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SPECIAL FEATURE: INTRODUCTION

Showcasing advances and building community in modeling 
for sustainability
Noelle E. Selina,b,1 , Amanda Giangc,d , and William C. Clarke

We organized this Special Feature on “Modeling Dynamic 
Systems for Sustainable Development” to showcase the 
field’s recent advances. Much recent research in sustainabil-
ity science has mobilized data and theory to better under-
stand systems that include interacting people, technologies, 
institutions, ecosystems, and both social and environmental 
processes. A recent National Academies workshop and an 
Annual Review paper identified several challenges and open 
questions for the field, stressing the importance of develop-
ing and testing new theories to advance knowledge and 
guide action (1, 2). However, there has been less attention 
in sustainability science toward integrating modeling with 
theory and data-focused approaches. Modeling is necessary 
for making projections about the dynamical implications of 
our present understanding of nature-society systems—which 
is essential to determine whether long-term trends in nature-
society interactions are consistent with sustainable develop-
ment goals and to analyze whether particular interventions 
(e.g., technologies, policies, behavior) are likely to change 
those interactions in ways that promote such goals.

Many papers, through several decades, have called for 
better modeling tools to address the connections and feed-
backs between natural and social processes (3–6). Much of 
this work emphasizes shortcomings of models in areas 
important for sustainability analysis, including capturing mul-
tiscale complexity, tracking long-term dynamics, incorporat-
ing human agency, and accounting for the generation of 
novelty. Although this literature highlights significant and 
persistent gaps in current models, there has been growing 
interest and action in many research communities to advance 
science through simulating these aspects of nature-society 
systems. For example, there has been renewed attention to 
modeling-related issues in collective efforts to address cli-
mate and global change (7, 8), macro-energy systems (9), and 
social–ecological systems (10). Communities focused on envi-
ronmental and societal modeling have also increasingly 
addressed integrated systems (11–13).

Recent advances in computational tools and techniques 
mean that today’s state-of-the-art models and analyses look 
very different from, for example, perceptions of integrated 
assessment models typically introduced decades ago but 
still used to address topics such as climate change (14). New 
state-of-the-art models build on a broader variety of research 
traditions, are informed and evaluated by novel data sources 
(including qualitative and quantitative data), make extensive 
use of growing capacities for data acquisition and analysis, 
and engage a greater diversity of decision-relevant topics 
and stakeholders. Many advances are being applied to 
challenges within specific domains—e.g., to energy systems, 
food systems, and transportation systems. Others are well-
known within some disciplines—e.g., ecology, economics, or 

engineering—but not widely adopted in others despite hav-
ing much to offer there. At the same time, there is much 
potential for those developing and implementing similar 
methods to communicate and build community across their 
respective disciplines and domains.

The papers in this Special Feature highlight advances in sim-
ulating coupled nature-society systems. We believe that these 
techniques, if they were more widely adopted, could signifi-
cantly improve the capacity of sustainability science researchers 
to test theory, mobilize data, and inform action. Each contribu-
tion to the Special Feature addresses a specific area in which 
novel modeling approaches have demonstrated the capacity 
to advance theory and insight more broadly. The contributions 
were selected to be illustrative rather than comprehensive and 
to facilitate connections across the communities they repre-
sent. The process by which we invited and curated papers for 
this Special Feature reflected this community-building aim. We 
first conducted a virtual workshop in June 2021, in which 
roughly 40 invited participants shared their recent modeling 
advances relevant to sustainable development. We focused on 
recruiting a diverse cohort of authors, including multiple early-
career scholars who have developed or used models in a variety 
of domains relevant to sustainability. Through that process, we 
refined our proposal for the Special Feature, and conducted an 
online workshop and weekly virtual seminar series in spring 
2022, in which participants presented their papers for com-
ments by the broader group. A number of the papers in the 
Special Feature represent work catalyzed by connections and 
ideas generated through this process, with collaborations from 
authors who had not met prior to the workshop. We hope that 
similar connections are further facilitated by the publication of 
the papers in this Special Feature.

