Network Repository graphs, but
overall, it seems running the algorithm multiple times is more effective in increasing cut quality
than choosing multiple ? values. However, the number of iterations needed is not obvious, though
it appears at least five are beneficial. Due to this observation, we use this method of running Tre-
visan’s algorithm five times and keeping the best cut for the experiments presented in this article.

2.4 Simple Spectral and Sweep Cuts Algorithms

The simple spectral algorithm is a modification of Trevisan’s algorithm described in the previous
section. Instead of drawing a random number ¢ in [0, 1], we return the cut corresponding to t = 0.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

An Experimental Evaluation of Semidefinite Programming 2.1:7

2970
1415
2960
1410

2950

1405
2940

1400
2930

1395 2920
0.0 05 1.0 15 0 2 4 6

(a) G(100,.5) (b) G(200,.25)

Fig. 1. Plots depicting the effects on runtime and returned cut quality of running Trevisan’s algorithm mul-
tiple times on the G(100,.5) and G(200,.25). The X and Y axes are the time in seconds and the cut value,
respectively. The light gray “x” is presented for comparison and is the result of running Trevisan’s algorithm
once, but testing many random values.

ALGORITHM 4: Simple Spectral
input :G = (V,E) with [V| = n, A = (a;;) where a;; = w; j)
output:Cut (L, R)
D = diag(d) where d(i) = Xj.(i,j)eE W(i, j)5
A =D 12Ap-1/2,
X < minimum eigenvector of I + A;
L={veV:x, <0}
R=V\L;
return (L, R);

In particular, let x be the eigenvector corresponding to the smallest eigenvalue as before. Since
scaling numbers by a positive factor does not change their sign, we may skip the normalizing step
for x. Welet L = {v : x, < 0} and R = V'\ L and return the cut (L, R). This modified simple spectral
algorithm has no known approximation guarantee. See Algorithm 4 for pseudocode.

The sweep cuts algorithm works in a similar fashion. Here, we consider n — 1 different cuts and
return the best. Given the smallest eigenvector x, we sort the entries so that x;, < x;, <--- < x;,.
Then we calculate the sweep cut value for L; = {iy,...,i;}and R; = V\L;jforj=1,...,n—1.The
sweep cuts algorithm returns the cut (L;, R;) of maximal value. See Algorithm 5 for pseudocode.

It is worth noting that the sweep cuts algorithm will always perform at least as well as the simple
spectral algorithm in terms of cut value since one of the sweep cuts will be the same as the t = 0
cut. However, it is interesting to see how much better the sweep cuts algorithm performs since it
is also guaranteed to have a slower runtime for the same reasons.

2.5 SDP Algorithm

Goemans and Williamson introduced a .878 approximation algorithm for Max Cut based off of the
following model:

x;€{1,—-1

1
MaxCut(G) = max '3 Z wij(1 = x;x;),
i<j

where again w;; is the weight of edge (i, j). Note that this models the problem of finding a Max
Cut. Each cut (S, T) corresponds to an assignment of 1 or —1 for each x;. In particular, let x; = 1

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

2.1:8 R. Mirka and D. P. Williamson

ALGORITHM 5: Sweep Cuts
input :G = (V,E) with |V| = n, A = (aij) where a;; = w(; j)
output:Cut (L, R)
D = diag(d) where d(i) = Xj.(i, j)eE W(i, j)
A =D 12Ap"1/2,
X < minimum eigenvector of I + A;

sort x so that x;, < xj, < -+ < xj,;
bestL « 0;
bestR « 0
forj=1,...ndo
L={i1,....ij}
R=V\L;
if the value of (L, R) > the value of (bestL, bestR) then
bestL «— L;
bestR <« R;
end
end
return (bestL, bestR);

ALGORITHM 6: SDP
input :G = (V,E) with [V| = n, A = (aij) where aj; = w(; j)
output:Cut (L, R)
X =(x1...xXp) « argmaxHxiH:lé Yi<jaij(1—xi - xj);
r « a vector uniformly distributed on the unit sphere in R";
L={i:{r,xj) <0}
R=V\IL;
return (L, R);

ifi €e Sandx; = —11ifi € T, then %ij w;j(1 = x;x;) exactly computes the value of the cut
(S, T). Thus, MaxCut(G) is solving for the cut with maximum value. Since solving MaxCut(G)
directly is NP-complete, Goemans and Williamson instead relax MaxCut(G) to a model solvable
by a semidefinite program. In particular, instead of requiring x; € {1, —1}, they require v; € R" to
be unit vectors and replace x;x; with (v;, v;). Given a solution to this SDP relaxation, they draw a
random vector r € R" uniformly from the unit sphere and partition the vertices according to

L={i:(r,u;) <0}and
R={i:{r,u;) > 0}.

See Algorithm 6 for the pseudocode.

This gives the .878 approximation in expectation. Since drawing random vectors is computa-
tionally cheap, we opted to draw multiple random vectors instead of just 1. We ran a few tests
to determine how many we should select for each instance and whether local search should be
run for each cut corresponding to a random vector or just the best. First, we compared selecting
100 random vectors and running local search on the single best to selecting 100 random vectors
and running local search on each one. The results indicated that better cuts were almost always
achieved by running local search on each random vector and returning the best of those cuts, but it
increased the overall runtime of tested instances by about 10%. Since the SDP is already the slowest
method, we wanted to limit the runtime increase. Instead, we ran the SDP and selected 100 random

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

An Experimental Evaluation of Semidefinite Programming 2.1:9

vectors with local search on the single best and recorded the overall runtime. We then used this
runtime as a budget to run the SDP and draw as many random vectors with local search after each
one as possible. Overall, this kept the runtime consistent but also demonstrated some interesting
behavior. In particular, in some cases, due to the randomness of the SDP solve time, the budget was
not enough to even draw one random vector, and, in other cases, a pattern emerged showing that
not very many random vectors were needed to beat the value of the current benchmark solution, if
local search was run after each one. As a result, for our final implementation providing the results
presented in this work, we drew 10 random vectors and ran local search after each one. In nearly
all cases, this resulted in a cut with value at least as large as and a runtime at worst as slow as
those produced by drawing 100 random vectors and only locally searching the best one.