An opening Perspective by Selin et al. (15) gives an overview 
of recent progress in this area, arguing that recent work has 
begun to address longstanding and often-cited challenges in 

Author affiliations: aInstitute for Data, Systems, and Society, Massachusetts Institute of 
Technology, Cambridge, MA 02139; bDepartment of Earth, Atmospheric, and Planetary 
Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; cInstitute for 
Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC 
V6T 1Z4, Canada; dDepartment of Mechanical Engineering, University of British Columbia, 
Vancouver, BC V6T 1Z4, Canada; and eJohn F. Kennedy School of Government, Harvard 
University, Cambridge, MA 02138

This paper is part of a Special Feature on Modeling Dynamic Systems for Sustainable 
Development. The collection of all PNAS Special Features in the Sustainability Science 
portal is available here: https://www.pnas.org/sustainability-science.

Author contributions: N.E.S., A.G., and W.C.C. wrote the paper.

The authors declare no competing interest.

Copyright © 2024 the Author(s). Published by PNAS. This open access article is distributed 
under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-
NC-ND).
1To whom correspondence may be addressed. Email: selin@mit.edu.

Published July 8, 2024.

OPEN ACCESS

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

13
0.

44
.1

66
.2

00
 o

n 
A

ug
us

t 2
7,

 2
02

4 
fr

om
 IP

 a
dd

re
ss

 1
30

.4
4.

16
6.

20
0.

mailto:
https://orcid.org/0000-0002-6396-5622
https://orcid.org/0000-0002-0146-7038
https://orcid.org/0000-0001-8994-5251
https://www.pnas.org/sustainability-science
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:selin@mit.edu
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2215689121&domain=pdf&date_stamp=2024-7-8


2 of 5 https://doi.org/10.1073/pnas.2215689121� pnas.org

bringing modeling to bear on problems of sustainable devel-
opment. The paper draws on submissions from workshop 
participants of key examples of excellent work in their respec-
tive fields and collective discussions among Special Feature 
contributors. It highlights illustrative examples of innovative 
modeling methods and associated advances, together with 
specific examples from applications in recent research that 
illustrate how they inform sustainability-relevant questions. 
Selin et al. differentiate modeling work with respect to two 
(interlinked) approaches toward developing knowledge and 
informing action: 1) harnessing sector- and location-specific 

insights and 2) advancing theories of nature–society systems. 
They organize this summary of innovative methods and recent 
advances by reference to four stages of modeling practice: 
defining the purpose of modeling, selecting components, ana-
lyzing interactions, and assessing interventions.

A central concern of sustainability science with respect to 
informing action involves equitable distribution of well-being, 
and thus all papers in the Special Feature specifically address 
the cross-cutting theme of how distributional issues are con-
sidered in modeling. To further highlight the importance of 
equity in modeling, we highlight this issue in our second 

Table 1.   Modeling stages: Methods, examples, applications from the literature, and applications in this Special 
Feature, extended from ref. 15

Modeling stages Methods Specific examples
Applications from the  

literature
Applications in this 

Special Feature
Defining 
purpose

Incorporating 
nature–society 
interactions into 
sectoral decision-
support models

Large-scale engineering 
simulations adapted for 
decision support

Air quality (17, 18), built 
environment (19), earth 
system modeling (20), 
watershed management 
(21), land systems (22), 
water and energy (23)

Fletcher et al. (24) and 
Venier-Cambron 
et al. (25)

Simulating cross-sector 
connections and 
differing contexts

“Nexus” approaches, 
multisector dynamics, 
transfer learning

Water-food-energy (26), 
climate-health (27), agricul-
ture (28), water resources 
(29)

Burney et al. (30) and 
Siddiqi et al. (31)

Selecting 
components

Capturing diverse 
societal actors and 
their agency

Generalized modeling, 
agent-based modeling, 
computational social 
science methods, 
integrated assessment, 
network models

Global change (32), natural 
resource management (33), 
water systems planning (34, 
35), earth systems modeling 
(20)

Sparks et al. (36), 
Siddiqi et al. (31), and 
Davidson et al. (37)

Computational 
frameworks that 
facilitate model 
interoperability

Modeling framework 
standardization, 
system-of-systems 
approaches, network 
approaches

Earth system modeling (38), 
land systems (39), fisheries 
(40), air quality (41), trans-
portation (42)