2.6 BMZ Heuristic

BMZ observe that adding an additional constraint, that the solution lies in R?, to the Goemans—
Williamson SDP allows the optimization to be represented as a nonlinear optimization problem
with n variables and a nonconvex objective function. They utilize this formulation to develop a
powerful Max Cut heuristic.

In particular, BMZ begin with the Goemans-Williamson SDP, but require that v; € R? instead
of R™. These vectors in R? can then be represented as a single vector § € R" where 0; is the angle
such that v; = (cos 8;,sin6;) for i = 1,...n. With this translation, (v;,v;) can be replaced with
cos(0; — 0;), and the relaxed optimization objective function becomes

min f(0)

OeR”

where
1
OES Z; wij cos(6; — 6)).

This relaxation is an unconstrained optimization problem with a nonconvex objective function
and creates the baseline of the BMZ heuristic. Because f(0) is a nonconvex function, we cannot
optimally minimize it in practice and, therefore, cannot expect a guarantee on the quality of the
solution. However, this heuristic has performed well in previous experiments, and the low number
of variables indicates a potential for scalability of the technique, an area where the Goemans—
Williamson SDP struggles in particular.

Before presenting the heuristic, note that for a given 6, we may assume 6; € [0,2x) for i =
1,...,n, and any angle a € [0,) induces a cut (So,V \ Sy) where S, = {i : 0; € [a,a + 71)}.
Furthermore, it is easy to compute all cuts produced in this manner: try & = 0; for every ; < &
and a = 0; — x for every 0; > 7.

The heuristic runs as follows. Fix a constant N, and begin with k = 0 and 6, € R" randomly
selected. Obtain a local minimum 6’ to f(6) beginning the search at 0, and using a gradient algo-
rithm with a back-tracking Armijo line-search. Find the best possible associated cut (S, V' \ Sg7)
through the procedure previously described. If this is the best cut seen so far, reset k = 0. Other-
wise, increase k by 1 and set 6, to be the vector with 6y(i) = 7 if i € S, and 0, otherwise. Finally,
apply a slight random perturbation to 6, and repeat the optimization until k > N, then return the
best cut found. See Algorithm 7 for pseudocode.

There are a few implementation choices to consider in regards to the time versus cut quality
tradeoff of this heuristic. First is the choice of N, the number of consecutive non-improving per-
turbations allowed. A larger N allows the heuristic more opportunities to improve the cut, but re-
quires more compute time. Additionally, this heuristic is faster than the SDP (especially if N = 0, 1),
so similarly to Trevisan’s algorithm, one might decide to run the entire heuristic M > 0 times and

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

2.1:10 R. Mirka and D. P. Williamson

ALGORITHM 7: BMZ
input :G = (V,E) with [V| = n, A = (a;;) where a;; = w; j)
output:Cut (L, R)
k < 0;
0 « random vector in R";
bestL, bestR « 0
while k < N do
0’ « local minimum of % 2i<j W, j) cos(0i — 0;) found via a back-tracking Armijo line-search

beginning at 0;

L’ R « 0,

fori=1,...,ndo

if 6’[i] < = then
L={j:0[j]€[0[i].0"[il + 7)};

R=V\IL;

else

L={j:0'[j]€[0'[i] - = 0"[i]);

R=V\IL;

end
if the value of (L,R) > the value of (L', R’) then
‘ L’ —L R «R;
end
end
if the value of (L', R’) > the value of (best_L, best_R) then
bestL « L;
bestR <« R;
k=0;

else
‘ k—k+1;
end

0 « a random perturbation of the cut vector for (L, R);
end
return (bestL, bestR)

select the best cut found in all runs. This can be beneficial since the 6, initialization is random.
After testing several combinations of N and M, we ran our experiments of the BMZ heuristic with
M =1and N = 10.

We also implemented and tested windmill cuts—an alternative way to produce a cut from a
rank-two solution to the Goemans—Williamson SDP, or in this case a local minimum from the
BMZ heuristic. For an integer k > 0, Windmill is the cut given by (S,V \ S) where S = {v €
V0, € [20%,(20 +1)T),0 < € < k}. If an optimal solution to the Goemans-Williamson SDP
lies in two dimensions, then Avidor and Zwick [1] have shown that Windmilly improves the .878
approximation ratio. We tested the cut quality of both Windmilly and the exhaustive procedure
previously described for the BMZ heuristic. There did not appear to be a significant difference, and
in fact, the exhaustive procedure more often returned better cuts on our tested graphs. For this
reason, we ran our experiments with the original cut procedure.

3 EXPERIMENTS

All algorithms were implemented in Julia and can be found at https://github.com/rmirka/max-cut-
experiments. They were run on a machine with an Apple M2 chip and 16 GB of memory. The SDP

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

An Experimental Evaluation of Semidefinite Programming 2.1:11

= SDP Trevisan == BMZ
= SDP == BMZ Trevisan 100.0
100 EEEEEEEEEEEEERS = CoRO
- == 995
apppuuEuEEEEERE
98 smuusB T
99.0
% 985
98.0
*o 1 2 3 0 10 20 30 40
(a) ENZYMESS (b) G(350,.75)

Fig. 2. Plots depicting the effect of a longer budgeted runtime on the found cut quality of Trevisan’s algo-
rithm and the BMZ heuristic on the ENZYMES8 and G(350,.75) random graphs. The X and Y axes are the
percentage of the time budget used and the percentage of the known optimal or upper bound cut value
achieved, respectively.

algorithm was computed with the JuMP modeling language for Julia and the SCS optimizer as the
SDP solver. The LinearAlgebra package was used for the eigenvector computations of the spectral
algorithms, and line search was implemented based on the MQLib C++ version (https://github.com/
MQLib/MQLib/blob/master/src/heuristics/maxcut/burer2002.cpp) for the unconstrained nonlinear
optimization of the BMZ heuristic. All graphs were also submitted to the Biq Mac solver (https:
//bigmac.aau.at) to compute optimal values. This solver has a three-hour time limit; for graphs
where the optimal cut was not found in this time, the best cut found and the upper bound are
returned instead. In these cases, the upper bound values are reported in the tables, instead of the
optimal, and denoted with a *. The tables also indicate whether any of the six tested algorithms
returned an optimal cut. Additionally, the fastest compute times and largest cut values found for
each graph are indicated with bold values in the tables.

We measured the algorithms’ performance with three types of test data. We used 20 Erdés-Renyi
random graphs with 50-500 vertices, 16 complete graphs from TSPLIB [21] with 29-280 vertices
(average 124), and 16 sparser graphs from the Network Repository [23] with 39-1,133 vertices
(average 344.5). As previously mentioned, local search was applied to the returned solution from
each procedure. Trevisan’s algorithm, the SDP, and the BMZ heuristic all use randomization, so
the values reported for these procedures are averages over 3 runs each for every individual graph.
In addition, the times for these randomized algorithms can vary significantly across runs due to
the randomization. If one of these three procedures found an optimal cut in at least one run but not
all, the value is underlined in the table. In addition, the SDP algorithm tested 10 random vectors,
Trevisan’s algorithm was run 5 times, and the BMZ heuristic was run once but allowed 10 nonim-
proving steps for each run. The simple spectral and sweep cuts algorithms are deterministic, so no
further implementation choices were required. We considered ways to streamline the presentation
of the results by allowing each procedure the same time budget determined by the length of time
required for the SDP algorithm to run on an instance. This could potentially benefit Trevisan’s al-
gorithm and the BMZ heuristic since both rely on randomness, but greedy, sweep cuts, and simple
spectral would be unaffected by the extra time allowance. Ultimately, Trevisan’s algorithm and
the BMZ heuristic showed little to no benefit from the extra time, largely due to their ability to
outperform the SDP and find the optimal or a near-optimal solution in a much smaller amount of
time. Figure 2(a) and (b) provides some illustration of the behavior.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

2.1:12 R. Mirka and D. P. Williamson

Table 1. The Time in Seconds Each Algorithm took to Compute a Cut of an Erdés—Renyi Random Graph

‘ Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP BMZ ‘
G(50,0.1) 4.692x10™% 6.318x 102 9.575x 102> 3.304x 1072 8.485x 101 1.553 X 10!
G(50,0.25) 8.511x10™* 3.608x 1072 1.037x 10~ 5.121x 107> 7.527x 10! 1.700 X 107!
G(50,0.5) 1.597x 107 3.605x 107 9.414x10™* 7.364x 1073 1.011 1.510 x 107*
G(50,0.75) 2.164x 107 3.562x 1072 1.415% 1073 1.097 x 1072 1.269 1.496 x 1071
G(100,0.1) 2.455% 1073 9.961x 1072 3.530x 107> 1.938 x 1072 4.173 8.627 x 107!
G(100,0.25) 1.246 x 1072 1.159x 107" 3.380x 10~ 3.469 x 1072 5.023 8.122x 107!
G(100,0.5) 1.172x 107> 1.524x 107! 3.988x 1073 5.726 X 1072 4.845 1.193
G(100,0.75) 1.732x 1072 1.987x 107! 4.246x 10~ 8.832x 1072 7.067 1.312
G(200,0.1) 1.822x 1072 3.303x 107" 1.431x1072 1.666 x 10" 2.330 x 10! 6.292
G(200,0.25) 4.492x 1072 7.392x 107" 1.308x 1072 3.158 x 10”' 3.768 x 10! 3.783
G(200,0.5) 8.742x 1072 1.188 1.404%x 1072 5555x 107! 3.905x 10' 1.037 x 10
G(200, 0.75) 1.228 x 107! 1.449 14961072 7.773x 107! 7.843x 10' 1.284 X 10
G(350,0.1) 9.105 x 1072 1.694 3.216x1072 9.708 x 107! 1.083 x 10> 2.827 X 10
G(350, 0.25) 2.336 x 107" 3.031 3.273 x 1072 1.998 1.574 x 10> 2.092 x 10!
G(350,0.5) 4.550 x 107" 4.833 3.716 X 1072 3.652 1.921x 10> 4.273 x 10"
G(350, 0.75) 6.599 x 107 5.959 4.533 X 1072 5.227 4.975x 102 9.232 x 10*
G(500,0.1) 2.692 x 107" 4.121 7.329 x 1072 3.200 3.027 X 10 5.290 x 10*
G(500, 0.25) 6.734 x 107" 8.013 7.483 x 1072 6.742 4.818 X 102 1.106 X 10?
G(500, 0.5) 1.342 1.325x 101 9.525% 1072 1.270x 107! 6.469 x 10> 1.504 X 10?
G(500, 0.75) 1.906 1.858 x 101 1.005x 107! 1.836 x 107! 7.501 x 10*> 2.530 X 10°

3.1 Erdés-Renyi Random Graphs

The first class of graphs tested was Erdés—Renyi random graphs. An Erdés-Renyi random graph
G(n, p) is a graph on n vertices where each possible edge is included independently with probability
p. We tested random graphs with n = 50, 100, 200, 350, 500 and p = .1, .25, .5, .75. In our model, each
included edge was given an edge weight of 1.

In terms of speed, the simple spectral algorithm significantly outperforms the other algorithms
on all but three tested random graphs (where greedy was faster). On the other end of the spectrum,
the SDP is far slower than the alternative algorithms. In general, the BMZ heuristic has computa-
tion times faster than SDP but about one magnitude slower than Trevisan’s algorithm. The time
statistics are presented in Table 1. The plots in Figure 3(a) and (b) illustrates how the computation
times of each algorithm grow as the number of vertices increases. For these plots, we use the data
from Table 1 with p = .5 fixed.