Sparks et al. (36)

High-resolution data 
and simulation 
capacity

Data assimilation, digital 
twins, parameter 
exploration, model 
spectrums

Earth system modeling (43), 
energy systems (44, 45), 
water resources (46), air 
quality and health (47), 
transportation (48)

Fletcher et al. (24), 
Sparks et al. (36), and 
Venier-Cambron 
et al. (30)

Analyzing 
interactions

Purpose-built 
approaches to model 
couplings

Reduced-complexity 
models, partial cou-
plings, generalized 
modeling

Air quality (49), climate 
change (50), and natural 
resource management 
(51, 52)

Fletcher et al. (24), 
Davidson et al. (37), 
and Sparks et al. (36)

Techniques for captur-
ing realistic dynamic 
behavior

Agent-based modeling, 
scenarios, limit testing, 
dynamic and adaptive 
control techniques

Innovation (53) and energy 
(54, 55), water resources 
(56–58), socioenvironmental 
systems (59)

Taberna et al. (60), 
Noll et al. (61), 
Edwards et al. (62), 
Sparks et al. (36), and 
Siddiqi et al. (31)

Data-model integra-
tions that leverage 
advanced computa-
tional methods

Causal inference, digital 
twins, explainable AI

Energy systems (63), fisheries 
(64, 65), water resources 
(66), built environment and 
infrastructure (63, 67).

Schlüter et al. (62) and 
Taberna et al. (60)

Assessing 
interventions

Computational and 
statistical approaches 
that evaluate deci-
sion scenarios under 
uncertainty

Decision-making under 
deep uncertainty, 
exploratory modeling, 
scenario discovery, 
model ensembles

Natural capital (68), water 
resource planning (69), air 
quality (70), integrated 
assessment (71), land use 
(72)

Noll et al. (61), Fletcher 
et al. (24), and 
Burney et al. (73)

Ways to incorporate 
different perspectives 
and normative visions 
in dynamic modeling

Multiobjective optimiza-
tion, fuzzy cognitive 
mapping, participatory 
modeling, metrics

Climate adaptation (74), 
water system planning (21), 
inclusive wealth analysis 
(75–77)

Venier-Cambron et al. 
(30) and Siddiqi et al. 
(31)
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Perspective. In that Perspective, Giang et al. (16) discuss how 
modelers engage with distributional, procedural, and recog-
nitional dimensions of equity in all four stages of modeling 
practice, with examples drawn from topical case studies 
including those related to water resources, energy systems, 
air quality, and conservation.

Here, we summarize the papers in the special feature, 
organized by the framework outlined in the two Perspectives. 
Although many of the papers showcase advances in multiple 
stages of the modeling process, below, we highlight one core 
contribution for each. See Table 1 (extended from ref. 15) 
for additional coverage of each step in the Special Feature.

Defining Purpose

While the overarching goal of sustainability science is to 
bridge knowledge and action toward sustainable develop-
ment, models are designed for particular users and inform 
more specific purposes. While the constraints of this collec-
tive effort as a Special Feature of PNAS meant that many of 
the models presented had a shared purpose and audience 
of PNAS readers, the models involved in this work have much 
broader applicability. Giang et al., in their Perspective, survey 
opportunities and methods for incorporating procedural and 
recognitional equity considerations into this phase of mod-
eling, including attention to the participants, worldviews, and 
knowledge systems that inform these choices.

While many models already exist that can simulate environ-
mental and engineered systems, some of these models have 
been repurposed or extended to address different contexts 
more relevant to sustainability and human well-being, to dif-
ferent audiences. One example of this comes from the paper 
of Fletcher et al. (24), who build upon models used for water 
infrastructure planning, extending beyond a specific system 
to build middle-range theory on the relationship between cli-
mate variability and priorities in infrastructure-related climate 
adaptation. By applying this model together with climate 
model projections, nonstationary signal processing, stochastic 
weather generation, and reinforcement learning-based 
advances in stochastic dynamic control, they find that dynamic 
planning can help build adaptive capacity, particularly in 
regions that experience long-term climate oscillations.