The BMZ heuristic by far performs the best in terms of the returned cut quality for random
graphs. On average, it finds the best cut for 14 of the 20 graphs. Additionally, in at least one run,
it finds an optimal cut for seven of the eight random graphs for which the optimal cut value is
known. The only algorithm to find better cuts than the BMZ heuristic for multiple random graphs
was sweep cuts, which found the best cut for five of the remaining graphs. Greedy finds the best
cut on one graph. These results are provided in Table 2.

3.2 Complete Graphs

The algorithms were also tested on 16 complete graphs from TSPLIB, an online library of sample
instances for the Traveling Salesman Problem and related graph problems. Each graph has varying
positive edge weights between 1 and 15,000. The performance in regards to time largely mirrors
that of the random graphs. The simple spectral algorithm is significantly faster than the rest of
the algorithms on the vast majority of graphs, with the greedy algorithm in a close second. Sweep

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

An Experimental Evaluation of Semidefinite Programming 2.1:13

@ Greedy A Trevisan M Simple Spectral 4 Sweep Cuts @ Greedy A Trevisan W Simple Spectral @ SweepCuts % SDP @ BMZ
20 800
» *
15 X 600 7
/
/
10 400 /
/
/
/
5 200 Sk
- .
7 -~
> -~
K .- N
D - " o N - - . -
0 50 0 50 100 200 350 500
(a) Spectral and greedy algorithms. (b) All tested algorithms.

Fig. 3. Plots depicting the effects on runtime of increasing the number of vertices of an Erd6s—Renyi graph
with p = .5. The X and Y axes are the number of vertices and the computation time in seconds, respectively.

Table 2. The Value of the Cut Each Algorithm Returned for an Erdés-Renyi Random Graph

‘ Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP BMZ ‘ OPT Achieved ‘
G(50,0.1) 1.070x 10 1.150x 10> 1.160 X 107 1.160 X 10> 1.143 x 10° 1.160 X 107 | 1.160 x 107 X
G(50,0.25) 2.030 X 10 2.093 X 10° 2.100 x 10> 2.110x 10> 2.110 X 10> 2.110 X 10? | 2.110 X 10° X
G(50,0.5) 3.750 X 10> 3.753 x 10> 3.730 X 10? 3.770 x 10> 3.770 x 10> 3.770 X 10% | 3.770 x 10? X
G(50,0.75) 5.240 X 10> 5.240 X 10° 5.240x 10> 5.240x 10> 5.237 x 10° 5.240 X 10? | 5.240 X 10° X
G(100,0.1) 2.860 X 10> 3.030 x 10? 3.020 x 10? 3.090 X 10> 3.087 X 10> 3.107 X 10? | 3.110 x 10? X
G(100, 0.25) 7.630 X 10> 7.743 x 10? 7.740 x 10? 7.800 X 10 7.760 X 10 7.807 X 10° | 7.820 x 10? X
G(100,0.5) 1.385x 10> 1.405 x 10° 1.403 x 10° 1.412x 10> 1.407 x 10° 1.412%10% | 1.416 x 10°
G(100, 0.75) 2.018 x 10° 2.025 x 10° 2.033 x 10° 2.033x10° 2.033x10° 2.034%10° | 2.035 x 10 X

G(200,0.1) 1.243x 10° 1.283 x 103 1.289 x 10° 1.296 X 10*° 1.285x 10° 1.296 X 10® | 1.310 x 10°*
G(200, 0.25) 2.912x 10° 2.958 x 10° 2.969 x 10° 2,970 10° 2.962 x 10> 2.970 x 10 | 3.006 X 10°*
G(200,0.5) 5.538% 103 5.518 x 10° 5.520 x 103 5.529 X 103 5.524 x 10> 5.537 x 10° | 5.594 x 10%*
G(200,0.75) 7.811x 10° 7.874x10° 7.880 x 10° 7.899x 10° 7.887 x 10> 7.899 x 10° | 7.945 X 10°*
G(350,0.1) 3.630 x 10° 3.693 x 10> 3.703 x 10° 3.720 X 10 3.704x 10° 3.728 X 10® | 3.829 x 10°*
G(350, 0.25) 8.557 X 10° 8.646 x 10° 8.663 x 10° 8.690 X 10° 8.668 X 10° 8.699 X 10° | 8.860 x 10°*
G(350,0.5) 1.639 x 10* 1.642 x 10* 1.645 x 10* 1.646 X 10* 1.645x 10 1.646 X 10* | 1.665 x 10**
G(350,0.75) 2.384 x 10* 2.387 x 10* 2.390 x 10* 2.394x 10* 2.393 x 10* 2.393 x 10* | 2.412 x 10**
G(500,0.1) 7.345x 10° 7.447 x 10> 7.440 x 10° 7.466 X 10° 7.461x 10° 7.499 X 10® | 7.725 x 10*
G(500, 0.25) 1.720 X 10* 1.731 x 10* 1.732 x 10* 1.734 x 10* 1.734x 10* 1.738 x 10* | 1.770 x 10**
G(500,0.5) 3.308 x 10* 3.312x10* 3.315x 10* 3.320x 10* 3.318 x 10* 3.318 x 10* | 3.361 X 10**
G(500, 0.75) 4.833 x 10* 4.847 x 10* 4.845 x 10* 4.853x 10* 4.850 x 10* 4.853 X 10* | 4.890 x 10**

cuts, Trevisan’s algorithm, and the BMZ heuristic are a magnitude or two slower, and the SDP is
even slower still. This data is presented in Table 3.

This time several of the procedures perform very well. Greedy, Trevisan’s algorithm, sweep cuts,
and the BMZ heuristic all find best cuts for all but one or two of the complete graphs each (and
hence finding equally good cuts on a majority of the graphs). Optimal cut values are known for
15 of the 16 graphs, and corresponding optimal cuts are found by multiple procedures for each of
these graphs. Simple spectral and the SDP also find many good cuts, but not quite as many as the
other procedures. These results are presented in Table 4.

3.3 Sparser Graphs

The third group of graphs is composed of a variety of graphs from the Network Repository, an
online and interactive collection of network graph data coming from a variety of sources and
applications. Though more structured than a random graph, these 16 graphs are sparser than the
complete graphs tested in Section 3.2 and are chosen from a range of real-world scenarios. All

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

2.1:14

R. Mirka and D. P. Williamson

Table 3. The Time in Seconds Each Algorithm Took to Compute a Cut of a Complete Graph from TSPLIB

‘ Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP BMZ
bayg29 6.936 x10™* 8.519x 1072 2.246x 1072 2.808 x 107> 3.679x 10~' 7.586 X 1072
bays29 6.615X10™* 1.165x 1072 7.907 x 107 2.777x 107> 3.977 x 107! 3.426 x 1072
berlin52 3.051x 1073 3.577x 1072 2.236 X 10~ 1.405x 1072 1.254 1.579 x 107!
bier127 4.474x 1072 3.977x 107! 1.811x1072 2.223x 10! 7.971 1.685
brazil58 3.772x 1073 4.448 x 1072 2.794% 1073 2.175x 1072 1.911 1.149 x 107!
brg180 1.135x 107! 1.265 1.165%x 107! 7.213x 107" 1.850 x 10! 4.241
ch130 4.779%x 1072 4.529x 107! 1.514x 102 2.557 x 10! 9.934 1.316
ch150 6.942x 1072 7.625x 107" 3.236x 1072 3.983x 10! 1.261 x 10" 1.985
di19s 1.789 x 107! 1.545 5.201 x 102 1.034 3.874 x 10! 3.786
eil101 2.121x 1072 2.411x 107" 1.2900x 1072 1.140 x 107! 5.521 6.425 x 107
gr120 3516 X 1072 3.259x 107" 1.377x 1072 1.965x 107! 1.707 x 10! 7.915% 107!
gri37 6.499x 1072 5.163x 107" 1.747x 1072 3.016 x 107! 1.660 x 10} 1.176
gr202 1.933 x 107! 1.549 4.802 x 1072 1.065 2.990 x 10° 5.493
gro6 2.220X 1072 2.145x 107" 8.834x 1073 9.609 x 1072 6.027 4.647 X 107!
kroA100 2.055x 1072 2.103x 107" 8.645%10™3 1.130 x 10! 3.925 4.501 % 107"
a280 5.086 x 107! 3.653 9.850 x 102 3.123 1.559 X 10> 1.202 x 10!

Table 4. The Value of the Cut Each Algorithm Returned for a Complete Graph from TSPLIB

‘ Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP BMZ ‘ OPT achieved ‘
bayg29 4.269x 10° 4.269x 10 4.269x 107 4.269x 10* 4.269 x 10* 4.269 x 10* | 4.269 x 10* X
bays29 5.399x 10* 5.399x 10* 5.399x10* 5399x10* 5.397 x 10* 5.399x 10* | 5.399 x 10* X
berlin52 4.707 X 10° 4.707 X 10° 4.695 X 10° 4.707x10° 4.707 X 10° 4.707 X 10° | 4.707 x 10° X
bier127 2.342x 107 2.342x107 2.337 x 107 2.340 x 107 2.337x 107 2.342x 107 | 2.342 x 10’ X
brazil58 2.319x10° 2.319x10® 2.319 x 10° 2.319%10° 2.319%x10° 2.319% 10° | 2.319 x 10° X
brg180 4.118 X 107 4.626 X 107 4.621x 107 4.634x 107 4.624 x 107 4.631 X 107 | 4.648 x 107"
ch130 1.885x 10° 1.888 x 10° 1.888 X 10¢ 1.888 X 10° 1.887 X 10° 1.888 x 10° | 1.888 X 10° X
ch150 2.526 X 10° 2,526 X 10° 2.526 x 10® 2.526 X 106 2.526 X 10° 2.526 X 10° | 2.526 x 10° X
d198 1.294x 107 1.294x 107 1.294 x 107 1.294x 107 1.294 X 107 1.294 x 107 | 1.294 x 10’ X
eil101 1.071x 10° 1.071 x 10° 1.071 x 10° 1.071x 10° 1.071x10° 1.071x10° | 1.071 x 10° X
gr120 2.157x10° 2.157x10° 2.157x10° 2.157x10% 2.157x 10® 2.157 X 10 | 2.157 x 10° X
gri37 3.070x 107 3.070x 107 3.070x 107 3.070x 107 3.070 x 10’ 3.070 X 107 | 3.070 x 10’ X
gr202 1.600 X 107 1.600x 107 1.599 x 107 1.600 X 107 1.599 x 107 1.600 X 107 | 1.600 x 107 X
gro6 1.166 X 107 1.166x 107 1.166 X 107 1.166 X 10’ 1.166 X 107 1.166 X 107 | 1.166 x 10’ X
kroA100 5.897 x 10° 5.897 X 10° 5.897 x 10° 5.897 X 10° 5.897 x 105 5.897 X 10° | 5.897 x 10° X
a280 3.210x 10° 3.210x 10® 3.210 x 10° 3.210 X 10° 3.210 X 10° 3.210 X 10° | 3.210 x 10° X

graphs have edge weights of 1 except for inf-USAir-97 which has positive real weights between 0
and 1. The relationships between relative computation times remain mostly unchanged with the
exception of the greedy algorithm replacing simple spectral as the fastest algorithm most often
(Table 5).

For this group of graphs, the BMZ heuristic is again the most dominant. Of the six tested pro-
cedures, it returns the best cut on average for all but three of these graphs, finding an optimal cut
for at least five graphs. The other procedures find cuts that are competitive with those found by
the BMZ heuristic, but no procedure matched the consistency of the quality of the BMZ heuristic
cuts Table 6.