Selecting Components

Efforts to improve modeling of nature-society systems have 
focused on including more model components, representing 
ever more detail in human activities and environmental pro-
cesses. A major challenge has involved finding ways to incor-
porate aspects of these systems that are known to be important 
to sustainability, but are not typically simulated or easily quan-
tified. These aspects include the knowledge and formal and 
informal rules and norms that can affect interactions between 
and among different actors and their surroundings. Agent-
based modeling (ABM) provides one mechanism by which 
diverse societal actors and their agency can be simulated, and 
Taberna et al. (60) combine a state-of-the-art ABM evolutionary 
macroeconomic framework with empirical survey data to esti-
mate household adaptation to flood and its aggregate as well 
as distributional impacts. They illustrate that common 

assumptions of rational representative agents in such models 
overestimate diffusion of adaptation and underestimate dam-
ages, mainly due to omitting sociobehavioral adaptation con-
straints such as awareness and social influences revealed in 
survey data. Furthermore, they display the mechanisms 
through which even under a nearly complete adaptation dif-
fusion, adaptation benefits are uneven, further exacerbating 
inequalities. Running ~0.5 million ABM runs, this exploratory 
modeling shows that behavioral uncertainty can mediate the 
importance of physical factors traditionally thought to be deci-
sive for the uptake of adaptation measures.

Davidson et al. (37) identify three modeling approaches 
commonly used to assess climate mitigation interventions, 
where there is strong potential to incorporate institutions 
(formal and informal rules for shaping behavior): agent-
based, integrated assessment, and engineering-economic 
optimization modeling. They compare how including heter-
ogeneous institutions in each approach affects simulated 
sustainability outcomes, such as emissions reductions and 
costs. Results showed that including or omitting institutions 
can alter results, for example changing estimated costs of 
climate mitigation. Importantly, representing additional com-
ponents does not necessarily require using a single model 
that can capture everything: as the analysis by Davidson et al. 
shows, different types of models can be used to provide 
insights used independently or in combination. Nor does 
representing components necessarily require quantitative 
data. Siddiqi et al. (31) show that qualitative information on 
systems that includes institutions and knowledge, combined 
with a matrix-based approach to sustainability analysis (the 
human–technical–environmental systems framework), can 
be leveraged to simulate networks over time. They use this 
combined qualitative–quantitative approach to identify fac-
tors contributing to food security over a decades-long history 
of the Indus River Basin.

Analyzing Interactions

Capturing the complex, adaptive nature of the dynamics of 
nature-society systems poses a challenge for modeling. 
Factors such as feedback behavior, threshold processes, and 
adaptive responses, are often uncertain. Even where they are 
well-characterized, these factors can pose computational chal-
lenges in complex coupled systems. As a result, many studies 
omit societal responses altogether, even where including them 
might change results. Sparks et al. (36), drawing from air qual-
ity analyses, address an example of one of these areas, involv-
ing exposure to air pollution under changing climate. While 
people can (in part) adapt to reduce their air pollution expo-
sure by staying indoors on polluted days, this effect has largely 
been omitted in quantifications of future air quality impacts. 
Sparks et al. link global-scale climate and atmospheric chem-
istry modeling to adaptation modeling including social learn-
ing. They find that the effect of including societal response is 
not only substantial but also shapes the ways in which the 
burdens of responding to pollution are distributed, including 
both the costs of adaptation and the remaining impacts of 
those who are unable to adapt (such as outdoor workers). The 
paper by Edwards et al. (62) addresses a type of dynamic that 
has historically proved difficult to predict—the generation of 
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novelty, through innovation. Historically, integrated assess-
ment models that have been used to evaluate climate change 
policy have been critiqued for their insufficient representation 
of the potential for future technologies to emerge. Edwards 
et al. address this critique head-on, using historical technology 
analogues and early adoption indicators to model feasible 
growth pathways for the case of carbon dioxide removal tech-
nologies, and incorporating results into an integrated assess-
ment model. They show that this results in a more realistic 
analysis of the potential for such future technologies to 
address climate change. Schlüter et al. (61) focus on the objec-
tive, common to many fields of science, of better understand-
ing causal relationships in interactions, identifying causal 
mechanisms and assessing causal effects, as well as making 
robust causal claims; this is a challenge given the complexity 
of human–natural systems. Through presenting example stud-
ies, focusing on environmental pollution, disease spread, and 
natural resource management, they show key pathways for, 
and insights gained from, integrating empirical and modeling 
approaches to causal analysis and inquiry.