In Figure 4(a), (b) and Figure 5(a), (b), we provide a representative sample of the tradeoff between
runtime and returned cut value of the algorithms using the graphs DD687, email-enron-only, and
dwt_503.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

An Experimental Evaluation of Semidefinite Programming 2.1:15

Table 5. The Time in Seconds Each Algorithm Took to Compute a Cut of a Graph from the Network
Repository Arising in the Real-world

‘ Graph 4! |E| Greedy Trevisan Simple Spectral ~ Sweep Cuts SDP BMZ ‘
ENZYMES$ 88 133 8.904x10™* 9.541x 1072 2.966 X 1073 1.007 x 1072 2.441x 10" 4.619x 107!
johnson16-2-4 120 5460 2.795x 1072 2.478 x 107! 8.734 x 1073 1.462 x 107! 4.083 x 107! 1.025
hamming6-2 64 1824 4.899x 107 8.449x 1072 2.191x 1073 2.469 x 1072 1.297 2.149 x 107!
ia-infect-hyper 113 2196 1.167x 1072 2235x 107" 6.717%x 1073 7.248 x 1072 9.224 1.357
soc-dolphins 62 159 6.412x107% 2868 x 1072 1.634x 107> 6.459 x 1073 2.616 2.553 x 107!
email-enron-only 143 623 5.029% 107> 1.473x 107! 8.221x 107 5.102x 1072 6.712x 10" 2.369
dwt_209 209 976 9.041x 1073 2,570 x 107" 1.190 x 1072 1.101x 107" 9.190 x 10! 2.861
inf-USAir97 332 2126 4.977x 1072 6.497 1.244 x 1071 5.658 X 107! 4.039x 10 2.723 x 10}
ca-netscience 379 914 2.796X 1072 8.056 x 107! 4.444x 1072 4.575x 1071 3.582x 10 2.961 x 10
ia-infect-dublin 410 2765 5.727 x 107? 1.034 4.686x1072 8552x 107" 6.253x10° 3.775x 10
road-chesapeake 39 170 4.167x107% 1.461x 1072 6.285x 107 3.671x 1073 5.055x 107! 8.947 x 1072
Erdos991 492 1417 5.026 X 1072 3.256 7.632 % 1072 1.062 6.654 X 10 5.013 x 10!
dwt_503 503 3265 8.141x 1072 1.878 7.045 x 1072 1.408 1.215x 10 1.771 x 10
p-hat700-1 700 60999 1.894 1.924 x 10} 1.830 x 107! 2.253x 10" 1.286 x10° 2.152 x 10°
DD687 725 2600 1.116x 107! 5.923 1.858 x 107} 2.955 2.793x 10° 8.822 x 10!
email-univ 1133 5451 2.807 % 107! 2.504 x 10" 1.116 x 1071 5.940 X 10" 5.940 x 10> 5.278 x 10?

Table 6. The Value of the Cut Each Algorithm Returned for a Graph from the Network Repository

‘ Graph Greedy Trevisan Simple Spectral ~ Sweep Cuts SDP BMZ ‘ OPT achieved ‘
ENZYMESS 1.200 X 10> 1.257 x 10? 1.260 x 107 1.260x 10?2 1.253x 10° 1.260 X 10% | 1.260 x 10> X
johnson16-2-4 3.036 x 10> 3.036 x 10° 3.036 x 10° 3.036x10° 3.036x 10 3.036 X 10° | 3.077 x 10°*
hamming6-2 9.920 X 10> 9.920 x 10? 9.720 x 10 9.920 X 10> 9.920 x 10> 9.920 X 10? | 9.920 x 10° X
ia-infect-hyper 1.259 X 10* 1.275 % 10° 1.276 X 10° 1.276 x 10° 1.275x 10> 1.278 x 10® | 1.282 x 10°*
soc-dolphins 1.170 x 10> 1.183x 10° 1.220 X 10? 1.220x 10° 1.220 X 10> 1.220 X 10? | 1.220 x 10? X
email-enron-only ~ 4.030 x 10 4.080 x 10° 4.100 x 10° 4.160 X 10> 4.217 X 10 4.260 X 10> | 4.270 X 10>
dwt_209 5.340 X 10> 5.357 X 10° 5.370 X 10 5.470 x 10> 5.507 x 10> 5.570 X 10® | 5.570 x 10> X
inf-USAir97 1.066 X 10% 1.080 X 102 1.058 x 10% 1.080 x 10> 1.080 x 10> 1.080 x 10° | 1.081 x 10°
ca-netscience 6.000 X 10> 6.003 x 10° 6.220 X 10° 6.260 X 10> 6.340 X 10 6.343 X 10 | 6.393 x 10>
ia-infect-dublin 1.700 X 10° 1.710 x 10° 1.733 x 10° 1.750 x 10> 1.750 x 10> 1.767 x 10> | 1.789 x 10°*
road-chesapeake 1.260 X 10> 1.260 X 10> 1.250 X 10° 1.260x 10> 1.250 X 10° 1.260 X 10® | 1.260 X 10? X
Erdos991 9.760 X 10> 9.793 X 10% 9.550 x 10° 9.990 x 10> 1.019x 10° 1.031 x 10 | 1.043 x 10°*
dwt_503 1.903 x 10* 1.903 x 10° 1.812 x 10° 1.912x10° 1.934x10° 1.931x10° | 1.938 x 10°
p-hat700-1 3.316 x 10* 3.333 x 10* 3.336 x 10* 3.346 X 10* 3.345x 10* 3.344 x 10* | 3.405 x 10**

DD687 1.711x 10° 1.711 x 103 1.759 x 10° 1.769 x 10> 1.778 x 10° 1.807 X 10° | 1.833 x 10°*

email-univ 3.615x 10° 3.622 x 10° 3.636 X 10° 3.665x 10° 3.736 X 10> 3.765 x 10 | 3.885 x 10"

@ Greedy A Trevisan M Simple Spectral 4 Sweep Cuts @& BMZ @ Greedy Trevisan MW Simple Spectral 4 Sweep Cuts * SDP @ BMZ
1.82E+03 1.82E+03
* *
1.80E+03 1.80E+03
1.78E+03 1.78E+03 *
* >

1.76E+03 g 1.76E+03

1.74E+03 1.74E+03

1.72E+03 1.72E+03

o 4 T
1:70E+03 0 20 40 60 80 1.70E+08 0 500 1000 1500 2000 2500
(a) All procedures except the SDP. (b) All tested procedures.

Fig. 4. Plots depicting the computation time and returned cut values of procedures on the DD687 graph. The
X and Y axes are the runtime in seconds and the returned cut value, respectively.

4 CONCLUSION

The goal of this article was to compare Max Cut algorithms with varying approximation guaran-
tees in practice. In particular, we know the SDP has the provably best approximation guarantee;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

2.1:16 R. Mirka and D. P. Williamson

@ CGreedy A Trevisan M Simple Spectral € Sweep Cuts @ BMZ @ Greedy A Trevisan M Simple Spectral 4 Sweep Cuts @ BMZ

430 1950
] L]
*
420 1900 @ A
*
410 m 1850
A

® .
400 1800

0.0 0.5 1.0 1.5 20 0 5 10 15

(a) email-enron-only (b) dwt_503

Fig. 5. Plots depicting the computation time and returned cut values of the greedy, spectral, and BMZ pro-
cedures on the email-enron-only and dwt_503 graphs. The X and Y axes are the runtime in seconds and the
returned cut value, respectively.

however, it is also the costliest in terms of computational space and time. This raises the question
of whether or not the “cheaper” spectral Max Cut algorithms can perform competitively to the
SDP in practice. Furthermore, if yes, can the approximation guarantees be improved?

We tested six procedures on three types of graphs—random, complete, and sparse real world. For
the complete graphs, the experiments show that all tested procedures find strong, competitive cuts,
and the main difference comes from their computational times. For this reason, we would expect
the faster, spectral algorithms to be desirable algorithms for near-complete graphs. For the other
two cases, random and sparse, the BMZ heuristic performs most strongly across the board. We
would expect the BMZ heuristic to be an appropriate choice for these classes of graphs if the goal
is to find the cut with the largest value but believe the spectral algorithms would find competitive
cuts in less time if this is a main concern.

As demonstrated, the spectral and greedy algorithms provide a significant speed advantage over
the SDP. Additionally, they often compute cuts better than or comparable to the cuts returned by
the SDP, despite the disparity in approximation guarantees. Furthermore, the BMZ heuristic com-
putes the highest number of best cuts and is overall competitive and consistent, even though it
has no approximation guarantee, and the computation time is not quite as fast as the spectral op-
tions. The results of this experiment appear to illustrate spectral algorithms are in fact competitive
with the SDP algorithm in practice and reiterate the strength of the BMZ heuristic. This suggests
that the investigation into approximation guarantees for the spectral algorithms is a direction for
further theoretical study. Furthermore, because the BMZ heuristic relies on finding a local min-
imum of a function which is not guaranteed to bound the optimal cut value, there is no known
approximation guarantee for the heuristic. It would be interesting to prove a guarantee better than
.5 or to show an example where the local minima correspond to cuts far from optimal.

In terms of practical implementations, for the graphs on which the SDP seems to outperform
spectral algorithms, one could consider running Trevisan’s algorithm for even more than five it-
erations and choosing the best cut returned. The magnitude of the speed advantage of Trevisan’s
algorithm allows for many runs before being as costly as the SDP, especially since the initial eigen-
vector only needs to be computed once. Additionally, finding a viable heuristic to use when choos-
ing multiple ¢* values would also provide implementation benefits. We attempted to improve Tre-
visan’s algorithm through drawing additional random t? values and greedily choosing one. How-
ever, it is not obvious that this choice in heuristic is optimal. In particular, perhaps it is more
useful to draw a fixed number of ¢? values but finish the algorithm’s entire partitioning instead of

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

An Experimental Evaluation of Semidefinite Programming 2.1:17

estimating at that point in time. The magnitude by which the spectral algorithms are faster than
the SDP allows this to be a reasonable option.

It is also worth noting the performance of the simple spectral and sweep cuts algorithms. Partic-
ularly for large graphs, these two algorithms along with the greedy algorithm are much faster than
even Trevisan’s algorithm, with the simple spectral almost always being several times faster than
greedy (and sweep cuts being slightly slower than greedy). It is known that the greedy algorithm
has a .5 approximation guarantee, but to the best of our knowledge, there is no known approxima-
tion guarantee for the simple spectral or sweep cuts algorithms. This raises the question of whether
any approximation guarantee can be proven for either of these algorithms. A desired guarantee
would be greater than greedy’s .5; given the performance results presented here, it seems possible
that this is achievable.

Relatedly, there is no indication that Soto’s .614 approximation guarantee for Trevisan’s algo-
rithm is tight. It is clear that the algorithm often far surpasses this bound in practice. Can the
analysis of this algorithm be improved?

ACKNOWLEDGMENTS

We thank the referees for their useful comments and feedback that improved the article.

REFERENCES

[1] Adi Avidor and Uri Zwick. 2005. Rounding two and three dimensional solutions of the SDP relaxation of MAX CUT. In
Proceedings of the Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. Chan-
dra Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan (Eds.), Springer, Berlin, 14-25.