Assessing Interventions

Ultimately, modeling that contributes to sustainable develop-
ment efforts has the potential for informing potential interven-
tions by actors. A specific challenge in assessing interventions 
involves the unanticipated responses that might occur through 
social processes, where actions by one set of actors induce 
responses by others. For the case of policy interventions, Noll 
et al. (73) address one case of this type of effect. They use a 
system dynamics model to simulate how public policy inter-
ventions to stimulate technology development can induce 
global technical change through innovation “spillovers” where 
incentives in one region positively (or negatively) influence the 
same technology’s deployment in other regions, thereby induc-
ing further learning. Relatedly, Burney et al. (30) propose a 
method to decompose spatiotemporal signals of weather var-
iation that they then apply to examine potential interventions 
to reduce the vulnerability of agricultural productivity in Brazil 
to climate shocks, considering effects on related financial insti-
tutions such as large banks. To do this, they pair empirical sta-
tistical damage estimates derived from recent weather and 
outcome observations with projected future climate changes 
and proposed responses, then apply these to future climate 
simulations. New metrics are also being developed to analyze 
the impact of interventions for different actors, with different 
characteristics, often with a focus on equity. Venier-Cambron 
et al. (25), in an examination of future scenarios of conserva-
tion, present a systematic approach to identify areas of poten-
tial tension between global conservation objectives and local 
food security, evaluating the outcome in terms of equity. They 
call for the use of multiple indicators, reflecting the diversity of 
land-use needs, in conservation planning.

Ways Forward

The ten research papers in this Special Feature illustrate a 
sampling of a very broad range of methods that exist at the 
cutting edge of modeling dynamic systems for sustainable 

development. The papers also, collectively, make progress 
toward developing middle-range theory in sustainability 
science. There is much potential for generalizable insights 
across different domains, addressing fundamental ques-
tions about topics of relevance to sustainable development, 
such as how novelty emerges within nature-society sys-
tems, what conditions promote changes over longer-term 
timescales, how heterogeneous and nonlinear processes 
interact over spatial and temporal scales, and how unequal 
distributions of power and influence affect efforts to pro-
mote shared well-being. While modeling-focused analyses 
often have much to say about these topics more broadly, 
research contributing to these types of ambitious cross-
cutting aims is often difficult to communicate through tra-
ditional peer-reviewed papers. We thus asked the authors 
of each of the papers in this Special Feature to draw  
out such lessons for middle-range theory, and these con-
tributions are also highlighted through the Significance 
Statement speaking to a broader audience in the field of 
sustainability science.

While the papers in this Special Feature showcase con-
crete modeling advances, they also illustrate that there is still 
much work to be done. Modeling will always be imperfect, 
and future studies (including empirical and theoretical anal-
yses) will likely identify components and interactions which 
are influential for sustainability but currently unknown. Many 
models still fall short of directly informing efforts toward 
comprehensive well-being, as many still focus on single sec-
tors or output metrics. As theoretical and empirical work 
advances in better understanding the functional relation-
ships between resources and human well-being, models will 
have an important role to play in further developing analyses 
that resonate with longer-term sustainability questions. 
Further, though there has been much progress as summa-
rized by Giang et al. (16), many modeling efforts continue to 
reinforce dominant power dynamics and existing inequities. 
Further attention to equity and justice considerations in mod-
eling is increasingly important if models are to be fully lev-
eraged in efforts to promote sustainability.

All of the papers in this Special Feature are openly available 
without a paywall on the dedicated PNAS web page (https://
www.pnas.org/topic/555). This methods-focused special fea-
ture complements other Special Features in the Sustainability 
Science section of PNAS (https://www.pnas.org/special-features/
sustainability-science), many of which can be potential oppor-
tunities to bring modeling advances to bear on the hottest 
topics of the field. Through this initial effort to highlight a 
diversity of research in this area, we hope to inspire further 
development of new modeling methods and advances toward 
the ultimate goals of sustainability.
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