[2] Francisco Barahona, Martin Grotschel, Michael Jiinger, and Gerhard Reinelt. 1988. An application of combinatorial
optimization to statistical physics and circuit layout design. Operations Research 36, 3 (1988), 493-513. DOI: https:
//doi.org/10.1287/opre.36.3.493

[3] Jonathan W. Berry and Mark K. Goldberg. 1999. Path optimization for graph partitioning problems. Discrete Applied
Mathematics 90, 1-3 (1999), 27-50. DOI : https://doi.org/10.1016/S0166- 218X(98)00084-5

[4] Alberto Bertoni, Paola Campadelli, and Giuliano Grossi. 2001. An approximation algorithm for the maximum cut
problem and its experimental analysis. Discrete Applied Mathematics 110, 1 (2001), 3-12. DOI : https://doi.org/10.1016/
S0166-218X(00)00299-7

[5] Samuel Burer, Renato Monteiro, and Yin Zhang. 2001. Rank-two relaxation heuristics for max-cut and other
binary quadratic programs. SIAM journal on Optimization 12, 2 (2001), 503-521. DOI:https://doi.org/10.1137/
$1052623400382467

[6] F.Della Croce, M. J. Kaminski, and V. Th. Paschos. 2007. An exact algorithm for MAX-CUT in sparse graphs. Operations
Research Letters 35, 3 (2007), 403-408. DOI : https://doi.org/10.1016/j.0r1.2006.04.001

[7] Oliver Dolezal, Thomas Hofmeister, and Hanno Lefmann. 2000. A comparison of approximation algorithms for the
MaxCut-problem. (2000). DOI : https://doi.org/10.17877/DE290R-5013

[8] Iain Dunning, Swati Gupta, and John Silberholz. 2018. What works best when? A Systematic evaluation of heuristics
for Max-Cut and QUBO. INFORMS Journal on Computing 30, 3 (2018), 608—624. DOI : https://doi.org/10.1287/ijoc.2017.
0798

[9] Michel X. Goemans and David P. Williamson. 1995. Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming. Journal of the ACM 42, 6 (1995), 1115-1145. DOI:https:

//doi.org/10.1145/227683.227684

Alexander Golovnev. 2012. New upper bounds for MAX-2-SAT and MAX-2-CSP w.r.t. the average variable degree. In

Proceedings of the Parameterized and Exact Computation. Daniel Marx and Peter Rossmanith (Eds.), Springer, Berlin,

106-117.

[11] F.Hadlock. 1975. Finding a maximum cut of a planar graph in polynomial time. SIAM Journal on Computing 4, 3 (1975),

221-225. DOI : https://doi.org/10.1137/0204019

Refael Hassin and Nikita Leshenko. 2021. Greedy differencing edge-contraction heuristic for the max-cut problem.

Operations Research Letters 49, 3 (2021), 320-325. DOI : https://doi.org/10.1016/j.0rl.2021.02.006

Timotej Hrga, Borut Luzar, Janez Povh, and Angelika Wiegele. 2021. BigBin: Moving boundaries for NP-hard problems

by HPC. In Proceedings of the Advances in High Performance Computing. Ivan Dimov and Stefka Fidanova (Eds.),

Springer International Publishing, Cham, 327-339.

(10

-

[12

—

[13

=

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

2.1:18 R. Mirka and D. P. Williamson

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]
[22]

[23]

[24]
[25]
[26]

[27]

Timotej Hrga and Janez Povh. 2021. MADAM: A parallel exact solver for max-cut based on semidefinite programming
and ADMM. Computational Optimization and Applications 80, 2 (2021), 347-375. DOI : https://doi.org/10.1007/s10589-
021-00310-6

Richard Karp. 1972. Reducibility among combinatorial problems. In Proceedings of the Complexity of Computer Com-
putations. 85-103. DOI : https://doi.org/10.1007/978-3-540-68279-0_8

Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. 2007. Optimal inapproximability results for MAX-
CUT and other 2-variable CSPs? SIAM Journal on Computing 37, 1 (2007), 319-357. DOI:https://doi.org/10.1137/
50097539705447372

Nathan Krislock, Jérome Malick, and Frédéric Roupin. 2017. BiqCrunch: A semidefinite branch-and-bound method
for solving binary quadratic problems. ACM Transactions on Mathematical Software 43, 4, (2017), 23 pages. DOL : https:
//doi.org/10.1145/3005345

G. I Orlova and Ya. G. Dorfman. 1972. Finding the maximal cut in a graph. Engineering Cybernetics 10, 3 (1972),
502-506.

Jan Poland and Thomas Zeugmann. 2006. Clustering pairwise distances with missing data: maximum cuts versus
normalized cuts. In Proceedings of the Discovery Science. Ljup¢o Todorovski, Nada Lavra¢, and Klaus P. Jantke (Eds.),
Springer, Berlin, 197-208.

Svatopluk Poljak and Zsolt Tuza. 1995. Maximum cuts and largest bipartite subgraphs. In Proceedings of the DIMACS
Series in Discrete Mathematics and Theoretical Computer Science. 181-244. DOI : https://doi.org/10.1090/dimacs/020/04
Gerhard Reinelt. 1991. TSPLIB-A traveling salesman problem library. ORSA Journal on Computing 3,4 (1991), 376-384.
Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. 2010. Solving max-cut to optimality by intersecting semidefinite
and polyhedral relaxations. Mathematical Programming 121, 2 (2010), 307-335. DOI : https://doi.org/10.1007/s10107-
008-0235-8

Ryan A. Rossi and Nesreen K. Ahmed. 2015. The network data repository with interactive graph analytics and visu-
alization. Proceedings of the AAAI Conference on Artificial Intelligence 29, 1 (2015), 4292-4293. DOI : https://doi.org/10.
1609/aaai.v29i1.9277

Sartaj Sahni and Teofilo Gonzalez. 1976. P-complete approximation problems. Journal of the ACM 23,3 (1976), 555-565.
DOI:https://doi.org/10.1145/321958.321975

José A. Soto. 2015. Improved analysis of a max-cut algorithm based on spectral partitioning. SIAM Journal on Discrete
Mathematics 29, 1 (2015), 259-268. DOI : https://doi.org/10.1137/14099098X

Luca Trevisan. 2012. Max cut and the smallest eigenvalue. SIAM Journal on Computing 41, 6 (2012), 1769-1786.
DOI:https://doi.org/10.1137/090773714

Ryan Williams. 2005. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical Computer
Science 348, 2 (2005), 357-365. DOI : https://doi.org/10.1016/].tcs.2005.09.023

Received 30 November 2022; revised 23 June 2023; accepted 26 June 2023

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 2.1. Publication date: August 2023.

